MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide
Rev. 14 — 12 April 2023

User guide

Document Information

Information Content
Keywords MCUXSDKUSBSUG, USB Stack, USB examples
Abstract

This document describes the steps to compile the USB examples, download a binary image, and

run the examples, port the USB stack to a new platform, and develop a new application based on
the existing classes in the USB stack.

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

1 Overview

This document describes the following:

» Steps to compile the USB examples, download a binary image, and run the examples.
» Steps to port the USB stack to a new platform.
» Steps to develop a new application based on the existing classes in the USB stack.

2 Build the USB examples in MCUXpresso SDK

This section describes how to compile the USB stack and examples, download a binary image, and run the
examples.

2.1 Requirements for building USB examples

The TWR-K22F120M Tower System module or FRDM-K64F Freedom platform is used as an example in
this document. The process for compiling, downloading, and running examples is similar on all other boards.
For a detailed version of the toolchain software, see the MCUXpresso SDK Release Notes (document
MCUXSDKRN).

2.1.1 Hardware

TWR-K22F120M Tower System module and (optional) TWR-SER Tower System module and Elevator
MCUXpresso SDK Boards

J-Link debugger (optional)

USB cables

2.1.2 Software

MCUXpresso SDK release package

IAR Embedded Workbench for Arm Version 8.11.3

* Keil yVision5 Integrated Development Environment Version 5.23 , available for Arm Cortex-M4 devices
* MCUXpresso IDE v10.1.0

» Makefiles support with GCC revision 6-2017-g2-update from Arm Embedded

2.2 USB code structure
The USB code is located in the folder:

<install_dir>/middleware/usb

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

2/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

> | boards
> b CMSIS
> | devices
>). docs

4 | middleware

dma_manager

> b emv
> b, fatfs
>). mbedtls

» b mmcau

> b, sdmmc
> Ju usb
> b, wolfssl
> rtos
> tools

Figure 1. MCUXpresso SDK folder structure

The USB folder includes the source code for stack and examples. Note that the version number of the USB
folder may vary.

v usb
device
host
include
otg

output

Figure 2. USB folder structure

The USB folder includes the following subfolders:

e device
This subfolder includes the device controller driver and common device driver for the USB device.
e host
This subfolder includes the host controller driver and common host driver for the USB host.
e include
This subfolder includes the definitions and structures for the USB stack.
* otg
This subfolder includes the OTG controller driver, common OTG driver and OTG peripheral driver for the USB
OTG.
* output
This subfolder includes the files that are specially used by the New Project wizard.

Note: For different USB stack versions, the folder structure may be a little different. See the folder structure in
the release package to get the exact folder structure.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

3147

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

2.3 Compiling or running the USB stack and examples

Note: The USB example may not support all compilers. The steps below describes how to compile and run on
all compilers. Check the specific MCUXpresso SDK documentation to know about the supported compilers for

the USB example.

2.3.1 Step-by-step guide for MCUXpresso IDE
1. Prepare a compressed release package, such as SDK_2.0_FRDM-K64F.zip.

2. Open MCUXpresso IDE and drag and drop the MCUXpresso SDK (zip file/folder) into the "Installed SDKs".

The MCUXpresso SDK should install.

~ Start here
B new project.. [Installed SDKs
. Import SDK example(s)... To install an SDK, simply drag and drop an SDK (zip file/folder) into the Installed SDKs' view.
& Import project(s) Name WV Location
% £ SDK_2.0.0_MKS4FNIMOsadz 04 [
' 4
T &
4 | i | b

[—— - = = r ——|
‘workspace—D - - MCUXpresso ID = gIL
File Edit Mavigate Search Project Run Window Help
M-BE -~ punEapHiEz= e IRSLLAHE-0-Q%-|e® L - REN
T . L e Quick Access ﬁ |
[EyPr. 2 P.. i R. Sy.. = B @ Welcome 232 = B =¥ Disassembly 3 R
E| = « jisteredFreeEditionhtm « [Enter location here | 1] @| i)
-~ =
x | Ne debug context
MCUXpresso IDE (Free E«
Welcome to MCUXpresso IDE (Free Edition). The s
MCUXpresso (Free Edition) can be used to generat
Note: The contents of this page are work in prog
Product Documentation
= e = The MCUXpresso IDE User Guide provides instruc =
WDQ 2 W6 W=V ®EBE 8 # Heln >MCIXnresso Liser Guide Y
o | B 1 | 3 1 s
. MCUXpresso IDE (Free Editio — -
|_ioe) @ Install... 32 [Prope.. & Console (2] Proble.. [J Memory @ Instru.. [F]SWO.. =3Power. = B

aLBE

| »

m

Figure 3. Installed SDK

3. To select an example, select the “Import SDK example(s)” button. Click the “Next” button after selecting the

available board.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

4/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

. MCUXpresso IDE (Free Edition)
|_ioE |

+ Start here

. Mew project...

. Import SDK example(s)...
R e R R R LT
. Import project(s)

G HHNHP

Gz

2 (Quick Settings>»>

Pl

==

+ Manage SDK

Install/Delete SDE...
Use existing SDK...

Figure 4. Import project button

"B DK Import Wizard ¥ w m- BT ™X)

(i) Importing project(s) for device: MK64FN1Mihood 2 using board: FRDM-K64F

»

. Board and/or Device selection page —

* Available SDK Available boards
?;;Ilable P ipa o i adlied Please select an available board for your project.

m

T Supported boards for device: MKG4FN1Mbeod 2
MNP MIKG4FNIMOoed 2

a MK
MEBAFMN1 MDi00d 2

frormkidf

4 L k

@ | <Back | Nea> J[Fnsh |[Conced |

Figure 5. Select boards

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

5147

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

4. To import one example, click the “Finish” button after selecting the available example.

r "
[SDK Import Wizard B W amp i g g—— E@g

(v, The source from the SDK will be copied into the workspace. B i @
If you want to use linked files, please unzip the 'S0K_2.0.0_MKG4FN1MO:ced 2" SDK. | .

. Import projects =

13

Project name prefic: ifrdmkﬁélf_ i ! Project name suffie | 7

Use default location

Location: . ChUsers\b51422\Documents\MCUXpressolDE_0.0.0_221_alpha\workspace\frdmkfadf_ | I.B rowse., .-

Project Type Project Options

@ C Project C++ Project C Static Library C++ Static Library Copy sources

m

Examples 2 & &| B
type to filter

=
n
3
m
»

Version
cmsis_driver_sxamples
demo_apps
driver_sxamples
mmcau_examples
multiprocessor_sxamples
rtos_examples

m

A|lv v v v v w

v v [EIOO0O0OO
[[[{00|0on D00 OO0 00D DOD 00O

I

a

g

3

=1

I

usb_device_audio_generator
ush_device_audio_generator_lite L5

ush_device cdc_vecom_lite
ush_device_cdc_vnic

1000 000 [(<3 000 000 00O

jog

@ [<Back || Net> |[Finsh [Cancal

v =

Figure 6. Import project
5. After importing, the window should look like the below figure.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

6/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

k e - D f_usb_examples_usb_deuice_odc_vmm_bm.l"sources.-;virtual_oum.c = MCUX-[:E_SSD IDE - @Elg1
Edit Source Refactor Mavigate Search Project Run Window Help

R ®- R -Riw P IENpE @3RS LI E -0 -G @S-

1 |£|§|'ﬁ|7°‘ e b QuickAccess}EEfl

n PR 5 = = [£] virtual_com.c &1 | @ Welcormne = O | == Disassembly 23 =]

=) - 555 if ((s_waitForDataRec: - Enter location here o :| [a E% |
: 556 { ; .
a4 5 _f_rfm@f_usb_examples_usb_de\.rlce_ - — if (s_comOpen == -
I &%, Binaries E 558
! { No debug context
b [l Includes 559 /* Wait for al i
b 3 CMSIS 666
661 */
[board
g dri 662 usb_echo("waii
3 - MVErs o 663 for (uint32_tEI
- III == 3 G64
565 _ ASM(“NOF o

- =

MO E =G W=V =l ‘ 1 b 1 }

. MCUXpresso IDE (Free Edi|j Inst.. [Prop.. B Cons.. 32 [& Prob.. [0 Mem.. @ Instr.. [F]SWO.. =D Pow.. =il
e) E
B~

« Start here Mo conscles to display at this time.

. Mew project...
. Import SDK example(s)...

B Tk nrniar +ic)
4 T | b

| Writable Srmart Insert 679:8
U NXP MK64FNIMO:00d 2 (frdmk...m brm)

Figure 7. The USB projects workspace

6. Choose the appropriate build target, “Debug” or “Release”, by left-clicking the build configuration icon as
show in the below figure.

File Edit S5ource Refactor Mavigate 5Search Project Bun Window

Ny ®-R-Riv|n® il
xb » 5| » ¥5 &5 « ¥ | 1 Debug (Debug build)

2 Release (Release build)
|._ﬁ_~|F'r... &l Per.. S - lcome 4

Figure 8. Manage build configuration button
7. If the project build does not begin after selecting the desired target, left-click the build icon to start the build.

- frdmk&4f usb_examples_usk_device_cdc_vcom_bm/:

File Edit Source Refactor Mavigate Search Project Run Window
i ﬁ = | I | @ Iﬁl :: \Q. | D (518} I!I \;L"? DP‘ I:":l [-
1, !5' - RP - ’t':::l <::I - _|___ -

5 Pr. 22 Per... it} Re... Sy. = m @ Welcome
Figure 9. Build project button
MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 14 — 12 April 2023

7147

NXP Semiconductors

MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

8. To check debugger configurations, click the down arrow next to the green debug button and select “Debug

Configurations”.

Figure 10. Configure debug button

O-Q%-ei®™y-!

(no launch history)

v

Debug As L
I Debug Configurations... I

Organize Favorites..,

. After verifying the debugger configurations are correct, click the “Debug” button.

.
. Debug Cenfigurations

Create, manage, and run configurations

type filter text

. C/C++ (NXP Semicenductors) MCU Ay

[E] C/C++ Application

[E] C/C++ Attach to Application

[E] C/C++ Postmortern Debugger

[E] C/C++ Remote Application

[&] GDB Hardware Debugging

4 E GDB PEMicro Interface Debugging

m frdmbkbdf_usb_examples_usb_devic
m frdmbkhdf_usb_examples_usb_devic

E GDB Segger Interface Debugging

= Launch Group

| 1 | 3

Filter matched 11 of 11 items

Name: frdmk64f_usb_examples_usb_device_cdc_vcom_bm PE Debug

Main i_#_;& Debugger\‘! = Startup\g Bp Source\;] Commaon|

Project:

frdmbkbdf_usb_examples_usb_device_cdc_vcom_bm

Specify the number of additional ELF Files you wish to program:

C/C++ Application:

»

Browse...
0 [Generate ELF Fields | ~

m

I Debug'\frdmkidf_usb_examples_usb_device_cd c_\rcom_bm.axfl I

l Variables...] [Search Project...] l Browse...

Build (if required) before launching

Build Configuration: |Use Active

4 | mn

Using MCUXpresso IDE PEMicro Interface Hardware Debugging
(D'SF) Launcher - Select other...

