
Cortex™-M0+
Revision: r0p1

Technical Reference Manual
Copyright © 2012 ARM. All rights reserved.
ARM DDI 0484C (ID011713)

Cortex-M0+
Technical Reference Manual

Copyright © 2012 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

19 January 2012 A Confidential First release for r0p0

04 April 2012 B Non-Confidential Second release for r0p0

16 December 2012 C Non-Confidential First release for r0p1
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. ii
ID011713 Non-Confidential

Contents
Cortex-M0+ Technical Reference Manual

Preface
About this book ... vi
Feedback .. ix

Chapter 1 Introduction
1.1 About the processor ... 1-2
1.2 Features ... 1-3
1.3 Interfaces ... 1-4
1.4 Configurable options .. 1-5
1.5 Product documentation, design flow and architecture ... 1-6
1.6 Product revisions ... 1-9

Chapter 2 Functional Description
2.1 About the functions .. 2-2
2.2 Interfaces ... 2-4

Chapter 3 Programmers Model
3.1 About the programmers model .. 3-2
3.2 Modes of operation and execution ... 3-3
3.3 Instruction set summary ... 3-4
3.4 Memory model ... 3-8
3.5 Processor core registers summary .. 3-9
3.6 Exceptions ... 3-10

Chapter 4 System Control
4.1 About system control ... 4-2
4.2 System control register summary .. 4-3
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. iii
ID011713 Non-Confidential

Contents
Chapter 5 Nested Vectored Interrupt Controller
5.1 About the NVIC .. 5-2
5.2 NVIC register summary ... 5-3

Chapter 6 Memory Protection Unit
6.1 About the MPU ... 6-2
6.2 MPU register summary .. 6-3

Chapter 7 Debug
7.1 About debug .. 7-2
7.2 Debug register summary ... 7-7

Appendix A Revisions
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. iv
ID011713 Non-Confidential

Preface

This preface introduces the Cortex-M0+ Technical Reference Manual. It contains the following
sections:
• About this book on page vi
• Feedback on page ix.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. v
ID011713 Non-Confidential

Preface
About this book
This book is for the Cortex-M0+ processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for:
• system designers, system integrators, and verification engineers
• software developers who want to use the processor.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the processor and its features.

Chapter 2 Functional Description
Read this chapter for a functional overview of the processor functions.

Chapter 3 Programmers Model
Read this chapter for an overview of the application-level programmers model.

Chapter 4 System Control
Read this chapter for a summary of the system control registers and their
structure.

Chapter 5 Nested Vectored Interrupt Controller
Read this chapter for a summary of the Nested Vectored Interrupt Controller
(NVIC).

Chapter 6 Memory Protection Unit
Read this chapter for a description of the Memory Protection Unit (MPU).

Chapter 7 Debug
Read this chapter for a summary of the debug system.

Appendix A Revisions
Read this for a description of the technical changes between released issues of this
book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the
ARM meaning differs from the generally accepted meaning.

See ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. vi
ID011713 Non-Confidential

Preface
Conventions

This book uses the conventions that are described in:
• Typographical conventions.

Typographical conventions

The following table describes the typographical conventions:

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARMv6-M Architecture Reference Manual (ARM DDI 0419).
• ARMv6-M Instruction Set Quick Reference Guide (ARM QRC 0011).
• ARM AMBA® 3 AHB-Lite Protocol Specification (ARM IHI 0033).
• ARM Debug Interface v5, Architecture Specification (ARM IHI 0031).

Note
 A Cortex-M0+ implementation can include a Debug Access Port (DAP). This DAP is

defined in v5.1 of the ARM Debug interface specification, or in the errata document to
Issue A of the ARM Debug Interface v5 Architecture Specification.

• Application Binary Interface for the ARM Architecture (The Base Standard) (IHI 0036).
• CoreSight™ SoC Technical Reference Manual (ARM DDI 0480).
• Cortex-M0+ Integration and Implementation Manual (ARM DII 0278).
• CoreSight MTB-M0+ Technical Reference Manual (ARM DDI 0486).

Style Purpose

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the ARM glossary.
For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. vii
ID011713 Non-Confidential

Preface
Other publications

This section lists relevant documents published by third parties:
• IEEE Standard, Test Access Port and Boundary-Scan Architecture specification

1149.1-1990 (JTAG).
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. viii
ID011713 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM DDI 0484C.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. ix
ID011713 Non-Confidential

Chapter 1
Introduction

This chapter introduces the Cortex-M0+ processor and its features. It contains the following
sections:
• About the processor on page 1-2.
• Features on page 1-3.
• Interfaces on page 1-4.
• Configurable options on page 1-5.
• Product documentation, design flow and architecture on page 1-6.
• Product revisions on page 1-9.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-1
ID011713 Non-Confidential

Introduction
1.1 About the processor
The Cortex-M0+ processor is a very low gate count, highly energy efficient processor that is
intended for microcontroller and deeply embedded applications that require an area optimized,
low-power processor.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-2
ID011713 Non-Confidential

Introduction
1.2 Features
The processor features and benefits are:
• Tight integration of system peripherals reduces area and development costs.
• Thumb instruction set combines high code density with 32-bit performance.
• Support for single-cycle I/O access.
• Power control optimization of system components.
• Integrated sleep modes for low power consumption.
• Fast code execution enables running the processor with a slower clock or increasing sleep

mode time.
• Optimized code fetching for reduced flash and ROM power consumption.
• Hardware multiplier.
• Deterministic, high-performance interrupt handling for time-critical applications.
• Deterministic instruction cycle timing.
• Support for system level debug authentication.
• Serial Wire Debug reduces the number of pins required for debugging.
• Support for optional instruction trace.

For information about Cortex-M0+ architectural compliance, see the Architecture and protocol
information on page 1-7.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-3
ID011713 Non-Confidential

Introduction
1.3 Interfaces
The interfaces included in the processor for external access include:
• External AHB-Lite interface.
• Debug Access Port (DAP).
• Optional single-cycle I/O Port.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-4
ID011713 Non-Confidential

Introduction
1.4 Configurable options
Table 1-1 shows the processor configurable options available at implementation time.

