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Agenda
 CoreSight™ Debug Technology for Cortex-M MCUs
 Debug and Trace Components of a Cortex-M Microcontroller
 Debug and Trace Connectors
 Debug and Trace Adapters and Streaming Trace Concept

 Using Debug and Trace
 Debugging Systems without Stopping Code Execution
 Trace Record Displays
 ITM: Instrumented Trace with Code Annotations
 DWT: Exception Trace, Timing Information, Data Access Trace
 ETM: Instruction Trace for Code Execution Analysis

 Development Tool Demonstration



CONFIDENTIAL3

Coresight™ Debug Technology (Cortex-M)
Start, Stop, and Single-step

User Program

8 Hardware 
Breakpoints in 
User Program

Application Trace 
Information:
Debug printf, 
RTOS  nfo, 
Unit Test,

UML Annotation

ITM, DWT, ETM 
Output via 

4 trace data pins
+ 1 clock pin

Data Trace or  
Access Breakpoints

for 4 Variables

Timing Information
PC Sampling, 

Event Counters, 
Interrupt Execution

On-the-Fly (while 
User Program runs)
read/write access 
to Variables and 

Memory Contents

JTAG (5-pin) or 
Serial Wire (2-pin 

+ 1 trace pin)

Instruction Stream for 
Code Execution Analysis,

Time Profiling, Code Coverage

ITM, DWT Output via 
1 serial trace data pin

(UART or Manchester Mode)

Trace (ETM, ITM, DWT) not available on Cortex-M0
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Debug and Trace Connectors

20-pin (0.1”) ARM JTAG

10-pin (0.05”) Cortex Debug

20-pin (0.05”) 
Cortex Debug+ETM

More Information: www.keil.com/coresight/connectors.asp

20-pin (0.1”) or 10-pin (0.05”) Connector
 Identical Debugging capabilities
Support 2 Operating Modes:

 Standard 5-pin JTAG mode (device chaining)
 Serial CoreSight mode
 2-pin Serial Wire Debug (SWD)
 1-pin Serial Wire Trace Output (SWO) for 

Data Trace at minimum system cost

20-pin (0.05”) Debug+ETM Connector
 Superset of 10-pin 0.05” Connector
 Adds 4 (trace data) +1 (trace clock) pins 

for high-speed Data + Instruction Trace in 
any operating mode (JTAG or SWD)

Presenter
Presentation Notes
Enhanced Debug Unit
More breakpoints
More data watchpoints
On-the-fly debugging
Debug running applications
Set breakpoints
Read/write memory
Instrumented Trace
Flexible trace options
Data Trace (Cortex-M3)
Optional Instruction Trace (ETM)
Smaller Low-cost Connectors
10-pin 0.05” 
JTAG or 2-pin interface
Single Pin Data Trace
20-pin 0.05”
Adds ETM interface
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Debug and Trace Adapters
ULINK2: Debug + Serial Wire Trace
 Flash Programming + Run-Control
 Memory + Breakpoint (access while running)
 Serial Wire Trace Capturing up to 1Mbit/sec

(UART mode)

ULINKpro: adds ETM + Streaming Trace
 Cortex-M processors running up to 200MHz
 50MHz JTAG clock speed
 Serial Wire Trace Capturing up to 100Mbit/sec

(Manchester Mode)
 ETM Trace Capturing up to 800Mbit/sec

 Virtually un-limited Trace Buffer
 Streaming Trace allows complete 

Code Coverage and Performance Analysis

Presenter
Presentation Notes
Enhanced Debug Unit
More breakpoints
More data watchpoints
On-the-fly debugging
Debug running applications
Set breakpoints
Read/write memory
Instrumented Trace
Flexible trace options
Data Trace (Cortex-M3)
Optional Instruction Trace (ETM)
Smaller Low-cost Connectors
10-pin 0.05” 
JTAG or 2-pin interface
Single Pin Data Trace
20-pin 0.05”
Adds ETM interface
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What is Streaming Trace?
 Trace data transferred in 

real-time to debug host 
 Capture size only limited by host 

resources (harddisk)
 Trace for minutes, hours, or longer
 Required for full code-coverage 

and timing analysis
 Today’s workstations can present 

trace data instantly

Presenter
Presentation Notes
Enhanced Debug Unit
More breakpoints
More data watchpoints
On-the-fly debugging
Debug running applications
Set breakpoints
Read/write memory
Instrumented Trace
Flexible trace options
Data Trace (Cortex-M3)
Optional Instruction Trace (ETM)
Smaller Low-cost Connectors
10-pin 0.05” 
JTAG or 2-pin interface
Single Pin Data Trace
20-pin 0.05”
Adds ETM interface
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Using Debug and Trace
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Run-Stop Debugging has Limitations
 Stopping code execution changes system behaviour
 Execution timing cannot be analyzed

 Not servicing interrupts may have catastrophic results
 Buffers may overrun or connected hardware gets no service

 Many practical problems result from a run-stop debugging
 Communications systems get into timeout state
 Motor controllers freeze in high current state
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Cortex-M CoreSight Offers Simple Solutions

 #1: Direct memory access to running system
 Native support in the debugger interface
 Values updated dynamically
 In-place editing of live variables
 Breakpoints can be set while system running
 No software overhead, no extra hardware,

works with any Cortex-M device!

