ARM

Low-Power Leadership

Software Design for
Cortex™-M Microcontroller

Reinhard Kell
Director MCU Tools

®
The Architecture for the Digital World® ARM

Agenda

= Cortex-M Processor Overview for Microcontrollers
= Cortex-MO0: Easy to use 32-bit processor in an 8/16-bit footprint
= Cortex-M3: De-facto industry standard 32-bit Microcontroller
= Cortex-M4: New Cortex-M Processor with DSP and Floating Point Unit

= Software Concepts
= CMSIS: Cortex Microcontroller Software Interface Standard
= Super-Loop: Complete Application runs in an Endless Loop
= RTOS: Resource Control for Time-Critical Applications
= MPU: Memory Protection Unit for improve Software Security
= UML: Graphical Modeling Language for better Software-Architecture

= Middleware
= Why is Middleware Required
= Selected Middleware Vendors along with middleware offering

®
i The Architecture for the Digital VWorld® AR I

Cortex-M Processor Family

= Seamless embedded architecture
= Spanning cost and performance points

mQM Cortex-A Series: \

Applications processors for
feature-rich OS and user applications

ARM Cortex-R Series:

Embedded processors for

Size

real-time signal processing
and control applications

ARM Cortex-M Series:

Deeply embedded processors

optimized for microcontroller
\a\nd low-power applications /

FPGA Low Cost MCU High Performance MCU —’

®
The Architecture for the Digital World® ARM

Spanning the application range

= Traditional 8/16/32-bit classification obsolete
= Seamless architecture across all applications
= Every product optimised for ultra low power systems

Cortex-M0O Cortex-M3 Cortex-M4

“8/16-bit” applications “16/32-bit” applications “32-bit/DSC” applications

SIMD/DSP Instructions
Floating Point Unit (optional)
High Performance MCU

Lowest cost Performance efficiency
Optimised connectivity Feature rich connectivity

Cortex-M processor industry adoption

" ARM Cortex-M3 processor momentum continues

= 35+ licensees in applications from MCU, SoC, wireless sensor nodes
" 140% CAGR in units shipped by vendors

" ARM Cortex-MO processor announced in 2009
" 13 licensees already in MCU, mixed-signal and FSM replacement

" New Cortex-M4 processor just announced
= Available for licensing now

)
®cnercy MR AIMEL sfosecor. ember

RIAD
€MICONDUCTOR @
s GEED”
x founded by Philips INSTRUMENTS

Kyl TOSHIBA VActel RENESAS Lo g

Everywhere you imagine.

®
The Architecture for the Digital VWorld® ARM

ARM Cortex-MQO Processor

= The smallest ARM processor ever

= Athird of the area of ARM7/TDMI-S™ "
at comparable performance '

R : - .
[nvie (e EEER e o
_] S 1 ARMICORS ¢
= Architected for ultra low power uky 3 ‘
. . 8 s Bus Matrix
= Power management unit via E & AMBA AHB-lie Interface
Wake-up Interrupt Controller ™ |
EpEpEpER pEEEERE
| ARM Cortex-Mo 1 8-bit or 16-bit
T m
5 T rZrl g
E O xg &
" E_E N == E G)
Cortex 5 <
Low-Power Leadership from ARM® |:
Time Time

®
The Architecture for the Digital VWorld® ARM

=

Cortex-M3 Processor Overview

Wake-Up Interrupt Controller:
for Low Power Stand by
Operation

Memory Protection
Unit (MPU)
8-Region

Debug Access
Port: JTAG or
Serial Wire

Data Watch Point
and Trace Unit (DWT)
4x Data Watchpoints

&
Event Monitors

Integrated Nested Vectored

Interrupt Controller and
SYSTICK Timer

Code
interface

SRAM &
Peripheral I/F

Central Core:

