
Arm® Cortex®-M33 Devices
Revision: r1p0

Generic User Guide

Non-Confidential
Copyright © 2017–2018, 2020, 2023 Arm Limited (or
its affiliates).
All rights reserved.

Issue 05
100235_0100_05_en

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Arm® Cortex®-M33 Devices
Generic User Guide

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

0002-00 11 September 2017 Non-Confidential First release for r0p2

0003-00 28 November 2017 Non-Confidential First release for r0p3

0004-00 10 April 2018 Non-Confidential First release for r0p4

0100-01 19 June 2020 Non-Confidential First release for r1p0

0100-05 15 January 2023 Non-Confidential Second release for r1p0

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 316

https://www.arm.com/company/policies/trademarks

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 316

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

Contents

1. Introduction..14
1.1 Product revision status..14
1.2 Intended audience..14
1.3 Conventions... 14
1.4 Useful resources... 16

2. Overview...18
2.1 About the Cortex®-M33 processor and core peripherals.. 18
2.1.1 System-level interface..21
2.1.2 Security Extension.. 21
2.1.3 Integrated configurable debug...22
2.1.4 Processor features and benefits summary..22
2.1.5 Processor core peripherals..22

2.2 Arm®v8‑M enablement...23

3. The Cortex®-M33 Processor...24
3.1 Programmer's model.. 24
3.1.1 Processor modes and privilege levels for software execution..24
3.1.2 Security states... 25
3.1.3 Core registers...25
3.1.4 Exceptions and interrupts... 39
3.1.5 Data types and data memory accesses...39
3.1.6 The Cortex Microcontroller Software Interface Standard... 40
3.2 Memory model..40
3.2.1 Processor memory map...41
3.2.2 Memory regions, types, and attributes..42
3.2.3 Device memory... 42
3.2.4 Secure memory system and memory partitioning.. 43
3.2.5 Behavior of memory accesses... 44
3.2.6 Software ordering of memory accesses.. 45
3.2.7 Memory endianness... 46
3.2.8 Synchronization primitives.. 47

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

3.2.9 Programming hints for the synchronization primitives...50
3.3 Exception model... 50
3.3.1 Exception states.. 50
3.3.2 Exception types... 51
3.3.3 Exception handlers..56
3.3.4 Vector table.. 57
3.3.5 Exception priorities... 60
3.3.6 Interrupt priority grouping.. 61
3.3.7 Exception entry and return.. 61
3.4 Security state switches... 68
3.5 Fault handling.. 69
3.5.1 Fault types reference table...69
3.5.2 Fault escalation to HardFault... 70
3.5.3 Fault status registers and fault address registers.. 72
3.5.4 Lockup..73
3.6 Power management... 73
3.6.1 Entering sleep mode.. 73
3.6.2 Wakeup from sleep mode...74
3.6.3 The Wakeup Interrupt Controller..75
3.6.4 The external event input...75
3.6.5 Power management programming hints..76

4. The Cortex®-M33 Instruction Set..77
4.1 Cortex®-M33 instructions..77
4.1.1 Binary compatibility with other Cortex processors...88
4.2 CMSIS functions... 88
4.2.1 List of CMSIS functions to generate some processor instructions... 89
4.2.2 CMSE... 90
4.2.3 CMSIS functions to access the special registers... 90
4.2.4 CMSIS functions to access the Non-secure special registers...91
4.3 About the instruction descriptions...91
4.3.1 Operands...92
4.3.2 Restrictions when using PC or SP.. 92
4.3.3 Flexible second operand... 92
4.3.4 Shift Operations.. 94
4.3.5 Address alignment...98

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

4.3.6 PC‑relative expressions..98
4.3.7 Conditional execution.. 98
4.3.8 Instruction width selection...101
4.4 General data processing instructions.. 102
4.4.1 List of data processing instructions... 102
4.4.2 ADD, ADC, SUB, SBC, and RSB...103
4.4.3 AND, ORR, EOR, BIC, and ORN.. 106
4.4.4 ASR, LSL, LSR, ROR, and RRX...107
4.4.5 CLZ...108
4.4.6 CMP and CMN... 108
4.4.7 MOV and MVN...109
4.4.8 MOVT..111
4.4.9 REV, REV16, REVSH, and RBIT.. 112
4.4.10 SADD16 and SADD8... 113
4.4.11 SASX and SSAX..114
4.4.12 SEL...116
4.4.13 SHADD16 and SHADD8...116
4.4.14 SHASX and SHSAX..117
4.4.15 SHSUB16 and SHSUB8... 119
4.4.16 SSUB16 and SSUB8..120
4.4.17 TST and TEQ.. 121
4.4.18 UADD16 and UADD8..122
4.4.19 UASX and USAX.. 123
4.4.20 UHADD16 and UHADD8... 125
4.4.21 UHASX and UHSAX..126
4.4.22 UHSUB16 and UHSUB8..127
4.4.23 USAD8..128
4.4.24 USADA8... 129
4.4.25 USUB16 and USUB8.. 129
4.5 Coprocessor instructions..131
4.5.1 List of coprocessor instructions.. 131
4.5.2 Coprocessor intrinsics..131
4.5.3 CDP and CDP2...132
4.5.4 MCR and MCR2... 132
4.5.5 MCRR and MCRR2.. 133
4.5.6 MRC and MRC2... 133

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

4.5.7 MRRC and MRRC2.. 134
4.6 CDE instructions.. 134
4.6.1 List of CDE instructions..134
4.6.2 CX1{A}... 135
4.6.3 CX1D{A}..135
4.6.4 CX2{A}... 136
4.6.5 CX2D{A}..137
4.6.6 CX3{A}... 138
4.6.7 CX3D{A}..138
4.6.8 VCX1{A}.. 139
4.6.9 VCX2{A}.. 140
4.6.10 VCX3{A}..141
4.7 Multiply and divide instructions... 142
4.7.1 List of multiply and divide instructions... 142
4.7.2 MUL, MLA, and MLS...143
4.7.3 SDIV and UDIV...144
4.7.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and SMLATT.. 145
4.7.5 SMLAD and SMLADX... 146
4.7.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB, and SMLALTT..................................... 147
4.7.7 SMLSD and SMLSLD...149
4.7.8 SMMLA and SMMLS...151
4.7.9 SMMUL... 152
4.7.10 SMUAD and SMUSD..153
4.7.11 SMUL and SMULW... 154
4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL.. 155
4.8 Saturating instructions.. 156
4.8.1 List of saturating instructions.. 157
4.8.2 SSAT and USAT..158
4.8.3 SSAT16 and USAT16.. 159
4.8.4 QADD and QSUB.. 160
4.8.5 QASX and QSAX.. 161
4.8.6 QDADD and QDSUB..162
4.8.7 UQASX and UQSAX.. 163
4.8.8 UQADD and UQSUB.. 164
4.9 Packing and unpacking instructions...165
4.9.1 List of packing and unpacking instructions.. 166

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

4.9.2 PKHBT and PKHTB... 166
4.9.3 SXTA and UXTA..167
4.9.4 SXT and UXT...169
4.10 Bit field instructions..170
4.10.1 List of bit field instructions..170
4.10.2 BFC and BFI..170
4.10.3 SBFX and UBFX...171
4.11 Branch and control instructions...172
4.11.1 List of branch and control instructions...172
4.11.2 B, BL, BX, and BLX..172
4.11.3 BXNS and BLXNS.. 174
4.11.4 CBZ and CBNZ.. 175
4.11.5 IT.. 175
4.11.6 TBB and TBH..177
4.12 Floating-point instructions...179
4.12.1 List of floating-point instructions...179
4.12.2 FLDMDBX, FLDMIAX...181
4.12.3 FSTMDBX, FSTMIAX.. 181
4.12.4 VABS..182
4.12.5 VADD..182
4.12.6 VCMP and VCMPE..183
4.12.7 VCVT and VCVTR between floating-point and integer..184
4.12.8 VCVT between floating-point and fixed-point..185
4.12.9 VDIV..186
4.12.10 VFMA and VFMS.. 186
4.12.11 VFNMA and VFNMS..187
4.12.12 VLDM... 188
4.12.13 VLDR...189
4.12.14 VLLDM... 189
4.12.15 VLSTM..190
4.12.16 VMLA and VMLS...191
4.12.17 VMOV Immediate..191
4.12.18 VMOV Register.. 192
4.12.19 VMOV scalar to core register...192
4.12.20 VMOV core register to single-precision...193
4.12.21 VMOV two core registers to two single-precision registers..194

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

4.12.22 VMOV two core registers and a double-precision register... 194
4.12.23 VMOV core register to scalar...195
4.12.24 VMRS..196
4.12.25 VMSR..196
4.12.26 VMUL... 197
4.12.27 VNEG..197
4.12.28 VNMLA, VNMLS and VNMUL...198
4.12.29 VPOP.. 199
4.12.30 VPUSH... 199
4.12.31 VSQRT.. 200
4.12.32 VSTM..200
4.12.33 VSTR... 201
4.12.34 VSUB...202
4.12.35 VSEL..202
4.12.36 VCVTA, VCVTM VCVTN, and VCVTP... 203
4.12.37 VCVTB and VCVTT...204
4.12.38 VMAXNM and VMINNM.. 205
4.12.39 VRINTR and VRINTX..205
4.12.40 VRINTA, VRINTN, VRINTP, VRINTM, and VRINTZ...206
4.13 Miscellaneous instructions.. 207
4.13.1 List of miscellaneous instructions.. 207
4.13.2 BKPT..207
4.13.3 CPS.. 208
4.13.4 CPY..209
4.13.5 DMB.. 209
4.13.6 DSB..210
4.13.7 ISB..210
4.13.8 MRS... 211
4.13.9 MSR... 212
4.13.10 NOP.. 213
4.13.11 SEV..214
4.13.12 SG..214
4.13.13 SVC..215
4.13.14 TT, TTT, TTA, and TTAT...215
4.13.15 UDF...217
4.13.16 WFE.. 217

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

4.13.17 WFI..218
4.13.18 YIELD..218
4.14 Memory access instructions... 219
4.14.1 List of memory access instructions... 219
4.14.2 ADR... 220
4.14.3 LDR and STR, immediate offset... 221
4.14.4 LDR and STR, register offset.. 223
4.14.5 LDR and STR, unprivileged..224
4.14.6 LDR, PC‑relative... 225
4.14.7 LDM and STM..227
4.14.8 PLD..229
4.14.9 PUSH and POP...229
4.14.10 LDA and STL.. 231
4.14.11 LDREX and STREX..232
4.14.12 LDAEX and STLEX.. 233
4.14.13 CLREX...235

5. The Cortex®-M33 Peripherals..236
5.1 About the Cortex®-M33 peripherals.. 236
5.2 System Control Block..237
5.2.1 System control block registers summary.. 237
5.2.2 Auxiliary Control Register...238
5.2.3 CPUID Base Register...239
5.2.4 Interrupt Control and State Register... 240
5.2.5 Vector Table Offset Register..246
5.2.6 Application Interrupt and Reset Control Register...246
5.2.7 System Control Register... 250
5.2.8 Configuration and Control Register... 251
5.2.9 System Handler Priority Registers.. 254
5.2.10 System Handler Control and State Register.. 255
5.2.11 Configurable Fault Status Register...259
5.2.12 HardFault Status Register...264
5.2.13 MemManage Fault Address Register...265
5.2.14 BusFault Address Register..266
5.2.15 Coprocessor Access Control Register... 266
5.2.16 Non-secure Access Control Register...267

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

5.2.17 System control block design hints and tips... 268
5.3 System timer, SysTick.. 269
5.3.1 SysTick Control and Status Register...269
5.3.2 SysTick Reload Value Register... 270
5.3.3 SysTick Current Value Register..271
5.3.4 SysTick Calibration Value Register.. 271
5.3.5 SysTick usage hints and tips.. 272
5.4 Nested Vectored Interrupt Controller...273
5.4.1 Accessing the NVIC registers using CMSIS... 274
5.4.2 Interrupt Set Enable Registers...275
5.4.3 Interrupt Clear Enable Registers...275
5.4.4 Interrupt Set Pending Registers.. 276
5.4.5 Interrupt Clear Pending Registers...277
5.4.6 Interrupt Active Bit Registers.. 278
5.4.7 Interrupt Target Non-secure Registers.. 279
5.4.8 Interrupt Priority Registers... 279
5.4.9 Software Trigger Interrupt Register..281
5.4.10 Level-sensitive and pulse interrupts.. 281
5.4.11 NVIC usage hints and tips...282
5.5 Security Attribution and Memory Protection..283
5.5.1 Security Attribution Unit...283
5.5.2 Security Attribution Unit Control Register... 284
5.5.3 Security Attribution Unit Type Register.. 285
5.5.4 Security Attribution Unit Region Number Register.. 286
5.5.5 Security Attribution Unit Region Base Address Register...286
5.5.6 Security Attribution Unit Region Limit Address Register.. 287
5.5.7 Secure Fault Status Register.. 288
5.5.8 Secure Fault Address Register...289
5.5.9 Memory Protection Unit...290
5.5.10 MPU Type Register..291
5.5.11 MPU Control Register...292
5.5.12 MPU Region Number Register... 293
5.5.13 MPU Region Base Address Register..294
5.5.14 MPU Region Base Address Register Alias, n=1-3.. 295
5.5.15 MPU Region Limit Address Register Alias, n=1-3.. 295
5.5.16 MPU Region Limit Address Register... 295

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Contents

5.5.17 MPU Memory Attribute Indirection Registers 0 and 1...296
5.5.18 MPU mismatch... 298
5.5.19 Updating protected memory regions.. 298
5.5.20 MPU design hints and tips.. 299
5.6 Floating-Point Unit...300
5.6.1 Floating-point Context Control Register...300
5.6.2 Floating-point Context Address Register..307
5.6.3 Floating-point Status Control Register.. 307
5.6.4 Floating-point Default Status Control Register... 309
5.6.5 Code sequence for enabling the FPU...309

A. Cortex®-M33 Options.. 311
A.1 Processor implementation options.. 311

B. Revisions.. 315
B.1 Revisions...315

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Introduction

1. Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this manual, for
example, r1p2, where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for

example, p2.

1.2 Intended audience

This book is written for application and system-level software developers, familiar with
programming, who want to program a device that includes the Cortex®-M33 processor.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 316

https://developer.arm.com/glossary

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Introduction

Convention Use
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Introduction

Figure 1-1: Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

1.4 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® Cortex®-M33 Processor Integration and Implementation Manual 100323 Confidential

CoreSight™ Components Technical Reference Manual DDI 0314 Non-Confidential

Lazy Stacking and Context Switching Application Note 298 DAI0298 Non-Confidential

Arm architecture and specifications Document ID Confidentiality

ACLE Extensions for Arm®v8‑M 100739 Non-Confidential

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 316

http://developer.arm.com/documentation
https://developer.arm.com/documentation/ddi0314/latest

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Introduction

Arm architecture and specifications Document ID Confidentiality

AMBA® APB Protocol Specification IHI 0024 Non-Confidential

AMBA® ATB Protocol Specification IHI 0032 Non-Confidential

AMBA® Low Power Interface Specification IHI 0068 Non-Confidential

Arm® AMBA® 5 AHB Protocol Specification IHI 0033 Non-Confidential

Arm® CoreSight™ Architecture Specification v3.0 IHI 0029 Non-Confidential

Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 IHI 0031 Non-Confidential

Arm® Embedded Trace Macrocell Architecture Specification ETMv4 IHI 0064 Non-Confidential

Arm® Synchronization Primitives Development Article ID012816 Non-Confidential

Arm®v8-M Architecture Reference Manual DDI 0553 Non-Confidential

Arm®v8‑M Exception Handling 100701 Non-Confidential

Arm®v8‑M Processor Debug 100734 Non-Confidential

Fault Handling and Detection 100691 Non-Confidential

Introduction to the Arm®v8‑M Architecture 100688 Non-Confidential

Memory Protection Unit for Arm®v8‑M based platforms 100699 Non-Confidential

TrustZone® technology for Arm®v8‑M Architecture 100690 Non-Confidential

Non-Arm resources Document ID Organization

IEEE Std 1149.1-2001, Test Access Port and Boundary-Scan Architecture (JTAG). IEEE 1149.1-2001 IEEE

www.ieee.org

ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic. IEEE 754-2008 IEEE

www.ieee.org

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 316

https://developer.arm.com/documentation/ihi0024/latest/
https://developer.arm.com/documentation/ihi0032/latest/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0029/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0064/latest/
http://www.ieee.org
http://www.ieee.org
http://www.adobe.com

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Overview

2. Overview
This chapter introduces the Cortex®-M33 processor and its features.

2.1 About the Cortex®-M33 processor and core
peripherals

The Cortex®-M33 processor is a high-performance 32-bit processor that is designed for the
microcontroller market. The processor offers outstanding performance, fast interrupt handling, and
enhanced system debug with extensive breakpoint and trace capabilities.

Other significant benefits to developers include:

• Efficient processor core, system, and memories.

• Instruction set extension for signal processing applications.

• Ultra-low power consumption with integrated sleep modes.

• Platform robustness with optional integrated memory protection.

• Extended security features with optional Security Extension for Arm®v8‑M.

Processor implementation
The Cortex®-M33 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The in-order processor
delivers exceptional power efficiency through an efficient instruction set and extensively optimized
design.

The Cortex®-M33 processor provides high-end processing hardware including:

• IEEE754-compliant single-precision floating-point computation.

• Single Instruction Multiple Data (SIMD) multiplication and multiply-with-accumulate capabilities.

• Saturating arithmetic and dedicated hardware division.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Overview

Figure 2-1: Cortex®-M33 processor implementation without the Security Extension

Processor

Optional
Cross Trigger
Interface (CTI)

Nested Vector
Interrupt Controller

(NVIC)

Optional
Wake up Interrupt
Controller (WIC)

Interrupts

Bus matrix

Optional
Embedded Trace
Macrocell (ETM)

Trace
Interface

Processor core

Memory system

Optional
Micro Trace Buffer

(MTB)

MTB SRAM
Interface

MTB AHB Interface

AMBA5 AHB 5

Optional
Memory Protection Unit (MPU)

Debug
Interface

Optional Data
Watchpoint and Trace

Unit (DWT)

Optional Breakpoint
Unit

ROM tables

Coprocessor
interface

Optional Floating-point Unit (FPU)

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Overview

Figure 2-2: Cortex®-M33 processor implementation with the Security Extension

Interrupts

Trace
Interface

Memory system

MTB SRAM
Interface

MTB AHB Interface

AMBA5 AHB 5

Debug
Interface

Coprocessor
interface

Implementation
Defined

Attribution Unit
(IDAU)

Processor

Optional
Cross Trigger
Interface (CTI)

Nested Vector
Interrupt Controller

(NVIC)

Optional
Wake up Interrupt
Controller (WIC)

Bus matrix

Optional
Embedded Trace
Macrocell (ETM)Processor core

Optional
Micro Trace Buffer

(MTB)

Optional Memory Protection
Optional Data

Watchpoint and Trace
Unit (DWT)

Optional Breakpoint
Unit

ROM tables

Optional Floating-point Unit (FPU)

Security
Attribution Unit

(SAU)

Secure Memory
Protection Unit

(MPU_S)

Non-secure
Memory

Protection Unit
(MPU_NS)

To facilitate the design of cost-sensitive devices, the Cortex®-M33 processor implements tightly-
coupled system components that reduce processor area while significantly improving interrupt
handling and system debug capabilities. The Cortex®-M33 processor implements the T32
instruction set based on Thumb®-2 technology, ensuring high code density and reduced program
memory requirements. The Cortex®-M33 processor instruction set provides the exceptional
performance that is expected of a modern 32-bit architecture, with better code density than most
other architectures.

The Cortex®-M33 processor closely integrates a configurable Nested Vectored Interrupt Controller
(NVIC) to deliver industry-leading interrupt performance. The NVIC includes a non-maskable
interrupt, and provides up to 256 interrupt priority levels for other interrupts. The tight integration
of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), which
dramatically reduces interrupt latency. This reduced latency is achieved through:

• The hardware stacking of registers.

• The ability to suspend load multiple and store multiple operations.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Overview

• Parallel instruction-side and data-side paths.

• Tail-chaining.

• Late-arriving interrupts.

Interrupt handlers do not require wrapping in assembler code, removing any code overhead from
the ISRs. The tail-chain optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC supports different sleep modes, including a deep sleep
function that enables the entire device to be rapidly powered down while still retaining program
state.

The MCU vendor determines the reliability features configuration, therefore reliability features can
differ across different devices and families.

To increase instruction throughput, the Cortex®-M33 processor can execute certain pairs of 16-bit
instructions simultaneously. This is called dual issue.

Related information
Exception entry and return on page 61

2.1.1 System-level interface

The Cortex®-M33 processor provides multiple interfaces using Arm® AMBA® technology to
provide high speed, low latency memory accesses.

2.1.2 Security Extension

The Arm®v8‑M Security Extension adds security through code and data protection features.

A processor with the Security Extension supports both Non-secure and Secure states, which are
orthogonal to the traditional thread and handler modes. The four modes of operation are:

• Non-secure Thread mode.

• Non-secure Handler mode.

• Secure Thread mode.

• Secure Handler mode.

When the Security Extension is implemented, the following happens:

• The processor resets into Secure state.

• Some registers are banked between Security states. There are two separate instances of the
same register, one in Secure state and one in Non-secure state.

• The architecture allows the Secure state to access the Non-secure versions of banked registers.

• Interrupts can be configured to target one of the two Security states.
Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 21 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Overview

• Some faults are banked between Security states or are configurable.

• Secure memory can only be accessed from Secure state.

2.1.3 Integrated configurable debug

The Cortex®-M33 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices.
The MCU vendor determines the debug feature configuration, therefore debug features can differ
across different devices and families.

The processor provides instruction and data trace and profiling support. To enable simple and cost-
effective profiling of the resulting system events, a Serial Wire Viewer (SWV) can export a stream of
software-generated messages, data trace, and profiling information through a single pin.

When implemented, debuggers can use:

• The Breakpoint Unit (BPU), which supports four or eight hardware breakpoint comparators.

• The Data Watchpoint and Trace (DWT), which supports four or eight watchpoint comparators.

2.1.4 Processor features and benefits summary

The Cortex®-M33 processor benefits include tight integration of system peripherals that reduces
area and development costs, T32 instruction set that combines high code density with 32-bit
performance, and IEEE754-compliant single-precision Floating-Point Unit (FPU).

Other processor features and benefits are:

• Power control optimization of system components.

• Integrated sleep modes for low power consumption.

• Arm®v8‑M Security Extension.

• Fast code execution permits slower processor clock or increases sleep mode time.

• Hardware integer division and fast multiply accumulate for digital signal processing.

• Saturating arithmetic for signal processing.

• Deterministic, high-performance interrupt handling for time-critical applications.

• MPU and SAU for safety-critical applications.

• Extensive debug and trace capabilities.

2.1.5 Processor core peripherals

The processor has the following core peripherals:

Nested Vectored Interrupt Controller
The NVIC is an embedded interrupt controller that supports low-latency interrupt processing.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Overview

System Control Space
The SCS is the programmer's model interface to the processor. It provides system
implementation information and system control.

System timer
The system timer, SysTick, is a 24 bit count-down timer. Use this as a Real Time Operating
System (RTOS) tick timer or as a simple counter. In an implementation with the Security
Extension, there are two SysTicks, one Secure and one Non-secure.

Security Attribution Unit
The SAU improves system security by defining security attributes for different regions. It
provides up to eight different regions and a default background region.

Memory Protection Unit
The MPU improves system reliability by defining the memory attributes for different memory
regions. It provides up to 16 different regions, and an optional predefined background region.
When the Security Extension is included, there can be two MPUs, one Secure and one Non-
secure. Each MPU can define memory attributes independently.

Floating-point Unit
The Floating-point Unit (FPU) provides IEEE754-compliant operations on 32-bit single-
precision floating-point values.

2.2 Arm®v8‑M enablement
The following list of documents, while not specific to this product, contain important information
that can assist you in developing your Cortex®-M33 processor.

Arm useful resources Document ID Confidentiality

ACLE Extensions for Arm®v8‑M 100739 Non-Confidential

Arm® Synchronization Primitives Development Article (ID012816) ID012816 Non-Confidential

Arm®v8-M Architecture Reference Manual DDI 0553 Non-Confidential

Arm®v8‑M Exception Handling 100701 Non-Confidential

Arm®v8‑M Processor Debug 100734 Non-Confidential

Fault Handling and Detection 100691 Non-Confidential

Introduction to the Arm®v8‑M Architecture 100688 Non-Confidential

Memory Protection Unit for Arm®v8‑M based platforms 100699 Non-Confidential

TrustZone® technology for Arm®v8‑M Architecture 100690 Non-Confidential

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3. The Cortex®-M33 Processor
This chapter describes how to program the Cortex®-M33 processor.

3.1 Programmer's model
The programmer's model describes the modes, privilege levels, Security states, stacks and core
registers available for software execution.

3.1.1 Processor modes and privilege levels for software execution

Descriptions of the two modes and two privilege levels available are provided in this topic.

Modes
Thread mode

Intended for applications.

The processor enters Thread mode out of reset and returns to Thread mode on completion
of an exception handler.

Handler mode
Intended for OS execution.

All exceptions cause entry into Handler mode.

Privilege levels
There are two levels of privilege:

Unprivileged
Software has limited access to system resources.

Privileged
Software has full access to system resources, subject to security restrictions.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make a
Supervisor Call to transfer control to privileged software.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.1.2 Security states

There are two Security states, Secure and Non-secure.

Security states are orthogonal to mode and privilege. Therefore each Security state supports
execution in both modes and both levels of privilege.

3.1.3 Core registers

The following figures and tables illustrate the core registers of the Cortex®-M33 processor:

• Without the Security Extension.

• With the Security Extension.

Figure 3-1: Core registers without the Security Extension

Program Counter
LR (R14)
PC (R15)

R5
R6
R7

R0
R1

R3
R4

R2

R10
R11
R12

R8
R9

Low registers

High registers

PSP
Link Register

Active Stack Pointer

General purpose registers

Banked stack pointers

MSP

xPSR
PRIMASK

CONTROL

PSPLIM
MSPLIM

FAULTMASK
BASEPRI

Combined Program Status Registers

Control Register

Stack Pointer Limit registers

Exception mask registers

Special registers

SP (R13)

Table 3-1: Core register set summary without the Security Extension

Name Type 1 Required privilege 2 Reset value Description

R0-R12 RW Either UNKNOWN 3.1.3.1 General-purpose registers on page 27

MSP RW Either -3

PSP RW Either UNKNOWN

3.1.3.2 Stack Pointer on page 27

LR RW Either 0xFFFFFFFF 3.1.3.4 Link Register on page 29

PC RW Either -3 3.1.3.5 Program Counter on page 29

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Name Type 1 Required privilege 2 Reset value Description

xPSR (includes APSR,
IPSR, and EPSR)

RW Either -4 3.1.3.6 Combined Program Status Register on page
30

APSR RW Either UNKNOWN 3.1.3.6.1 Application Program Status Register on
page 30

IPSR RO Privileged 0x00000000 3.1.3.6.2 Interrupt Program Status Register on page
31

EPSR RO Privileged -4 3.1.3.6.3 Execution Program Status Register on page
32.

PRIMASK RW Privileged 0x00000000 3.1.3.7.1 Priority Mask Register on page 34

FAULTMASK RW Privileged 0x00000000 3.1.3.7.2 Fault Mask Register on page 35

BASEPRI RW Privileged 0x00000000 3.1.3.7.3 Base Priority Mask Register on page 37

CONTROL RW Privileged 0x00000000 3.1.3.8 CONTROL register on page 38

PSPLIM RW Privileged

MSPLIM RW Privileged

0x00000000 3.1.3.3 Stack limit registers on page 28

Figure 3-2: Core registers with the Security Extension

Combined Program Status Registers

Control Register

MSP_S
PSP_S

CONTROL_NS

General purpose registers

BASEPRI_NS

Banked stack pointers

PSP_NS
MSP_NS

Banked special registers

BASEPRI_S
CONTROL_S

MSPLIM_S
PSPLIM_S

MSPLIM_NS
PSPLIM_NS

Program Counter
LR (R14)
PC (R15)

R5
R6
R7

R0
R1

R3
R4

R2

R10
R11
R12

R8
R9

Low registers

High registers

Link Register
Active Stack Pointer

xPSR

SP (R13)

PRIMASK

CONTROL

PSPLIM
MSPLIM

FAULTMASK
BASEPRI

PRIMASK_NSPRIMASK_S
FAULTMASK_NSFAULTMASK_S

Stack Pointer Limit registers

Exception mask registers

Special registers

1 Describes access type during program execution in Thread mode and Handler mode. Debug access can differ.
2 An entry of Either means privileged and unprivileged software can access the register.
3 Soft reset to the value retrieved by the reset handler
4 Bit[24] is the T-bit and is loaded from bit[0] of the reset vector. All other bits are reset to 0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Table 3-2: Core register set summary with the Security Extension

Name Type 1 Required
privilege2

Reset value Description

R0-R12 RW Either UNKNOWN 3.1.3.1 General-purpose registers on page 27.

MSP_S Either

MSP_NS

RW

Either
-3

PSP_S Either

PSP_NS

RW

Either

UNKNOWN

3.1.3.2 Stack Pointer on page 27

LR RW Either UNKNOWN 3.1.3.4 Link Register on page 29

PC RW Either -3 3.1.3.5 Program Counter on page 29

xPSR (includes APSR, IPSR,
and EPSR)

RW Either -4 3.1.3.6 Combined Program Status Register on page
30

APSR RW Either UNKNOWN 3.1.3.6.1 Application Program Status Register on page
30.

IPSR RO Privileged 0x00000000 3.1.3.6.2 Interrupt Program Status Register on page
31

EPSR RO Privileged -4 3.1.3.6.3 Execution Program Status Register on page
32

PRIMASK_S Privileged 0x00000000

PRIMASK_NS

RW

Privileged 0x00000000

3.1.3.7.1 Priority Mask Register on page 34

FAULTMASK_S Privileged 0x00000000

FAULTMASK_NS

RW

Privileged 0x00000000

3.1.3.7.2 Fault Mask Register on page 35

BASEPRI_S Privileged 0x00000000

BASEPRI_NS

RW

Privileged 0x00000000

3.1.3.7.3 Base Priority Mask Register on page 37

CONTROL_S Privileged 0x00000000

CONTROL_NS

RW

Privileged 0x00000000

3.1.3.8 CONTROL register on page 38

MSPLIM_S Privileged 0x00000000

MSPLIM_NS

RW

Privileged 0x00000000

PSPLIM_S Privileged 0x00000000

PSPLIM_NS

RW

Privileged 0x00000000

3.1.3.3 Stack limit registers on page 28

3.1.3.1 General-purpose registers

R0-R12 are 32-bit general-purpose registers for data operations.

3.1.3.2 Stack Pointer

The stack pointer (SP) is register R13.

The processor uses a full descending stack, meaning the Stack Pointer holds the address of the last
stacked item in memory. When the processor pushes a new item onto the stack, it decrements the
Stack Pointer and then writes the item to the new memory location.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

When Security state is implemented, software must initialize MSP_NS.

Table 3-3: Stack pointer register without the Security Extension

Stack Stack pointer register

Main MSP

Process PSP

In Thread mode, the CONTROL.SPSEL bit indicates the stack pointer to use.

0 Main stack pointer (MSP). This is the reset value.
1 Process stack pointer (PSP)

Table 3-4: Stack pointer register with the Security Extension

Stack stack pointer register

Main MSP_SSecure

Process PSP_S

Main MSP_NSNon-secure

Process PSP_NS

In Non-secure Thread mode, the CONTROL_NS.SPSEL bit indicates the stack pointer to use:

0 Main stack pointer (MSP_NS). This is the reset value.
1 Process stack pointer (PSP_NS).

In Non-secure Handler mode, the MSP_NS is always used.

In Secure Thread mode, the CONTROL_S.SPSEL bit indicates the stack pointer to use:

0 Main stack pointer (MSP_S). This is the reset value.
1 Process stack pointer (PSP_S).

In Secure Handler mode, the MSP_S is always used.

The current Security state of the processor determines whether the Secure or Non-secure stacks
are used.

To ensure that stacks do not overrun, the processor has stack limit check registers that can be
programmed to define the bounds for each of the implemented stacks.

3.1.3.3 Stack limit registers

The stack limit registers define the lower limit for the corresponding stack. The processor raises an
exception on most instructions that attempt to update the stack pointer below its defined limit.

If the Security Extension is not implemented, the Cortex®-M33 processor has two stack limit
registers, as the following table shows.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Table 3-5: Stack limit registers without the Security Extension

Stack Stack limit register

Main MSPLIM

Process PSPLIM

If the Security Extension is implemented, the Cortex®-M33 processor has four stack limit registers,
as the following table shows.

Table 3-6: Stack limit registers with the Security Extension

Security state Stack Stack limit register

Main MSPLIM_SSecure

Process PSPLIM_S

Main MSPLIM_NSNon-secure

Process PSPLIM_NS

The four stack limit registers are banked between Security states.

See Table 3-1: Core register set summary without the Security Extension on page 25 table for
the stack limit registers attributes.

The bit assignments for the MSPLIM and PSPLIM registers are as follows:

031 23

LIMIT RES 0

Table 3-7: MSPLIM and PSPLIM register bit assignments

Bits Name Function

[31:3] LIMIT Main stack limit or process stack limit address for the selected Security state. Limit address for the selected stack pointer.

[2:0] - Reserved, RES0.

3.1.3.4 Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls,
and exceptions. On reset, the processor sets the LR value to 0xFFFFFFFF.

3.1.3.5 Program Counter

The Program Counter (PC) is register R15. It contains the current program address.

On reset, the processor loads the PC with the value of the reset vector defined in the vector table.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.1.3.6 Combined Program Status Register

The Combined Program Status Register (xPSR) consists of the Application Program Status Register
(APSR), Interrupt Program Status Register (IPSR), and Execution Program Status Register (EPSR).

These registers are mutually exclusive bit fields in the 32-bit PSR. The bit assignments are as
follows:

25 24 23

Reserved ISR_NUMBER

31 30 29 28 27

N Z C V

0

ReservedAPSR

IPSR

EPSR Reserved Reserved

26 16 15 10 9

ReservedIT/ICI IT/ICIT

Q

81920

GE[3:0]Reserved

Access these registers individually or as a combination of any two or all three registers, using the
register name as an argument to the MSR or MRS instructions. For example:

• Read all the registers using PSR with the MRS instruction.

• Write to the APSR N, Z, C, V, and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Table 3-8: xPSR register combinations

Register Type Combination

xPSR RW5, 6 APSR, EPSR, and IPSR

IEPSR RO6 EPSR and IPSR

IAPSR RW5 APSR and IPSR

EAPSR RW6 APSR and EPSR

See the MRS and MSR instruction descriptions for more information about how to access the
Program Status Registers.

3.1.3.6.1 Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions.

See Table 3-1: Core register set summary without the Security Extension on page 25 for the
APSR attributes.

The APSR bit assignments are as follows:

5 The processor ignores writes to the IPSR bits.
6 Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Table 3-9: APSR bit assignments

Bits Name Function

[31] N Negative flag.

[30] Z Zero flag.

[29] C Carry or borrow flag.

[28] V Overflow flag.

[27] Q DSP overflow and saturation flag.

[26:20] - Reserved.

[19:16] GE[3:0] Greater than or Equal flags. See 4.4.12 SEL on page 116 for more information.

[15:0] - Reserved.

3.1.3.6.2 Interrupt Program Status Register

The IPSR contains the exception number of the current ISR.

The bit assignments are:

Table 3-10: IPSR bit assignments

Bits Name Function

[31:9] - Reserved.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Bits Name Function

[8:0] Exception number This is the number of the current exception:

0 = Thread mode.

1 = Reset.

2 = NMI.

3 = HardFault.

4 = MemManage.

5 = BusFault.

6 = UsageFault

7 = SecureFault

8-10 = Reserved.

7-10 = Reserved.

11 = SVCall.

12 = DebugMonitor.

13 = Reserved.

14 = PendSV.

15 =SysTick

16 = IRQ0.

.

.

.

495 = IRQ479.

The active bits in the Exception number field depend on the number of interrupts implemented.

0-47 interrupts = [5:0].

48-111 interrupts = [6:0].

112-239 interrupts = [7:0].

240-479 interrupts = [8:0].

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.1.3.6.3 Execution Program Status Register

The EPSR contains the Thumb® state bit and the execution state bits for the If-Then (IT) instruction,
and Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple
instruction.

See the Table 3-1: Core register set summary without the Security Extension on page 25 for
the EPSR attributes.

The following table shows the EPSR bit assignments.

Table 3-11: EPSR bit assignments

Bits Name Function

[31:27] - Reserved

[26:25], [15:10] ICI Interruptible-continuable instruction bits, see 3.1.3.6.4 Interruptible-continuable instructions on page 33

[26:25], [15:10] IT Indicates the execution state bits of the IT instruction, see 4.11.5 IT on page 175

[24] T Thumb® state bit, see 3.1.3.6.6 Thumb state on page 34

[23:16] - Reserved

[9:0] - Reserved

Attempts to read the EPSR directly through application software using the MRS instruction always
return zero. Attempts to write the EPSR using the MSR instruction in application software are
ignored.

3.1.3.6.4 Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or
VPOP instruction, the processor can stop the load multiple or store multiple instruction operation
temporarily, storing the next register operand in the multiple operation to be transferred into
EPSR[15:12].

After servicing the interrupt, the processor resumes execution of the load or store multiple, starting
at the register stored in EPSR[15:12].

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

There might be cases where the processor cannot pause and resume load or
store multiple instructions in this way. When this happens, the processor restarts
the instruction from the beginning on return from the interrupt. As a result, your
software should never use load or store multiple instructions to memory that is not
robust to repeated accesses.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.1.3.6.5 If-Then block

The If-Then block contains up to four instructions following an IT instruction. Each instruction in
the block is conditional. The conditions for the instructions are either all the same, or some can be
the inverse of others.

Interruptible-continuable operation is not supported when the load multiple or
store multiple instructions are located inside an If-Then block. In these cases,
the processor can take an interrupt part-way through the load or store multiple
instruction, restarting it from the beginning on return from the interrupt.

3.1.3.6.6 Thumb state

The Cortex®-M33 processor only supports execution of instructions in Thumb state.

The following can modify the T bit in the EPSR:

• Instructions BLX, BX, LDR pc, [], and POP{PC}.

• Restoration from the stacked xPSR value on an exception return.

• Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See 3.5.4 Lockup
on page 73 for more information.

3.1.3.7 Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. For example, you
might want to disable exceptions when running timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to
change the value of PRIMASK.PM or FAULTMASK.FM.

3.1.3.7.1 Priority Mask Register

The PRIMASK register is intended to disable interrupts by preventing activation of all exceptions
with configurable priority in the current Security state.

See Table 3-1: Core register set summary without the Security Extension on page 25 table for
the PRIMASK attributes.

The bit assignments for the PRIMASK register are as follows:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

RES0

0131

PM

Table 3-12: PRIMASK register bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] PM Setting this bit to one boosts the current execution priority to 0, masking all exceptions with a programmable priority.

Setting PRIMASK_S to one boosts the current execution priority to 0. If AIRCR.PRIS is:

0 Setting PRIMASK_NS to one boosts the current execution priority to 0x0.
1 Setting PRIMASK_NS to one boosts the current execution priority to 0x80.

When the current execution priority is boosted to a particular value, all exceptions with a lower or equal priority are
masked.

Table 3-13: PRIMASK register bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] PM In an implementation without the Security Extension, setting this bit to one boosts the current execution priority to 0,
masking all exceptions with a programmable priority.

In an implementation with the Security Extension, setting PRIMASK_S to one boosts the current execution priority to 0. If
AIRCR.PRIS is:

0 Setting PRIMASK_NS to one boosts the current execution priority to 0x0.
1 Setting PRIMASK_NS to one boosts the current execution priority to 0x80.

When the current execution priority is boosted to a particular value, all exceptions with a lower or equal priority are
masked.

3.1.3.7.2 Fault Mask Register

The FAULTMASK register prevents activation of all exceptions with configurable priority and
also some exceptions with fixed priority depending on the value of AIRCR.BFHFNMINS and
AIRCR.PRIS.

The bit assignments for the FAULTMASK register are as follows:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

RES0

0131

FM

Table 3-14: FAULTMASK register bit assignments

Bits Name Function

[31:1] - Reserved, RES0

[0] FM Setting this bit to one boosts the current execution priority to -1, masking all exceptions except NMI.

Setting this bit to one boosts the current execution priority to -1, masking all exceptions with a lower priority. If
AIRCR.BFHFNMINS is:

0 Setting FAULTMASK_S to one boosts the current execution priority to -1.
If AIRCR.PRIS is:

0 Setting FAULTMASK_NS to one boosts the current execution priority to 0x0
1 Setting FAULTMASK_NS to one boosts the current execution priority to 0x80.

1 Setting FAULTMASK_S to one boosts the current execution priority to -3.

Setting FAULTMASK_NS to one boosts the current execution priority to -1.

When the current execution priority is boosted to a particular value, all exceptions with a lower or equal priority are
masked.

Table 3-15: FAULTMASK register bit assignments

Bits Name Function

[31:1] - Reserved, RES0

[0] FM In an implementation without the Security Extension, setting this bit to one boosts the current execution priority to -1,
masking all exceptions except NMI.

In an implementation with the Security Extension, if AIRCR.BFHFNMINS is:

0 Setting FAULTMASK_S to one boosts the current execution priority to -1.
If AIRCR.PRIS is:

0 Setting FAULTMASK_NS to one boosts the current execution priority to 0x0
1 Setting FAULTMASK_NS to one boosts the current execution priority to 0x80.

1 Setting FAULTMASK_S to one boosts the current execution priority to -3.

Setting FAULTMASK_NS to one boosts the current execution priority to -1.

When the current execution priority is boosted to a particular value, all exceptions with a lower or equal priority are
masked.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Table 3-16: FAULTMASK register bit assignments

Bits Name Function

[31:1] - Reserved, RES0

[0] FM Setting this bit to one boosts the current execution priority to -1, masking all exceptions with a lower priority. If
AIRCR.BFHFNMINS is:

0 Setting FAULTMASK_S to one boosts the current execution priority to -1.
If AIRCR.PRIS is:

0 Setting FAULTMASK_NS to one boosts the current execution priority to 0x0
1 Setting FAULTMASK_NS to one boosts the current execution priority to 0x80.

1 Setting FAULTMASK_S to one boosts the current execution priority to -3.

Setting FAULTMASK_NS to one boosts the current execution priority to -1.

When the current execution priority is boosted to a particular value, all exceptions with a lower or equal priority are
masked.

3.1.3.7.3 Base Priority Mask Register

Use the BASEPRI register to change the priority level that is required for exception preemption.

See Table 3-1: Core register set summary without the Security Extension on page 25 table for
the BASEPRI register attributes.

The bit assignments for the BASEPRI register are as follows:

BASEPRIRES0

31 078

Table 3-17: BASEPRI register bit assignments

Bits Name Function

[31:8] - Reserved, RES0

[7:0] BASEPRI7 Software can boost the base priority by setting BASEPRI to a number between 1 and the maximum supported priority
number.

In an implementation with the Security Extension, the BASEPRI_NS is then mapped to the bottom half of the priority
range, so that the current execution priority is boosted to the mapped value in the bottom half of the priority range.

When the current execution priority is boosted to a particular value, all exceptions with a lower priority are masked.
Writing 0 to BASEPRI disables base priority boosting.

7 This field is similar to the priority fields in the interrupt priority registers. If the device implements only bits[7:M] of
this field, bits[M-1:0] read as zero and ignore writes. See 5.4.8 Interrupt Priority Registers - Cortex-M33 on page
279 for more information. Remember that higher priority field values correspond to lower exception priorities.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.1.3.8 CONTROL register

The CONTROL register controls the stack that is used, the privilege level for software execution
when the core is in Thread mode and indicates whether the FPU state is active.

See Table 3-1: Core register set summary without the Security Extension on page 25 table for
the CONTROL register attributes.

In an implementation with the Security Extension, this register is banked between Security states
on a bit by bit basis.

The bit assignments for the CONTROL register are as follows:

31 2 1 0

RES0

3

SPSELFPCA

4

nPRIVSFPA

Table 3-18: CONTROL register bit assignments

Bits Name Function

[31:4] - Reserved, RES0

[3] SFPA Indicates that the floating-point registers contain active state that belongs to the Secure state:

0 The floating-point registers do not contain state that belongs to the Secure state.
1 The floating-point registers contain state that belongs to the Secure state.

This bit is not banked between Security states and RAZ/WI from Non-secure state.

[2] FPCA Indicates whether floating-point context is active:

0 No floating-point context active.
1 Floating-point context active.

This bit is used to determine whether to preserve floating-point state when processing an exception.

This bit is not banked between Security states.

[1] SPSEL Defines the currently active stack pointer:

0 MSP is the current stack pointer.
1 PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex®-M33 core updates this bit automatically on
exception return.

This bit is banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Bits Name Function

[0] nPRIV Defines the Thread mode privilege level:

0 Privileged.
1 Unprivileged.

This bit is banked between Security states.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack
pointer bit of the CONTROL register when in Handler mode. The exception entry and return
mechanisms automatically update the CONTROL register based on the EXC_RETURN value.

In an OS environment, Arm recommends that threads running in Thread mode use the process
stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer that is used in Thread mode to
the PSP, either:

• Use the MSR instruction to set the CONTROL.SPSEL bit, the current active stack pointer bit, to
1.

• Perform an exception return to Thread mode with the appropriate EXC_RETURN value.

When changing the stack pointer, software must use an ISB instruction immediately
after the MSR instruction. This ensures that instructions after the ISB instruction
execute using the new stack pointer.

3.1.4 Exceptions and interrupts

The Cortex®-M33 processor implements all the logic required to handle and prioritize interrupts
and other exceptions. Software can control this prioritization using the NVIC registers. All
exceptions are vectored and except for reset, handled in Handler mode. Exceptions can target
either Security state.

The NVIC registers control interrupt handling.

Related information
Nested Vectored Interrupt Controller on page 272

3.1.5 Data types and data memory accesses

The Cortex®-M33 processor manages all data memory accesses as little-endian or big-endian.
Instruction memory and Private Peripheral Bus (PPB) accesses are always performed as little-endian.

The processor supports the following data types:

• 32-bit words.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

• 16-bit halfwords.

• 8-bit bytes.

• 32-bit single-precision floating-point numbers.

• 64-bit double-precision floating-point numbers.

3.1.6 The Cortex Microcontroller Software Interface Standard

The Cortex Microcontroller Software Interface Standard (CMSIS) simplifies software development
by enabling the reuse of template code and the combination of CMSIS-compliant software
components from various middleware vendors. Vendors can expand the CMSIS to include their
peripheral definitions and access functions for those peripherals.

For a Cortex®-M33 microcontroller system, the CMSIS defines:

• A common way to:

◦ Access peripheral registers.

◦ Define exception vectors.

• The names of:

◦ The registers of the core peripherals.

◦ The core exception vectors.

• A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex®-
M33 processor.

This document includes the register names defined by the CMSIS, and short descriptions of the
CMSIS functions that address the processor core and the core peripherals.

This document uses the register short names that are defined by the CMSIS. In a
few cases these short names differ from the architectural short names that might be
used in other documents.

3.2 Memory model
The Cortex®-M33 processor has a fixed default memory map that provides up to 4GB of
addressable memory.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.2.1 Processor memory map

The Cortex®-M33 processor memory map.

Figure 3-3: Cortex®-M33 processor memory map

Vendor-specific
memory

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheralbus
0xE0100000
0xE00FFFFF

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

0x3FFFFFFF
0x40000000

0x1FFFFFFF
0x20000000

0x00000000

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0xDFFFFFFF
0xE0000000

1MB

511MB

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral
registers.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.2.2 Memory regions, types, and attributes

If your implementation has an MPU or has the Security Extension MPUs, programming the relevant
MPUs splits memory into regions.

The memory types are:

Normal
The processor can reorder transactions for efficiency, or perform Speculative reads.

Device
The processor preserves transaction order relative to other transactions to Device memory.

The additional memory attributes include:

Shareable
For a shareable memory region, the memory system might provide data synchronization
between bus masters in a system with multiple bus masters, for example, a processor with a
DMA controller.

If multiple bus masters can access a Non-shareable memory region, software must ensure
data coherency between the bus masters.

Device memory is always Shareable.

Execute Never (XN)
Means that the processor prevents instruction accesses. A MemManage fault exception is
generated on executing an instruction fetched from an XN region of memory.

3.2.3 Device memory

Device memory must be used for memory regions that cover peripheral control registers. Some of
the optimizations that are permitted for Normal memory, such as access merging or repeating, can
be unsafe for a peripheral register.

The Device memory type has several attributes:

G or nG Gathering or non-Gathering. Multiple accesses to a device can be merged into
a single transaction except for operations with memory ordering semantics,
for example, memory barrier instructions, load acquire/store release.

R or nR Reordering or non-Reordering.
E or nE Early Write Acknowledgement or no Early Write Acknowledgement.

For the Cortex®-M33 processor, only two combinations of these attributes are valid:

• Device-nGnRnE.

• Device-nGnRE.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

• Device-nGnRnE is equivalent to Arm®v7‑M Strongly Ordered memory type

• Device-nGnRE is equivalent to Arm®v7‑M Device memory.

• Device-nGRE and Device-GRE are new to the Arm®v8‑M architecture.

Typically, peripheral control registers must be either Device-nGnRE or Device-nGnRnE to prevent
reordering of the transactions in the programming sequences.

Device memory is shareable, and must not be cached.

3.2.4 Secure memory system and memory partitioning

In an implementation with the Security Extension, the Security Attribution Unit (SAU) and
Implementation Defined Attribution Unit (IDAU) partition the 4GB memory space into Secure and
Non-secure memory regions.

The partitioning of the memory into Secure and Non-secure regions is independent
of the Security state that the processor executes in. See 3.4 Security state switches
on page 68 for more information on Security state.

Secure memory partitioning
Secure addresses are used for memory and peripherals that are only accessible by Secure
software or Secure masters. Transactions are deemed to be secure if they are to an address
that is defined as Secure. Illegitimate accesses that are made by Non-secure software to
Secure memory are blocked and raise an exception.

Non-secure Callable (NSC)
NSC is a special type of Secure location that is permitted to hold an SG instruction to enable
software to transition from Non-secure to Secure state. The inclusion of NSC memory
locations removes the need for Secure software creators to allow for the accidental inclusion
of SG instructions, or data sharing encoding values, in normal Secure memory by restricting
the functionality of the SG instruction to NSC memory only.

Non-secure (NS)
Non-secure addresses are used for memory and peripherals accessible by all software
running on the device.
Transactions are deemed to be Non-secure if they are to an address that is defined as Non-
Secure.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Transactions are deemed to be Non-secure even if secure software performs
the access. Memory accesses initiated by Secure software to regions marked
as Non-secure in the SAU IDAU are marked as Non-secure on the AHB bus.

The MPU is banked between Secure and Non-secure memory. For instructions fetches, addresses
that are Secure are subject to the Secure MPU settings. Addresses that are Non-secure are subject
to the Non-secure MPU settings. For data loads and data stores, accesses depend on the Security
state of the processor. For example, if the processor is in Secure state the access is subject to the
Secure MPU settings. If the processor is in Non-secure state the access is subject to the Non-
secure MPU settings.

3.2.5 Behavior of memory accesses

Summary of the behavior of accesses to each region in the memory map.

