Keil Logo

Technical Support

On-Line Manuals

RL-ARM User's Guide (MDK v4)

RL-RTX RL-FlashFS RL-TCPnet RL-CAN RL-USB RL-USB for USB Device Applications RL-USB Device Library RL-USB Device Features RL-USB Device Software Stack RL-USB Device Functions RL-USB Device Source Files RL-USB Device Configuration Audio Device (ADC) Options Communication Device (CDC) - ACM Options Human Interface Device (HID) Options Mass Storage Device (MSC) Options Create USB Device Applications Create ADC Applications Create CDC ACM Applications Create HID Applications Create MSC Applications Create Composite Applications Test USB Device Applications Compliance Tests Test HID Client Application RL-USB for USB Host Applications RL-USB Host Library RL-USB Host Features RL-USB Host Software Stack RL-USB Host Functions RL-USB Host Source Files RL-USB Host Configuration Host Controller Driver Selection Host Controller Driver Configuration Host Class Driver Selection Create USB Host Applications Create USB Host HID Applications HID_Kbd Example Create USB Host MSC Applications Create USB Host Class Driver RL-USB Host Constants and Structures Error constants Speed constants Transaction Packet Type constants Transaction Error Type constants USB Request Block structure (USBH_URB) Endpoint structure (USBH_EP) Driver Capabilites structure (USBH_HCI_CAP) Device Class Instance structure (USBH_DCI) Host Controller Instance structure (USBH_HCI) Host Controller Driver structure (USBH_HCD) USB Concepts USB Transfer Rates USB Network Basic Communication Model USB Protocol Control Transfer Interrupt Transfer Isochronous Transfer Bulk Transfer Descriptors Device Configuration Device Descriptor Configuration Descriptor Interface Descriptor Endpoint Descriptor Device Qualifier Descriptor Example Programs Library Reference Appendix

Isochronous Transfer

Isochronous Transfers are used for transmitting real-time information such as audio and video data, and must be sent at a constant rate. USB isochronous data streams are allocated a dedicated portion of USB bandwidth to ensure that data can be delivered at the desired rate. An Isochronous pipe sends a new data packet in every frame, regardless of the success or failure of the last packet. No interrupt is generated when data arrive in the Endpoint buffer. Instead, the interrupt is raised on the Start-of-Frame token, which guarantees a regular 1ms interrupt on the Isochronous Endpoint.

Isochronous Transfers have no error detection. In other words, any error in electrical transmission is not corrected by hardware mechanisms such as retries.

Isochronous Transfers are also subject to timing jitters as described for Interrupt Transfers.

  Arm logo
Important information

This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies.

Change Settings

Privacy Policy Update

Arm’s Privacy Policy has been updated. By continuing to use our site, you consent to Arm’s Privacy Policy. Please review our Privacy Policy to learn more about our collection, use and transfers
of your data.