1.4.1 Configurable multiplier

The MULS instruction provides a 32-bit x 32-bit multiply that returns the least-significant 32-bits
of the result. The processor can implement MULS in one of two ways:
• As a fast single-cycle array.
• As a 32-cycle iterative multiplier.

The iterative multiplier has no impact on interrupt response time because the processor
abandons multiply operations to take any pending interrupt.

Table 1-1 Processor configurable options

Feature Configurable option

Interrupts External interrupts 0-32

Data endianness Little-endian or big-endian

SysTick timer Present or absent

Number of watchpoint comparatorsa

a. Only when halting debug support is present.

0, 1, 2

Number of breakpoint comparatorsa 0, 1, 2, 3, 4

Halting debug support Present or absent

Multiplier Fast or small

Single-cycle I/O port Present or absent

Wake-up interrupt controller Supported or not supported

Vector Table Offset Register Present or absent

Unprivileged/Privileged support Present or absent

Memory Protection Unit Not present or 8-region

Reset all registers Present or absent

Instruction fetch width 16-bit only or mostly 32-bit
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-5
ID011713 Non-Confidential

Introduction
1.5 Product documentation, design flow and architecture
This section describes the processor books, how they relate to the design flow, and the relevant
architectural standards and protocols.

See Additional reading on page vii for more information about the books described in this
section.

1.5.1 Documentation

This section describes the documents for the processor.

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the processor. It is required at all
stages of the design flow. The choices made in the design flow can mean that
some behavior described in the TRM is not relevant. If you are programming the
processor then contact:
• The implementer to determine:

— The build configuration of the implementation.
— What integration, if any, was performed before implementing the

processor.
• The integrator to determine the input configuration of the device that you

are using.

Integration and Implementation Manual
The Integration and Implementation Manual (IIM) describes:
• The available build configuration options and related issues in selecting

them.
• How to configure the Register Transfer Level (RTL) with the build

configuration options.
• How to integrate the processor into a SoC. This includes describing the pins

that the integrator must tie off to configure the macrocell for the required
integration.

• The processes to sign off the integration and implementation of the design.
The ARM product deliverables include reference scripts and information about
using them to implement your design.
Reference methodology documentation from your EDA tools vendor
complements the IIM.
The IIM is a confidential book that is only available to licensees.

1.5.2 Design Flow

The processor is delivered as synthesizable RTL. Before it can be used in a product, it must go
through the following processes:

Implementation
The implementer configures and synthesizes the RTL to produce a gate-level
layout. The implementer can do synthesis and layout before integration to
produce a hard macrocell, or after integration to produce a chip layout.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-6
ID011713 Non-Confidential

Introduction
Integration The integrator connects the configured design into a SoC. This includes
connecting it to a memory system and peripherals.

Programming
This is the last process. The system programmer develops the software required
to configure and initialize the processor, and tests the required application
software.

Each process can be performed by a different party. The implementation and integration choices
affect the behavior and features of the processor.

For MCUs, often a single design team integrates the processor before synthesizing the complete
design. Alternatively, the team can synthesise the processor on its own or partially integrated,
to produce a macrocell that is then integrated, possibly by a separate team.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are
pre-processed. These options usually include or exclude logic that affects one or
more of the area, maximum frequency, and function of the resulting macrocell.

Configuration inputs
The integrator configures some features of the processor by tying inputs to
specific values. These configurations affect the start-up behavior before any
software configuration is made. They can also limit the options available to the
software.

Software configuration
The programmer configures the processor by programming particular values into
registers. This affects the behavior of the processor.

Note
 This manual refers to implementation-defined features that can be included by selecting the
appropriate build configuration options. Reference to a feature that is included means the
appropriate build and pin configuration options have been selected. References to an enabled
feature means one that has also been configured by software.

1.5.3 Architecture and protocol information

The processor complies with, or implements, the specifications described in:
• ARM architecture.
• Advanced Microcontroller Bus Architecture on page 1-8.
• Debug Access Port architecture on page 1-8.

This TRM complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these
sources.

ARM architecture

The processor implements the ARMv6-M architecture profile. See the ARMv6-M Architecture
Reference Manual.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-7
ID011713 Non-Confidential

Introduction
Advanced Microcontroller Bus Architecture

The system bus of the processor implements AMBA-3 AHB-Lite. See the ARM AMBA 3
AHB-Lite Protocol Specification.

Debug Access Port architecture

The Debug Access Port (DAP) is an optional component, defined by v5.1 of the ARM Debug
interface specification, see the ARM Debug Interface v5 Architecture Specification.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-8
ID011713 Non-Confidential

Introduction
1.6 Product revisions
This section describes the differences in functionality between product revisions.

r0p0 First release.

r0p1 No technical changes.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 1-9
ID011713 Non-Confidential

Chapter 2
Functional Description

This chapter provides an overview of the processor functions. It contains the following sections:
• About the functions on page 2-2.
• Interfaces on page 2-4.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 2-1
ID011713 Non-Confidential

Functional Description
2.1 About the functions
The Cortex-M0+ processor is a configurable, multistage, 32-bit RISC processor. It has an
AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware
debug, single-cycle I/O interfacing, and memory-protection functionality. The processor can
execute Thumb code and is compatible with other Cortex-M profile processors.

Figure 2-1 shows the functional blocks of the processor.

Figure 2-1 Functional block diagram

The implemented device provides:

A low gate count processor that features:
• The ARMv6-M Thumb® instruction set.
• Thumb-2 technology.
• Optionally, an ARMv6-M compliant 24-bit SysTick timer.
• A 32-bit hardware multiplier. This can be the standard single-cycle

multiplier, or a 32-cycle multiplier that has a lower area and performance
implementation.