Table 3-19: Memory access behavior

Address range Memory region Memory
type 

Shareability XN Description

0x00000000-
0x1FFFFFFF

Code Normal Non-
shareable

- Executable region for program code. You can also put data here.

0x20000000-
0x3FFFFFFF

SRAM Normal Non-
shareable

- Executable region for data. You can also put code here.

0x40000000-
0x5FFFFFFF

Peripheral Device,
nGnRE

Shareable XN On-chip device memory.

0x60000000-
0x9FFFFFFF

RAM Normal Non-
shareable

- Executable region for data.

0xA0000000-
0xDFFFFFFF

External device  Device,
nGnRE

Shareable XN External device memory.

0xE0000000-
0xE003FFFF

Private
Peripheral Bus

Device,
nGnRnE

Shareable XN This region includes the SCS, NVIC, MPU, SAU, BPU, ITM, and
DWT registers.

0xE0040000-
0xE0043FFF

Device Device,
nGnRnE

Shareable XN This region is for debug components. Contact your implementer
for more information.

0xE0044000-
0xE00FFFFFF

Private
Peripheral Bus

Device,
nGnRnE

Shareable XN This region includes the ROM tables.

0xE0100000-
0xFFFFFFFFF

Vendor_SYS Device,
nGnRE

Shareable XN Vendor specific.

For more information on memory types, see 3.2.2 Memory regions, types, and
attributes on page 41.

The Code, SRAM, and RAM regions can hold programs.

The MPU can override the default memory access behavior described in this section.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.2.5.1 Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional access
constraints, and some regions are subdivided.

This behavior is shown by the following table:

Table 3-20: Memory region shareability and cache policies

Address range Memory region Memory type  Shareability  Cache policy 

0x00000000-0x1FFFFFFF Code Normal - WT 8

0x20000000-0x3FFFFFFF SRAM Normal - WBWA9

0x40000000-0x5FFFFFFF Peripheral  Device Shareable -

0x60000000-0x7FFFFFFF WBWA9

0x80000000-0x9FFFFFFF

RAM Normal -

WT8

0xA0000000-0xDFFFFFFF External device  Device Shareable -

0xE0000000-0xE003FFFF Private Peripheral Bus Device Shareable -

0xE0040000-0xE0043FFF Device Device Shareable -

0xE0044000-0xE00EFFFF Private Peripheral Bus - Shareable Device

0xF0000000-0xFFFFFFFF Vendor_SYS Device Shareable Device

For more information on memory types and shareability, see 3.2.2 Memory regions,
types, and attributes on page 41.

3.2.6 Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the
corresponding memory transactions.

In the Cortex®-M33 processor this behavior can occur because of two reasons:

• Memory or devices in the memory map might have different wait states.

• Some memory accesses associated with instruction fetches are speculative.

3.2.3 Device memory on page 42 describes the cases where the memory system guarantees
the order of memory accesses. Otherwise, if the order of memory accesses is critical, software
must include memory barrier instructions to force that ordering.

8 WT means Write through, no write allocate.
9 WBWA means Write back, write allocate.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

The processor provides the following memory barrier instructions:

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding memory
transactions complete before subsequent memory transactions.

DSB The Data Synchronization Barrier (DSB) instruction ensures that outstanding
memory transactions complete before subsequent instructions execute.

ISB The Instruction Synchronization Barrier (ISB) ensures that the effect of any
context-changing operations is recognizable by subsequent instructions.

The following are examples of using memory barrier instructions:

Exception vector and vector table programming
If the program changes an entry in the vector table, and then enables the corresponding
exception, use a DMB instruction between the operations. This ensures that if the exception is
taken immediately after being enabled, then the processor uses the new exception vector.
If the program updates the value of the VTOR, use a DMB instruction to ensure that the new
vector table is used for subsequent exceptions.

Self-modifying code
If a program contains self-modifying code, use a DSB instruction followed by an ISB
instruction immediately after the code modification in the program. This ensures subsequent
instruction execution uses the updated program.

Memory map switching
If the system contains a memory map switching mechanism, use a DSB instruction followed
by an ISB instruction after switching the memory map. This ensures subsequent instruction
execution uses the updated memory map.

MPU programming
Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU
configuration is used by subsequent instructions.

SAU programming
Use a DSB followed by an ISB instruction or exception return to ensure that the SAU
configuration is used by subsequent instructions.

3.2.7 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored
word.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.2.7.1 Byte-invariant big-endian format

In byte-invariant big-endian format, the processor stores the most significant byte (msbyte) of a
word at the lowest-numbered byte, and the least significant byte (lsbyte) at the highest-numbered
byte.

Example 3-1: Byte-invariant big-endian example

Memory Register

A

A+1

msbyte

lsbyte

A+2

A+3

07

B3B2B0 B1
31 2423 1615 8 7 0

B0

B1

B2

B3

Address

3.2.7.2 Little-endian format

In little-endian format, the processor stores the least significant byte (lsbyte) of a word at the lowest-
numbered byte, and the most significant byte (msbyte) at the highest-numbered byte.

Example 3-2: Little-endian example

Register

A+1

lsbyte

msbyte

A+2

A+3

07

B0B1B3 B2
31 2423 1615 8 7 0

B0

B1

B2

B3

Memory

AAddress

3.2.8 Synchronization primitives

The instruction set support for the processor includes pairs of synchronization primitives. These
provide a non-blocking mechanism that a thread or process can use to obtain exclusive access to a
memory location. Software can use them to implement semaphores or an exclusive read-modify-
write memory sequence.

Instructions in synchronization primitives
A pair of synchronization primitives contains the following:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

A Store-Exclusive instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If
this bit is:

0 It indicates that the thread or process gained exclusive access to the
memory, and the write succeeded.

1 It indicates that the thread or process did not gain exclusive access to
the memory, and no write was performed.

Load-Exclusive and Store-Exclusive instructions
The pairs of Load-Exclusive and Store-Exclusive instructions are:

• The word instructions:

◦ LDAEX and STLEX.

◦ LDREX and STREX.

• The halfword instructions:

◦ LDAEXH and STLEXH.

◦ LDREXH and STREXH.

• The byte instructions:

◦ LDAEXB and STLEXB.

◦ LDREXB and STREXB.

Performing an exclusive read-modify-write
Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Modify the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location.

4. Test the returned status bit. If this bit is:

0 The read-modify-write completed successfully.
1 No write was performed. This indicates that the value returned at

step 1 might be out of date. The software must retry the entire read-
modify-write sequence.

Implementing a semaphore
The software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the
semaphore is free.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore
address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded, then the
software has claimed the semaphore. However, if the Store-Exclusive failed, another process
might have claimed the semaphore after the software performed step 1.

Exclusive tags
The processor includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system with a
global monitor, and the address is in a shared region of memory, then the system also globally tags
the memory locations that are addressed by exclusive accesses by each processor.

The processor clears its exclusive access tag if:

• It executes a CLREX instruction.

• It executes a STREX or STLEX instruction, regardless of whether the write succeeds.

• An exception occurs. This means that the processor can resolve semaphore conflicts between
different threads.

In a multiprocessor implementation:

• Executing a CLREX instruction clears only the local exclusive access tag for the processor.

• Executing a STREX or STLEX instruction, or an exception, clears the local exclusive access tags
for the processor.

• Executing a STREX or STLEX instruction to a Shareable memory region can also clear the global
exclusive access tags for the processor in the system.

For more information about the synchronization primitive instructions, see 4.14.11 LDREX and
STREX on page 232 and 4.14.13 CLREX on page 235.

A global exclusive access can be performed:

• In a Shared region if the MPU is implemented.

• By setting ACTLR.EXTEXCLALL. In this case, exclusive information is always sent externally.

In any other case, exclusive information is not sent on the AHB bus, HEXCL is 0, and only the local
monitor is used.

If HEXCL is sent externally and there is no exclusive monitor for the corresponding memory region,
then STREX and STLEX fails.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.2.9 Programming hints for the synchronization primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic
functions for generation of these instructions.

Table 3-21: CMSIS functions for exclusive access instructions

Instruction CMSIS function

LDAEX uint16_t __LDAEX (volatile uint16_t * ptr)

LDAEXB uint8_t __LDAEXB (volatile uint8_t * ptr)

LDAEXH uint16_t __LDAEXH (volatile uint16_t * ptr)

LDREX uint32_t __LDREXW (uint32_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

LDREXH uint16_t __LDREXH (uint16_t *addr)

STLEX uint16_t __STLEX (uint16_t value, volatile uint16_t * ptr)

STLEXB uint8_t __STLEXB (uint8_t value, volatile uint8_t * ptr)

STLEXH uint16_t __STLEXH (uint16_t value, volatile uint16_t * ptr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXB uint8_t __STREXB (uint8_t value, uint8_t *addr)

STREXH uint16_t __STREXH (uint16_t value, uint16_t *addr)

CLREX void __CLREX (void)

For example:

uint16_t value;
uint16_t *address = 0x20001002;
value = __LDREXH (address); // load 16-bit value from memory address 0x20001002

3.3 Exception model
This section contains information about different parts of the exception model such as exception
types, exception priorities and exception states.

3.3.1 Exception states

Each exception is in one of the following states.

Inactive
The exception is not active and not pending.

Pending
The exception is waiting to be serviced by the processor.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

An interrupt request from a peripheral or from software can change the state of the
corresponding interrupt to pending.

Active
An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception
handler. In this case, both exceptions are in the active state.

Active and pending
The exception is being serviced by the processor and there is a pending exception from the
same source.

3.3.2 Exception types

This section describes the exception types for a processor with and without the Security Extension.

Exception types with the Security Extension
Reset

The exception model treats reset as a special form of exception. When reset is asserted,
the operation of the processor stops, potentially at any point in an instruction. When either
power-on or warm reset is deasserted, execution restarts from the address provided by the
reset entry in the vector table. Execution restarts as privileged execution in Secure state in
Thread mode.
This exception is not banked between Security states.

NMI
A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. It is
permanently enabled and has a fixed priority of -2. NMI can only be preempted by reset and,
when it is Non-secure, by a Secure HardFault.

If AIRCR.BFHFNMINS=0, then the NMI is Secure.

If AIRCR.BFHFNMINS=1, then NMI is Non-secure.

HardFault
A HardFault is an exception that occurs because of an error during normal or exception
processing. HardFaults have a fixed priority of at least -1, meaning they have higher priority
than any exception with configurable priority.

This exception is not banked between Security states.

If AIRCR.BFHFNMINS=0, HardFault handles all faults that are unable to preempt the current
execution. The HardFault handler is always Secure.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

If AIRCR.BFHFNMINS=1, HardFault handles faults that target Non-secure state that are
unable to preempt the current execution.
HardFaults that specifically target the Secure state when AIRCR.BFHFNMINS is set to 1 have
a priority of -3 to ensure they can preempt any execution. A Secure HardFault at Priority -3
is only enabled when AIRCR.BFHFNMINS is set to 1. Secure HardFault handles Secure faults
that are unable to preempt current execution.

MemManage
A MemManage fault is an exception that occurs because of a memory protection violation,
compared to the MPU or the fixed memory protection constraints, for both instruction and
data memory transactions. This fault is always used to abort instruction accesses to Execute
Never (XN) memory regions.

This exception is banked between Security states.

BusFault
A BusFault is an exception that occurs because of a memory-related violation for an
instruction or data memory transaction. This might be from an error that is detected on a bus
in the memory system.
This exception is not banked between Security states.

If BFHFNMINS=0, BusFaults target the Secure state.

If BFHFNMINS=1, BusFaults target the Non-secure state.

UsageFault
A UsageFault is an exception that occurs because of a fault related to instruction execution.
This includes:

• An undefined instruction.

• An illegal unaligned access.

• Invalid state on instruction execution.

• An error on exception return.

The following can cause a UsageFault when the core is configured by software to report
them:

• An unaligned address on word and halfword memory access.

• Division by zero.

This exception is banked between Security states.

SecureFault
This exception is triggered by the various security checks that are performed. It is triggered,
for example, when jumping from Non-secure code to an address in Secure code that is not
marked as a valid entry point. Most systems choose to treat a SecureFault as a terminal
condition that either halts or restarts the system. Any other handling of the SecureFault
must be checked carefully to make sure that it does not inadvertently introduce a security
vulnerability.
SecureFaults always target the Secure state.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

SVCall
A Supervisor Call (SVC) is an exception that is triggered by the SVC instruction. In an OS
environment, applications can use SVC instructions to access OS kernel functions and device
drivers.

This exception is banked between Security states.

DebugMonitor
A DebugMonitor exception. If Halting debug is disabled and the debug monitor is
enabled, a debug event causes a DebugMonitor exception when the group priority of the
DebugMonitor exception is greater than the current execution priority.

PendSV
PendSV is an asynchronous request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

This exception is banked between Security states.

SysTick
A SysTick exception is an exception the system timer generates when it reaches zero.
Software can also generate a SysTick exception. In an OS environment, the processor can use
this exception as a system tick.

This exception is banked between Security states.

Interrupt (IRQ)
An interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals
use interrupts to communicate with the processor.

This exception is not banked between Security states. Secure code can assign each interrupt
to Secure or Non-secure state. By default all interrupts are assigned to Secure state.

Table 3-22: Properties of the different exception types with the Security Extension

Exception number 
(see notes)

IRQ number 
(see notes)

Exception type Priority Vector address Activation

1 - Reset -4, the
highest

0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

Secure HardFault when
AIRCR.BFHFNMINS is 1

-3

Secure HardFault when
AIRCR.BFHFNMINS is 0

-1

3 -13

HardFault -1

0x0000000C Synchronous

4 -12 MemManage Configurable  0x00000010 Synchronous

5 -11 BusFault Configurable  0x00000014 Synchronous

6 -10 UsageFault Configurable  0x00000018 Synchronous

7 -9 SecureFault Configurable 0x0000001C Synchronous

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Exception number 
(see notes)

IRQ number 
(see notes)

Exception type Priority Vector address Activation

8-10 - Reserved - - -

11 -5 SVCall Configurable  0x0000002C Synchronous

12 -4 DebugMonitor Configurable 0x00000030 Synchronous

13 - Reserved - - -

14 -2 PendSV Configurable  0x00000038 Asynchronous

15 -1 SysTick Configurable 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable  0x00000040 and above.
Increasing in steps of 4

Asynchronous

• To simplify the software layer, the CMSIS only uses IRQ numbers. It uses
negative values for exceptions other than interrupts. The IPSR returns the
Exception number, see 3.1.3.6.2 Interrupt Program Status Register on page
31.

• For configurable priority values, see 5.4.8 Interrupt Priority Registers - Cortex-
M33 on page 279.

For an asynchronous exception, other than reset, the processor can execute extra instructions
between the moment the exception is triggered and the moment the processor enters the
exception handler.

Privileged software can disable the exceptions that have configurable priority, as shown in the table
above.

An exception that targets Secure state cannot be disabled by Non-secure code.

Exception types without the Security Extension
Reset

The exception model treats reset as a special form of exception. When either power-on or
warm reset is asserted, the operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts from the address provided by the
reset entry in the vector table. Execution restarts as privileged execution in Thread mode.

NMI
A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This
is the highest priority exception other than reset. It is permanently enabled and has a fixed
priority of -2. NMIs cannot be masked or preempted by any exception other than Reset.

HardFault
A HardFault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. HardFaults
have a fixed priority of -1, meaning they have higher priority than any exception with
configurable priority.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

MemManage
A MemManage fault is an exception that occurs because of a memory protection violation,
compared to the MPU or the fixed memory protection constraints, for both instruction and
data memory transactions. This fault is always used to abort instruction accesses to Execute
Never (XN) memory regions.

BusFault
A BusFault is an exception that occurs because of a memory-related fault for an instruction
or data memory transaction. This might be from an error that is detected on a bus in the
memory system.

UsageFault
A UsageFault is an exception that occurs because of a fault related to instruction execution.
This includes:

• An undefined instruction.

• An illegal unaligned access.

• Invalid state on instruction execution.

• An error on exception return.

The following can cause a UsageFault when the core is configured by software to report
them:

• An unaligned address on word and halfword memory access.

• Division by zero.

SVCall
A Supervisor Call (SVC) is an exception that is triggered by the SVC instruction. In an OS
environment, applications can use SVC instructions to access OS kernel functions and device
drivers.

DebugMonitor
A DebugMonitor exception. If Halting debug is disabled and the debug monitor is
enabled, a debug event causes a DebugMonitor exception when the group priority of the
DebugMonitor exception is greater than the current execution priority.

PendSV
PendSV is an asynchronous request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

SysTick
A SysTick exception is an exception the system timer generates when it reaches zero.
Software can also generate a SysTick exception. In an OS environment, the processor can use
this exception as a system tick.

Interrupt (IRQ)
An interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals
use interrupts to communicate with the processor.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Table 3-23: Properties of the different exception type without the Security Extensions

Exception number
  (see notes)

IRQ number 
(see notes)

Exception
type

Priority Vector address Activation

1 - Reset -4, the
highest

0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C Synchronous

4 -12 MemManage Configurable  0x00000010 Synchronous

5 -11 BusFault Configurable  0x00000014 Synchronous when precise,
asynchronous when imprecise

6 -10 UsageFault Configurable  0x00000018 Synchronous

7-10 - Reserved - - -

11 -5 SVCall Configurable  0x0000002C Synchronous

12 -4 DebugMonitor Configurable 0x00000030 Synchronous

13 - Reserved - - -

14 -2 PendSV Configurable  0x00000038 Asynchronous

15 -1 SysTick Configurable 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable  0x00000040 and above.
Increasing in steps of 4

Asynchronous

• To simplify the software layer, the CMSIS only uses IRQ numbers. It uses
negative values for exceptions other than interrupts. The IPSR returns the
Exception number, see 3.1.3.6.2 Interrupt Program Status Register on page
31.

• For configurable priority values, see 5.4.8 Interrupt Priority Registers - Cortex-
M33 on page 279.

For an asynchronous exception, other than reset, the processor can execute extra instructions
between the moment the exception is triggered and the moment the processor enters the
exception handler.

Privileged software can disable the exceptions that have configurable priority, as shown in the table
above.

3.3.3 Exception handlers

The exception handlers are the following:

Interrupt Service Routines (ISRs)
Interrupts IRQ0-IRQ479 are the exceptions that are handled by ISRs.

In an implementation with the Security Extension, each interrupt is configured by Secure
software in Secure or Non-secure state, using NVIC_ITNS.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Fault handler
The fault handler handles the following exceptions:

• HardFault.

• MemManage.

• BusFault.

• UsageFault.

• SecureFault, when the Security Extension is implemented.

In an implementation with the Security Extension, there can be separate MemManage and
UsageFault handlers in Secure and Non-secure state. The AIRCR.BFHFNMINS bit controls
the target state for HardFault and BusFault. SecureFault always targets Secure State.

System handlers
The system handlers handle the following system exceptions:

• NMI.

• PendSV.

• SVCall.

• SysTick.

In an implementation with the Security Extension, most system handlers can be banked
with separate handlers between Secure and Non-secure state. The AIRCR.BFHFNMINS bit
controls the target state for NMI.

3.3.4 Vector table

The Vector Table Offset Register (VTOR) in the System Control Block (SCB) determines the starting
address of the vector table. In an implementation with the Security Extension, the VTOR is
banked so there is a VTOR_S and a VTOR_NS. The initial values of VTOR_S and VTOR_NS are
system design specific. The vector table used depends on the target state of the exception. For
exceptions targeting the Secure state, VTOR_S is used. For exceptions targeting the Non-secure
state, VTOR_NS is used.

Vector table without the Security Extension
The following figure shows the order of the exception vectors in the vector table for an
implementation without the Security Extension. The least-significant bit of each vector is 1,
indicating that the exception handler is written in Thumb® code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Figure 3-4: Vector table without the Security Extension

Initial SP value

Reset

Exception number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Vector

.

.

.

8

9

17

495 .
.
.

IRQ number

479

HardFault

NMI

Reserved

SVCall

PendSV

SysTick

IRQ0

Reserved

IRQ1

IRQ2

IRQ479

.

.

.

MemManage

BusFaults

UsageFault

DebugMonitor

0x00

0x04

0x08

0x0C

0x10

0x2C

0x38

0x3C

0x40

Offset

0x44

0x48

.

.

.

0x7BC

0x30

0x14

0x18

-14

-13

-5

-2

-1

0

2

1

-12

-11

-10

-4

On system reset the vector table is set to the value of the external INITNSVTOR bus. Privileged
software can write to VTOR to relocate the vector table start address to a different memory
location, in the range 0x00000000 to 0xFFFFFF80, assuming access is allowed by the external
LOCKNSVTOR pin.

The silicon vendor must configure the required alignment, which depends on the number of
interrupts implemented. The minimum alignment is 32 words, enough for up to 16 interrupts. For
more interrupts, adjust the alignment by rounding up to the next power of two. For example, if you
require 21 interrupts, the alignment must be on a 64-word boundary because the required table
size is 37 words, and the next power of two is 64.

Vector table with the Security Extension
The following figure shows the order of the exception vectors in the Secure and Non-secure vector
tables. The least-significant bit of each vector is 1, indicating that the exception handler is written
in Thumb® code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Figure 3-5: Vector table with the Security Extension

Initial SP value

Reset

HardFault_S

NMI_S

0x00

0x04

0x08

0x0C

0x10

Reserved

SVCall_S

PendSV_S

SysTick_S

IRQ0

Reserved

0x2C

0x38

0x3C

0x40

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Secure Vector

.

.

.

8

9

IRQ1

IRQ2

0x44

IRQ479

17

0x48

495

.

.

.

.

.

.

0x7BC

IRQ number

-14

-13

-5

-2

-1

0

2

1

479

HardFault_NS

NMI_NS

Reserved

SVCall_NS

PendSV_NS

SysTick_NS

IRQ0

Reserved

IRQ1

IRQ2

IRQ479

.

.

.

Non-secure Vector

MemManage_S MemManage_NS

BusFault_S BusFault_NS

UsageFault_S UsageFault_NS

-12

-11

-10

SecureFault

DebugMonitor DebugMonitor-3

-9

0x30

0x14

0x18

0x1C

Because reset always targets Secure state, the Non-secure Reset and Non-secure Initial SP value
are ignored by the hardware.

On system reset, the Non-secure vector table is set to the value of the external INITNSVTOR bus,
and the Secure vector table is set to the value of the external INITSVTOR bus. Privileged software
can write to VTOR_S and VTOR_NS to relocate the vector table start address to a different
memory location, in the range 0x00000000 to 0xFFFFFF80, assuming access is allowed by the
external LOCKNSVTOR and LOCKSVTAIRCR pins respectively.

The silicon vendor must configure the required alignment of the vector tables, which depends on
the number of interrupts implemented. The minimum alignment is 32 words, enough for up to 16
interrupts. For more interrupts, adjust the alignment by rounding up to the next power of two. For
example, if you require 21 interrupts, the alignment must be on a 64-word boundary because the
required table size is 37 words, and the next power of two is 64.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.3.5 Exception priorities

All exceptions have an assigned priority that is used to control both pre-emption and prioritization
between pending exceptions. A lower priority value indicates a higher priority. You can configure
priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority have a
priority of 0. For information about configuring exception priorities, see:

• 5.2.9 M33 System Handler Priority Registers on page 253.

• 5.4.8 Interrupt Priority Registers - Cortex-M33 on page 279.

Configurable priorities are in the range 0-255. The Reset, HardFault, and NMI
exceptions, with fixed negative priority values always have higher priority than any
other exception.

If the Security Extension is implemented, for configurable priority exceptions, the target Security
state also affects the programmed priority. Depending on the value of AIRCR.PRIS, the priority can
be extended.

In the table, the values in columns 2 and 3 must match, and increase from zero in increments of 32.
The values in column 4 start from 128 and increase in increments of 16.

Table 3-24: Extended priority

Priority value [7:5] Secure priority Non-secure priority when AIRCR.PRIS = 0 Non-secure priority when AIRCR.PRIS = 1

0 0 0 128

1 32 32 144

2 64 64 160

3 96 96 176

4 128 128 192

5 160 160 208

6 192 192 224

7 224 224 240

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1]
has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before
IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have
the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

being handled, the handler is not preempted, irrespective of the exception number. However, the
status of the new interrupt changes to pending.

3.3.6 Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This
divides each interrupt priority register entry into two fields, an upper field that defines the group
priority, and a lower field that defines a subpriority within the group.

Only the group priority determines pre-emption of interrupt exceptions. When the processor is
executing an interrupt exception handler, another interrupt with the same group priority as the
interrupt being handled does not pre-empt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the
order in which they are processed. If multiple pending interrupts have the same group priority and
subpriority, the interrupt with the lowest IRQ number is processed first.

If a pending Secure exception and a pending Non-secure exception both have the same group
priority field value, the same subpriority field value, and the same exception number, the Secure
exception takes precedence.

3.3.7 Exception entry and return

Descriptions of exception handling use the following terms.

Preemption
An exception can preempt the current execution if its priority is higher than the current
execution priority.

When one exception preempts another, the exceptions are called nested exceptions.

Return
This occurs when the exception handler is completed.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred.

Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler or
during the return operation, if there is a pending exception that meets the requirements
for exception entry, then the stack pop is skipped and control transfers directly to the new
exception handler.

Late arriving interrupts
This mechanism speeds up preemption. If a higher priority exception occurs during state
saving for a previous exception, the processor switches to handle the higher priority
exception and initiates the vector fetch for that exception. State saving may be affected by
the late arrival depending on the stacking requirements of the original exception and the late-

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

arriving exception. On return from the exception handler of the late-arriving exception, the
normal tail-chaining rules apply.

3.3.7.1 Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either the
processor is in Thread mode, or the new exception is of higher priority than the exception being
handled, in which case the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has higher priority than any limits set by the mask
registers. An exception with lower priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred to as
stacking and the structure of the data stacked is referred as the stack frame.

If the floating-point context is active, the Cortex®-M33 processor can automatically stack the
architected floating-point state on exception entry. The following figure shows the Cortex®-M33
processor stack frame layout when an interrupt or an exception is preserved on the stack:

• with floating-point state.

• without floating-point state.

Where stack space for floating-point state is not allocated, the stack frame is the
same as that of Arm®v8‑M implementations without an FPU.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Figure 3-6: Stack frame when an interrupt or an exception is preserved on the stack with or
without floating-point state

Exception frame with
floating-point storage

† † Or at offset 0x24 if at a word-aligned but not
 doubleword-aligned address.

SP offset Original SP†

Reserved

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

FP context

PC
LR (R14)

R12
R3
R2
R1
R0

State context

FPSCR

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

0x4C

0x68

0x64

0x60

0x5C

0x58

0x54

0x50

xPSR
PC

LR (R14)
R12
R3
R2
R1
R0

Exception frame without
floating-point storage

State context

Original SP††SP offset 0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

† Or at offset 0x6C if at a word-aligned but not
 doubleword-aligned address.

xPSR

If the Security Extension is implemented, when a Non-secure exception preempts software running
in a Secure state, additional context is saved onto the stack and the stacked registers are cleared to
ensure no Secure data is available to Non-secure software, as the following figure shows.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Figure 3-7: Stack frame extended to save additional context when the Security Extension is
implemented

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

State context

Additional
state context

New SP

Original SP†

PC
LR (R14)

R12
R3
R2
R1
R0

SP offset

† Or at offset 0x4C if at a word-aligned but not
doubleword-aligned address.

xPSR

If the floating-point context is active, the Cortex®-M33 processor automatically stacks floating-
point state in the stack frame. There are two frame formats that contain floating-point context. If
an exception is taken from Secure state and FPCCR.TS is set, the additional floating-point context
is stacked. In all other cases, only the standard floating-point context is stacked, as the following
figure shows.

The conditions that trigger saving additional FP context are different from those
that trigger additional integer context.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Figure 3-8: Extended exception stack frame

S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16

0xA4

0xA0

0x9C

0x98

0x94

0x90

0x8C

0x88

0x84

0x80

0x7C

0x78

0x74

0x70

0x6C

0x68

SP offset

Additional FP context

Original SP†

Reserved

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

0x64

0x60

0x5C

0x58

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0xCC

0xC8

FP context

PC
LR (R14)

R12
R3
R2
R1
R0

State context

0xC4

0xC0

0xBC

0xB8

0xB4

0xB0

0xAC

0xA8

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

Additional state context

New SP

† Or at offset 0xD4 if at a word-aligned but not doubleword-aligned address.

0xD0

0x8C

0x88

0x84

0x80

0x7C

0x78

0x74

0x70

0x6C

0x68

SP offset Original SP††

Reserved

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

0x64

0x60

0x5C

0x58

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

FP context

PC
LR (R14)

R12
R3
R2
R1
R0

State context

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

Additional state context

New SP

0x90

xPSR

xPSR

Stack frame for Secure floating-point state when FPCCR.TS = 1 Stack frame for Secure floating-point state when FPCCR.TS = 0

†† Or at offset 0x94 if at a word-aligned but not doubleword-aligned address.

FPSCR

FPSCR

The Stack pointer of the interrupted thread or handler is always used for stacking the state before
the exception is taken. For example if an exception is taken from Secure state to a Non-secure
handler the Secure stack pointer is used to save the state.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception
handler start address from the vector table. When stacking is complete, the processor starts
executing the exception handler. At the same time, the processor writes an EXC_RETURN value to
the LR. This value is used to trigger exception return when the exception handler is complete.

If no higher priority exception occurs during exception entry, the processor starts executing the
exception handler and automatically changes the status of the corresponding pending interrupt to
active.

If another higher priority exception occurs during exception entry, the processor starts executing
the exception handler for this exception and does not change the pending status of the earlier
exception. This is the late arrival case.

3.3.7.2 Exception return

Exception return occurs when the processor is in Handler mode and execution of one of the
following instructions attempts to set the PC to an EXC_RETURN value:

• A POP or LDM instruction that loads the PC.

• An LDR instruction that loads the PC

• A BX instruction using any register.

Exception return in an implementation with the Security Extension
The processor saves an EXC_RETURN value to the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an exception handler.
When the processor loads a value matching this pattern to the PC it detects that the operation is
not a normal branch operation and, instead, that the exception is complete. As a result, it starts the
exception return sequence. Bits[6:0] of the EXC_RETURN value indicate the required return stack,
processor mode, Security state, and stack frame as the following table shows.

Table 3-25: Exception return behavior

Bits Name Function

[31:24] PREFIX Indicates that this is an EXC_RETURN value.

This field reads as 0b11111111.

[23:7] - Reserved, RES1.

[6] S Indicates whether registers have been pushed to a Secure or Non-secure stack.

0 Non-secure stack used.
1 Secure stack used.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Bits Name Function

[5] DCRS Indicates whether the default stacking rules apply, or whether the callee registers are already on the stack.

0 Stacking of the callee saved registers is skipped.
1 Default rules for stacking the callee registers are followed.

[4] FType In a PE with the Main and Floating-point Extensions:

0 The PE allocated space on the stack for FP context.
1 The PE did not allocate space on the stack for FP context.

In a PE without the Floating-point Extension, this bit is Reserved, RES1.

[3] Mode Indicates the mode that was stacked from.

0 Handler mode.
1 Thread mode.

[2] SPSEL Indicates the transitory value of the CONTROL.SPSEL bit associated with the Security state of the exception as
indicated by EXC_RETURN.ES.

0 Main stack pointer.
1 Process stack pointer.

[1] - Reserved, RES0.

[0] ES Indicates the Security state the exception was taken to.

0 Non-secure.
1 Secure.

Exception return in an implementation without the Security Extension
The processor saves an EXC_RETURN value to the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an exception handler.
When the processor loads a value matching this pattern to the PC it detects that the operation is
not a normal branch operation and, instead, that the exception is complete. As a result, it starts the
exception return sequence. Bits[6:0] of the EXC_RETURN value indicate the required return stack,
processor mode, and stack frame as the following table shows.

Table 3-26: Exception return behavior

Bits Name Function

[31:24] PREFIX Indicates that this is an EXC_RETURN value.

This field reads as 0b11111111.

[23:7] - Reserved, RES1.

[6] - Reserved, RES0.

[5] - Reserved, RES1.

[4] FType In a PE with the Main and Floating-point Extensions:

0 The PE allocated space on the stack for FP context.
1 The PE did not allocate space on the stack for FP context.

In a PE without the Floating-point Extension, this bit is Reserved, RES1.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Bits Name Function

[3] Mode Indicates the mode that was stacked from.

0 Handler mode.
1 Thread mode.

[2] SPSEL Indicates which stack contains the exception stack frame.

0 Main stack pointer.
1 Process stack pointer.

[1:0] - Reserved, RES0.

3.4 Security state switches
The following table presents the possible security transitions, the instructions that can cause them,
and any faults that may be generated.

Table 3-27: Security state transitions

Current
Security state

Security attribute of the branch
target address

Security state change

Secure Non-secure Change to Non-secure state if the branch was a BXNS or BLXNS instruction, with
the lsb of its target address set to 0.

Otherwise, a SecureFault is generated.

Non-secure Secure and Non-secure callable Change to Secure state if the branch target address contains an SG instruction.

If the target address does not contain an SG a SecureFault is generated.

Non-secure Secure and not Non-secure
callable

A SecureFault is generated.

The following figure shows the Security state transitions:

Figure 3-9: Security state transitions

Non-secure
state Secure state

BLXNS-call to Non-secure function

BL to SG-call to entry function

BXNS-return from entry function

BX to FNC_RETURN-return from Non-secure function

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Secure software can call a Non-secure function using the BLXNS instruction. When this happens,
the LR is set to a special value called FNC_RETURN, and the return address and XPSR is saved
onto the Secure stack. Return from Non-secure state to Secure state is triggered when one of the
following instructions attempts to set the PC to an FNC_RETURN value:

• A POP or LDM instruction that loads the PC.

• An LDR instruction that loads the PC.

• A BX instruction using any register.

When a return from Non-secure state to Secure state occurs the processor restores the program
counter and XPSR from the Secure stack.

Any scenario not listed in the table triggers a SecureFault. For example, sequential instructions that
cross security attributes from Secure to Non-secure or from Non-secure to Secure.

3.5 Fault handling
Faults can occur on instruction fetches, instruction execution, and data accesses. When a fault
occurs, information about the cause of the fault is recorded in various registers, according to the
type of fault. Faults are a subset of the exceptions.

Faults are generated by:

• A bus error on:

◦ An instruction fetch or vector table load.

◦ A data access.

• An internally-detected error such as an undefined instruction.

• Attempting to execute an instruction from a memory region marked as Execute Never (XN).

• A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

• A security violation.

3.5.1 Fault types reference table

The table shows the types of fault, the handler used for the fault, the corresponding fault status
register, and the register bit that indicates that the fault has occurred.

Table 3-28: Faults

Fault Handler Bit name Fault status register

Bus error on a vector read VECTTBL

Fault escalated to a hard fault

HardFault

FORCED

5.2.12 M33 HardFault Status Register on page 264

MPU or default memory map mismatch: MemManage - -

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Fault Handler Bit name Fault status register

On instruction access IACCVIOL 10

On data access DACCVIOL

During exception stacking MSTKERR

During exception unstacking MUNSKERR

During lazy floating-point state preservation MLSPERR

5.2.11.1 M33 MemManage Fault Status Register on page
259

Bus error: - -

During exception stacking STKERR

During exception unstacking UNSTKERR

During instruction prefetch IBUSERR

During lazy floating-point state preservation LSPERR

Precise data bus error PRECISERR

Imprecise data bus error

BusFault

IMPRECISERR

5.2.11.2 M33 BusFault Status Register on page 261

Attempt to access a coprocessor NOCP

Undefined instruction UNDEFINSTR

Attempt to enter an invalid instruction set
state 11

INVSTATE

Invalid EXC_RETURN value INVPC

Illegal unaligned load or store UNALIGNED

Stack overflow flag STKOF

Divide By 0

UsageFault

DIVBYZERO

5.2.11.3 UsageFault Status Register on page 262

Lazy state error flag LSERR

Lazy state preservation error flag LSPERR

Invalid transition flag INVTRAN

Attribution unit violation flag AUVIOL

Invalid exception return flag INVER

Invalid integrity signature flag INVIS

Invalid entry point

SecureFault

INVEP

5.5.7 Secure Fault Status Register on page 288

3.5.2 Fault escalation to HardFault

All fault exceptions other than HardFault have configurable exception priority. Software can disable
execution of the handlers for these faults.

Usually, the exception priority, together with the values of the exception mask registers, determines
whether the processor enters the fault handler, and whether a fault handler can preempt another
fault handler.

10 Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.
11 Attempting to use an instruction set other than the T32 instruction set or returns to a non load/store-multiple

instruction with ICI continuation.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

In some situations, a fault with configurable priority is treated as a HardFault. This is called priority
escalation, and the fault is described as escalated to HardFault. Escalation to HardFault occurs when:

• A fault handler causes the same kind of fault as the one it is servicing. This escalation to
HardFault occurs because a fault handler cannot preempt itself; it must have the same priority
as the current execution priority level.

• A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is
because the handler for the new fault cannot preempt the currently executing fault handler.

• An exception handler causes a fault for which the priority is the same as or lower than the
currently executing exception.

• A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault does
not escalate to a HardFault. This means that if a corrupted stack causes a fault, the fault handler
executes even though the stack push for the handler failed. The fault handler operates but the
stack contents are corrupted.

In an implementation with the Security Extension, BusFaults and fixed priority exceptions
can be designated as Secure or Non-secure under the control of AIRCR.BFHFMNINS. When
AIRCR.BFHFMNINS is set to:

The faults and fixed priority exceptions are also designated as Secure or Non-secure under the
control of AIRCR.BFHFMNINS. When AIRCR.BFHFMNINS is set to:

0 BusFaults and fixed priority exceptions are designated as Secure. The
exceptions retain the prioritization of HardFault at -1 and NMI at -2.

1 BusFaults and fixed priority exceptions are designated as Non-secure. In this
case, Secure HardFault is introduced at priority -3 to ensure that faults that
target Secure state are recognized.

The Non-secure state cannot inhibit BusFaults and fixed priority exceptions which target Secure
state. Therefore when faults and fixed priority exceptions are Secure, Non-secure FAULTMASK
(FAULTMASK_NS) only inhibits programmable priority exceptions, making it equivalent to Non-
secure PRIMASK (PRIMASK_NS).

Non-secure programmable priority exceptions are mapped to the regular priority range 0-255,
if AIRCR.PRIS is clear. Non-secure programmable priority exceptions are mapped to the bottom
half the regular priority range, 128-255, if AIRCR.PRIS is set to 1. Therefore the FAULTMASK_NS
sets the execution priority to 0x0 or 0x80, according to AIRCR.PRIS, to mask the Non-secure
programmable priority exception only.

When BusFaults and fixed priority exceptions are Secure, FAULTMASK_S sets execution priority to
-1 to inhibit everything up to and including HardFault.

When BusFaults and fixed priority exceptions are designated as Non-secure, FAULTMASK_NS
boosts priority to -1 to inhibit everything up to Non-secure HardFault at priority -1, while
FAULTMASK_S boosts priority to -3 to inhibit all faults and fixed priority exceptions including the
Secure HardFault at priority -3.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Only Reset can preempt the fixed priority Secure HardFault when
AIRCR.BFHFNMINS is set to 1. A Secure HardFault when AIRCR.BFHFNMINS is
set to 1 can preempt any exception other than Reset. A Secure HardFault when
AIRCR.BFHFNMINS is set to 0 can preempt any exception other than Reset, NMI,
or another HardFault.

In an implementation with the Security Extension, only Reset can preempt the
fixed priority Secure HardFault when AIRCR.BFHFNMINS is set to 1. A Secure
HardFault when AIRCR.BFHFNMINS is set to 1 can preempt any exception other
than Reset. A Secure HardFault when AIRCR.BFHFNMINS is set to 0 can preempt
any exception other than Reset, NMI, or another HardFault.

3.5.3 Fault status registers and fault address registers

The fault status registers indicate the cause of a fault. For BusFaults and MemManage faults, the
fault address register indicates the address that is accessed by the operation that caused the fault.
In an implementation with the Security Extension, for SecureFaults the fault address register also
indicates the address that is accessed by the operation that caused fault.

In an implementation with the Security Extension, the processor has two physical fault address
registers. One shared between the MMFAR_S, SFAR, and BFAR (only if AIRCR.BFHFNMINS is set
to 0), and the other shared between the MMFAR_NS and BFAR (only if AIRCR.BFHFNMINS is set
to 1). These are targeted by Secure and Non-secure faults respectively.

In an implementation without the Security Extension, the processor has one physical fault address
register. It is shared between the MMFAR and BFAR.

For each physical fault address register, it is only possible to report the address of one fault at
a time. Each fault address register is updated when one of the *FARVALID bits is set for their
respective faults in the associated *FSR register. Any fault that targets a fault address register with
one of its *FARVALID bits already set does not update the fault address. The *FARVALID bits must
be cleared before another fault address can be reported.

The following table shows the fault status and fault address registers.

Table 3-29: Fault status and fault address registers

Handler Status register name Address register name Register description

HardFault HFSR - 5.2.12 M33 HardFault Status Register on page 264

MemManage MMFSR12 MMFAR12 5.2.11.1 M33 MemManage Fault Status Register on page 259

5.2.13 M33 MemManage Fault Address Register on page 265

12 MMFSR, MMFAR, and UFSR are banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

Handler Status register name Address register name Register description

BusFault BFSR BFAR 5.2.11.2 M33 BusFault Status Register on page 261

5.2.14 BusFault Address Register on page 265

UsageFault UFSR12 - 5.2.11.3 UsageFault Status Register on page 262

SecureFault SFSR SFAR 5.5.7 Secure Fault Status Register on page 288

5.5.8 Secure Fault Address Register on page 289

3.5.4 Lockup

The processor enters a lockup state if a fault occurs when it cannot be serviced or escalated. When
the processor is in lockup state, it does not execute any instructions.

The processor remains in lockup state until either:

• It is reset.

• Preemption by a higher priority exception occurs.

• It is halted by a debugger.

In an implementation with the Security Extension, if lockup state occurs from
a Secure HardFault when AIRCR.BFHFNMINS is set to 1 or the NMI handler, a
subsequent NMI does not cause the processor to leave lockup state.

3.6 Power management
The Cortex®-M33 processor supports modes for sleep and deep sleep that reduce power
consumption. Sleep mode stops the processor clock. Deep sleep mode stops the system clock and,
depending on the system-specific power-saving measures, switches off the PLL and flash memory.

The SCR.SLEEPDEEP bit selects which sleep mode is used. For more information about the sleep
modes, see 5.2.7 System Control Register - Cortex-M33 on page 249

3.6.1 Entering sleep mode

The system can generate spurious wakeup events. Therefore, software must be able to put the
processor back into sleep mode after such an event. A program might have an idle loop to put the
processor back to sleep mode.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.6.1.1 Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wakeup
condition is true. When the processor executes a WFI instruction, it stops executing instructions
and enters sleep mode.

3.6.1.2 Wait for event

The wait for event instruction, WFE, causes entry to sleep mode depending on the value of a one-bit
event register.

When the processor executes a WFE instruction, it checks the value of the event register:

0 The processor stops executing instructions and enters sleep mode.
1 The processor clears the register to 0 and continues executing instructions

without entering sleep mode.

If the event register is 1, it indicates that the processor must not enter sleep mode on execution of
a WFE instruction. Typically, this is because an external event signal is asserted, or a processor in the
system has executed an SEV instruction.

3.6.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
all exception handlers, it immediately enters sleep mode without restoring the Thread context
from the stack. Use this mechanism in applications that only require the processor to run when an
exception occurs.

3.6.2 Wakeup from sleep mode

The conditions for the processor to wake up depend on the mechanism that causes it to enter
sleep mode.

3.6.2.1 Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry. Some embedded systems might have to execute system restore tasks
after the processor wakes up, and before it executes an interrupt handler. To achieve this set the
PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt arrives that is enabled and has a
higher priority than the current exception priority, the processor wakes up but does not execute
the interrupt handler until the processor sets PRIMASK to zero.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.6.2.2 Wakeup from WFE

Conditions which cause the processor to wakeup from WFE.

The processor wakes up if:

• It detects an exception with sufficient priority to cause exception entry.

• It detects an external event signal.

• In a multiprocessor system, another processor in the system executes an SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an
event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to
cause exception entry.

3.6.3 The Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is a peripheral that can detect an interrupt and wake the
processor from deep sleep mode. The WIC is enabled only when the SLEEPDEEP bit in the SCR is
set to 1.

The WIC is not programmable, and does not have any registers or user interface. It operates
entirely from hardware signals.

When the WIC is enabled and the processor enters deep sleep mode, the power management
unit in the system can power down most of the Cortex®-M33 processor. This might have the
side effect of stopping the SysTick timer. When the WIC receives an interrupt, it takes several
clock cycles to wakeup the processor and restore its state, before it can process the interrupt. This
means interrupt latency is increased in deep sleep mode.

If the processor detects a connection to a debugger, it disables the WIC.

3.6.4 The external event input

The processor provides an external event input signal. Peripherals can drive this signal, either to
wake the processor from WFE, or to set the internal WFE event register to 1 to indicate that the
processor must not enter sleep mode on a later WFE instruction.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Processor

3.6.5 Power management programming hints

ISO/IEC C cannot directly generate the WFI and WFE instructions.

The CMSIS provides the following functions for these instructions:

void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4. The Cortex®-M33 Instruction Set
This chapter describes the Cortex®-M33 instruction set. It provides general information and
describes each Cortex®-M33 instruction in the functional group that they belong. All the
instructions that the Cortex®-M33 processor supports are described.

4.1 Cortex®-M33 instructions
The T32 instruction set is supported by the Cortex®-M33 processor.

In the following table:

• Angle brackets, <>, enclose alternative forms of the operand.

• Braces, {}, enclose optional operands.

• The Operands column is not exhaustive.

• Op2 is a flexible second operand that can be either a register or a constant.

• Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction
descriptions.