1.25 DMIPS/MHz
1 Cycle Multiply
Hardware Divide

Embedded Trace
Macrocell (ETM)
for Instruction
Trace

Instrumentation
Trace Macrocell
(ITM) for Data
Trace via Single
Wire Output

Flash Patch &
Breakpoint Unit
8x Hardware
Breakpoints

1x AHB-Lite Buses
SYSTEM (SRAM & Fast Peripherals)
1x APB Bus
ARM Peripheral Bus (Internal & Slow Peripherals)

2x AHB-Lite Buses
I_CODE (Instruction Code Bus)
D_CODE (Data / Coefficients Code Bus)

i _E optional blocks, please consult your silicon manufacturers data sheet

The Architecture for the Digital World® ARM

CONFIDENTIAL

Presenter
Presentation Notes
Integrated Nested Vectored Interrupt Controller
1-240 interrupts & 1-255 priorities 1-240 interrupts & 1-255 priorities
Fully deterministic low latency ISR entry
H/W stacking enables ISR entry in 12 cycles
6 cycles to tail chain to next ISR
Enhanced debug support
Up to 6 breakpoints and 4 watchpoints
Flash Patch Breakpoint unit
Serial Wire Debug/Viewer
Instrumentation Trace macrocell
Debug Access Port
Data watch point and Trace unit
3 Stage Harvard Architecture
Separate Instruction and data bus
Enables multiple bus interfaces
Bus interconnect
Rich Thumb-2 instruction set
Hardware divide
No assembler required
State manipulation handled in hardware.
SysTick
Defined Memory Map
Integrated into core enabling better code reuse
Fixed memory mapping eases portability of applications and RTOS/OSes
Optional Memory Protection Unit

Gate Count based on 0.13um Metro G libraries (artisan13g_sc-metro-v10_2004q2v1)

Cortex-M Instruction Set

D GEIED GEIED GEIED GEED GECEED GECTED

Cl
LDMIA
LDRBT

=
T

BKPT -89 (ADC) (ADD) (ADR)

T (AN) (ASR) (B)

i'

LDREXH (BL) (BIC)
LDRSBT (cvN) (cmp) (EOR)

=
(2]
A

("tor) (LorB) ((LDM)
(LDRH) (LDRSB) (LDRSH)
ED) () (o)
(muL) (MvN) (ORR)
(PoP) (PUSH) ((ROR)

) @3 (RSB) ((sSBC) (STM)
(STR) (STRB) (STRH)
[wei] CORTEX-MO/M1

MCRR

=
A
(2]

PLDW REV16 N REVSH

RBIT

'.x
m
=

SMULL

STMDB

D GEED GETD
G GRS GEITEED
D GEETD GELTEED
D G GETED
GECTED G GEETED

D GEEED G GELETED GG G GRS
D GETED GEED
D GRS GRS GEITTED GEEIED GEITD GETIID

GED GEIED GETED G

CORTEX-M3

G GRS G GEIIED GETEED GEIITED GEIITED GECTED GECITD
I GEIED GEINID GEIIED GESED G GEIID GEITED GEISED

GEIIND GEIITD
GEITED GEDIND
D GEED
D GEITHD
D D

CORTEX-M4
(VABS) (VADD I (VCMP D@D ¢ VCVT YO veviR -) (VDIV) (VLDM I (VLDR)
(VMLA) (VMLS) (VMOV) (VMRS) (VMSR) (VMUL) (VNEG Y VNMLAT) (C VNMLS)
C vamue) (VPOP J(C veusH) vsart) (VSTM I VSTR) vsuB) CORTEX-M4 FPU

®
The Architecture for the Digital VWorld® ARM

=
Software Complexity — The Challenge

Development Costs 3+
(Industrial Application) §f'$'§ SOIMD RS232 RAM
$/ @ Connector Driver
\& / y ‘: :l ——
%, o
‘1' 0* Ethernet
\V"Q ;6,4& Connector PHY MCU BUS |
~.0
—_—
SD/MD SD/MD
/ \ Card Connector FI as h
1970 1980 1990 2000 2010 Hardware Components can be easily exchanged

Well-known issues that drive software costs
Increasing product requirements that are implemented by software
Hardware problems tend to become compensated by software

Up to now software components cannot be easily exchanged

A Microcontroller Software Interface Standard is Required!