Revert Apply

)

Debug Close

1

o

Figure 11. MCUXpresso IDE debug

configurations

10. The application is downloaded to the target and automatically runs to main():
11. Run the code by clicking the “Resume” button to start the application:

. workspace - Develop - frdmk64f_usb_examples_usb_device_cdc_vcom_bm/sources/virtual_com.c - MCUXpres

File Edit

-

Figure 12. Resume button

Source Refactor

Mavigate

| B -R @i

Search Project Run
13 ® e) w2 e

Window Help

| S Rigid X

12. See the example-specific document for more test information.

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023

8147

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

2.3.2 Step-by-step guide for IAR

This section shows how to use IAR. Open IAR as shown in this figure:

1. Open the worksace corresponding to different examples.

For example, the workspace file is located at: <install_dir>/boards/twrk22f120m/usb_examples/usb_host
hid_mouse/bm/iar/host_hid_mouse_bm.eww.

File Edit View Project Tools Window Help

D HE &4 R o YR EIcer AR BURS|L L
Workspace

x

-
Debug -

Files da W
2l lhost_hid_mouse_bm -Debug [~ | |
[board
Fmdosa

b [platform
@ [sources
@ [startup
@ Cush
b= Cutilies
L@ [Cutput

| hast_bid_mouse_bm

Messages
ush_host_hid.c
ush_host_hub.c

File Line (=}

ush_host_hub_app.c
ush_osa_bmc
ush_host_khoic

@
Total number of errars: 0

-
< [I

Ready

Errors 0, Warnings 1 NUM

Figure 13. IAR workspace
2. Build the host_hid_mouse_bm example.

3. Connect the micro USB cable from a PC to the J25 of the TWR-K22F120M Tower System module to power
on the board.

4. Click the “Download and Debug” button. Wait for the download to complete.
5. Click the “Go” button to run the example.

6. See the example-specific readme.pdf for more test information.

2.3.3 Step-by-step guide for Keil pVision5

This section shows how to use Keil yVision5. Open Keil pVision5 as shown in this figure:

1. Open the workspace corresponding to different examples.

For example, the workspace file is located in <install_dir>/boards/twrk22f120m/usb_examples/usb_host_
hid_mouse/bm/mdk/host_hid_mouse_bm.uvmpw.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers.

User guide Rev. 14 — 12 April 2023

© 2023 NXP B.V. All rights reserved.

9/47

NXP Semiconductors

MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

ki CiFreescale\SDK 20 TWR-K22F120MBowrd:
Bl Edt Yiew Pojet Fiin Deoug Pephess Jools SVCS Window be

iN@d@ s w|ov|wv|pnnn|xenmue

Hacl@le ool

@ | ¥ reremouseomoals] &K | B & 2 @

© &3 host_hid_mouse bm Debug
@ (3 startup
@ (3 usb-host
@ (3 platform
© osa
@ (3 usb-host-class
@ sources
@0 utilities
@ Ol usb-include
&0 boerd

] Project | @500k | 1) Functions | Dy Templates
R —_—

Frogram Size: 2I-data=12380
=debug\host_hid_mouse_bm.out® - 0 Erzor(s), 0 Warning(s).

Build Time Elapsed: 00:00:11

Figure 14. Keil yVision5 workspace

CAP NUM SCRL OVR RAW

Build the host_hid_mouse_bm example.

Click the “Go” button to run the example.
See the example-specific readme.pdf for more test information.

ok wDd

2.3.4 Step-by-step guide for ARMGCC

2.3.4.1 Setup tool chains

2.3.4.2 Install GCC Arm embedded tool chain

Download and install the installer from www.launchpad.net/gcc-arm-embedded.

2.3.4.3 Install MinGW

1. Download the latest mingw-get-setup.exe.

2. Install the GCC Arm Embedded toolchain. The recommended path is C:/MINGW.

Note: The installation path should not contain a space.
3. Ensure that the mingw32-base and msys-base are selected under basic setup.
4. Click “Installation” and “Apply changes”.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers.

Click the “Start/Stop” debug session button. Wait for the download to complete.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

10/ 47

http://www.launchpad.net/gcc-arm-embedded

NXP Semiconductors

MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Installaton Package Settings

bi¢ MinGW Installation Manager

Bazic Setup | Package

All Packages
singwii-base
D =ingwil-goe~
D =ingwil-goe~
D =ingwii-goe~
D =ingwdi-goe~

=sys~base

D singw-develcper-toolkit bin

Installatien for MinGW Developers

¥inGW Installation
Ada Compiler
FORTRAN Compil
C** Compiler
Qbjective~C Compiler

L

| ciass | Installed. .. [Repositors Version | Description
2013072300 An MSYS
bin 2013072200 A Basic
ada bin 4. 8. 1=3 The GNU
fortran bin 4.8, 1=% The GNU
E™* bin 4. 8. 1-4 The GNU
ebie bin 4. 8. 1=4 The GNU
bin 2013072300 A Basic

Figure 15. Setup MinGW and MSYS

MSYS Installation (meta)

(meta)

5. Add paths C:/MINGW/msys/1.0/bin;C:/MINGW/bin to the system environment. If the GCC Arm Embedded
tool chain was not installed at the recommended location, the system paths added should reflect this
change else the tool chain will not work. An example using the recommended installation locations is shown

below.

Environment Variables

e — -

|| Edit Systen_'lm

Variable name:

Variable value:

System variables

Path

c\MINGW \msys\ 1. 0\binc: WMinGW \bing 2 \Pr

] [Cancel

[ok

Variable

Path

PATHEXT
PROCESSOR_A...
PROCESSOR._ID...

Value &

o \MinGW \msys\1.0%bin;C: \Program File...
.COM; .EXE; .BAT;.CMD;.¥B5;.VBE;.15;....
AMDG4

Intele4 Family & Model 58 Stepping g, G...

-

P

New... || Edt.. || Delete

]

[ok || concel

N

Figure 16. Add Path to systems environment

2.3.4.4 Add new system environment variable ARMGCC_DIR

Create a new system environment variable ARMGCC_DIR. The value of this variable should be the short name
of the Arm GCC Embedded tool chain installation path.

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023

11147

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

- o
Environment Variables @
Edit System Variable
Variable name: ARMGCC_EJIR
Variable value: c:\PROGRA ~1\GNUTOO ~1\4BDE5~1,520)
[oK.] [Cancel]

System variables

Variable Value e

ARMGCC_DIR :\PROGRA ~1\GNUTOO~1\4BD65~1,920 U
COS LIC FILE 5280@127.0.0.1

COS_LIC_ONLY 1

CLASSPATH .;Ci\Program Files\Javaljreg\ib\ext\QT... ™

| new. || Edt.. || Delete |

[OK][Cancel]

Figure 17. Add ARMGCC_DIR system variable

2.3.4.5 Install CMake

1. Download CMake 3.0.1 from www.cmake.org/cmake/resources/software.html.
2. Install CMake 3.0.1 and ensure that the option "Add CMake to system PATH" is selected.

A CMake 3.0.0 Setup = .

Install Options
Choose aptions for installing CMake 3.0.0

By default CMake does not add its directory to the system PATH.

() Do not add CMake to the system PATH
@ [add CMake to the system PATH for all users
. Add CMake to the system PATH for current usar

|| Create CMake Desktop Icon

| <gack || Mea> J | Cancel
Figure 18. Install CMake
MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 14 — 12 April 2023

12/ 47

http://www.cmake.org/cmake/resources/software.html

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

2.3.4.6 Build the USB demo

1. Change the directory to the project directory:<install_dir>/boards/twrk22f120m/usb_examples/usb_host
hid_mouse/bm/armgcc.

2. Run the build_all.bat. The build output is shown in this figure:

[77%]

[81%]

[85%] [88%]

[92%] [96%]

[180%]

C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.8\platform\driversismc\fsl_smc.c: In function 'SMC_SetPowerModeStop’
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\driversi\smc\fsl_smc.c:83:23: warning: variable 'dummyRead' set but n|
ot used [-Wunused-but-set-variable]

volatile uint32_t dummyRead;

C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.8\platformdriversismc\fsl_smc.c: function 'SMC_SetPowerModeUlps':
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.8\platformidrivers\smc\fsl_smc.c: :23: warning: variable 'dummyRead’ set but
not used [-Wunused-but-set-variable]

volatile uint32_t dummyRead:

C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.8\platform\driversi\smc\fsl_smec.c: function 'SHC_SetPowerModelLls':
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.08\platform\drivers\smc\fsl_smc. 23: warning: variable ‘dummyRead’ set but
hot used [-Wunused-but-set-variable]

volatile uint32_t dummyRead;

C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\driversi\smc\fsl_smc.c: function 'SMC_SetPowerModeUlls':
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\driversismc\fsl_smc. 23: warning: variable ‘dummyRead’ set but
not used [-Wunused-but-set-variable]

volatile uint32_t dummyRead;

[100%] Built target host_hid_mouse_bm.elf

Figure 19. USB host demo built successfully

2.3.4.7 Run a demo application

This section describes steps to run a demo application using J-Link GDB Server application.

1. Connect the J-Link debug port to the SWD/JTAG connector of the board.
2. Open the J-Link GDB Server application and modify your connection settings as shown in this figure.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

131747

NXP Semiconductors

MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Connechion to J-Link
i« LSB [Serial No.

 ICR/P

Target device

SEGGER J-Link GDB Server V4 90e - Config

[MEZZDN51 24045

Little endian

T arget interface

|JT4G
Speed
s Auto selection

" Adaptive clocking

" 1000

Cormand line option

=

|-select USE -device ME22DME1 250x5 -if JTAG -speed auta

o]

Cancel

Figure 20. SEGGER J-Link GDB Server configuration

Note: The target device selection should be MK22FN512xxx12. The target interface should be SWD.
3. After the connection is estabilished, the screen would resemble the figure below:

5! SEGGER J-Link GDB Server V4.90e

Eile Help

GDB |Waiting for connection

J-Link |E0nnected

[

=
B itisldTAG speed [auto =

v Show Io-g window
Il CurentTAG speed [4000 kHz

CPU |MK22DN 51 2unnb

Log autput: Clear log

[~ Yerfy download
v Init regs on start

[~ Generate logfile
EEE | Litle endian =

Connecting to J-Link. ..
J-Link is connected.

Firmware:
Hardwares: V1.00
S-H: 361000583

Target woltage: 3.30 ¥
Connecting to target. . .

JTAG ID:
Connected to target

4

0 Bytes downloaded

J-Link Lite-FS5L V1 compiled Jun 25 2012 16:40:07

Checking target woltage. ..
Li=ztening on TCE-IFP port 2331

J=Link found 1 JTAG devwice.
0x4BAO0477 (Cortex-M4)

Waiting for GDE connection. .. .v

Total IRLen = 4

m

1 JTAG device

Figure 21. SEGGER J-Link GDB Server screen after successful connection

Note: The CPU selection should be CPU to: MK22FN512xxx12.
4. Open the Arm GCC command prompt and change the directory to the output directory of the desired demo.