Table 4-1: Cortex®-M33 instruction set summary

Mnemonic Operands Brief description Flags Page

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V 4.4.2 ADD, ADC, SUB, SBC, and RSB on
page 103

ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V 4.4.2 ADD, ADC, SUB, SBC, and RSB on
page 103

ADD, ADDW {Rd,} Rn, #imm12 Add - 4.4.2 ADD, ADC, SUB, SBC, and RSB on
page 103

ADR Rd, label Address to Register - 4.14.2 ADR on page 220

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C 4.4.3 AND, ORR, EOR, BIC, and ORN on
page 105

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C 4.4.4 ASR, LSL, LSR, ROR, and RRX on
page 107

B {cond} label Branch {conditionally} - 4.11.2 B, BL, BX, and BLX on page 172

BFC Rd, #lsb, #width Bit Field Clear - 4.10.2 BFC and BFI on page 170

BFI Rd, Rn, #lsb,
#width

Bit Field Insert - 4.10.2 BFC and BFI on page 170

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C 4.4.3 AND, ORR, EOR, BIC, and ORN on
page 105

BKPT #imm8 Breakpoint - 4.13.2 BKPT on page 207

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

BL label Branch with Link - 4.11.2 B, BL, BX, and BLX on page 172

BLX Rm Branch indirect with Link and Exchange - 4.11.2 B, BL, BX, and BLX on page 172

BLXNS Rm Branch indirect with Link and Exchange,
Non-secure

- 4.11.3 BXNS and BLXNS on page 174

BX Rm Branch and Exchange - 4.11.2 B, BL, BX, and BLX on page 172

BXNS Rm Branch and Exchange, Non-secure - 4.11.3 BXNS and BLXNS on page 174

CBNZ Rn, label Compare and Branch on Non Zero - 4.11.4 CBZ and CBNZ on page 174

CBZ Rn, label Compare and Branch on Zero - 4.11.4 CBZ and CBNZ on page 174

CDP, CDP2 {cond} coproc,
#op1, Rt, CRn,
CRm{, #op2}

Coprocessor Data Processing - 4.5.3 CDP and CDP2 on page 132

CLREX - Clear Exclusive - 4.14.13 CLREX on page 235

CLZ Rd, Rm Count Leading Zeros - 4.4.5 CLZ on page 108

CMN Rn, Op2 Compare Negative N,Z,C,V 4.4.6 CMP and CMN on page 108

CMP Rn, Op2 Compare N,Z,C,V 4.4.6 CMP and CMN on page 108

CPSID i Change Processor State, Disable
Interrupts

- 4.13.3 CPS on page 208

CPSIE i Change Processor State, Enable Interrupts - 4.13.3 CPS on page 208

DMB {opt} Data Memory Barrier - 4.13.5 DMB on page 209

DSB {opt} Data Synchronization Barrier - 4.13.6 DSB on page 210

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C 4.4.3 AND, ORR, EOR, BIC, and ORN on
page 105

FLDMDBX
,FLDMIAX

Rn FLDMX (Decrement Before, Increment
After) loads

- 4.12.2 FLDMDBX, FLDMIAX on page
180

FSTMDBX,FSTMIAXRn FSTMX (Decrement Before, Increment
After) stores

- 4.12.3 FSTMDBX, FSTMIAX on page
181

ISB {opt} Instruction Synchronization Barrier - 4.13.7 ISB on page 210

IT - If Then condition block - 4.11.5 IT on page 175

LDA Rd, [Rn] Load-Acquire Word 4.14.10 LDA and STL on page 230

LDAB Rd, [Rn] Load-Acquire Byte 4.14.10 LDA and STL on page 230

LDAEX Rd, [Rn] Load-Acquire Exclusive Word - 4.14.12 LDAEX and STLEX on page
233

LDAEXB Rd, [Rn] Load-Acquire Exclusive Byte - 4.14.12 LDAEX and STLEX on page
233

LDAEXH Rd, [Rn] Load-Acquire Exclusive Halfword - 4.14.12 LDAEX and STLEX on page
233

LDAH Rd, [Rn] Load-Acquire Halfword - 4.14.10 LDA and STL on page 230

LDM Rn{!}, reglist Load Multiple - 4.14.7 LDM and STM on page 227

LDMDB, LDMEA Rn{!}, reglist Load Multiple Decrement Before - 4.14.7 LDM and STM on page 227

LDMIA, LDMFD Rn{!}, reglist Load Multiple, Increment After - 4.14.7 LDM and STM on page 227

LDR Rt, [Rn, Rm {,
LSL #shift}]

Load Register Word (register offset) - 4.14.4 LDR and STR, register offset on
page 223

LDR Rt, label Load Register Word (literal) - 4.14.6 LDR, PC‑relative on page 225

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

LDR, LDRT Rt, [Rn,
#offset]

Load Register Word (immediate offset,
unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

LDRB Rt, [Rn, Rm {,
LSL #shift}]

Load Register Byte (register offset) - 4.14.4 LDR and STR, register offset on
page 223

LDRB Rt, label Load Register Byte (literal) - 4.14.6 LDR, PC‑relative on page 225

LDRB, LDRBT Rt, [Rn,
#offset]

Load Register Byte (immediate offset,
unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

LDRD Rt, Rt2, [Rn,
#offset]

Load Register Dual (immediate offset) - 4.14.3 LDR and STR, immediate offset on
page 220

LDRD Rt, Rt2, label Load Register Dual (PC- relative) - 4.14.6 LDR, PC‑relative on page 225

LDREX Rt, [Rn,
#offset]

Load Register Exclusive - 4.14.11 LDREX and STREX on page
232

LDREXB Rt, [Rn] Load Register Exclusive Byte - 4.14.11 LDREX and STREX on page
232

LDREXH Rt, [Rn] Load Register Exclusive Halfword - 4.14.11 LDREX and STREX on page
232

LDRH Rt, [Rn, Rm {,
LSL #shift}]

Load Register Halfword (register offset) - 4.14.4 LDR and STR, register offset on
page 223

LDRH Rt, label Load Register Halfword (literal) - 4.14.6 LDR, PC‑relative on page 225

LDRH, LDRHT Rt, [Rn,
#offset]

Load Register Halfword (immediate offset,
unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

LDRSB Rt, [Rn, Rm {,
LSL #shift}]

Load Register Signed Byte (register offset) - 4.14.4 LDR and STR, register offset on
page 223

LDRSB Rt, label Load Register Signed Byte (PC-relative) - 4.14.6 LDR, PC‑relative on page 225

LDRSB, LDRSBT Rt, [Rn,
#offset]

Load Register Signed Byte (immediate
offset, unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

LDRSH Rt, [Rn, Rm {,
LSL #shift}]

Load Register Signed Halfword (register
offset)

- 4.14.4 LDR and STR, register offset on
page 223

LDRSH Rt, label Load Register Signed Halfword (PC-
relative)

- 4.14.6 LDR, PC‑relative on page 225

LDRSH, LDRSHT Rt, [Rn,
#offset]

Load Register Signed Halfword (immediate
offset, unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C 4.4.4 ASR, LSL, LSR, ROR, and RRX on
page 107

LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C 4.4.4 ASR, LSL, LSR, ROR, and RRX on
page 107

MCR,MCR2 {cond} coproc,
#opc1, Rt, CRn,
CRm{, #opc2}

Move to Coprocessor from Register - 4.5.4 MCR and MCR2 on page 132

MCRR,MCRR2 {cond} coproc,
#opc1, Rt, Rt2,
CRm

Move to Coprocessor from two Registers - 4.5.5 MCRR and MCRR2 on page 133

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

MLA Rd, Rn, Rm, Ra Multiply Accumulate - 4.7.2 MUL, MLA, and MLS on page 143

MLS Rd, Rn, Rm, Ra Multiply and Subtract - 4.7.2 MUL, MLA, and MLS on page 143

MOV, MOVS Rd, Op2 Move N,Z,C 4.4.7 MOV and MVN on page 109

MOV, MOVS Rd, Rm Move (register) N,Z 4.4.7 MOV and MVN on page 109

MOVT Rd, #imm16 Move Top - 4.4.8 MOVT on page 111

MOVW Rd, #imm16 Move 16-bit constant N,Z,C 4.4.7 MOV and MVN on page 109

MRC,MRC2 {cond} coproc,
#opc1, Rt, CRn,
CRm{, #opc2}

Move to Register from |Coprocessor - 4.5.6 MRC and MRC2 on page 133

MRRC,MRRC2 {cond} coproc,
#opc1, Rt, Rt2,
CRm

Move to two Registers from Coprocessor. - 4.5.7 MRRC and MRRC2 on page 134

MRS Rd, spec_reg Move from Special Register to general
register

- 4.13.8 MRS on page 211

MSR spec_reg, Rn Move from general register to Special
Register

- 4.13.9 MSR on page 212

MUL, MULS {Rd,} Rn, Rm Multiply N,Z 4.7.2 MUL, MLA, and MLS on page 143

MVN, MVNS Rd, Op2 Bitwise NOT N,Z,C 4.4.7 MOV and MVN on page 109

NOP - No Operation - 4.13.10 NOP on page 213

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C 4.4.3 AND, ORR, EOR, BIC, and ORN on
page 105

ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C 4.4.3 AND, ORR, EOR, BIC, and ORN on
page 105

PKHTB, PKHBT {Rd,} Rn, Rm, {,
Op2}

Pack Halfword - 4.9.2 PKHBT and PKHTB on page 166

PLD [Rn {, #offset}] Preload Data - 4.14.8 PLD on page 229

POP reglist Pop registers from stack - 4.14.9 PUSH and POP on page 229

PUSH reglist Push registers onto stack - 4.14.9 PUSH and POP on page 229

QADD {Rd,} Rn, Rm Saturating Add Q 4.8.4 QADD and QSUB on page 160

QADD16 {Rd,} Rn, Rm Saturating Add 16 - 4.8.4 QADD and QSUB on page 160

QADD8 {Rd,} Rn, Rm Saturating Add 8 - 4.8.4 QADD and QSUB on page 160

QASX {Rd,} Rn, Rm Saturating Add and Subtract with
Exchange

- 4.8.5 QASX and QSAX on page 161

QDADD {Rd,} Rn, Rm Saturating Double and Add Q 4.8.6 QDADD and QDSUB on page
162

QDSUB {Rd,} Rn, Rm Saturating Double and Subtract Q 4.8.6 QDADD and QDSUB on page
162

QSAX {Rd,} Rn, Rm Saturating Subtract and Add with
Exchange

- 4.8.5 QASX and QSAX on page 161

QSUB {Rd,} Rn, Rm Saturating Subtract Q 4.8.4 QADD and QSUB on page 160

QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 - 4.8.4 QADD and QSUB on page 160

QSUB8 {Rd,} Rn, Rm Saturating Subtract 8 - 4.8.4 QADD and QSUB on page 160

RBIT Rd, Rn Reverse Bits - 4.4.9 REV, REV16, REVSH, and RBIT on
page 112

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

REV Rd, Rn Reverse byte order in a word - 4.4.9 REV, REV16, REVSH, and RBIT on
page 112

REV16 Rd, Rn Reverse byte order in each halfword - 4.4.9 REV, REV16, REVSH, and RBIT on
page 112

REVSH Rd, Rn Reverse byte order in bottom halfword
and sign extend

- 4.4.9 REV, REV16, REVSH, and RBIT on
page 112

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C 4.4.4 ASR, LSL, LSR, ROR, and RRX on
page 107

RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C 4.4.4 ASR, LSL, LSR, ROR, and RRX on
page 107

RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V 4.4.2 ADD, ADC, SUB, SBC, and RSB on
page 103

SADD16 {Rd,} Rn, Rm Signed Add 16 GE 4.4.10 SADD16 and SADD8 on page
113

SADD8 {Rd,} Rn, Rm Signed Add 8 GE 4.4.10 SADD16 and SADD8 on page
113

SASX {Rd,} Rn, Rm Signed Add and Subtract with Exchange GE 4.4.11 SASX and SSAX on page 114

SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V 4.4.2 ADD, ADC, SUB, SBC, and RSB on
page 103

SBFX Rd, Rn, #lsb,
#width

Signed Bit Field Extract - 4.10.3 SBFX and UBFX on page 171

SDIV {Rd,} Rn, Rm Signed Divide - 4.7.3 SDIV and UDIV on page 144

SEL {Rd,} Rn, Rm Select bytes GE 4.4.12 SEL on page 116

SEV - Send Event - 4.13.11 SEV on page 213

SG - Secure Gateway - 4.13.12 SG on page 214

SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 - 4.4.13 SHADD16 and SHADD8 on page
116

SHADD8 {Rd,} Rn, Rm Signed Halving Add 8 - 4.4.13 SHADD16 and SHADD8 on page
116

SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with
Exchange

- 4.4.14 SHASX and SHSAX on page 117

SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with
Exchange

- 4.4.14 SHASX and SHSAX on page 117

SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 - 4.4.15 SHSUB16 and SHSUB8 on page
118

SHSUB8 {Rd,} Rn, Rm Signed Halving Subtract 8 - 4.4.15 SHSUB16 and SHSUB8 on page
118

SMLABB,
SMLABT,
SMLATB,
SMLATT

Rd, Rn, Rm, Ra Signed Multiply Accumulate halfwords Q 4.7.4 SMLAWB, SMLAWT, SMLABB,
SMLABT, SMLATB, and SMLATT on page
145

SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q 4.7.5 SMLAD and SMLADX on page
146

SMLAL RdLo, RdHi, Rn,
Rm

Signed Multiply Accumulate Long (32 × 32
+ 64), 64-bit result

- 4.7.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 155

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

SMLALBB,
SMLALBT,
SMLALTB,
SMLALTT

RdLo, RdHi, Rn,
Rm

Signed Multiply Accumulate Long,
halfwords

- 4.7.6 SMLALD, SMLALDX, SMLALBB,
SMLALBT, SMLALTB, and SMLALTT on
page 147

SMLALD,
SMLALDX

RdLo, RdHi, Rn,
Rm

Signed Multiply Accumulate Long Dual - 4.7.6 SMLALD, SMLALDX, SMLALBB,
SMLALBT, SMLALTB, and SMLALTT on
page 147

SMLAWB,
SMLAWT

Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by
halfword

Q 4.7.4 SMLAWB, SMLAWT, SMLABB,
SMLABT, SMLATB, and SMLATT on page
145

SMLSD, SMLSDX Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q 4.7.7 SMLSD and SMLSLD on page
149

SMLSLD,
SMLSLDX

RdLo, RdHi, Rn,
Rm

Signed Multiply Subtract Long Dual - 4.7.7 SMLSD and SMLSLD on page
149

SMMLA, SMMLAR Rd, Rn, Rm, Ra Signed Most Significant Word Multiply
Accumulate

- 4.7.8 SMMLA and SMMLS on page 151

SMMLS, SMMLSR Rd, Rn, Rm, Ra Signed Most Significant Word Multiply
Subtract

- 4.7.8 SMMLA and SMMLS on page 151

SMMUL, SMMULR Rd, Rn, Rm Signed Most Significant Word Multiply - 4.7.9 SMMUL on page 152

SMUAD, SMUADX {Rd,} Rn, Rm Signed Dual Multiply Add Q. 4.7.10 SMUAD and SMUSD on page
153

SMULBB,
SMULBT,
SMULTB,
SMULTT

{Rd,} Rn, Rm Signed Multiply (halfwords) - 4.7.11 SMUL and SMULW on page 154

SMULL RdLo, RdHi, Rn,
Rm

Signed Multiply Long (32 × 32), 64-bit
result

- 4.7.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 155

SMULWB,
SMULWT

{Rd,} Rn, Rm Signed Multiply word by halfword - 4.7.11 SMUL and SMULW on page 154

SMUSD, SMUSDX {Rd,} Rn, Rm Signed Dual Multiply Subtract - 4.7.10 SMUAD and SMUSD on page
153

SSAT Rd, #n, Rm
{,shift #s}

Signed Saturate Q 4.8.2 SSAT and USAT on page 158

SSAT16 Rd, #n, Rm Signed Saturate 16 Q 4.8.3 SSAT16 and USAT16 on page
159

SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE 4.4.11 SASX and SSAX on page 114

SSUB16 {Rd,} Rn, Rm Signed Subtract 16 GE 4.4.16 SSUB16 and SSUB8 on page
119

SSUB8 {Rd,} Rn, Rm Signed Subtract 8 GE 4.4.16 SSUB16 and SSUB8 on page
119

STL Rt, [Rn] Store-Release Word - 4.14.10 LDA and STL on page 230

STLB Rt, [Rn] Store-Release Byte - 4.14.10 LDA and STL on page 230

STLEX Rt, Rt [Rn] Store-Release Exclusive Word - 4.14.12 LDAEX and STLEX on page
233

STLEXB Rt, Rt [Rn] Store-Release Exclusive Byte - 4.14.12 LDAEX and STLEX on page
233

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

STLEXH Rt, Rt [Rn] Store-Release Exclusive Halfword - 4.14.12 LDAEX and STLEX on page
233

STLH Rt, [Rn] Store-Release Halfword - 4.14.10 LDA and STL on page 230

STM Rn{!}, reglist Store Multiple - 4.14.7 LDM and STM on page 227

STMDB, STMEA Rn{!}, reglist Store Multiple Decrement Before - 4.14.7 LDM and STM on page 227

STMIA, STMFD Rn{!}, reglist Store Multiple Increment After - 4.14.7 LDM and STM on page 227

STR Rt, [Rn, Rm {,
LSL #shift}]

Store Register Word (register offset) - 4.14.4 LDR and STR, register offset on
page 223

STR, STRT Rt, [Rn,
#offset]

Store Register Word (immediate offset,
unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

STRB Rt, [Rn, Rm {,
LSL #shift}]

Store Register Byte (register offset) - 4.14.4 LDR and STR, register offset on
page 223

STRB, STRBT Rt, [Rn,
#offset]

Store Register Byte (immediate offset,
unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

STRD Rt, Rt2, [Rn,
#offset]

Store Register Dual two words - 4.14.3 LDR and STR, immediate offset on
page 220

STREX Rd, Rt, [Rn,
#offset]

Store Register Exclusive - 4.14.11 LDREX and STREX on page
232

STREXB Rd, Rt, [Rn] Store Register Exclusive Byte - 4.14.11 LDREX and STREX on page
232

STREXH Rd, Rt, [Rn] Store Register Exclusive Halfword - 4.14.11 LDREX and STREX on page
232

STRH Rt, [Rn, Rm {,
LSL #shift}]

Store Register Halfword (register offset) - 4.14.4 LDR and STR, register offset on
page 223

STRH, STRHT Rt, [Rn,
#offset]

Store Register Halfword (immediate offset,
unprivileged)

- 4.14.3 LDR and STR, immediate offset
on page 220, 4.14.5 LDR and STR,
unprivileged on page 224

SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V 4.4.2 ADD, ADC, SUB, SBC, and RSB on
page 103

SUB, SUBW {Rd,} Rn, #imm12 Subtract - 4.4.2 ADD, ADC, SUB, SBC, and RSB on
page 103

SVC #imm Supervisor Call - 4.13.13 SVC on page 214

SXTAB {Rd,} Rn, Rm
{,ROR #n}

Sign extend 8 bits to 32 and Add - 4.9.3 SXTA and UXTA on page 167

SXTAB16 {Rd,} Rn, Rm
{,ROR #n}

Sign extend two 8-bit values to 16 and
Add

- 4.9.3 SXTA and UXTA on page 167

SXTAH {Rd,} Rn, Rm
{,ROR #n}

Sign extend 16 bits to 32 and Add - 4.9.3 SXTA and UXTA on page 167

SXTB Rd, Rm {,ROR
#n}

Sign extend 8 bits to 32 - 4.9.4 SXT and UXT on page 169

SXTB16 {Rd,} Rm {,ROR
#n}

Sign extend 8 bits to 16 - 4.9.4 SXT and UXT on page 169

SXTH {Rd,} Rm {,ROR
#n}

Sign extend a Halfword to 32 - 4.9.4 SXT and UXT on page 169

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

TBB [Rn, Rm] Table Branch Byte - 4.11.6 TBB and TBH on page 177

TBH [Rn, Rm, LSL
#1]

Table Branch Halfword - 4.11.6 TBB and TBH on page 177

TEQ Rn, Op2 Test Equivalence N,Z,C 4.4.17 TST and TEQ on page 121

TST Rn, Op2 Test N,Z,C 4.4.17 TST and TEQ on page 121

TT Rd, [Rn] Test Target - 4.13.14 TT, TTT, TTA, and TTAT on page
215

TTA Rd, [Rn] Test Target Alternate Domain - 4.13.14 TT, TTT, TTA, and TTAT on page
215

TTAT Rd, [Rn] Test Target Alternate Domain Unprivileged - 4.13.14 TT, TTT, TTA, and TTAT on page
215

TTT Rd, [Rn] Test Target Unprivileged - 4.13.14 TT, TTT, TTA, and TTAT on page
215

UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE 4.4.18 UADD16 and UADD8 on page
122

UADD8 {Rd,} Rn, Rm Unsigned Add 8 GE 4.4.18 UADD16 and UADD8 on page
122

UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE 4.4.19 UASX and USAX on page 123

UBFX Rd, Rn, #lsb,
#width

Unsigned Bit Field Extract - 4.10.3 SBFX and UBFX on page 171

UDF {c}{q} {#}imm Permanently Undefined. - 4.13.15 Cortex-M33 UGRM: UDF on
page 217

UDIV {Rd,} Rn, Rm Unsigned Divide - 4.7.3 SDIV and UDIV on page 144

UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 - 4.4.20 UHADD16 and UHADD8 on page
125

UHADD8 {Rd,} Rn, Rm Unsigned Halving Add 8 - 4.4.20 UHADD16 and UHADD8 on page
125

UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with
Exchange

- 4.4.21 UHASX and UHSAX on page
126

UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with
Exchange

- 4.4.21 UHASX and UHSAX on page
126

UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 - 4.4.22 UHSUB16 and UHSUB8 on page
127

UHSUB8 {Rd,} Rn, Rm Unsigned Halving Subtract 8 - 4.4.22 UHSUB16 and UHSUB8 on page
127

UMAAL RdLo, RdHi, Rn,
Rm

Unsigned Multiply Accumulate
Accumulate Long (32 × 32 + 32 + 32), 64-
bit result

- 4.7.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 155

UMLAL RdLo, RdHi, Rn,
Rm

Unsigned Multiply Accumulate Long (32 ×
32 + 64), 64-bit result

- 4.7.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 155

UMULL RdLo, RdHi, Rn,
Rm

Unsigned Multiply Long (32 × 32), 64-bit
result

- 4.7.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 155

UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 - 4.8.8 UQADD and UQSUB on page
164

UQADD8 {Rd,} Rn, Rm Unsigned Saturating Add 8 - 4.8.8 UQADD and UQSUB on page
164

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract
with Exchange

- 4.8.7 UQASX and UQSAX on page 163

UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add
with Exchange

- 4.8.7 UQASX and UQSAX on page 163

UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 - 4.8.8 UQADD and UQSUB on page
164

UQSUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 - 4.8.8 UQADD and UQSUB on page
164

USAD8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences - 4.4.23 USAD8 on page 128

USADA8 Rd, Rn, Rm, Ra Unsigned Sum of Absolute Differences
and Accumulate

- 4.4.24 USADA8 on page 129

USAT Rd, #n,
Rm{,shift #s},
Ra

Unsigned Saturate Q 4.8.2 SSAT and USAT on page 158

USAT16 Rd, #n, Rm Unsigned Saturate 16 Q 4.8.3 SSAT16 and USAT16 on page
159

USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE 4.4.19 UASX and USAX on page 123

USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE 4.4.25 USUB16 and USUB8 on page
129

USUB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE 4.4.25 USUB16 and USUB8 on page
129

UXTAB {Rd,} Rn, Rm
{,ROR #n}

Rotate, unsigned extend 8 bits to 32 and
Add

- 4.9.3 SXTA and UXTA on page 167

UXTAB16 {Rd,} Rn, Rm
{,ROR #n}

Rotate, unsigned extend two 8-bit values
to 16 and Add

- 4.9.3 SXTA and UXTA on page 167

UXTAH {Rd,} Rn, Rm
{,ROR #n}

Rotate, unsigned extend and Add
Halfword

- 4.9.3 SXTA and UXTA on page 167

UXTB Rd, Rm {,ROR
#n}

Unsigned zero-extend Byte - 4.9.4 SXT and UXT on page 169

UXTB16 {Rd,} Rm {,ROR
#n}

Unsigned zero-extend Byte 16 - 4.9.4 SXT and UXT on page 169

UXTH Rd, Rm {,ROR
#n}

Unsigned zero-extend Halfword - 4.9.4 SXT and UXT on page 169

VABS .F32 Sd, Sm Floating-point Absolute - 4.12.4 VABS on page 182

VADD .F32 {Sd,} Sn,
Sm

Floating-point Add - 4.12.5 VADD on page 182

VCMP .F32 Sd, <<Sm|
#0.0>

Compare two floating-point registers, or
one floating-point register and zero

N,Z,C,V 4.12.6 VCMP and VCMPE on page 183

VCMPE .F32 Sd, <<Sm|
#0.0>

Compare two floating-point registers, or
one floating-point register and zero with
Invalid Operation check

N,Z,C,V 4.12.6 VCMP and VCMPE on page 183

VCVT .F32.Tm <Sd>,
Sm

Convert from floating-point to integer - 4.12.7 VCVT and VCVTR between
floating-point and integer on page 184

VCVT .Td.F32 Sd, Sd,
#fbits

Convert from floating-point to fixed point - 4.12.8 VCVT between floating-point and
fixed-point on page 184

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

VCVTA .Tm.F32 <Sd>,
Sm

Convert from floating-point to integer
with directed rounding to nearest with
Ties Away

- 4.12.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 203

VCVTB VCVTT .F32.F16 Sd, Sm Convert half-precision value to single-
precision or double-precision

- 4.12.37 VCVTB and VCVTT on page
204

VCVTB VCVTT .F16.F32 Sd, Sm Convert single-precision or double-
precision register to half-precision

- 4.12.37 VCVTB and VCVTT on page
204

VCVTM .Tm.F32 <Sd>,
Sm

Convert from floating-point to integer
with directed rounding towards Minus
infinity

- 4.12.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 203

VCVTN .Tm.F32 <Sd>,
Sm

Convert from floating-point to integer
with directed rounding to nearest with
Ties to even

- 4.12.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 203

VCVTP .Tm.F32 <Sd>,
Sm

Convert from floating-point to integer
with directed rounding towards Plus
infinity

- 4.12.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 203

VCVTR .Tm.F32 <Sd>,
Sm

Convert between floating-point and
integer with rounding.

- 4.12.7 VCVT and VCVTR between
floating-point and integer on page 184

VDIV .F32 {Sd,} Sn,
Sm

Floating-point Divide - 4.12.9 VDIV on page 186

VFMA .F32 {Sd,} Sn,
Sm

Floating-point Fused Multiply Accumulate - 4.12.10 VFMA and VFMS on page 186

VFMS .F32 {Sd,} Sn,
Sm

Floating-point Fused Multiply Subtract - 4.12.10 VFMA and VFMS on page 186

VFNMA .F32 {Sd,} Sn,
Sm

Floating-point Fused Negate Multiply
Accumulate

- 4.12.11 VFNMA and VFNMS on page
187

VFNMS .F32 {Sd,} Sn,
Sm

Floating-point Fused Negate Multiply
Subtract

- 4.12.11 VFNMA and VFNMS on page
187

VLDM {mode}{.size}
Rn{!}, list

Floating-point Load Multiple extension
registers

- 4.12.12 VLDM on page 188

VLDR .F32 Sd, [<Rn>
{, #offset}]

Floating-point Load an extension register
from memory (immediate)

- 4.12.13 VLDR on page 189

VLDR .F32 Sd,
<label>

Load an extension register from memory - 4.12.13 VLDR on page 189

VLDR .F32 Sd,
[PC,#-0]

Load an extension register from memory - 4.12.13 VLDR on page 189

VLLDM <c> Rn Floating-point Lazy Load multiple - 4.12.14 VLLDM on page 189

VLSTM <c> Rn Floating-point Lazy Store multiple - 4.12.15 VLSTM on page 190

VMAXNM .F32 Sd, Sn, Sm Maximum of two floating-point numbers
with IEEE754-2008 NaN handling

- 4.12.38 VMAXNM and VMINNM on page
204

VMINNM .F32 Sd, Sn, Sm Minimum of two floating-point numbers
with IEEE754-2008 NaN handling

- 4.12.38 VMAXNM and VMINNM on page
204

VMLA .F32 Sd, Sn, Sm Floating-point Multiply Accumulate - 4.12.16 VMLA and VMLS on page 191

VMLS .F32 Sd, Sn, Sm Floating-point Multiply Subtract - 4.12.16 VMLA and VMLS on page 191

VMOV <Sn|Rt>, <Rt|
Sn>

Copy core register to single-precision - 4.12.20 VMOV core register to single-
precision on page 193

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

VMOV <Sm|Rt>, <Sm1|
Rt2>, <Rt|Sm>,
<Rt2|Sm1>

Copy two core registers to two single-
precision

- 4.12.21 VMOV two core registers to two
single-precision registers on page 193

VMOV {.size} Dd[x],
Rt

Copy core register to scalar - 4.12.23 VMOV core register to scalar on
page 195

VMOV {.dt} Rt, Dn[x] Copy scalar to core register - 4.12.19 VMOV scalar to core register on
page 192

VMOV .F32 Sd, #immm Floating-point Move immediate - 4.12.17 VMOV Immediate on page 191

VMOV .F32 Sd, Sd, Sm Copies the contents of one register to
another

- 4.12.18 VMOV Register on page 192

VMOV <Dm|Rt>, <Rt|
Rt2>, <Rt2|Dm>

Floating-point Move transfers two
words between two core registers and a
doubleword register

- 4.12.22 VMOV two core registers and a
double-precision register on page 194

VMRS Rt, FPSCR Move to core register from floating-point
Special Register

N,Z,C,V 4.12.24 VMRS on page 195

VMSR FPSCR, Rt Move to floating-point Special Register
from core register

- 4.12.25 VMSR on page 196

VMUL .F32 {Sd,} Sn,
Sm

Floating-point Multiply - 4.12.26 VMUL on page 197

VNEG .F32 Sd, Sm Floating-point Negate - 4.12.27 VNEG on page 197

VNMLA .F32 Sd, Sn, Sm Floating-point Multiply Accumulate and
Negate

- 4.12.28 VNMLA, VNMLS and VNMUL on
page 198

VNMLS .F32 Sd, Sn, Sm Floating-point Multiply, Subtract and
Negate

- 4.12.28 VNMLA, VNMLS and VNMUL on
page 198

VNMUL .F32 {Sd,} Sn,
Sm

Floating-point Multiply and Negate - 4.12.28 VNMLA, VNMLS and VNMUL on
page 198

VPOP {.size} list Load multiple consecutive floating-point
registers from the stack

- 4.12.29 VPOP on page 198

VPUSH {.size} list Store multiple consecutive floating-point
registers to the stack

- 4.12.30 VPUSH on page 199

VRINTA .F32 Sd, Sm Float to integer in floating-point format
conversion with directed rounding to
Nearest with Ties Away

- 4.12.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 206

VRINTM .F32 Sd, Sm Float to integer in floating-point format
conversion with directed rounding to
Minus infinity

- 4.12.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 206

VRINTN .F32 Sd, Sm Float to integer in floating-point format
conversion with directed rounding to
Nearest with Ties to even

- 4.12.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 206

VRINTP .F32 Sd, Sm Float to integer in floating-point format
conversion with directed rounding to Plus
infinity

- 4.12.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 206

VRINTR .F32 Sd, Sm Float to integer in floating-point format
conversion with rounding towards value
specified in FPSCR

- 4.12.39 VRINTR and VRINTX on page
205

VRINTX .F32 Sd, Sm Float to integer in floating-point format
conversion with rounding specified in
FPSCR

- 4.12.39 VRINTR and VRINTX on page
205

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Operands Brief description Flags Page

VRINTZ .F32 Sd, Sm Float to integer in floating-point format
conversion with rounding towards Zero

- 4.12.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 206

VSEL .F32 Sd, Sn, Sm Select register, alternative to a pair of
conditional VMOV

- 4.12.35 VSEL on page 202

VSQRT .F32 Sd, Sm Calculates floating-point Square Root - 4.12.31 VSQRT on page 200

VSTM {mode}{.size}
Rn{!}, list

Floating-point Store Multiple - 4.12.32 VSTM on page 200

VSTR .F32 Sd, [Rn{,
#offset}]

Floating-point Store Register stores an
extension register to memory

- 4.12.33 VSTR on page 201

VSUB F32 {Sd,} Sn,
Sm

Floating-point Subtract - 4.12.34 VSUB on page 202

WFE - Wait For Event - 4.13.16 WFE on page 217

WFI - Wait For Interrupt - 4.13.17 WFI on page 218

YIELD - Suspend task - 4.13.18 YIELD on page 218

4.1.1 Binary compatibility with other Cortex processors

The processor implements the T32 instruction set and features provided by the Arm®v8‑M
architecture profile. There are restrictions on moving code designed for processors that are
implementations of the Arm®v6‑M or Arm®v7‑M architectures.

If code designed for other Cortex®‑M processors relies on memory protection, it cannot be
moved to the Cortex®-M33 processor. In this case, the memory protection scheme and driver code
must be updated from PMSAv7 to PMSAv8.

If Cortex®-M33 is configured without floating-point, any Arm®v7‑M code that uses floating-point
arithmetic must be recompiled to use a software library, or DP emulation if supported by the tools.

To ensure a smooth transition, Arm recommends that code designed to operate on other
Cortex®‑M profile processor architectures obey the following rules and that you configure the
Configuration and Control Register (CCR) appropriately:

• Use word transfers only to access registers in the NVIC and System Control Space (SCS).

• Treat all unused SCS registers and register fields on the processor as Do-Not-Modify.

• Configure the following fields in the CCR:

◦ STKALIGN bit to 1.

◦ UNALIGN_TRP bit to 1.

◦ Leave all other bits in the CCR register at their original value.

4.2 CMSIS functions
ISO/IEC C code cannot directly access some Cortex®-M33 processor instructions. Instead, intrinsic
functions that are provided by the CMSIS or a C compiler are used to generate them. If a C

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

compiler does not support an appropriate intrinsic function, you might have to use inline assembler
to access some instructions.

4.2.1 List of CMSIS functions to generate some processor instructions

List of intrinsic functions that are provided to generate instructions that ISO/IEC C code cannot
directly access.

Table 4-2: CMSIS functions to generate some Cortex®-M33 processor instructions

Instruction CMSIS function

BKPT void __BKPT

CLREX void __CLREX

CLZ uint8_t __CLZ (uint32_t value)

CPSID F void __disable_fault_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSIE I void __enable_irq(void)

DMB void __DMB(void)

DSB void __DSB(void)

ISB void __ISB(void)

LDA uint32_t __LDA (volatile uint32_t * ptr)

LDAB uint8_t __LDAB (volatile uint8_t * ptr)

LDAEX uint32_t __LDAEX (volatile uint32_t * ptr)

LDAEXB uint8_t __LDAEXB (volatile uint32_t * ptr)

LDAEXH uint16_t __LDAEXH (volatile uint32_t * ptr)

LDAH uint32_t __LDAH (volatile uint32_t * addr)

LDRT uint32_t __LDRT (uint32_t ptr)

NOP void __NOP (void)

RBIT uint32_t __RBIT(uint32_t value)

REV uint32_t __REV(uint32_t value)

REV16 uint32_t __REV16(uint32_t value)

REVSH int16_t __REVSH(int16_t value)

ROR uint32_t __ROR (uint32_t value, uint32_t shift)

RRX uint32_t __RRX (uint32_t value)

SEV void __SEV (void)

STL void __STL (uint32_t value, volatile uint32_t * ptr)

STLEX uint32_t __STLEX (uint16_t value, volatile uint32_t * ptr)

STLEXB uint32_t __STLEXB (uint16_t value, volatile uint8_t * ptr)

STLEXH uint32_t __STLEXH (uint16_t value, volatile uint16_t * ptr)

STLH void __STLH (uint16_t value, volatile uint16_t * ptr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Instruction CMSIS function

STREXB uint32_t __STREXB (uint8_t value, uint8_t *addr)

STREXH uint32_t __STREXH (uint16_t value, uint16_t *addr)

WFE void __WFE(void)

WFI void __WFI(void)

4.2.2 CMSE

CMSE is the compiler support for the Security Extension (architecture intrinsics and options) and is
part of the Arm C Language (ACLE) specification.

CMSE features are required when developing software running in Secure state. This provides
mechanisms to define Secure entry points and enable the tool chain to generate correct
instructions or support functions in the program image.

The CMSE features are accessed using various attributes and intrinsics. Additional macros are also
defined as part of the CMSE.

4.2.3 CMSIS functions to access the special registers

List of functions that are provided by the CMSIS for accessing the special registers using MRS and
MSR instructions.

Table 4-3: CMSIS functions to access the special registers

Special register Access CMSIS function

Read uint32_t __get_PRIMASK (void)PRIMASK

Write void __set_PRIMASK (uint32_t value)

Read uint32_t __get_FAULTMASK (void)FAULTMASK

Write void __set_FAULTMASK (uint32_t value)

Read uint32_t __get_BASEPRI (void)BASEPRI

Write void __set_BASEPRI (uint32_t value)

Read uint32_t __get_CONTROL (void)CONTROL

Write void __set_CONTROL (uint32_t value)

Read uint32_t __get_MSP (void)MSP

Write void __set_MSP (uint32_t TopOfMainStack)

Read uint32_t __get_PSP (void)PSP

Write void __set_PSP (uint32_t TopOfProcStack)

APSR Read uint32_t __get_APSR (void)

IPSR Read uint32_t __get_IPSR (void)

xPSR Read uint32_t __get_xPSR (void)

BASEPRI_MAX Write void __set_BASEPRI_MAX (uint32_t basePri)

FPSCR Read uint32_t __get_FPSCR (void)

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Special register Access CMSIS function

Write void __set_FPSCR (uint32_t fpscr)

Read uint32_t __get_MSPLIM (void)MSPLIM

Write void __set_MSPLIM (uint32_t MainStackPtrLimit)

Read uint32_t __get_PSPLIM (void)PSPLIM

Write void __set_PSPLIM (uint32_t ProcStackPtrLimit)

4.2.4 CMSIS functions to access the Non-secure special registers

The CMSIS also provides several functions for accessing the Non-secure special registers in Secure
state using MRS and MSR instructions:

Table 4-4: CMSIS intrinsic functions to access the Non-secure special registers

Special register Access CMSIS function

Read uint32_t __TZ_get_PRIMASK_NS (void)PRIMASK_NS

Write void __TZ_set_PRIMASK_NS (uint32_t value)

Read uint32_t __TZ_get_FAULTMASK_NS (void)FAULTMASK_NS

Write void __TZ_set_FAULTMASK_NS (uint32_t value)

Read uint32_t __TZ_get_CONTROL_NS (void)CONTROL_NS

Write void __TZ_set_CONTROL_NS (uint32_t value)

Read uint32_t __TZ_get_MSP_NS (void)MSP_NS

Write void __TZ_set_MSP_NS (uint32_t TopOfMainStack)

Read uint32_t __TZ_get_PSP_NS (void)PSP_NS

Write void __TZ_set_PSP_NS (uint32_t TopOfProcStack)

Read uint32_t __TZ_get_MSPLIM_NS (void)MSPLIM_NS

Write void __TZ_set_MSPLIM_NS (uint32_t MainStackPtrLimit)

Read uint32_t __TZ_get_PSPLIM_NS (void)PSPLIM_NS

Write void __TZ_set_PSPLIM_NS (uint32_t ProcStackPtrLimit)

4.3 About the instruction descriptions
Additional information about using the instructions, including operands, restrictions when using PC
or SP, flexible second operand, and shift operations.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.3.1 Operands

An instruction operand can be an Arm® register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant.

4.3.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack
Pointer (SP) for the operands or destination register. See instruction descriptions for more
information.

• In an implementation with Arm®v8‑M Security Extension, for correct operation
of B{L}XNS, Rm[0] must be 0 for correct Secure to Non-secure transition.

• Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP
instruction must be 1 for correct execution, because this bit indicates the
required instruction set, and the Cortex®-M33 processor only supports T32
instructions.

4.3.3 Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown as
Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be:

• A constant.

• A register with optional shift.

4.3.3.1 Constant

Instruction form when specifying an Operand2 constant.

#constant

where constant can be:

• Any constant that can be produced by shifting an 8‑bit value left by any number of bits within a
32‑bit word.

• Any constant of the form 0x00XY00XY.

• Any constant of the form 0xXY00XY00.

• Any constant of the form 0xXYXYXYXY.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

In these constants, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are
described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255
and can be produced by shifting an 8-bit value. These instructions do not affect the carry flag if
Operand2 is any other constant.

4.3.3.1.1 Instruction substitution

Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted.

For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

4.3.3.2 Register with optional shift

Instruction form when specifying an Operand2 register.

Rm {, shift}

Where:

Rm Is the register holding the data for the second operand.
shift Is an optional shift to be applied to Rm. It can be one of:

ASR #n
Arithmetic shift right n bits, 1 ≤ n ≤ 32.

LSL #n
Logical shift left n bits, 1 ≤ n ≤ 31.

LSR #n
Logical shift right n bits, 1 ≤ n ≤ 32.

ROR #n
Rotate right n bits, 1 ≤ n ≤ 31.

RRX
Shift right one bit and insert the carry flag into the most significant bit of
the result.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

-
If omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by
the instruction. However, the contents in the register Rm remain unchanged. Specifying a register
with shift also updates the carry flag when used with certain instructions.

4.3.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length.

Register shift can be performed:

• Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination
register.

• During the calculation of Operand2 by the instructions that specify the second operand as a
register with shift. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or the Flexible second operand. If the shift length is 0, no shift occurs.
Register shift operations update the carry flag except when the specified shift length is 0. The
following sub-sections describe the various shift operations and how they affect the carry flag. In
these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

4.3.4.1 ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left‑hand n bits of the result.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being
rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

• If n is 32 or more, then all the bits in the result are set to the value of bit[31] of
Rm.

• If n is 32 or more and the carry flag is updated, it is updated to the value of
bit[31] of Rm.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Figure 4-1: ASR #3

Carry
Flag

031 5 4 3 2 1

4.3.4.2 LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it sets the left‑hand n bits of the result to 0.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

• If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 4-2: LSR #3

Carry
Flag

031 5 4 3 2 1

000

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.3.4.3 LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places,
into the left-hand 32-n bits of the result. And it sets the right‑hand n bits of the result to 0.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur without
warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last
bit shifted out, bit[32-n], of the register Rm. These instructions do not affect the carry flag when
used with LSL #0.

• If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 4-3: LSL #3

031 5 4 3 2 1

Carry
Flag

000

4.3.4.4 ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into
the right-hand 32-n bits of the result. And it moves the right‑hand n bits of the register into the
left‑hand n bits of the result.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of
the register Rm.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• If n is 32, then the value of the result is same as the value in Rm, and if the carry
flag is updated, it is updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 4-4: ROR #3

Carry
Flag

031 5 4 3 2 1

4.3.4.5 RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies the
carry flag into bit[31] of the result.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 4-5: RRX

30

Carry
Flag

031 1

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.3.5 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word,
or multiple word access, or where a halfword-aligned address is used for a halfword access. Byte
accesses are always aligned.

The Cortex®-M33 processor supports unaligned access only for the following instructions:

• LDR, LDRT.

• LDRH, LDRHT.

• LDRSH, LDRSHT.

• STR, STRT.

• STRH, STRHT.

All other load and store instructions generate a UsageFault exception if they perform an unaligned
access, and therefore their accesses must be address aligned.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions
might not support unaligned accesses. Therefore, Arm recommends that programmers ensure that
accesses are aligned. To trap accidental generation of unaligned accesses, use the UNALIGN_TRP
bit in the Configuration and Control Register.

4.3.6 PC‑relative expressions

A PC‑relative expression or label is a symbol that represents the address of an instruction or
literal data. It is represented in the instruction as the PC value plus or minus a numeric offset. The
assembler calculates the required offset from the label and the address of the current instruction. If
the offset is too big, the assembler produces an error.

• For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the
current instruction plus 4 bytes.

• For all other instructions that use labels, the value of the PC is the address of
the current instruction plus 4 bytes, with bit[1] of the result cleared to 0 to
make it word-aligned.

• Your assembler might permit other syntaxes for PC-relative expressions, such as
a label plus or minus a number, or an expression of the form [PC, #number].

4.3.7 Conditional execution

Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) according to the result of the operation. Some instructions update

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

all flags, and some only update a subset. If a flag is not updated, the original value is preserved. See
the instruction descriptions for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another
instruction, either:

• Immediately after the instruction that updated the flags.

• After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. The condition code suffix enables the processor to test a condition based
on the flags. If the condition test of a conditional instruction fails, the instruction:

• Does not execute.

• Does not write any value to its destination register.

• Does not affect any of the flags.

• Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction
block. Depending on the vendor, the assembler might automatically insert an IT instruction if you
have conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on
the result.

4.3.7.1 The condition flags

The APSR contains the N, Z, C, and V condition flags.

N Set to 1 when the result of the operation was negative, cleared to 0
otherwise.

Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about APSR, see 3.1.3.6.1 Application Program Status Register on page 30

The C condition flag is set in one of four ways:

• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced
a carry (that is, an unsigned overflow), and to 0 otherwise.

• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction
produced a borrow (that is, an unsigned underflow), and to 1 otherwise.

• For non-addition or subtractions that incorporate a shift operation, C is set to the last bit
shifted out of the value by the shifter.

• For other non-addition or subtractions, C is normally left unchanged. See the individual
instruction descriptions for any special cases.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had
the operation been performed at infinite precision. For example, the V condition flag can be set in
one of four ways:

• If adding two negative values results in a positive value.

• If adding two positive values results in a negative value.

• If subtracting a positive value from a negative value generates a positive value.

• If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the
result is discarded. See the instruction descriptions for more information.

Most instructions update the status flags only if the S suffix is specified. See the
instruction descriptions for more information.

4.3.7.2 Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction
with a condition code is only executed if the condition code flags in the APSR meet the specified
condition.

You can use conditional execution with the IT instruction to reduce the number of branch
instructions in code.

The following table also shows the relationship between condition code suffixes and the N, Z, C,
and V flags.

Table 4-5: Condition code suffixes

Suffix Flags Meaning

EQ Z = 1 Equal.

NE Z = 0 Not equal.

CS or HS C = 1 Higher or same, unsigned.

CC or LO C = 0 Lower, unsigned.

MI N = 1 Negative.

PL N = 0 Positive or zero.

VS V = 1 Overflow.

VC V = 0 No overflow.

HI C = 1 and Z = 0 Higher, unsigned.

LS C = 0 or Z = 1 Lower or same, unsigned.

GE N = V Greater than or equal, signed.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Suffix Flags Meaning

LT N != V Less than, signed.

GT Z = 0 and N = V Greater than, signed.

LE Z = 1 and N != V Less than or equal, signed.

AL Can have any value Always. This is the default when no suffix is specified.

The following example shows the use of a conditional instruction to find the absolute value of a
number. R0 = abs(R1).

Absolute value
MOVS R0, R1 ; R0 = R1, setting flags.
IT MI ; Skipping next instruction if value 0 or positive.
RSBMI R0, R0, #0 ; If negative, R0 = -R0.

The following example shows the use of conditional instructions to update the value of R4 if the
signed values R0 is greater than R1 and R2 is greater than R3.

Compare and update value
CMP R0, R1 ; Compare R0 and R1, setting flags.
ITT GT ; Skip next two instructions unless GT condition holds.
CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags.
MOVGT R4, R5 ; If still 'greater than', do R4 = R5.

4.3.8 Instruction width selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these instructions, you
can force a specific instruction size by using an instruction width suffix. The .W suffix forces a 32-bit
instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the
operand is the label of an instruction or literal data, as in the case of branch
instructions. This is because the assembler might not automatically generate the
right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and
condition code, if any. The following example shows instructions with the instruction width suffix.

Instruction width selection
BCS.W label ; Creates a 32-bit instruction even for a short branch.
ADDS.W R0, R0, R1 ; Creates a 32-bit instruction even though the same
 ; operation can be done by a 16-bit instruction.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.4 General data processing instructions
Reference material for the Cortex®-M33 processor data processing instruction set.

4.4.1 List of data processing instructions

An alphabetically ordered list of the data processing instructions, with a brief description and link to
the syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-6: Data processing instructions

Mnemonic Brief description See

ADC Add with Carry 4.4.2 ADD, ADC, SUB, SBC, and RSB on page 103

ADD Add 4.4.2 ADD, ADC, SUB, SBC, and RSB on page 103

ADDW Add 4.4.2 ADD, ADC, SUB, SBC, and RSB on page 103

AND Logical AND 4.4.3 AND, ORR, EOR, BIC, and ORN on page 105

ASR Arithmetic Shift Right 4.4.4 ASR, LSL, LSR, ROR, and RRX on page 107

BIC Bit Clear 4.4.3 AND, ORR, EOR, BIC, and ORN on page 105

CLZ Count leading zeros 4.4.5 CLZ on page 108

CMN Compare Negative 4.4.6 CMP and CMN on page 108

CMP Compare 4.4.6 CMP and CMN on page 108

EOR Exclusive OR 4.4.3 AND, ORR, EOR, BIC, and ORN on page 105

LSL Logical Shift Left 4.4.4 ASR, LSL, LSR, ROR, and RRX on page 107

LSR Logical Shift Right 4.4.4 ASR, LSL, LSR, ROR, and RRX on page 107

MOV Move 4.4.7 MOV and MVN on page 109

MOVT Move Top 4.4.8 MOVT on page 111

MOVW Move 16-bit constant 4.4.7 MOV and MVN on page 109

MVN Move NOT 4.4.7 MOV and MVN on page 109

ORN Logical OR NOT 4.4.3 AND, ORR, EOR, BIC, and ORN on page 105

ORR Logical OR 4.4.3 AND, ORR, EOR, BIC, and ORN on page 105

RBIT Reverse Bits 4.4.9 REV, REV16, REVSH, and RBIT on page 112

REV Reverse byte order in a word 4.4.9 REV, REV16, REVSH, and RBIT on page 112

REV16 Reverse byte order in each halfword 4.4.9 REV, REV16, REVSH, and RBIT on page 112

REVSH Reverse byte order in bottom halfword and sign extend 4.4.9 REV, REV16, REVSH, and RBIT on page 112

ROR Rotate Right 4.4.4 ASR, LSL, LSR, ROR, and RRX on page 107

RRX Rotate Right with Extend 4.4.4 ASR, LSL, LSR, ROR, and RRX on page 107

RSB Reverse Subtract 4.4.2 ADD, ADC, SUB, SBC, and RSB on page 103

SADD16 Signed Add 16 4.4.10 SADD16 and SADD8 on page 113

SADD8 Signed Add 8 4.4.10 SADD16 and SADD8 on page 113

SASX Signed Add and Subtract with Exchange 4.4.11 SASX and SSAX on page 114

SEL Select bytes 4.4.12 SEL on page 116

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Brief description See

SSAX Signed Subtract and Add with Exchange 4.4.11 SASX and SSAX on page 114

SBC Subtract with Carry 4.4.2 ADD, ADC, SUB, SBC, and RSB on page 103

SHADD16 Signed Halving Add 16 4.4.13 SHADD16 and SHADD8 on page 116

SHADD8 Signed Halving Add 8 4.4.13 SHADD16 and SHADD8 on page 116

SHASX Signed Halving Add and Subtract with Exchange 4.4.14 SHASX and SHSAX on page 117

SHSAX Signed Halving Subtract and Add with Exchange 4.4.14 SHASX and SHSAX on page 117

SHSUB16 Signed Halving Subtract 16 4.4.15 SHSUB16 and SHSUB8 on page 118

SHSUB8 Signed Halving Subtract 8 4.4.15 SHSUB16 and SHSUB8 on page 118

SSUB16 Signed Subtract 16 4.4.16 SSUB16 and SSUB8 on page 119

SSUB8 Signed Subtract 8 4.4.16 SSUB16 and SSUB8 on page 119

SUB Subtract 4.4.2 ADD, ADC, SUB, SBC, and RSB on page 103

SUBW Subtract 4.4.2 ADD, ADC, SUB, SBC, and RSB on page 103

TEQ Test Equivalence 4.4.17 TST and TEQ on page 121

TST Test 4.4.17 TST and TEQ on page 121

UADD16 Unsigned Add 16 4.4.18 UADD16 and UADD8 on page 122

UADD8 Unsigned Add 8 4.4.18 UADD16 and UADD8 on page 122

UASX Unsigned Add and Subtract with Exchange 4.4.19 UASX and USAX on page 123

USAX Unsigned Subtract and Add with Exchange 4.4.19 UASX and USAX on page 123

UHADD16 Unsigned Halving Add 16 4.4.20 UHADD16 and UHADD8 on page 125

UHADD8 Unsigned Halving Add 8 4.4.20 UHADD16 and UHADD8 on page 125

UHASX Unsigned Halving Add and Subtract with Exchange 4.4.21 UHASX and UHSAX on page 126

UHSAX Unsigned Halving Subtract and Add with Exchange 4.4.21 UHASX and UHSAX on page 126

UHSUB16 Unsigned Halving Subtract 16 4.4.22 UHSUB16 and UHSUB8 on page 127

UHSUB8 Unsigned Halving Subtract 8 4.4.22 UHSUB16 and UHSUB8 on page 127

USAD8 Unsigned Sum of Absolute Differences 4.4.23 USAD8 on page 128

USADA8 Unsigned Sum of Absolute Differences and Accumulate 4.4.24 USADA8 on page 129

USUB16 Unsigned Subtract 16 4.4.25 USUB16 and USUB8 on page 129

USUB8 Unsigned Subtract 8 4.4.25 USUB16 and USUB8 on page 129

4.4.2 ADD, ADC, SUB, SBC, and RSB

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

op{S}{cond} {Rd,} Rn, Operand2 ; ADD; ADC; SBC; RSB

op{S|W}{cond} {Rd,} Rn, #imm12 ; ADD; SUB

Where:

op Is one of:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the register holding the first operand.
Operand2 Is a flexible second operand.
imm12 Is any value in the range 0-4095.

Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear,
the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of
the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent
to the SUB syntax that uses the imm12 operand.

Restrictions
In these instructions:

• Operand2 must not be SP and must not be PC.

• Rd can be SP only in ADD and SUB, and only with the additional restrictions:

◦ Rn must also be SP.

◦ Any shift in Operand2 must be limited to a maximum of 3 bits using LSL.

• Rn can be SP only in ADD and SUB.

• Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

◦ You must not specify the S suffix.

◦ Rm must not be PC and must not be SP.

◦ If the instruction is conditional, it must be the last instruction in the IT block.
Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 104 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB,
and only with the additional restrictions:

◦ You must not specify the S suffix.

◦ The second operand must be a constant in the range 0-4095.

◦ When using the PC for an addition or a subtraction, bits[1:0] of the PC
are rounded to 0b00 before performing the calculation, making the base
address for the calculation word-aligned.

◦ If you want to generate the address of an instruction, you have to adjust
the constant based on the value of the PC. Arm recommends that you use
the ADR instruction instead of ADD or SUB with Rn equal to the PC, because
your assembler automatically calculates the correct constant for the ADR
instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

• Bit[0] of the value written to the PC is ignored.

• A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result.
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280.
ADCHI R11, R0, R3 ; Only executed if C flag set and Z.
 ; flag clear.

Multiword arithmetic examples
The following example shows two instructions that add a 64‑bit integer contained in R2 and R3 to
another 64‑bit integer contained in R0 and R1, and place the result in R4 and R5.

64-bit
addition

ADDS R4, R0, R2 ; Add the least significant words.
ADC R5, R1, R3 ; Add the most significant words with carry.

Multiword values do not have to use consecutive registers. The following example shows
instructions that subtract a 96‑bit integer contained in R9, R1, and R11 from another contained in
R6, R2, and R8. The example stores the result in R6, R9, and R2.

96-bit
subtraction

SUBS R6, R6, R9 ; Subtract the least significant words.
SBCS R9, R2, R1 ; Subtract the middle words with carry.
SBC R2, R8, R11 ; Subtract the most significant words with
 carry.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.4.3 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

op{S}{cond} {Rd,} Rn, Operand2

Where:

op Is one of:

AND Logical AND.
ORR Logical OR, or bit set.
EOR Logical Exclusive OR.
BIC Logical AND NOT, or bit clear.
ORN Logical OR NOT.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the register holding the first operand.
Operand2 Is a flexible second operand.

Operation
The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the
values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

Restrictions
Do not use SP and do not use PC.

Condition flags
If S is specified, these instructions:

• Update the N and Z flags according to the result.

• Can update the C flag during the calculation of Operand2.

• Do not affect the V flag.

AND R9, R2, #0xFF00
ORREQ R2, R0, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORN R7, R11, R14, ROR #4

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

ORNS R7, R11, R14, ASR #32

4.4.4 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n

RRX{S}{cond} Rd, Rm

Where:

op Is one of:

ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation.

