�

C Compilers • Real-Time OS • Simulators • Education • Evaluation Boards

16990 Dallas Parkway • Suite 120 • Dallas, Texas • 75248 • 800-348-8051

�

�Porting 8051 C Programs to the 251		 Application Note 117�

November 12, 1997, Munich, Germany

by	Reinhard Keil, Keil Elektronik GmbH rk@keil.com ++49 89 456040-13

This document shows how to port a program which was written originally for the Keil C51 compiler to the Keil C251 compiler version 2. If you simply re-compile an existing C51 program with C251 Version 2, the program often grows in code size. The reason is that most C51 programs are using memory types to place variables in C251 memory spaces. This is illustrated using a short program:

 1 /*

 2 * This is a old existing 8051 program

 3 */

 4 char data dval;

 5 int idata ival;

 6 int xdata xval;

 7 char pdata pval;

 8 char code cval = 1;

 9 int xdata * idata xp;

 10

 11 void main (void) {

 12 1 dval = cval;

 13 1 xp = &xval;

 14 1 pval = 5;

 15 1 for (ival = 0; ival < 10; ival++) {

 16 2 *xp = 0;

 17 2 }

 18 1 }

EXAMPLE C SOURCE CODE

If you compile with Keil C51 Version 5, the total code size is 57 Bytes. If you re-compile this program with the Keil C251 Version 2 compiler, you end up with a code size of 74 Bytes. This is bigger since you are using the new 251 instruction set in source mode. You might expect these instructions should generate better and therefore smaller assembler code.

The reason for this behavior is that Keil C251 Version 2 still supports all addressing modes of the 8051 CPU and therefore maps the memory spaces idata, pdata, code and xdata to less effective 251 instructions. If you are replacing these memory spaces by the new C251 near memory space, so can get the optimum performance out of your 251 CPU. One way to do that is shown in the following example:

We are replacing the C51 memory types in our existing C51 source module by defines. These defines are then replaced in the header file CONV51.H into optimum C251 memory types. In a typical 8051 application this modification can be done with global text replacements on all files.

 1

 2 #include "conv51.h" // convert 51 mspaces to 251 mspaces

 3

 4 /*

 5 * This is the modified 8051 program

 6 */

 7 char DRAM dval;

 8 int IRAM ival;

 9 int XRAM xval;

 10 char PRAM pval;

 11 char CROM cval = 1;

 12 int XRAM * IRAM xp;

 13

 14 void main (void) {

 15 1 dval = cval;

 16 1 xp = &xval;

 17 1 pval = 5;

 18 1 for (ival = 0; ival < 10; ival++) {

 19 2 *xp = 0;

 20 2 }

 21 1 }

MODIFIED EXAMPLE FOR C251 RE-COMPILING

The content of the CONV51.H header file is shown below:

/* This is the header file CONV51.H */

#ifdef __C251__ // __C251__ is a define of C251

#define DRAM data // data can be mapped directly to the 251 data space

#define IRAM near // idata uses MOV Ri, use 251 near instead

#define XRAM near // xdata uses MOVX or MOV @DR56, use 251 near instead

#define PRAM near // pdata uses MOVX Ri, use 251 near instead

#define CROM const // code uses MOVC A, use 251 const instead

#else

#define DRAM data // if you compile with C51 the memory spaces are

#define IRAM idata // mapped to the previous definitions

#define XRAM xdata

#define PRAM pdata

#define CROM code

#endif

�
After these modifications, the C251 compiler shows much better results than the C51 compiler. The code size of this small application has been reduced to 49 Bytes. In typical applications you can reduce the code size by 20 to 30% depending on the usage of the C51 memory types. For example, declaring loop variables as char are more efficient with an 8051 but using an int is better with the 251.

C251 ASSEMBLER CODE

; FUNCTION main (BEGIN)

 ; SOURCE LINE # 14

 ; SOURCE LINE # 15

000000 7EB30000 R MOV R11,cval ; A=R11

000004 F500 R MOV dval,A ; A=R11

 ; SOURCE LINE # 16

000006 7E340000 R MOV WR6,#WORD0 xval

00000A 7A370000 R MOV xp,WR6

 ; SOURCE LINE # 17

00000E 7405 MOV A,#05H ; A=R11

000010 7AB30000 R MOV pval,R11 ; A=R11

 ; SOURCE LINE # 18

000014 6D33 XRL WR6,WR6

000016 7A370000 R MOV ival,WR6

 ?C0004:

 ; SOURCE LINE # 19

00001A 6D33 XRL WR6,WR6

00001C 7A370000 R MOV xval,WR6

 ; SOURCE LINE # 20

000020 7E370000 R MOV WR6,ival

000024 0B34 INC WR6,#01H

000026 7A370000 R MOV ival,WR6

00002A BE34000A CMP WR6,#0AH

00002E 78EA JNE ?C0004

 ; SOURCE LINE # 21

000030 22 RET

; FUNCTION main (END)

�

Keil Software Inc.

16990 Dallas Parkway • Suite 120 • Dallas, Texas • 75248 • 800-348-8051

�PA