• Support for either little-endian or byte invariant big-endian data accesses.
• The ability to have deterministic, fixed-latency, interrupt handling.
• Load/store multiple and multicycle multiply instructions that can be

abandoned and restarted to facilitate rapid interrupt handling.
• Optionally, Unprivileged/Privileged support for improved system integrity.
• C Application Binary Interface compliant exception model.

This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant
exception model that enables the use of pure C functions as interrupt
handlers.

• Low power sleep-mode entry using Wait For Interrupt (WFI), Wait For
Event (WFE) instructions, or the return from interrupt sleep-on-exit feature.

Cortex-M0+ processor

Cortex-M0+
processor

core

Bus matrix

Nested
Vectored
Interrupt

Controller
(NVIC)

Interrupts

‡Wakeup
Interrupt

Controller (WIC)

‡Debug
Access Port

(DAP)

AHB-Lite interface
to system

‡Serial Wire or
JTAG debug port‡ Optional component

Debug

‡Debugger
interface

‡Breakpoint
and

watchpoint
unit

Cortex-M0+ components

‡Memory
protection unit

Execution Trace Interface

‡Single-cycle
I/O port
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 2-2
ID011713 Non-Confidential

Functional Description
NVIC that features:
• Up to 32 external interrupt inputs, each with four levels of priority.
• Dedicated Non-Maskable Interrupt (NMI) input.
• Support for both level-sensitive and pulse-sensitive interrupt lines.
• Optional Wake-up Interrupt Controller (WIC), providing ultra-low power

sleep mode support.
• Optional relocation of the vector table.

Optional debug support:
• Zero to four hardware breakpoints.
• Zero to two watchpoints.
• Program Counter Sampling Register (PCSR) for non-intrusive code

profiling, if at least one hardware data watchpoint is implemented.
• Single step and vector catch capabilities.
• Support for unlimited software breakpoints using BKPT instruction.
• Non-intrusive access to core peripherals and zero-waitstate system slaves

through a compact bus matrix. A debugger can access these devices,
including memory, even when the processor is running.

• Full access to core registers when the processor is halted.
• Optional, low gate-count CoreSight compliant debug access through a

Debug Access Port (DAP) supporting either Serial Wire or JTAG debug
connections.

Bus interfaces:
• Single 32-bit AMBA-3 AHB-Lite system interface that provides simple.

integration to all system peripherals and memory.
• Optional single 32-bit single-cycle I/O port.
• Optional single 32-bit slave port that supports the DAP.

Optional Memory Protection Unit (MPU):
• Eight user configurable memory regions.
• Eight sub-region disables per region.
• Execute never (XN) support.
• Default memory map support.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 2-3
ID011713 Non-Confidential

Functional Description
2.2 Interfaces
This section describes the external interface functions.

This manual does not include pinout and signal naming because each device implementation
can be different.

2.2.1 AHB-Lite interface

Transactions on the AHB-Lite interface are always marked as non-sequential.

Processor accesses and debug accesses share the external interface to external AHB peripherals.
The processor accesses take priority over debug accesses.

Any vendor specific components can populate this bus.

Note
 Instructions are only fetched using the AHB-Lite interface. To optimize performance, the
Cortex-M0+ processor fetches ahead of the instruction it is executing. To minimize power
consumption, the fetch ahead is limited to a maximum of 32-bits.

2.2.2 Single-cycle I/O port

The processor optionally implements a single-cycle I/O port that provides very high speed
access to tightly-coupled peripherals, such as general-purpose-I/O (GPIO). The port is
accessible both by loads and stores, from the processor and from the debugger. You cannot
execute code from the I/O port.

2.2.3 Debug Access Port

The processor is implemented with either a low gate count Debug Access Port (DAP) or a full
CoreSight DAP.

The low gate count Debug Access Port (DAP) provides a Serial Wire or JTAG debug-port, and
connects to the processor slave port to provide full system-level debug access.

The full CoreSight DAP system enables the processor to provide full multiprocessor debug with
simultaneous halt and release cross-triggering capabilities.

For more information on:
• DAP, see the ADI v5.1 version of the ARM Debug Interface v5, Architecture Specification
• CoreSight DAP, see the CoreSight SoC Technical Reference Manual.

2.2.4 Execution Trace Interface

The processor optionally implements an interface for the Micro Trace Buffer execution trace
component. See the CoreSight MTB-M0+ Technical Reference Manual for more information.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 2-4
ID011713 Non-Confidential

Chapter 3
Programmers Model

This chapter provides an overview of the application-level programmers model. It contains the
following sections:
• About the programmers model on page 3-2.
• Modes of operation and execution on page 3-3.
• Instruction set summary on page 3-4.
• Memory model on page 3-8.
• Processor core registers summary on page 3-9.
• Exceptions on page 3-10.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-1
ID011713 Non-Confidential

Programmers Model
3.1 About the programmers model
The ARMv6-M Architecture Reference Manual provides a complete description of the
programmers model. This chapter gives an overview of the Cortex-M0+ programmers model
that describes the implementation-defined options. It also contains the ARMv6-M Thumb
instructions it uses and their cycle counts for the processor. In addition:
• Chapter 4 summarizes the system control features of the programmers model.
• Chapter 5 summarizes the NVIC features of the programmers model.
• Chapter 7 summarizes the Debug features of the programmers model.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-2
ID011713 Non-Confidential

Programmers Model
3.2 Modes of operation and execution
See the ARMv6-M Architecture Reference Manual for information about the modes of operation
and execution.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-3
ID011713 Non-Confidential

Programmers Model
3.3 Instruction set summary
The processor implements the ARMv6-M Thumb instruction set, including a number of 32-bit
instructions that use Thumb-2 technology. The ARMv6-M instruction set comprises:
• All of the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ and IT.
• The 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 3-1 shows the Cortex-M0+ instructions and their cycle counts. The cycle counts are based
on a system with zero wait-states.

