
1

Advanced Debugging for 
Cortex™-M Microcontroller 

Reinhard Keil
Director MCU Tools



2

Agenda
 CoreSight™ Debug Technology for Cortex-M MCUs
 Debug and Trace Components of a Cortex-M Microcontroller
 Debug and Trace Connectors
 Debug and Trace Adapters and Streaming Trace Concept

 Using Debug and Trace
 Debugging Systems without Stopping Code Execution
 Trace Record Displays
 ITM: Instrumented Trace with Code Annotations
 DWT: Exception Trace, Timing Information, Data Access Trace
 ETM: Instruction Trace for Code Execution Analysis

 Development Tool Demonstration



CONFIDENTIAL3

Coresight™ Debug Technology (Cortex-M)
Start, Stop, and Single-step

User Program

8 Hardware 
Breakpoints in 
User Program

Application Trace 
Information:
Debug printf, 
RTOS  nfo, 
Unit Test,

UML Annotation

ITM, DWT, ETM 
Output via 

4 trace data pins
+ 1 clock pin

Data Trace or  
Access Breakpoints

for 4 Variables

Timing Information
PC Sampling, 

Event Counters, 
Interrupt Execution

On-the-Fly (while 
User Program runs)
read/write access 
to Variables and 

Memory Contents

JTAG (5-pin) or 
Serial Wire (2-pin 

+ 1 trace pin)

Instruction Stream for 
Code Execution Analysis,

Time Profiling, Code Coverage

ITM, DWT Output via 
1 serial trace data pin

(UART or Manchester Mode)

Trace (ETM, ITM, DWT) not available on Cortex-M0



4

Debug and Trace Connectors

20-pin (0.1”) ARM JTAG

10-pin (0.05”) Cortex Debug

20-pin (0.05”) 
Cortex Debug+ETM

More Information: www.keil.com/coresight/connectors.asp

20-pin (0.1”) or 10-pin (0.05”) Connector
 Identical Debugging capabilities
Support 2 Operating Modes:

 Standard 5-pin JTAG mode (device chaining)
 Serial CoreSight mode
 2-pin Serial Wire Debug (SWD)
 1-pin Serial Wire Trace Output (SWO) for 

Data Trace at minimum system cost

20-pin (0.05”) Debug+ETM Connector
 Superset of 10-pin 0.05” Connector
 Adds 4 (trace data) +1 (trace clock) pins 

for high-speed Data + Instruction Trace in 
any operating mode (JTAG or SWD)

Presenter
Presentation Notes
Enhanced Debug Unit
More breakpoints
More data watchpoints
On-the-fly debugging
Debug running applications
Set breakpoints
Read/write memory
Instrumented Trace
Flexible trace options
Data Trace (Cortex-M3)
Optional Instruction Trace (ETM)
Smaller Low-cost Connectors
10-pin 0.05” 
JTAG or 2-pin interface
Single Pin Data Trace
20-pin 0.05”
Adds ETM interface





5

Debug and Trace Adapters
ULINK2: Debug + Serial Wire Trace
 Flash Programming + Run-Control
 Memory + Breakpoint (access while running)
 Serial Wire Trace Capturing up to 1Mbit/sec

(UART mode)

ULINKpro: adds ETM + Streaming Trace
 Cortex-M processors running up to 200MHz
 50MHz JTAG clock speed
 Serial Wire Trace Capturing up to 100Mbit/sec

(Manchester Mode)
 ETM Trace Capturing up to 800Mbit/sec

 Virtually un-limited Trace Buffer
 Streaming Trace allows complete 

Code Coverage and Performance Analysis

Presenter
Presentation Notes
Enhanced Debug Unit
More breakpoints
More data watchpoints
On-the-fly debugging
Debug running applications
Set breakpoints
Read/write memory
Instrumented Trace
Flexible trace options
Data Trace (Cortex-M3)
Optional Instruction Trace (ETM)
Smaller Low-cost Connectors
10-pin 0.05” 
JTAG or 2-pin interface
Single Pin Data Trace
20-pin 0.05”
Adds ETM interface





6

What is Streaming Trace?
 Trace data transferred in 

real-time to debug host 
 Capture size only limited by host 

resources (harddisk)
 Trace for minutes, hours, or longer
 Required for full code-coverage 

and timing analysis
 Today’s workstations can present 

trace data instantly

Presenter
Presentation Notes
Enhanced Debug Unit
More breakpoints
More data watchpoints
On-the-fly debugging
Debug running applications
Set breakpoints
Read/write memory
Instrumented Trace
Flexible trace options
Data Trace (Cortex-M3)
Optional Instruction Trace (ETM)
Smaller Low-cost Connectors
10-pin 0.05” 
JTAG or 2-pin interface
Single Pin Data Trace
20-pin 0.05”
Adds ETM interface





7

Using Debug and Trace



8

Run-Stop Debugging has Limitations
 Stopping code execution changes system behaviour
 Execution timing cannot be analyzed

 Not servicing interrupts may have catastrophic results
 Buffers may overrun or connected hardware gets no service

 Many practical problems result from a run-stop debugging
 Communications systems get into timeout state
 Motor controllers freeze in high current state



9

Cortex-M CoreSight Offers Simple Solutions

 #1: Direct memory access to running system
 Native support in the debugger interface
 Values updated dynamically
 In-place editing of live variables
 Breakpoints can be set while system running
 No software overhead, no extra hardware,

works with any Cortex-M device!

