
1

Software Design for 
Cortex™-M Microcontroller

Reinhard Keil
Director MCU Tools



2

Agenda
 Cortex-M Processor Overview for Microcontrollers
 Cortex-M0: Easy to use 32-bit processor in an 8/16-bit footprint
 Cortex-M3: De-facto industry standard 32-bit Microcontroller
 Cortex-M4: New Cortex-M Processor with DSP and Floating Point Unit

 Software Concepts
 CMSIS: Cortex Microcontroller Software Interface Standard
 Super-Loop: Complete Application runs in an Endless Loop
 RTOS: Resource Control for Time-Critical Applications
 MPU: Memory Protection Unit for improve Software Security
 UML: Graphical Modeling Language for better Software-Architecture

 Middleware
 Why is Middleware Required 
 Selected Middleware Vendors along with middleware offering



3

ARM Cortex-A Series:
Applications processors for 
feature-rich OS and user applications

ARM Cortex-R Series:
Embedded processors for 
real-time signal processing 
and control applications

ARM Cortex-M Series:
Deeply embedded processors 
optimized for microcontroller 
and low-power applications

Cortex-M Processor Family
 Seamless embedded architecture
 Spanning cost and performance points



4

Spanning the application range
 Traditional 8/16/32-bit classification obsolete
 Seamless architecture across all applications

 Every product optimised for ultra low power systems

Cortex-M0 Cortex-M3 Cortex-M4
“8/16-bit” applications “16/32-bit” applications “32-bit/DSC” applications

Lowest cost
Optimised connectivity

Performance efficiency
Feature rich connectivity

SIMD/DSP Instructions
Floating Point Unit (optional)

High Performance MCU



5

Cortex-M processor industry adoption
 ARM Cortex-M3 processor momentum continues
 35+ licensees in applications from MCU, SoC, wireless sensor nodes
 140% CAGR in units shipped by vendors

 ARM Cortex-M0 processor announced in 2009
 13 licensees already in MCU, mixed-signal and FSM replacement

 New Cortex-M4 processor just announced
 Available for licensing now



6

ARM Cortex-M0 Processor

ARM Cortex-M0

Time

Po
w

er

Time

Po
w

er

EN
ER

G
Y

C
O

ST

8-bit or 16-bit
EN

ER
G

Y
EFFIC

IEN
T

 The smallest ARM processor ever
 A third of the area of ARM7TDMI-S™ 

at comparable performance

 Architected for ultra low power
 Power management unit via 

Wake-up Interrupt Controller



CONFIDENTIAL7

Cortex-M3 Processor Overview
Integrated Nested Vectored 

Interrupt Controller and 
SYSTICK Timer

Central Core:
1.25 DMIPS/MHz

1 Cycle Multiply
Hardware Divide

Embedded Trace  
Macrocell (ETM) 
for Instruction 

Trace

Memory Protection 
Unit (MPU)
8-Region

Debug Access 
Port: JTAG or 

Serial Wire

Data Watch Point 
and Trace Unit (DWT)
4x Data Watchpoints

&
Event Monitors

Instrumentation 
Trace Macrocell
(ITM ) for Data 

Trace via Single 
Wire Output

Flash Patch & 
Breakpoint Unit

8x Hardware 
Breakpoints

2x AHB-Lite Buses
I_CODE (Instruction Code Bus)

D_CODE (Data / Coefficients Code Bus)

1x AHB-Lite Buses
SYSTEM (SRAM & Fast Peripherals)

1x APB Bus
ARM Peripheral Bus (Internal & Slow Peripherals)

Wake-Up Interrupt Controller:
for Low Power Stand by 

Operation

optional blocks, please consult your silicon manufacturers data sheet

Presenter
Presentation Notes
Integrated Nested Vectored Interrupt Controller1-240 interrupts & 1-255 priorities 1-240 interrupts & 1-255 prioritiesFully deterministic low latency ISR entryH/W stacking enables ISR entry in 12 cycles6 cycles to tail chain to next ISREnhanced debug supportUp to 6 breakpoints and 4 watchpointsFlash Patch Breakpoint unitSerial Wire Debug/ViewerInstrumentation Trace macrocellDebug Access PortData watch point and Trace unit3 Stage Harvard ArchitectureSeparate Instruction and data busEnables multiple bus interfacesBus interconnectRich Thumb-2 instruction setHardware divideNo assembler requiredState manipulation handled in hardware.SysTickDefined Memory MapIntegrated into core enabling better code reuseFixed memory mapping eases portability of applications and RTOS/OSesOptional Memory Protection UnitGate Count based on 0.13um Metro G libraries (artisan13g_sc-metro-v10_2004q2v1)