Rd Is the destination register.
Rm Is the register holding the value to be shifted.
Rs Is the register holding the shift length to apply to the value in Rm. Only the

least significant byte is used and can be in the range 0-255.
n Is the shift length. The range of shift length depends on the instruction:

ASR Shift length from 1 to 32
LSL Shift length from 0 to 31
LSR Shift length from 1 to 32
ROR Shift length from 1 to 31.

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation
ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places
specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged.
For details on what result is generated by the different instructions.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Restrictions
Do not use SP and do not use PC.

Condition flags
If S is specified:

• These instructions update the N, Z and C flags according to the result.

• The C flag is updated to the last bit shifted out, except when the shift length is 0.

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits.
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update.
LSR R4, R5, #6 ; Logical shift right by 6 bits.
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6.
RRX R4, R5 ; Rotate right with extend.

4.4.5 CLZ

Count Leading Zeros.

CLZ{cond} Rd, Rm

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rm Is the operand register.

Operation
The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in
Rd. The result value is 32 if no bits are set and zero if bit[31] is set.

Restrictions
Do not use SP and do not use PC.

Condition flags
This instruction does not change the flags.

CLZ R4,R9
CLZNE R2,R3

4.4.6 CMP and CMN

Compare and Compare Negative.

CMP{cond} Rn, Operand2

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

CMN{cond} Rn, Operand2

Where:

cond Is an optional condition code.
Rn Is the register holding the first operand.
Operand2 Is a flexible second operand.

Operation
These instructions compare the value in a register with Operand2. They update the condition flags
on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions
In these instructions:

• Do not use PC.

• Operand2 must not be SP.

Condition flags
These instructions update the N, Z, C and V flags according to the result.

CMP R2, R9
CMN R0, #6400
CMPGT SP, R7, LSL #2

4.4.7 MOV and MVN

Move and Move NOT.

MOV{S}{cond} Rd, Operand2

MOV{S}{cond} Rd, Rm

MOV{W}{cond} Rd, #imm16

MVN{S}{cond} Rd, Operand2

Where:

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation.

cond Is an optional condition code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Rd Is the destination register.
Operand2 Is a flexible second operand.
Rm The source register.
imm16 Is any value in the range 0-65535.

Operation
The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax
is the corresponding shift instruction:Also, the MOV instruction permits additional forms of Operand2
as synonyms for shift instructions:

• ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n.

• LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n != 0.

• LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n.

• ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n.

• RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

• MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs.

• MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs.

• MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs.

• MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the
imm16 operand.

Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:

• The second operand must be a register without shift.

• You must not specify the S suffix.

When Rd is PC in a MOV instruction:

• Bit[0] of the value written to the PC is ignored.

• A branch occurs to the address created by forcing bit[0] of that value to 0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Though it is possible to use MOV as a branch instruction, Arm strongly recommends
the use of a BX or BLX instruction to branch for software portability to the Arm®

instruction set.

Condition flags
If S is specified, these instructions:

• Update the N and Z flags according to the result.

• Can update the C flag during the calculation of Operand2.

• Do not affect the V flag.

MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated.
MOV R1, #0xFA05 ; Write value of 0xFA05 to R1, flags are not updated.
MOVS R10, R12 ; Write value in R12 to R10, flags get updated.
MOV R3, #23 ; Write value of 23 to R3.
MOV R8, SP ; Write value of stack pointer to R8.
MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of 0xF).
 ; to the R2 and update flags.

4.4.8 MOVT

Move Top.

MOVT{cond} Rd, #imm16

Where:

cond Is an optional condition code.
Rd Is the destination register.
imm16 Is a 16‑bit immediate constant and must be in the range 0-65535.

Operation
MOVT writes a 16‑bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32‑bit constant.

Restrictions
Rd must not be SP and must not be PC.

Condition flags
This instruction does not change the flags.

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 ; and APSR are unchanged.

4.4.9 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

op{cond} Rd, Rn

Where:

op Is one of:

REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign

extend to 32 bits.
RBIT Reverse the bit order in a 32‑bit word.

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the register holding the operand.

Operation
Use these instructions to change endianness of data:

REV

converts either:

• 32‑bit big‑endian data into little‑endian data.

• 32‑bit little‑endian data into big‑endian data.

REV16

converts either:

• 16‑bit big‑endian data into little‑endian data.

• 16‑bit little‑endian data into big‑endian data.

REVSH

converts either:

• 16‑bit signed big‑endian data into 32‑bit signed little‑endian data.

• 16‑bit signed little‑endian data into 32‑bit signed big‑endian data.

Restrictions
Do not use SP and do not use PC.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3.
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0.
REVSH R0, R5 ; Reverse Signed Halfword.
REVHS R3, R7 ; Reverse with Higher or Same condition.
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7.

4.4.10 SADD16 and SADD8

Signed Add 16 and Signed Add 8.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SADD16 Performs two 16-bit signed integer additions.
SADD8 Performs four 8-bit signed integer additions.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
Use these instructions to perform a halfword or byte add in parallel.

The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the result in the corresponding halfwords of the destination register.

The SADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Writes the result in the corresponding bytes of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions set the APSR.GE bits according to the results of the additions.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

For SADD16:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 APSR.GE<1:0> = if sum1 >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum2 >= 0 then '11' else '00';

For SADD8:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 APSR.GE<0> = if sum1 >= 0 then '1' else '0';
 APSR.GE<1> = if sum2 >= 0 then '1' else '0';
 APSR.GE<2> = if sum3 >= 0 then '1' else '0';
 APSR.GE<3> = if sum4 >= 0 then '1' else '0';

SADD16 R1, R0 ; Adds the halfwords in R0 to the corresponding halfwords of
 ; R1 and writes to corresponding halfword of R1.
SADD8 R4, R0, R5 ; Adds bytes of R0 to the corresponding byte in R5 and writes
 ; to the corresponding byte in R4.

4.4.11 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SASX Signed Add and Subtract with Exchange.
SSAX Signed Subtract and Add with Exchange.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
The SASX instruction:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the
second operand.

2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed top halfword of the second operand from the bottom signed halfword of
the first operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed halfword of
the first operand.

2. Writes the signed result of the subtraction to the top halfword of the destination register.

3. Adds the signed bottom halfword of the first operand with the signed top halfword of the
second operand.

4. Writes the signed result of the addition to the bottom halfword of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions set the APSR.GE bits according to the results.

For SASX:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 APSR.GE<1:0> = if diff >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum >= 0 then '11' else '00';

For SSAX:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 APSR.GE<1:0> = if sum >= 0 then '11' else '00';
 APSR.GE<3:2> = if diff >= 0 then '11' else '00';

SASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
 ; writes to top halfword of R0.
 ; Subtracts top halfword of R5 from bottom halfword of R4
 ; and writes to bottom halfword of R0.
SSAX R7, R3, R2 ; Subtracts bottom halfword of R2 from top halfword of R3
 ; and writes to top halfword of R7.
 ; Adds bottom halfword of R3 with top halfword of R2 and

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 ; writes to bottom halfword of R7.

4.4.12 SEL

Select bytes. Selects each byte of its result from either its first operand or its second operand,
according to the values of the GE flags.

SEL{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
The SEL instruction:

1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the
first or second operand register.

The behavior is:

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<7:0> = if APSR.GE<0> == '1' then R[n]<7:0> else R[m]<7:0>;
 R[d]<15:8> = if APSR.GE<1> == '1' then R[n]<15:8> else R[m]<15:8>;
 R[d]<23:16> = if APSR.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>;
 R[d]<31:24> = if APSR.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>;

Restrictions
None.

Condition flags
These instructions do not change the flags.

SADD16 R0, R1, R2 ; Set GE bits based on result.
SEL R0, R0, R3 ; Select bytes from R0 or R3, based on GE.

4.4.13 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8.

op{cond} {Rd,} Rn, Rm

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Where:

op Is one of:

SHADD16 Signed Halving Add 16.
SHADD8 Signed Halving Add 8.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register.

The SHADD16 instruction:The SHADD8 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the byte results in the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not change the flags.

SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1 and
 ; writes halved result to corresponding halfword in R1.
SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

4.4.14 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with
Exchange.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:
Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 117 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

SHASX Add and Subtract with Exchange and Halving.
SHSAX Subtract and Add with Exchange and Halving.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted
by one bit to the right causing a divide by two, or halving.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
 ; and writes halved result to top halfword of R7.
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4 and writes halved result to bottom halfword of R7.
SHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
 ; of R3 and writes halved result to top halfword of R0.
 ; Adds top halfword of R5 to bottom halfword of R3 and
 ; writes halved result to bottom halfword of R0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.4.15 SHSUB16 and SHSUB8

Signed Halving Subtract 16 and Signed Halving Subtract 8.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SHSUB16 Signed Halving Subtract 16.
SHSUB8 Signed Halving Subtract 8.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register.

The SHSUB16 instruction: The SHSUBB8 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfwords of the first
operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halved halfword results in the destination register.

1. Subtracts each byte of the second operand from the corresponding byte of the first operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the corresponding signed byte results in the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not change the flags.

SHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; of R1 and writes to corresponding halfword of R1.
SHSUB8 R4, R0, R5 ; Subtracts bytes of R0 from corresponding byte in R5,
 ; and writes to corresponding byte in R4.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.4.16 SSUB16 and SSUB8

Signed Subtract 16 and Signed Subtract 8.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
Use these instructions to change endianness of data.

The SSUB16 instruction:The SSUB8 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of the first
operand.

2. Writes the difference result of two signed halfwords in the corresponding halfword of the
destination register.

1. Subtracts each byte of the second operand from the corresponding byte of the first operand.

2. Writes the difference result of four signed bytes in the corresponding byte of the destination
register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions set the APSR.GE bits according to the results of the subtractions.

For SSUB16:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;

 APSR.GE<1:0> = if diff1 >= 0 then '11' else '00';

 APSR.GE<3:2> = if diff2 >= 0 then '11' else '00';

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

For SSUB8:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 APSR.GE<0> = if diff1 >= 0 then '1' else '0';
 APSR.GE<1> = if diff2 >= 0 then '1' else '0';
 APSR.GE<2> = if diff3 >= 0 then '1' else '0';

 APSR.GE<3> = if diff4 >= 0 then '1' else '0';

SSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of R1
 ; and writes to corresponding halfword of R1.
SSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in
 ; R0, and writes to corresponding byte of R4.

4.4.17 TST and TEQ

Test bits and Test Equivalence.

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

Where:

cond Is an optional condition code.
Rn Is the first operand register.
Operand2 Is a flexible second operand.

Operation
These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that
bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of
Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions:

• Update the N and Z flags according to the result.

• Can update the C flag during the calculation of Operand2,

• Do not affect the V flag.

TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,
 ; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
 ; value in R9, APSR is updated but result is discarded.

4.4.18 UADD16 and UADD8

Unsigned Add 16 and Unsigned Add 8.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UADD16 Performs two 16-bit unsigned integer additions.
UADD8 Performs four 8-bit unsigned integer additions.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
Use these instructions to add 16- and 8-bit unsigned data.

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The UADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Writes the unsigned result in the corresponding byte of the destination register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions set the APSR.GE bits according to the results of the additions.

For UADD16:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 APSR.GE<1:0> = if sum1 >= 0x10000 then '11' else '00';
 APSR.GE<3:2> = if sum2 >= 0x10000 then '11' else '00';

For UADD8:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 APSR.GE<0> = if sum1 >= 0x100 then '1' else '0';
 APSR.GE<1> = if sum2 >= 0x100 then '1' else '0';
 APSR.GE<2> = if sum3 >= 0x100 then '1' else '0';
 APSR.GE<3> = if sum4 >= 0x100 then '1' else '0';

UADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1,
 ; writes to corresponding halfword of R1.
UADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and writes
 ; to corresponding byte in R4.

4.4.19 UASX and USAX

Unsigned Add and Subtract with Exchange and Unsigned Subtract and Add with Exchange.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UASX Add and Subtract with Exchange.
USAX Subtract and Add with Exchange.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Rn Is the first operand register.
Rm Is the second operand register.

Operation
The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first
operand.

2. Writes the unsigned result from the subtraction to the bottom halfword of the destination
register.

3. Adds the top halfword of the first operand with the bottom halfword of the second operand.

4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:

1. Adds the bottom halfword of the first operand with the top halfword of the second operand.

2. Writes the unsigned result of the addition to the bottom halfword of the destination register.

3. Subtracts the bottom halfword of the second operand from the top halfword of the first
operand.

4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions set the APSR.GE bits according to the results.

For UASX:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 APSR.GE<1:0> = if diff >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum >= 0x10000 then '11' else '00';

For USAX:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 APSR.GE<1:0> = if sum >= 0x10000 then '11' else '00';
 APSR.GE<3:2> = if diff >= 0 then '11' else '00';

UASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 ; writes to top halfword of R0.
 ; Subtracts bottom halfword of R5 from top halfword of R0
 ; and writes to bottom halfword of R0.
USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
 ; and writes to bottom halfword of R7.
 ; Adds top halfword of R3 to bottom halfword of R2 and
 ; writes to top halfword of R7.

4.4.20 UHADD16 and UHADD8

Unsigned Halving Add 16 and Unsigned Halving Add 8.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UHADD16 Unsigned Halving Add 16.
UHADD8 Unsigned Halving Add 8.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the register holding the first operand.
Rm Is the register holding the second operand.

Operation
Use these instructions to add 16- and 8-bit data and then to halve the result before writing the
result to the destination register.

The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Shuffles the halfword result by one bit to the right, halving the data.

3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions
Do not use SP and do not use PC.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
 ; and writes halved result to corresponding halfword in R7.
UHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and writes
 ; halved result to corresponding byte in R4.

4.4.21 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with
Exchange.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UHASX Unsigned Halving Add and Subtract with Exchange.
UHSAX Unsigned Halving Subtract and Add with Exchange.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the addition to the top halfword of the destination register.

4. Subtracts the top halfword of the second operand from the bottom halfword of the first
operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the subtraction in the bottom halfword of the destination register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top halfword of the first
operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination register.

4. Adds the bottom halfword of the first operand with the top halfword of the second operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

6. Writes the halfword result of the addition to the bottom halfword of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
 ; and writes halved result to top halfword of R7.
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R7 and writes halved result to bottom halfword of R7.
UHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3 and writes halved result to top halfword of R0.
 ; Adds top halfword of R5 to bottom halfword of R3 and
 ; writes halved result to bottom halfword of R0.

4.4.22 UHSUB16 and UHSUB8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UHSUB16 Performs two unsigned 16-bit integer subtractions,
halves the results, and writes the results to the
destination register.

UHSUB8 Performs four unsigned 8-bit integer subtractions, halves
the results, and writes the results to the destination
register.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register.

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first
operand.

2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination
register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

The UHSUB8 instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.

2. Shuffles each byte result by one bit to the right, halving the data.

3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not change the flags.

UHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of
 ; R1 and writes halved result to corresponding halfword in
 ; R1.
UHSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0 and
 ; writes halved result to corresponding byte in R4.

4.4.23 USAD8

Unsigned Sum of Absolute Differences.

USAD8{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
The USAD8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first
operand register.

2. Adds the absolute values of the differences together.

3. Writes the result to the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not change the flags.

USAD8 R1, R4, R0 ; Subtracts each byte in R0 from corresponding byte of R4
 ; adds the differences and writes to R1.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

USAD8 R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0,
 ; adds the differences and writes to R0.

4.4.24 USADA8

Unsigned Sum of Absolute Differences and Accumulate.

USADA8{cond} Rd, Rn, Rm, Ra

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the first operand register.
Rm Is the second operand register.
Ra Is the register that contains the accumulation value.

Operation
The USADA8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first
operand register.

2. Adds the unsigned absolute differences together.

3. Adds the accumulation value to the sum of the absolute differences.

4. Writes the result to the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not change the flags.

USADA8 R1, R0, R6 ; Subtracts bytes in R0 from corresponding halfword of R1
 ; adds differences, adds value of R6, writes to R1.
USADA8 R4, R0, R5, R2 ; Subtracts bytes of R5 from corresponding byte in R0
 ; adds differences, adds value of R2 writes to R4.

4.4.25 USUB16 and USUB8

Unsigned Subtract 16 and Unsigned Subtract 8.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

USUB16 Unsigned Subtract 16.
USUB8 Unsigned Subtract 8.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination
register.

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of
the first operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUB8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first
operand register.

2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions set the APSR.GE bits according to the results of the subtractions.

For USUB16:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 APSR.GE<1:0> = if diff1 >= 0 then '11' else '00';
 APSR.GE<3:2> = if diff2 >= 0 then '11' else '00';

For USUB8:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 APSR.GE<0> = if diff1 >= 0 then '1' else '0';

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 APSR.GE<1> = if diff2 >= 0 then '1' else '0';
 APSR.GE<2> = if diff3 >= 0 then '1' else '0';
 APSR.GE<3> = if diff4 >= 0 then '1' else '0';

USUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of R1
 ; and writes to corresponding halfword in R1.
USUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0 and
 ; writes to the corresponding byte in R4.

4.5 Coprocessor instructions
Reference material for the Cortex®-M33 processor coprocessor instruction set.

4.5.1 List of coprocessor instructions

An alphabetically ordered list of the coprocessor instructions, with a brief description and link to
the syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-7: Coprocessor instructions

Mnemonic Brief description See

CDP, CDP2 Coprocessor data processing 4.5.3 CDP and CDP2 on page 132

MCR, MCR2 Move to Coprocessor from Register 4.5.4 MCR and MCR2 on page 132

MCRR, MCRR2 Move to Coprocessor from two Registers 4.5.5 MCRR and MCRR2 on page 133

MRC, MRC2 Move to Register from Coprocessor 4.5.6 MRC and MRC2 on page 133

MRRC, MRRC2 Move to two Registers from Coprocessor 4.5.7 MRRC and MRRC2 on page 134

4.5.2 Coprocessor intrinsics

The following table shows intrinsics for coprocessor data-processing instructions.

Intrinsics Equivalent Instruction

void __arm_cdp(coproc, opc1, CRd, CRn, CRm, opc2) CDP coproc, #opc1, CRd, CRn, CRm, #opc2

void __arm_cdp2(coproc, opc1, CRd, CRn, CRm, opc2) CDP2 coproc, #opc1, CRd, CRn, CRm, #opc2

The following table shows intrinsics that map to coprocessor to core register transfer instructions.

Intrinsics Equivalent Instruction

void __arm_mcr(coproc, opc1, uint32_t value, CRn, CRm,
opc2)

MCR coproc, #opc1, Rt, CRn, CRm, #opc2

void __arm_mcr2(coproc, opc1, uint32_t value, CRn, CRm,
opc2)

MCR2 coproc, #opc1, Rt, CRn, CRm,
#opc2

uint32_t __arm_mrc(coproc, opc1, CRn, CRm, opc2) MRC coproc, #opc1, Rt, CRn, CRm, #opc2

uint32_t __arm_mrc2(coproc, opc1, CRn, CRm, opc2) MRC2 coproc, #opc1, Rt, CRn, CRm,
#opc2

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Intrinsics Equivalent Instruction
void __arm_mcrr(coproc, opc1, uint64_t value, CRm) MCRR coproc, #opc1, Rt, Rt2, CRm

void __arm_mcrr2(coproc, opc1, uint64_t value, CRm) MCRR2 coproc, #opc1, Rt, Rt2, CRm

uint64_t __arm_mrrc(coproc, opc1, CRm) MRRC coproc, #opc1, Rt, Rt2, CRm

uint64_t __arm_mrrc2(coproc, opc1, CRm) MRRC2 coproc, #opc1, Rt, Rt2, CRm

4.5.3 CDP and CDP2

Coprocessor Data Processing tells a coprocessor to perform an operation.

CDP{cond} coproc, #opc1, CRd, CRn, CRm{, #opc2}

CDP2{cond} coproc, #opc1, CRd, CRn, CRm{, #opc2}

Where:

cond is an optional condition code.
coproc is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
opc1 is a 4-bit coprocessor-specific opcode.
opc2 is an optional 3-bit coprocessor-specific opcode.
CRd, CRn, CRm are coprocessor registers.

Operation
The operation of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

4.5.4 MCR and MCR2

Move to Coprocessor from Register. Depending on the coprocessor, you might be able to specify
various additional operations.

MCR{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

MCR2{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

where:

cond is an optional condition code.
coproc is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be In the range 0-7.
opc1 is a 3-bit coprocessor-specific opcode.
opc2 is an optional 3-bit coprocessor-specific opcode.
Rt is an Arm source register. Rt must not be PC.
CRn, CRm are coprocessor registers.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
The operation of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

4.5.5 MCRR and MCRR2

Move to Coprocessor from two Registers. Depending on the coprocessor, you might be able to
specify various additional operations.

MCRR{cond} coproc, #opc1, Rt, Rt2, CRm

MCRR2{cond} coproc, #opc1, Rt, Rt2, CRm
Where:

cond is an optional condition code.
coproc is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be In the range 0-7.
opc1 is a 3-bit coprocessor-specific opcode.
Rt, Rt2 are Arm source registers. Rt and Rt2 must not be PC.
CRm are coprocessor registers.

Operation
The operation of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

4.5.6 MRC and MRC2

Move to Register from Coprocessor. Depending on the coprocessor, you might be able to specify
various additional operations.

MRC{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

MRC2{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

where:

cond is an optional condition code.
coproc is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
opc1 is a 3-bit coprocessor-specific opcode.
opc2 is an optional 3-bit coprocessor-specific opcode.
Rt is the Arm destination register. Rt must not be PC.

Rt can be APSR_nzcv. This means that the coprocessor executes an instruction
that changes the value of the condition flags in the APSR.

CRn, CRm are coprocessor registers.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
The operation of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

4.5.7 MRRC and MRRC2

Move to two Registers from Coprocessor. Depending on the coprocessor, you might be able to
specify various additional operations.

MRRC{cond} coproc, #opc1, Rt, Rt2, CRm

MRRC2{cond} coproc, #opc1, Rt, Rt2, CRm

Where:

cond is an optional condition code.
coproc is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
opc1 is a 3-bit coprocessor-specific opcode.
Rt, Rt2 are Arm destination registers. Rt and Rt2 must not be PC.
CRm is a coprocessor register.

Operation
The operation of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

4.6 CDE instructions
Reference material for the Cortex®-M33 processor Custom Datapath Extension (CDE) instruction
set for the implementation of Arm Custom Instructions (ACIs).

4.6.1 List of CDE instructions

An alphabetically ordered list of the CDE instructions, with a brief description and link to the syntax
definition, operations, restrictions, and example usage for each instruction.

Table 4-10: Coprocessor instructions

Mnemonic Brief description See

CX1{A} Custom Instruction Class 1 4.6.2 CX1{A} on page 135

CX1D{A} Custom Instruction Class 1 Dual 4.6.3 CX1D{A} on page 135

CX2{A} Custom Instruction Class 2 4.6.4 CX2{A} on page 136

CX2D{A} Custom Instruction Class 2 Dual 4.6.5 CX2D{A} on page 137

CX3{A} Custom Instruction Class 3 4.6.6 CX3{A} on page 137

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Brief description See
CX3D{A} Custom Instruction Class 3 Dual 4.6.7 CX3D{A} on page 138

VCX1{A} Custom Extension Instruction Class 1 4.6.8 VCX1{A} on page 139

VCX2{A} Custom Extension Instruction Class 2 4.6.9 VCX2{A} on page 140

VCX3{A} Custom Extension Instruction Class 3 4.6.10 VCX3{A} on page 141

4.6.2 CX1{A}

Custom Instruction Class 1 {Accumulation}. Custom Instruction Class 1 computes a value based on
an immediate, and optionally the destination value, and writes the result to the destination register.

The source and destination registers can be either general-purpose registers or the condition flags,
specified by use of APSR_nzcv.

CX1 <coproc>, <Rd>, #<imm>

CX1A{cond} <coproc>, <Rd>, #<imm>

Where:

A is for Accumulate with existing register contents. This parameter is either:

Absent Encoded as A = 0
Present Encoded as A =1

<Cond> is an optional condition code.
<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
<Rd> is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in

the "Rd" field. For accumulator variants <Rd> also specifies the source register.
APSR_nzcv is encoded by the "Rd" field value 0b1111.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

4.6.3 CX1D{A}

Custom Instruction Class 1 Dual {Accumulation}. Custom Instruction Class 1 Dual computes a value
based on an immediate, and optionally the destination register pair value, and writes the result to a
destination register pair.

The destination registers are a consecutive pair of general-purpose registers. The significance of
the words in each pair is consistent with the current data endianness.

CX1D <coproc>, <Rd>, <Rd+1>, #<imm>

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

CX1DA{cond} <coproc>, <Rd>, <Rd+1>, #<imm>

Where:

A is for Accumulate with existing register contents. This parameter is either:

Absent Encoded as A = 0
Present Encoded as A =1

<Cond> is an optional condition code.
<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
<Rd> is the general-purpose R0 - R10 specifying the first of destination register

pair, encoded in the "Rd" field. For accumulator variants <Rd> also specifies the
source register.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

4.6.4 CX2{A}

Custom Instruction Class 2 {Accumulation}. Custom Instruction Class 2 computes a value based on
a source register, an immediate, and optionally the destination value, and writes the result to the
destination register.

The source and destination registers can be either general-purpose registers or the Condition flags,
specified by use of APSR_nzcv.

CX2 <coproc>, <Rd>, <Rn, #<imm>

CX2A{cond} <coproc>, <Rd>, <Rn, #<imm>

Where:

A is for Accumulate with existing register contents. This parameter must be one
of the following values:

Absent Encoded as A = 0
Present Encoded as A =1

<Cond> is an optional condition code.
<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
<Rd> is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in

the "Rd" field. For accumulator variants <Rd> also specifies the source register.
APSR_nzcv is encoded by the "Rd" field value 0b1111.

<Rn> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the
"Rn" field. APSR_nzcv is encoded by the "Rn" field value 0b1111.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

4.6.5 CX2D{A}

Custom Instruction Class 2 Dual {Accumulation}. Custom instruction Class 2 Dual computes a value
based on a source register, an immediate, and optionally the destination register pair value, and
writes the result to the destination register pair.

The destination registers are a consecutive pair of general-purpose registers. The source registers
can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv. The
significance of the words in each pair is consistent with the current data endianness.

CX2D <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

CX2DA{cond} <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

Where:

A is for Accumulate with existing register contents. This parameter must be one
of the following values:

Absent Encoded as A = 0
Present Encoded as A =1

<Cond> is an optional condition code.
<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
<Rd> is the general-purpose R0 - R10 specifying the first of destination register

pair, encoded in the "Rd" field. For accumulator variants <Rd> also specifies the
source register.

<Rn> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the
"Rn" field. APSR_nzcv is encoded by the "Rn" field value 0b1111.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.6.6 CX3{A}

Custom Instruction Class 3 {Accumulation}. Custom Instruction Class 3 computes a value based on
two source registers, an immediate and optionally the destination value, and writes the result to the
destination register.

The source and destination registers can be either general-purpose registers or the Condition flags,
specified by use of APSR_nzcv.

CX3 <coproc>, <Rd>, <Rn, <Rm>, #<imm>

CX3A{cond} <coproc>, <Rd>, <Rn, <Rm>, #<imm>

Where:

A is for Accumulate with existing register contents. This parameter must be one
of the following values:

Absent Encoded as A = 0
Present Encoded as A =1

<Cond> is an optional condition code.
<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
<Rd> is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in

the "Rd" field. For accumulator variants <Rd> also specifies the source register.
APSR_nzcv is encoded by the "Rd" field value 0b1111.

<Rn> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the
"Rn" field. APSR_nzcv is encoded by the "Rn" field value 0b1111.

<Rm> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the
"Rm" field. APSR_nzcv is encoded by the "Rm" field value 0b1111.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

4.6.7 CX3D{A}

Custom Instruction Class 3 Dual {Accumulation}. Custom Instruction Class 3 Dual computes a value
baed on two source registers, an immediate and optionally the destination register pair value, and
writes the result to the destination register pair.

The source registers can be either general-purpose registers or the Condition flags, specified by use
of APSR_nzcv. The destination registers are a consecutive pair of general-purpose registers. The
significance of the words in each pair is consistent with the current data endianness.

CX3D <coproc>, <Rd>, <Rd+1>, <Rn, <Rm>, #<imm>

CX3DA{cond} <coproc>, <Rd>, <Rd+1>, <Rn, <Rm>, #<imm>
Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 138 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Where:

A is for Accumulate with existing register contents. This parameter must be one
of the following values:

Absent Encoded as A = 0
Present Encoded as A =1

<Cond> is an optional condition code.
<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,

where n is an integer whose value must be in the range 0-7.
<Rd> is the general-purpose register R0 - R10 specifying the first of destination

register pair,encoded in the "Rd" field. For accumulator variants, <Rd> also
specifies the source register.

<Rn> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the
"Rn" field. APSR_nzcv is encoded by the "Rn" field value 0b1111.

<Rm> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the
"Rm" field. APSR_nzcv is encoded by the "Rm" field value 0b1111.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

4.6.8 VCX1{A}

Custom Extension Instruction Class 1 {Accumulation}. Custom Extension instruction class 1
computes a value based on an immediate and optionally the destination value, and writes the result
to the destination register.

The source and destination registers are within the floating-point register file, and require the
current execution state to have access to these registers.

VCX1 <coproc>, <Dd>, #<imm> (Double-register non-accumulator variant)

VCX1A <coproc>, <Dd>, #<imm> (Double-register accumulator variant)

VCX1 <coproc>, <Sd>, #<imm> (Single-register non-accumulator variant)

VCX1A <coproc>, <Sd>, #<imm> (Single-register accumulator variant)

Where:

A is for Accumulate with existing register contents. This parameter must be one
of the following values:

Absent Encoded as A = 0
Present Encoded as A =1

<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer whose value must be in the range 0-7.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

<Dd> is the 64-bit name of the floating-point source and destination register D0 -
D15 encoded in the "D:Vd" fields.

<Sd> is the 32-bit name of the floating-point source and destination register S0 -
S31 encoded in the "Vd:D" fields.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

4.6.9 VCX2{A}

Custom Extension Instruction Class 2 {Accumulation}. Custom Extension instruction class 2
computes a value based on a source register, an immediate and optionally the destination value,
and writes the result to the destination register.

The source and destination registers are within the floating-point register file, and require the
current execution state to have access to these registers.

VCX2 <coproc>, <Dd>, <Dm>, #<imm> (Double-register non-accumulator variant)

VCX2A <coproc>, <Dd>, <Dm>, #<imm> (Double-register accumulator variant)

VCX2 <coproc>, <Sd>, <Sm>, #<imm> (Single-register non-accumulator variant)

VCX2A <coproc>, <Sd>, <Sm>, #<imm> (Single-register accumulator variant)

Where:

A is for Accumulate with existing register contents. This parameter must be one
of the following values:

Absent Encoded as A = 0
Present Encoded as A =1

<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer whose value must be in the range 0-7.

<Dd> is the 64-bit name of the floating-point source and destination register D0 -
D15 encoded in the "D:Vd" fields.

<Dm> is the 64-bit name of the floating-point source and destination register D0 -
D15 encoded in the "M:Vm" fields.

<Sd> is the 32-bit name of the floating-point source and destination register S0 -
S31 encoded in the "Vd:D" fields.

<Sm> is the 32-bit name of the floating-point source register S0 - S31 encoded in
the "Vm:M" fields.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.6.10 VCX3{A}

Custom Extension Instruction Class 3 {Accumulation}. Custom Extension instruction class 3
computes a value based on two source registers, an immediate and optionally the destination value,
and writes the result to the destination register.

The source and destination registers are within the floating-point register file, and require the
current execution state to have access to these registers.

VCX3 <coproc>, <Dd>, <Dn>, <Dm>, #<imm> (Double-register non-accumulator variant)

VCX3A <coproc>, <Dd>, <Dn>, <Dm>, #<imm> (Double-register accumulator variant)

VCX3 <coproc>, <Sd>, <Sn>, <Sm>, #<imm> (Single-register non-accumulator variant)

VCX3A <coproc>, <Sd>, <Sn>, <Sm>, #<imm> (Single-register accumulator variant)

Where:

A is for Accumulate with existing register contents. This parameter must be one
of the following values:

Absent Encoded as A = 0
Present Encoded as A =1

<coproc> is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer whose value must be in the range 0-7.

<Dd> is the 64-bit name of the floating-point source and destination register D0 -
D15 encoded in the "D:Vd" fields.

<Dm> is the 64-bit name of the floating-point source and destination register D0 -
D15 encoded in the "M:Vm" fields.

<Dn> is the 64-bit name of the floating-point source and destination register D0 -
D15 encoded in the "N:Vn" fields.

<Sd> is the 32-bit name of the floating-point source register S0 - S31 encoded in
the "Vd:D" fields.

<Sm> is the 32-bit name of the floating-point source register S0 - S31 encoded in
the "Vm:M" fields.

<Sn> is the 32-bit name of the floating-point source and destination register S0 -
S31 encoded in the "Vn:N" fields.

<imm> is the immediate encoded in op1:op2:op3.

Operation
The operation of these instructions can be customized depending on the coprocessor number.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.7 Multiply and divide instructions
Reference material for the Cortex®-M33 processor multiply and divide instruction set.

4.7.1 List of multiply and divide instructions

An alphabetically ordered list of the multiply and divide instructions, with a brief description and
link to the syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-11: Multiply and divide instructions

Mnemonic Brief description See

MLA Multiply with Accumulate, 32-bit result 4.7.2 MUL, MLA, and MLS on page 143

MLS Multiply and Subtract, 32-bit result 4.7.2 MUL, MLA, and MLS on page 143

MUL Multiply, 32-bit result 4.7.2 MUL, MLA, and MLS on page 143

SDIV Signed Divide 4.7.3 SDIV and UDIV on page 144

SMLA[B,T] Signed Multiply Accumulate (halfwords) 4.7.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and
SMLATT on page 145

SMLAD,
SMLADX

Signed Multiply Accumulate Dual 4.7.5 SMLAD and SMLADX on page 146

SMLAL Signed Multiply with Accumulate (32 × 32 + 64), 64-bit
result

4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL on page
155

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords) 4.7.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB,
and SMLALTT on page 147

SMLALD,
SMLALDX

Signed Multiply Accumulate Long Dual 4.7.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB,
and SMLALTT on page 147

SMLAW[B|T] Signed Multiply Accumulate (word by halfword) 4.7.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and
SMLATT on page 145

SMLSD Signed Multiply Subtract Dual 4.7.7 SMLSD and SMLSLD on page 149

SMLSLD Signed Multiply Subtract Long Dual 4.7.7 SMLSD and SMLSLD on page 149

SMMLA Signed Most Significant Word Multiply Accumulate 4.7.8 SMMLA and SMMLS on page 151

SMMLS,
SMMLSR

Signed Most Significant Word Multiply Subtract 4.7.8 SMMLA and SMMLS on page 151

SMMUL,
SMMULR

Signed Most Significant Word Multiply 4.7.9 SMMUL on page 152

SMUAD,
SMUADX

Signed Dual Multiply Add 4.7.10 SMUAD and SMUSD on page 153

SMUL[B,T] Signed Multiply (word by halfword) 4.7.11 SMUL and SMULW on page 154

SMULL Signed Multiply (32 × 32), 64-bit result 4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL on page
155

SMULWB,
SMULWT

Signed Multiply (word by halfword) 4.7.11 SMUL and SMULW on page 154

SMUSDX
,SMUSD

Signed Dual Multiply Subtract 4.7.10 SMUAD and SMUSD on page 153

UDIV Unsigned Divide 4.7.3 SDIV and UDIV on page 144

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Brief description See

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 × 32
+ 32 + 32), 64-bit result

4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL on page
155

UMLAL Unsigned Multiply with Accumulate (32 × 32 + 64), 64-
bit result

4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL on page
155

UMULL Unsigned Multiply (32 × 32), 64-bit result 4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL on page
155

4.7.2 MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32‑bit operands, and
producing a 32-bit result.

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate

MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

Where:

cond Is an optional condition code.
S Is an optional suffix. If S is specified, the condition code flags are updated on

the result of the operation.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm Are registers holding the values to be multiplied.
Ra Is a register holding the value to be added or subtracted from.

Operation
The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of
the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from
Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

Restrictions
In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:

• Rd, Rn, and Rm must all be in the range R0-R7.

• Rd must be the same as Rm.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• You must not use the cond suffix.

Condition flags
The MLA instruction and MULS instructions:

• Only MULS instruction updates the N and Z flags according to the result.

• No other MUL, MLA, or MLS instruction affects the condition flags.

MUL R10, R2, R5 ; Multiply, R10 = R2 × R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 × R1) + R5
MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 × R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 × R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 × R6)

4.7.3 SDIV and UDIV

Signed Divide and Unsigned Divide.

SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the register holding the value to be divided.
Rm Is a register holding the divisor.

Operation
The SDIV instruction performs a signed integer division of the value in Rn by the value in Rm.

The UDIV instruction performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
towards zero.

For the Cortex®-M33 processor, the integer divide operation latency is in the range of 2-11 cycles.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not change the flags.

SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

4.7.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and SMLATT

Signed Multiply Accumulate (halfwords).

op{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMLAWB Signed Multiply Accumulate (word by halfword)

The bottom halfword, bits [15:0], of Rm is used.

SMLAWT Signed Multiply Accumulate (word by halfword)

The top halfword, bits [31:16] of Rm is used.

SMLABB,
SMLABT

Signed Multiply Accumulate Long (halfwords)

The bottom halfword, bits [15:0], of Rm is used.

SMLATB,
SMLATT

Signed Multiply Accumulate Long (halfwords)

The top halfword, bits [31:16] of Rm is used.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the values to be multiplied.
Ra Is a register holding the value to be added or subtracted from.

Operation
The SMLABB, SMLABT, SMLATB, SMLATT instructions:

• Multiply the specified signed halfword, top or bottom, values from Rn and Rm.

• Add the value in Ra to the resulting 32-bit product.

• Write the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.

The SMLAWB and SMLAWT instructions:

• Multiply the 32-bit signed values in Rn with:

◦ The top signed halfword of Rm, T instruction suffix.

◦ The bottom signed halfword of Rm, B instruction suffix.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product

• Write the result of the multiplication and addition in Rd.

The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the SMLAWB, SMLAWT, instruction sets
the Q flag in the APSR. No overflow can occur during the multiplication.

Restrictions
In these instructions, do not use SP and do not use PC.

Condition flags
If an overflow is detected, the Q flag is set.

SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
 ; R1 and writes to R5.
SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom halfword
 ; of R4, adds R1 and writes to R5.
SMLATT R5, R6, R4, R1 ; Multiplies top halfwords of R6 and R4, adds
 ; R1 and writes the sum to R5.
SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top halfword
 ; of R4, adds R1 and writes to R5.
SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top halfword of
 ; R3, adds R2 and writes to R4.
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
 ; R3 to the result and writes top 32-bits to R10.
SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1, adds R5
 ; and writes top 32-bits to R10.

4.7.5 SMLAD and SMLADX

Signed Multiply Accumulate Long Dual, Signed Multiply Accumulate Long Dual exchange.

op{X}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMLAD Signed Multiply Accumulate Long Dual.
SMLADX Signed Multiply Accumulate Long Dual exchange.

X specifies which halfword of the source register Rn is
used as the multiply operand.

If X is omitted, the multiplications are bottom × bottom
and top × top.

If X is present, the multiplications are bottom × top and
top × bottom.

cond Is an optional condition code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Rd Is the destination register.
Rn Is the first operand register holding the values to be multiplied.
Rm Is the second operand register.
Ra Is the accumulate value.

Operation
The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values.

The SMLAD instruction:

1. Multiplies the top signed halfword value in Rn with the top signed halfword of Rm and the
bottom signed halfword value in Rn with the bottom signed halfword of Rm.

2. Adds both multiplication results to the signed 32-bit value in Ra.

3. Writes the 32-bit signed result of the multiplication and addition to Rd.

The SMLADX instruction:

1. Multiplies the top signed halfword value in Rn with the bottom signed halfword of Rm and the
bottom signed halfword value in Rn with the top signed halfword of Rm.

2. Adds both multiplication results to the signed 32-bit value in Ra.

3. Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions
Do not use SP and do not use PC.

Condition flags
Sets the Q flag if the accumulate operation overflows.

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
 ; corresponding halfwords in R1, adds R5 and writes to
 ; R10.
SMLALDX R0, R2, R4, R6 ; Multiplies top halfword of R2 with bottom halfword
 ; of R4, multiplies bottom halfword of R2 with top
 ; halfword of R4, adds R6 and writes to R0.

4.7.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB, and SMLALTT

Signed Multiply Accumulate Long Dual and Signed Multiply Accumulate Long (halfwords).

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

SMLALBB,
SMLALBT

Signed Multiply Accumulate Long (halfwords, B and T).

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

B and T specify which halfword of the source registers Rn
and Rm are used as the first and second multiply operand:

The bottom halfword, bits [15:0], of Rn is used.

SMLALBB: the bottom halfword, bits [15:0], of Rm is used.
SMLALBT: the top halfword, bits [31:16], of Rm is used.

SMLALTB,
SMLALTT

Signed Multiply Accumulate Long (halfwords, B and T).

The top halfword, bits [31:16], of Rn is used.

SMLALTB: the bottom halfword, bits [15:0], of Rm is used.
SMLALTT: the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

The multiplications are bottom × bottom and top × top.
SMLALDX Signed Multiply Accumulate Long Dual reversed.

The multiplications are bottom × top and top × bottom.

cond Is an optional condition code.
RdHi, RdLo Are the destination registers. RdLo is the lower 32 bits and RdHi is the upper

32 bits of the 64-bit integer. The accumulating value for the lower and upper
32 bits are held in the RdLo and RdHi registers respectively.

Rn, Rm Are registers holding the first and second operands.

Operation
• Multiplies the two’s complement signed word values from Rn and Rm.

• Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.

• Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

• Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

• Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.

• Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s
complement signed 16-bit integers. These instructions:

• SMLALD multiplies the top signed halfword value of Rn with the top signed halfword of Rm and
the bottom signed halfword values of Rn with the bottom signed halfword of Rm.

• SMLALDX multiplies the top signed halfword value of Rn with the bottom signed halfword of Rm
and the bottom signed halfword values of Rn with the top signed halfword of Rm.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the
resulting 64-bit product.

• Write the 64-bit product in RdLo and RdHi.

Restrictions
In these instructions:

• Do not use SP and do not use PC.

• RdHi and RdLo must be different registers.

Condition flags
These instructions do not affect the condition code flags.

SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R7, sign extends to 32-bit, adds
 ; R1:R2 and writes to R1:R2.
SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
 ; halfword of R7,sign extends to 32-bit, adds R1:R2
 ; and writes to R1:R2.
SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and bottom
 ; halfwords of R5 and R1, adds R8:R6 and writes to
 ; R8:R6.
SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
 ; halfword of R1, and bottom halfword of R5 with
 ; top halfword of R1, adds R8:R6 and writes to
 ; R8:R6.

4.7.7 SMLSD and SMLSLD

Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual.

op{X}{cond} Rd, Rn, Rm, Ra ; SMLSD

op{X}{cond} RdLo, RdHi, Rn, Rm ; SMLSLD

Where:

op Is one of:

SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual reversed.

If X is present, the multiplications are bottom × top and top × bottom. If the X
is omitted, the multiplications are bottom × bottom and top × top.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Ra Is the register holding the accumulate value.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

RdLo Supplies the lower 32 bits of the accumulate value, and is the destination
register for the lower 32 bits of the result.

RdHi Supplies the upper 32 bits of the accumulate value, and is the destination
register for the upper 32 bits of the result.

Operation
The SMLSD instruction interprets the values from the first and second operands as four signed
halfwords. This instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit halfword multiplications.

• Subtracts the result of the upper halfword multiplication from the result of the lower halfword
multiplication.

• Adds the signed accumulate value to the result of the subtraction.

• Writes the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords. This
instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit halfword multiplications.

• Subtracts the result of the upper halfword multiplication from the result of the lower halfword
multiplication.

• Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.

• Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions
In these instructions:

• Do not use SP and do not use PC.

Condition flags
The SMLSD{X} instruction sets the Q flag if the accumulate operation overflows. Overflow cannot
occur during the multiplications or subtraction.

For the T32 instruction set, these instructions do not affect the condition code flags.

SMLSD R0, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom
 ; halfword of R5, multiplies top halfword of R4
 ; with top halfword of R5, subtracts second from
 ; first, adds R6, writes to R0.
SMLSDX R1, R3, R2, R0 ; Multiplies bottom halfword of R3 with top
 ; halfword of R2, multiplies top halfword of R3
 ; with bottom halfword of R2, subtracts second from
 ; first, adds R0, writes to R1.
SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with bottom
 ; halfword of R2, multiplies top halfword of R6
 ; with top halfword of R2, subtracts second from
 ; first, adds R6:R3, writes to R6:R3.
SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 ; halfword of R2, multiplies top halfword of R6
 ; with bottom halfword of R2, subtracts second from
 ; first, adds R6:R3, writes to R6:R3.

4.7.8 SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply
Subtract.

op{R}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.

R If R is present, the result is rounded instead of being truncated. In this case
the constant 0x80000000 is added to the product before the top halfword is
extracted.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second multiply operands.
Ra Is the register holding the accumulate value.

Operation
The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

• Multiplies the values in Rn and Rm.

• Optionally rounds the result by adding 0x80000000.

• Extracts the most significant 32 bits of the result.

• Adds the value of Ra to the signed extracted value.

• Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

• Multiplies the values in Rn and Rm.

• Optionally rounds the result by adding 0x80000000.

• Extracts the most significant 32 bits of the result.

• Subtracts the extracted value of the result from the value in Ra.

• Writes the result of the subtraction in Rd.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Restrictions
In these instructions:

• Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

SMMLA R0, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits, adds
 ; R6, truncates and writes to R0.
SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits, adds
 ; R4, rounds and writes to R6.
SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
 ; subtracts R7, rounds and writes to R3.
SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
 ; subtracts R8, truncates and writes to R4.

4.7.9 SMMUL

Signed Most Significant Word Multiply.

op{R}{cond} Rd, Rn, Rm

Where:

op Is one of:

SMMUL Signed Most Significant Word Multiply.

R If R is present, the result is rounded instead of being truncated. In this case
the constant 0x80000000 is added to the product before the top halfword is
extracted.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.

Operation
The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed
integers. The SMMUL instruction:

• Multiplies the values from Rn and Rm.

• Optionally rounds the result, otherwise truncates the result.

• Writes the most significant signed 32 bits of the result in Rd.

Restrictions
In this instruction:

• Do not use SP and do not use PC.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
This instruction does not affect the condition code flags.

SMMUL R0, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
 ; and writes to R0.
SMMULR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
 ; and writes to R6.

4.7.10 SMUAD and SMUSD

Signed Dual Multiply Add and Signed Dual Multiply Subtract.

op{X}{cond} Rd, Rn, Rm

Where:

op Is one of:

SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract reversed.

If X is present, the multiplications are bottom × top and top × bottom. If the X
is omitted, the multiplications are bottom × bottom and top × top.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and the second operands.

Operation
The SMUAD instruction interprets the values from the first and second operands as two signed
halfwords in each operand. This instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit multiplications.

• Adds the two multiplication results together.

• Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s
complement signed integers. This instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit multiplications.

• Subtracts the result of the top halfword multiplication from the result of the bottom halfword
multiplication.

• Writes the result of the subtraction to the destination register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Restrictions
In these instructions:

• Do not use SP and do not use PC.

Condition flags
SMUAD, SMUADX set the Q flag if the addition overflows. The multiplications cannot overflow.

SMUAD R0, R4, R5 ; Multiplies bottom halfword of R4 with the bottom
 ; halfword of R5, adds multiplication of top halfword
 ; of R4 with top halfword of R5, writes to R0.
SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top halfword
 ; of R4, adds multiplication of top halfword of R7
 ; with bottom halfword of R4, writes to R3.
SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom halfword
 ; of R6, subtracts multiplication of top halfword of R6
 ; with top halfword of R3, writes to R3.
SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top halfword of
 ; R3, subtracts multiplication of top halfword of R5
 ; with bottom halfword of R3, writes to R4.

4.7.11 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword).

op{XY}{cond} Rd,Rn, Rm ; SMUL

op{Y}{cond} Rd. Rn, Rm ; SMULW

For SMUL{XY} only:

op Is one of SMULBB, SMULBT, SMULTB, SMULTT:
SMUL{XY} Signed Multiply (halfwords)

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand. If X is B, then the bottom halfword, bits
[15:0] of Rn is used. If X is T, then the top halfword, bits [31:16] of Rn is used.
If Y is B, then the bottom halfword, bits [15:0], of Rm is used. If Y is T, then the
top halfword, bits [31:16], of Rm is used.
SMULW{Y} Signed Multiply (word by halfword)
Y specifies which halfword of the source register Rm is used as the second
multiply operand. If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four
signed 16-bit integers.

These instructions:

• Multiply the specified signed halfword, Top or Bottom, values from Rn and Rm.

• Write the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm
as two halfword 16-bit signed integers. These instructions:

• Multiply the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second
operand.

• Write the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions
In these instructions:

• Do not use SP and do not use PC.

• RdHi and RdLo must be different registers.

SMULBT R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
 ; top halfword of R5, multiplies results and
 ; writes to R0.
SMULBB R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
 ; bottom halfword of R5, multiplies results and
 ; writes to R0.
SMULTT R0, R4, R5 ; Multiplies the top halfword of R4 with the top
 ; halfword of R5, multiplies results and writes
 ; to R0.
SMULTB R0, R4, R5 ; Multiplies the top halfword of R4 with the
 ; bottom halfword of R5, multiplies results and
 ; and writes to R0.
SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
 ; extracts top 32 bits and writes to R4.
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,
 ; extracts top 32 bits and writes to R4.

4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Multiply Long, with optional Accumulate, using 32‑bit operands and
producing a 64‑bit result.

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

UMULL Unsigned Multiply Long.
UMLAL Unsigned Multiply, with Accumulate Long.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

UMAAL Unsigned Long Multiply with Accumulate Accumulate.
SMULL Signed Multiply Long.
SMLAL Signed Multiply, with Accumulate Long.

cond Is an optional condition code.
RdHi, RdLo Are the destination registers. For UMLAL and SMLAL they also hold the

accumulating value of the lower and upper words respectively.
Rn, Rm Are registers holding the operands.

Operation
The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits
of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, adds the 64‑bit result to the 64‑bit unsigned integer contained in RdHi and RdLo, and
writes the result back to RdHi and RdLo.

The UMAAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication, adds the
unsigned 32-bit integer in RdLo to the 64-bit result of the addition, writes the top 32-bits of the
result to RdHi and writes the lower 32-bits of the result to RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers, adds the 64‑bit result to the 64‑bit signed integer contained in RdHi and
RdLo, and writes the result back to RdHi and RdLo.

Restrictions
In these instructions:

• Do not use SP and do not use PC.

• RdHi and RdLo must be different registers.

Condition flags
These instructions do not affect the condition code flags.

UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 × R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 × R8

4.8 Saturating instructions
Reference material for the Cortex®-M33 processor saturating instruction set.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.8.1 List of saturating instructions

An alphabetically ordered list of the saturating instructions, with a brief description and link to the
syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-12: Saturating instructions

Mnemonic Brief description See

QADD Saturating Add 4.8.4 QADD and QSUB on page 160

QASX Saturating Add and Subtract with Exchange 4.8.5 QASX and QSAX on page 161

QDADD Saturating Double and Add 4.8.6 QDADD and QDSUB on page 162

QDSUB Saturating Double and Subtract 4.8.6 QDADD and QDSUB on page 162

QSAX Saturating Subtract and Add with Exchange 4.8.5 QASX and QSAX on page 161

QSUB Saturating Subtract 4.8.4 QADD and QSUB on page 160

QSUB16 Saturating Subtract 16 4.8.4 QADD and QSUB on page 160

SSAT Signed Saturate 4.8.2 SSAT and USAT on page 158

SSAT16 Signed Saturate Halfword 4.8.3 SSAT16 and USAT16 on page 159

UQADD16 Unsigned Saturating Add 16 4.8.8 UQADD and UQSUB on page 164

UQADD8 Unsigned Saturating Add 8 4.8.8 UQADD and UQSUB on page 164

UQASX Unsigned Saturating Add and Subtract with Exchange 4.8.7 UQASX and UQSAX on page 163

UQSAX Unsigned Saturating Subtract and Add with Exchange 4.8.7 UQASX and UQSAX on page 163

UQSUB16 Unsigned Saturating Subtract 16 4.8.8 UQADD and UQSUB on page 164

UQSUB8 Unsigned Saturating Subtract 8 4.8.8 UQADD and UQSUB on page 164

USAT Unsigned Saturate 4.8.2 SSAT and USAT on page 158

USAT16 Unsigned Saturate Halfword 4.8.3 SSAT16 and USAT16 on page 159

For signed n-bit saturation, this means that:

• If the value to be saturated is less than −2n−1, the result returned is −2n-1

• If the value to be saturated is greater than 2n−1−1, the result returned is 2n-1−1

• Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:

• If the value to be saturated is less than 0, the result returned is 0

• If the value to be saturated is greater than 2n−1, the result returned is 2n−1

• Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation
occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged.
To clear the Q flag to 0, you must use the MSR instruction.

To read the state of the Q flag, use the MRS instruction.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.8.2 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

op{cond} Rd, #n, Rm {, shift #s}

Where:

op Is one of:

SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.

cond Is an optional condition code.
Rd Is the destination register.
n Specifies the bit position to saturate to:

• n ranges from 1 to 32 for SSAT.

• n ranges from 0 to 31 for USAT.
Rm Is the register containing the value to saturate.
shift #s Is an optional shift applied to Rm before saturating. It must be one of the

following:

ASR
#s

where s is in the range 1-31.

LSL
#s

where s is in the range 0-31.

Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range −2n–1 ≤ x ≤ 2n–

1−1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2n−1.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
 ; saturate it as a signed 16-bit value and
 ; write it back to R7.
USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 ; unsigned 7 bit value and write it to R0.

4.8.3 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

op{cond} Rd, #n, Rm

Where:

op Is one of:

SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond Is an optional condition code.
Rd Is the destination register.
n Specifies the bit position to saturate to:

• n ranges from 1 to 16 for SSAT.

• n ranges from 0 to 15 for USAT.
Rm Is the register containing the values to saturate.

Operation
The SSAT16 instruction:

1. Saturates two signed 16-bit halfword values of the register with the value to saturate from
selected by the bit position in n.

2. Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

1. Saturates two unsigned 16-bit halfword values of the register with the value to saturate from
selected by the bit position in n.

2. Writes the results as two unsigned halfwords in the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
 ; as 9-bit values, writes to corresponding halfword
 ; of R7.

USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom
 ; halfwords of R5 as 13-bit values, writes to

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 ; corresponding halfword of R0.

4.8.4 QADD and QSUB

Saturating Add and Saturating Subtract, signed.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

QADD Saturating 32-bit add.
QADD8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUB8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm Are registers holding the first and second operands.

Operation
These instructions add or subtract two, four or eight values from the first and second operands and
then writes a signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result
to the signed range −2n–1 ≤ x ≤ 2n–1−1, where x is given by the number of bits applied in the
instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation
occurs, the QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves
the Q flag unchanged. The 8-bit and 16-bit QADD and QSUB instructions always leave the Q flag
unchanged.

To clear the Q flag to 0, you must use the MSR instruction.

To read the state of the Q flag, use the MRS instruction.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

If saturation occurs, the QADD and QSUB instructions set the Q flag to 1.

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
 ; R2, saturates to 16 bits and writes to corresponding
 ; halfword of R7.

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
 ; saturates to 8 bits and writes to corresponding byte of
 ; R3.

QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding halfword
 ; of R2, saturates to 16 bits, writes to corresponding
 ; halfword of R4.

QSUB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte in
 ; R2, saturates to 8 bits, writes to corresponding byte of
 ; R4.

4.8.5 QASX and QSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange,
signed.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

QASX Add and Subtract with Exchange and Saturate.
QSAX Subtract and Add with Exchange and Saturate.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm Are registers holding the first and second operands.

Operation
The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x
≤ 215 – 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215
– 1, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

3. Saturates the results of the sum and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215
– 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x
≤ 215 – 1, where x equals 16, to the top halfword of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top highword of R2 from bottom halfword of
 ; R4, saturates to 16 bits and writes to bottom halfword
 ; of R7

QSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3, saturates to 16 bits, writes to top halfword of R0
 ; Adds bottom halfword of R3 to top halfword of R5,
 ; saturates to 16 bits, writes to bottom halfword of R0.

4.8.6 QDADD and QDSUB

Saturating Double and Add and Saturating Double and Subtract, signed.

op{cond} {Rd}, Rm, Rn

Where:

op Is one of:

QDADD Saturating Double and Add.
QDSUB Saturating Double and Subtract.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rm, Rn Are registers holding the first and second operands.

Operation
The QDADD instruction:

• Doubles the second operand value.

• Adds the result of the doubling to the signed saturated value in the first operand.

• Writes the result to the destination register.

The QDSUB instruction:

• Doubles the second operand value.

• Subtracts the doubled value from the signed saturated value in the first operand.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed
integer range –231 ≤ x ≤ 231– 1. If saturation occurs in either operation, it sets the Q flag in the
APSR.

Restrictions
Do not use SP and do not use PC.

Condition flags
If saturation occurs, these instructions set the Q flag to 1.

QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
 ; saturates to 32 bits, writes to R7

QDSUB R0, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits
 ; from R5, saturates to 32 bits, writes to R0.

4.8.7 UQASX and UQSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange,
unsigned.

op{cond} {Rd,} Rn, Rm

Where:

type Is one of:

UQASX Add and Subtract with Exchange and Saturate.
UQSAX Subtract and Add with Exchange and Saturate.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm Are registers holding the first and second operands.

Operation
The UQASX instruction:

1. Adds the bottom halfword of the source operand with the top halfword of the second operand.

2. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 –
1, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 ≤ x ≤
216 – 1, where x equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the first operand with the top halfword of the second operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 ≤ x ≤
216 – 1, where x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 ≤ x ≤
216 – 1, where x equals 16, to the bottom halfword of the destination register.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4, saturates to 16 bits, writes to bottom halfword of R7
UQSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of R3,
 ; saturates to 16 bits, writes to top halfword of R0
 ; Adds bottom halfword of R4 to top halfword of R5
 ; saturates to 16 bits, writes to bottom halfword of R0.

4.8.8 UQADD and UQSUB

Saturating Add and Saturating Subtract Unsigned.

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UQADD8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UQSUB8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm Are registers holding the first and second operands.

Operation
These instructions add or subtract two or four values and then writes an unsigned saturated value
in the destination register.

The UQADD16 instruction:

• Adds the respective top and bottom halfwords of the first and second operands.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• Saturates the result of the additions for each halfword in the destination register to the
unsigned range 0 ≤ x ≤ 216−1, where x is 16.

The UQADD8 instruction:

• Adds each respective byte of the first and second operands.

• Saturates the result of the addition for each byte in the destination register to the unsigned
range 0 ≤ x ≤ 28−1, where x is 8.

The UQSUB16 instruction:

• Subtracts both halfwords of the second operand from the respective halfwords of the first
operand.

• Saturates the result of the differences in the destination register to the unsigned range 0 ≤ x ≤
216−1, where x is 16.

The UQSUB8 instructions:

• Subtracts the respective bytes of the second operand from the respective bytes of the first
operand.

• Saturates the results of the differences for each byte in the destination register to the unsigned
range 0 ≤ x ≤ 28−1, where x is 8.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding halfword in R2,
 ; saturates to 16 bits, writes to corresponding halfword
 ; of R7
UQADD8 R4, R2, R5 ; Adds bytes of R2 to corresponding byte of R5, saturates
 ; to 8 bits, writes to corresponding bytes of R4
UQSUB16 R6, R3, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; in R3, saturates to 16 bits, writes to corresponding
 ; halfword in R6
UQSUB8 R1, R5, R6 ; Subtracts bytes in R6 from corresponding byte of R5,
 ; saturates to 8 bits, writes to corresponding byte of R1.

4.9 Packing and unpacking instructions
Reference material for the Cortex®-M33 processor packing and unpacking instruction set.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.9.1 List of packing and unpacking instructions

An alphabetically ordered list of the packing and unpacking instructions, with a brief description
and link to the syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-13: Packing and unpacking instructions

Mnemonic Brief description See

PKH Pack Halfword 4.9.2 PKHBT and PKHTB on page 166

SXTAB Extend 8 bits to 32 and add 4.9.3 SXTA and UXTA on page 167

SXTAB16 Dual extend 8 bits to 16 and add 4.9.3 SXTA and UXTA on page 167

SXTAH Extend 16 bits to 32 and add 4.9.3 SXTA and UXTA on page 167

SXTB Sign extend a byte 4.9.4 SXT and UXT on page 169

SXTB16 Dual extend 8 bits to 16 and add 4.9.4 SXT and UXT on page 169

SXTH Sign extend a halfword 4.9.4 SXT and UXT on page 169

UXTAB Extend 8 bits to 32 and add 4.9.3 SXTA and UXTA on page 167

UXTAB16 Dual extend 8 bits to 16 and add 4.9.3 SXTA and UXTA on page 167

UXTAH Extend 16 bits to 32 and add 4.9.3 SXTA and UXTA on page 167

UXTB Zero extend a byte 4.9.4 SXT and UXT on page 169

UXTB16 Dual zero extend 8 bits to 16 and add 4.9.4 SXT and UXT on page 169

UXTH Zero extend a halfword 4.9.4 SXT and UXT on page 169

4.9.2 PKHBT and PKHTB

Pack Halfword.

op{cond} {Rd}, Rn, Rm {, LSL #imm} ;PKHBT

op{cond} {Rd}, Rn, Rm {, ASR #imm} ;PKHTB

Where:

op Is one of:

PKHBT Pack Halfword, bottom and top with shift.

PKHTB Pack Halfword, top and bottom with shift.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the second operand register holding the value to be optionally shifted.
imm Is the shift length. The type of shift length depends on the instruction:For

PKHBT:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

For PKHTB:

LSL A left shift with a shift length from 1 to 31, 0 means no
shift.

ASR An arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.

Operation
The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the
destination register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the
destination register.

The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination
register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of the
destination register.

Restrictions
Rd must not be SP and must not be PC.

Condition flags
This instruction does not change the flags.

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom halfword of
 ; R3, writes top halfword of R5, unshifted, to top
 ; halfword of R3

PKHTB R4, R0, R2 ASR #1 ; Writes R2 shifted right by 1 bit to bottom halfword
 ; of R4, and writes top halfword of R0 to top
 ; halfword of R4.

4.9.3 SXTA and UXTA

Signed and Unsigned Extend and Add.

op{cond} {Rd,} Rn, Rm {, ROR #n}

Where:

op Is one of:

SXTAB Sign extends an 8‑bit value to a 32‑bit value and add.
SXTAH Sign extends a 16‑bit value to a 32‑bit value and add.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

SXTAB16 Sign extends two 8-bit values to two 16-bit values and
add.

UXTAB Zero extends an 8‑bit value to a 32‑bit value and add.
UXTAH Zero extends a 16‑bit value to a 32‑bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and

add.
cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination register is Rn.
Rn Is the first operand register.
Rm Is the register holding the value to rotate and extend.
ROR #n Is one of:

ROR
#8

Value from Rm is rotated right 8 bits.

ROR
#16

Value from Rm is rotated right 16 bits.

ROR
#24

Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation
These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

• SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.

• UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.

• SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.

• UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

• SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits, and extracts bits [23:16]
from Rm and sign extends to 16 bits.

• UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits, and extracts bits [23:16]
from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and
writes the result in Rd.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the flags.

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
 ; halfword, sign extends to 32 bits, adds R8,and
 ; writes to R4

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

UXTAB R3, R4, R10 ; Extracts bottom byte of R10 and zero extends to 32
 ; bits, adds R4, and writes to R3.

4.9.4 SXT and UXT

Sign extend and Zero extend.

SXTop{cond} Rd, Rn {, ROR #n}

UXTop{cond} Rd, Rn {, ROR #n}

Where:

op Is one of:

SXTB Sign extends an 8‑bit value to a 32‑bit value.
SXTH Sign extends a 16‑bit value to a 32‑bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8‑bit value to a 32‑bit value.
UXTH Zero extends a 16‑bit value to a 32‑bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the register holding the value to extend.
ROR #n Is one of:

ROR
#8

Value from Rn is rotated right 8 bits.

ROR
#16

Value from Rn is rotated right 16 bits.

ROR
#24

Value from Rn is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation
These instructions do the following:

1. Rotate the value from Rn right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

• SXTB extracts bits[7:0] and sign extends to 32 bits.

• UXTB extracts bits[7:0] and zero extends to 32 bits.

• SXTH extracts bits[15:0] and sign extends to 32 bits.

• UXTH extracts bits[15:0] and zero extends to 32 bits.

• SXTB16 extracts bits[7:0] and sign extends to 16 bits, and extracts bits [23:16] and sign
extends to 16 bits.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• UXTB16 extracts bits[7:0] and zero extends to 16 bits, and extracts bits [23:16] and zero
extends to 16 bits.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the flags.

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
 ; halfword of the result and then sign extend to
 ; 32 bits and write the result to R4.
UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
 ; extend it, and write the result to R3.

4.10 Bit field instructions
Reference material for the Cortex®-M33 processor bit field instruction set.

4.10.1 List of bit field instructions

An alphabetically ordered list of the bit field instructions, with a brief description and link to the
syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-14: Bit field instructions

Mnemonic Brief description See

BFC Bit Field Clear 4.10.2 BFC and BFI on page 170

BFI Bit Field Insert 4.10.2 BFC and BFI on page 170

SBFX Signed Bit Field Extract 4.10.3 SBFX and UBFX on page 171

UBFX Unsigned Bit Field Extract 4.10.3 SBFX and UBFX on page 171

4.10.2 BFC and BFI

Bit Field Clear and Bit Field Insert.

BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the source register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

lsb Is the position of the least significant bit of the bit field. lsb must be in the
range 0-31.

width Is the width of the bit field and must be in the range 1-32−lsb.

Operation
BFC clears a bit field in a register. It clears width bits in Rd, starting at the low bit position lsb. Other
bits in Rd are unchanged.

BFI copies a bit field into one register from another register. It replaces width bits in Rd starting at
the low bit position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions
Do not use SP and do not use PC.

Condition flags
These instructions do not affect the flags.

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
 ; bit 0 to bit 11 from R2.

4.10.3 SBFX and UBFX

Signed Bit Field Extract and Unsigned Bit Field Extract.

SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the source register.
lsb Is the position of the least significant bit of the bit field. lsb must be in the

range 0-31.
width Is the width of the bit field and must be in the range 1-32−lsb.

Operation
SBFX extracts a bit field from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bit field from one register, zero extends it to 32 bits, and writes the result to the
destination register.

Restrictions
Do not use SP and do not use PC.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not affect the flags.

SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
 ; extend to 32 bits and then write the result to R0.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
 ; extend to 32 bits and then write the result to R8.

4.11 Branch and control instructions
Reference material for the Cortex®-M33 processor branch and control instruction set.

4.11.1 List of branch and control instructions

An alphabetically ordered list of the branch and control instructions, with a brief description and
link to the syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-15: Branch and control instructions

Mnemonic Brief description See

B Branch 4.11.2 B, BL, BX, and BLX on page 172

BL Branch with Link 4.11.2 B, BL, BX, and BLX on page 172

BLX Branch indirect with Link 4.11.2 B, BL, BX, and BLX on page 172

BLXNS Branch indirect with Link, Non-secure 4.11.3 BXNS and BLXNS on page 174

BX Branch indirect 4.11.2 B, BL, BX, and BLX on page 172

BXNS Branch indirect, Non-secure 4.11.3 BXNS and BLXNS on page 174

CBNZ Compare and Branch if Non Zero 4.11.4 CBZ and CBNZ on page 174

CBZ Compare and Branch if Zero 4.11.4 CBZ and CBNZ on page 174

IT If‑Then 4.11.5 IT on page 175

TBB Table Branch Byte 4.11.6 TBB and TBH on page 177

TBH Table Branch Halfword 4.11.6 TBB and TBH on page 177

4.11.2 B, BL, BX, and BLX

Branch instructions.

B{cond} label

BL label

BX Rm

BLX Rm

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Where:

cond Is an optional condition code.
label Is a PC-relative expression.
Rm Is a register providing the address to branch to.

Operation
All these instructions cause a branch to the address indicated by label or contained in the register
specified by Rm. In addition:

• The BL and BLX instructions write the address of the next instruction to LR, the link register
R14.

• The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable for use
by a subsequent POP {PC} or BX instruction to perform a successful return branch.

The following table shows the ranges for the various branch instructions.

Table 4-16: Branch ranges

Instruction Branch range

B label −16MB to +16MB.

Bcond label −1MB to +1MB

BL label −16MB to +16MB.

BX Rm Any value in register.

BLX Rm Any value in register.

Restrictions
In these instructions:

• Do not use SP or PC in the BX or BLX instruction.

• For BX and BLX, bit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the EPSR
T-bit and is discarded from the target address.

Bcond is the only conditional instruction on the processor.

BX can be used an Exception or Function return.

Condition flags
These instructions do not change the flags.

Examples
 B loopA ; Branch to loopA
 BL funC ; Branch with link (Call) to function funC, return address
 ; stored in LR
 BX LR ; Return from function call if LR contains a FUNC_RETURN value.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 BLX R0 ; Branch with link and exchange (Call) to a address stored
 ; in R0
 BEQ labelD ; Conditionally branch to labelD if last flag setting
 ; instruction set the Z flag, else do not branch.

4.11.3 BXNS and BLXNS

Branch and Exchange Non-secure and Branch with Link and Exchange Non-secure.

BXNS <Rm>

BLXNS <Rm>

Where:

Rm Is a register containing an address to branch to.

Operation
The BLXNS instruction calls a subroutine at an address contained in Rm and conditionally causes a
transition from the Secure to the Non-secure state.

For both BXNS and BLXNS, Rm[0] indicates a transition to Non-secure state if value is 0, otherwise
the target state remains Secure. If transitioning to Non-secure, BLXNS pushes the return address
and partial PSR to the Secure stack and assigns R14 to a FNC_RETURN value.

These instructions are available for Secure state only. When the processor is in Non-secure state,
these instructions are UNDEFINED and triggers a UsageFault if executed.

Restrictions
PC and SP cannot be used for Rm.

Condition flags
These instructions do not change the flags.

Examples
LDR r0, =non_secure_function
MOVS r1, #1
BICS r0, r1 # Clear bit 0 of address in r0
BLXNS r0 ; Call Non-secure function. This sets r14 to FUNC_RETURN value

For information about how to build a Secure image that uses a previously generated
import library, see the Arm® Compiler Software Development Guide.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.11.4 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non‑Zero.

op{cond} Rn, label

Where:

cond Is an optional condition code.
Rn Is the register holding the operand.
label Is the branch destination.

Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
 BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
 BNE label

Restrictions
The restrictions are:

• Rn must be in the range of R0-R7.

• The branch destination must be within 4 to 130 bytes after the instruction.

• These instructions must not be used inside an IT block.

Condition flags
These instructions do not change the flags.

CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero

4.11.5 IT

If-Then condition instruction.

IT{x{y{z}}} cond

Where:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

x specifies the condition switch for the second instruction in the IT block.
y Specifies the condition switch for the third instruction in the IT block.
z Specifies the condition switch for the fourth instruction in the IT block.
cond Specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is
done, all of the instructions in the IT block must be unconditional, and each of x, y,
and z must be T or omitted but not E.

Operation
The IT instruction makes up to four following instructions conditional. The conditions can be all
the same, or some of them can be the logical inverse of the others. The conditional instructions
following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

Your assembler might be able to generate the required IT instructions for
conditional instructions automatically, so that you do not have to write them
yourself. See your assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT
block. Such an exception results in entry to the appropriate exception handler, with suitable return
information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from
the exception, and execution of the IT block resumes correctly. This is the only way that a
PC‑modifying instruction is permitted to branch to an instruction in an IT block.

Restrictions
The following instructions are not permitted in an IT block:

• IT.

• CBZ and CBNZ.

• CPSID and CPSIE.

Other restrictions when using an IT block are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• A branch or any instruction that modifies the PC must either be outside an IT block or must be
the last instruction inside the IT block. These are:

◦ ADD PC, PC, Rm.

◦ MOV PC, Rm.

◦ B, BL, BX, BLX.

◦ Any LDM, LDR, or POP instruction that writes to the PC.

◦ TBB and TBH.

• Do not branch to any instruction inside an IT block, except when returning from an exception
handler.

• All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside
or inside an IT block but has a larger branch range if it is inside one.

• Each instruction inside the IT block must specify a condition code suffix that is either the same
or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as
prohibiting the use of assembler directives within them.

Condition flags
This instruction does not change the flags.

ITTE NE ; Next 3 instructions are conditional
ANDNE R0, R0, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move
CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
 ; ('0'-'9', 'A'-'F')
ITE GT ; Next 2 instructions are conditional
ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
ADDLE R1, R0, #48 ; Convert 0x0 -> '0'
IT GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally ITTEE EQ
 ; Next 4 instructions are conditional
MOVEQ R0, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last
 ; instruction of an IT block
IT NE ; Next instruction is conditional
ADD R0, R0, R1 ; Syntax error: no condition code used in IT block

4.11.6 TBB and TBH

Table Branch Byte and Table Branch Halfword.

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Where:

Rn Is the register containing the address of the table of branch lengths.

If Rn is PC, then the address of the table is the address of the byte
immediately following the TBB or TBH instruction.

Rm Is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.

Operation
These instructions cause a PC‑relative forward branch using a table of single byte offsets for TBB,
or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the
table. For TBB the branch offset is the unsigned value of the byte returned from the table, and for
TBH the branch offset is twice the unsigned value of the halfword returned from the table. The
branch occurs to the address at that offset from the address of the byte immediately after the TBB
or TBH instruction.

Restrictions
The restrictions are:

• Rn must not be SP.

• Rm must not be SP and must not be PC.

• When any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.

Condition flags
These instructions do not change the flags.

ADR.W R0, BranchTable_Byte
TBB [R0, R1] ; R1 is the index, R0 is the base address of the
 ; branch table
Case1
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte
 DCB 0 ; Case1 offset calculation
 DCB ((Case2-Case1)/2) ; Case2 offset calculation
 DCB ((Case3-Case1)/2) ; Case3 offset calculation
 TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
 ; branch table
BranchTable_H
 DCW ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
 DCW ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
 DCW ((CaseC - BranchTable_H)/2) ; CaseC offset calculation
CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12 Floating-point instructions
Reference material for the Cortex®-M33 processor floating-point instruction set that the FPU uses.

4.12.1 List of floating-point instructions

An alphabetically ordered list of the floating-point instructions, with a brief description and link to
the syntax definition, operations, restrictions, and example usage for each instruction.

These instructions are only available if the FPU is included, and enabled, in the
system.

Table 4-17: Floating-point instructions

Mnemonic Brief description See

FLDMDBX FLDMX (Decrement Before) loads multiple extension registers
from consecutive memory locations

4.12.2 FLDMDBX, FLDMIAX on page 180

FLDMIAX FLDMX (Increment After) loads multiple extension registers from
consecutive memory locations

4.12.2 FLDMDBX, FLDMIAX on page 180

FSTMDBX FSTMX (Decrement Before) stores multiple extension registers
to consecutive memory locations

4.12.3 FSTMDBX, FSTMIAX on page 181

FSTMIAX FSTMX (Increment After) stores multiple extension registers to
consecutive memory locations

4.12.3 FSTMDBX, FSTMIAX on page 181

VABS Floating-point Absolute 4.12.4 VABS on page 182

VADD Floating-point Add 4.12.5 VADD on page 182

VCMP Compare two floating-point registers, or one floating-point
register and zero

4.12.6 VCMP and VCMPE on page 183

VCMPE Compare two floating-point registers, or one floating-point
register and zero with Invalid Operation check

4.12.6 VCMP and VCMPE on page 183

VCVT Convert between floating-point and integer 4.12.7 VCVT and VCVTR between floating-point
and integer on page 184

VCVT Convert between floating-point and fixed point 4.12.8 VCVT between floating-point and fixed-
point on page 184

VCVTA, VCVTN,
VCVTP, VCVTM

Float to integer conversion with directed rounding 4.12.36 VCVTA, VCVTM VCVTN, and VCVTP on
page 203

VCVTB Converts half-precision value to single-precision 4.12.37 VCVTB and VCVTT on page 204

VCVTR Convert between floating-point and integer with rounding 4.12.7 VCVT and VCVTR between floating-point
and integer on page 184

VCVTT Converts single-precision register to half-precision 4.12.37 VCVTB and VCVTT on page 204

VDIV Floating-point Divide 4.12.9 VDIV on page 186

VFMA Floating-point Fused Multiply Accumulate 4.12.10 VFMA and VFMS on page 186

VFMS Floating-point Fused Multiply Subtract 4.12.10 VFMA and VFMS on page 186

VFNMA Floating-point Fused Negate Multiply Accumulate 4.12.11 VFNMA and VFNMS on page 187

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Brief description See

VFNMS Floating-point Fused Negate Multiply Subtract 4.12.11 VFNMA and VFNMS on page 187

VLDM Load Multiple extension registers 4.12.12 VLDM on page 188

VLDR Loads an extension register from memory 4.12.13 VLDR on page 189

VMAXNM, VMINNM Maximum, Minimum with IEEE754-2008 NaN handling 4.12.38 VMAXNM and VMINNM on page 204

VMLA Floating-point Multiply Accumulate 4.12.16 VMLA and VMLS on page 191

VMLS Floating-point Multiply Subtract 4.12.16 VMLA and VMLS on page 191

VMOV Floating-point Move Immediate 4.12.17 VMOV Immediate on page 191

VMOV Floating-point Move Register 4.12.18 VMOV Register on page 192

VMOV Copy Arm® core register to single-precision 4.12.20 VMOV core register to single-precision
on page 193

VMOV Copy 2 Arm® core registers to 2 single-precision 4.12.21 VMOV two core registers to two single-
precision registers on page 193

VMOV Copies between Arm® core register to scalar 4.12.23 VMOV core register to scalar on page
195

VMOV Copies between Scalar to Arm® core register 4.12.19 VMOV scalar to core register on page
192

VMRS Move to Arm® core register from floating-point System
Register

4.12.24 VMRS on page 195

VMSR Move to floating-point System Register from Arm® Core
register

4.12.25 VMSR on page 196

VMUL Multiply floating-point 4.12.26 VMUL on page 197

VNEG Floating-point negate 4.12.27 VNEG on page 197

VNMLA Floating-point multiply and add 4.12.28 VNMLA, VNMLS and VNMUL on page
198

VNMLS Floating-point multiply and subtract 4.12.28 VNMLA, VNMLS and VNMUL on page
198

VNMUL Floating-point multiply 4.12.28 VNMLA, VNMLS and VNMUL on page
198

VPOP Pop extension registers 4.12.29 VPOP on page 198

VPUSH Push extension registers 4.12.30 VPUSH on page 199

VRINTA, VRINTN,
VRINTP, VRINTM

Float to integer (in floating-point format) conversion with
directed rounding

4.12.40 VRINTA, VRINTN, VRINTP, VRINTM,
and VRINTZ on page 206

VRINTR, VRINTX Float to integer (in floating-point format) conversion 4.12.39 VRINTR and VRINTX on page 205

VSEL Select register, alternative to a pair of conditional VMOV 4.12.35 VSEL on page 202

VSQRT Floating-point square root 4.12.31 VSQRT on page 200

VSTM Store Multiple extension registers 4.12.32 VSTM on page 200

VSTR Stores an extension register to memory 4.12.33 VSTR on page 201

VSUB Floating-point Subtract 4.12.34 VSUB on page 202

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12.2 FLDMDBX, FLDMIAX

FLDMX (Decrement Before, Increment After) loads multiple extension registers from consecutive
memory locations using an address from a general-purpose register.

FLDMDBX{cond} Rn!, dreglist

FLDMIAX{cond} Rn{!}, dreglist

Where:

cond Is an optional condition code.
Rn Is the base register. If write-back is not specified, the PC can be used.
! Specifies base register write-back.
dreglist Is the list of consecutively numbered 64-bit SIMD and FP registers to be

transferred. The list must contain at least one register, all registers must be in
the range D0-D15, and must not contain more than 16 registers.

Operation
FLDMX loads multiple SIMD and FP registers from consecutive locations in the Advanced SIMD and
floating-point register file using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR and NSACR and the Security state and mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED.

4.12.3 FSTMDBX, FSTMIAX

FSTMX (Decrement Before, Increment After) stores multiple extension registers to consecutive
memory locations using an address from a general-purpose register.

FSTMDBX{c}{q} Rn!, dreglist

FSTMIAX{c}{q} Rn{!}, dreglist

Where:

cond Is an optional condition code.
Rn Is the base register. If write-back is not specified, the PC can be used.

However, Arm deprecates use of the PC.
! Specifies base register write-back.
dreglist Is the list FP registers to be transferred. The list must contain at least one

register, all registers must be in the range D0-D15, and must not contain more
than 16 registers.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
FSTMX stores multiple SIMD and FP registers from the Advanced SIMD and floating-point register
file to consecutive locations using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, and FPEXC Registers, and the security state and
mode in which the instruction is executed, an attempt to execute the instruction might be
UNDEFINED.

4.12.4 VABS

Floating-point Absolute.

VABS{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd, Sm Are the destination floating-point value and the operand floating-point value.

Operation
This instruction:

1. Takes the absolute value of the operand floating-point register.

2. Places the results in the destination floating-point register.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.

VABS.F32 S4, S6

4.12.5 VADD

Floating-point Add.

VADD{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Sn, Sm Are the operand floating-point values.

Operation
This instruction:

1. Adds the values in the two floating-point operand registers.

2. Places the results in the destination floating-point register.

3. the results in the destination floating-point register.

Restrictions
There are no restrictions.

Condition flags
This instruction does not change the flags.

VADD.F32 S4, S6, S7

4.12.6 VCMP and VCMPE

Compares two floating-point registers, or one floating-point register and zero.

VCMP{E}{cond}.F32 Sd, Sm|#0.0

VCMP{E}{cond}.F32 Sd, #0.0

Where:

cond Is an optional condition code.
E If present, any NaN operand causes an Invalid Operation exception.

Otherwise, only a signaling NaN causes the exception.
Sd Is the floating-point operand to compare.
Sm|Dm Is the floating-point operand that is compared with.

Operation
This instruction:

1. Compares either:

• Two floating-point registers.

• Or one floating-point register and zero.

2. Writes the result to the FPSCR flags.

Restrictions
This instruction can optionally raise an Invalid Operation exception if either operand is any type
of NaN. It always raises an Invalid Operation exception if either operand is a signaling NaN.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
When this instruction writes the result to the FPSCR flags, the values are normally transferred to the
Arm® flags by a subsequent VMRS instruction.

VCMP.F32 S4, #0.0VCMP.F32 S4, S2

4.12.7 VCVT and VCVTR between floating-point and integer

Converts a value in a register from floating-point to and from a 32-bit integer.

VCVT{R}{cond}.Tm.F32 Sd, Sm

VCVT{cond}.F32.Tm Sd, Sm

Where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR.
If R is omitted. the operation uses the Round towards Zero rounding mode.

cond Is an optional condition code.
Tm Is the data type for the operand. It must be one of:

• S32 signed 32-bit value.

• U32 unsigned 32-bit value.
Sd, Sm Are the destination register and the operand register.

Operation
These instructions:

1. Either:

• Convert a value in a register from floating-point value to a 32-bit integer.

• Convert from a 32-bit integer to floating-point value.

2. Place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but
can optionally use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12.8 VCVT between floating-point and fixed-point

Converts a value in a register from floating-point to and from fixed-point.

VCVT{cond}.Td.F32 Sd, Sd, #fbits

VCVT{cond}.F32.Td Sd, Sd, #fbits

Where:

cond Is an optional condition code.
Td Is the data type for the fixed-point number. It must be one of:

• S16 signed 16-bit value.

• U16 unsigned 16-bit value.

• S32 signed 32-bit value.

• U32 unsigned 32-bit value.
Sd Is the destination register and the operand register.
fbits Is the number of fraction bits in the fixed-point number:

• If Td is S16 or U16, fbits must be in the range 0-16.

• If Td is S32 or U32, fbits must be in the range 1-32.

Operation
This instruction:

1. Either

• Converts a value in a register from floating-point to fixed-point.

• Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision or double-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their
operand from the low-order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register
width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register
width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The
fixed-point to floating-point operation uses the Round to Nearest rounding mode.

Restrictions
There are no restrictions.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

4.12.9 VDIV

Divides floating-point values.

VDIV{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination register.
Sn, Sm Are the operand registers.

Operation
This instruction:

1. Divides one floating-point value by another floating-point value.

2. Writes the result to the floating-point destination register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.10 VFMA and VFMS

Floating-point Fused Multiply Accumulate and Subtract.

VFMA{cond}.F32 {Sd,} Sn, Sm

VFMS{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination register.
Sn, Sm Are the operand registers.

Operation
The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.

2. Accumulates the results into the destination register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:

1. Negates the first operand register.

2. Multiplies the floating-point values of the first and second operand registers.

3. Adds the products to the destination register.

4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.11 VFNMA and VFNMS

Floating-point Fused Negate Multiply Accumulate and Subtract.

VFNMA{cond}.F32 {Sd,} Sn, Sm

VFNMS{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination register.
Sn, Sm Are the operand registers.

Operation
The VFNMA instruction:

1. Negates the first floating-point operand register.

2. Multiplies the first floating-point operand with second floating-point operand.

3. Adds the negation of the floating -point destination register to the product

4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VFNMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Places the result in the destination register.
Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 187 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

The result of the multiply is not rounded before the addition.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.12 VLDM

Floating-point Load Multiple.

VLDM{mode}{cond}{.size} Rn{!}, list

Where:

mode Is the addressing mode:

IA Increment after. The consecutive addresses start at the
address specified in Rn.

DB Decrement before. The consecutive addresses end
before

the address specified in Rn.
cond Is an optional condition code.
size Is an optional data size specifier.
Rn Is the base register. The SP can be used.
! Is the command to the instruction to write a modified value back to Rn. This is

required if mode == DB, and is optional if mode == IA.
list Is the list of extension registers to be loaded, as a list of consecutively

numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation
This instruction loads multiple extension registers from consecutive memory locations using an
address from an Arm® core register as the base address.

Restrictions
The restrictions are:

• If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

• For the base address, the SP can be used. In the Arm® instruction set, if ! is not specified the
PC can be used.

• list must contain at least one register. If it contains doubleword registers, it must not contain
more than 16 registers.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• If using the Decrement before addressing mode, the write back flag, !, must be appended to
the base register specification.

Condition flags
These instructions do not change the flags.

VLDMIA.F64 r1, {d3,d4,d5}

4.12.13 VLDR

Loads a single extension register from memory.

VLDR{cond}{.F<32|64>} <Sd|Dd>, [Rn {, #imm}]

VLDR{cond}{.F<32|64>} <Sd|Dd>, label

VLDR{cond}{.F<32|64>} <Sd|Dd>, [PC, #imm]

Where:

cond Is an optional condition code.
32, 64 Are the optional data size specifiers.
Dd Is the destination register for a doubleword load.
Sd Is the destination register for a singleword load.
Rn Is the base register. The SP can be used.
imm Is the + or - immediate offset used to form the address. Permitted address

values are multiples of 4 in the range 0-1020.
label Is the label of the literal data item to be loaded.

Operation
This instruction loads a single extension register from memory, using a base address from an Arm®

core register, with an optional offset.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.14 VLLDM

Floating-point Lazy Load Multiple restores the contents of the Secure floating-point registers that
were protected by a VLSTM instruction, and marks the floating-point context as active.

VLLDM {cond}<Rn>

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Where:

cond Is an optional condition code.
Rn Is the base register.

Operation
If the lazy state preservation set up by a previous VLSTM instruction is active (FPCCR.LSPACT ==
1), this instruction deactivates lazy state preservation and enables access to the Secure floating-
point registers. If lazy state preservation is inactive (FPCCR.LSPACT == 0), either because lazy state
preservation was not enabled (FPCCR.LSPEN == 0) or because a floating-point instruction caused
the Secure floating-point register contents to be stored to memory, this instruction loads the stored
Secure floating-point register contents back into the floating-point registers. If Secure floating-point
is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP. This instruction is only
available in Secure state, and is UNDEFINED in Non-secure state. If the Floating-point Extension is
not implemented, this instruction is available in Secure state, but behaves as a NOP.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.15 VLSTM

Floating-point Lazy Store Multiple stores the contents of Secure floating-point registers to a
prepared stack frame, and clears the Secure floating-point registers.

VLSTM {cond}<Rn>

Where:

cond Is an optional condition code.
Rn Is the base register.

Operation
If floating-point lazy preservation is enabled (FPCCR.LSPEN == 1), then the next time a floating-
point instruction other than VLSTM or VLLDM is executed:

• The contents of Secure floating-point registers are stored to memory.

• The Secure floating-point registers are cleared.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension is not implemented, this instruction is available in Secure state, but
behaves as a NOP.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.16 VMLA and VMLS

Multiplies two floating-point values, and accumulates or subtracts the result.

VMLA{cond}.F32 Sd, Sn, Sm

VMLS{cond}.F32 Sd, Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sn, Sm Are the operand floating-point values.

Operation
The floating-point Multiply Accumulate instruction:

1. Multiplies two floating-point values.

2. Adds the results to the destination floating-point value.

The floating-point Multiply Subtract instruction:

1. Multiplies two floating-point values.

2. Subtracts the products from the destination floating-point value.

3. Places the results in the destination register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.17 VMOV Immediate

Move floating-point Immediate.

VMOV{cond}.F32 Sd, #imm

Where:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

cond Is an optional condition code.
Sd Is the destination register.
imm Is a floating-point constant.

Operation
This instruction copies a constant value to a floating-point register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.18 VMOV Register

Copies the contents of one register to another.

VMOV{cond}.F<32> Sd, Sm Dm

Where:

cond Is an optional condition code.
Dd Is the destination register, for a doubleword operation.
Dm Is the source register, for a doubleword operation.
Sd Is the destination register, for a singleword operation.
Sm Is the source register, for a singleword operation.

Operation
This instruction copies the contents of one floating-point register to another.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.19 VMOV scalar to core register

Transfers one word of a doubleword floating-point register to an Arm® core register.

VMOV{cond} Rt, Dn[x]

Where:

cond Is an optional condition code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Rt Is the destination Arm® core register.
Dn Is the 64-bit doubleword register.
x Specifies which half of the doubleword register to use:

• If x is 0, use lower half of doubleword register.

• If x is 1, use upper half of doubleword register.

Operation
This instruction transfers one word from the upper or lower half of a doubleword floating-point
register to an Arm® core register.

Restrictions
Rt cannot be PC or SP.

Condition flags
These instructions do not change the flags.

4.12.20 VMOV core register to single-precision

Transfers a single-precision register to and from an Arm® core register.

VMOV{cond} Sn, Rt

VMOV{cond} Rt, Sn

Where:

cond Is an optional condition code.
<Sn> Is the single-precision floating-point register.
Rt Is the Arm® core register.

Operation
This instruction transfers:

• The contents of a single-precision register to an Arm® core register.

• The contents of an Arm® core register to a single-precision register.

Restrictions
Rt cannot be PC or SP.

Condition flags
These instructions do not change the flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12.21 VMOV two core registers to two single-precision registers

Transfers two consecutively numbered single-precision registers to and from two Arm® core
registers.

VMOV{cond} Sm, Sm1, Rt, Rt2

VMOV{cond} Rt, Rt2, Sm, Sm1

Where:

cond Is an optional condition code.
Sm Is the first single-precision register.
Sm1 Is the second single-precision register. This is the next single-precision register

after Sm.
Rt Is the Arm® core register that Sm is transferred to or from.
Rt2 Is the Arm® core register that Sm1 is transferred to or from.

Operation
This instruction transfers:

• The contents of two consecutively numbered single-precision registers to two Arm® core
registers.

• The contents of two Arm® core registers to a pair of single-precision registers.

Restrictions
The restrictions are:

• The floating-point registers must be contiguous, one after the other.

• The Arm® core registers do not have to be contiguous.

• Rt cannot be PC or SP.

Condition flags
These instructions do not change the flags.

4.12.22 VMOV two core registers and a double-precision register

Transfers two words from two Arm® core registers to a doubleword register, or from a doubleword
register to two Arm® core registers.

VMOV{cond} Dm, Rt, Rt2

VMOV{cond} Rt, Rt2, Dm

Where:

cond Is an optional condition code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Dm Is the double-precision register.
Rt, Rt2 Are the two Arm® core registers.

Operation
This instruction:

• Transfers two words from two Arm® core registers to a doubleword register.

• Transfers a doubleword register to two Arm® core registers.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.23 VMOV core register to scalar

Transfers one word to a floating-point register from an Arm® core register.

VMOV{cond}{.32} Dd[x], Rt

Where:

cond Is an optional condition code.
32 Is an optional data size specifier.
Dd[x] Is the destination, where [x] defines which half of the doubleword is

transferred, as follows:

• If x is 0, the lower half is extracted.

• If x is 1, the upper half is extracted.
Rt Is the source Arm® core register.

Operation
This instruction transfers one word to the upper or lower half of a doubleword floating-point
register from an Arm® core register.

Restrictions
Rt cannot be PC or SP.

Condition flags
These instructions do not change the flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12.24 VMRS

Move to Arm® Core register from floating-point System Register.

VMRS{cond} Rt, FPSCR

VMRS{cond} APSR_nzcv, FPSCR

Where:

cond Is an optional condition code.
Rt Is the destination Arm® core register. This register can be R0-R14.
APSR_nzcv Transfer floating-point flags to the APSR flags.

Operation
This instruction performs one of the following actions:

• Copies the value of the FPSCR to a general-purpose register.

• Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions
Rt cannot be PC or SP.

Condition flags
These instructions optionally change the N, Z, C, and V flags.

4.12.25 VMSR

Move to floating-point System Register from Arm® Core register.

VMSR{cond} FPSCR, Rt

Where:

cond Is an optional condition code.
Rt Is the general-purpose register to be transferred to the FPSCR.

Operation
This instruction moves the value of a general-purpose register to the FPSCR.

Restrictions
Rt cannot be PC or SP.

Condition flags
This instruction updates the FPSCR.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12.26 VMUL

Floating-point Multiply.

VMUL{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sn, Sm Are the operand floating-point values.

Operation
This instruction:

1. Multiplies two floating-point values.

2. Places the results in the destination register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.27 VNEG

Floating-point Negate.

VNEG{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sm Is the operand floating-point value.

Operation
This instruction:

1. Negates a floating-point value.

2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.

Restrictions
There are no restrictions.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

4.12.28 VNMLA, VNMLS and VNMUL

Floating-point multiply with negation followed by add or subtract.

VNMLA{cond}.F32 Sd, Sn, Sm

VNMLS{cond}.F32 Sd, Sn, Sm

VNMUL{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point register.
Sn, Sm Are the operand floating-point registers.

Operation
The VNMLA instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the negation of the
product.

3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Writes the result back to the destination register.

The VNMUL instruction:

1. Multiplies together two floating-point register values.

2. Writes the negation of the result to the destination register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12.29 VPOP

Floating-point extension register Pop.

VPOP{cond}{.size} list

Where:

cond Is an optional condition code.
size Is an optional data size specifier. If present, it must be equal to the size in bits,

32 or 64, of the registers in list.
list Is a list of extension registers to be loaded, as a list of consecutively numbered

doubleword or singleword registers, separated by commas and surrounded by
brackets.

Operation
This instruction loads multiple consecutive extension registers from the stack.

Restrictions
list must contain at least one register, and not more than sixteen registers.

Condition flags
These instructions do not change the flags.

4.12.30 VPUSH

Floating-point extension register Push.

VPUSH{cond}{.size} list

Where:

cond Is an optional condition code.
size Is an optional data size specifier. If present, it must be equal to the size in bits,

32 or 64, of the registers in list.
list Is a list of the extension registers to be stored, as a list of consecutively

numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation
This instruction stores multiple consecutive extension registers to the stack.

Restrictions
list must contain at least one register, and not more than sixteen.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

4.12.31 VSQRT

Floating-point Square Root.

VSQRT{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sm Is the operand floating-point value.

Operation
This instruction:

• Calculates the square root of the value in a floating-point register.

• Writes the result to another floating-point register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.32 VSTM

Floating-point Store Multiple.

VSTM{mode}{cond}{.size} Rn{!}, list

Where:

mode Is the addressing mode:

• IA Increment After. The consecutive addresses start at the address
specified in Rn. This is the default and can be omitted.

• DB Decrement Before. The consecutive addresses end just before the
address specified in Rn.

cond Is an optional condition code.
size Is an optional data size specifier. If present, it must be equal to the size in bits,

32 or 64, of the registers in list.
Rn Is the base register. The SP can be used.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

! Is the function that causes the instruction to write a modified value back to
Rn. Required if mode == DB.

list Is a list of the extension registers to be stored, as a list of consecutively
numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation
This instruction stores multiple extension registers to consecutive memory locations using a base
address from an Arm® core register.

Restrictions
The restrictions are:

• list must contain at least one register. If it contains doubleword registers it must not contain
more than 16 registers.

• Use of the PC as Rn is deprecated.

Condition flags
These instructions do not change the flags.

4.12.33 VSTR

Floating-point Store.

VSTR{cond}{.32} Sd, [Rn{, #imm}]

VSTR{cond}{.64} Dd, [Rn{, #imm}]

Where:

cond Is an optional condition code.
32, 64 Are the optional data size specifiers.
Sd Is the source register for a singleword store.
Dd Is the source register for a doubleword store.
Rn Is the base register. The SP can be used.
imm Is the + or - immediate offset used to form the address. Values are multiples of

4 in the range 0-1020. imm can be omitted, meaning an offset of +0.

Operation
This instruction stores a single extension register to memory, using an address from an Arm® core
register, with an optional offset, defined in imm:

Restrictions
The use of PC for Rn is deprecated.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

4.12.34 VSUB

Floating-point Subtract.

VSUB{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sn, Sm Are the operand floating-point values.

Operation
This instruction:

1. Subtracts one floating-point value from another floating-point value.

2. Places the results in the destination floating-point register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.35 VSEL

Floating-point Conditional Select allows the destination register to take the value from either one
or the other of two source registers according to the condition codes in the APSR.

VSEL{cond}.F32 Sd, Sn, Sm

Where:

cond Is an optional condition code. VSEL has a subset of the condition codes. The
condition codes for VSEL are limited to GE, GT, EQ and VS, with the effect that
LT, LE, NE and VC is achievable by exchanging the source operands.

Sd Is the destination single-precision floating-point value.
Sn, Sm Are the operand single-precision floating-point values.

Operation
Depending on the result of the condition code, this instruction moves either:

• Sn source register to the destination register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• Sm source register to the destination register.

The behavior is:

EncodingSpecificOperations();
ExecuteFPCheck();

if dp_operation then
S[d] = if ConditionHolds(cond) then S[n] else S[m];

Restrictions
The VSEL instruction must not occur inside an IT block.

Condition flags
This instruction does not change the flags.

4.12.36 VCVTA, VCVTM VCVTN, and VCVTP

Floating-point to integer conversion with directed rounding.

VCVT<rmode>.S32.F32 Sd, Sm

VCVT<rmode>.U32.F32 Sd, Sm

Where:

Sd Is the destination single-precision or double-precision floating-point value.
Sm, Are the operand single-precision or double-precision floating-point values.

<rmode> Is one of:

A Round to nearest ties away.
M Round to nearest even.
N Round towards plus infinity.
P Round towards minus infinity.

Operation
These instructions:

1. Read the source register.

2. Convert to integer with directed rounding.

3. Write to the destination register.

Restrictions
There are no restrictions.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

4.12.37 VCVTB and VCVTT

Converts between half-precision and single-precision without intermediate rounding.

VCVT{y}{cond}.F32.F16 Sd, Sm

VCVT{y}{cond}.F16.F32 Sd, Sm

Where:

y Specifies which half of the operand register Sm or destination register Sd is
used for the operand or destination:

• If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.

• If y is T, then the top half, bits [31:16], of Sm or Sd is used.
cond Is an optional condition code.
Sd Is the destination register.
Sm Is the operand register.

Operation
This instruction with the .F16.F32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision register to
single-precision value.

2. Writes the result to a single-precision register.

This instruction with the .F32.F16 suffix:

1. Converts the value in a single-precision register to half-precision value.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other
half of the target register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.12.38 VMAXNM and VMINNM

Return the minimum or the maximum of two floating-point numbers with NaN handling as
specified by IEEE754-2008.

VMAXNM.F32 Sd, Sn, Sm

VMINNM.F32 Sd, Sn, Sm

Where:

Sd Is the destination single-precision floating-point value.
Sn, Sm Are the operand single-precision floating-point values.

Operation
The VMAXNM instruction compares two source registers, and moves the largest to the destination
register.

The VMINNM instruction compares two source registers, and moves the smallest to the destination
register.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.39 VRINTR and VRINTX

Round a floating-point value to an integer in floating-point format.

VRINT{R,X}{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sm Are the operand floating-point values.

Operation
These instructions:

1. Read the source register.

2. Round to the nearest integer value in floating-point format using the rounding mode specified
by the FPSCR. A zero input gives a zero result with the same sign, an infinite input gives an
infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

3. Write the result to the destination register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4. For the VRINTX instruction only. Generate a floating-point exception if the result is not
numerically equal to the input value.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.12.40 VRINTA, VRINTN, VRINTP, VRINTM, and VRINTZ

Round a floating-point value to an integer in floating-point format using directed rounding.

VRINT<rmode>.F32 Sd, Sm

Where:

Sd Is the destination single-precision floating-point value.
Sm Are the operand single-precision floating-point values.

<rmode> Is one of:

A Round to nearest ties away.
N Round to Nearest Even.
P Round towards Plus Infinity.
M Round towards Minus Infinity.
Z Round towards Zero.

Operation
These instructions:

1. Read the source register.

2. Round to the nearest integer value with a directed rounding mode specified by the instruction.

3. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with
the same sign, and a NaN is propagated as for normal arithmetic.

4. Write the result to the destination register.

Restrictions
VRINTA, VRINTN, VRINTP and VRINTM cannot be conditional. VRINTZ can be conditional.

Condition flags
These instructions do not change the flags.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.13 Miscellaneous instructions
Reference material for the Cortex®-M33 processor miscellaneous instructions.