For this example, the directory is:

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023

1447

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid _mouse/bm/armgcc/debug.
5. Run the command “arm-none-eabi-gdb.exe <DEMO_NAME>.elf’. Run these commands:

* “target remote localhost: 2331”

* “monitor reset”

* “monitor halt”

* “load”

* “monitor reset”

6. The application is downloaded and connected. Execute the “monitor go” command to start the demo
application.

7. See the example-specific document for more test information.

2.4 USB stack configuration

2.4.1 Device configuration

A device configuration file is set up for each example, such as:
<install_dir>/boards/twrk22f120m/usb_examples/usb_device hid_mouse/bm/usb_device config.h

This file is used to either enable or disable the USB class driver and to configure the interface type (high-speed
or full speed). The object number is configurable either to decrease the memory usage or to meet specific
requirements.

If the device stack configuration is changed, rebuild the example projects. For each device, follow these steps.
If the board is a Tower or Freedom platform, enable the following macros:

1. Enable #define USB_DEVICE_CONFIG_KHCI (0U) macro for full speed.
2. Enable #define USB_DEVICE_CONFIG_EHCI (0U) macro if the board supports high-speed.
Note: Only EHCI support pin detect feature.

If board is part of the LPC series, enable the following macros:

1. Enable #define USB_DEVICE_CONFIG_LPCIP3511FS (0U) macro for full speed.
2. Enable #define USB_DEVICE_CONFIG_LPCIP3511HS (0U) macro if the board supports high-speed.

2.4.2 Host configuration

A host configuration file is set up for each example, such as:
<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/usb_host config.h

This file is used to either enable or disable the USB class driver. The object number is configurable either to
decrease the memory usage or to meet specific requirements.

If the Host stack configuration is changed, rebuild the example projects.
For each Host, follow these steps.

If the board is a Tower for Freedom platform, enable the following macros:
Enable this macro for full speed.

#define USB_HOST_CONFIG_KHCI (0U)

Enable this macro if the board supports high-speed.
#define USB_HOST_CONFIG_EHCI (0U)

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

151747

NXP Semiconductors

MCUXSDKUSBSUG

Note: Only EHCI support pin detect feature.

MCUXpresso SDK USB Stack User’s Guide

If board is part of the LPC series, enable the following macros:

Enable this macro for full speed.
#define USB_HOST_CONFIG_OHCI (0U)

Enable this macro if the board supports high-speed.
#define USB_HOST_CONFIG_IP3516HS (0U)

2.4.3 USB cache-related MACROs definitions

There are few MACROs in the USB stack to define USB data attributes.

* USB_STACK_USE_DEDICATED_RAM

The following values are used to configure the USB stack to use dedicated RAM or not.
1. USB_STACK_DEDICATED_RAM_TYPE_BDT_GLOBAL - The USB device global variables (controller data
and device stack data) are put into the USB-dedicated RAM.
2. USB_STACK_DEDICATED_RAM_TYPE_BDT - The USB device controller global variables (BDT data) are
put into the USB-dedicated RAM.
3. 0 - There is no USB-dedicated RAM.
» USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEABLE
The following values are used to configure the device stack cache to be enabled or not.

0: disabled
1: enable

This macro is not supported in the Cortex-M7 platforms.
* USB_HOST_CONFIG_BUFFER_PROPERTY_CACHEABLE

The following values are used to configure host stack cache to be enabled or not.

0: disable
1: enable

This macro is not supported in the Cortex-M7 platforms.

Based on the above MACROs, the following cache-related MACROs are defined in the USB stack.

Table 1. Cache and global variable attribute relation

USB_DEVICE_CONFIG_
BUFFER_PROPERTY_
CACHEABLE ||
USB_HOST_CONFIG_
BUFFER_PROPERTY_
CACHEABLE is true

USB_DEVICE_CONFIG_BUFFER_PROPERTY_CACHEA

BLE ||

USB_HOST_CONFIG_BUFFER_PROPERTY_CACHEABL

E is false

USB_STACK_USE_

DATA_SECTION_IS_

DATA_SECTION_IS_

DEDICATED_RAM's Value CACHEABLE is true CACHEABLE is false
USB_STACK_DEDICATED _
RAM_TYPE_BDT_GLOBAL ||USB_ dedicated USB_ dedicated USB_ dedicated
GLOBAL ram, stack GLOBAL ram, stack GLOBAL ram, stack
use only use only use only
USB_BDT dedicated USB_BDT dedicated USB_BDT dedicated
ram, stack ram, stack ram, stack
use only use only use only
USB_ Non USB_ Non USB_ dedicated
CONTROLLERCachable, CONTROLLERCachable, CONTROLLERam, stack
DATA DATA DATA use only

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023

16/ 47

NXP Semiconductors

MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Table 1. Cache and global variable attribute relation...continued

stack use stack use USB_DMA_ |alignment
only only NONINIT
USB_DMA_ |cachable USB_DMA_ |noncachable |||DATA_
NONINIT_ |ram and NONINIT_ |ram and ALIGN(n)
DATA_ alignment DATA_ alignment USB_DMA_ |alignment
ALIGN(n) ALIGN(n) |N|T_DATA_
USB_DMA_ |cachable USB_DMA_ |noncachable |||ALIGN(n)
INIT_DATA_ |ram and INIT_DATA_ |ram and
ALIGN(n) alignment ALIGN(n) alignment
USB_STACK_DEDICATED _
RAM_TYPE_BDT USB_ cachable USB_ Non USB_ NULL, stack
GLOBAL ram and GLOBAL Cachable, GLOBAL use only
alignment, stack use .
stack use only USB_BDT dedicated
only ram, stack
USB_BDT dedicated use only
USB_BDT dedicated ram, stack
- ram, stack use only USB_ NULL, stack
use ,onl CONTROLLERuse only
y USB_ Non DATA
USB_ Non CONTROLLERCachable, .
CONTROLLERCachable, ||| DATA stack use H(S)iTE:\TAA_ alignment
DATA stack use only DATA
only USB_DMA_ |Non ALIGN(n)
USB_DMA_ |cachable NONINIT_ Cachable .
NONINIT_ ram and DATA_ and tJNSI'II?_[[)),L\\{Ir':_ alignment
DATA_ alignment ALIGN(n) alignment b —
ALIGN(n) ALIGN(n)
USB_DMA_ [Non
USB_DMA_ |cachable INIT_DATA_ |Cachable
INIT_DATA_ |ram and ALIGN(n) and
ALIGN(n) alignment alignment
0
USB _ cachable USB Non USB NULL, stack
GLOBAL ram and GLOBAL Cachable, GLOBAL use only
alignment, stack use
stack use only USB_BDT NULL, stack
only S use only
USB_BDT Non
USB_BDT |Non Cachable, gg?\ﬁ'R OLLE :E‘U'-'-’ |Sta°k
Cachable, stack use DATA {S€ only
stack use only
only USB_ Non ﬁgEIT&“TAA_ alignment
USB _ Non CONTROLLERCachable, DATA
CONTROLLERCachable, DATA stack use ALIGN:
DATA stack use only ()
only USB_DMA_ | Non IlilSI_I?_DDL\\{I&_ alignment
USB_DMA_ |cachable NONINIT _ Cachable ALIGN —
NONINIT__ |ram and DATA_ and (n)
DATA_ alignment ALIGN(n) alignment
ALIGN(n) USB_DMA_ |Non
INIT_DATA_ |Cachable
ALIGN(n)
MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 14 — 12 April 2023

171 47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Table 1. Cache and global variable attribute relation...continued

USB_DMA_ |cachable and
INIT_DATA_ |ram and alignment
ALIGN(n) alignment

Note: “NULL” means that the MACRO is empty and has no influence.

There are four assistant MACROs:

USB_DATA_ALIGN_SIZE Used in USB stack and application, defines the default align
size for USB data.

USB_DATA_ALIGN_SIZE_MULTIPLE(n) Used in USB stack and application, calculates the value that
is multiple of the data align size.

USB_DMA_DATA_NONCACHEABLE Used in USB stack and application, puts data in the
noncacheable region if the cache is enabled.

USB_GLOBAL_DEDICATED_RAM Used in USB stack and application, puts data in the
dedicated RAM if dedicated RAM is enabled.

3 Porting to a new platform

To port the USB stack to a new platform in the MCUXpresso SDK, the SoC-related files, board-related files, and
a linker file for a specified compiler are required.

Assume that the new platform’s name is “xxxk22f120m” based on the MK22F51212 SoC.

3.1 System-on-Chip (SoC) files

SoC source/header files are in the following directory, which are available by default from MCUXpresso SDK.

» | boards
J arm
? CMSIS ;
; J drivers
4 devices
J gee
4 | MK2IF51212]
iar
arm .
; | linker
drivers =
utilities
| gee
. || fsl_clock.c
iar
: || fsl_clock.h
[linker : ;
i || fsl_device_registers.h
utilities
|| ME22F51212.h
- 48 docs
; || ME22F51212.5vd
> middleware
|| ME22F51212 features.h
[rtos
|| systern_MEK22F51212.c
» tools
; o o || system_ME22F51212.h
Figure 22. SoC header file directory

Note:
MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 14 — 12 April 2023

18147

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Linker files for each toolchain are in the linker directory.

Different toolchains’ SoC startup assembler files are in the Arm, GCC, and IAR directories.

3.2 Board files

The files for the board configuration and the clock configuration on a specific platform are needed to enable the
USB stack.

The clock configuration files are shown in the following image.

4 boards
k22F120 || cleck_config.c
J bwr m
|| eleck_config.h
4 ook 2f120m
demo_apps

driver_examples
rtos_exarnples
4 ush_exarnples
4 ush_device audio_generator_lite

[+ bm

Figure 23. Clock configuration files

1. Create a folder “xxxk22f120m” under the examples directory.

2. Copy the clock_config.c and clock_config.h file from the similar platform. For example, the TWR-K22F120M
Tower System module.

3. Ensure that BOARD BootClockxxx is implemented in the clock_config.c file. For example,
BOARD BootClockRUN and BOARD BootClockHSRUN. The user can change the function name.
However, the BOARD InitHardware must call the function. BOARD InitHardware is introduced later.
The board clock initialization is based on the board crystal oscillator. Ensure that the following two MACROs
are defined in the clock_config.h file:

#define BOARD XTALO CLK HZ 8000000U
#define BOARD XTAL32K CLK HZ 32768U

The user can updatethe MACROs according to the board design. For example, if the XTALO crystal
oscillator is 16000000U and the XTAL32K is 32768U, change the following MACROs as follows:

#define BOARD XTALO CLK HZ 16000000U
#define BOARD XTAL32K CLK HZ 32768U

The board configuration files are shown in the following image:

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

19747

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

. boards
|| board.c
twrk22f120m
|| board.h
oode2 2f1 20m
demo_apps

driver_examples

rtos_examples

usb_examples
ush_device_audio_generator_lite

| bm

Figure 24. Board configuration files

4. Copy board.c and board.h from the similar platform. For example, the TWR-K22F120M platform. Ensure
that the BOARD InitDebugConsole isimplemented in board.c file and that the BOARD InitHardware
calls the function. The BOARD InitHardware function is introduced later.