Table 3-1 Cortex-M0+ instruction summary

Operation Description Assembler Cycles

Move 8-bit immediate MOVS Rd, #<imm> 1

Lo to Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

Any to PC MOV PC, Rm 2

Add 3-bit immediate ADDS Rd, Rn, #<imm> 1

All registers Lo ADDS Rd, Rn, Rm 1

Any to Any ADD Rd, Rd, Rm 1

Any to PC ADD PC, PC, Rm 2

8-bit immediate ADDS Rd, Rd, #<imm> 1

With carry ADCS Rd, Rd, Rm 1

Immediate to SP ADD SP, SP, #<imm> 1

Form address from SP ADD Rd, SP, #<imm> 1

Form address from PC ADR Rd, <label> 1

Subtract Lo and Lo SUBS Rd, Rn, Rm 1

3-bit immediate SUBS Rd, Rn, #<imm> 1

8-bit immediate SUBS Rd, Rd, #<imm> 1

With carry SBCS Rd, Rd, Rm 1

Immediate from SP SUB SP, SP, #<imm> 1

Negate RSBS Rd, Rn, #0 1

Multiply Multiply MULS Rd, Rm, Rd 1 or 32a

Compare Compare CMP Rn, Rm 1

Negative CMN Rn, Rm 1

Immediate CMP Rn, #<imm> 1
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-4
ID011713 Non-Confidential

Programmers Model
Logical AND ANDS Rd, Rd, Rm 1

Exclusive OR EORS Rd, Rd, Rm 1

OR ORRS Rd, Rd, Rm 1

Bit clear BICS Rd, Rd, Rm 1

Move NOT MVNS Rd, Rm 1

AND test TST Rn, Rm 1

Shift Logical shift left by immediate LSLS Rd, Rm, #<shift> 1

Logical shift left by register LSLS Rd, Rd, Rs 1

Logical shift right by immediate LSRS Rd, Rm, #<shift> 1

Logical shift right by register LSRS Rd, Rd, Rs 1

Arithmetic shift right ASRS Rd, Rm, #<shift> 1

Arithmetic shift right by register ASRS Rd, Rd, Rs 1

Rotate Rotate right by register RORS Rd, Rd, Rs 1

Load Word, immediate offset LDR Rd, [Rn, #<imm>] 2 or 1b

Halfword, immediate offset LDRH Rd, [Rn, #<imm>] 2 or 1b

Byte, immediate offset LDRB Rd, [Rn, #<imm>] 2 or 1b

Word, register offset LDR Rd, [Rn, Rm] 2 or 1b

Halfword, register offset LDRH Rd, [Rn, Rm] 2 or 1b

Signed halfword, register offset LDRSH Rd, [Rn, Rm] 2 or 1b

Byte, register offset LDRB Rd, [Rn, Rm] 2 or 1b

Signed byte, register offset LDRSB Rd, [Rn, Rm] 2 or 1b

PC-relative LDR Rd, <label> 2 or 1b

SP-relative LDR Rd, [SP, #<imm>] 2 or 1b

Multiple, excluding base LDM Rn!, {<loreglist>} 1+Nc

Multiple, including base LDM Rn, {<loreglist>} 1+Nc

Table 3-1 Cortex-M0+ instruction summary (continued)

Operation Description Assembler Cycles
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-5
ID011713 Non-Confidential

Programmers Model
Store Word, immediate offset STR Rd, [Rn, #<imm>] 2 or 1b

Halfword, immediate offset STRH Rd, [Rn, #<imm>] 2 or 1b

Byte, immediate offset STRB Rd, [Rn, #<imm>] 2 or 1b

Word, register offset STR Rd, [Rn, Rm] 2 or 1b

Halfword, register offset STRH Rd, [Rn, Rm] 2 or 1b

Byte, register offset STRB Rd, [Rn, Rm] 2 or 1b

SP-relative STR Rd, [SP, #<imm>] 2 or 1b

Multiple STM Rn!, {<loreglist>} 1+Nc

Push Push PUSH {<loreglist>} 1+Nc

Push with link register PUSH {<loreglist>, LR} 1+Nd

Pop Pop POP {<loreglist>} 1+Nc

Pop and return POP {<loreglist>, PC} 3+Nd

Branch Conditional B<cc> <label> 1 or 2e

Unconditional B <label> 2

With link BL <label> 3

With exchange BX Rm 2

With link and exchange BLX Rm 2

Extend Signed halfword to word SXTH Rd, Rm 1

Signed byte to word SXTB Rd, Rm 1

Unsigned halfword UXTH Rd, Rm 1

Unsigned byte UXTB Rd, Rm 1

Reverse Bytes in word REV Rd, Rm 1

Bytes in both halfwords REV16 Rd, Rm 1

Signed bottom half word REVSH Rd, Rm 1

State change Supervisor Call SVC #<imm> - f

Disable interrupts CPSID i 1

Enable interrupts CPSIE i 1

Read special register MRS Rd, <specreg> 3

Write special register MSR <specreg>, Rn 3

Breakpoint BKPT #<imm> - f

Table 3-1 Cortex-M0+ instruction summary (continued)

Operation Description Assembler Cycles
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-6
ID011713 Non-Confidential

Programmers Model
See the ARMv6-M Architecture Reference Manual for more information about the ARMv6-M
Thumb instructions.

3.3.1 Binary compatibility with other Cortex processors

The processor implements a binary compatible subset of the instruction set and features
provided by other Cortex-M profile processors. You can move software, including system level
software, from the Cortex-M0+ processor to other Cortex-M profile processors.

To ensure a smooth transition, ARM recommends that code designed to operate on other
Cortex-M profile processor architectures obey the following rules and configure the
Configuration Control Register (CCR) appropriately:

• Use word transfers only to access registers in the NVIC and System Control Space (SCS).

• Treat all unused SCS registers and register fields on the processor as Do-Not-Modify.