4.13.1 List of miscellaneous instructions

An alphabetically ordered list of the miscellaneous instructions, with a brief description and link to
the syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-18: Miscellaneous instructions

Mnemonic Brief description See

BKPT Breakpoint 4.13.2 BKPT on page 207

CPSID Change Processor State, Disable Interrupts 4.13.3 CPS on page 208

CPSIE Change Processor State, Enable Interrupts 4.13.3 CPS on page 208

DMB Data Memory Barrier 4.13.5 DMB on page 209

DSB Data Synchronization Barrier 4.13.6 DSB on page 210

ISB Instruction Synchronization Barrier 4.13.7 ISB on page 210

MRS Move from special register to register 4.13.8 MRS on page 211

MSR Move from register to special register 4.13.9 MSR on page 212

NOP No Operation 4.13.10 NOP on page 213

SEV Send Event 4.13.11 SEV on page 213

SG Secure Gateway 4.13.12 SG on page 214

SVC Supervisor Call 4.13.13 SVC on page 214

TT Test Target 4.13.14 TT, TTT, TTA, and TTAT on page 215

TTT Test Target Unprivileged 4.13.14 TT, TTT, TTA, and TTAT on page 215

TTA Test Target Alternate Domain 4.13.14 TT, TTT, TTA, and TTAT on page 215

TTAT Test Target Alternate Domain Unprivileged 4.13.14 TT, TTT, TTA, and TTAT on page 215

WFE Wait For Event 4.13.16 WFE on page 217

WFI Wait For Interrupt 4.13.17 WFI on page 218

YIELD Yield 4.13.18 YIELD on page 218

4.13.2 BKPT

Breakpoint.

BKPT #imm

Where:

imm Is an expression evaluating to an integer in the range 0-255 (8-bit value).

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
The BKPT instruction causes the processor to enter Debug state if invasive debug is enabled.
Debug tools can use this to investigate system state when the instruction at a particular address is
reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information
about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by
the condition specified by the IT instruction.

Condition flags
This instruction does not change the flags.

BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can
 ; extract the immediate value by locating it using the PC)

Arm does not recommend the use of the BKPT instruction with an immediate value
set to 0xAB for any purpose other than Semi-hosting.

4.13.3 CPS

Change Processor State.

CPSeffect iflags

Where:

effect Is one of:

IE Clears the special purpose register.
ID Sets the special purpose register.

iflags Is a sequence of one or more flags:

i Set or clear PRIMASK.
f Set or clear FAULTMASK.

Operation
CPS changes the PRIMASK and FAULTMASK special register values.

Restrictions
The restrictions are:

• Use CPS only from privileged software. It has no effect if used in unprivileged software.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• CPS cannot be conditional and so must not be used inside an IT block.

Condition flags
This instruction does not change the condition flags.

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

4.13.4 CPY

Copy is a pre-Unified Assembler Language (UAL) synonym for MOV (register).

CPY Rd, Rn

This is equivalent to:

MOV Rd, Rn

4.13.5 DMB

Data Memory Barrier.

DMB{cond} {opt}

Where:

cond Is an optional condition code.
opt Specifies an optional limitation on the DMB operation. Values are:

SY
DMB operation ensures ordering of all accesses, encoded as opt ==
'1111'. Can be omitted.

All other encodings of opt are RESERVED. The corresponding instructions
execute as system (SY) DMB operations, but software must not rely on this
behavior.

Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in
program order, before the DMB instruction are completed before any explicit memory accesses that
appear, in program order, after the DMB instruction. DMB does not affect the ordering or execution of
instructions that do not access memory.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
This instruction does not change the flags.

DMB ; Data Memory Barrier

4.13.6 DSB

Data Synchronization Barrier.

DSB{cond} {opt}

Where:

cond Is an optional condition code.
opt Specifies an optional limitation on the DSB operation. Values are:

SY
DSB operation ensures completion of all accesses, encoded as opt ==
'1111'. Can be omitted.

All other encodings of opt are RESERVED. The corresponding instructions
execute as system (SY) DSB operations, but software must not rely on this
behavior.

Operation
DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in
program order, do not execute until the DSB instruction completes. The DSB instruction completes
when all explicit memory accesses before it complete.

Condition flags
This instruction does not change the flags.

DSB ; Data Synchronisation Barrier

4.13.7 ISB

Instruction Synchronization Barrier.

ISB{cond} {opt}

Where:

cond Is an optional condition code.
opt Specifies an optional limitation on the ISB operation. Values are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

SY
Fully system ISB operation, encoded as opt == '1111'. Can be omitted.

All other encodings of opt are RESERVED. The corresponding instructions
execute as full system ISB operations, but software must not rely on this
behavior.

Operation
ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from cache or memory again, after the ISB instruction
has been completed.

Condition flags
This instruction does not change the flags.

ISB ; Instruction Synchronisation Barrier

4.13.8 MRS

Move the contents of a special register to a general-purpose register.

MRS{cond} Rd, spec_reg

Where:

cond Is an optional condition code.
Rd Is the destination register.
spec_reg Can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,

BASEPRI, BASEPRI_MAX, FAULTMASK, CONTROL,MSP_NS, PSP_NS, MSPLIM, PSPLIM,
MSPLIM_NS, PSPLIM_NS, PRIMASK_NS, FAULTMASK_NS, and CONTROL_NS.

All the EPSR and IPSR fields are zero when read by the MRS
instruction.

An access to a register not ending in _NS returns the register
associated with the current Security state. Access to a register
ending in _NS in Secure state returns the Non-secure register.
Access to a register ending in _NS in Non-secure state is RAZ/
WI.

Operation
Use MRS in combination with MSR as part of a read‑modify‑write sequence for updating a PSR, for
example to clear the Q flag.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in must
also be restored. These operations use MRS in the state-saving instruction sequence and MSR in the
state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

Restrictions
Rd must not be SP and must not be PC.

Condition flags
This instruction does not change the flags.

MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

4.13.9 MSR

Move the contents of a general‑purpose register into the specified special register.

MSR{cond} spec_reg, Rn

Where:

cond Is an optional condition code.
Rn Is the source register.
spec_reg Can be any of: APSR_nzcvq, APSR_g, APSR_nzcvqg, MSP, PSP, PRIMASK, BASEPRI,

BASEPRI_MAX, FAULTMASK, CONTROL, MSP_NS, PSP_NS -MSPLIM, PSPLIM, MSPLIM_NS,
PSPLIM_NS, PRIMASK_NS, FAULTMASK_NS, and CONTROL_NS.

You can use APSR to refer to APSR_nzcvq.

Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can only
access the APSR, see the APSR bit assignments. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

• Rn is non-zero and the current BASEPRI value is 0.

• Rn is non-zero and less than the current BASEPRI value.

An access to a register not ending in _NS writes the register associated with the
current Security state. Access to a register ending in _NS in Secure state writes the
Non-secure register. Access to a register ending in _NS in Non-secure state is RAZ/
WI.

Restrictions
Rn must not be SP and must not be PC.

Condition flags
This instruction updates the flags explicitly based on the value in Rn.

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register.

4.13.10 NOP

No Operation.

NOP{cond}

Where:

cond Is an optional condition code.

Operation
NOP does nothing. NOP is not necessarily a time‑consuming NOP. The processor might remove it from
the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64‑bit boundary.

Condition flags
This instruction does not change the flags.

NOP ; No operation

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.13.11 SEV

Send Event.

SEV{cond}

Where:

cond Is an optional condition code.

Operation
SEV is a hint instruction that causes an event to be signaled to all processors within a
multiprocessor system. It also sets the local event register to 1.

Condition flags
This instruction does not change the flags.

SEV ; Send Event

4.13.12 SG

Secure Gateway.

SG

Operation
Secure Gateway marks a valid branch target for branches from Non-secure code that wants to call
Secure code.

A linker is expected to generate a Secure Gateway operation as a part of the branch table for the
Non-secure Callable (NSC) region.

There is no C intrinsic function for SG. Secure Gateways are expected to be generated by linker or
by assembly programming. Arm does not expect software developers to insert a Secure Gateway
instruction inside C or C++ program code.

For information about how to build a Secure image that uses a previously generated
import library, see the Arm® Compiler Software Development Guide.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.13.13 SVC

Supervisor Call.

SVC{cond} #imm

Where:

cond Is an optional condition code.
imm Is an expression evaluating to an integer in the range 0‑255 (8‑bit value).

Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

Condition flags
This instruction does not change the flags.

SVC #0x32 ; Supervisor Call (SVCall handler can extract the immediate value
 ; by locating it through the stacked PC)

4.13.14 TT, TTT, TTA, and TTAT

Test Target (Alternate Domain, Unprivileged).

{op}{cond} Rd, Rn

Where:

op Is one of:

TT Test Target (TT) queries the Security state and access
permissions of a memory location.

TTT Test Target Unprivileged (TTT) queries the Security state
and access permissions of a memory location for an
unprivileged access to that location.

TTA In an implementation with the Security Extension, Test
Target Alternate Domain (TTA) queries the Security state
and access permissions of a memory location for a
Non-secure access to that location. These instructions
are only valid when executing in Secure state, and are
UNDEFINED if used from Non-secure state.

TTAT In an implementation with the Security Extension, Test
Target Alternate Domain Unprivileged (TTAT) queries the
Security state and access permissions of a memory

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

location for a Non-secure and unprivileged access to
that location. These instructions are only valid when
executing in Secure state, and are UNDEFINED if used
from Non-secure state.

cond Is an optional condition code.
Rd Is the destination general-purpose register into which the status result of the

target test is written.
Rn Is the base register.

Operation
The instruction returns the Security state and access permissions in the destination register, the
contents of which are as follows:

Table 4-19: Security state and access permissions in the destination register

Bits Name Description

[7:0] MREGION The MPU region that the address maps to. This field is 0 if MRVALID is 0.

[15:8] SREGION In an implementation without the Security Extension, this field is RAZ/WI. The SAU region that the address maps to.
This field is only valid if the instruction is executed from Secure state. This field is 0 if SRVALID is 0.

[16] MRVALID Set to 1 if the MREGION content is valid. Set to 0 if the MREGION content is invalid.

[17] SRVALID In an implementation without the Security Extension, this field is RAZ/WI. Set to 1 if the SREGION content is valid.
Set to 0 if the SREGION content is invalid.

[18] R Read accessibility. Set to 1 if the memory location can be read according to the permissions of the selected MPU
when operating in the current mode. For TTT and TTAT, this bit returns the permissions for unprivileged access,
regardless of whether the current mode is privileged or unprivileged.

[19] RW Read/write accessibility. Set to 1 if the memory location can be read and written according to the permissions of the
selected MPU when operating in the current mode.

[31:20] - RAZ/WI

[20] NSR Equal to R AND NOT S. Can be used with the LSLS (immediate) instruction to check both the MPU and SAU or IDAU
permissions. This bit is only valid if the instruction is executed from Secure state and the R field is valid.

[21] NSRW Equal to RW AND NOT S. Can be used with the LSLS (immediate) instruction to check both the MPU and SAU or
IDAU permissions. This bit is only valid if the instruction is executed from Secure state and the RW field is valid.

[22] S Security. A value of 1 indicates that the memory location is Secure, and a value of 0 indicates that the memory
location is Non-secure. This bit is only valid if the instruction is executed from Secure state.

[23] IRVALID IREGION valid flag. For a Secure request, indicates the validity of the IREGION field. Set to 1 if the IREGION content
is valid. Set to 0 if the IREGION content is invalid.

This bit is always 0 if the IDAU cannot provide a region number, the address is exempt from security attribution, or if
the requesting TT instruction is executed from the Non-secure state.

[31:24] IREGION IDAU region number. Indicates the IDAU region number containing the target address. This field is 0 if IRVALID is 0.

Invalid fields are 0.

The MREGION field is invalid and 0 if any of the following conditions are true:

• The MPU is not present or MPU_CTRL.ENABLE is 0.

• The address did not match any of the enabled MPU regions.

• The address matched multiple MPU regions.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 216 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• The TT instruction or TTT instruction was executed from unprivileged mode.

The TTA and TTAT instructions are UNDEFINED when executed from Non-secure
state.

The R, RW, NSR, and NSRW bits are invalid and 0 if any of the following conditions are true:

• The address matched multiple MPU regions.

• The TT instruction or TTT instruction was executed from unprivileged mode.

4.13.15 UDF

Permanently Undefined.

UDF{cond}.W {#}imm

Where:

imm Is a:

• 8-bit unsigned immediate, in the range 0 to 255. The PE ignores the value
of this constant.

• 16-bit unsigned immediate, in the range 0 to 65535. The PE ignores the
value of this constant.

cond Arm deprecates using any c value other than AL.

Operation
Permanently Undefined generates an Undefined Instruction UsageFault exception.

4.13.16 WFE

Wait For Event.

WFE{cond}

Where:

cond Is an optional condition code.

Operation
WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

• An exception, unless masked by the exception mask registers or the current priority level.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• An exception enters the Pending state, if SEVONPEND in the System Control Register is set.

• A Debug Entry request, if Debug is enabled.

• An event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

Condition flags
This instruction does not change the flags.

WFE ; Wait for event

4.13.17 WFI

Wait for Interrupt.

WFI{cond}

Where:

cond Is an optional condition code.

Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:

• A non-masked interrupt occurs and is taken.

• An interrupt masked by PRIMASK becomes pending.

• A Debug Entry request, if Debug is enabled.

Condition flags
This instruction does not change the flags.

WFI ; Wait for interrupt

4.13.18 YIELD

Yield

YIELD{cond}

Where:

cond Is an optional condition code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 218 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
YIELD is a hint instruction that enables software with a multithreading capability to indicate to
the hardware that a task is being performed, which could be swapped out to improve overall
system performance. Hardware can use this hint to suspend and resume multiple code threads if it
supports the capability.

Condition flags
This instruction does not change the flags.

YIELD; Suspend task

4.14 Memory access instructions
Reference material for the Cortex®-M33 processor memory access instruction set.

4.14.1 List of memory access instructions

An alphabetically ordered list of the memory access instructions, with a brief description and link to
the syntax definition, operations, restrictions, and example usage for each instruction.

Table 4-20: Memory access instructions

Mnemonic Brief description See

ADR Generate PC-relative address 4.14.2 ADR on page 220

CLREX Clear Exclusive 4.14.13 CLREX on page 235

LDM{mode} Load Multiple registers 4.14.7 LDM and STM on page 227

LDA{type} Load-Acquire 4.14.10 LDA and STL on page 230

LDAEX Load-Acquire Exclusive 4.14.12 LDAEX and STLEX on page 233

LDR{type} Load Register using immediate offset 4.14.3 LDR and STR, immediate offset on page 220

LDR{type} Load Register using register offset 4.14.4 LDR and STR, register offset on page 223

LDR{type}T Load Register with unprivileged access 4.14.5 LDR and STR, unprivileged on page 224

LDR Load Register using PC-relative address 4.14.6 LDR, PC‑relative on page 225

LDRD Load Register Dual 4.14.3 LDR and STR, immediate offset on page 220

LDREX{type} Load Register Exclusive 4.14.11 LDREX and STREX on page 232

PLD Preload Data. 4.14.8 PLD on page 229

POP Pop registers from stack 4.14.9 PUSH and POP on page 229

PUSH Push registers onto stack 4.14.9 PUSH and POP on page 229

STL{mode} Store-Release 4.14.10 LDA and STL on page 230

STLEX Store Release Exclusive 4.14.12 LDAEX and STLEX on page 233

STM{mode} Store Multiple registers 4.14.7 LDM and STM on page 227

STR{type} Store Register using immediate offset 4.14.3 LDR and STR, immediate offset on page 220

STR{type} Store Register using register offset 4.14.4 LDR and STR, register offset on page 223

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 219 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Mnemonic Brief description See

STR{type}T Store Register with unprivileged access 4.14.5 LDR and STR, unprivileged on page 224

STREX{type} Store Register Exclusive 4.14.11 LDREX and STREX on page 232

4.14.2 ADR

Generate PC-relative address.

ADR{cond} Rd, label

Where:

cond Is an optional condition code.
Rd Is the destination register.
label Is a PC‑relative expression.

Operation
ADR generates an address by adding an immediate value to the PC, and writes the result to the
destination register.

ADR provides the means by which position‑independent code can be generated, because the
address is PC‑relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0]
of the address you generate is set to1 for correct execution.

Values of label must be within the range of −4095 to +4095 from the address in the PC.

You might have to use the .W suffix to get the maximum offset range or to generate
addresses that are not word-aligned.

Restrictions
Rd must not be SP and must not be PC.

Condition flags
This instruction does not change the flags.

ADR R1, TextMessage ; Write address value of a location labelled as
 ; TextMessage to R1.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 220 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.14.3 LDR and STR, immediate offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate
offset.

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type}{cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words

opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words

opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

Where:

op Is one of:

LDR
Load Register.

STR
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
‑ Omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 Is the additional register to load or store for two-word operations.

Operation
LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 221 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Offset
addressing

The offset value is added to or subtracted from the address obtained from
the register Rn. The result is used as the address for the memory access. The
register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

Pre-indexed
addressing

The offset value is added to or subtracted from the address obtained from
the register Rn. The result is used as the address for the memory access and
written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!

Post-indexed
addressing

The address obtained from the register Rn is used as the address for the
memory access. The offset value is added to or subtracted from the address,
and written back into the register Rn. The assembly language syntax for this
mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can
either be signed or unsigned.

The following table shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 4-21: Offset ranges

Instruction type Immediate offset Pre-indexed Post-indexed

Word, halfword, signed halfword, byte,
or signed byte

−255 to 4095 −255 to 255 −255 to 255

Two words multiple of 4 in the range
−1020 to 1020

multiple of 4 in the range
−1020 to 1020

multiple of 4 in the range
−1020 to 1020

Restrictions
For load instructions:

• Rt can be SP or PC for word loads only.

• Rt must be different from Rt2 for two-word loads.

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution.

• A branch occurs to the address created by changing bit[0] of the loaded value to 0.

• If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

• Rt can be SP for word stores only.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 222 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

• Rt must not be PC.

• Rn must not be PC.

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition flags
These instructions do not change the flags.

LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.
STR R2, [R9,#const#struc] ; const#struc is an expression evaluating
 ; to a constant in the range 0#4095.
STRH R3, [R4], #4 ; Store R3 as halfword data into address in
 ; R4, then increment R4 by 4.
LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
 ; address in R3, and load R9 from a word 36
 ; bytes above the address in R3.
STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store R1 to
 ; a word 4 bytes above the address in R8,
 ; and then decrement R8 by 16.

4.14.4 LDR and STR, register offset

Load and Store with register offset.

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

Where:

op Is one of:

LDR
Load Register.

STR
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
‑ omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
Rm Is a register containing a value to be used as the offset.
LSL #n Is an optional shift, with n in the range 0-3.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 223 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned.

Restrictions
In these instructions:

• Rn must not be PC.

• Rm must not be SP and must not be PC.

• Rt can be SP only for word loads and word stores.

• Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags
These instructions do not change the flags.

STR R0, [R5, R1] ; Store value of R0 into an address equal to
 ; sum of R5 and R1.
LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to
 ; sum of R5 and two times R1, sign extended it
 ; to a word value and put it in R0.
STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
 ; and four times R2.

4.14.5 LDR and STR, unprivileged

Load and Store with unprivileged access.

op{type}T{cond} Rt, [Rn {, #offset}]

Where:

op Is one of:

LDR
Load Register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 224 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

STR
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
‑ Omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an immediate offset from Rn and can be 0 to 255. If offset is omitted, the

address is the value in Rn.

Operation
These load and store instructions perform the same function as the memory access instructions
with immediate offset. The difference is that these instructions have only unprivileged access even
when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal
memory access instructions with immediate offset.

Restrictions
In these instructions:

• Rn must not be PC.

• Rt must not be SP and must not be PC.

Condition flags
These instructions do not change the flags.

STRBTEQ R4, [R7] ; Conditionally store least significant byte in
 ; R4 to an address in R7, with unprivileged access.
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
 ; sum of R2 and 8 into R2, with unprivileged access.

4.14.6 LDR, PC‑relative

Load register from memory.

LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label ; Load two words

Where:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 225 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

type Is one of:

B
Unsigned byte, zero extend to 32 bits.

SB
Signed byte, sign extend to 32 bits.

H
Unsigned halfword, zero extend to 32 bits.

SH
Signed halfword, sign extend to 32 bits.

‑
Omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rt2 Is the second register to load or store.
label Is a PC‑relative expression.

Operation
LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned.

label must be within a limited range of the current instruction. The following table shows the
possible offsets between label and the PC.

Table 4-22: Offset ranges

Instruction type Offset range

Word, halfword, signed halfword, byte, signed byte −4095 to 4095

Two words −1020 to 1020

You might have to use the .W suffix to get the maximum offset range.

Restrictions
In these instructions:

• Rt can be SP or PC only for word loads.

• Rt2 must not be SP and must not be PC.

• Rt must be different from Rt2.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 226 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags
These instructions do not change the flags.

LDR R0, LookUpTable ; Load R0 with a word of data from an address
 ; labelled as LookUpTable.
LDRSB R7, localdata ; Load a byte value from an address labelled
 ; as localdata, sign extend it to a word
 ; value, and put it in R7.

4.14.7 LDM and STM

Load and Store Multiple registers.

op{addr_mode}{cond} Rn{!}, reglist

Where:

op Is one of:

LDM
Load Multiple registers.

STM
Store Multiple registers.

addr_mode Is any one of the following:

IA Increment address After each access. This is the default.
DB Decrement address Before each access.

cond Is an optional condition code.
Rn Is the register on which the memory addresses are based.
! Is an optional write-back suffix. If ! is present the final address, that is loaded

from or stored to, is written back into Rn.
reglist Is a list of one or more registers to be loaded or stored, enclosed in braces. It

can contain register ranges. It must be comma separated if it contains more
than one register or register range.

LDMIA and LDMFD are synonyms for LDM. LDMFD refers to its use for popping data from Full
Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STMIA and STMEA are synonyms for STM. STMEA refers to its use for pushing data onto Empty
Ascending stacks.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 227 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

STMFD is a synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.

Operation
LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-
byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The
accesses happens in order of increasing register numbers, with the lowest numbered register using
the lowest memory address and the highest number register using the highest memory address. If
the write-back suffix is specified, the value of Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The
accesses happen in order of decreasing register numbers, with the highest numbered register using
the highest memory address and the lowest number register using the lowest memory address. If
the write-back suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form.

Restrictions
In these instructions:

• Rn must not be PC.

• reglist must not contain SP.

• In any STM instruction, reglist must not contain PC.

• In any LDM instruction, reglist must not contain PC if it contains LR.

• reglist must not contain Rn if you specify the write-back suffix.

When PC is in reglist in an LDM instruction:

• Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags
These instructions do not change the flags.

LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM.
STMDB R1!,{R3#R6,R11,R12}

Incorrect examples
STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable.
LDM R2, {} ; There must be at least one register in the list.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 228 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.14.8 PLD

Preload Data.

PLD{cond} [Rn {, #imm}] ; Immediate

PLD{cond} [Rn, Rm {, LSL #shift}] ; Register

PLD{cond} label ; Literal

Where:

cond Is an optional condition code.
Rn Is the base register.
imm Is the + or - immediate offset used to form the address. This offset can be

omitted, meaning an offset of 0.
Rm Is the optionally shifted offset register.
shift Specifies the shift to apply to the value read from <Rm>, in the range 0-3. If

this option is omitted, a shift by 0 is assumed.
label The label of the literal item that is likely to be accessed in the near future.

Operation
PLD signals the memory system that data memory accesses from a specified address are likely in
the near future. If the address is cacheable then the memory system responds by pre-loading the
cache line containing the specified address into the data cache. If the address is not cacheable, or
the data cache is disabled, this instruction behaves as no operation.

Restrictions
There are no restrictions.

Condition flags
These instructions do not change the flags.

4.14.9 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

PUSH{cond} reglist

POP{cond} reglist

Where:

cond Is an optional condition code.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 229 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

reglist Is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access
based on SP, and with the final address for the access written back to the SP. PUSH and POP are the
preferred mnemonics in these cases.

Operation
PUSH stores registers on the stack, with the lowest numbered register using the lowest memory
address and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory
address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the
value in the SP register as the lowest memory address, implementing a full-descending stack. On
completion, PUSH updates the SP register to point to the location of the lowest store value, POP
updates the SP register to point to the location above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP
instruction has completed. Bit[0] of the value read for the PC is used to update the APSR T-bit.
This bit must be 1 to ensure correct operation.

Restrictions
In these instructions:

• reglist must not contain SP.

• For the PUSH instruction, reglist must not contain PC.

• For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

• Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags
These instructions do not change the flags.

PUSH {R0,R4-R7} ; Push R0,R4,R5,R6,R7 onto the stack

PUSH {R2,LR} ; Push R2 and the link-register onto the stack

POP {R0,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to the new PC.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 230 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

4.14.10 LDA and STL

Load-Acquire and Store-Release.

op{type}{cond} Rt, [Rn]

Where:

op Is one of:

LDA
Load-Acquire Register.

STL
Store-Release Register.

type Is one of:

B Unsigned byte, zero extend to 32 bits on loads.
H Unsigned halfword, zero extend to 32 bits on loads..

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.

Operation
LDA, LDAB, and LDAH loads word, byte, and halfword data respectively from a memory address. If any
loads or stores appear after a load-acquire in program order, then all observers are guaranteed to
observe the load-acquire before observing the loads and stores. Loads and stores appearing before
a load-acquire are unaffected.

STL, STLB, and STLH stores word, byte, and halfword data respectively to a memory address. If any
loads or stores appear before a store-release in program order, then all observers are guaranteed to
observe the loads and stores before observing the store-release. Loads and stores appearing after a
store-release are unaffected.

In addition, if a store-release is followed by a load-acquire, each observer is guaranteed to observe
them in program order.

There is no requirement that a load-acquire and store-release be paired.

All store-release operations are multi-copy atomic, meaning that in a multiprocessing system, if
one observer observes a write to memory because of a store-release operation, then all observers
observe it. Also, all observers observe all such writes to the same location in the same order.

Restrictions
The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not use SP for Rt.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 231 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Condition flags
These instructions do not change the flags.

4.14.11 LDREX and STREX

Load and Store Register Exclusive.

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

Where:

cond Is an optional condition code.
Rd Is the destination register for the returned status.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an optional offset applied to the value in Rn. If offset is omitted, the

address is the value in Rn.

Operation
LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory
address. The address used in any Store-Exclusive instruction must be the same as the address in
the most recently executed Load-exclusive instruction. The value stored by the Store-Exclusive
instruction must also have the same data size as the value loaded by the preceding Load-exclusive
instruction. This means software must always use a Load-exclusive instruction and a matching
Store-Exclusive instruction to perform a synchronization operation.

If a Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction writes
0 to the destination register, it is guaranteed that no other process in the system has accessed the
memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 232 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

The result of executing a Store-Exclusive instruction to an address that is different
from that used in the preceding Load-Exclusive instruction is unpredictable.

Restrictions
In these instructions:

• Do not use PC.

• Do not use SP for Rd and Rt.

• For STREX, Rd must be different from both Rt and Rn.

• The value of offset must be a multiple of four in the range 0-1020.

Condition flags
These instructions do not change the flags.

 MOV R1, #0x1 ; Initialize the ‘lock taken’ value
try
 LDREX R0, [LockAddr] ; Load the lock value
 CMP R0, #0 ; Is the lock free?
 ITT EQ ; IT instruction for STREXEQ and CMPEQ
 STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
 CMPEQ R0, #0 ; Did this succeed?
 BNE try ; No – try again
 ; Yes – we have the lock.

4.14.12 LDAEX and STLEX

Load-Acquire and Store Release Exclusive.

op{type} Rt, [Rn]
Where:

op Is one of:

LDAEX
Load Register.

STLEX
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32 bits on loads.
H Unsigned halfword, zero extend to 32 bits on loads..

cond is an optional condition code.
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 233 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

Operation
Load Register Exclusive calculates an address from a base register value and an immediate offset,
loads a word from memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access
for the executing core in a global monitor.

• Causes the core that executes to indicate an active exclusive access in the local monitor.

• If any loads or stores appear after LDAEX in program order, then all observers are guaranteed to
observe the LDAEX before observing the loads and stores. Loads and stores appearing before
LDAEX are unaffected.

Store Register Exclusive calculates an address from a base register value and an immediate offset,
and stores a word from a register to memory If the executing core has exclusive access to the
memory addressed:

• Rd is the destination general-purpose register into which the status result of the store exclusive
is written, encoded in the Rd field. The value returned is:

0 If the operation updates memory.
1 If the operation fails to update memory.

• If any loads or stores appear before STLEX in program order, then all observers are guaranteed
to observe the loads and stores before observing the store-release. Loads and stores appearing
after STLEX are unaffected.

All store-release operations are multi-copy atomic.

Restrictions
In these instructions:

• Do not use PC.

• Do not use SP for Rd and Rt.

• For STLEX, Rd must be different from both Rt and Rn.

Condition flags
These instructions do not change the flags.

 lock
 MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
 LDAEX R0, [LockAddr] ; Load the lock value
 CMP R0, #0 ; Is the lock free?
 BNE try ; No – try again
 STREX R0, R1, [LockAddr] ; Try and claim the lock
 CMP R0, #0 ; Did this succeed?
 BNE try ; No – try again
 ; Yes – we have the lock.
 unlock

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 234 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Instruction Set

 MOV r1, #0
 STL r1, [r0]

4.14.13 CLREX

Clear Exclusive.

CLREX{cond}

Where:

cond Is an optional condition code.

Operation
Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register
and fail to perform the store. CLREX enables compatibility with other Arm® Cortex processors
that have to force the failure of the store exclusive if the exception occurs between a load-
exclusive instruction and the matching store-exclusive instruction in a synchronization operation.
In Cortex®‑M processors, the local exclusive access monitor clears automatically on an exception
boundary, so exception handlers using CLREX are optional.

Condition flags
This instruction does not change the flags.

CLREX

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 235 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5. The Cortex®-M33 Peripherals
This chapter describes the Cortex®-M33 peripherals.

5.1 About the Cortex®-M33 peripherals
The address map of the Private peripheral bus (PPB).

Table 5-1: Core peripheral register regions

Address Core peripheral Description

0xE000E000-
0xE000E00F

Includes the Interrupt Controller Type and Auxiliary Control
registers

0xE000ED00-
0xE000ED8F

5.2.1 System control block registers summary on page 237

0xE000EDF0-
0xE000EEFF

Debug registers in the SCS

0xE000EF00-
0xE000EF8F

System control and ID registers

Includes the SW Trigger Interrupt Register

0xE000E010-
0xE000E0FF

System timer 5.3 System timer, SysTick on page 269

0xE000E100-
0xE000ECFF

Nested Vectored Interrupt Controller
registers

5.4 Nested Vectored Interrupt Controller on page 272

0xE000ED00-
0xE000EDEF

Security Attribution Unit 5.5.1 Security Attribution Unit on page 283
-

0xE000ED90-
0xE000EDB8

Memory Protection Unit 5.5.9 Memory Protection Unit on page 290

0xE000EF30-
0xE000EF44

Floating-Point Unit 5.6 Floating-Point Unit on page 300

In register descriptions:

• The register type is described as follows:

RW Read and write.
RO Read-only.
WO Write-only.
RAZ Read As Zero.
WI Write Ignored.

• The required privilege gives the privilege level that is required to access the register, as follows:

Privileged Only privileged software can access the register.
Unprivileged Both unprivileged and privileged software can access the register.

13 Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a Memory Protection Unit
(MPU).

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 236 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

• In an implementation with the Security Extension, the peripheral registers are banked in Secure
and Non-secure state. The Non-secure registers can be accessed in Secure state by using an
aliased address at offset 0x00020000 from the normal register address. The alias locations are
always RAZ/WI if accessed from Non-secure state.

Attempting to access a privileged register from unprivileged software results in a
BusFault.

5.2 System Control Block
The System Control Block (SCB) provides system implementation information and system control
that includes configuration, control, and reporting of system exceptions.

5.2.1 System control block registers summary

Reference information for the SCB registers.

Table 5-2: Summary of the system control block registers

Address Name Type Required

privilege

Reset

value

Description

0xE000E008 ACTLR RW Privileged 0x00000000 5.2.2 Auxiliary Control Register - Cortex-M33 on page 238

0xE000ED00 CPUID RO Privileged 0x411FD210 5.2.3 CPUID Base Register - ARMv8M on page 239

0xE000ED04 ICSR RW14 Privileged 0x00000000 5.2.4 M33 Interrupt Control and State Register on page 240

0xE000ED08 VTOR RW Privileged UNKNOWN 5.2.5 Vector Table Offset Register on page 245

0xE000ED0C AIRCR RW14 Privileged 0xFA050000 5.2.6 Application Interrupt and Reset Control Register - ARMv8 on page
246

0xE000ED10 SCR RW Privileged 0x00000000 5.2.7 System Control Register - Cortex-M33 on page 249

0xE000ED14 CCR RW Privileged 0x00000201 5.2.8 Configuration and Control Register on page 251

0xE000ED18 SHPR1 RW Privileged 0x00000000 5.2.9.1 System Handler Priority Register 1 -ARMv8M on page 254

0xE000ED1C SHPR2 RW Privileged 0x00000000 5.2.9.2 M33 System Handler Priority Register 2 on page 255

0xE000ED20 SHPR3 RW Privileged 0x00000000 5.2.9.3 M33 System Handler Priority Register 3 on page 255

0xE000ED24 SHCSR RW Privileged 0x00000000 5.2.10 System Handler Control and State Register - ARMv8M on page
255

0xE000ED28 CFSR RW Privileged 0x00000000 5.2.11 M33 Configurable Fault Status Register on page 259

0xE000ED28 MMFSR15 RW Privileged 0x00 5.2.11.1 M33 MemManage Fault Status Register on page 259

0xE000ED29 BFSR15 RW Privileged 0x00 5.2.11.2 M33 BusFault Status Register on page 261

0xE000ED2A UFSR15 RW Privileged 0x0000 5.2.11.3 UsageFault Status Register on page 262

0xE000ED2C HFSR RW Privileged 0x00000000 5.2.12 M33 HardFault Status Register on page 264

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 237 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Address Name Type Required

privilege

Reset

value

Description

0xE000ED34 MMFAR RW Privileged UNKNOWN 5.2.13 M33 MemManage Fault Address Register on page 265

0xE000ED38 BFAR RW Privileged UNKNOWN 5.2.14 BusFault Address Register on page 265

0xE000ED3C AFSR RAZ/
WI

Privileged - Auxiliary Fault Status Register not implemented

0xE000ED88 CPACR RW Privileged 0x00000000 5.2.15 Coprocessor Access Control Register - ARMv8M on page 266

0xE000ED8C NSACR RW Privileged UNKNOWN 5.2.16 Non-secure Access Control Register on page 267

5.2.2 Auxiliary Control Register

The ACTLR provides disable bits for the FPU exception outputs, dual-issue functionality, flushing of
the trace output from the ITM and DWT, Exclusive instruction control, out-of-order floating point
instructions, and handling interruptible instructions.

By default, this register is set to provide optimum performance from the Cortex®-M33 processor
and does not normally require modification.

See 5.2.1 System control block registers summary on page 237 for the ACTLR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The ACTLR bit assignments are:

31 30 29

UNK/SBZP

28 13 12 11 10 9

UNK/SBZP

8 3 2 1 0

UNK/SBZP
EXTEXCLALL

DISITMATBFLUSH
UNK/SBZP

FPEXCODIS
DISOOFP

DISFOLD
UNK/SBZP
DISMCYCINT

Table 5-3: ACTLR bit assignments

Bits Name Function

[31:30] - Reserved for software testing purposes only.

14 See the register description for more information.
15 A subregister of the CFSR.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 238 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[29] EXTEXCLALL 0 Normal operation. Memory requests on Code region AHB (C-AHB) or System AHB (S-AHB)
interfaces associated with LDREX and STREX instructions only assert HEXCL and respond to
HEXOKAY if the address is shareable.

1 All memory requests on C-AHB or S-AHB interfaces associated with LDREX and STREX instructions
assert HEXCL and respond to HEXOKAY irrespective of the shareable attribute associated with the
address.

Setting EXTEXCLALL allows external exclusive operations to be used in a configuration with no MPU. This is
because the default memory map does not include any shareable Normal memory.

[28:13] - Reserved. UNK/SBZP

[12] DISITMATBFLUSH Disables ITM and DWT ATB flush:

0 Normal operation.
1 ITM and DWT ATB flush disabled. AFVALID is ignored and AFREADY is held HIGH.

[11] - Reserved. UNK/SBZP

[10] FPEXCODIS Disables FPU exception outputs:

0 Normal operation.
1 FPU exception outputs are disabled.

[9] DISOOFP Disables floating-point instructions completing out of order with respect to the non-floating point
instructions:

0 Normal operation.
1 Floating-point instructions completing out of order are disabled.

[8:3] - Reserved. UNK/SBZP

[2] DISFOLD Disables dual-issue functionality:

0 Normal operation.
1 Dual-issue functionality is disabled. Setting this bit reduces performance.

[1] - Reserved. UNK/SBZP

[0] DISMCYCINT Disables interruption of multi-cycle instructions:

0 Normal operation.
1 Disables interruption of multi-cycle instructions. This increases the interrupt latency of the

processor because load, store, multiply, and divide operations complete before interrupt stacking
occurs.

5.2.3 CPUID Base Register

The CPUID Base Register contains the processor part number, version, and implementation
information.

See 5.2.1 System control block registers summary on page 237 for the CPUID attributes.

In an implementation with the Security Extension, this register is not banked between Security
states.

The bit assignments are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 239 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

31 16 15 4 3 0

Implementer RevisionPartNo

24 23 20 19

Variant Constant

Table 5-4: CPUID bit assignments

Bits Name Function

[31:24] Implementer Implementer code:

0x41 Arm®

[23:20] Variant Variant number, the n value in the rnpm product revision identifier:

0x1 Revision 1

[19:16] Constant Reads as 0xF

[15:4] PartNo Part number of the processor:

0xD21 Cortex®-M33

[3:0] Revision Revision number, the m value in the rnpm product revision identifier:

0x0 Patch 0.

5.2.4 Interrupt Control and State Register

The ICSR provides a set-pending bit for the non-maskable interrupt exception, and set-pending and
clear-pending bits for the PendSV and SysTick exceptions.

The ICSR indicates:

• The exception number of the exception being processed.

• Whether there are pre-empted active exceptions.

• The exception number of the highest priority pending exception

• Whether any interrupts are pending.

See 5.2.1 System control block registers summary on page 237 for the ICSR attributes.

In an implementation with the Security Extension, this register is banked between Security states
on a bit by bit basis.

The ICSR bit assignments are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 240 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 8 0

VECTPENDING VECTACTIVE

RES0
RETTOBASE

RES0
ISRPENDING
Reserved for Debug use
STTNS
PENDSTCLR

PENDSTSET
PENDSVCLR
PENDSVSET

RES0

PENDNMISET
PENDNMICLR

Table 5-5: ICSR bit assignments without the Security Extension

Bits Name Type Function

[31] PENDNMISET RW NMI set-pending bit.

Write:

0 No effect.
1 Changes NMI exception state to pending.

Read:

0 NMI exception is not pending.
1 NMI exception is pending.

[30] PENDNMICLR WO Pend NMI clear bit.

Write:

0 No effect.
1 Clear pending status.

This bit is write-one-to-clear. Writes of zero are ignored.

[29] - - Reserved, RES0.

[28] PENDSVSET RW PendSV set-pending bit.

Write:

0 No effect.
1 Changes PendSV exception state to pending.

Read:

0 PendSV exception is not pending.
1 PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 241 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Type Function

[27] PENDSVCLR WO PendSV clear-pending bit.

Write:

0 No effect.
1 Removes the pending state from the PendSV exception.

[26] PENDSTSET RW SysTick exception set-pending bit.

Write:

0 No effect.
1 Changes SysTick exception state to pending.

Read:

0 SysTick exception is not pending.
1 SysTick exception is pending.

[25] PENDSTCLR WO SysTick exception clear-pending bit.

Write:

0 No effect.
1 Removes the pending state from the SysTick exception.

This bit is WO. On a register read, its value is UNKNOWN.

[24] STTNS RO RES0.

[23] ISRPREEMPT RO Interrupt preempt. Indicates whether a pending exception is handled on exit from debug state. This bit is
not banked between Security states. The possible values of this bit are:

0 Pending exception is not handled on exit from debug state.
1 Pending exception is handled on exit from debug state.

[22] ISRPENDING RO Interrupt pending flag, excluding NMI and Faults:

0 Interrupt not pending.
1 Interrupt pending.

[21] - - Reserved, RES0.

[20:12] VECTPENDING RO Indicates the exception number of the highest priority pending enabled exception:

0 No pending exceptions.
Nonzero The exception number of the highest priority pending enabled exception.

The value that this field indicates includes the effect of the BASEPRI and FAULTMASK registers, but not
any effect of the PRIMASK register.

[11] RETTOBASE RO Indicates whether there are pre-empted active exceptions:

0 There are pre-empted active exceptions to execute.
1 There are no active exceptions, or the currently executing exception is the only active exception.

[10:9] - - Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 242 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Type Function

[8:0] VECTACTIVE16 RO Contains the active exception number:

0 Thread mode.
1 The exception number16 of the currently active exception.

Note:
Subtract 16 from this value to obtain the CMSIS IRQ number required to index into the Interrupt Clear-
Enable, Set-Enable, Clear-Pending, Set-Pending, or Priority Registers, see 3.1.3.6.2 Interrupt Program
Status Register on page 31.

Table 5-6: ICSR bit assignments with the Security Extension

Bits Name Type Function

[31] PENDNMISET RW NMI set-pending bit.

Write:

0 No effect.
1 Changes NMI exception state to pending.

Read:

0 NMI exception is not pending.
1 NMI exception is pending.

A read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the
processor is executing that handler.

[30] PENDNMICLR WO Pend NMI clear bit.

Write:

0 No effect.
1 Clear pending status.

This bit is write-one-to-clear. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

[29] - - Reserved, RES0.

16 This is the same value as IPSR bits[8:0], see 3.1.3.6.2 Interrupt Program Status Register on page 31.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 243 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Type Function

[28] PENDSVSET RW PendSV set-pending bit.

Write:

0 No effect.
1 Changes PendSV exception state to pending.

Read:

0 PendSV exception is not pending.
1 PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

This bit is banked between Security states.

[27] PENDSVCLR WO PendSV clear-pending bit.

Write:

0 No effect.
1 Removes the pending state from the PendSV exception.

This bit is banked between Security states.

[26] PENDSTSET RW SysTick exception set-pending bit.

Write:

0 No effect.
1 Changes SysTick exception state to pending.

Read:

0 SysTick exception is not pending.
1 SysTick exception is pending.

This bit is banked between Security states.

[25] PENDSTCLR WO SysTick exception clear-pending bit.

Write:

0 No effect.
1 Removes the pending state from the SysTick exception.

This bit is WO. On a register read, its value is UNKNOWN.

This bit is not banked between Security states.

[24] STTNS RO Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 244 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Type Function

[23] ISRPREEMPT RO Interrupt preempt. Indicates whether a pending exception is handled on exit from debug state. The
possible values of this bit are:

0 Pending exception is not handled on exit from debug state.
1 Pending exception is handled on exit from debug state.

This field is not banked between Security states.

[22] ISRPENDING RO Interrupt pending flag, excluding NMI and Faults:

0 Interrupt not pending.
1 Interrupt pending.

This bit is not banked between Security states.

[21] - - Reserved, RES0.

[20:12] VECTPENDING RO Indicates the exception number of the highest priority pending enabled exception:

0 No pending exceptions.
Nonzero The exception number of the highest priority pending enabled exception.

The value that this field indicates includes the effect of the BASEPRI and FAULTMASK registers, but not
any effect of the PRIMASK register.

This field is not banked between Security states.

[11] RETTOBASE RO Indicates whether there are pre-empted active exceptions:

0 There are pre-empted active exceptions to execute.
1 There are no active exceptions, or the currently executing exception is the only active exception.

This bit is not banked between Security states.

[10:9] - - Reserved, RES0.

[8:0] VECTACTIVE17 RO Contains the active exception number:

0 Thread mode.
1 The exception number17 of the currently active exception.

Note:
Subtract 16 from this value to obtain the CMSIS IRQ number required to index into the Interrupt Clear-
Enable, Set-Enable, Clear-Pending, Set-Pending, or Priority Registers, see 3.1.3.6.2 Interrupt Program
Status Register on page 31.

This field is not banked between Security states.

When you write to the ICSR, the effect is UNPREDICTABLE if you:

• Write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit.

• Write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

17 This is the same value as IPSR bits[8:0], see 3.1.3.6.2 Interrupt Program Status Register on page 31.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 245 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.2.5 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000.

See 5.2.1 System control block registers summary on page 237 for the VTOR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The VTOR bit assignments are:

31 7 6 0

RES0TBLOFF

Table 5-7: VTOR bit assignments

Bits Name Function

[31:7] TBLOFF Vector table base offset field. It contains bits[31:7] of the offset of the table base from the bottom of the memory map.

[6:0] - Reserved, RES0.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector
table.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

5.2.6 Application Interrupt and Reset Control Register

The AIRCR provides sets or returns interrupt control and reset configuration.

See 5.2.1 System control block registers summary on page 237 for the AIRCR attributes.

To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the processor
ignores the write.

In an implementation with the Security Extension, this register is banked between Security states
on a bit by bit basis.

The AIRCR bit assignments are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 246 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Read: VECTKEYSTAT
Write: VECTKEY

31 16 15 14 13

RES0

12 11 10 8

RES0

7 4 3 2 1 0

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

SYSRESETREQS
SYSRESETREQ

VECTCLRACTIVE
RES0

Table 5-8: AIRCR bit assignments without the Security Extension

Bits Name Type Function

[31:16] Read:
VECTKEYSTAT

Write: VECTKEY

RW Register key:

Reads as 0xFA05.

On writes, write 0x5FA to VECTKEY, otherwise the write is ignored.

[15] ENDIANNESS RO Data endianness bit:

0 Little-endian.
1 Big-endian.

[14] PRIS RAZ/
WI

-

[13] BFHFNMINS RAO/
WI

-

[12:11] - - Reserved, RES0.

[10:8] PRIGROUP RW Interrupt priority grouping field. This field determines the split of group priority from subpriority, see
5.2.6.1 Binary point on page 249.

[7:4] - - Reserved, RES0.

[3] SYSRESETREQS RAZ/
WI

-

[2] SYSRESETREQ RW System reset request. This bit allows software or a debugger to request a system reset:

0 Do not request a system reset.
1 Request a system reset.

This bit is not banked between Security states.

[1] VECTCLRACTIVE WO Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit,
otherwise behavior is UNPREDICTABLE.

[0] - - Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 247 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-9: AIRCR bit assignments with the Security Extension

Bits Name Type Function

[31:16] Read:
VECTKEYSTAT

Write: VECTKEY

RW Register key:

Reads as 0xFA05.

On writes, write 0x5FA to VECTKEY, otherwise the write is ignored.

This Field is not banked between Security states.

[15] ENDIANNESS RO Data endianness bit:

0 Little-endian.
1 Big-endian.

This bit is not banked between Security states.

[14] PRIS RW from Secure state and
RAZ/WI from Non-secure
state.

Prioritize Secure exceptions. The value of this bit defines whether Secure
exception priority boosting is enabled.

0 Priority ranges of Secure and Non-secure exceptions are identical.
1 Non-secure exceptions are de-prioritized.

This bit is not banked between Security states.

[13] BFHFNMINS RW from Secure-state and RO
from Non-secure state.

BusFault, HardFault, and NMI Non-secure enable. The value of this bit
defines whether BusFault and NMI exceptions are Non-secure, and whether
exceptions target the Non-secure HardFault exception.

The possible values are:

0 BusFault, HardFault, and NMI are Secure.
1 BusFault and NMI are Non-secure and exceptions can target Non-

secure HardFault.

This bit resets to 0.

This bit is not banked between Security states.

[12:11] - - Reserved, RES0.

[10:8] PRIGROUP RW Interrupt priority grouping field. This field determines the split of group
priority from subpriority, see 5.2.6.1 Binary point on page 249.

This bit is banked between Security states.

[7:4] - - Reserved, RES0.

[3] SYSRESETREQS RW from Secure State and
RAZ/WI from Non-secure
state.

System reset request, Secure state only. The value of this bit defines whether
the SYSRESETREQ bit is functional for Non-secure use:

0 SYSRESETREQ functionality is available to both Security states.
1 SYSRESETREQ functionality is only available to Secure state.

This bit resets to zero on a Warm reset.
This bit is not banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 248 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Type Function

[2] SYSRESETREQ RW if SYSRESETREQS is 0.

When SYSRESETREQS is set
to 1, from Non-secure state
this bit acts as RAZ/WI.

System reset request. This bit allows software or a debugger to request a
system reset:

0 Do not request a system reset.
1 Request a system reset.

This bit is not banked between Security states.

[1] VECTCLRACTIVE WO Reserved for Debug use. This bit reads as 0. When writing to the register you
must write 0 to this bit, otherwise behavior is UNPREDICTABLE.

This bit is not banked between Security states.

[0] - - Reserved, RES0.

5.2.6.1 Binary point

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the
Interrupt Priority Registers into separate group priority and subpriority fields.

The following table shows how the PRIGROUP value controls this split.

Table 5-10: Priority grouping

Interrupt priority level value, PRI_n[7:0] Number of

PRIGROUP Binary point18 Group priority bits Subpriority bits Group priorities Subpriorities

0b000 bxxxxxxx.y [7:1] [0] 128 2

0b001 bxxxxxx.yy [7:2] [1:0] 64 4

0b010 bxxxxx.yyy [7:3] [2:0] 32 8

0b011 bxxxx.yyyy [7:4] [3:0] 16 16

0b100 bxxx.yyyyy [7:5] [4:0] 8 32

0b101 bxx.yyyyyy [7:6] [5:0] 4 64

0b110 bx.yyyyyyy [7] [6:0] 2 128

0b111 b.yyyyyyyy None [7:0] 1 256

Determining pre-emption of an exception uses only the group priority field.

18 PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 249 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.2.7 System Control Register

The SCR controls features of entry to and exit from low-power state.

See 5.2.1 System control block registers summary on page 237 for the SCR attributes.

In an implementation with the Security Extension, this register is banked between Security states
on a bit by bit basis.

The bit assignments are:

RES0

31 5 4 3 2 1 0

SEVONPEND
SLEEPDEEPS

SLEEPDEEP
SLEEPONEXIT

RES0

Table 5-11: SCR bit assignments without the Security Extension

Bits Name Function

[31:5] - Reserved, RES0.

[4] SEVONPEND Send Event on Pending bit:

0 Only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded.
1 Enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the
processor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

[3] SLEEPDEEPS RAZ/WI.

[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low-power mode:

0 Sleep.
1 Deep sleep.

[1] SLEEPONEXIT Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 Do not sleep when returning to Thread mode.
1 Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

[0] - Reserved, RES0.

Table 5-12: SCR bit assignments with the Security Extension

Bits Name Function

[31:5] - Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 250 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[4] SEVONPEND Send Event on Pending bit:

0 Only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded.
1 Enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the
processor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

This bit is banked between Security states.

[3] SLEEPDEEPS Controls whether the SLEEPDEEP bit is only accessible from the Secure state:

0 The SLEEPDEEP bit accessible from both Security states.
1 The SLEEPDEEP bit behaves as RAZ/WI when accessed from the Non-secure state.

This bit in only accessible from the Secure state, and behaves as RAZ/WI when accessed from the Non-secure
state.

This bit is not banked between Security states.

[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low-power mode:

0 Sleep.
1 Deep sleep.

This bit is not banked between Security states.

[1] SLEEPONEXIT Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 Do not sleep when returning to Thread mode.
1 Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

This bit is banked between Security states.

[0] - Reserved, RES0.

5.2.8 Configuration and Control Register

The CCR is a read-only register and indicates some aspects of the behavior of the processor.

See 5.2.1 System control block registers summary on page 237 for the CCR attributes.