The Debug console-related MACROS are needed in the board.h file, as follows:

#define BOARD DEBUG UART TYPE DEBUG CONSOLE DEVICE TYPE UART
#define BOARD DEBUG UART BASEADDR (uint32 t) UART2

#define BOARD DEBUG UART CLKSRC BUS_ CLK

#define BOARD DEBUG UART BAUDRATE 115200

Update the MACROs according to the board design. For example, the default UART instance on the board
is LPUART1, the type of default UART instance on one specific platform is LPUART, and the LPUART clock
source is the external clock. In this case, change the above MACROs as follows:

#define BOARD_DEBUG_UART TYPE DEBUG CONSOLE DEVICE_TYPE LPUART
#define BOARD DEBUG UART BASEADDR (uint32 t) LPUART1

#define BOARD DEBUG UART CLKSRC kCLOCK_OscOErClk

#define BOARD DEBUG UART BAUDRATE 115200

Note that there are three kinds of UART instances provided in MCUXpresso SDK devices, UART, LPUART,
and LPSCI. The interfaces of the UART instance are different. To provide a uniform UART interface to a
USB Host example in which the UART function is used, a UART instance wrapper is provided. The wrapper
is implemented in the usb_uart_drv.c, usb_lpuart_drv.c, or usb_Ipsci_drv.c file and has a common header
file usb_uart_drv.h. For a different UART instance, use the corresponding UART instance wrapper file in the
project.

3.3 Porting examples

3.3.1 Copy a new platform example

The platform USB examples directory is shown in the following figure.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

20/ 47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

4 || boards
twrk22f120m
4 wock22f120m

demo_apps

. ush_device audio_generator_lite

driver_examples
rtos_examples
a ush_exarnples

ush_device_audio_generator_lite

Figure 25. USB examples directory

Copy the existed example’s whole directory from the similar platform, which ensures that all example source
files and project files are copied.

For example, copy the twrk22f120m/usb/usb_device _audio _generator _lite to the twrkxx/usb location, which
ensures that sources files and project files for usb_device_audio_generator_lite example are copied.

3.3.2 Porting the example

For different examples, different pins are used. As a result, the pin_mux.c/h files are needed to assign different
pins to a specific functionality. Check the board schematic for correct pin settings.

Example-related port pin configurations are required in the following files:

boards :
|| audio_data.c
twerk2 2f120m :
| | audic_generator.c
) oock22f120m i
| | audic_generator.h
demo_apps

3 || pin_muzx.c
driver_examples f

|| pin_mux.h

| rtos_examples - = - :

|| usb_device_audio.c

| ush_examples — : :

! : : || usb_device_audic.h

usb_device_audio_generator_lite :
|| usb_device_ch9.c

bm 3
|| ush_device_ch3.h
CMSIS) _
; || ush_device_config.h
| devices ; :
|| usb_device_descriptor.c
docs

! || usb_device_descriptor.h
middleware

Figure 26. Example-related port pin configuration files

Ensure the BOARD InitPins function is implemented in the pin_mux.c file. In this function, the port clock and
pin mux are initialized. Ensure that the BOARD InitHardware calls the function. The BOARD InitHardware
function will be introduced later.

For example, on the TWR-K65F180M board, the VBUS of the USB Host is controlled by the PORTD_8 as

a GPIO. Therefore, the PORTD clock needs to be enabled first and then the PORTD_8 configured to GPIO
functionality. The debug console uses UART2. The TX/RX pins are PORTE_16 and PORTE_17. As a result, the
clock of PORTE needs to be enabled first and then the PORTE_16 and PORTE_17 configured to alternative 3.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

21/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

This is example code for TWR-K65F180M:

void BOARD InitPins (void)

{

/* Initialize UART2 pins below */

CLOCK EnableClock (kCLOCK PortkE) ;
PORT SetPinMux (PORTE, 16u, kPORT MuxAlt3);
PORT SetPinMux (PORTE, 17u, kPORT MuxAlt3);
/* Initialize usb vbus pin */
CLOCK EnableClock (kCLOCK PortD) ;
PORT SetPinMux (PORTD, 8u, kPORT MuxAsGpio) ;

Check the specific board design to find out which port is used to control the USB VBUS and which port is used
for the debug console. For example, in the customer’s board design, the PORTC_15 is used to control the USB
VBUS, and PORTD_1 and PORTD_2 is used for debug console. The following shows the example code:

void BOARD InitPins (void)
{
/* Initialize UART2 pins below */
CLOCK_EnableClock (kCLOCK_PortD) ;
PORT SetPinMux (PORTD, 1lu, kPORT MuxAlt3);
PORT SetPinMux (PORTD, 2u, kPORT MuxAlt3);
/* Initialize usb vbus pin */
CLOCK EnableClock (kCLOCK_PortC) ;
PORT SetPinMux (PORTC, 15u, kPORT MuxAsGpio) ;

The VBUS must output high. The following is example code for TWR-K65F180M:

void BOARD InitHardware (void)

{

gpio pin config t pinConfig;

BOARD InitPins();

BOARD BootClockRUN () ;

BOARD InitDebugConsole () ;

/* vbus gpio output high */
pinConfig.pinDirection = kGPIO DigitalOutput;
pinConfig.outputlLogic = 1U;

GPIO PinInit (PTD, 8U, &pinConfig):;
}

The user can change the function as follows:

void BOARD InitHardware (void)

{

gpio pin config t pinConfig;
BOARD_InitPinS();

BOARD BootClockxxx () ;

BOARD InitDebugConsole () ;

/* vbus gpio output high */
pinConfig.pinDirection = kGPIO DigitalOutput;
pinConfig.outputlLogic = 1U;

GPIO PinInit (PTC, 15U, &pinConfig);
}

3.3.3 Modify the example project

USB example project files are kept in the example directory, as shown in the following figure.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

2247

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

4 | boards
= L twrk22f120m
4 wock22f120m

] demo_apps

|| dev_audio_generator_lite_bm.ewd
|| dev_audio_generator_lite_bm.ewp
|%| dev_audic_generator_lite_bm.eww

: [=] MK22FN51 230012 flash.icf
> driver_examples

1 rtos_examples
4 | usb_examples
4 | ush_device_audic_generator_lite
4 0 bm
| armgec
4 atl
iar
| kds
, mdk

Figure 27. Modify the example project

1. Open the project and change the SoC.
Note:
a. Check the project SoC and update to the porting platform SoC.

b. Update the SoC full name, platform name, and board type name macros if the SoC is updated. For
example, for TWR-K22F120M, update the CPU_MK22FN512VDC12, TWR_K22F120M, and TOWER
macros.

2. Check the files in startup group, for example (IAR):

= (J dev_audio_generator_lite_bm - Debug
[(Jhoard

[(Josa

(3 platiorm

[sources

HE
femstarup_MK22FE1212.5
system_MKZZFE1212.c
L— | systern_MK22FE1212h
[(Jush

Figure 28. Check files in startup group

Ensure that the system_MK22F51212.c, system_MK22F51212.h, and strtup_ MK22F51212.s are the porting

SoC files. Also change the include path.
3. Check the files in the platform/clock group, for example (IAR):

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

23 /47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

B F dev_audio_generator_lite_bm - Debug
[Jboard

(Josa

—= (1 platform

S
fal_clock_MEZZFE1212.C
L fal_clock MEZZFE1212h0

[(Jcomman

(A gpio

[lpuart

CImeg

[(Josc

(O port

Cdsim

[(Asmc

(Juart

[Jsources

Figure 29. Check files in platform/clock group

Ensure that the fsl_clock_MK22F51212.c, and fsl_clock_MK22F51212.h are porting SoC files. Additionally,
change the include path.

4. Change the files in board group, for example (IAR):

= (G dev_audio_generator_lite_bm - Debug
=1 []| afal=lge!

board.c
board.h
clock_config.c
clock_canfig.h
harchware_init.c
iN_mLx.c
pin_mux.h
—E [osa

e

Figure 30. Change files in board group

Ensure that board.c, board.h, clock_config.c, and clock config.h are porting platform files. Additionally,
change the include path.

5. Check the files in the sources group, for example (IAR):

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

24 47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

= (J dev_audio_generator_lite_bm - Debug
[board

(Qosa

(3 platiorm

audio_data.c
audio_generatar.c
audio_generatar.h
ush_device_audio.c
ush_device_audioh
ush_dewvice_ch9.c
ush_device_chih
ush_device_config.h
ush_dewvice_descriptar.c
ush_dewvice_descriptar.h
[startup

TETTET BT

Figure 31. Check files in source group

The example application source files are copied when copying the example directory. Change the include
path.
6. Change the linker file to the new platform. Ensure that the linker file is the porting SoC file.

7. Debug console may use UART, LPUART, or LPSCI according to the platform. As a result, the example
project needs to contain UART, LPUART, or LPSCI driver files according to the platform.

=2 G dev_audio_generator_lite_bm - Debug
[(Jhoard

(Josa

—= (1 platform
dclock
CJcomman

[gpio
Cmeg
[(Jasc

(A port

(T sim
Cdsmc

s =1 DET
fel_uarte
L— [fsl_uarth
[(dsources

Figure 32. UART, LPUART, and LPSCI files

For example, for TWR-K22F120M all UART files are all in the project. In another example, TWR-K80F150M,
all LPUART files are in the project.

3.3.4 USB host CDC example

The MCUXpresso SDK debug console can be based on The MCUXpresso SDK UART, LPUART, or LPSCI
driver. Because different platforms may use different drivers, the CDC has a wrapper code. The files, which

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

25/47

NXP Semiconductors

MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

call the corresponding driver API according to the debug console use UART, LPUART, or LPSCI. The utility
uses the BOARD_DEBUG_UART_TYPE toidentify the UART type. To use a different UART instance, use the
corresponding UART instance wrapper file.

The MCUXpresso SDK debug console only enables send. The Host CDC example needs the receive function.
Therefore, configuration MACROs need to be defined in the board.h file. The debug console and the Host CDC
share the same configuration. This is an example:

#define
#define
#define
#define

BOARD DEBUG UART TYPE
BOARD DEBUG_UART BASEADDR
BOARD DEBUG_UART CLKSRC
BOARD DEBUG_UART BAUDRATE

kSerialPort Uart
(uint32 t)UART1
kCLOCK CoreSysClk
115200

Update MACROs according to board design. For example, the default UART instance on the board is
LPUART1, the type of default UART instance on one specific platform is LPUART, and the LPUART clock
source is the external clock. In this case, change the above MACROs as follows:

#define
#define
#define
#define

BOARD DEBUG UART TYPE kSerialPort Uart
BOARD DEBUG UART BASEADDR (uint32 t) LPUART1
BOARD DEBUG UART CLKSRC kCLOCK_OscOErClk
BOARD DEBUG_UART BAUDRATE 115200

3.3.5 USB device MSC SD card example

USB device MSC SD card example needs SDHC driver support and SD card support. The example works only
if the platform supports both SD card and the SDHC. To enable this example using the same code, the following
MACRGOs are defined in the board.h file:

#define BOARD SDHC BASEADDR SDHC

#define BOARD SDHC CLKSRC kCLOCK CoreSysClk
#define BOARD SDHC CD GPIO BASE GPIOB

#define BOARD SDHC CD GPIO PIN 20U

#define BOARD SDHC CD PORT BASE PORTB

#define BOARD SDHC CD PORT IRQ PORTB IROQOn

#define BOARD SDHC CD PORT IRQ HANDLER PORTB IRQHandler

Update the MACROs according to the board design. For example, the SD card detection GPIO on the board is
PORTD_1. In this case, change the above MACROs as follows:

#define BOARD SDHC BASEADDR SDHC

#define BOARD SDHC CLKSRC kCLOCK_CoreSysClk
#define BOARD SDHC CD GPIO BASE GPIOD

#define BOARD SDHC CD GPIO PIN 1U

#define BOARD SDHC CD PORT BASE PORTD

#define BOARD SDHC CD PORT IRQ PORTD_IRQn

#define BOARD SDHC CD PORT IRQ HANDLER

PORTD_IRQHandler

3.3.6 USB device audio speaker example

USB device audio speaker example needs the I12C, SAl, and DMA driver support.