®
The Architecture for the Digital VWorld® ARM

Presenter
Presentation Notes
How to handle data transmission of CAN/i2C is part of session 3 and 4
User DLL’s = AGSI Interface
-> Compiler extensions

CMSIS simplifies Code Re-Use

CMSIS

Softwore Toterface Standand
:ALL. NN
hitex s

CMSIS simplifies exchange of Software Components DEVELOPMENT TOOLS
gcode_red '"
g\)/slrén% “ﬂcr'"T DZ KE!& Veeem| Altium

The Cortex Microcontroller Software Interface Standard (CMSIS)
enables deployment of software components to physical Microcontroller Devices

The Architecture for the Digital World® ARM

Standardization - driven by software reuse

= #] factor in choosing a processor is the software
development tools available for it

Software tools
Performance

Price

} » Operating systems
ARM @ Hardware tools

CONNECTED Available software

Peripherals

Power consumption
Supplier reputation
Future roadmap

Familiarity

b Debug support
Popularity

Available as |P

0% 20% 40% 60% 80%

Souns Embeiiad Syt Fiopmminig " Related to development tools
pri

:
‘ F The Architecture for the Digital World® ARM

Software Concepts
for Embedded Applications

= CMSIS: Cortex Microcontroller Software Interface Standard
= Super-Loop: Complete Application runs in an Endless Loop
= RTOS: Resource Control for Time-Critical Applications

= MPU: Memory Protection Unit for improve Software Security

= UML: Graphical Modeling Language for better Software-
Architecture

®
The Architecture for the Digital VWorld® ARM

=
What i1Is CMSIS?

= CMSIS - Cortex Microcontroller Software Interface Standard
= Abstraction layer for all Cortex-M processor based devices
= Developed in conjunction with silicon, tools and middleware partners

= CMSIS Peripheral Access Layer defines

= Consistent layout of all peripheral registers
Vector definitions for all exceptions and interrupts
Functions to access core registers and core peripherals
Device independent interface for RTOS Kernels

= Debug channel (for printf-style + RTOS Kernel) cms's
. v COMPLIANT
= CMSIS compliant software components allow S fware moverface Sramaaca

= Easy reuse of example applications or template code
= Combination of software components from multiple vendors

®
The Architecture for the Digital VWorld® ARM

Presenter
Presentation Notes
The Cortex Microcontroller Software Interface Standard (CMSIS) enables deployment of software components to physical Microcontroller Devices

What CMSIS is Not

The Cortex Microcontroller Software Interface Standard (CMSIS)

IS not another complex software layer that forces vendors to identical features

= CMSIS does not make Peripherals Equal

= Peripheral Access Layer defines common methods, not features
= |/O, Timers, PWM, A/D, D/A, etc. can have different functions

= CMSIS does not require immense Resources
= Peripheral Access Layer requires < 1KB code, 4Bytes variable.
= |[ncluding device startup code

= CMSIS does not prevent from direct Hardware Access
= Peripheral Registers are access via memory accesses
= Each Peripheral has a struct that collects all registers
= Device documentation should reflect this structure

®
The Architecture for the Digital World® ARM

CMSIS — Structure

a4

'%J Application Code

(V2]

O Real-Time

In_ﬁ Kernel

% Core Peripheral Functions Dev:::n::il:;f‘:eral
2

@) Peripheral Register & Interrupt Vector Definitons

8 Cortex SysTick NVIC Debug/Trace Other
> CPU et et Comroler Interface Peripherals

®
The Architecture for the Digital VWorld® ARM

CMSIS — Files for Peripheral Access Layer

Compiler Vendor-Independent Files:
= Cortex-M Core Files (provided by ARM)
= core_cm3.h+core_cma3.c core_cm0.h+core_cmO0.c
= Device-specific Files (provided by Silicon Vendors)
= Register Header File (device.h)
= System Startup File (system_device.c)

= Compatible with all supported Compilers (ARM, IAR, GNU, Tasking, ...)