CONFIDENTIAL8

Cortex-M Instruction Set



9

Software Complexity – The Challenge

1970 1980 1990 2000 2010

Development Costs
(Industrial Application)

Hardware Components can be easily exchanged

 Well-known issues that drive software costs
 Increasing product requirements that are implemented by software
 Hardware problems tend to become compensated by software

 Up to now software components cannot be easily exchanged

RS232
Driver

RAM

Flash

PHY

SD/MD
Connector

SD/MD
Connector

Ethernet
Connector

SD/MD
Card

MCU BUS

A Microcontroller Software Interface Standard is Required!

Presenter
Presentation Notes
How to handle data transmission of CAN/i2C is part of session 3 and 4User DLL’s = AGSI Interface-> Compiler extensions



10

CMSIS simplifies exchange of Software Components

RS232
Driver

TCP/IP
Suite

FAT
File 

System

Ethernet
Driver

SD/MD
Card Driver

Application
Code

Debug
Interface

RTOS
Kernel

The Cortex Microcontroller Software Interface Standard (CMSIS)
enables deployment of software components to physical Microcontroller Devices

CMSIS simplifies Code Re-Use



11

Standardization - driven by software reuse 
 #1 factor in choosing a processor is the software 

development tools available for it

Factors considered most important when choosing a microprocessor
April 2005



12

Software Concepts
for Embedded Applications

 CMSIS: Cortex Microcontroller Software Interface Standard
 Super-Loop: Complete Application runs in an Endless Loop
 RTOS: Resource Control for Time-Critical Applications
 MPU: Memory Protection Unit for improve Software Security
 UML: Graphical Modeling Language for better Software-

Architecture



13

What is CMSIS?
 CMSIS - Cortex Microcontroller Software Interface Standard

 Abstraction layer for all Cortex-M processor based devices 
 Developed in conjunction with silicon, tools and middleware partners

 CMSIS Peripheral Access Layer defines
 Consistent layout of all peripheral registers
 Vector definitions for all exceptions and interrupts
 Functions to access core registers and core peripherals
 Device independent interface for RTOS Kernels
 Debug channel (for printf-style + RTOS Kernel)

 CMSIS compliant software components allow
 Easy reuse of example applications or template code
 Combination of software components from multiple vendors

Presenter
Presentation Notes
The Cortex Microcontroller Software Interface Standard (CMSIS) enables deployment of software components to physical Microcontroller Devices



14

What CMSIS is Not

 CMSIS does not make Peripherals Equal
 Peripheral Access Layer defines common methods, not features
 I/O, Timers, PWM, A/D, D/A, etc. can have different functions

 CMSIS does not require immense Resources
 Peripheral Access Layer requires < 1KB code, 4Bytes variable.
 Including device startup code

 CMSIS does not prevent from direct Hardware Access
 Peripheral Registers are access via memory accesses
 Each Peripheral has a struct that collects all registers
 Device documentation should reflect this structure

The Cortex Microcontroller Software Interface Standard (CMSIS)
is not another complex software layer that forces vendors to identical features



15

CMSIS – Structure



16

CMSIS – Files for Peripheral Access Layer
Compiler Vendor-Independent Files:
 Cortex-M Core Files (provided by ARM)

 core_cm3.h+core_cm3.c       core_cm0.h+core_cm0.c

 Device-specific Files (provided by Silicon Vendors)
 Register Header File (device.h)
 System Startup File (system_device.c)

 Compatible with all supported Compilers (ARM, IAR, GNU, Tasking, …)

Compiler-Vendor + Device-Specific Startup File:
 Device Specific Compiler Startup Code (provided by Silicon Vendors)

 startup_device.c

CMSIS Files are available via www.onARM.com:
 Device Database that lists all available devices

 CMSIS Files can be downloaded



17

CMSIS – Example
#include <device.h>                       // file name depends on device 

void SysTick_Handler (void) {             // SysTick Interrupt Handler
;

}

void TIM1_UP_IRQHandler (void) {          // Timer Interrupt Handler 
;

}

void timer1_init(int frequency) {         // set up Timer (device specific)
NVIC_SetPriority (TIM1_UP_IRQn, 1);     // Set Timer priority 
NVIC_EnableIRQ (TIM1_UP_IRQn);          // Enable Timer Interrupt

}

// The MCU is initialized by CMSIS startup + system file
void main (void) {
if (SysTick_Config (SystemFrequency / 1000)) { // SysTick 1mSec