The instance of SAI (I12S) and 12C are defined in the app.h file in the example directory as follows:

#define DEMO SAI I2S0
#define DEMO I2C I2CO

#define DEMO SAI CLKSRC kCLOCK CoreSysClk

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023

26/ 47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Update the MACROs according to board design. For example, the 12S instance on the board is 12S2. In this
case, change the above MACROs as follows:

#define DEMO SAI I2S2
#define DEMO I2C I2C2
#define DEMO SAI CLKSRC kCLOCK CoreSysClk

3.3.7 USB device CCID Smart card example

The example is based on the EMVL1 stack, which works on the EMV protocol. As a result, the example can
only be ported to the platform that supports both the EMVL1 stack and the EMV protocol.

4 Developing a new USB application

The following sections provide information regarding how to develop a new USB application.

4.1 Developing a new USB device application

This chapter introduces how to develop a new USB device application. The user needs to use the application
interface and the following steps to develop a new application.

4.1.1 Application interfaces
The interface definition between the application and the classes includes the calls shown in the following table:

Table 2. Application and classes interface definition

API Call Description

Class Initialization This APl is used to initialize the class.

Receive Data This APl is used by the application to receive data from the
host system.

Send Data This APl is used by the application to send data to the host
system.

USB descriptor-related callback Handles the callback to get the descriptor.

USB Device call back function Handles the callback by the class driver to inform the
application about various USB bus events.

USB Class-specific call back function Handles the specific callback of the class.

4.1.2 How to develop a new device application

Perform these steps to develop a new device application:

1. Create a new application directory under <install dir>/boards/<board>/usb_examples/usb_
device <class> <application> to locate the application source files and header files. For example,
<install dir>/boards/<board>/usb examples/usb device hid test.

2. Copy the following files from the similar existing applications to the application directory that is created in
Step 1.

usb device descriptor.c
usb device descriptor.h

The usb _device descriptor.cand usb device descriptor.h files contain the USB descriptors
that are dependent on the application and the class driver.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

27147

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

3. Copy the bm directory from the similar existing application directory to the new application directory.
Remove the unused project directory from the bm directory. Modify the project directory name to the new
application project name. For example, to create toolchain-IAR, board-frdmk64 class-hid
related application, create the new application hid test based on a similar existing application
hid mouse.

Change <install dir>/boards/<board>/usb_examples/usb device hid mouse to <install
dir>/boards/<board>/usb_examples/usb device hid test

4. Modify the project file name to the new application project file name, for example, from
dev_hid mouse bm.ewptodev _hid test bm.ewp. Globally replace the existing name to the new
project name by editing the project files. The dev_hid test bm.ewp file includes the new application
project setting.

5. Create a new source file to implement the main application functions and callback functions. The name of
this file is similar to the new application name, such as mouse. c and keyboard.c.

The following sections describe the steps to change application files created in the steps above to match the
new application.

4.1.2.1 Changing the usb_device_descriptor.c file

This file contains the class driver interface. It also contains USB standard descriptors such as device descriptor,
configuration descriptor, string descriptor, and the other class-specific descriptors that are provided to class
driver when required.

The lists below show user-modifiable variable types for an already implemented class driver. The user should
also modify the corresponding MACROs defined in the usb_device descriptor.h file. See the MCUXpresso SDK
API Reference Manual (document MCUXSDKAPIRM) for details.

* usb_device_endpoint_struct_t;

* usb_device_endpoint_list t;

* usb_device_interface_struct_t;

* usb_device_interfaces_struct t;

* usb_device_interface_list_t;

* usb_device class_struct t;

* usb_device class_config_struct t;

» usb_device class_config_list_struct_t;

This diagram shows the relationship between these items:

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

28 /47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

v usb_device_class_config_struct {
v usb_device_class_config_struct

v usb_device class config_list struct t

v usb_device_class_struct t |9 v usb_device_interface_list_t

interfaceList

count

config

deviceCallback classCallback type interfaces

count classHandle configurations

classinfomation

v usb_device_endpoint_struct_t

v usb_device_endpoint_list_t

¥ usb_device_interface_struct t ¥ usb_device_interfaces_sfruct {

¥ usb_device_endpoint_struct t (_l_ count v usb_device_interface_sfruct t ¥ usb_device_interfaces_struct_t
endpointAddress endpoint alternateSetting classCode
transferType endpointList subclassCode
maxPacketSize classSpecific protocolCode

interfaceNumber
interface
count

Figure 33. Relationship diagram

This is the sample code implementation of the endpoint descriptor for the HID class:

/* HID mouse endpoint information */
usb device endpoint struct t
g UsbDeviceHidMouseEndpoints [USB HID MOUSE ENDPOINT COUNT] =
{
/* HID mouse interrupt IN pipe */
{
USB HID MOUSE ENDPOINT IN | (USB_IN <<
USB DESCRIPTOR ENDPOINT ADDRESS DIRECTION SHIFT),
USB_ENDPOINT INTERRUPT,
FS_HID MOUSE INTERRUPT IN PACKET SIZE,
}y
}i

The endpoint address, transfer type, and max packet size in this variable are defined in the
usb_device_descriptor.h file. The user may change these value as required. For example, to implement a CDC
class application:

/* Define endpoint for a communication class */
usb device endpoint struct t
g _UsbDeviceCdcVcomCicEndpoints [USB CDC VCOM ENDPOINT CIC COUNT] = ({
{
USB_CDC_VCOM INTERRUPT IN ENDPOINT | (USB_IN << 7U),
USB_ENDPOINT INTERRUPT,
FS CDC VCOM INTERRUPT IN PACKET SIZE,
}y
}i
/* Define endpoint for data class */
usb_device endpoint struct t
g _UsbDeviceCdcVcomDicEndpoints [USB CDC VCOM ENDPOINT DIC COUNT] = {
{
USB_CDC_VCOM BULK_IN ENDPOINT | (USB_IN << 7U), USB ENDPOINT BULK,
FS_CDC_VCOM BULK IN PACKET SIZE,
by
{

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

29/ 47

MCUXSDKUSBSUG

NXP Semiconductors
MCUXpresso SDK USB Stack User’s Guide

(USB_OUT << 7U), USB ENDPOINT BULK,

USB_CDC_VCOM BULK_OUT_ ENDPOINT
FS_CDC_VCOM BULK OUT PACKET SIZE,

}
i
The endpoint count and alternate setting of the interface may differ in various applications. The user may
change these values as required. For example, the interface structure of a CDC class application is as follows:

= {{

/* Define interface for communication class */
usb device interface struct t g UsbDeviceCdcVcomCommunicationInterfacel]

1T,
{
USB_CDC_VCOM ENDPOINT CIC COUNT, g UsbDeviceCdcVcomCicEndpoints,

by

bYi
/* Define interface for data class */
usb device interface struct t g UsbDeviceCdcVcomDatalInterfacel]

{
{
0,
{
USB CDC VCOM ENDPOINT DIC COUNT,
g_UsbDeviceCdcVcomDicEndpoints,

b
NULL

i
The class code, subclass code, and protocol code may differ in various classes. For example, the

usb_device_interfaces_struct of a CDC class is as follows:

/* Define interfaces for the virtual com */
usb device interfaces struct t
g _UsbDeviceCdcVcomInterfaces [USB CDC VCOM INTERFACE COUNT] = {
{USB CDC VCOM CIC CLASS, USB CDC VCOM CIC SUBCLASS,
USB_CDC_VCOM CIC PROTOCOL, USB CDC_VCOM COMM INTERFACE INDEX,
g _UsbDeviceCdcVcomCommunicationInterface,
sizeof (g UsbDeviceCdcVcomCommunicationInterface) /

sizeof (usb device interfaces struct t)},
{USB_CDC_VCOM DIC CLASS, USB CDC_VCOM DIC SUBCLASS,

USB_CDC_VCOM DIC_ PROTOCOL, USB_CDC_VCOM DATA INTERFACE INDEX,
g _UsbDeviceCdcVcomDatalInterface, sizeof (g UsbDeviceCdcVcomDataInterface) /

sizeof (usb_device interfaces struct t)},

i
The interface count may differ in various applications. For example, the usb_device_interface_list of a CDC

class application is as follows:

/* Define configurations for virtual com */
usb device interface list t
g UsbDeviceCdcVcomInterfaceList [USB DEVICE CONFIGURATION COUNT] = {
{
USB_CDC_VCOM INTERFACE COUNT, g UsbDeviceCdcVcomInterfaces,

by
157

© 2023 NXP B.V. All rights reserved.

All information provided in this document is subject to legal disclaimers.
30/47

Rev. 14 — 12 April 2023

MCUXSDKUSBSUG
User guide

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

The interface list, class type and configuration count may differ in various applications. For example, the
usb_device_class_struct of a CDC class application is as follows:

/* Define class information for virtual com */
usb _device class struct t g UsbDeviceCdcVcomConfig = {
g UsbDeviceCdcVcomInterfacelList, kUSB DeviceClassTypeCdc,
USB DEVICE CONFIGURATION COUNT,
i

* g_UsbDeviceDescriptor
This variable contains the USB Device Descriptor.
Sample code implementation of the device descriptor for the HID class is shown as follows:

uint8 t g UsbDeviceDescriptor [USB DESCRIPTOR LENGTH DEVICE] =
{
USB_DESCRIPTOR LENGTH DEVICE, /* Size of this descriptor in bytes */
USB_DESCRIPTOR TYPE DEVICE, /* DEVICE Descriptor Type */
USB SHORT GET LOW(USB DEVICE SPECIFIC BCD VERSION),
USB_ SHORT GET HIGH (USB DEVICE SPECIFIC BCD VERSION), /* USB Specification
Release Number in
Binary-Coded Decimal
(i.e., 2.10 is 210H). */

USB_DEVICE CLASS, /* Class code (assigned by the USB-IF). */

USB DEVICE SUBCLASS, /* Subclass code (assigned by the USB-IF).
*/

USB DEVICE PROTOCOL, /* Protocol code (assigned by the USB-IF).
=4

USB_CONTROL MAX PACKET SIZE, /* Maximum packet size for endpoint zero

(only 8, 16, 32, or 64 are valid) */
0xA2U, 0x150, /* Vendor ID (assigned by the USB-IF) */
0x7CU, 0x00U, /* Product ID (assigned by the

manufacturer) */

USB_SHORT GET LOW (USB_DEVICE DEMO BCD VERSION),

USB_SHORT GET HIGH (USB_DEVICE DEMO BCD VERSION),/* Device release number in
binary-coded decimal */

0x01U, /* Index of string descriptor describing
manufacturer */

0x02U, /* Index of string descriptor describing
product */

0x00U, /* Index of string descriptor describing
the

device serial number */
USB_DEVICE CONFIGURATION COUNT, /* Number of possible configurations */
}i

The macros in the variable above are defined in the usb_device descriptor.h file, such as the
USB_DEVICE_CLASS, USB_DEVICE_SUBCLASS, and USB_DEVICE_PROTOCOL. Those values may need
to be modified as required. The vendor ID and product ID can also be modified.