Compiler-Vendor + Device-Specific Startup File:

= Device Specific Compiler Startup Code (provided by Silicon Vendors)
= startup_device.c

CMSIS Files are available via www.onARM.com:

= Device Database that lists all available devices
= CMSIS Files can be downloaded

®
The Architecture for the Digital VWorld® ARM

CMSIS — Example

#include <device.h> // Tile name depends on device

void SysTick Handler (void) { // SysTick Interrupt Handler

}

void TIM1 _UP_IRQHandler (void) { // Timer Interrupt Handler

}

void timerl init(int frequency) { // set up Timer (device specific)
NVIC_SetPriority (TIM1_UP_IRQn, 1); // Set Timer priority
NVIC EnablelRQ (TIM1_UP_IRQN); // Enable Timer Interrupt

}

// The MCU is initialized by CMSIS startup + system file
void main (void) {
1T (SysTick Config (SystemFrequency / 1000)) { // SysTick 1mSec
: // Handle Error

}

timerl _init ; // setup device specific timer

i The Architecture for the Digital VWorld® ARM®

UNDER DEVELOMENT

Cortex-M4 CMSIS Extensions

= Cortex-M4 support available today in MDK-ARM and ARM Compiler
= C Compiler intrinsic functions for Cortex-M4 extended Instructions
= Optimized Floating Point Library using FPU CPU Instructions
= Complete pVision Debugger support; including Instruction Set Simulation

= CMSIS - Expanded with Cortex-M4 Features (Intrinsic Functions)
= Every CMSIS compliant C Compiler supports Cortex-M4 extensions

= Optimized Library using CMSIS _|TW] o] o Zieisiz)

= Designed to make DSP programming g e
easy for MCU users

= General Functions
math, trigonometric, control functions
(building blocks)

= Digital Filter Algorithms
for filter design utilities and DSP
toolkits (MathLab, LabVIEW, etc.)

000 500. 1000 1500 2000 0.000 1.875 3.750 5625 7.500 0.000 1.875 2.750 5625 7.500
Ready Enap OFF

®
The Architecture for the Digital World® ARM

Super-Loop Design Pattern

= Application implemented as endless loop containing function calls
= Implies a fixed order for function execution
= Fits perfect for small embedded system; frequently choice for 8/16-bit MCU
= Time-critical program portions implemented as interrupt service routine (ISR)
= Communication via global variables; not data communication protocol
= Cortex-M security (MPU, PSP, Thread Mode Privilege Level) not needed

void main (void) {
Device_ Initialization (); // Configure & Initialize MCU
while (1) { // Endless Loop (the Super-Loop)
Get_ InputValues (); // Read Values
Calculation_Response (); // Calculate Results
Output Response (); // Output Results
+
+

Super-Loop Example

I The Architecture for the Digital World® ARM®

Super-Loop with Cycle & Power-Saving

= Easy to expand for time synchronisation & power-down

uint32_t volatile msl1l0Ticks;

void SysTick Handler (void) {
ms10Ticks++;

}

void WaitForTick (void) {
uint32_t curTicks;

curTicks = msl1l0Ticks;

while (ns10Ticks == curTicks) {
__WFE Q;

by

}

void main (void) {
SysTick Config(SystemCoreClock / 100);
Device_Initialization ();

while (1) {
Get_InputValues ();
Calculation_Response ();
Output_Response ();
WaitForTick ();

}
}

//

//
//

//
//
/7/

/7/
/7/

//
/7/
/7/
/7/
/7/

Counter for 10 Milli-Second Interval
SysTick Interrupt Service Routine
Increment 10ms Counter

Save Current SysTick Value
Wait for next SysTick Interrupt
Power-Down until next Event/Interrupt