• If you use an ARMv7-M processor, configure the following fields in the CCR:
— STKALIGN bit to 1.
— UNALIGN_TRP bit to 1.
— Leave all other bits in the CCR register as their original value.

Hint Send event SEV 1

Wait for event WFE 2g

Wait for interrupt WFI 2g

Yield YIELD 1h

No operation NOP 1

Barriers Instruction synchronization ISB 3

Data memory DMB 3

Data synchronization DSB 3

a. Depends on multiplier implementation.
b. 2 if to AHB interface or SCS, 1 if to single-cycle I/O port.
c. N is the number of elements in the list.
d. N is the number of elements in the list including PC or LR.
e. 2 if taken, 1 if not-taken.
f. Cycle count depends on processor and debug configuration.
g. Excludes time spent waiting for an interrupt or event.
h. Executes as NOP.

Table 3-1 Cortex-M0+ instruction summary (continued)

Operation Description Assembler Cycles
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-7
ID011713 Non-Confidential

Programmers Model
3.4 Memory model
The processor contains a bus matrix that arbitrates the processor core and optional Debug
Access Port (DAP) memory accesses to both the external memory system and to the internal
NVIC and debug components.

Priority is always given to the processor to ensure that any debug accesses are as non-intrusive
as possible. For a zero wait-state system, all debug accesses to system memory, NVIC, and
debug resources are completely non-intrusive for typical code execution.

The system memory map is ARMv6-M architecture compliant, and is common both to the
debugger and processor accesses. Transactions are routed as follows:

• All accesses below 0xE0000000 or above 0xEFFFFFFF appear as AHB-Lite transactions on
the AHB-Lite master port of the processor.

• Accesses in the range 0xE0000000 to 0xEFFFFFFF are handled within the processor and do
not appear on the AHB-Lite master port of the processor.

• Data accesses to the AHB-Lite interface from both the debugger and the processor can be
hardware configured to appear instead on the single-cycle I/O port.

The processor supports only word size accesses in the range 0xE0000000 - 0xEFFFFFFF.

Table 3-2 shows the code, data, and device suitability for each region of the default memory
map. This is the memory map used by implementations without the optional Memory Protection
Unit (MPU), or when an included MPU is disabled. The attributes and permissions of all
regions, except that targeting the Cortex-M0+ NVIC and debug components, can be modified
using an implemented MPU.

Note
 Regions not marked as suitable for code behave as eXecute-Never (XN) and generate a
HardFault exception if code attempts to execute from this location.

See the ARMv6-M Architecture Reference Manual for more information about the memory
model.

Table 3-2 Default memory map usage

Address range Code Data Device

0xF0000000 - 0xFFFFFFFF No No Yes

0xE0000000 - 0xEFFFFFFF No No Noa

a. Space reserved for Cortex-M0+ NVIC and debug
components.

0xA0000000 - 0xDFFFFFFF No No Yes

0x60000000 - 0x9FFFFFFF Yes Yes No

0x40000000 - 0x5FFFFFFF No No Yes

0x20000000 - 0x3FFFFFFF Yesb

b. Cortex-M1 devices implementing data
Tightly-Coupled Memories (TCMs) in this region
do not support code execution from the data TCM.

Yes No

0x00000000 - 0x1FFFFFFF Yes Yes No
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-8
ID011713 Non-Confidential

Programmers Model
3.5 Processor core registers summary
Table 3-3 shows the processor core register set summary. Each of these registers is 32 bits wide.

Note
 See the ARMv6-M Architecture Reference Manual for information about the processor core
registers and their addresses, access types, and reset values.

Table 3-3 Processor core register set summary

Name Description

R0-R12 R0-R12 are general-purpose registers for data operations.

MSP (R13) The Stack Pointer (SP) is register R13. In Thread mode, the CONTROL
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

PSP (R13)

LR (R14) The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.

PC (R15) The Program Counter (PC) is register R15. It contains the current program address.

PSR The Program Status Register (PSR) combines:
• Application Program Status Register (APSR).
• Interrupt Program Status Register (IPSR).
• Execution Program Status Register (EPSR).
These registers provide different views of the PSR.

PRIMASK The PRIMASK register prevents activation of all exceptions with configurable priority. For information about the
exception model the processor supports, see Exceptions on page 3-10.

CONTROL The CONTROL register controls the stack used, and optionally the code privilege level, when the processor is in Thread
mode.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-9
ID011713 Non-Confidential

Programmers Model
3.6 Exceptions
This section describes the exception model of the processor.

3.6.1 Exception handling

The processor implements advanced exception and interrupt handling, as described in the
ARMv6-M Architecture Reference Manual.

To minimize interrupt latency, the processor abandons any load-multiple or store-multiple
instruction to take any pending interrupt. On return from the interrupt handler, the processor
restarts the load-multiple or store-multiple instruction from the beginning.

Note
 A processor that implements the 32-cycle multiplier abandons multiply instructions in the same
way.

This means that software must not use load-multiple or store-multiple instructions when a
device is accessed in a memory region that is read-sensitive or sensitive to repeated writes. The
software must not use these instructions in any case where repeated reads or writes might cause
inconsistent results or unwanted side-effects.

The processor implementation can ensure that a fixed number of cycles are required for the
NVIC to detect an interrupt signal and the processor fetch the first instruction of the associated
interrupt handler. If this is done, the highest priority interrupt is jitter-free. See the
documentation supplied by the processor implementer for more information.

To reduce interrupt latency and jitter, the Cortex-M0+ processor implements both interrupt
late-arrival and interrupt tail-chaining mechanisms, as defined by the ARMv6-M architecture.
The worst case interrupt latency, for the highest priority active interrupt in a zero wait-state
system not using jitter suppression, is 15 cycles.