* g_UsbDeviceConfigurationDescriptor
This variable contains the USB Configuration Descriptor.
Sample code implementation of the configuration descriptor for the HID class is providing in the following:

uint8 t
g_UsEDeviceConfigurationDescriptor[USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL] =
{

USB_DESCRIPTOR LENGTH CONFIGURE, /* Size of this descriptor in bytes */

USB DESCRIPTOR TYPE CONFIGURE, /* CONFIGURATION Descriptor Type */

USB_ SHORT GET LOW(USB DESCRIPTOR LENGTH CONFIGURATION ALL),

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

31/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

USBisHORTiGETiHIGH(USBiDESCRIPTORfLENGTH7CONFIGURATIONiALL),/* Total length
of data returned for this configuration. */
USB_HID MOUSE INTERFACE COUNT, /* Number of interfaces supported by this
configuration */
USB_HID MOUSE CONFIGURE INDEX, /* Value to use as an argument to the
SetConfiguration () request to select
this configuration */
0x00U, /* Index of string descriptor describing
this configuration */
(USB DESCRIPTOR CONFIGURE ATTRIBUTE D7 MASK) |
(USB_DEVICE CONFIG SELF POWER <<
USB DESCRIPTOR CONFIGURE ATTRIBUTE SELF POWERED SHIFT) |
(USB DEVICE CONFIG REMOTE WAKEUP <<
USB DESCRIPTOR CONFIGURE ATTRIBUTE ~REMOTE WAKEUP_ SHIFT),
J# Conflguratlon characteristics
D7: Reserved (set to one)
D6: Self-powered
D5: Remote Wakeup
D4...0: Reserved (reset to zero)

USB DEVICE MAX POWER, /* Maximum power consumption of the USB
* device from the bus in this specific
* configuration when the device is fully
* operational. Expressed in 2 mA units
* (i.e., 50 = 100 mA).
*/

The macro USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL, which is defined in the
usb_device_descriptor.h, needs to be modified to equal the size of this variable. The interface count and
configuration index may differ in various applications. For example, this part of a CDC class application is as
shown below:

/* Size of this descriptor in bytes */
USB_DESCRIPTOR LENGTH CONFIGURE,
/* CONFIGURATION Descriptor Type */
USB DESCRIPTOR TYPE CONFIGURE,
/* Total length of data returned for this configuration. */
USB_SHORT GET LOW(USB DESCRIPTOR LENGTH CONFIGURATION ALL)
USB SHORT GET HIGH(USB DESCRIPTOR LENGTH CONFIGURATION _ALL),
/* Number of interfaces supported by this configuration */
USB CDC VCOM INTERFACE COUNT,
/* Value to use as an argument to the SetConfiguration() request to select this
configuration */
USB_CDC_VCOM CONFIGURE_ INDEX,
/* Index of string descriptor describing this configuration */
0,
/* Configuration characteristics D7: Reserved (set to one) D6: Self-powered D5:
Remote Wakeup D4...0: Reserved
(reset to zero) */
(USB DESCRIPTOR CONFIGURE ATTRIBUTE D7 MASK) |
(USB DEVICE CONFIG SELF POWER <<
USB DESCRIPTOR CONFIGURE ATTRIBUTE SELF POWERED SHIFT) |
(USB DEVICE CONFIG REMOTE WAKEUP <<
USB DESCRIPTOR CONFIGURE ATTRIBUTE ~ REMOTE WAKEUP_ SHIFT),
/* Maximum power consumption of the USB * device from the bus in this specific *
configuration when the device is
fully * operational. Expressed in 2 mA units * (i.e., 50 = 100 mA). */
USB_DEVICE MAX POWER,

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

32/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

The interface descriptor may differ from various applications. For example, the interface descriptor of a CDC
class application would be as shown below.

/* Communication Interface Descriptor */

USB DESCRIPTOR LENGTH INTERFACE, USB DESCRIPTOR TYPE INTERFACE,
USB CDC VCOM | COMM INTERFACE INDEX, OXOO

USB CDC VCOM ENDPOINT CIC COUNT USB CDC VCOM CIC CLASS,

USB CDC VCOM CIC SUBCLASS USB CDC VCOM CIC PROTOCOL

0x00, /* Interface Description String Index*/

The class specific descriptor may differ from various applications. For example, the class specific descriptor of a
CDC class application would be as shown below.

/* CDC Class-Specific descriptor */
USB_DESCRIPTOR LENGTH CDC HEADER FUNC, /* Size of this descriptor in bytes */
USB DESCRIPTOR TYPE CDC CS INTERFACE 7 CS_INTERFACE Descriptor Type %/
HEADER FUNC DESC OXIO
0x01, /* USB Class Definitions for Communications the Communication
specification version 1.10 */
USB_DESCRIPTOR LENGTH CDC CALL MANAG, /* Size of this descriptor in bytes */
USB DESCRIPTOR TYPE CDC CS INTERFACE Vs CS_INTERFACE Descriptor Type =
CALL MANAGEMENT FUNC DESC
0x01, /*Bit 0: Whether device handle call management itself 1, Bit 1: Whether
device can send/receive call
management information over a Data Class Interface 0 */
0x01, /* Indicates multiplexed commands are handled via data interface */
USB DESCRIPTOR LENGTH CDC ABSTRACT, /* Size of this descriptor in bytes */
USB DESCRIPTOR TYPE CDC CS INTERFACE 7 CS_INTERFACE Descriptor Type %/
USB CDC ABSTRACT CONTROL FUNC DESC,
0x06, /* Bit 0: Whether device supports the request combination of
Set Comm Feature, Clear Comm Feature, and
Get Comm Feature 0, Bit 1: Whether device supports the request
combination of Set Line ~Coding,
Set_Control_Llne_State, Get Line Coding, and the notification
Serial State 1, Bit ... */
USB_DESCRIPTOR LENGTH CDC UNION FUNC, /* Size of this descriptor in bytes */
USB DESCRIPTOR TYPE CDC cs INTERFACE /* CS INTERFACE Descriptor Type */

USB CDC UNION FUNC DESC OXOO /* The interface number of the
Communications or Data Class interface */
0x01, /* Interface number of subordinate

interface in the Union */

The endpoint descriptor may differ from various applications. For example, the endpoint descriptor of a CDC
class application is as follows:

/*Notification Endpoint descriptor */
USB DESCRIPTOR LENGTH ENDPOINT, USB DESCRIPTOR TYPE ENDPOINT,
USB CDC VCOM INTERRUPT IN ENDPOINT | (USB IN << 7U)
USB ENDPOINT INTERRUPT
USB SHORT GET LOW(FS CDC_VCOM INTERRUPT IN PACKET SIZE),
USB SHORT GET HIGH(FS CDC VCOM INTERRUPT IN PACKET SIZE),
FS CDC VCOM INTERRUPT IN INTERVAL
}

* String Descriptors
Users can modify string descriptors to customize their product. String descriptors are written in the UNICODE
format. An appropriate language identification number is specified in the USB_STR_0. Multiple language
support can also be added.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

33/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

* USB_DeviceGetDeviceDescriptor
This interface function is invoked by the application. This call is made when the application receives the
kUSB_DeviceEventGetDeviceDescriptor event from the Host. Mandatory descriptors that an application is
required to implement are as follows:
— Device Descriptor
— Configuration Descriptor
— Class-Specific Descriptors (For example, for HID class implementation, Report Descriptor, and HID

Descriptor)

Apart from the mandatory descriptors, an application should also implement various string descriptors as
specified by the Device Descriptor and other configuration descriptors.
Sample code for HID class application is as follows:

/* Get device descriptor request */
usb status t USB DeviceGetDeviceDescriptor (usb device handle handle,

usb _device get device descriptor struct t *deviceDescriptor)
{
deviceDescriptor->buffer = g UsbDeviceDescriptor;
deviceDescriptor->length USB DESCRIPTOR LENGTH DEVICE;
return kStatus USB Success;

The user may assign the appropriate variable of the device descriptor. For example, if the device descriptor
variable name is g_UsbDeviceDescriptorUser, the sample code is as follows:

/* Get device descriptor request */
usb status_ t USB DeviceGetDeviceDescriptor (usb device handle handle,

usb_device get device descriptor struct t *deviceDescriptor)
{
deviceDescriptor->buffer = g UsbDeviceDescriptorUser;
deviceDescriptor->length = USB DESCRIPTOR LENGTH DEVICE;
return kStatus USB Success;

» USB_DeviceGetConfigurationDescriptor
This interface function is invoked by the application. This call is made when the application receives the k
USB_DeviceEventGetConfigurationDescriptor event from the Host.

/* Get device configuration descriptor request */
usb_status_t USB DeviceGetConfigurationDescriptor (
usb _device handle handle, usb device get configuration descriptor struct t
*configurationDescriptor)
{
if (USB _HID MOUSE CONFIGURE INDEX > configurationDescriptor->configuration)
{
configurationDescriptor->buffer = g UsbDeviceConfigurationDescriptor;
configurationDescriptor->length
USB DESCRIPTOR LENGTH CONFIGURATION ALL;
return kStatus USB Success;

}
return kStatus USB InvalidRequest;

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

34/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

The macro HID_MOUSE_CONFIGURE_INDEX may differ from various applications. For example, the
implementation of a CDC class application would be as follows:

usb _status_t USB DeviceGetConfigurationDescriptor (
usb device handle handle, usb device get configuration descriptor struct t
*configurationDescriptor)
{
if (USB_CDC VCOM CONFIGURE INDEX > configurationDescriptor->configuration)
{
configurationDescriptor->buffer
configurationDescriptor->length
USB DESCRIPTOR LENGTH CONFIGURATION ALL;
return kStatus USB Success;

g _UsbDeviceConfigurationDescriptor;

}
return kStatus USB InvalidRequest;

}

* USB_DeviceGetStringDescriptor
This interface function is invoked by the application. This call is made when the application receives the
kUSB_DeviceEventGetStringDescriptor event from the Host.
See the usb_device_hid_mouse example for sample code.

» USB_DeviceGetHidReportDescriptor
This interface function is invoked by the application. This call is made when the application receives the k
USB_DeviceEventGetHidReportDescriptor event from the Host.
See the usb_device hid_mouse example for sample code.

* USB_DeviceSetSpeed
Because HS and FS descriptors are different, the device descriptors and configurations need to be updated
to match the current speed. By default, the device descriptors and configurations are configured using
FS parameters for EHCI, KHCI, and other controllers, such as LPC IP3511. When the EHCI is enabled,
the application needs to call this function to update the device by using the current speed. The updated
information includes the endpoint max packet size, endpoint interval, and so on.