Set SysTick: 10ms Interval
Configure & Initialize MCU

Endless Loop (the Super-Loop)
Read Values

Calculate Results

Output Results

Synchronize to SysTick Timer

// RED: CMSIS Features

®
The Architecture for the Digital VWorld® ARM

Super-Loop — Timing

Super-Loop
main ()
—— >
Function 1
Function 2 \ Interrupt Service Routines
|
i E ‘ ISR 1
<
. Function 2
Time
Function 3
'
! t | IsR2
] ; ' —
i E ! " ISR 3 (nested)
1 1 | <
: : ISR 2
v |
Function 3 ‘

®
The Architecture for the Digital VWorld® ARM

Super-Loop — Data Exchange

struct { uintl6_t msec; uint8_t sec; uint8_t min; uint8 _t hour; } volatile clock;
void SysTick _Handler(void) { // SysTick ISR called every msec
if (++clock.msec == 1000) { // increment ms, check overflow
clock.msec = O;
1T (++clock.sec == 60) { // increment seconds, check overflow
clock.sec = 0;
it (++clock.min == 60) { // increment minutes, check overflow
clock.min = 0O;
it (++clock.hour == 24) { // increment hour, check overflow
clock.hour = 0O;
}
+
}
+
+
void CheckAlert (void) { // check for alarm at 12:59
if (clock.min == 59 && // check minute for 59
clock.hour == 12) { // check hour for 12
Alert (); // call Alarm Function
+
+

i | 5 The Architecture for the Digital World®

Super-Loop — Data Exchange

struct { uintl6_t msec; uint8_t sec; uint8_t min; uint8 _t hour; } volatile clock;
void SysTick _Handler(void) { // SysTick ISR called every msec
if (++clock.msec == 1000) { // increment ms, check overflow
clock.msec = O;
1T (++clock.sec == 60) { // increment seconds, check overflow
clock.sec = 0;
it (++clock.min == 60) { // increment minutes, check overflow
clock.min = 0O;
it (++clock.hour == 24) { // increment hour, check overflow
clock.hour = 0O;
}
+
}
+
+
void CheckAlert (void) { // check for alarm at 12:59
1T (ClOCK.MIN =2 59 && s Problem when SysTick ISR occurs at 11:59:59.999
clock.hour == 12) { o oTTe TN TTOUT— TOT e
Alert (); // call Alarm Function
+
+

®
The Architecture for the Digital VWorld® ARM

Super-Loop — Data Exchange

= Problem Solution: disable interrupts

= Ensure that this is only for short period:
requires frequently re-write of application code

= Don’t be too clever: disabling a single high-priority ISR
means that low-priority ISR may delay ISR execution

void CheckAlert (void) { // check for alarm at 12:59
int AlertFlag;

__disable_1rqQ); // disable all i1nterrupts

AlertFlag = (clock.min == 59 && // check minute for 59
clock.hour == 12); // check hour for 12

__enable_i1rq(Q); // enable all iInterrupts

1T (AlertFlag) {
Alert (; // call Alarm function

+
} // RED: CMSIS Features

®
The Architecture for the Digital VWorld® ARM

Super-Loop — Disadvantages

= Time-critical operations must be processed within interrupts (ISR)

= |SR functions get complex and require long execution times
= |SR nesting may create unpreticable execution time & stack requirement

= Data exchange Super-Loop S ISR via global shared variables
= Application programmer must ensure data consistency

= A Super-Loop can be easily synchronized with the SysTick timer, but:
= |f a system requires several different cycle times, it is hard to implement
= Split of time-consuming functions that exceed Super-Loop cycle

= Creates software overhead and application program is hard to
understand

= Super-Loop applications get easily complex; therefore hard to extend

= Asimple change may have unpreticable side effects; such side effects
are time consuming to analyze due to lack of analysing features.

The simplicity of the Super-Loop concept has several serious disadvantages for
today’s applications. A Real-Time Operating System solves this problems.