 #2: printf-style output via an ITM Channel
 Output details to a debug console
 Uses CMSIS standard interface
 Intrusive (the debug printf is a routine that

adds to execution time and needs memory), 
but can be shipped within the end product



10

Trace Records (DWT + ITM)
 Trace Records display program flow
 Capture timestamp, PC sample, and Read/Write accesses
 Time delay and lost cycles are noted

 Raw trace data from all trace sources
 Filter window to refine the view
 Updated while 

target system 
is running



11

Instrumented Trace (ITM)
 32 ITM channels: write to memory location creates trace data
 Channel 0: for printf-style debug information
 Channel 31: for RTX event viewer

 Remaining ITM channels 
for user data output

// Output 32-bit variable 
// to ITM channel 1
ITM->PORT[1].u32 = value;

A write operation to an ITM 
channel memory location creates 
a trace record with output value, 

time stamp, and program location.



12

Detailed Code Analysis (ITM)
 Parasoft C++ Test™

 Complete C/C++ quality solution for:
 Static code analysis and coding policy enforcement
 Automated code review
 Automated unit and regression testing
 Host and target test execution
 Coverage analysis

 Integrated support with MDK-ARM
 Based on ULINKpro streaming trace
 Annotated code uses ITM channel

for unit test result feedback

 More information:
 Parasoft Booth: 11-202



13

Exception and Interrupt Trace (DWT)
 Statistical information about exceptions and interrupts
 Captures detailed information
 Name and number of exception; number of times entered
 Max and Min time spent in and out of exceptions



14

Event Counters (DWT)
 Display real-time values of specific event counters
 Provide performance indications
 Extra cycles taken to execute instructions
 May be due to memory contentions (Flash waitstates)

 Cycles of overhead caused by handling exceptions
 Cycles spent in sleep mode
 Number of cycles spent

performing memory accesses
 Number of folded branch

instructions



15

Logic Analyzer (DWT)
 Allows signals to be monitored graphically
 Monitor variables in the application 

 Accurate timing 
 Easy, fast analysis of signal timing with access to source code
 View delta changes from 

cursor to current location

 Code analysis
 View instruction that 

caused variable change



16

Instruction Trace (ETM)
 Execution history of all executed instructions
 Instruction Trace window displays: cycle count (timing) and assembly 

code synchronized to the C source code.

 Instruction Trace is useful to analyze sporadic problems
 Data corruption by incorrect interrupt/thread protection
 Incorrect timing caused by interrupt/thread nesting



17

Sporadic Data Problem (ETM)
void Alert (void) {                      // Alarm Function

if (clock.min != 59 &&                 // Validate Time

clock.hour != 12)  {

debug_printf ("System Should never be there");

}

}

void CheckAlert (void)  {                 // check for alarm at 12:59

if (clock.min == 59 &&                  // check minute for 59

clock.hour == 12)  {                // check hour for 12

Alert ();                             // call Alarm Function

:

Instruction Trace shows Interrupt Execution 
within the compare statement



18

Code Coverage (ETM)
 Complete software validation requires code coverage
 Product liability and industry standards (IEC61508) demand for testing

according to “State of Science and Technology” methodologies

 ETM enabled devices provide complete instruction stream
 Non-intrusive - use final, optimized code at full speed

 Feedback provided directly in the debugger window
 Source & disassembly view
 Color-coded details for 

individual instructions
 Summary analysis by 

function or module

 Log File Support
 Coverage information can

be saved for documentation



19

Execution Time Profiling and Analysis (ETM)
 Instruction Trace provides timing information
 Identify where most time is spent in your application

 Isolate problems by finding which C statements take longer 
than expected to execute



20

Compiler Optimizations
 Compilation tools feature range of optimization options
 These enable you to target your application to its needs

 User control
 Select optimization options to suit target application/device

 Intelligent tools
 Automatic optimizations, 

no changes required in
source code 
 Does not interfere with 

the functional behaviour 
of the code



21

Optimization examples - RVCT
 Application optimized for smallest code size †

 Application optimized for best performance ‡

 C:\Keil\ARM\Boards\Keil\MCBSTM32\Measure\Measure.uv2 †

 C:\Keil\ARM\Examples\DHRY\DHRY.uv2  using an Atmel AT91SAM7 device ‡

Optimization Compile Size Size Reduction %age Reduction
No optimization 13,656 Bytes

MicroLIB 8,960 Bytes 4,696 Bytes 34.4%

Optimization Level 2 12,936 Bytes 720 Bytes 5.3%

Both Options 8,264 Bytes 5,392 Bytes 39.5%

Measurement No Optimization Fully Optimized Improvement
dhry_1 2.829s 1.695s 40.1% faster

dhry_2 2.014s 1.011s 49.8% faster

µs per Dhrystone 138.0 70 49.3% faster



22

END

Thank you


	Advanced Debugging for �Cortex™-M Microcontroller ��Reinhard Keil�Director MCU Tools
	Agenda
	Coresight™ Debug Technology (Cortex-M)
	Debug and Trace Connectors
	Debug and Trace Adapters
	What is Streaming Trace?
	Using Debug and Trace
	Run-Stop Debugging has Limitations
	Cortex-M CoreSight Offers Simple Solutions
	Trace Records (DWT + ITM)
	Instrumented Trace (ITM)
	Detailed Code Analysis (ITM)
	Exception and Interrupt Trace (DWT)
	Event Counters (DWT)
	Logic Analyzer (DWT)
	Instruction Trace (ETM)
	Sporadic Data Problem (ETM)
	Code Coverage (ETM)
	Execution Time Profiling and Analysis (ETM)
	Compiler Optimizations
	Optimization examples - RVCT
	END