4.1.2.2 Changing the usb_device_descriptor.h file

This file is mandatory for the application to implement. The usb_device_descriptor.c file includes this file for
function prototype definitions. When the user modifies the usb_device_descriptor.c, MACROs in this file should
also be modified.

4.1.2.3 Changing the application file

* Main application function
The main application function is provided by two functions: USB_DeviceApplicationlnit and APP_task
(optional).
The USB_DeviceApplicationlnit enables the clock and the USB interrupt and also initialize the specific USB
class. See the usb_device hid_mouse example for the sample code.

* USB device call back function
The device callback function handles the USB device-specific requests. See the usb_device_hid_mouse
example for the sample code.

» USB Class-specific call back function
The class callback function handles the USB class-specific requests. See the usb_device hid_mouse
example for the sample code.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

35/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

4.2 Developing a new USB host application

4.2.1 Background

In the USB system, the host software controls the bus and talks to the target devices following the rules defined
by the specification. A device is represented by a configuration that is a collection of one or more interfaces.
Each interface comprises one or more endpoints. Each endpoint is represented as a logical pipe from the
application software perspective.

The host application software registers a callback with the USB host stack, which notifies the application about
the device attach/detach events and determines whether the device is supported or not. The following figure
shows the enumeration and detachment flow.

Wait
event

Feturn
kStatus_USE NotSupported

G

No

The configuraticm.
is supparted

Yes
w

Sawve interface
hendle and Fetrn —
IStatus USE Success

Class initimlize and
AFF operates

Peripheral is not
supported

Device detach

g

Clasz de—initialize

Figure 34. Enumeration and detachment flow

The USB host stack is a few lines of code executed before starting communication with the USB device.

The examples on the USB stack are written with class driver APIs. Class drivers work with the host APl as a
supplement to the functionality. They make it easy to achieve the target functionality (see example sources for
details) without dealing with the implementation of standard routines. The following code steps are taken inside
a host application driver for any specific device.

4.2.2 How to develop a new host application

4.2.2.1 Creating a project
Perform the following steps to create a project.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

36 /47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

* Create a new application directory under <install dir>/boards/<board>/usb examples/usb
host <class> <application> to locate the application source files and header files. For example,
<install dir>/boards/<board>/usb examples/usb_host hid mouse.

» Copy the following files from the similar existing applications to the application directory that is created in step
1.
app.c
usb_host_config.h
The app.c file contains the common initialization code for USB host and the usb_host_config.h file contains
the configuration MACROs for the USB host.

* Copy the bm directory from the similar existing application directory to the new application directory. Remove
the unused project directory from the bm directory. Modify the project directory name to the new application
project name. For example, to create toolchain-IAR, board-frdmké64 class-hid related
application, create the new application hid test based on a similar existing application hid mouse.
Copy <install dir>/boards/frdmk64f/usb examples/usb host hid mouse/bm
to<install dir>/boards/frdmk64f/usb_examples/usb_host hid test/bm

* Modify the project file name to the new application project file name, for example, from
host hid mouse bm.ewptohost hid test bm.ewp . Globally replace the existing name to the new
project name by editing the project files. The host hid test bm.ewp file includes the new application
project setting.

» Create a new source file to implement the main application function, application task function, and the
callback function. The name of this file is similar to the new application name, such as host mouse.c and
host keyboard.c.

The following sections describe the steps to modify application files created in the steps above to match the
new application.

4.2.2.2 Main application function flow

In the main application function, follow these steps:

Initialize USB clock

L J

Initialize USB host stack

Enable USB isr

Create tasks

Figure 35. Main application function flow

* Initialize the USB clock.
Call the MCUXpresso SDK API to initialize the KHCI, the EHCI USB clock, or other controller.
* Initialize the host controller.
This allows the stack to initialize the necessary memory required to run the stack and register the callback
function to the stack.
For example:status = USB HostInit (CONTROLLER ID, &g HostHandle, USB HostEvent);

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

37147

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

* Enable the USB ISR.

Set the USB interrupt priority and enable the USB interrupt.
* Initialize the host stack task and application task.

For example (Bare metal):

while (1)

{

USB HostTaskFn (g HostHandle) ;

USB HostMsdTask (&g MsdCommandInstance) ;

Note that in this code, the g_ MsdCommandinstance variable contains all states and pointers used by the
application to control or operate the device. If implementing the application task as USB_HostHidTestTask and
use g_HidTestIinstance to maintain the application states, modify the code as follows:

while (1)
{
USB HostTaskFn (g HostHandle) ;
USB HostHidTestTask (&g HidTestInstance);
}

4.2.2.3 Event callback function

In the app.c file, there is one USB_HostEvent function. By default, the function is registered to the host stack
when calling the USB_HostInit. In the USB Host stack, customers do not have to write any enumeration
code. When the device is connected to the host controller, the USB Host stack enumerates the device. The
device attach/detach events are notified by this callback function.

Application needs to implement one or more functions to correspond to one class process. These application
functions are called in the USB_HostEvent. The device’s configuration handle and interface list are passed to
the application through the function so that the application can determine whether the device is supported by
this application.

There are four events in the callback: kUSB_HostEventAttach, kUSB HostEventNotSupported,
kUSB HostEventEnumerationDone, and kUSB HostEventDetach.

The events occur as follows:

* When one device is attached, host stack notifies kUSB_HostEventAttach.

» The application returns kStatus USB_Success to notify the host stack that the device configuration is
supported by this class application, or return the kStatus USB NotSupported to notify the host stack that
the device configuration is not supported by this class application.

* The Host stack continues for enumeration if the device is supported by the application and notifies
kUSB_HostEventEnumerationDone when the enumeration is done.

* The Host stack checks the next device’s configuration if the current configuration is not supported by the
application.

* When the Host stack checks all configurations and all are not supported by the application, it notifies the
kUSB HostEventNotSupported.

* When the device detaches, the Host stack notifies the kUSB_HostEventDetach.

This is the sample code for the HID mouse application. The USB_HostHidMouseEvent function should be
called bythe USB_HostEvent. In this code, the g HostHidMouse variable contains all states and pointers
used by the application to control or operate the device:

usb status t USB HostHidMouseEvent

(

usb _device handle deviceHandle,
usb_host configuration handle configurationHandle,
uint32 t eventCode

)

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

38147

NXP Semiconductors

MCUXSDKUSBSUG

/* Process the same and supported device's conf
static usb _host configuration handle s ConfigHa
usb status t status kStatus USB Success;
uint8_t id;

usb _host configuration t *configuration;
uint8 t interfacelndex;

usb host interface t *interface;

switch (eventCode)

{

case kUSB HostEventAttach:
/* judge whether is configurationHandle

configuration = (usb_host configuration
for (interfaceIndex = 0; interfacelIndex
+interfaceIndex)

{

MCUXpresso SDK USB Stack User’s Guide

iguration handle */
ndle NULL;

supported */

_t *)configurationHandle;

< configuration->interfaceCount; +

interface = &configuration->interfacelist[interfacelndex];

id = interface->interfaceDesc->bInterfaceClass;
if (id != USB_HOST HID CLASS CODE)
{
continue;
}
id = interface->interfaceDesc->bInterfaceSubClass;
if ((id != USB_HOST HID SUBCLASS CODE NONE) && (id !=
USB_HOST HID SUBCLASS CODE BOOT))
{
continue;
}
id = interface->interfaceDesc->bInterfaceProtocol;
if (id != USB_HOST HID PROTOCOL MOUSE)
{
continue;
}
else
{
/* the interface is supported by the application */
g_HostHidMouse.deviceHandle = deviceHandle;
g _HostHidMouse.interfaceHandle = interface;
s ConfigHandle = configurationHandle;
return kStatus USB Success;
}
}
status = kStatus USB NotSupported;
break;
case kUSB HostEventNotSupported:
break;
case kUSB HostEventEnumerationDone:
if (s_ConfigHandle == configurationHandle)
{
if ((g_HostHidMouse.deviceHandle != NULL) &&
(g_HostHidMouse.interfaceHandle != NULL))

{
/* the device enumeration is do
if (g HostHidMouse.deviceState
{
g HostHidMouse.deviceState
}
else

{

ne */
== kStatus DEV Idle)

kStatus DEV_ Attached;

usb_echo ("not idle mouse instance\r\n");

}
}
}
break;
case kUSB HostEventDetach:
if (s_ConfigHandle
{

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers.

configurationHandle)

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023

39/47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

/* the device is detached */
s_ConfigHandle = NULL;
if (g HostHidMouse.deviceState != kStatus DEV Idle)
{
g_HostHidMouse.deviceState = kStatus DEV Detached;

}

}

break;

default:
break;
}

return status;

If implementing the callback as USB_ HostHidTestEvent, use g HidTestInstance, and

support the device that the class code is USB_HOST_HID_TEST_CLASS_CODE, sub-class code is
USB_HOST_HID_TEST_SUBCLASS_CODE, and the protocol is USB_HOST_HID_TEST_PROTOCOL. The
code can be modified as follows:

usb status t USB HostHidMouseEvent

(

usb _device handle deviceHandle,
usb_host configuration handle configurationHandle,
uint32 t eventCode

/* Process the same and supported device's configuration handle */
static usb host configuration handle s ConfigHandle = NULL;
usb status t status = kStatus USB Success;
uint8 t id;
usb _host configuration t *configuration;
uint8 t interfacelIndex;
usb _host interface t *interface;
switch (eventCode)
{

case kUSB HostEventAttach:

/* judge whether is configurationHandle supported */

configuration = (usb_host configuration t *)configurationHandle;
for (interfaceIndex = 0; interfacelIndex < configuration->interfaceCount; +
+interfacelIndex)

{
interface = &configuration->interfacelist[interfacelndex];
id = interface->interfaceDesc->bInterfaceClass;
if (id != USB HOST HID TEST CLASS CODE)
{
continue;
}
id = interface->interfaceDesc->bInterfaceSubClass;
if (id != USB HOST HID TEST SUBCLASS CODE)
{
continue;
}
id = interface->interfaceDesc->bInterfaceProtocol;
if (id != USB HOST HID TEST PROTOCOL)
{
continue;
}
else
{
/* the interface is supported by the application */
g HidTestInstance.deviceHandle = deviceHandle;
g _HidTestInstance.interfaceHandle = interface;
s _ConfigHandle = configurationHandle;
return kStatus USB Success;

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

40/ 47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

}
status = kStatus USB NotSupported;
break;
case kUSB HostEventNotSupported:
break;
case kUSB HostEventEnumerationDone:
if (s_ConfigHandle == configurationHandle)
{
if ((g_HidTestInstance.deviceHandle != NULL) &&
(g_HidTestInstance.interfaceHandle != NULL))
{
/* the device enumeration is done */
if (g HidTestInstance.deviceState == kStatus DEV Idle)
{
g HidTestInstance.deviceState = kStatus DEV Attached;
}
elise
{
usb_echo ("not idle mouse instance\r\n");
}
}
}
break;
case kUSB HostEventDetach:
if (s_ConfigHandle == configurationHandle)
{
/* the device is detached */
s ConfigHandle = NULL;
if (g HidTestInstance.deviceState != kStatus DEV Idle)
{
g HidTestInstance.deviceState = kStatus DEV Detached;
}
}
break;
default:
break;
}

return status;

Note that the kStatus DEV Attached, kStatus DEV_ Detached MACROs are defined in the example.