®
The Architecture for the Digital VWorld® ARM

RTOS Design Pattern

= A Real-Time Operating System (RTOS) controls resources
= Applications separated into tasks (threads) that run independent
= Extensive time control (time delay, time intervals, round-robin scheduling)
= Deterministic execution times and control of task (process) scheduling

= |nter-task communication (events, message), resource sharing (semaphore,
mutex), and memory allocation features with message pools

= Supports development with error checking, debug and test facilities

__task void clock (void) {
os_1tv_set(60Sec); // Task waits on 60 second interval

while (1) { // Endless loop (the task loop)

iIT (time.min == 59 && time.hour == 12) {
os _evt set(l, id Alert); // Set Event flag from task Alert

}
os 1tv wait (; // wait for one minute
It (++time.min == 60) { time.min = 0; ++time.hour; }

+

+

l The Architecture for the Digital World® ARM®

RTOS — Timing

Low-Prority High-Prority
Tasks Tasks
T -~
Task 1
wait

Task 2 sends
l Task 2 message to Task 4

(’ Task 4 ‘
wait

Task 2
Time wait
4 Task 3
P
i E . ISR
: al ISR sends message
: E Task 5 to Task 5
\ 4 ' :‘ wait
Task 3

wait

®
The Architecture for the Digital VWorld® ARM

Tool support for RTX in MDK-ARM

= uVision Debugger supports RTX Kernel-aware debugging
R Kernel B

Active Tasks] S_l,lstem] Ewvent \-"iewerl Active Tasks] Sustem Event Viewer l
TID | Task Mame Pricrity | State Delay | EventValue | Ewent Mask | Stack Load Lo o) .)
2 phased 1 WAIT DLY 1226 o Fin Tirme: b 3= Time: Fange: Grid: Z00rm: .
3 phasel 1 WAIT_AND 0x0000 00001 2% 0000626 = | 34441335 | 2000000: | 1000000 s Out| All| Sel| W Running
4 phaseC 1 WwAIT_AND 0x0000 0x0001 322
5 phazel 1 Wl T_akD 0x0000 (0001 3% Idle
E clock, 1 Wl T_alD 0x0000 00100 k-3 N I B B e BER IOE IOl IS BRI EEE IER IEEl IOy 'EEn Eat
7 old 1 walT DLy 398 32% Dhaseﬁlllgll__||___|.|...||.__||.”|.|.”||.__|!”|.|.__||.__|.|”
255 oz_idle_demon i] RUMMNIMG 14 phaseB i il 1 n 1 1 T} 1] 1] n I
phasel | I ARRL AR I I AR NIRRT R
DhaSED'...'...'....'...'...'....'...'...'....'...'...'...
: chcka | |m | || | . | e ..
RTX Kernel sl led | 1] '%' R o L P LU
Active Tasks Shstem | Event i C Mouse Pos Cuirsar Delta
e TasE | EventViewsr | . ‘Time: 1651030 0.000000s 1651030 s = 0.0DB05663 He
Syztem zervice ugage U
Active Ay ailable [R S T R S A S R AR
Tasks |6 o [o [TTTTTTITTTTTITTTT] 150.0000 5 2500000 5 350.0000 &
| >
Uzer Timers: |0 of |232 —
Configuration
Timner number: |0 Round Robin Timeout | 2684372 mzec
Tick timer: [536374.5C msec Detailed view of RTX status view

inside pVision Debugger
Stack size: 200 btes Tasks with U zer-provided Stack: |0

Stack averflow check [&

®
The Architecture for the Digital VWorld® ARM

RTOS Message Passing + Memory Pools

= Task or ISR can exchange data
= A single data owner at a time
= Mailbox FIFO for multiple messages

On overruns: forces task switch or
error notification alloc : - free
T : Mailbox FIFO | . .
= Deterministic time behavior | L B

(independent from current load)

= Timeout prevents from application
hang-up

i Memory Pool

[
[
[¥
H]
R o o o i i

os_mbx_declare (mailboxl1l, 20);

__task void taskl (void) { __task void task2 (void) {
void *msg; void *msg;
os_mbx_init (mailboxl, sizeof(mailboxl)); os_mbx_wairt (mairlboxl; &msg, 1QQ);
msg = alloc(); // process message content here timeout