In an implementation with the Security Extension, this register is banked between Security states
on a bit by bit basis.

The bit assignments for CCR are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 251 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

RES0

31 19 18 17 16

RES0

15 11 10 9 8

RES0

7 5 4 3 2 1 0

BP
IC

DC
STKOFHFNMIGN

RES1

DIV_0_TRP
UNALIGN_TRP

RES0
USERSETMPEND

BFHFNMIGN

RES1

Table 5-13: CCR bit assignments without the Security Extension

Bits Name Function

[31:19] - Reserved, RES0

[18] BP RAZ/WI.

[17] IC RAZ/WI.

[16] DC RAZ/WI.

[15:11] - Reserved, RES0

[10] STKOFHFNMIGN Controls the effect of a stack limit violation while executing at a requested priority less than 0.

0 Stack limit faults not ignored.
1 Stack limit faults at requested priorities of less than 0 ignored.

[9] - Reserved, RES1.

[8] BFHFNMIGN Determines the effect of precise bus faults on handlers running at a requested priority less than 0.

0 Precise bus faults are not ignored.
1 Precise bus faults at requested priorities of less than 0 are ignored.

[7:5] - Reserved, RES0.

[4] DIV_0_TRP Divide by zero trap. Controls the generation of a DIVBYZERO UsageFault when attempting to perform integer
division by zero.

0 DIVBYZERO UsageFault generation disabled.
1 DIVBYZERO UsageFault generation enabled.

[3] UNALIGN_TRP Controls the trapping of unaligned word or halfword accesses.

0 Unaligned trapping disabled.
1 Unaligned trapping enabled.

[2] - Reserved, RES0.

[1] USERSETMPEND User set main pending. Determines whether unprivileged accesses are permitted to pend interrupts from the
STIR.

0 Unprivileged accesses to the STIR generate a fault.
1 Unprivileged accesses to the STIR are permitted.

[0] - Reserved, RES1.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 252 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-14: CCR bit assignments with the Security Extension

Bits Name Function

[31:19] - Reserved, RES0

[18] BP RAZ/WI.

[17] IC RAZ/WI.

[16] DC RAZ/WI.

[15:11] - Reserved, RES0

[10] STKOFHFNMIGN Controls the effect of a stack limit violation while executing at a requested priority less than 0.

0 Stack limit faults not ignored.
1 Stack limit faults at requested priorities of less than 0 ignored.

This bit is banked between Security states.

[9] - Reserved, RES1.

[8] BFHFNMIGN Determines the effect of precise bus faults on handlers running at a requested priority less than 0.

0 Precise bus faults are not ignored.
1 Precise bus faults at requested priorities of less than 0 are ignored.

This bit is not banked between Security states.

[7:5] - Reserved, RES0.

[4] DIV_0_TRP Divide by zero trap. Controls the generation of a DIVBYZERO UsageFault when attempting to perform integer
division by zero.

0 DIVBYZERO UsageFault generation disabled.
1 DIVBYZERO UsageFault generation enabled.

This bit is banked between Security states.

[3] UNALIGN_TRP Controls the trapping of unaligned word or halfword accesses.

0 Unaligned trapping disabled.
1 Unaligned trapping enabled.

This bit is banked between Security states.

[2] - Reserved, RES0.

[1] USERSETMPEND User set main pending. Determines whether unprivileged accesses are permitted to pend interrupts from the
STIR.

0 Unprivileged accesses to the STIR generate a fault.
1 Unprivileged accesses to the STIR are permitted.

This bit is banked between Security states.

[0] - Reserved, RES1.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 253 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.2.9 System Handler Priority Registers

The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that have
configurable priority. SHPR1-SHPR3 are byte accessible.

See 5.2.1 System control block registers summary on page 237 for the SHPR1-SHPR3 attributes.

In an implementation with the Security Extension, These registers are banked between Security
states on a bit field by bit field basis.

The system fault handlers and the priority field and register for each handler are:

Table 5-15: System fault handler priority fields

Handler Field Register description

MemManage PRI_4

BusFault PRI_5

UsageFault PRI_6

SecureFault PRI_7

5.2.9.1 System Handler Priority Register 1 -ARMv8M on page 254

SVCall PRI_11 5.2.9.2 M33 System Handler Priority Register 2 on page 255

PendSV PRI_14

SysTick PRI_15

5.2.9.3 M33 System Handler Priority Register 3 on page 255

Each PRI_n field is 8 bits wide, but the processor implements only bits[7:M] of each field, and
bits[M-1:0] read as zero and ignore writes.

5.2.9.1 System Handler Priority Register 1

Bit assignments for the SHPR1 register.

PRI_7

31 24

PRI_6

23 16

PRI_5

15 8

PRI_4

7 0

Table 5-16: SHPR1 register bit assignments

Bits Name Function Security state

[31:24] PRI_7 Priority of system handler 7,
SecureFault

Always RAZ/WI

PRI_7 is RAZ/WI from Non-
secure state.

[23:16] PRI_6 Priority of system handler 6,
UsageFault

PRI_6 is banked between
Security states.

[15:8] PRI_5 Priority of system handler 5,
BusFault

PRI_5 is RAZ/WI from
Non-secure state if
AIRCR.BFHFNMINS is 0.

[7:0] PRI_4 Priority of system handler 4,
MemManage

PRI_4 is banked between
Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 254 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.2.9.2 System Handler Priority Register 2

Bit assignments for the SHPR2 register.

31 24 23 0

PRI_11 Reserved

Table 5-17: SHPR2 register bit assignments

Bits Name Function Security state

[31:24] PRI_11 Priority of system handler 11,
SVCall

PRI_11 is banked between
Security states.

[23:0] - Reserved -

5.2.9.3 System Handler Priority Register 3

Bit assignments for the SHPR3 register.

PRI_15

31 15 01624 23

PRI_14 Reserved

Table 5-18: SHPR3 register bit assignments

Bits Name Function Security state

[31:24] PRI_15 Priority of system handler 15,
SysTick exception

PRI_15 is banked between
Security states.

[23:16] PRI_14 Priority of system handler 14,
PendSV

PRI_14 is is banked between
Security states.

[15:0] - Reserved -

5.2.10 System Handler Control and State Register

The SHCSR enables the system handlers. It indicates the pending status of the BusFault,
MemManage fault, and SVC exceptions, and indicates the active status of the system handlers.

See 5.2.1 System control block registers summary on page 237 for the SHCSR attributes.

In an implementation with the Security Extension, this register is between Security states on a bit
by bit basis.

The SHCSR bit assignments are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 255 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

0123456

(0)

789

(0)

1011121314151617181920212231

RES0

HARDFAULTPENDED
SECUREFAULTPENDED

SECUREFAULTENA
USGFAULTENA
BUSFAULTENA

MEMFAULTENA
SVCALLPENDED

BUSFAULTPENDED
MEMFAULTPENDED
USGFAULTPENDED

MEMFAULTACT
BUSFAULTACT
HARDFAULTACT
USGFAULTACT

SECUREFAULTACT
NMIACT
SVCALLACT

MONITORACT
PENDSVACT
SYSTICKACT

Table 5-19: SHCSR bit assignments without the Security Extension

Bits Name Function

[31:22] - Reserved, RES0.

[21] HARDFAULTPENDED HardFault exception pended state bit, set to 1 to allow exception modification

[20] SECUREFAULTPENDED RES0

[19] SECUREFAULTENA RES0

[18] USGFAULTENA UsageFault enable bit, set to 1 to enable.19

[17] BUSFAULTENA BusFault enable bit, set to 1 to enable.19

[16] MEMFAULTENA MemManage enable bit, set to 1 to enable. 19

[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending. 20

[14] BUSFAULTPENDED BusFault exception pending bit, reads as 1 if exception is pending. 20

[13] MEMFAULTPENDED MemManage exception pending bit, reads as 1 if exception is pending.20

[12] USGFAULTPENDED UsageFault exception pending bit, reads as 1 if exception is pending.20

[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active.21

[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active

[9] - Reserved, RES0.

[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active

[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active

[6] - Reserved, RES0.

[5] NMIACT NMI exception active state bit, reads as 1 if exception is active.

[4] SECUREFAULTACT RES0

[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active

[2] HARDFAULTACT HardFault exception active bit, reads as 1 if exception is active

[1] BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active

[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active

Table 5-20: SHCSR bit assignments with the Security Extension

Bits Name Function

[31:22] - Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 256 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[21] HARDFAULTPENDED HardFault exception pended state bit, set to 1 to allow exception modification.

This bit is banked between Security states.

Note:
The Non-secure HardFault exception does not preempt if AIRCR.BFHFNMINS is set to zero.

[20] SECUREFAULTPENDED SecureFault exception pended state bit, set to 1 to allow exception modification.

This bit is not banked between Security states.

[19] SECUREFAULTENA SecureFault exception enable bit, set to 1 to enable.

This bit is not banked between Security states.

[18] USGFAULTENA UsageFault enable bit, set to 1 to enable.19

This bit is banked between Security states.

[17] BUSFAULTENA BusFault enable bit, set to 1 to enable.19

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit is not banked between Security states.

[16] MEMFAULTENA MemManage enable bit, set to 1 to enable. 19

This bit is banked between Security states.

[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending. 20

This bit is banked between Security states.

[14] BUSFAULTPENDED BusFault exception pending bit, reads as 1 if exception is pending. 20

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit is not banked between Security states.

[13] MEMFAULTPENDED MemManage exception pending bit, reads as 1 if exception is pending.20

This bit is banked between Security states.

[12] USGFAULTPENDED UsageFault exception pending bit, reads as 1 if exception is pending.20

This bit is banked between Security states.

[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active.21

This bit is banked between Security states.

[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

[9] - Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 257 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active.

This bit is not banked between Security states.

[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active.

This bit is banked between Security states.

[6] - Reserved, RES0.

[5] NMIACT NMI exception active state bit, reads as 1 if exception is active.

This bit is not banked between Security states.

[4] SECUREFAULTACT SecureFault exception active state bit, reads as 1 if exception is active.

This bit is not banked between Security states.

[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

[2] HARDFAULTACT HardFault exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

[1] BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit is not banked between Security states.

[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as
a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS
kernel can write to the active bits to perform a context switch that changes the current exception
type.

• Software that changes the value of an active bit in this register without correct
adjustment to the stacked content can cause the processor to generate a fault
exception. Ensure software that writes to this register retains and t restores the
current active status.

19 Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.
20 Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change

the pending status of the exceptions.
21 Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the

active status of the exceptions, but see the Caution in this section.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 258 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

• After you have enabled the system handlers, if you have to change the value of
a bit in this register you must use a read-modify-write procedure. Using a read-
modify-write procedure ensures that you change only the required bit.

5.2.11 Configurable Fault Status Register

The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault.

See 5.2.1 System control block registers summary on page 237 for the CFSR attributes.

In an implementation with the Security Extension, this register is banked between Security states
on a bit by bit basis.

The CFSR bit assignments are:

Memory Management
Fault Status Register

31 16 15 8 7 0

Usage Fault Status Register Bus Fault Status
Register

UFSR BFSR MMFSR

The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:

• Access the complete CFSR with a word access to 0xE000ED28.

• Access the MMFSR with a byte access to 0xE000ED28.

• Access the MMFSR and BFSR with a halfword access to 0xE000ED28.

• Access the BFSR with a byte access to 0xE000ED29.

• Access the UFSR with a halfword access to 0xE000ED2A.

5.2.11.1 MemManage Fault Status Register

The MMFSR is a subregister of the CFSR. The flags in the MMFSR indicate the cause of memory
access faults.

In an implementation with the Security Extension, this field is banked between Security states.

The bit assignments are:

MMARVALID
RES0

MSTKERR MUNSTKERR

7 6 5 4 3 2 1 0

IACCVIOL
DACCVIOL
RES0MLSPERR

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 259 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-21: MMFSR bit assignments

Bits Name Function

[7] MMARVALID MemManage Fault Address Register (MMFAR) valid flag:

0 Value in MMFAR is not a valid fault address.
1 MMFAR holds a valid fault address.

If a MemManage fault occurs and is escalated to a HardFault because of priority, the HardFault handler must set this
bit to 0. This prevents problems on return to a stacked active MemManage fault handler whose MMFAR value has
been overwritten.

[6] - Reserved, RES0.

[5] MLSPERR 0 No MemManage fault occurred during floating-point lazy state preservation.
1 A MemManage fault occurred during floating-point lazy state preservation.

[4] MSTKERR MemManage fault on stacking for exception entry:

0 No stacking fault.
1 Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The
processor has not written a fault address to the MMFAR.

[3] MUNSTKERR MemManage fault on unstacking for a return from exception:

0 No unstacking fault.
1 Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The
processor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not
written a fault address to the MMFAR.

[2] - Reserved, RES0.

[1] DACCVIOL Data access violation flag:

0 No data access violation fault.
1 The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has
loaded the MMFAR with the address of the attempted access.

[0] IACCVIOL Instruction access violation flag:

0 No instruction access violation fault.
1 The processor attempted an instruction fetch from a location that does not permit execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has
not written a fault address to the MMFAR.

The MMFSR bits are sticky. This means as one or more fault occurs, the associated
bits are set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or
by a reset.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 260 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.2.11.2 BusFault Status Register

The BFSR is a subregister of the CFSR. The flags in the BFSR indicate the cause of a bus access
fault.

In an implementation with the Security Extension:

• This field is not banked between Security states.

• If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

The bit assignments are:

BFARVALID

LSPERR
STKERR UNSTKERR

7 6 5 4 3 2 1 0

IBUSERR
PRECISERR
RES0

RES0

Table 5-22: BFSR bit assignments

Bits Name Function

[7] BFARVALID BusFault Address Register (BFAR) valid flag:

0 Value in BFAR is not a valid fault address.
1 BFAR holds a valid fault address.

The processor sets this bit to 1 after a BusFault where the address is known. Other faults can set this bit to 0, such as a
MemManage fault occurring later.

If a BusFault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This
prevents problems if returning to a stacked active BusFault handler whose BFAR value has been overwritten.

[6] - Reserved, RES0.

[5] LSPERR 0 No bus fault occurred during floating-point lazy state preservation.
1 A bus fault occurred during floating-point lazy state preservation.

[4] STKERR BusFault on stacking for exception entry:

0 No stacking fault.
1 Stacking for an exception entry has caused one or more BusFaults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be
incorrect. The processor does not write a fault address to the BFAR.

[3] UNSTKERR BusFault on unstacking for a return from exception:

0 No unstacking fault.
1 Unstack for an exception return has caused one or more BusFaults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is
still present. The processor does not adjust the SP from the failing return, does not performed a new save, and does
not write a fault address to the BFAR.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 261 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[2] - Reserved, RES0

[1] PRECISERR Precise data bus error:

0 No precise data bus error.
1 A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that

caused the fault.

When the processor sets this bit to 1, it writes the faulting address to the BFAR.

[0] IBUSERR Instruction bus error:

0 No instruction bus error.
1 Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

The BFSR bits are sticky. This means as one or more fault occurs, the associated bits
are set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a
reset.

5.2.11.3 UsageFault Status Register

The UFSR is a subregister of the CFSR. The UFSR indicates the cause of a UsageFault.

In an implementation with the Security Extension, this field is banked between Security states.

The bit assignments are:

15 4 3 0

RES0

1257

RES0

8910

DIVBYZERO
UNALIGNED STKOF

NOCP
INVPC
INVSTATE
UNDEFINSTR

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 262 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-23: UFSR bit assignments

Bits Name Function

[15:10] - Reserved, RES0.

[9] DIVBYZERO Divide by zero flag. Sticky flag indicating whether an integer division by zero error has occurred. The possible
values of this bit are:

0 Error has not occurred.
1 Error has occurred.

This bit resets to zero.

[8] UNALIGNED Unaligned access flag. Sticky flag indicating whether an unaligned access error has occurred. The possible values
of this bit are:

0 Error has not occurred.
1 Error has occurred.

This bit resets to zero.

[7:5] - Reserved, RES0.

[4] STKOF Stack overflow flag. Sticky flag indicating whether a stack overflow error has occurred. The possible values of this
bit are:

0 Error has not occurred.
1 Error has occurred.

This bit resets to zero.

[3] NOCP No coprocessor flag. Sticky flag indicating whether a coprocessor disabled or not present error has occurred. The
possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

This bit resets to zero.

[2] INVPC Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred. The possible values of this bit
are:

0 Error has not occurred.
1 Error has occurred.

This bit resets to zero.

[1] INVSTATE Invalid state flag. Sticky flag indicating whether an EPSR.T or EPSR.IT validity error has occurred. The possible
values of this bit are:

0 Error has not occurred.
1 Error has occurred.

This bit resets to zero.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 263 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[0] UNDEFINSTR Undefined instruction flag. Sticky flag indicating whether an undefined instruction error has occurred. The
possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

This bit resets to zero.

All the bits are sticky. This means as one or more fault occurs, the associated bits
are set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a
reset.

5.2.12 HardFault Status Register

The HFSR gives information about events that activate the HardFault handler. The HFSR register is
read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0.

See 5.2.1 System control block registers summary on page 237 for the HFSR attributes.

In an implementation with the Security Extension:

• This field is not banked between Security states.

• If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

The HFSR bit assignments are:

31 30 2 1 0

RES0

29

DEBUGEVT
FORCED VECTTBL

RES0

Table 5-24: HFSR bit assignments

Bits Name Function

[31] DEBUGEVT Reserved for Debug use. When writing to the register you must write 1 to this bit, otherwise behavior is
UNPREDICTABLE.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 264 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[30] FORCED Indicates a forced HardFault, generated by escalation of a fault with configurable priority that cannot be handled,
either because of priority or because it is disabled:

0 No forced HardFault.
1 Forced HardFault.

When this bit is set to 1, the HardFault handler must read the other fault status registers to find the cause of the
fault.

[29:2] - Reserved, RES0.

[1] VECTTBL Indicates a HardFault on a vector table read during exception processing:

0 No HardFault on vector table read.
1 HardFault on vector table read.

This error is always handled by the HardFault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was pre-empted
by the exception.

[0] - Reserved, RES0.

The HFSR bits are sticky. This means as one or more fault occurs, the associated
bits are set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or
by a reset.

5.2.13 MemManage Fault Address Register

The MMFAR contains the address of the location that generated a MemManage fault.

See 5.2.1 System control block registers summary on page 237 for the MMFAR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The MMFAR bit assignments are:

Table 5-25: MMFAR bit assignments

Bits Name Function

[31:0] ADDRESS When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the
MemManage fault

When an unaligned access faults, the address is the actual address that faulted. Because a single
read or write instruction can be split into multiple aligned accesses, the fault address can be any
address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 265 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.2.14 BusFault Address Register

The BFAR contains the address of the location that generated a BusFault.

See 5.2.1 System control block registers summary on page 237 for the BFAR attributes.

In an implementation with the Security Extension, this field is not banked between Security states.

The BFAR bit assignments are:

Table 5-26: BFAR bit assignments

Bits Name Function

[31:0] ADDRESS When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the
BusFault

When an unaligned access faults the address in the BFAR is the one requested by the instruction,
even if it is not the address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid.

5.2.15 Coprocessor Access Control Register

The CPACR register specifies the access privileges for coprocessors.

See 5.2.1 System control block registers summary on page 237 for the CPACR attributes.

In an implementation with the Security Extension, this field is banked between Security states.

The CPACR bit assignments are:

RES0

31 24

CP11

23 22

CP10

21 20

RES0

19 16

CP7

15 14

CP6

13 12

CP5

11 10

CP4

9 8

CP3

7 6

CP2

5 4

CP1

3 2

CP0

1 0

Table 5-27: CPACR bit assignments

Bits Name Function

[31:24] - Reserved, RES0

[23:22] CP11 CP11 Privilege. The value in this field is ignored.

If the implementation does not include the FP Extension, this field is RAZ/WI.

If the value of this bit is not programmed to the same value as the CP10 field, then the value is
UNKNOWN.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 266 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[21:20] CP10 CP10 Privilege. Defines the access rights for the floating-point functionality.

The possible values of this bit are:

0b00 All accesses to the FP Extension result in NOCP UsageFault.
0b01 Unprivileged accesses to the FP Extension result in NOCP UsageFault.
0b11 Full access to the FP Extension.

All other values are reserved.

The features controlled by this field are the execution of any floating-point instruction and access to any
floating-point registers D0-D16.

If the implementation does not include the FP Extension, this field is RAZ/WI.

[19:16] - Reserved, RES0

CPm, bits[2m+1:2m], for
m = 0-7

CPm Coprocessor m privilege. Controls access privileges for coprocessor m.

The possible values of this bit are:

0b00 Access denied. Any attempted access generates a NOCP UsageFault.
0b01 Privileged access only. An unprivileged access generates a NOCP UsageFault.
0b10 Reserved.
0b11 Full access.

If coprocessor m is not implemented, this field is RAZ/WI.

5.2.16 Non-secure Access Control Register

In an implementation with the Security Extension, tThe NSACR register defines the Non-secure
access permissions for both the FPU and coprocessors CP m, bit[m], for m = 0-7.

See the 5.2.1 System control block registers summary on page 237 for the NSACR attributes.

In an implementation with the Security Extension, this field is not banked between Security states.

The NSACR bit assignments are:

RES 0
31 12 11 10

RES 0
9 8

CP0-7 configurable

7 0

CP11
CP10

Table 5-28: NSACR bit assignments

Bits Name Function

[31:12] - Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 267 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[11] CP11 CP11 access. Enables Non-secure access to
the Floating-point Extension.

Programming with a different value other
than that used for CP10 is UNPREDICTABLE.

If the Floating-point Extension is not
implemented, this bit is RAZ/WI.

[10] CP10 CP10 access. Enables Non-secure access to
the Floating-point Extension.

0 Non-secure accesses to the
Floating-point Extension generate a
NOCP UsageFault.

1 Non-secure access to the Floating-
point Extension permitted.

If the Floating-point Extension is not
implemented, this bit is RAZ/WI.

[9:8] - Reserved, RES0

CPm, bit[m], for m = 0-7 CPm for m = 0-7 Access to CPm. Enables Non-secure access
to coprocessor CPm:

0 Non-secure accesses to this
coprocessor generate a NOCP
UsageFault.

1 Non-secure access to this
coprocessor permitted.

If the CPm is not implemented, this bit is
RAZ/WI.

5.2.17 System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control block
registers:

• Except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses.

• For the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or BFAR value.

2. Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or
BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change
the MMFAR or BFAR value. For example, if a higher priority handler pre-empts the current fault
handler, the other fault might change the MMFAR or BFAR value.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 268 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

In addition, the CMSIS provides a number of functions for system control, including:

Table 5-29: CMSIS function for system control

CMSIS system control function Description

void NVIC_SystemReset (void) Reset the system

5.3 System timer, SysTick
In a implementation with Security Extension, there are two 24-bit system timers, a Non-secure
SysTick timer and a Secure SysTick timer. In an implementation without the Security Extension, only
a single a 24-bit system timer, SysTick is used.

When enabled, each timer counts down from the reload value to zero, reloads (wraps to) the
value in the SYST_RVR on the next clock cycle, then decrements on subsequent clock cycles.
Writing a value of zero to the SYST_RVR disables the counter on the next wrap. When the
counter transitions to zero, the COUNTFLAG status bit is set to 1. Reading SYST_CSR clears the
COUNTFLAG bit to 0. Writing to the SYST_CVR clears the register and the COUNTFLAG status bit
to 0. The write does not trigger the SysTick exception logic. Reading the register returns its value at
the time it is accessed.

When the processor is halted for debugging, the counter does not decrement.

The system timer registers are:

Table 5-30: System timer registers summary

Address Name Type Reset value Description

0xE000E010 SYST_CSR RW 0x00000000 5.3.1 SysTick Control and Status Register on page 269.

0xE000E014 SYST_RVR RW UNKNOWN 5.3.2 SysTick Reload Value Register on page 270.

0xE000E018 SYST_CVR RW UNKNOWN 5.3.3 SysTick Current Value Register on page 271.

0xE000E01C SYST_CALIB RO 0xC0000000

(SysTick calibration value) 

5.3.4 SysTick Calibration Value Register on page 271.

5.3.1 SysTick Control and Status Register

The SYST_CSR controls and provides status date for the SysTick timer.

See 5.3 System timer, SysTick on page 269 for the SYST_CSR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 269 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

The bit assignments for SYST_CSR are:

31 17 16 15 3 2 1 0

COUNTFLAG CLKSOURCE
TICKINT
ENABLE

RES0 RES0

Table 5-31: SYST_CSR bit assignments

Bits Name Function

[31:17] - Reserved, RES0.

[16] COUNTFLAG Returns 1 if timer counted to 0 since the last read of this register.

[15:3] - Reserved, RES0.

[2] CLKSOURCE Selects the SysTick timer clock source:

0 External reference clock.
1 Processor clock.

[1] TICKINT Enables SysTick exception request:

0 Counting down to zero does not assert the SysTick exception request.
1 Counting down to zero asserts the SysTick exception request.

[0] ENABLE Enables the counter:

0 Counter disabled.
1 Counter enabled.

5.3.2 SysTick Reload Value Register

The SYST_RVR specifies the SysTick timer counter reload value.

See 5.3 System timer, SysTick on page 269 for the SYST_RVR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The bit assignments for SYST_RVR are:

31 0

RELOAD

2324

RES 0

Table 5-32: SYST_RVR bit assignments

Bits Name Function

[31:24] - Reserved, RES0.

[23:0] RELOAD Value to load into the SYST_CVR when the counter is enabled and when it reaches 0, see 5.3.2.1 Calculating the
RELOAD value on page 271.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 270 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.3.2.1 Calculating the RELOAD value

The SYST_RVR specifies the SysTick timer counter reload value.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. You can program
a value of 0, but this has no effect because the SysTick exception request and COUNTFLAG are
activated when counting from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of
N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

5.3.3 SysTick Current Value Register

The SYST_CVR contains the current value of the SysTick counter.

See 5.3 System timer, SysTick on page 269 for the SYST_CVR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The bit assignments for SYST_CVR:

31 0

CURRENT

2324

RES0

Table 5-33: SYST_CVR bit assignments

Bits Name Function

[31:24] - Reserved, RES0.

[23:0] CURRENT Reads the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

5.3.4 SysTick Calibration Value Register

The SYST_CALIB register indicates the SysTick calibration value and parameters for the selected
Security state.

See 5.3 System timer, SysTick on page 269 for the SYST_CALIB attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The bit assignments for SYST_CALIB are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 271 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

31 0

TENMS

232430

SKEW
NOREF

29

RES0

Table 5-34: SYST_CALIB bit assignments

Bits Name Function

[31] NOREF Indicates whether the device provides a reference clock to the processor:

0 Reference clock provided.
1 No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

[30] SKEW Indicates whether the TENMS value is exact:

0 TENMS value is exact.
1 TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

[29:24] - Reserved.

[23:0] TENMS Reload value for 10ms (100Hz) timing, subject to system clock skew errors. If the value reads as zero, the calibration
value is not known.

If calibration information is not known, calculate the calibration value required from the frequency
of the core clock or external clock.

5.3.5 SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for low-
power mode, the SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct initialization
sequence for the SysTick counter is:

1. Program reload value.

2. Clear current value.

3. Program Control and Status register.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 272 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.4 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.

The NVIC supports:

• 1-480 interrupts.

• A programmable priority level of 0-255. A higher level corresponds to a lower priority, so level
0 is the highest interrupt priority. In an implementation with the Security Extension, in Non-
secure state, the priority also depends on the value of AIRCR.PRIS.

• Level and pulse detection of interrupt signals.

• Interrupt tail-chaining.

• An external Non-Maskable Interrupt (NMI).

• An optional Wake-up Interrupt Controller (WIC).

• Late arriving interrupts.

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling.

The following table shows the hardware implementation of NVIC registers. In an implementation
with the Security Extension, register fields that are associated with interrupts designated as Secure
in the ITNS register are always RAZ/WI if accessed from Non-secure state.

Table 5-35: NVIC registers summary

Address Name Type Required
privilege

Reset value Description

0xE000E100-
0xE000E13C

NVIC_ISER0-
NVIC_ISER15

RW Privileged 0x00000000 5.4.2 Interrupt Set Enable Registers - Cortex-M33 on
page 274

0XE000E180-
0xE000E1BC

NVIC_ICER0-
NVIC_ICER15

RW Privileged 0x00000000 5.4.3 Interrupt Clear Enable Registers - Cortex-M33
on page 275

0XE000E200-
0xE000E23C

NVIC_ISPR0-
NVIC_ISPR15

RW Privileged 0x00000000 5.4.4 Interrupt Set Pending Registers - Cortex-M33 on
page 276

0XE000E280-
0xE000E2BC

NVIC_ICPR0-
NVIC_ICPR15

RW Privileged 0x00000000 5.4.5 Interrupt Clear Pending Registers - Cortex-M33
on page 277

0xE000E300-
0xE000E33C

NVIC_IABR0-
NVIC_IABR15

RW Privileged 0x00000000 5.4.6 Interrupt Active Bit Registers - CortexM33 on
page 278

0xE000E380-
0xE000E3BC

NVIC_ITNS0-
NVIC_ITNS15

RW22 Privileged 0x00000000 5.4.7 Interrupt Target Non-secure Registers -
CortexM33 on page 278.

0xE000E400-
0xE000E5DC

NVIC_IPR0-
NVIC_IPR119

RW Privileged 0x00000000 5.4.8 Interrupt Priority Registers - Cortex-M33 on
page 279

0xE000EF00 STIR WO Configurable23 0x00000000 5.4.9 Software Trigger Interrupt Register on page
281

22 ITNS is RAZ/WI from the Non-Secure state.
23 See the register description for more information.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 273 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.4.1 Accessing the NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex®‑M profile processors.

To access the NVIC registers when using CMSIS, use the following functions:

Table 5-36: CMSIS access NVIC functions

CMSIS function Description

void NVIC_SetPriorityGrouping (uint32_t PriorityGroup) Set priority grouping

uint32_t NVIC_GetPriorityGrouping (void) Read the priority grouping

void NVIC_EnableIRQ (IRQn_Type IRQn) Enable a device-specific
interrupt

uint32_t NVIC_GetEnableIRQ (IRQn_Type IRQn) Get a device-specific
interrupt enable status.

void NVIC_DisableIRQ (IRQn_Type IRQn) Disable a device-specific
interrupt

uint32_t NVIC_GetPendingIRQ (IRQn_Type IRQn) Get the pending device-
specific interrupt

void NVIC_SetPendingIRQ (IRQn_Type IRQn) Set a device-specific
interrupt to pending

void NVIC_ClearPendingIRQ (IRQn_Type IRQn) Clear a device-specific
interrupt from pending

uint32_t NVIC_GetActive (IRQn_Type IRQn) Get the device-specific
interrupt active

void NVIC_SetPriority (IRQn_Type IRQn, uint32_t priority) Set the priority for an
interrupt

uint32_t NVIC_GetPriority (IRQn_Type IRQn) Get the priority of an
interrupt

uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t
PreemptPriority, uint32_t SubPriority)

Encodes priority

void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t
*pPreemptPriority, uint32_t *pSubPriority)

Decode the interrupt priority

uint32_t NVIC_GetVector (IRQn_Type IRQn) Read interrupt vector

void NVIC_SetVector (IRQn_Type IRQn, uint32_t vector) Modify interrupt vector

void NVIC_SystemReset (void) Reset the system

uint32_t NVIC_GetTargetState (IRQn_Type IRQn) Get interrupt target state

uint32_t NVIC_SetTargetState (IRQn_Type IRQn Set interrupt target state

uint32_t NVIC_ClearTargetState (IRQn_Type IRQn) Clear interrupt target state

The input parameter IRQn is the IRQ number. For more information on CMSIS
NVIC functions, see http://arm-software.github.io/CMSIS_5/Core/html/
group__NVIC__gr.html

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 274 of 316

http://arm-software.github.io/CMSIS_5/Core/html/group__NVIC__gr.html
http://arm-software.github.io/CMSIS_5/Core/html/group__NVIC__gr.html

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.4.2 Interrupt Set Enable Registers

The NVIC_ISER0-NVIC_ISER15 registers enable interrupts, and show which interrupts are enabled.

See the register summary in 5.4 Nested Vectored Interrupt Controller on page 272 for the
register attributes.

In an implementation with the Security Extension:

• The register bits can be RAZ/WI depending on the value of NVIC_ITNS.

• These registers are not banked between Security states.

In an implementation with the Security Extension, these registers are not banked between Security
states.

The bit assignments are:

SETENA

31 0

Table 5-37: NVIC_ISERn bit assignments

Bits Name Function

[31:0] SETENA. Interrupt set-enable bits. For SETENA[m] in NVIC_ISERn, allows interrupt 32n + m to be accessed.

Write:

0 No effect.
1 Enable interrupt 32n+m.

Read:

0 Interrupt 32n+m disabled.
1 Interrupt 32n+m enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but
the NVIC never activates the interrupt, regardless of its priority.

5.4.3 Interrupt Clear Enable Registers

The NVIC_ICER0-NVIC_ICER15 registers disable interrupts, and show which interrupts are
enabled.

See the register summary in 5.4 Nested Vectored Interrupt Controller on page 272 for the
register attributes.

In an implementation with the Security Extension:
Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 275 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

• The register bits can be RAZ/WI from Non-secure state depending on the value of NVIC_ITNS.

• These registers are not banked between Security states.
The bit assignments are:

CLRENA

31 0

Table 5-38: NVIC_ICERn bit assignments

Bits Name Function

[31:0] CLRENA Interrupt clear-enable bits. For SETENA[m] in NVIC_ICERn, allows interrupt 32n + m to be accessed.

Write:

0 No effect.
1 Disable interrupt 32n+m.

Read:

0 Interrupt 32n+m disabled.
1 Interrupt 32n+m enabled.

5.4.4 Interrupt Set Pending Registers

The NVIC_ISPR0-NVIC_ISPR15 registers force interrupts into the pending state, and shows which
interrupts are pending.

See the register summary in 5.4 Nested Vectored Interrupt Controller on page 272 for the
register attributes.

In an implementation with the Security Extension:

• The register bits can be RAZ/WI from Non-secure state depending on the value of NVIC_ITNS.

• These registers are not banked between Security states.
The bit assignments are:

SETPEND

31 0

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 276 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-39: NVIC_ISPRn bit assignments

Bits Name Function

[31:0] SETPEND Interrupt set-pending bits. For SETPEND[m] in NVIC_ISPRn, allows interrupt 32n + m to be accessed.

Write:

0 No effect.
1 Pend interrupt 32n + m.

Read:

0 Interrupt 32n + m is not pending.
1 Interrupt 32n + m pending.

Writing 1 to the NVIC_ISPR bit corresponding to:

• An interrupt that is pending has no effect.

• A disabled interrupt sets the state of that interrupt to pending.

5.4.5 Interrupt Clear Pending Registers

The NVIC_ICPR0-NVIC_ICPR15 registers remove the pending state from interrupts, and shows
which interrupts are pending.

See the register summary in 5.4 Nested Vectored Interrupt Controller on page 272 for the
register attributes.

In an implementation with the Security Extension:

• The register bits can be RAZ/WI depending on the value of NVIC_ITNS.

• These registers are not banked between Security states.
The bit assignments are:

CLRPEND

31 0

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 277 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-40: NVIC_ICPRn bit assignments

Bits Name Function

[31:0] CLRPEND Interrupt clear-pending bits.

Write:

0 No effect.
1 Clear pending state of interrupt 32n + m.

Read:

0 Interrupt 32n + m is not pending.
1 Interrupt 32n + m is pending.

Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding
interrupt.

5.4.6 Interrupt Active Bit Registers

The NVIC_IABR0-NVIC_IABR15 registers indicate the active state of each interrupt.

See the register summary in 5.4 Nested Vectored Interrupt Controller on page 272 for the
register attributes.

In an implementation with the Security Extension:

• The register bits can be RAZ/WI from Non-secure state depending on the value of NVIC_ITNS.

• These registers are not banked between Security states.
The bit assignments are:

31 0

ACTIVE

Table 5-41: NVIC_IABRn bit assignments

Bits Name Function

[31:0] ACTIVE Active state bits. For ACTIVE[m] in NVIC_IABRn, indicates the active state for interrupt 32n+m.

0 The interrupt is not active.
1 The interrupt is active.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 278 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.4.7 Interrupt Target Non-secure Registers

In an implementation with the Security Extension, the NVIC_ITNS0-NVIC_ITNS15 registers
determine, for each group of 32 interrupts, whether each interrupt targets Non-secure or Secure
state. Otherwise, This register is RAZ/WI.

See the register summary in 5.4 Nested Vectored Interrupt Controller on page 272 for the
register attributes.

In an implementation with the Security Extension, this register is accessible from Secure state only.

The bit assignments are:

31 0

ITNS

Table 5-42: NVIC_ITNSn bit assignments

Bits Name Function

[31:0] ITNS Interrupt Targets Non-secure bits. For ITNS[m] in NVIC_ITNSn, this field indicates and allows modification of the target
Security state for interrupt 32n+m.

0 The interrupt targets Secure state.
1 The interrupt targets Non-secure state.

5.4.8 Interrupt Priority Registers

The NVIC_IPR0-NVIC_IPR119 registers provide an 8-bit priority field for each interrupt. These
registers are word, halfword, and byte accessible.

See the register summary in 5.4 Nested Vectored Interrupt Controller on page 272 for their
attributes.

Each register holds four priority fields as shown:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 279 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

PRI_479

31 24 23 16 15 8 7 0

PRI_478 PRI_477 PRI_476NVIC_IPR119

PRI_(4n+3) PRI_(4n+2) PRI_(4n+1) PRI_(4n)NVIC_IPRn

PRI_3 PRI_2 PRI_1 PRI_0NVIC_IPR0

. .
 .

. .
 .

. .
 .

. .
 .

Table 5-43: NVIC_IPRn bit assignments

Bits Name Function

[31:24] Priority,
byte
offset 3

[23:16] Priority,
byte
offset 2

[15:8] Priority,
byte
offset 1

[7:0] Priority,
byte
offset 0

Each priority field holds a priority value. The priority depends on the value of PRIS for exceptions targeting the Non-
secure state. If the processor implements fewer than 8 bits of priority, then the least significant bits of this field are
RES0.

See 5.4.1 Accessing the NVIC registers using CMSIS on page 274 for more information about
the access to the interrupt priority array, which provides the software view of the interrupt
priorities.

Find the NVIC_IPR number and byte offset for interrupt M as follows:

• The corresponding NVIC_IPR number, N, is given by N = N DIV 4.

• The byte offset of the required Priority field in this register is M MOD 4, where:

◦ Byte offset 0 refers to register bits[7:0].

◦ Byte offset 1 refers to register bits[15:8].

◦ Byte offset 2 refers to register bits[23:16].

◦ Byte offset 3 refers to register bits[31:24].

In an implementation with the Security Extension:

• Priority values depend on the value of PRIS.

• The register bits can be RAZ/WI depending on the value of NVIC_ITNS.

• These registers are not banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 280 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.4.9 Software Trigger Interrupt Register

Write to the STIR to generate an interrupt from software.

When the USERSETMPEND bit in the CCR is set to 1, unprivileged software can access the STIR.

Only privileged software can enable unprivileged access to the STIR.

See 5.4 Nested Vectored Interrupt Controller on page 272 for the register attributes.

In an implementation with the Security Extension, this register is not banked between Security
states.

The bit assignments are:

INTID

31 9 8 0

RES0

Table 5-44: STIR bit assignments

Bits Field Function

[31:9] - Reserved, RES0.

[8:0] INTID Interrupt ID of the interrupt to trigger, in the range 0-479. For example, a value of 0x03 specifies interrupt IRQ3.

5.4.10 Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also
described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal.
Typically this happens because the ISR accesses the peripheral, causing it to clear the interrupt
request. A pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the
processor clock. To ensure that the NVIC detects the interrupt, the peripheral must assert the
interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and latches
the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 281 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

For a level-sensitive interrupt, if the signal is not deasserted before the processor returns from the
ISR, the interrupt becomes pending again, and the processor must execute its ISR again. This means
that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

5.4.10.1 Hardware and software control of interrupts

The processor latches all interrupts. A peripheral interrupt becomes pending for one of the
following reasons:

• The NVIC detects that the interrupt signal is active and the corresponding interrupt is not
active.

• The NVIC detects a rising edge on the interrupt signal.

• Software writes to the corresponding Interrupt Set Enable Register bit.

A pending interrupt remains pending until one of the following occurs:

• The processor enters the ISR for the interrupt. This changes the state of the interrupt from
pending to active. Then:

◦ For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples
the interrupt signal. If the signal is asserted, the state of the interrupt changes to pending,
which might cause the processor to immediately reenter the ISR. Otherwise, the state of
the interrupt changes to inactive.

◦ For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is
pulsed the state of the interrupt changes to pending and active. In this case, when the
processor returns from the ISR the state of the interrupt changes to pending, which might
cause the processor to immediately reenter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the processor
returns from the ISR the state of the interrupt changes to inactive.

• Software writes to the corresponding Interrupt Clear Pending Register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:

◦ Inactive, if the state was pending.

◦ Active, if the state was active and pending.

5.4.11 NVIC usage hints and tips

Ensure that software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the
processor from taking that interrupt.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 282 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Before programming VTOR to relocate the vector table, ensure that the vector table entries of the
new vector table are set up for fault handlers, NMI, and all enabled exceptions like interrupts.

5.4.11.1 NVIC programming hints

Software uses the CPSIE i and CPSID i instructions to enable and disable interrupts.

The CMSIS provides the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides functions for NVIC control, listed in 5.4.1 Accessing the NVIC
registers using CMSIS on page 274.

The input parameter IRQn is the IRQ number, see 3.3.2 se_Exception types on page 51 for more
information. For more information about these functions, see the CMSIS documentation.

5.5 Security Attribution and Memory Protection
If the Security Extension is implemented, the processor can use security attribution and memory
protection to manage sensitive data.

The processor can have an Security Attribution Unit (SAU) and a Memory Protection Unit (MPU) that
provide fine grain memory control, enabling applications to use multiple privilege levels, separating
and protecting code, data, and stack on a task-by-task basis. Such requirements are becoming
critical in many embedded applications such as automotive systems.

Some implementations might only have one MPU.

5.5.1 Security Attribution Unit

The SAU determines the security of an address.

For instructions, the SAU returns the security attribute (Secure or Non-secure) and identifies
whether the instruction address is in a Non-secure callable region.

For data, the SAU returns the security attribute (Secure or Non-secure).

When a memory access is performed, the security of the address is verified by the SAU. Any
address that matches multiple SAU regions will be marked with the most secure attribute of the
matching regions.

The following table shows a summary of the SAU registers.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 283 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-45: SAU registers summary

Address Name Type Reset value Description

0xE000EDD0 SAU_CTRL RW 0x00000000 See 5.5.2 Security Attribution Unit Control Register on page 284. This is the reset
value in Secure state. In Non-secure state, this register is RAZ/WI.

0xE000EDD4 SAU_TYPE RO 0x00000000 See 5.5.3 Security Attribution Unit Type Register on page 285. This is the reset
value in Secure state. In Non-secure state, this register is RAZ/WI. SAU_TYPE [7:0]
reflects the number of SAU regions.

0xE000EDD8 SAU_RNR RW UNKNOWN See 5.5.4 Security Attribution Unit Region Number Register on page 286. In Non-
secure state, this register is RAZ/WI.

0xE000EDDC SAU_RBAR RW UNKNOWN See 5.5.5 Security Attribution Unit Region Base Address Register on page 286. In
Non-secure state, this register is RAZ/WI.

0xE000EDE0 SAU_RLAR RW Bit[0] resets to
0.

Other bits
reset to an
UNKNOWN
value.

See 5.5.6 Security Attribution Unit Region Limit Address Register on page 287. This
is the reset value in Secure state. In Non-secure state, this register is RAZ/WI.

0xE000EDE4 SFSR RW 0x00000000 See 5.5.7 Secure Fault Status Register on page 288. In Non-secure state, this
register is RAZ/WI.

0xE000EDE8 SFAR RW UNKNOWN See 5.5.8 Secure Fault Address Register on page 289. In Non-secure state, this
register is RAZ/WI.

• Only Privileged accesses to the SAU registers are permitted. Unprivileged
accesses generate a fault.

• The SAU registers are word accessible only. Halfword and byte accesses are
UNPREDICTABLE.

• The SAU registers are RAZ/WI when accessed from Non-secure state.

• The SAU registers are not banked between Security states.

5.5.2 Security Attribution Unit Control Register

The SAU_CTRL allows enabling of the Security Attribution Unit.

In an implementation with the Security Extension, this register is:

• RAZ/WI when accessed as Non-secure.

• Not banked between Security states.

The SAU_CTRL bit assignments are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 284 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

31 2 1 0

RES0

ALLNS

ENABLE

Table 5-46: SAU_CTRL bit assignments

Bits Name Function

[31:2] - Reserved, RES0.

[1] ALLNS All Non-secure. When SAU_CTRL.ENABLE is 0 this bit controls if the memory is marked as Non-secure or Secure.

The possible values of this bit are:

0 Memory is marked as Secure and is not Non-secure callable.
1 Memory is marked as Non-secure.

This bit has no effect when SAU_ENABLE is 1.

Setting SAU_CTRL.ALLNS to 1 allows the security attribution of all addresses to be set by the IDAU in the system.

[0] ENABLE Enable. Enables the SAU.

The possible values of this bit are:

0 The SAU is disabled.
1 The SAU is enabled.

This bit is RAZ/WI when the Security Extension is implemented without an SAU region.

5.5.3 Security Attribution Unit Type Register

The SAU_TYPE indicates the number of regions implemented by the Security Attribution Unit.

In an implementation with the Security Extension, this register is:

• RAZ/WI when accessed as Non-secure.

• Not banked between Security states.

The SAU_TYPE bit assignments are:

31 7 08

SREGIONRES0

Table 5-47: SAU_TYPE bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 285 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[7:0] SREGION SAU regions. The number of implemented SAU regions.

5.5.4 Security Attribution Unit Region Number Register

The SAU_RNR selects the region currently accessed by SAU_RBAR and SAU_RLAR.

In an implementation with the Security Extension, this register is:

• RAZ/WI when accessed as Non-secure.

• Not banked between Security states.

The SAU_RNR bit assignments are:

31 0

RES0

78

REGION

Table 5-48: SAU_RNR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] REGION Region number. Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR.

If no SAU regions are implemented, this field is reserved. Writing a value corresponding to an unimplemented region is
CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

5.5.5 Security Attribution Unit Region Base Address Register

The SAU_RBAR provides indirect read and write access to the base address of the currently
selected SAU region.

In an implementation with the Security Extension, this register is:

• RAZ/WI when accessed as Non-secure.

• Not banked between Security states.

The SAU_RBAR bit assignments are:

31 045

ReservedBADDR

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 286 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-49: SAU_RBAR bit assignments

Bits Name Function

[31:5] BADDR Base address. Holds bits[31:5] of the base address for the selected SAU region.

Bits[4:0] of the base address are defined as 0x00.

[4:0] - Reserved, RES0.

5.5.6 Security Attribution Unit Region Limit Address Register

The SAU_RLAR provides indirect read and write access to the limit address of the currently
selected SAU region.

In an implementation with the Security Extension, this register is:

• RAZ/WI when accessed as Non-secure.

• Not banked between Security states.

The SAU_RLAR bit assignments are:

31 4 2 1 0

LADDR

RES0

ENABLE

5

NSC

Table 5-50: SAU_RLAR bit assignments

Bits Name Function

[31:5] LADDR Limit address. Holds bits[31:5] of the limit address for the selected SAU region.

Bits[4:0] of the limit address are defined as 0x1F.

[4:2] - Reserved, RES0.

[1] NSC Non-secure callable. Controls whether Non-secure state is permitted to execute an SG instruction from this region.

The possible values of this bit are:

0 Region is not Non-secure callable.
1 Region is Non-secure callable.

[0] ENABLE Enable. SAU region enable.

The possible values of this bit are:

0 SAU region is disabled.
1 SAU region is enabled.

This bit reset to an IMPLEMENTATION DEFINED value on a Warm reset.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 287 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.5.7 Secure Fault Status Register

The SFSR provides information about any security related faults.

In an implementation with the Security Extension, this register is:

• RAZ/WI when accessed as Non-secure.

• Not banked between Security states.

See 5.2.1 System control block registers summary on page 237 for the SFSR attributes.

The SFSR bit assignments are:

RES0

31 8 7 6 5 4 3 2 1 0

LSERR
SFARVALID

LSPERR
INVTRAN

AUVIOL
INVER

INVIS
INVEP

Table 5-51: SFSR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7] LSERR Lazy state error flag. Sticky flag indicating that an error occurred during lazy state activation or deactivation. The
possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

[6] SFARVALID Secure fault address valid. This bit is set when the SFAR register contains a valid value. As with similar fields, such
as BFSR.BFARVALID and MMFSR.MMARVALID, this bit can be cleared by other exceptions, such as BusFault. The
possible values of this bit are:

0 SFAR content not valid.
1 SFAR content valid.

[5] LSPERR Lazy state preservation error flag. Stick flag indicating that an SAU or IDAU violation occurred during the lazy
preservation of floating-point state. The possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

[4] INVTRAN Invalid transition flag. Sticky flag indicating that an exception was raised due to a branch that was not flagged as being
domain crossing causing a transition from Secure to Non-secure memory. The possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 288 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[3] AUVIOL Attribution unit violation flag. Sticky flag indicating that an attempt was made to access parts of the address space
that are marked as Secure with NS-Req for the transaction set to Non-secure. This bit is not set if the violation
occurred during:

• Lazy state preservation, see LSPERR.

• Vector fetches.

The possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

[2] INVER Invalid exception return flag. This can be caused by EXC_RETURN.DCRS being set to 0 when returning from an
exception in the Non-secure state, or by EXC_RETURN.ES being set to 1 when returning from an exception in the
Non-secure state. The possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

[1] INVIS Invalid integrity signature flag. This bit is set if the integrity signature in an exception stack frame is found to be invalid
during the unstacking operation. The possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

[0] INVEP Invalid entry point. This bit is set if a function call from the Non-secure state or exception targets a non-SG
instruction in the Secure state. This bit is also set if the target address is an SG instruction, but there is no matching
SAU/IDAU region with the NSC flag set. The possible values of this bit are:

0 Error has not occurred.
1 Error has occurred.

5.5.8 Secure Fault Address Register

The SFSR shows the address of the memory location that caused a security violation.

In an implementation with the Security Extension, this register is:

• RAZ/WI when accessed as Non-secure.

• Not banked between Security states.

The SFAR bit assignments are:

ADDRESS

31 0

Table 5-52: SFAR bit assignments

Bits Name Function

[31:0] ADDRESS When the SFARVALID bit of the SFSR is set to 1, this field holds the address of an access that caused an SAU
violation.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 289 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.5.9 Memory Protection Unit

The MPU is divided into eight regions and defines the location, size, access permissions, and
memory attributes of each region.

The MPU supports:

• Independent attribute settings for each region.

• Export of memory attributes to the system.

If the processor implements the Security Extension, it contains:

• One optional Secure MPU.

• One optional Non-secure MPU.

When memory regions overlap, the processor generates a fault if a core access hits the overlapping
regions.

The MPU memory map is unified. This means instruction accesses and data accesses have the
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a
MemManage exception.

In an OS environment, the kernel can update the MPU region setting dynamically based on the
process to be executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see 3.2.2 Memory regions, types, and
attributes on page 41.

The following table shows the possible MPU region attributes. These include Shareability and
cache behavior attributes that are not relevant to most microcontroller implementations.