4.2.2.4 Class initialization

When the supported device is attached, the device’s class needs to be initialized.

For example, the HID mouse initialization flow is as follows:

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

41/ 47

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Initialize class

v

Set class interface

Y

Wait for set interface

Class application run

Figure 36. HID mouse initialization flow

¢ Call class initialization function to initialize the class instance.
e Call class set interface function to set the class interface
* When the set interface callback returns successfully, the application can run.

4.2.2.5 Sending/Receiving data to/from the device

The transfer flow is as follows:

1. Call the USB_hostClassxxx API to begin the transfer.
2. The transfer result is notified by the callback function that is passed as a parameter.

3. The HID mouse host uses the following code to receive data from the
device:USB_HostHidRecv (classHandle, mouseBuffer, bufferLength, callbackFunction,
callbackParameter) ;

5 USB compliance tests

For the device, this is enabled on "dev_hid_mouse_bm" as an example.

enable USB DEVICE CONFIG COMPLIANCE TEST (0U)

The macro is defined in usb_device config.h. Use the TWR-K65F180M Tower System module as an
example. The file path is

<install_dir>/boards/twrk65f180m/usb_examples/usb_device_hid_mouse/bm/usb_device_config.h.
Both CV test and USB test mode are enabled.

For the host, this is enabled on "host_mad_fatfs_bm" as an example.

enable USB_HOST CONFIG COMPLIANCE TEST (OU)

The macro is defined in the usb_host_config.h file.
For example, for the TWR-K65F180M Tower System module, the file path is
<install_dir>/boards/twrk65f180m/usb_examples/usb_host _msd_fatfs/bm/usb_host config.h

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

42] 47

NXP Semiconductors

MCUXSDKUSBSUG

6 USB host FatFs throughput

MCUXpresso SDK USB Stack User’s Guide

The following test is based on usb_host_msd_fatfs, bm, IAR, release target.

Table 3. USB host FatFs throughput

Test device - Sandisk extreme USB3.0 64G SDCZ80 - 64G
Controller Write speed Read speed
RT1050 EHCI ~32163 KB/s ~38509 KB/s
K28FA KHCI ~913 KB/s ~932 KB/s
LPCXpresso54628 IP3516 ~22034 KB/s ~22489 KB/s
LPCXpress054628 OHCI ~860 KB/s ~970 KB/s
7 USB device ramdisk throughput
Table 4. USB device ramdisk throughput
Controller Write speed Read speed
RT1050 EHCI (System clock 600 MHz) |~29051 KB/s ~32338 KB/s
K28FA KHCI (System clock 150 MHz) |~1007 KB/s ~1106 KB/s
LPCXpresso54628 IP3511FS (System |~972 KB/s ~1140 KB/s
clock 220 MHz)
LPCXpresso54628 IP3511HS (System |~17438 KB/s ~31496 KB/s
clock 220 MHz)

8 Precautions

For USB host, if using USB HUB, the external power supply of the USB HUB must be provided before it is used.
The development board power is not enough to supply multi-level USB HUBs and connected devices.

Therefore, the external USB HUB connected to the development board should have its own power supply.

9 Revision history

This table summarizes revisions to this document since the release of the previous version.

Table 5. Revision history

Revision number Date Substantive changes
1 01/2016 KSDK 2.0.0 release
2 08/2016 Added LPC content for release
3 09/2016 Updated for KSDK 2.0.0 release 5
4 11/2016 Updated IAR version and USB code structure version, Section 2.4.1 and
Section 2.4.2
5 03/2017 Updated for MCUXpresso SDK
04/2017 Added note in Section 2.3
7 11/2017 MCUXpresso SDK 2.3.0 release
MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 14 — 12 April 2023

43] 47

NXP Semiconductors

MCUXSDKUSBSUG

Table 5. Revision history...continued

MCUXpresso SDK USB Stack User’s Guide

Revision number Date Substantive changes
8 05/2018 ¢ Updated Section 4.1.2.1., "Changing the usb_device_descriptor.c file"
* Removed Section 2.3.4, "Step-by-step guide for Kinetis Design Studio
(KDS) IDE", Updated for MCUXpresso SDK 2.4.0 release
9 12/2018 * Updated Chapter 5, "USB compliance tests"
* Add a bullet for 'Chapter 6 for MCUXpresso SDK 2.5.0'
10 06/2019 * Updated Section 4.2, "Developing a new USB host application" for
MCUXpresso SDK 2.6.0
* Added Chapter 7, "USB device ramdisk throughput" for MCUXpresso
SDK 2.6.0
11 06/2020 Updated for MCUXpresso SDK v2.8.0
12 11/2020 Updated for MCUXpresso SDK v2.9.0
13 11 July 2022 Editorial and layout updates.
14 12 April 2023 Added note in Section 2.4.1 and Section 2.4.2.

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023
44] 47

NXP Semiconductors

MCUXSDKUSBSUG

10 Legal information

MCUXpresso SDK USB Stack User’s Guide

10.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

MCUXSDKUSBSUG

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

10.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 14 — 12 April 2023

45/ 47

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Kinetis — is a trademark of NXP B.V.
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Tower — is a trademark of NXP B.V.
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,

Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-

PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered

trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or

elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved.

MCUXSDKUSBSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 14 — 12 April 2023

46 / 47

NXP Semiconductors

MCUXSDKUSBSUG

MCUXpresso SDK USB Stack User’s Guide

Contents
1 OVEIVIEW ...eoiiiiiee e e e e s sme e semn e 2 7 USB device ramdisk throughput 43
2 Build the USB examples in MCUXpresso 8 Precautionscccccoimmmrmreienee e 43
15T 2 9 Revision historyccciioiiccieeeeecee 43
21 Requirements for building USB examples 2 1 Legal informationcccooomiiiiiieeeeee 45
211 Hardwarecccoooiii e 2
21.2 SOfWAIe ..ooiieiie e 2
2.2 USB code structureoccoocieiiiiiiieniieeee. 2
2.3 Compiling or running the USB stack and
EXAMPIES .ooveieieieeeeeeeeec e 4
2.3.1 Step-by-step guide for MCUXpresso IDE 4
23.2 Step-by-step guide for IARcccciiiiiiiiie 9
2.3.3 Step-by-step guide for Keil pVision5 9
234 Step-by-step guide for ARMGCC 10
2.34.1 Setup tool chainsccccoviiiiiiiiie, 10
2.3.4.2 Install GCC Arm embedded tool chain 10
2.34.3 Install MINGWoooiiiiiieeeeeee e 10
2.3.4.4 Add new system environment variable
ARMGCC DIR ..o 11
2.3.4.5 Install CMaKeccccooeiiiiiiiiiiiiee e 12
2.3.4.6 Build the USB democccceeeiveiiiieviiieniiens 13
2.3.4.7 Run a demo applicationccccccccoeeviiiiiinnnnns 13
24 USB stack configurationcccccceeiiiiie.n. 15
241 Device configurationccccocciiiiiiiiieinee. 15
242 Host configurationccccoiiiiiiiiiiiiie 15
24.3 USB cache-related MACROs definitions 16
3 Porting to a new platformcccocceeeeeeeee 18
3.1 System-on-Chip (SoC) filesccccceviiieeennns 18
3.2 Board filesccoeiiiii e 19
3.3 Porting examples ..o, 20
3.3.1 Copy a new platform examplecccccco.ee 20
3.3.2 Porting the exampleccooiiiiiiiiiie 21
3.3.3 Modify the example projectccccceeeineeee. 22
3.34 USB host CDC exampleccoeeeeecnivvnnnnnes 25
3.3.5 USB device MSC SD card example 26
3.3.6 USB device audio speaker example 26
3.3.7 USB device CCID Smart card example 27
4 Developing a new USB application 27
4.1 Developing a new USB device application 27
411 Application interfacescccoccvvveeeeieneiinnnnnnn. 27
4.1.2 How to develop a new device application 27
4.1.2.1 Changing the usb_device_descriptor.c file 28
4.1.2.2 Changing the usb_device_descriptor.h file 35
4.1.2.3 Changing the application filecccc.oceee. 35
4.2 Developing a new USB host application 36
421 Background ... 36
422 How to develop a new host application 36
4221 Creating a projectccccoeeeiiieiiiiee e, 36
4.2.2.2 Main application function flowcccueeees 37
4.2.2.3 Event callback functionc..c.cccociiiiiiinenn. 38
4224 Class initializationccccciiiiiiiiiiie 41
4.2.2.5 Sending/Receiving data to/from the device 42
5 USB compliance testscccccceeviiiecccccnneeeennnns 42
6 USB host FatFs throughput 43

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 12 April 2023
Document identifier: MCUXSDKUSBSUG

	1 Overview
	2 Build the USB examples in MCUXpresso SDK
	2.1 Requirements for building USB examples
	2.1.1 Hardware
	2.1.2 Software

	2.2 USB code structure
	2.3 Compiling or running the USB stack and examples
	2.3.1 Step-by-step guide for MCUXpresso IDE
	2.3.2 Step-by-step guide for IAR
	2.3.3 Step-by-step guide for Keil µVision5
	2.3.4 Step-by-step guide for ARMGCC
	2.3.4.1 Setup tool chains
	2.3.4.2 Install GCC Arm embedded tool chain
	2.3.4.3 Install MinGW
	2.3.4.4 Add new system environment variable ARMGCC_DIR
	2.3.4.5 Install CMake
	2.3.4.6 Build the USB demo
	2.3.4.7 Run a demo application

	2.4 USB stack configuration
	2.4.1 Device configuration
	2.4.2 Host configuration
	2.4.3 USB cache-related MACROs definitions

	3 Porting to a new platform
	3.1 System-on-Chip (SoC) files
	3.2 Board files
	3.3 Porting examples
	3.3.1 Copy a new platform example
	3.3.2 Porting the example
	3.3.3 Modify the example project
	3.3.4 USB host CDC example
	3.3.5 USB device MSC SD card example
	3.3.6 USB device audio speaker example
	3.3.7 USB device CCID Smart card example

	4 Developing a new USB application
	4.1 Developing a new USB device application
	4.1.1 Application interfaces
	4.1.2 How to develop a new device application
	4.1.2.1 Changing the usb_device_descriptor.c file
	4.1.2.2 Changing the usb_device_descriptor.h file
	4.1.2.3 Changing the application file

	4.2 Developing a new USB host application
	4.2.1 Background
	4.2.2 How to develop a new host application
	4.2.2.1 Creating a project
	4.2.2.2 Main application function flow
	4.2.2.3 Event callback function
	4.2.2.4 Class initialization
	4.2.2.5 Sending/Receiving data to/from the device

	5 USB compliance tests
	6 USB host FatFs throughput
	7 USB device ramdisk throughput
	8 Precautions
	9 Revision history
	10 Legal information
	Contents