The processor exception model has the following implementation-defined behavior in addition
to the architecture specified behavior:
• Exceptions on stacking from HardFault to NMI lockup at NMI priority.
• Exceptions on unstacking from NMI to HardFault lockup at HardFault priority.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 3-10
ID011713 Non-Confidential

Chapter 4
System Control

This chapter summarizes the system control registers and their structure. It contains the
following sections:
• About system control on page 4-2.
• System control register summary on page 4-3.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 4-1
ID011713 Non-Confidential

System Control
4.1 About system control
This section describes the system control registers that control and configure various system
control functions.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 4-2
ID011713 Non-Confidential

System Control
4.2 System control register summary
Table 4-1 gives the system control registers. Each of these registers is 32 bits wide.

Note
 • All system control registers are only accessible using word transfers. Any attempt to read

or write a halfword or byte is Unpredictable.

• If the processor is implemented without the SysTick timer, the SYST_CSR, SYST_RVR,
SYST_CVR, and SYST_CALIB registers are RAZ/WI.

• See the ARMv6-M Architecture Reference Manual for more information about the system
control registers, and their addresses and access types, and reset values not shown in
Table 4-1.

4.2.1 CPUID Register

The CPUID characteristics are:

Purpose Contains the part number, version, and implementation information that is
specific to this processor.

Usage constraints There are no usage constraints.

Attributes See Table 4-1.

Table 4-1 System control registers

Name Description

SYST_CSR SysTick Control and Status Register in the ARMv6-M Architecture Reference Manual.

SYST_RVR SysTick Reload Value Register in the ARMv6-M Architecture Reference Manual.

SYST_CVR SysTick Current Value Register in the ARMv6-M Architecture Reference Manual.

SYST_CALIBa SysTick Calibration value Register in the ARMv6-M Architecture Reference Manual.

CPUID See CPUID Register.

ICSR Interrupt Control State Register in the ARMv6-M Architecture Reference Manual.

AIRCRa Application Interrupt and Reset Control Register in the ARMv6-M Architecture Reference
Manual.

CCR Configuration and Control Register in the ARMv6-M Architecture Reference Manual.

SHPR2 System Handler Priority Register 2 in the ARMv6-M Architecture Reference Manual.

SHPR3 System Handler Priority Register 3 in the ARMv6-M Architecture Reference Manual.

SHCSR System Handler Control and State Register in the ARMv6-M Architecture Reference Manual.

VTORb Vector table Offset Register in the ARMv6-M Architecture Reference Manual.

ACTLRc Auxiliary Control Register in the ARMv6-M Architecture Reference Manual.

a. This value is configured by the implementer during implementation. See the documentation supplied by your
implementer for more information.

b. If implemented, the VTOR enables bits[31:8] of the vector table address to be specified.
c. Implemented as RAZ/WI
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 4-3
ID011713 Non-Confidential

System Control
Figure 4-1 shows the CPUID bit register assignments.

Figure 4-1 CPUID bit register assignments

Table 4-2 shows the CPUID register bit assignments.

31 16 15 4 3 0

IMPLEMENTER REVISIONPARTNO

24 23 20 19

VARIANT 1100

Table 4-2 CPUID bit register assignments

Bits Field Function

[31:24] IMPLEMENTER Implementer code:
0x41 ARM.

[23:20] VARIANT Major revision number n in the rnpm revision status. See Product revision status on page vi:
0x0.

[19:16] ARCHITECTURE Indicates the architecture, ARMv6-M:
0xC.

[15:4] PARTNO Indicates part number, Cortex-M0+:
0xC60.

[3:0] REVISION Minor revision number m in the rnpm revision status. See Product revision status on page vi.
0x1.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 4-4
ID011713 Non-Confidential

Chapter 5
Nested Vectored Interrupt Controller

This chapter summarizes the Nested Vectored Interrupt Controller (NVIC). It contains the
following sections:
• About the NVIC on page 5-2.
• NVIC register summary on page 5-3.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 5-1
ID011713 Non-Confidential

Nested Vectored Interrupt Controller
5.1 About the NVIC
External interrupt signals connect to the NVIC, and the NVIC prioritizes the interrupts.
Software can set the priority of each interrupt. The NVIC and the Cortex-M0+ processor core
are closely coupled, providing low latency interrupt processing and efficient processing of late
arriving interrupts.

All NVIC registers are only accessible using word transfers. Any attempt to read or write a
halfword or byte individually is Unpredictable.

NVIC registers are always little-endian. Processor accesses are correctly handled regardless of
the endian configuration of the processor.

Processor exception handling is described in Exceptions on page 3-10.

5.1.1 SysTick timer option

The implementation can include a 24-bit SysTick system timer, that extends the functionality of
both the processor and the NVIC.

When present, the NVIC part of the extension provides:
• A 24-bit system timer (SysTick).
• Additional configurable priority SysTick interrupt.

See the ARMv6-M Architecture Reference Manual for more information.

5.1.2 Low power modes

The implementation can include a WIC. This enables the processor and NVIC to be put into a
very low-power sleep mode leaving the WIC to identify and prioritize interrupts.

The processor fully implements the Wait For Interrupt (WFI), Wait For Event (WFE) and the Send
Event (SEV) instructions. In addition, the processor also supports the use of SLEEPONEXIT, that
causes the processor core to enter sleep mode when it returns from an exception handler to
Thread mode. See the ARMv6-M Architecture Reference Manual for more information.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 5-2
ID011713 Non-Confidential

Nested Vectored Interrupt Controller
5.2 NVIC register summary
Table 5-1 shows the NVIC registers. Each of these registers is 32 bits wide.

Note
 See the ARMv6-M Architecture Reference Manual for more information about the NVIC
registers and their addresses, access types, and reset values.

Table 5-1 NVIC registers

Name Description

NVIC_ISER Interrupt Set-Enable Register.

NVIC_ICER Interrupt Clear-Enable Register.

NVIC_ISPR Interrupt Set-Pending Register.

NVIC_ICPR Interrupt Clear-Pending Register.