// Till message content

os_mbx_send (mailboxl1l, msg, 12); free (msg);
} \timeout ¥

’ ®
s | The Architecture for the Digital VWorld® ARM

Memory Protection Unit (MPU)

= MPU provides access control for eight
memory regions

= Zero Latency Memory Protection

System data

= 8 register-stored regions TR

= Same regions used for instructions and data Task 2 data }
Task 1 data

= Minimum region size 32 Bytes (max 4GB)

. Shared library
= No address translation or Page Tables

Task 2 code }
Task 1 code
= Configured via memory-mapped control RTOS code
registers Task 2 stack *7
Task 1 stack

RTOS data

Vectors

Not available in Cortex-MO / Cortex-M1

.
i The Architecture for the Digital World® ARM

: .._;h ' 9

RTOS with MPU Support: PXROS-HR

= Uses Cortex-M3 Memory Protection for IEC61508
= Protected transfer for communication objects ”'
HIGH? TEC

- .. - e Each module (Task) has its own
[Fesaomy |

vjwiwiw
0(0"0(0,
120100

— protection register context

@ PXROS-HR manages the memory
protection

o @ Access violation lead to a trap

—> Adaptive error handling

viwlww
0| 0 v

?
PR
Q
Q

®
The Architecture for the Digital VWorld® ARM

When does Software Design Crash?

®
The Architecture for the Digital World® ARM

Engineering with UML

[1

ANSI C
Module, Funktiionen,
Variablen ...

[1

C++
Klassen Objekte,
Vererbung,
Instanziierung ...

RTOS
Farallele Prozesse,
Timer, Events,
Machrichten ...

Systems
Engineering
Requirements, Timing,
Sequenzen ...

.'\.'--"
i
e
g
i
g
i
P
o
o

[]

Test-Automation

Klasse

Test Definition, Ablauf

Attribut
Attribut

Automation ...

Operation
QOperation

Objekt
Aftribut
Altribut

Operation
Cperation

|

Oper. ()

g

®
The Architecture for the Digital VWorld® ARM

UML Forces Clean RTOS Design

= Timing: state charts allow timing specification
= Behaviour: state charts

= Dataflow: sequence diagram

= Priorities

®
The Architecture for the Digital World® ARM

Software Design with UML

EMBEDDED UML STUDIO II'™

UML RHAPSODY® ARCHITECT UML TOOL (sme rationaLe)
DEBUGGER

CODE GENERATION (eme rationaL®)

EMBEDDED UML RXF™ (WILLERT SOFTWARE TOOLS)
(EMBEDDED UML REALTIME EXECUTION FRAMEWORK)

UML
TARGET UML o TARGET BRIDGE™ (rensource)

MONITOR

"
Tasks ™

® el
‘ bl N 55

®
The Architecture for the Digital World® ARM

Middleware
for Embedded Applications

= Why is Middleware Needed?
= Middleware Vendors (Selection)
= Typical Middleware Components

®
The Architecture for the Digital VWorld® ARM

Today’s Microcontroller Selection

= Microcontroller have
= Processor On-chip Flash
= On-chip Memory
= |nterrupt System
- RICh peripheral set Power management, RTC, reset and watchdog, internal
= |/O Pins, Timers, PWM e
= A/D and D/A converters 70 CAN Channels
= UART, SPI, 12C (Sinteen channels)

= Complex communication 101200 Ethernet MAC
peripherals (CAN, USB,
Ethernet)

JTAG Debug

Serial Wire Debug (SWD) &
Serial Wire Viewer (SWV)

Cortex-M3

USB 2.0 Interface

Three USART Channels

Two channels for 12C, 12S,
SPI & SSI

16-bit standard Timers

SD/MMC card Interface including PWM

80 GPIO Pins

Block Diagram of a Standard
Microcontroller

®
The Architecture for the Digital VWorld® ARM

Embedded Connectivity Challenges

= Embedded devices are used everywhere
= Need to support many different interfaces...
= CAN, USB, SD/MMC, Ethernet
= _..and different protocols
= HTTP, FTP, SMTP...