 #2: printf-style output via an ITM Channel
 Output details to a debug console
 Uses CMSIS standard interface
 Intrusive (the debug printf is a routine that

adds to execution time and needs memory), 
but can be shipped within the end product
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Trace Records (DWT + ITM)
 Trace Records display program flow
 Capture timestamp, PC sample, and Read/Write accesses
 Time delay and lost cycles are noted

 Raw trace data from all trace sources
 Filter window to refine the view
 Updated while 

target system 
is running
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Instrumented Trace (ITM)
 32 ITM channels: write to memory location creates trace data
 Channel 0: for printf-style debug information
 Channel 31: for RTX event viewer

 Remaining ITM channels 
for user data output

// Output 32-bit variable 
// to ITM channel 1
ITM->PORT[1].u32 = value;

A write operation to an ITM 
channel memory location creates 
a trace record with output value, 

time stamp, and program location.
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Detailed Code Analysis (ITM)
 Parasoft C++ Test™

 Complete C/C++ quality solution for:
 Static code analysis and coding policy enforcement
 Automated code review
 Automated unit and regression testing
 Host and target test execution
 Coverage analysis

 Integrated support with MDK-ARM
 Based on ULINKpro streaming trace
 Annotated code uses ITM channel

for unit test result feedback

 More information:
 Parasoft Booth: 11-202
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Exception and Interrupt Trace (DWT)
 Statistical information about exceptions and interrupts
 Captures detailed information
 Name and number of exception; number of times entered
 Max and Min time spent in and out of exceptions
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Event Counters (DWT)
 Display real-time values of specific event counters
 Provide performance indications
 Extra cycles taken to execute instructions
 May be due to memory contentions (Flash waitstates)

 Cycles of overhead caused by handling exceptions
 Cycles spent in sleep mode
 Number of cycles spent

performing memory accesses
 Number of folded branch

instructions
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Logic Analyzer (DWT)
 Allows signals to be monitored graphically
 Monitor variables in the application 

 Accurate timing 
 Easy, fast analysis of signal timing with access to source code
 View delta changes from 

cursor to current location

 Code analysis
 View instruction that 

caused variable change
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Instruction Trace (ETM)
 Execution history of all executed instructions
 Instruction Trace window displays: cycle count (timing) and assembly 

code synchronized to the C source code.

 Instruction Trace is useful to analyze sporadic problems
 Data corruption by incorrect interrupt/thread protection
 Incorrect timing caused by interrupt/thread nesting
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Sporadic Data Problem (ETM)
void Alert (void) {                      // Alarm Function

if (clock.min != 59 &&                 // Validate Time

clock.hour != 12)  {

debug_printf ("System Should never be there");

}

}

void CheckAlert (void)  {                 // check for alarm at 12:59

if (clock.min == 59 &&                  // check minute for 59

clock.hour == 12)  {                // check hour for 12

Alert ();                             // call Alarm Function

:

Instruction Trace shows Interrupt Execution 
within the compare statement
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Code Coverage (ETM)
 Complete software validation requires code coverage
 Product liability and industry standards (IEC61508) demand for testing

according to “State of Science and Technology” methodologies

 ETM enabled devices provide complete instruction stream
 Non-intrusive - use final, optimized code at full speed

 Feedback provided directly in the debugger window
 Source & disassembly view
 Color-coded details for 

individual instructions
 Summary analysis by 

function or module

 Log File Support
 Coverage information can

be saved for documentation
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Execution Time Profiling and Analysis (ETM)
 Instruction Trace provides timing information
 Identify where most time is spent in your application

 Isolate problems by finding which C statements take longer 
than expected to execute
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Compiler Optimizations
 Compilation tools feature range of optimization options
 These enable you to target your application to its needs

 User control
 Select optimization options to suit target application/device

 Intelligent tools
 Automatic optimizations, 

no changes required in
source code 
 Does not interfere with 

the functional behaviour 
of the code
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Optimization examples - RVCT
 Application optimized for smallest code size †

 Application optimized for best performance ‡

 C:\Keil\ARM\Boards\Keil\MCBSTM32\Measure\Measure.uv2 †

 C:\Keil\ARM\Examples\DHRY\DHRY.uv2  using an Atmel AT91SAM7 device ‡

Optimization Compile Size Size Reduction %age Reduction
No optimization 13,656 Bytes

MicroLIB 8,960 Bytes 4,696 Bytes 34.4%

Optimization Level 2 12,936 Bytes 720 Bytes 5.3%

Both Options 8,264 Bytes 5,392 Bytes 39.5%

Measurement No Optimization Fully Optimized Improvement
dhry_1 2.829s 1.695s 40.1% faster

dhry_2 2.014s 1.011s 49.8% faster

µs per Dhrystone 138.0 70 49.3% faster
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END

Thank you
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