NVIC_IPR0-NVIC_IPR7 Interrupt Priority Registers.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 5-3
ID011713 Non-Confidential

Chapter 6
Memory Protection Unit

This chapter describes the processor Memory Protection Unit (MPU). It contains the following
sections:
• About the MPU on page 6-2.
• MPU register summary on page 6-3.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 6-1
ID011713 Non-Confidential

Memory Protection Unit
6.1 About the MPU
The MPU is an optional component for memory protection. When implemented, the processor
supports the ARMv6 Protected Memory System Architecture model. The MPU provides full
support for:
• Eight unified protection regions.
• Overlapping protection regions, with ascending region priority:

— 7 = highest priority.
— 0 = lowest priority.

• Access permissions.
• Exporting memory attributes to the system.

MPU mismatches and permission violations invoke the HardFault handler. See the ARMv6-M
Architecture Reference Manual for more information.

You can use the MPU to:
• Enforce privilege rules.
• Separate processes.
• Manage memory attributes.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 6-2
ID011713 Non-Confidential

Memory Protection Unit
6.2 MPU register summary
Table 6-1 shows the MPU registers. Each of these registers is 32 bits wide. If the MPU is not
present in the implementation, then all of these registers read as zero.

Note
 • See the ARMv6-M Architecture Reference Manual for more information about the MPU

registers and their addresses, access types, and reset values.

• The MPU supports region sizes from 256-bytes to 4Gb, with 8-sub regions per region.

Table 6-1 MPU registers

Name Description

MPU_TYPE MPU Type Register.

MPU_CTRL MPU Control Register.

MPU_RNR MPU Region Number Register.

MPU_RBAR MPU Region Base Address Register.

MPU_RASR MPU Region Attribute and Size Register.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 6-3
ID011713 Non-Confidential

Chapter 7
Debug

This chapter summarizes the debug system. It contains the following sections:
• About debug on page 7-2.
• Debug register summary on page 7-7.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-1
ID011713 Non-Confidential

Debug
7.1 About debug
The processor implementation determines the debug configuration, including whether debug is
implemented. If debug is not implemented, no ROM table is present and the halt, breakpoint,
and watchpoint functionality is not present.

Basic debug functionality includes processor halt, single-step, processor core register access,
Reset and HardFault Vector Catch, unlimited software breakpoints, and full system memory
access. See the ARMv6-M Architecture Reference Manual.

The debug option might include either or both:
• A breakpoint unit supporting 1, 2, 3, or 4 hardware breakpoints.
• A watchpoint unit supporting 1 or 2 watchpoints.

The processor implementation can be partitioned to place the debug components in a separate
power domain from the processor core and NVIC.

When debug is implemented, ARM recommends that a debugger identifies and connects to the
debug components using the CoreSight debug infrastructure.

To discover the components in the CoreSight debug infrastructure, ARM recommends that a
debugger follows the flow shown in Figure 7-1. In this example, a debugger reads the peripheral
and component ID registers for each CoreSight component in the CoreSight system.

Figure 7-1 CoreSight discovery

To identify the Cortex-M0+ processor within the CoreSight system, ARM recommends that a
debugger:

1. Locates and identifies the Cortex-M0+ ROM table using its CoreSight identification. See
Cortex-M0+ ROM table identification values on page 7-3.

2. Follows the pointers in that Cortex-M0+ ROM table:
a. System Control Space (SCS).
b. Breakpoint unit (BPU).
c. Data watchpoint unit (DWT).
See Cortex-M0+ ROM table components on page 7-3.

Cortex-M0+ ROM table

CoreSight ID

Pointers

CoreSight access port

Base pointer

System control space

CoreSight ID

Cortex-M0+ CPUID
Debug control

‡Data watchpoint unit

CoreSight ID

Watchpoint control

‡Breakpoint unit

CoreSight ID

Breakpoint control

‡ Optional component

Redirection from the
 ‡ System ROM table, if implemented
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-2
ID011713 Non-Confidential

Debug
When a debugger identifies the SCS from its CoreSight identification, it can identify the
processor and its revision number from the CPUID register offset at 0xD00 in the SCS,
0xE000ED00.

A debugger cannot rely on the Cortex-M0+ ROM table being the first ROM table encountered.
One or more system ROM tables are required between the access port and the Cortex-M0+
ROM table if other CoreSight components are in the system, or if the implementation is to be
uniquely identifiable.

7.1.1 Cortex-M0+ ROM table identification and entries

Table 7-1 shows the ROM table identification registers and values for debugger detection. This
enables debuggers to identify the processor and its debug capabilities.

Note
 The Cortex-M0+ ROM table only supports word size transactions.

Table 7-2 shows the CoreSight components that the Cortex-M0+ ROM table points to. The
values depend on the implemented debug configuration.

Table 7-1 Cortex-M0+ ROM table identification values

Register Value Description

Peripheral ID4 0x00000004 Component and peripheral ID register formats in the ARMv6-M Architecture Reference Manual.

Peripheral ID0 0x000000C0

Peripheral ID1 0x000000B4

Peripheral ID2 0x0000000B

Peripheral ID3 0x00000000

Component ID0 0x0000000D

Component ID1 0x00000010

Component ID2 0x00000005

Component ID3 0x000000B1

Table 7-2 Cortex-M0+ ROM table components

Component Value Description

SCS 0xFFF0F003 See System Control Space on page 7-4.

DWT 0xFFF02003a See Data watchpoint unit on page 7-4.

BPU 0xFFF03003b See Breakpoint unit on page 7-5.

End marker 0x00000000 See DAP accessible ROM table in the ARMv6-M Architecture Reference Manual.

MemType 0x00000001 See CoreSight management registers in the ARMv6-M Architecture Reference Manual.

a. Reads as 0xFFF02002 if no watchpoints are implemented.
b. Reads as 0xFFF03002 if no breakpoints are implemented.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-3
ID011713 Non-Confidential

Debug
The SCS, DWT, and BPU ROM table entries point to the debug components at addresses
0xE000E000, 0xE0001000 and 0xE0002000 respectively. The value for each entry is the offset of that
component from the ROM table base address, 0xE00FF000.