= Customers demand ease of use
= Today’'s embedded devices need to
support plug and play compatibility
= Developers need more functionality

= Ability to support a wide range of interfaces
= Need better development and debug tools for this task

®
The Architecture for the Digital VWorld® ARM

Middleware Vendors (Selection)

= CMX www.cmx.com
RTOS, TCP/IP, Flash File System, CANopen

= HighTec www.hightec-rt.com
RTOS with MMU support, Monitor, TCP/IP, Flash File System

= Kell/ARM RL-ARM www.keil.com/rl-arm

RTOS including collection of Middleware components: TCP/IP Suite,
Flash File System, USB, CAN

= Micrium www.micrium.com
RTOS along with rich set of middleware components
TCP/IP, Bluetooth, USB Device/OTG/Host, Graphic Library

= Quadros www.quadros.com
RTXC RTOS, TCP/IP, USB, file systems

= SEGGER www.segger.com
Graphic Library, RTOS, TCP/IP, USB, File System, Boot Loader, etc.

= Thread-X www.rtos.com
Graphic Library, RTOS, TCP/IP, USB, File System, etc.

®
The Architecture for the Digital VWorld® ARM

What is RL-ARM?

= A collection of resources for solving these challenges
= Middleware components created and used by ARM engineers

All library components
supplied - no hidden costs

Flexible usage model (with
or without the RTX Kernel)

Delivered as libraries
and source code

RL-ARM
Real-Time Library

RTXRTOS Source Code

TCPnetNetworking Suite

Flash File System

USB Device Interface

CAN Interface

Examples and Templates

All components are
royalty-free

Provided for many
popular microcontrollers

Uses RTX Kernel
messaging implementation

®
The Architecture for the Digital VWorld® ARM

RL-ARM: TCPnet Networking Suite

= Add network support to your projects quickly and easily
= Libraries support common network protocols
= Supplied with templates and examples ready to port to any target
= Take advantage of standard networking applications

& 4 W e

Email, Modem, Remote Access, Serial, SLIP Web interface,
SMTP PPP Telnet HTTP
- TCPnet Networking Suite
\"l!;' HTTP Server Telnet Server SMTP Server
ARP, CGl Scripting FTP Server DNS Resolver

IEEE 802.xx network

Ethernet Modem UART Debug UART

®
The Architecture for the Digital VWorld® ARM

END

Thank you

The Architecture for the Digital World® ARM

	Software Design for �Cortex™-M Microcontroller��Reinhard Keil�Director MCU Tools
	Agenda
	Cortex-M Processor Family
	Spanning the application range
	Slide Number 5
	ARM Cortex-M0 Processor
	Cortex-M3 Processor Overview
	Cortex-M Instruction Set
	Software Complexity – The Challenge
	Slide Number 10
	Standardization - driven by software reuse
	Software Concepts�for Embedded Applications
	What is CMSIS?
	What CMSIS is Not
	CMSIS – Structure
	CMSIS – Files for Peripheral Access Layer
	CMSIS – Example
	Cortex-M4 CMSIS Extensions
	Super-Loop Design Pattern
	Super-Loop with Cycle & Power-Saving
	Super-Loop – Timing
	Super-Loop – Data Exchange
	Super-Loop – Data Exchange
	Super-Loop – Data Exchange
	Super-Loop – Disadvantages
	RTOS Design Pattern
	RTOS – Timing
	Tool support for RTX in MDK-ARM
	RTOS Message Passing + Memory Pools
	Memory Protection Unit (MPU)
	RTOS with MPU Support: PXROS-HR
	When does Software Design Crash?
	Engineering with UML
	UML Forces Clean RTOS Design
	Software Design with UML
	Middleware�for Embedded Applications
	Today’s Microcontroller Selection
	Embedded Connectivity Challenges
	Middleware Vendors (Selection)
	What is RL-ARM?
	RL-ARM: TCPnet Networking Suite
	END