: // Handle Error 
}

timer1_init ();                         // setup device specific timer 
:

} 



18

Cortex-M4 CMSIS Extensions
 Cortex-M4 support available today in MDK-ARM and ARM Compiler
 C Compiler intrinsic functions for Cortex-M4 extended Instructions
 Optimized Floating Point Library using FPU CPU Instructions
 Complete µVision Debugger support; including Instruction Set Simulation

 CMSIS - Expanded with Cortex-M4 Features (Intrinsic Functions)
 Every CMSIS compliant C Compiler supports Cortex-M4 extensions

 Optimized Library using CMSIS
 Designed to make DSP programming

easy for MCU users
 General Functions

math, trigonometric, control functions
(building blocks)

 Digital Filter Algorithms
for filter design utilities and DSP 
toolkits (MathLab, LabVIEW, etc.)

--
-

U
 N

 D
 E

 R
   

 D
 E

 V
 E

 L
 O

 M
 E

 N
 T

   
 -

--



19

Super-Loop Design Pattern
 Application implemented as endless loop containing function calls
 Implies a fixed order for function execution
 Fits perfect for small embedded system; frequently choice for 8/16-bit MCU
 Time-critical program portions implemented as interrupt service routine (ISR)
 Communication via global variables; not data communication protocol
 Cortex-M security (MPU, PSP, Thread Mode Privilege Level) not needed

void main (void) {
Device_Initialization ();    // Configure & Initialize MCU

while (1)  {                 // Endless Loop (the Super-Loop)
Get_InputValues ();        // Read Values 
Calculation_Response ();   // Calculate Results
Output_Response ();        // Output Results

}
}

Super-Loop Example



20

Super-Loop with Cycle & Power-Saving

uint32_t volatile ms10Ticks;              // Counter for 10 Milli-Second Interval

void SysTick_Handler (void) {             // SysTick Interrupt Service Routine
ms10Ticks++;                            // Increment 10ms Counter

}

void WaitForTick (void)  {
uint32_t curTicks;

curTicks = ms10Ticks;                   // Save Current SysTick Value
while (ms10Ticks == curTicks)  {        // Wait for next SysTick Interrupt

__WFE (); // Power-Down until next Event/Interrupt
}

}

void main (void) {
SysTick_Config(SystemCoreClock / 100); // Set SysTick: 10ms Interval
Device_Initialization ();               // Configure & Initialize MCU

while (1)  {                            // Endless Loop (the Super-Loop)
Get_InputValues ();                   // Read Values 
Calculation_Response ();              // Calculate Results
Output_Response ();                   // Output Results
WaitForTick ();                       // Synchronize to SysTick Timer

}
}                                                                   // RED: CMSIS Features

 Easy to expand for time synchronisation & power-down



21

Super-Loop – Timing



22

Super-Loop – Data Exchange
struct { uint16_t msec; uint8_t sec; uint8_t min; uint8_t  hour; }  volatile clock;

void SysTick_Handler(void) {              // SysTick ISR called every msec

if (++clock.msec == 1000)  {            // increment ms, check overflow

clock.msec = 0;

if (++clock.sec == 60)  {             // increment seconds, check overflow

clock.sec = 0;

if (++clock.min == 60)  {           // increment minutes, check overflow

clock.min = 0;

if (++clock.hour == 24)  {        // increment hour, check overflow

clock.hour = 0;

}

}

}

}

}

void CheckAlert (void)  {                 // check for alarm at 12:59

if (clock.min == 59 &&                  // check minute for 59

clock.hour == 12)  {                // check hour for 12

Alert ();                             // call Alarm Function

}

}



23

Super-Loop – Data Exchange
struct { uint16_t msec; uint8_t sec; uint8_t min; uint8_t  hour; }  volatile clock;

void SysTick_Handler(void) {              // SysTick ISR called every msec

if (++clock.msec == 1000)  {            // increment ms, check overflow

clock.msec = 0;

if (++clock.sec == 60)  {             // increment seconds, check overflow

clock.sec = 0;

if (++clock.min == 60)  {           // increment minutes, check overflow

clock.min = 0;

if (++clock.hour == 24)  {        // increment hour, check overflow

clock.hour = 0;

}

}

}

}

}

void CheckAlert (void)  {                 // check for alarm at 12:59

if (clock.min == 59 &&                  // check minute for 59

clock.hour == 12)  {                // check hour for 12

Alert ();                             // call Alarm Function

}

}

Problem when SysTick ISR occurs at 11:59:59.999



24

Super-Loop – Data Exchange

void CheckAlert (void)  {                 // check for alarm at 12:59

int AlertFlag;