See 5.5.20.1 MPU configuration for a microcontroller on page 299 for guidelines for
programming such an implementation.

Table 5-53: Memory attributes summary

Memory
type

Shareability Other attributes Description

Device-
nGnRnE

Shareable - Used to access memory mapped peripherals.All accesses to Device-nGnRnE
memory occur in program order. All regions are assumed to be shared.

Device-
nGnRE

Shareable - Used to access memory mapped peripherals.Weaker ordering than Device-
nGnRnE.

Device-
nGRE

Shareable - Used to access memory mapped peripherals.Weaker ordering than Device-
nGnRE.

Device-
GRE

Shareable - Used to access memory mapped peripherals.Weaker ordering than Device-
nGRE.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 290 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Memory
type

Shareability Other attributes Description

Normal Shareable Non-cacheable Write-Through
Cacheable Write-Back Cacheable

Normal memory that is shared between several processors.

Normal Non-
Shareable

Non-cacheable Write-Through
Cacheable Write-Back Cacheable

Normal memory that only a single processor uses.

Use the MPU registers to define the MPU regions and their attributes.

The following table shows a summary of the MPU registers.

Table 5-54: MPU registers summary

Address Name Type Reset Value Description

0xE000ED90 MPU_TYPE RO The reset value is fixed and depends on the value
of bits[15:8] and implementation options.

See 5.5.10 MPU Type Register on page
291.

0xE000ED94 MPU_CTRL RW 0x00000000 See 5.5.11 MPU Control Register on page
292.

0xE000ED98 MPU_RNR RW UNKNOWN See 5.5.12 MPU Region Number Register
on page 293.

0xE000ED9C MPU_RBAR RW UNKNOWN See 5.5.13 MPU Region Base Address
Register on page 294.

0xE000EDA0 MPU_RLAR RW UNKNOWN See 5.5.16 MPU Region Limit Address
Register on page 295.

0xE000EDA4 MPU_RBAR_A<n> RW UNKNOWN See 5.5.14 MPU Region Base Address
Register Alias, n=1-3 on page 295

0xE000EDA8 MPU_RLAR_A<n> RW UNKNOWN See 5.5.15 MPU Region Limit Address
Register Alias, n=1-3 on page 295.

0xE000EDC0 MPU_MAIR0 RW UNKNOWN

0xE000EDC4 MPU_MAIR1 RW UNKNOWN

See 5.5.17 MPU Memory Attribute
Indirection Registers 0 and 1 on page
296.

5.5.10 MPU Type Register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it
supports.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_TYPE bit assignments are:

RES0

31 16 15 8 7 1 0

DREGION RES0

SEPARATE

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 291 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-55: MPU_TYPE bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:8] DREGION Data regions. Number of regions supported by the MPU.

0x00 Zero regions if your device does not include the MPU.
0x08 Eight regions if your device includes the MPU. This value is implementation defined.

[7:1] - Reserved, RES0.

[0] SEPARATE Indicates support for unified or separate instructions and data address regions.

Arm®v8‑M only supports unified MPU regions.

0 Unified.

5.5.11 MPU Control Register

The MPU_CTRL register enables the MPU.

When the MPU is enabled, it controls whether the default memory map is enabled as a background
region for privileged accesses and whether the MPU is enabled for HardFaults, and NMIs.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_CTRL bit assignments are:

31 1 0

RES0

HFNMIENA
ENABLE

2

PRIVDEFENA

3

Table 5-56: MPU_CTRL bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2] PRIVDEFENA Enables privileged software access to the default memory map.

When the MPU is enabled:

0 Disables use of the default memory map. Any memory access to a location that is not covered by any
enabled region causes a fault.

1 Enables use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as if it has the lowest priority. Any region that is defined and enabled
has priority over this default map. If the MPU is disabled, the processor ignores this bit.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 292 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[1] HFNMIENA Enables the operation of MPU during HardFault and NMI handlers.

When the MPU is enabled:

0 MPU is disabled during HardFault and NMI handlers, regardless of the value of the ENABLE bit.
1 The MPU is enabled during HardFault and NMI handlers.

When the MPU is disabled, if this bit is set to 1 the behavior is UNPREDICTABLE.

[0] ENABLE Enables the MPU:

0 MPU is disabled.
1 MPU is enabled.

XN and Device-nGnRnE rules always apply to the System Control Space regardless of the value of
the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the
system to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and
no regions are enabled, then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same
behavior as if the MPU is not implemented.

The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always
permitted. Other areas are accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the
handler for an exception with priority –1, –2, or –3. These priorities are only possible when
handling a HardFault or NMI exception. Setting the HFNMIENA bit to 1 enables the MPU when
operating with these priorities.

5.5.12 MPU Region Number Register

The MPU_RNR selects the region currently accessed by MPU_RBAR and MPU_RLAR.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_RNR bit assignments are:

RES0

31 8 7 0

REGION

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 293 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-57: MPU_RNR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] REGION Regions. Indicates the memory region accessed by MPU_RBAR and PMU_RLAR.

If no MPU region is implemented, this field is reserved. Writing a value corresponding to an unimplemented region is
CONSTRAINED UNPREDICTABLE.

You must write the required region number to this register before accessing the MPU_RBAR or
MPU_RLAR.

5.5.13 MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_RBAR bit assignments are:

BASE

31 5 04

AP[2:1]
SH

3 2 1

XN

Table 5-58: MPU_RBAR bit assignments

Bits Name Function

[31:5] BASE Contains bits[31:5] of the lower inclusive limit of the selected MPU memory region. This value is zero extended to
provide the base address to be checked against.

[4:3] SH Shareability. Defines the shareability domain of this region for Normal memory.

0b00 Non-shareable.
0b01 UNPREDICTABLE.
0b10 Outer shareable.
0b11 Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

[2:1] AP[2:1] Access permissions.

0b00 Read/write by privileged code only.
0b01 Read/write by any privilege level.
0b10 Read-only by privileged code only.
0b11 Read-only by any privilege level.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 294 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[0] XN Execute Never. Defines whether code can be executed from this region.

0 Execution only permitted if read permitted.

1 Execution not permitted.

5.5.14 MPU Region Base Address Register Alias, n=1-3

The MPU_RBAR_A<n> provides indirect read and write access to the MPU base address register.
Accessing MPU_RBAR_A<n> is equivalent to setting MPU_RNR[7:2]:n[1:0] and then accessing
MPU_RBAR for the Security state.

5.5.15 MPU Region Limit Address Register Alias, n=1-3

The MPU_RLAR_A<n> provides indirect read and write access to the MPU limit address register.
Accessing MPU_RLAR_A<n> is equivalent to setting MPU_RNR[7:2]:n[1:0] and then accessing
MPU_RLAR for the Security state

5.5.16 MPU Region Limit Address Register

The MPU_RLAR defines the limit address of the MPU region selected by the MPU_RNR.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_RLAR bit assignments are:

31 4 3 1 0

LIMIT

5

AttrIndx EN

RES0

Table 5-59: MPU_RLAR bit assignments

Bits Name Function

[31:5] LIMIT Limit address. Contains bits[31:5] of the upper inclusive limit of the selected MPU memory region.

This value is postfixed with 0x1F to provide the limit address to be checked against.

[4] - Reserved, RES0.

[3:1] AttrIndx Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 295 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[0] EN Enable. Region enable.

The possible values of this bit are:

0 Region disabled.
1 Region enabled.

5.5.17 MPU Memory Attribute Indirection Registers 0 and 1

The MPU_MAIR0 and MPU_MAIR1 provide the memory attribute encodings corresponding to the
AttrIndex values.

In an implementation with the Security Extension, these registers are is banked between Security
states.

The MPU_MAIR0 bit assignments are:

31 0

Attr3 Attr2 Attr1 Attr0

7815162324

Attr<n>, bits [8n+7:8n], for n= 0 to 3.
Memory attribute encoding for MPU regions with an AttrIndex of n.

The MPU_MAIR1 bit assignments are:

31 0

Attr7 Attr6 Attr5 Attr4

7815162324

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7
Memory attribute encoding for MPU regions with an AttrIndex of n.

MAIR_ATTR defines the memory attribute encoding used in MPU_MAIR0 and MPU_MAIR1, and
the bit assignments are:

When MAIR_ATTR[7:4] is 0000:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 296 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

0

0000

7 4 3 2 1

Device

00

Table 5-60: MAIR_ATTR values for bits[3:2] when MAIR_ATTR[7:4] is 0000

Bits Name Function

[3:2] Device Device attributes. Specifies the memory attributes for Device.The possible values of this field are:

0b00 Device-nGnRnE.
0b01 Device-nGnRE.
0b10 Device-nGRE.
0b11 Device-GRE.

When MAIR_ATTR[7:4] is not 0000:

0

Outer

7 4 3

Inner

Table 5-61: MAIR_ATTR bit assignments when MAIR_ATTR[7:4] is not 0000

Bits Name Function

[7:4] Outer Outer attributes. Specifies the Outer memory attributes. The possible values of this field are:

0b0000 Device memory. In this case, refer to 5.5.17 MPU Memory Attribute Indirection Registers 0 and 1 on page
296.

00RW Normal memory, Outer write-through transient (RW is not 00).

0b0100 Normal memory, Outer non-cacheable.

01RW Normal memory, Outer write-back transient (RW is not 00).

10RW Normal memory, Outer write-through non-transient.

11RW Normal memory, Outer write-back non-transient.

R and W specify the outer read and write allocation policy: 0 = do not allocate, 1 = allocate.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 297 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[3:0] Inner Inner attributes. Specifies the Inner memory attributes. The possible values of this field are:

0b0000 UNPREDICTABLE.

00RW Normal memory, Inner write-through transient (RW is not 00).

0b0100 Normal memory, Inner non-cacheable.

01RW Normal memory, Inner write-back transient (RW is not 00).

10RW Normal memory, Inner write-through non-transient.

11RW Normal memory, Inner write-back non-transient.

R and W specify the outer read and write allocation policy: 0 = do not allocate, 1 = allocate.

5.5.18 MPU mismatch

When access violates the MPU permissions, the processor generates a MemManage fault.

5.5.19 Updating protected memory regions

To update an MPU region, update the attributes in the MPU_RNR, MPU_RBAR and MPU_RLAR
registers. To update an SAU region, update the attributes in the SAU_RNR, SAU_RBAR and
SAU_RLAR registers.

Updating an MPU region
Simple code to configure one region:

; R1 = MPU region number
; R2 = base address, permissions and shareability
; R3 = limit address, attributes index and enable
LDR R0,=MPU_RNR
STR R1, [R0, #0x0] ; MPU_RNR
STR R2, [R0, #0x4] ; MPU_RBAR
STR R3, [R0, #0x8] ; MPU_RLAR

Software must use memory barrier instructions:

• Before MPU setup if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in MPU settings.

• After MPU setup if it includes memory transfers that must use the new MPU settings.

If you want all the MPU memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 298 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Updating an SAU region
Simple code to configure one region:

; R1 = SAU region number
; R2 = base address
; R3 = limit address, Non-secure callable attribute and enable
LDR R0,=SAU_RNR
STR R1, [R0, #0x0] ; SAU_RNR
STR R2, [R0, #0x4] ; SAU_RBAR
STR R3, [R0, #0x8] ; SAU_RLAR

Software must use memory barrier instructions:

• Before SAU setup if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in SAU settings.

• After SAU setup if it includes memory transfers that must use the new SAU settings.

If you want all the SAU memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction.

5.5.20 MPU design hints and tips

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR, and MPU_RLAR
registers.

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region
that the interrupt handlers might access. When setting up the MPU, and if the MPU has previously
been programmed, disable unused regions to prevent any previous region settings from affecting
the new MPU setup.

5.5.20.1 MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches.

In such a system, program the MPU as follows:

Table 5-62: Memory region attributes for a microcontroller

Memory region MAIR_ATTR.Outer

MAIR_ATTRInner

Shareability Memory type and attributes

Flash memory 0b1010 0 Normal memory, Non-shareable, Write-Through.

Internal SRAM 0b1010 1 Normal memory, Shareable, Write-Through.

External SRAM 0b1111 1 Normal memory, Shareable, Write-Back, write-allocate.

Peripherals 0b0000 - Always Shareable.

In most microcontroller implementations, the cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions makes the application code more
portable. The values given are for typical situations. In special systems, such as multiprocessor

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 299 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

designs or designs with a separate DMA engine, the shareability attribute might be important. In
these cases, refer to the recommendations of the memory device manufacturer.

Shareability attributes define whether the global monitor is used, or only the local monitor is used.

5.6 Floating-Point Unit
The Cortex®-M33 Floating-Point Unit (FPU) implements the FPv5 floating-point extensions.The
FPU fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and
square root operations. It also provides conversions between fixed-point and floating-point data
formats, and floating-point constant instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std
754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which you can also access as 16
doubleword registers for load, store, and move operations.

5.6.1 Floating-point Context Control Register

The FPCCR register sets or returns FPU control data.

See 5.6 Floating-Point Unit on page 300 for the FPCCR attributes.

In an implementation with the Security Extension, this register is banked between Security states
on a bit by bit basis.

The FPCCR bit assignments are:

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 300 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

31 30 29 28 27 26

RES0

25 11 10 9 8 7 6 5 4 3

S

2 1 0

ASPEN
LSPEN

LSPENS
CLRONRET

CLRONRETS
TS

UFRDY
SPLIMVIOL

MONRDY
SFRDY

BFRDY
MMRDY

HFRDY
THREAD

USER
LSPACT

Table 5-63: FPCCR bit assignments without the Security Extension

Bits Name Function

[31] ASPEN Automatic state preservation enable. Enables CONTROL.FPCA setting on execution of a floating-point instruction.
This results in automatic hardware state preservation and restoration, for floating-point context, on exception entry
and exit. The possible values of this bit are:

0 Disable CONTROL.FPCA setting on execution of a floating-point instruction.
1 Enable CONTROL.FPCA setting on execution of a floating-point instruction.

[30] LSPEN Automatic state preservation enable. Enables lazy context save of floating-point state. The possible values of this
bit are:

0 Disable automatic lazy context save.
1 Enable automatic lazy state preservation for floating-point context.

Writes to this bit from Non-secure state are ignored if LSPENS is set to one.

[29] LSPENS RAZ/WI.

[28] CLRONRET Clear on return. Clear floating-point caller saved registers on exception return.

The possible values of this bit are:

0 Disabled.
1 Enabled.

When set to 1 the caller saved floating-point registers S0 to S15, and FPSCR are cleared on exception return
(including tail chaining) if CONTROL.FPCA is set to 1 and FPCCR_S.LSPACT is set to 0.

[27] CLRONRETS RAZ/WI.

[26] TS RAZ/WI.

[25:11] - Reserved, RES0

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 301 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[10] UFRDY UsageFault ready. Indicates whether the software executing when the processor allocated the floating-point stack
frame was able to set the UsageFault exception to pending.

The possible values of this bit are:

0 Not able to set the UsageFault exception to pending.
1 Able to set the UsageFault exception to pending.

[9] SPLIMVIOL Stack pointer limit violation. This bit indicates whether the floating-point context violates the stack pointer limit
that was active when lazy state preservation was activated. SPLIMVIOL modifies the lazy floating-point state
preservation behavior.

This bit is banked between Security states.
The possible values of this bit are:

0 The existing behavior is retained.
1 The memory accesses associated with the floating-point state preservation are not performed.

[8] MONRDY DebugMonitor ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the DebugMonitor exception to pending.

The possible values of this bit are:

0 Not able to set the DebugMonitor exception to pending.
1 Able to set the DebugMonitor exception to pending.

If DEMCR.SDME is 1 in Non-secure state this bit is RAZ/WI.

[7] SFRDY RAZ/WI.

[6] BFRDY BusFault ready. Indicates whether the software executing when the processor allocated the floating-point stack
frame was able to set the BusFault exception to pending.

The possible values of this bit are:

0 Not able to set the BusFault exception to pending.
1 Able to set the BusFault exception to pending.

[5] MMRDY MemManage ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the MemManage exception to pending.

The possible values of this bit are:

0 Not able to set the MemManage exception to pending.
1 Able to set the MemManage exception to pending.

[4] HFRDY HardFault ready. Indicates whether the software executing when the processor allocated the floating-point stack
frame was able to set the HardFault exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 Not able to set the HardFault exception to pending.
1 Able to set the HardFault exception to pending.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 302 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[3] THREAD Thread mode. Indicates the processor mode when it allocated the floating-point stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0 Handler mode.
1 Thread mode.

This bit is for fault handler information only and does not interact with the exception model.

[2] S RAZ/WI.

[1] USER Indicates the privilege level of the software executing, when the processor allocated the floating point stack.

The possible values of this bit are:

0 Privileged level.
1 Unprivileged level.

[0] LSPACT Lazy state preservation active. Indicates whether lazy preservation of the floating-point state is active.

The possible values of this bit are:

0 Lazy state preservation is not active.
1 Lazy state preservation is active.

Table 5-64: FPCCR bit assignments with the Security Extension

Bits Name Function

[31] ASPEN Automatic state preservation enable. Enables CONTROL.FPCA setting on execution of a floating-point instruction.
This results in automatic hardware state preservation and restoration, for floating-point context, on exception entry
and exit. The possible values of this bit are:

0 Disable CONTROL.FPCA setting on execution of a floating-point instruction.
1 Enable CONTROL.FPCA setting on execution of a floating-point instruction.

This bit is banked between Security states.

[30] LSPEN Automatic state preservation enable. Enables lazy context save of floating-point state. The possible values of this
bit are:

0 Disable automatic lazy context save.
1 Enable automatic lazy state preservation for floating-point context.

Writes to this bit from Non-secure state are ignored if LSPENS is set to one.

This bit is not banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 303 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[29] LSPENS Lazy state preservation enable Secure only. This bit controls whether the LSPEN bit is writeable from the Non-
secure state.

The possible values of this bit are:

0 LSPEN is readable and writeable from both Security states.
1 LSPEN is readable from both Security states. Writes to LSPEN are ignored from the Non-secure state.

This bit is not banked between Security states.

[28] CLRONRET Clear on return. Clear floating-point caller saved registers on exception return.

The possible values of this bit are:

0 Disabled.
1 Enabled.

When set to 1 the caller saved floating-point registers S0 to S15, and FPSCR are cleared on exception return
(including tail chaining) if CONTROL.FPCA is set to 1 and FPCCR_S.LSPACT is set to 0.

This bit is not banked between Security states.

[27] CLRONRETS Clear on return Secure only. This bit controls whether the CLRONRET bit is writeable from the Non-secure state.

The possible values of this bit are:

0 The CLRONRET field is accessibly from both Security states.
1 The Non-secure view of the CLRONRET field is read-only.

This bit is RAZ/WI for a Non-secure state.

This bit is not banked between Security states.

[26] TS Treat as Secure. Treat floating-point registers as Secure enable.
The possible values of this bit are:

0 Disabled.
1 Enabled.

When set to 0 the floating-point registers are treated as Non-secure even when the core is in the Secure state
and, therefore, the callee saved registers are never pushed to the stack. If the floating-point registers never contain
data that needs to be protected, clearing this flag can reduce interrupt latency.

This bit is not banked between Security states.

[25:11] - Reserved, RES0

[10] UFRDY UsageFault ready. Indicates whether the software executing when the processor allocated the floating-point stack
frame was able to set the UsageFault exception to pending.
The possible values of this bit are:

0 Not able to set the UsageFault exception to pending.
1 Able to set the UsageFault exception to pending.

This bit is banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 304 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[9] SPLIMVIOL Stack pointer limit violation. This bit indicates whether the floating-point context violates the stack pointer limit
that was active when lazy state preservation was activated. SPLIMVIOL modifies the lazy floating-point state
preservation behavior.

The possible values of this bit are:

0 The existing behavior is retained.
1 The memory accesses associated with the floating-point state preservation are not performed. If the

floating-point is in Secure state and FPCCR.TS is set to 1 the registers are still zeroed and the floating-
point state is lost.

This bit is banked between Security states.

[8] MONRDY DebugMonitor ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the DebugMonitor exception to pending.

The possible values of this bit are:

0 Not able to set the DebugMonitor exception to pending.
1 Able to set the DebugMonitor exception to pending.

If DEMCR.SDME is 1 in Non-secure state this bit is RAZ/WI.

This bit is not banked between Security states.

[7] SFRDY SecureFault ready.

If accessed from the Non-secure state, this bit behaves as RAZ/WI.

If accessed from the Secure state, this bit indicates whether the software executing (when the processor allocated
the floating-point stack frame) was able to set the SecureFault exception to pending.

This bit is not banked between Security states.

[6] BFRDY BusFault ready. Indicates whether the software executing when the processor allocated the floating-point stack
frame was able to set the BusFault exception to pending.

The possible values of this bit are:

0 Not able to set the BusFault exception to pending.
1 Able to set the BusFault exception to pending.

If in Non-secure state and AIRCR.BFHFNMINS is zero, this bit is RAZ/WI.

This bit is not banked between Security states.

[5] MMRDY MemManage ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the MemManage exception to pending.

The possible values of this bit are:

0 Not able to set the MemManage exception to pending.
1 Able to set the MemManage exception to pending.

This bit is banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 305 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Bits Name Function

[4] HFRDY HardFault ready. Indicates whether the software executing when the processor allocated the floating-point stack
frame was able to set the HardFault exception to pending.

The possible values of this bit are:

0 Not able to set the HardFault exception to pending.
1 Able to set the HardFault exception to pending.

If in Non-secure state and AIRCR.BFHFNMINS is zero, this bit is RAZ/WI.

This bit is not banked between Security states.

[3] THREAD Thread mode. Indicates the processor mode when it allocated the floating-point stack frame.

The possible values of this bit are:

0 Handler mode.
1 Thread mode.

This bit is for fault handler information only and does not interact with the exception model.

This bit is banked between Security states.

[2] S Security status of the floating point context.

If accessed from the Non-secure state, this bit behaves as RAZ/WI.

This bit is updated whenever lazy state preservation is activated, or when a floating-point instruction is executed.

The possible values of this bit are:

0 Indicates that the floating-point context belongs to the Non-secure state.
1 Indicates that the floating-point context belongs to the Secure state.

[1] USER Indicates the privilege level of the software executing, when the processor allocated the floating point stack.

The possible values of this bit are:

0 Privileged level.
1 Unprivileged level.

This bit is banked between Security states.

[0] LSPACT Lazy state preservation active. Indicates whether lazy preservation of the floating-point state is active.

The possible values of this bit are:

0 Lazy state preservation is not active.
1 Lazy state preservation is active.

This bit is banked between Security states.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 306 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.6.2 Floating-point Context Address Register

The FPCAR register holds the location of the unpopulated floating-point register space that is
allocated on an exception stack frame.

See 5.6 Floating-Point Unit on page 300 for the FPCAR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The FPCAR bit assignments are:

31 2 0

ADDRESS

3

RES0

Table 5-65: FPCAR bit assignments

Bits Name Function

[31:3] ADDRESS The location of the unpopulated floating-point register space that is allocated on an exception stack frame.

[2:0] - Reserved, RES0

5.6.3 Floating-point Status Control Register

The FPSCR register provides all necessary User level control of the floating-point system.

See 5.6 Floating-Point Unit on page 300 for the FPSCR attributes.

In an implementation with the Security Extension, this register is not banked between Security
states.

The FPSCR bit assignments are:

RES0

DN
FZ
RMode IOC

DZC
OFC

RES0

UFC
IXC

IDC

N

31 30 29 28 27 26 25 24 23 22 21 8 7 6 5 4 3 2 1 0

Z C RES0

AHP

V

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 307 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

Table 5-66: FPSCR bit assignments

Bits Name Function

[31] N

[30] Z

[29] C

[28] V

Condition code flags. Floating-point comparison operations update these flags:

N Negative condition code flag.
Z Zero condition code flag.
C Carry condition code flag.
V Overflow condition code flag.

[27] - Reserved, RES0.

[26] AHP Alternative half-precision control bit:

0 IEEE half-precision format selected.
1 Alternative half-precision format selected.

[25] DN Default NaN mode control bit:

0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.

[24] FZ Flush-to-zero mode control bit:

0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754
standard.

1 Flush-to-zero mode enabled.

[23:22] RMode Rounding Mode control field. The encoding of this field is:

0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

[21:8] - Reserved, RES0.

[7] IDC Input Denormal cumulative exception bit, see bits [4:0].

[6:5] - Reserved, RES0.

[4] IXC

[3] UFC

[2] OFC

[1] DZC

[0] IOC

Cumulative exception bits for floating-point exceptions, see also bit[7]. Each of these bits is set to 1 to indicate that the
corresponding exception has occurred since 0 was last written to it.

IDC, bit[7] Input Denormal cumulative exception bit.
IXC Inexact cumulative exception bit.
UFC Underflow cumulative exception bit.
OFC Overflow cumulative exception bit.
DZC Division by Zero cumulative exception bit.
IOC Invalid Operation cumulative exception bit.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 308 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

5.6.4 Floating-point Default Status Control Register

The FPDSCR register holds the default values for the floating-point status control data. The
processor assigns the floating-point status control data to the FPSCR when it creates a new
floating-point context.

See 5.6 Floating-Point Unit on page 300 for the FPDSCR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The FPDSCR bit assignments are:

0RES0

31 27 26 25 24 23 22 21 0

0 0 0 0 RES0

AHP RMode
DN FZ

Table 5-67: FPDSCR bit assignments

Bits Name Function

[31:27] - Reserved, RES0

[26] AHP Default value for FPSCR.AHP

[25] DN Default value for FPSCR.DN

[24] FZ Default value for FPSCR.FZ

[23:22] RMode Default value for FPSCR.RMode

[21:0] - Reserved, RES0

5.6.5 Code sequence for enabling the FPU

The FPU is disabled from reset. You must enable it before you can use any floating-point
instructions. The code sequence shows how to a enable the FPU in privileged mode. The core must
be in privileged mode to read from and write to the CPACR.

If the Security Extension is implemented, when the system boots up, the secure software should
setup NSACR to determine if the FPU (coprocessor 10 and 11) is accessible from Non-secure
side. The Secure software should also configure FPCCR to determine if the FPU is used by Secure
software. After that, the FPU can be enabled.

Enabling the FPU
CPACR EQU 0xE000ED88
LDR R0, =CPACR ; Read CPACR
LDR r1, [R0] ; Set bits 20-23 to enable CP10 and CP11
 coprocessors
ORR R1, R1, #(0xF << 20)
STR R1, [R0] ; Write back the modified value to the CPACR
DSB

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 309 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

The Cortex®-M33 Peripherals

ISB ; Reset pipeline now the FPU is enabled.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 310 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Cortex®-M33 Options

Appendix A Processor options
This appendix describes what the configuration options are and the affect these have on this book.
The configuration options for a Cortex®-M33 processor implementation are determined by the
device manufacturer.

A.1 Processor implementation options
The following table shows the processor implementation options.

Table A-1: Effects of the processor implementation options

Option Description and affected documentation

RTL version This affects the availability of some features. This affects:

• Variant and Revision field values in 5.2.3 CPUID Base Register - ARMv8M on page 239.

• The CPUID Register reset value in 5.2 System Control Block on page 237.

Inclusion of DSP Extension The SoC designer decides whether to implement the processor with or without the DSP
Extension. This affects references to the DSP Extension in:

• 2.1 About the Cortex-M33 processor and core peripherals on page 18

• 4.4 General data processing instructions on page 101

• 4.7 Multiply and divide instructions on page 141

• 4.8 Saturating instructions on page 156

• 4.9 Packing and unpacking instructions on page 165

Inclusion of coprocessor The SoC designer decides whether to implement the processor with or without a coprocessor.
This affects references to the coprocessor in:

• 4.5 Coprocessor instructions on page 131

• 4.6 CDE instructions on page 134

This also affects the:

• 5.2.15 Coprocessor Access Control Register - ARMv8M on page 266

• 5.2.16 Non-secure Access Control Register on page 267

• 3.5.1 Fault types reference table on page 69

• 5.2.11.3 UsageFault Status Register on page 262

Inclusion of debug The SoC designer decides whether to implement the processor with or without debug. The
number of breakpoints and watchpoints is configurable to 0, 4 or 8. This affects references to
the coprocessor in:

• 2.1 About the Cortex-M33 processor and core peripherals on page 18.

• 2.1.3 Integrated configurable debug on page 22.

• 2.1.4 Processor features and benefits summary on page 22.

• 3.1.3 Core registers on page 25.

• 3.5.4 Lockup on page 73.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 311 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Cortex®-M33 Options

Option Description and affected documentation

Inclusion of MPU The SoC designer decides whether to implement the processor with or without a Memory
Protection Unit (MPU). The number of MPU regions is configurable to 0, 4, 8, 12, or 16. This
affects references to the MPU or MPU registers in:

• 2.1 About the Cortex-M33 processor and core peripherals on page 18

• 3.2.2 Memory regions, types, and attributes on page 41.

• 3.2.5 Behavior of memory accesses on page 44

• 3.3.2 se_Exception types on page 51 in the description of MemManage.

• 3.5 Fault handling on page 69.

• 5.1 About the Cortex-M33 peripherals on page 236. Include either:

◦ The row for 0xE000ED90, MPU Type Register, reads as zero.

◦ The row for 0xE000ED90-0xE000EDB8, Memory Protection Unit.

If you have cache in your memory system, this affects bit field information in Table 5-60:
MAIR_ATTR values for bits[3:2] when MAIR_ATTR[7:4] is 0000 on page 297

Inclusion of FPU The SoC designer decides whether to implement the processor with or without a single-
precision Floating-Point Unit (FPU). This affects:

• 4.12 Floating-point instructions on page 178.

• The inclusion of VLDM/VSTM/VPUSH/VPOP in the list of interruptible instructions
3.1.3.6.4 Interruptible-continuable instructions on page 33.

• The FPCA bit in 3.1.3.8 CONTROL register on page 38.

• The MLSPERR bit in the MemManage Fault Status Register (MMFSR).

• The LSPERR and LSERR bits in the SecureFault Status Register (SFSR) if the Security
Extension is included.

Number of interrupts The SoC designer decides how many interrupts your processor implementation supports, in
the range 1-480. This affects:

• The maximum value of ISR_NUMBER in 3.1.3.6.2 Interrupt Program Status Register on
page 31.

• Exception number values (16 and above) in 3.3.2 se_Exception types on page 51,
particularly if you implement only one.

• The maximum interrupt number, and associated information where appropriate, in:

◦ 3.3.3 se_Exception handlers on page 56.

◦ 3.3.4 se_Vector table on page 57

◦ 5.4 Nested Vectored Interrupt Controller on page 272

• The number of implemented Nested Vectored Interrupt Controller (NVIC) registers in:

◦ NVIC register summary

◦ The appropriate register descriptions in sections 5.4.2 Interrupt Set Enable Registers
- Cortex-M33 on page 274 to 5.4.8 Interrupt Priority Registers - Cortex-M33 on
page 279

• 5.2.5 Vector Table Offset Register on page 245.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 312 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Cortex®-M33 Options

Option Description and affected documentation

Number of priority bits The SoC designer decides how many priority bits are in priority value fields, in the range 3-8.
Register priority value fields are 8 bits wide, and unimplemented low-order bits read as zero
and ignore writes. This affects:

• The note in 3.3.5 se_Exception priorities on page 59

• The notes in 3.1.3.8 CONTROL register on page 38

• The maximum priority level value in the introduction to 5.4 Nested Vectored Interrupt
Controller on page 272

• In 5.4.8 Interrupt Priority Registers - Cortex-M33 on page 279

◦ The maximum priority level value, in the introductory sentence.

◦ The priority field description, in 5.4.7 Interrupt Target Non-secure Registers -
CortexM33 on page 278

• In 5.2.9 M33 System Handler Priority Registers on page 253:

◦ The field width, in the introductory sentence.

◦ The priority fields description in 5.2.9.3 M33 System Handler Priority Register 3 on
page 255

◦ The description of the effect of the binary point, in 5.2.6.1 Binary point on page
249.

Inclusion of the WIC The SoC designer decides whether to implement the processor with or without a Wakeup
Interrupt Controller (WIC). This affects references to the WIC in:

• 2.1 About the Cortex-M33 processor and core peripherals on page 18.

• 3.6 Power management on page 73.

• 3.6.3 The Wakeup Interrupt Controller on page 75.

Sleep mode power-saving The SoC designer decides the power-saving options available in the sleep modes. This affects
3.6 Power management on page 73.

Sleep mode power saving might also affect SysTick behavior, and you might have to revise the
description inwhich affects 5.3.5 SysTick usage hints and tips on page 272.

Endianness The implementer decides whether the memory system is little-endian or big-endian. This
affects:

• Descriptions of endianness in:

◦ 3.1.5 Data types and data memory accesses on page 39.

◦ The introductory paragraph in 3.2.7 Memory endianness on page 46. Include either
3.2.7.1 Byte-invariant big-endian format on page 46 or 3.2.7.2 Little-endian format
on page 47. but not both.

Memory features Some features of the memory system are implementation-specific. This affects details of
vendor-specific memory in 3.2 Memory model on page 40, including:

• Implementation in 2.1 About the Cortex-M33 processor and core peripherals on page 18

• 3.2.5 Behavior of memory accesses on page 44

VTOR.TBLOFF[31:7] vector base address The SoC Designer decides the initial value in the Vector Table Offset Register (VTOR), which
controls the vector base address. This affects the address from where the processor loads:

• The MSP value in 3.1.3.2 Stack Pointer on page 27.

• The PC value in 3.1.3.5 Program Counter on page 29.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 313 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05

Cortex®-M33 Options

Option Description and affected documentation

Inclusion of Arm®v8‑M Security Extension The SoC designer decides whether to implement the processor with or without the Security
Extension. This affects:

• Figure 1-1 Cortex®-M33 processor implementation in Processor implementation on page
18

• Security Extension:

◦ 2.1.2 Security Extension on page 21.

◦ 3.1.2 Security states on page 24.

◦ 3.2.4 Secure memory system and memory partitioning on page 43.

• Exception types, Secure HardFault and SecureFault in:

◦ IPSR bit assignments in 3.1.3.6.2 Interrupt Program Status Register on page 31.

◦ Properties of the different exception types Reset, NMI, HardFault, Secure HardFault,
and SecureFault in 3.3 se_Exception model on page 50.

• Stack pointer. 3.1.3.2 Stack Pointer on page 27.

• Vector table offset. 3.3.4 se_Vector table on page 57.

• System timer. 5.3 System timer, SysTick on page 269.

• PRIMASK, FAULTMASK, and BASEPRI registers, in 3.1.3.7 Exception mask registers on
page 34

• MPU:

◦ There can be two MPUs, one Secure and one Non-secure. Each MPU can define
memory attributes independently.' 2.1.5 Cortex-M33 Processor core peripherals on
page 22.

◦ Include or omit 5.5 Security Attribution and Memory Protection on page 283

• SAU:

◦ 5.5 Security Attribution and Memory Protection on page 283.

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 314 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Revisions

Appendix B Revisions
This appendix describes the technical changes between released issues of this book.

B.1 Revisions
This section describes the technical changes between released issues of this document.

Table B-1: Issue 0002-00

Change Location

First Non-Confidential release for r0p2 -

Table B-2: Differences between issue 0002-00 and issue 0003-00

Change Location

First Non-Confidential release for r0p3 -

Updated CPUID reset value

5.2.1 System control block registers
summary on page 237

5.2.3 CPUID Base Register - ARMv8M on
page 239

Replaced Updating MPU regions with Updating protected memory regions, which includes
updating SAU and MPU descriptions

5.5.19 Updating protected memory regions
on page 298

Table B-3: Differences between issue 0003-00 and issue 0004-00

Change Location

First Non-Confidential release for r0p4 -

Clarified function of the interrupt clear-enable bits. 5.4.3 Interrupt Clear Enable Registers - Cortex-
M33 on page 275

Updated CPUID reset value. 5.2.1 System control block registers summary on
page 237

5.2.3 CPUID Base Register - ARMv8M on page
239

Changed 'INITSVTOR pin' and 'INITNSVTOR pin' to 'INITSVTOR bus' and
'INITNSVTOR bus' where applicable.

3.3.4 se_Vector table on page 57

Table B-4: Differences between issue 0004-00 and issue 0100-00

Change Location

First Non-Confidential release for r1p0 -

Updated CPUID reset value 5.2.1 System control block registers summary on page 237

5.2.3 CPUID Base Register - ARMv8M on page 239

Added CDE instructions 4.6 CDE instructions on page 134

Updated description of bits [31:30] in ATCLR register description 5.2.2 Auxiliary Control Register - Cortex-M33 on page 238

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 315 of 316

Arm® Cortex®-M33 Devices Generic User Guide Document ID: 100235_0100_05_en
Issue: 05
Revisions

Change Location

VTOR description about register banking corrected 5.2.5 Vector Table Offset Register on page 245

Type and function descriptions for SYSRESETREQ bit in AIRCR is
corrected.

5.2.6 Application Interrupt and Reset Control Register - ARMv8 on
page 246

Clarified MREGION field conditions 4.13.14 TT, TTT, TTA, and TTAT on page 215

Table B-5: Differences between issue 0100-00 and issue 0100-05

Change Location

Second Non-Confidential release for r1p0 -

Editorial changes Throughout document

Updated VTOR bit assignments Function desciption 5.2.5 Vector Table Offset Register on page 245

Corrected SADD16 and SADD8 operation instructions and
condition flags

4.4.10 SADD16 and SADD8 on page 113

Corrected SASX and SSAX operation instructions and condition flags 4.4.11 SASX and SSAX on page 114

Updated SAU_RLAR bit assignments 5.5.6 Security Attribution Unit Region Limit Address Register on
page 287

Changed topic title 'Additional reading' to 'Useful resources' 1.4 Useful resources on page 16

Copyright © 2017–2018, 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 316 of 316

	Arm® Cortex®-M33 Devices Generic User Guide
	Contents
	1. Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.4 Useful resources

	2. Overview
	2.1 About the Cortex®-M33 processor and core peripherals
	2.1.1 System-level interface
	2.1.2 Security Extension
	2.1.3 Integrated configurable debug
	2.1.4 Processor features and benefits summary
	2.1.5 Processor core peripherals

	2.2 Arm®v8‑M enablement

	3. The Cortex®-M33 Processor
	3.1 Programmer's model
	3.1.1 Processor modes and privilege levels for software execution
	3.1.2 Security states
	3.1.3 Core registers
	3.1.3.1 General-purpose registers
	3.1.3.2 Stack Pointer
	3.1.3.3 Stack limit registers
	3.1.3.4 Link Register
	3.1.3.5 Program Counter
	3.1.3.6 Combined Program Status Register
	3.1.3.6.1 Application Program Status Register
	3.1.3.6.2 Interrupt Program Status Register
	3.1.3.6.3 Execution Program Status Register
	3.1.3.6.4 Interruptible-continuable instructions
	3.1.3.6.5 If-Then block
	3.1.3.6.6 Thumb state

	3.1.3.7 Exception mask registers
	3.1.3.7.1 Priority Mask Register
	3.1.3.7.2 Fault Mask Register
	3.1.3.7.3 Base Priority Mask Register

	3.1.3.8 CONTROL register

	3.1.4 Exceptions and interrupts
	3.1.5 Data types and data memory accesses
	3.1.6 The Cortex Microcontroller Software Interface Standard

	3.2 Memory model
	3.2.1 Processor memory map
	3.2.2 Memory regions, types, and attributes
	3.2.3 Device memory
	3.2.4 Secure memory system and memory partitioning
	3.2.5 Behavior of memory accesses
	3.2.5.1 Additional memory access constraints for caches and shared memory

	3.2.6 Software ordering of memory accesses
	3.2.7 Memory endianness
	3.2.7.1 Byte-invariant big-endian format
	3.2.7.2 Little-endian format

	3.2.8 Synchronization primitives
	3.2.9 Programming hints for the synchronization primitives

	3.3 Exception model
	3.3.1 Exception states
	3.3.2 Exception types
	3.3.3 Exception handlers
	3.3.4 Vector table
	3.3.5 Exception priorities
	3.3.6 Interrupt priority grouping
	3.3.7 Exception entry and return
	3.3.7.1 Exception entry
	3.3.7.2 Exception return

	3.4 Security state switches
	3.5 Fault handling
	3.5.1 Fault types reference table
	3.5.2 Fault escalation to HardFault
	3.5.3 Fault status registers and fault address registers
	3.5.4 Lockup

	3.6 Power management
	3.6.1 Entering sleep mode
	3.6.1.1 Wait for interrupt
	3.6.1.2 Wait for event
	3.6.1.3 Sleep-on-exit

	3.6.2 Wakeup from sleep mode
	3.6.2.1 Wakeup from WFI or sleep-on-exit
	3.6.2.2 Wakeup from WFE

	3.6.3 The Wakeup Interrupt Controller
	3.6.4 The external event input
	3.6.5 Power management programming hints

	4. The Cortex®-M33 Instruction Set
	4.1 Cortex®-M33 instructions
	4.1.1 Binary compatibility with other Cortex processors

	4.2 CMSIS functions
	4.2.1 List of CMSIS functions to generate some processor instructions
	4.2.2 CMSE
	4.2.3 CMSIS functions to access the special registers
	4.2.4 CMSIS functions to access the Non-secure special registers

	4.3 About the instruction descriptions
	4.3.1 Operands
	4.3.2 Restrictions when using PC or SP
	4.3.3 Flexible second operand
	4.3.3.1 Constant
	4.3.3.1.1 Instruction substitution

	4.3.3.2 Register with optional shift

	4.3.4 Shift Operations
	4.3.4.1 ASR
	4.3.4.2 LSR
	4.3.4.3 LSL
	4.3.4.4 ROR
	4.3.4.5 RRX

	4.3.5 Address alignment
	4.3.6 PC‑relative expressions
	4.3.7 Conditional execution
	4.3.7.1 The condition flags
	4.3.7.2 Condition code suffixes

	4.3.8 Instruction width selection

	4.4 General data processing instructions
	4.4.1 List of data processing instructions
	4.4.2 ADD, ADC, SUB, SBC, and RSB
	4.4.3 AND, ORR, EOR, BIC, and ORN
	4.4.4 ASR, LSL, LSR, ROR, and RRX
	4.4.5 CLZ
	4.4.6 CMP and CMN
	4.4.7 MOV and MVN
	4.4.8 MOVT
	4.4.9 REV, REV16, REVSH, and RBIT
	4.4.10 SADD16 and SADD8
	4.4.11 SASX and SSAX
	4.4.12 SEL
	4.4.13 SHADD16 and SHADD8
	4.4.14 SHASX and SHSAX
	4.4.15 SHSUB16 and SHSUB8
	4.4.16 SSUB16 and SSUB8
	4.4.17 TST and TEQ
	4.4.18 UADD16 and UADD8
	4.4.19 UASX and USAX
	4.4.20 UHADD16 and UHADD8
	4.4.21 UHASX and UHSAX
	4.4.22 UHSUB16 and UHSUB8
	4.4.23 USAD8
	4.4.24 USADA8
	4.4.25 USUB16 and USUB8

	4.5 Coprocessor instructions
	4.5.1 List of coprocessor instructions
	4.5.2 Coprocessor intrinsics
	4.5.3 CDP and CDP2
	4.5.4 MCR and MCR2
	4.5.5 MCRR and MCRR2
	4.5.6 MRC and MRC2
	4.5.7 MRRC and MRRC2

	4.6 CDE instructions
	4.6.1 List of CDE instructions
	4.6.2 CX1{A}
	4.6.3 CX1D{A}
	4.6.4 CX2{A}
	4.6.5 CX2D{A}
	4.6.6 CX3{A}
	4.6.7 CX3D{A}
	4.6.8 VCX1{A}
	4.6.9 VCX2{A}
	4.6.10 VCX3{A}

	4.7 Multiply and divide instructions
	4.7.1 List of multiply and divide instructions
	4.7.2 MUL, MLA, and MLS
	4.7.3 SDIV and UDIV
	4.7.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and SMLATT
	4.7.5 SMLAD and SMLADX
	4.7.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB, and SMLALTT
	4.7.7 SMLSD and SMLSLD
	4.7.8 SMMLA and SMMLS
	4.7.9 SMMUL
	4.7.10 SMUAD and SMUSD
	4.7.11 SMUL and SMULW
	4.7.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL

	4.8 Saturating instructions
	4.8.1 List of saturating instructions
	4.8.2 SSAT and USAT
	4.8.3 SSAT16 and USAT16
	4.8.4 QADD and QSUB
	4.8.5 QASX and QSAX
	4.8.6 QDADD and QDSUB
	4.8.7 UQASX and UQSAX
	4.8.8 UQADD and UQSUB

	4.9 Packing and unpacking instructions
	4.9.1 List of packing and unpacking instructions
	4.9.2 PKHBT and PKHTB
	4.9.3 SXTA and UXTA
	4.9.4 SXT and UXT

	4.10 Bit field instructions
	4.10.1 List of bit field instructions
	4.10.2 BFC and BFI
	4.10.3 SBFX and UBFX

	4.11 Branch and control instructions
	4.11.1 List of branch and control instructions
	4.11.2 B, BL, BX, and BLX
	4.11.3 BXNS and BLXNS
	4.11.4 CBZ and CBNZ
	4.11.5 IT
	4.11.6 TBB and TBH

	4.12 Floating-point instructions
	4.12.1 List of floating-point instructions
	4.12.2 FLDMDBX, FLDMIAX
	4.12.3 FSTMDBX, FSTMIAX
	4.12.4 VABS
	4.12.5 VADD
	4.12.6 VCMP and VCMPE
	4.12.7 VCVT and VCVTR between floating-point and integer
	4.12.8 VCVT between floating-point and fixed-point
	4.12.9 VDIV
	4.12.10 VFMA and VFMS
	4.12.11 VFNMA and VFNMS
	4.12.12 VLDM
	4.12.13 VLDR
	4.12.14 VLLDM
	4.12.15 VLSTM
	4.12.16 VMLA and VMLS
	4.12.17 VMOV Immediate
	4.12.18 VMOV Register
	4.12.19 VMOV scalar to core register
	4.12.20 VMOV core register to single-precision
	4.12.21 VMOV two core registers to two single-precision registers
	4.12.22 VMOV two core registers and a double-precision register
	4.12.23 VMOV core register to scalar
	4.12.24 VMRS
	4.12.25 VMSR
	4.12.26 VMUL
	4.12.27 VNEG
	4.12.28 VNMLA, VNMLS and VNMUL
	4.12.29 VPOP
	4.12.30 VPUSH
	4.12.31 VSQRT
	4.12.32 VSTM
	4.12.33 VSTR
	4.12.34 VSUB
	4.12.35 VSEL
	4.12.36 VCVTA, VCVTM VCVTN, and VCVTP
	4.12.37 VCVTB and VCVTT
	4.12.38 VMAXNM and VMINNM
	4.12.39 VRINTR and VRINTX
	4.12.40 VRINTA, VRINTN, VRINTP, VRINTM, and VRINTZ

	4.13 Miscellaneous instructions
	4.13.1 List of miscellaneous instructions
	4.13.2 BKPT
	4.13.3 CPS
	4.13.4 CPY
	4.13.5 DMB
	4.13.6 DSB
	4.13.7 ISB
	4.13.8 MRS
	4.13.9 MSR
	4.13.10 NOP
	4.13.11 SEV
	4.13.12 SG
	4.13.13 SVC
	4.13.14 TT, TTT, TTA, and TTAT
	4.13.15 UDF
	4.13.16 WFE
	4.13.17 WFI
	4.13.18 YIELD

	4.14 Memory access instructions
	4.14.1 List of memory access instructions
	4.14.2 ADR
	4.14.3 LDR and STR, immediate offset
	4.14.4 LDR and STR, register offset
	4.14.5 LDR and STR, unprivileged
	4.14.6 LDR, PC‑relative
	4.14.7 LDM and STM
	4.14.8 PLD
	4.14.9 PUSH and POP
	4.14.10 LDA and STL
	4.14.11 LDREX and STREX
	4.14.12 LDAEX and STLEX
	4.14.13 CLREX

	5. The Cortex®-M33 Peripherals
	5.1 About the Cortex®-M33 peripherals
	5.2 System Control Block
	5.2.1 System control block registers summary
	5.2.2 Auxiliary Control Register
	5.2.3 CPUID Base Register
	5.2.4 Interrupt Control and State Register
	5.2.5 Vector Table Offset Register
	5.2.6 Application Interrupt and Reset Control Register
	5.2.6.1 Binary point

	5.2.7 System Control Register
	5.2.8 Configuration and Control Register
	5.2.9 System Handler Priority Registers
	5.2.9.1 System Handler Priority Register 1
	5.2.9.2 System Handler Priority Register 2
	5.2.9.3 System Handler Priority Register 3

	5.2.10 System Handler Control and State Register
	5.2.11 Configurable Fault Status Register
	5.2.11.1 MemManage Fault Status Register
	5.2.11.2 BusFault Status Register
	5.2.11.3 UsageFault Status Register

	5.2.12 HardFault Status Register
	5.2.13 MemManage Fault Address Register
	5.2.14 BusFault Address Register
	5.2.15 Coprocessor Access Control Register
	5.2.16 Non-secure Access Control Register
	5.2.17 System control block design hints and tips

	5.3 System timer, SysTick
	5.3.1 SysTick Control and Status Register
	5.3.2 SysTick Reload Value Register
	5.3.2.1 Calculating the RELOAD value

	5.3.3 SysTick Current Value Register
	5.3.4 SysTick Calibration Value Register
	5.3.5 SysTick usage hints and tips

	5.4 Nested Vectored Interrupt Controller
	5.4.1 Accessing the NVIC registers using CMSIS
	5.4.2 Interrupt Set Enable Registers
	5.4.3 Interrupt Clear Enable Registers
	5.4.4 Interrupt Set Pending Registers
	5.4.5 Interrupt Clear Pending Registers
	5.4.6 Interrupt Active Bit Registers
	5.4.7 Interrupt Target Non-secure Registers
	5.4.8 Interrupt Priority Registers
	5.4.9 Software Trigger Interrupt Register
	5.4.10 Level-sensitive and pulse interrupts
	5.4.10.1 Hardware and software control of interrupts

	5.4.11 NVIC usage hints and tips
	5.4.11.1 NVIC programming hints

	5.5 Security Attribution and Memory Protection
	5.5.1 Security Attribution Unit
	5.5.2 Security Attribution Unit Control Register
	5.5.3 Security Attribution Unit Type Register
	5.5.4 Security Attribution Unit Region Number Register
	5.5.5 Security Attribution Unit Region Base Address Register
	5.5.6 Security Attribution Unit Region Limit Address Register
	5.5.7 Secure Fault Status Register
	5.5.8 Secure Fault Address Register
	5.5.9 Memory Protection Unit
	5.5.10 MPU Type Register
	5.5.11 MPU Control Register
	5.5.12 MPU Region Number Register
	5.5.13 MPU Region Base Address Register
	5.5.14 MPU Region Base Address Register Alias, n=1-3
	5.5.15 MPU Region Limit Address Register Alias, n=1-3
	5.5.16 MPU Region Limit Address Register
	5.5.17 MPU Memory Attribute Indirection Registers 0 and 1
	5.5.18 MPU mismatch
	5.5.19 Updating protected memory regions
	5.5.20 MPU design hints and tips
	5.5.20.1 MPU configuration for a microcontroller

	5.6 Floating-Point Unit
	5.6.1 Floating-point Context Control Register
	5.6.2 Floating-point Context Address Register
	5.6.3 Floating-point Status Control Register
	5.6.4 Floating-point Default Status Control Register
	5.6.5 Code sequence for enabling the FPU

	A. Cortex®-M33 Options
	A.1 Processor implementation options

	B. Revisions
	B.1 Revisions