__disable_irq(); // disable all interrupts

AlertFlag = (clock.min == 59 &&         // check minute for 59

clock.hour == 12);         // check hour for 12

__enable_irq(); // enable all interrupts

if (AlertFlag)  {

Alert ();                             // call Alarm function

}

}                                                      // RED: CMSIS Features

 Problem Solution: disable interrupts
 Ensure that this is only for short period:

requires frequently re-write of application code
 Don’t be too clever: disabling a single high-priority ISR

means that low-priority ISR may delay ISR execution



25

Super-Loop – Disadvantages
 Time-critical operations must be processed within interrupts (ISR)
 ISR functions get complex and require long execution times
 ISR nesting may create unpreticable execution time & stack requirement 

 Data exchange Super-Loop  ISR via global shared variables
 Application programmer must ensure data consistency

 A Super-Loop can be easily synchronized with the SysTick timer, but:
 If a system requires several different cycle times, it is hard to implement
 Split of time-consuming functions that exceed Super-Loop cycle
 Creates software overhead and application program is hard to 

understand

 Super-Loop applications get easily complex; therefore hard to extend
 A simple change may have unpreticable side effects; such side effects 

are time consuming to analyze due to lack of analysing features.

The simplicity of the Super-Loop concept has several serious disadvantages for 
today’s applications. A Real-Time Operating System solves this problems.



26

RTOS Design Pattern
 A Real-Time Operating System (RTOS) controls resources
 Applications separated into tasks (threads) that run independent
 Extensive time control (time delay, time intervals, round-robin scheduling)
 Deterministic execution times and control of task (process) scheduling
 Inter-task communication (events, message), resource sharing (semaphore, 

mutex), and memory allocation features with message pools
 Supports development with error checking, debug and test facilities

__task void clock (void) {
os_itv_set(60Sec);            // Task waits on 60 second interval

while (1) {                   // Endless loop (the task loop)
if (time.min == 59 && time.hour == 12)  {

os_evt_set(1, id_Alert);  // Set Event flag from task Alert
}
os_itv_wait ();             // wait for one minute
if (++time.min == 60)  { time.min = 0; ++time.hour; }

}
}



27

RTOS – Timing



28

Tool support for RTX in MDK-ARM
 µVision Debugger supports RTX Kernel-aware debugging

Detailed view of RTX status view 
inside µVision Debugger



29

RTOS Message Passing + Memory Pools
 Task or ISR can exchange data
 A single data owner at a time
 Mailbox FIFO for multiple messages

On overruns:  forces task switch or 
error notification

 Deterministic time behavior 
(independent from current load)

 Timeout prevents from application 
hang-up

os_mbx_declare (mailbox1, 20);

__task void task1 (void) {
void *msg;

os_mbx_init (mailbox1, sizeof(mailbox1));
msg = alloc();

// fill message content

os_mbx_send (mailbox1, msg, 12);
}

__task void task2 (void) {
void *msg;
..

os_mbx_wait (mailbox1, &msg, 100);
// process message content here

free (msg);
}timeout

timeout



30

Memory Protection Unit (MPU) 
 MPU provides access control for eight

memory regions

 Zero Latency Memory Protection
 8 register-stored regions
 Same regions used for instructions and data
 Minimum region size 32 Bytes (max 4GB)
 No address translation or Page Tables

 Configured via memory-mapped control 
registers

Not available in Cortex-M0 / Cortex-M1



31

RTOS with MPU Support: PXROS-HR
 Uses Cortex-M3 Memory Protection for IEC61508
 Protected transfer for communication objects



32

When does  Software Design Crash?

TFkt_D

IFkt_A

IFkt_B
Fkt_NewFkt_A

Fkt_E

Fkt_B

Fkt_C

Fkt_F main()
TFkt_A

TFkt_D

Global
Data

Fkt_New

Global
Data

Fkt_New

Global
Data

TFkt_D



33

Engineering with UML



34

Fkt_New

UML Forces Clean RTOS Design

Fkt_A

Fkt_E

Fkt_C

IFkt_F

Scheduler

IFkt_A

IFkt_B

Event

Time

Fkt_New

Message

 Timing: state charts allow timing specification
 Behaviour: state charts 
 Dataflow: sequence diagram
 Priorities



35

Software Design with UML



36

Middleware
for Embedded Applications

 Why is Middleware Needed?
 Middleware Vendors (Selection)
 Typical Middleware Components



37

Today’s Microcontroller Selection
 Microcontroller have
 Processor
 On-chip Memory
 Interrupt System
 Rich peripheral set
 I/O Pins, Timers, PWM
 A/D and D/A converters
 UART, SPI, I2C
 Complex communication 

peripherals (CAN, USB, 
Ethernet)

Block Diagram of a Standard 
Microcontroller

JTAG Debug

Two CAN Channels

On-chip Flash

Power management, RTC, reset and watchdog, internal 
oscillator and PLL

80 GPIO Pins

SRAM,
Serial Wire Debug (SWD) &
Serial Wire Viewer (SWV)

USB 2.0 Interface 

Cortex-M3

SD/MMC card Interface 16-bit standard Timers 
including PWM

12-bit A/D converter     
(Sixteen channels) Three USART Channels

10/100 Ethernet MAC Two channels for I2C, I2S, 
SPI & SSI



38

Embedded Connectivity Challenges
 Embedded devices are used everywhere
 Need to support many different interfaces…
 CAN, USB, SD/MMC, Ethernet

 …and different protocols
 HTTP, FTP, SMTP...

 Customers demand ease of use
 Today’s embedded devices need to 

support plug and play compatibility

 Developers need more functionality
 Ability to support a wide range of interfaces
 Need better development and debug tools for this task



39

 CMX  www.cmx.com
RTOS, TCP/IP, Flash File System, CANopen
 HighTec  www.hightec-rt.com

RTOS with MMU support, Monitor, TCP/IP, Flash File System
 Keil/ARM RL-ARM  www.keil.com/rl-arm

RTOS including collection of Middleware components:  TCP/IP Suite, 
Flash File System, USB, CAN
 Micrium  www.micrium.com

RTOS along with rich set of middleware components
TCP/IP, Bluetooth, USB Device/OTG/Host, Graphic Library
 Quadros www.quadros.com

RTXC RTOS, TCP/IP, USB, file systems
 SEGGER  www.segger.com

Graphic Library, RTOS, TCP/IP, USB, File System, Boot Loader, etc.
 Thread-X  www.rtos.com

Graphic Library, RTOS, TCP/IP, USB, File System, etc.

Middleware Vendors (Selection)



40

 A collection of resources for solving these challenges
 Middleware components created and used by ARM engineers

What is RL-ARM?

Delivered as libraries 
and source code

Flexible usage model (with 
or without the RTX Kernel)

Provided for many 
popular microcontrollers

Uses RTX Kernel 
messaging implementation

All components are 
royalty-free

All library components 
supplied - no hidden costs



41

RL-ARM: TCPnet Networking Suite
 Add network support to your projects quickly and easily
 Libraries support common network protocols
 Supplied with templates and examples ready to port to any target
 Take advantage of standard networking applications

Email, 
SMTP

Modem, 
PPP

Serial, SLIP Web interface, 
HTTP

Remote Access,
Telnet

TCPnet Networking Suite

FTP ServerCGI Scripting DNS Resolver

Modem UARTEthernet Debug UART

PPPUDPTCP DHCPARP

Telnet ServerHTTP Server SMTP Server

SLIP

ARP, 
IEEE 802.xx network



42

END

Thank you


	Software Design for �Cortex™-M Microcontroller��Reinhard Keil�Director MCU Tools
	Agenda
	Cortex-M Processor Family
	Spanning the application range
	Slide Number 5
	ARM Cortex-M0 Processor
	Cortex-M3 Processor Overview
	Cortex-M Instruction Set
	Software Complexity – The Challenge
	Slide Number 10
	Standardization - driven by software reuse 
	Software Concepts�for Embedded Applications
	What is CMSIS?
	What CMSIS is Not
	CMSIS – Structure
	CMSIS – Files for Peripheral Access Layer 
	CMSIS – Example
	Cortex-M4 CMSIS Extensions
	Super-Loop Design Pattern
	Super-Loop with Cycle & Power-Saving
	Super-Loop – Timing
	Super-Loop – Data Exchange
	Super-Loop – Data Exchange
	Super-Loop – Data Exchange
	Super-Loop – Disadvantages
	RTOS Design Pattern
	RTOS – Timing
	Tool support for RTX in MDK-ARM
	RTOS Message Passing + Memory Pools
	Memory Protection Unit (MPU) 
	RTOS with MPU Support: PXROS-HR
	When does  Software Design Crash?
	Engineering with UML
	UML Forces Clean RTOS Design
	Software Design with UML
	Middleware�for Embedded Applications
	Today’s Microcontroller Selection
	Embedded Connectivity Challenges
	Middleware Vendors (Selection)
	What is RL-ARM?
	RL-ARM: TCPnet Networking Suite
	END