See the ARMv6-M Architecture Reference Manual and the CoreSight SoC Technical Reference
Manual for more information about the ROM table ID and component registers, and their
addresses and access types.

7.1.2 System Control Space

If debug is implemented, the processor provides debug through registers in the SCS, see Debug
register summary on page 7-7.

SCS CoreSight identification

Table 7-3 shows the SCS CoreSight identification registers and values for debugger detection.
Final debugger identification of the Cortex-M0+ processor is through the CPUID register in the
SCS, see CPUID Register on page 4-3.

See the ARMv6-M Architecture Reference Manual and the CoreSight SoC Technical Reference
Manual for more information about the SCS CoreSight identification registers, and their
addresses and access types.

7.1.3 Data watchpoint unit

The Cortex-M0+ DWT implementation provides zero, one or two watchpoint register sets. A
processor configured with zero watchpoint implements no watchpoint functionality and the
ROM table shows that no DWT is implemented.

DWT functionality

The processor watchpoints implement both data address and PC based watchpoint functionality,
a PC sampling register, and support comparator address masking, as described in the ARMv6-M
Architecture Reference Manual.

Table 7-3 SCS identification values

Register Value Description

Peripheral ID4 0x00000004 Component and Peripheral ID register formats in the ARMv6-M Architecture Reference Manual.

Peripheral ID0 0x00000008

Peripheral ID1 0x000000B0

Peripheral ID2 0x0000000B

Peripheral ID3 0x00000000

Component ID0 0x0000000D

Component ID1 0x000000E0

Component ID2 0x00000005

Component ID3 0x000000B1
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-4
ID011713 Non-Confidential

Debug
DWT CoreSight identification

Table 7-4 shows the DWT identification registers and values for debugger detection.

See the ARMv6-M Architecture Reference Manual and the CoreSight SoC Technical Reference
Manual for more information about the DWT CoreSight identification registers, and their
addresses and access types.

DWT Program Counter Sample Register

A processor that implements the data watchpoint unit also implements the ARMv6-M optional
DWT Program Counter Sample Register (DWT_PCSR). This register enables a debugger to
periodically sample the PC without halting the processor. This provides coarse grained
profiling. See the ARMv6-M Architecture Reference Manual for more information.

The Cortex-M0+ DWT_PCSR records both instructions that pass their condition codes and
those that fail.

7.1.4 Breakpoint unit

The Cortex-M0+ BPU implementation provides between zero and four breakpoint registers. A
processor configured with zero breakpoints implements no breakpoint functionality and the
ROM table shows that no BPU is implemented.

BPU functionality

The processor breakpoints implement PC based breakpoint functionality, as described in the
ARMv6-M Architecture Reference Manual.

Table 7-4 DWT identification values

Register Value Description

Peripheral ID4 0x00000004 Component and Peripheral ID register formats in the ARMv6-M Architecture Reference Manual.

Peripheral ID0 0x0000000A

Peripheral ID1 0x000000B0

Peripheral ID2 0x0000000B

Peripheral ID3 0x00000000

Component ID0 0x0000000D

Component ID1 0x000000E0

Component ID2 0x00000005

Component ID3 0x000000B1
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-5
ID011713 Non-Confidential

Debug
BPU CoreSight identification

Table 7-5 shows the BPU identification registers and their values for debugger detection.

See the ARMv6-M Architecture Reference Manual and the CoreSight SoC Technical Reference
Manual for more information about the BPU CoreSight identification registers, and their
addresses and access types.

Table 7-5 BPU identification registers

Register Value Description

Peripheral ID4 0x00000004 Component and Peripheral ID register formats in the ARMv6-M Architecture Reference Manual.

Peripheral ID0 0x0000000B

Peripheral ID1 0x000000B0

Peripheral ID2 0x0000000B

Peripheral ID3 0x00000000

Component ID0 0x0000000D

Component ID1 0x000000E0

Component ID2 0x00000005

Component ID3 0x000000B1
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-6
ID011713 Non-Confidential

Debug
7.2 Debug register summary
Table 7-6 shows the debug registers. Each of these registers is 32 bits wide.

Table 7-7 shows the BPU registers. Each of these registers is 32 bits wide.

Table 7-8 shows the DWT registers. Each of these registers is 32 bits wide.

See the ARMv6-M Architecture Reference Manual for more information about the debug
registers and their addresses, access types, and reset values.

Table 7-6 Debug registers summary

Name Description

DFSR Debug Fault Status Register in the ARMv6-M Architecture Reference Manual.

DHCSR Debug Halting Control and Status Register in the ARMv6-M Architecture Reference Manual.

DCRSR Debug Core Register Selector Register in the ARMv6-M Architecture Reference Manual.

DCRDR Debug Core Register Data Register in the ARMv6-M Architecture Reference Manual.

DEMCR Debug Exception and Monitor Control Register in the ARMv6-M Architecture Reference Manual.

Table 7-7 BPU register summary

Name Description

BP_CTRL Breakpoint Control Register in the ARMv6-M Architecture Reference Manual.

BP_COMP0 Breakpoint Comparator Registers in the ARMv6-M Architecture Reference Manual.

BP_COMP1

BP_COMP2

BP_COMP3

Table 7-8 DWT register summary

Name Description

DWT_CTRL Control Register in the ARMv6-M Architecture Reference Manual.

DWT_PCSR Program Counter Sample Register in the ARMv6-M Architecture Reference Manual.

DWT_COMP0 Comparator Register in the ARMv6-M Architecture Reference Manual.

DWT_MASK0a Mask Register in the ARMv6-M Architecture Reference Manual.

DWT_FUNCTION0 Function Register in the ARMv6-M Architecture Reference Manual.

DWT_COMP1 Comparator Register in the ARMv6-M Architecture Reference Manual.

DWT_MASK1a Mask Register in the ARMv6-M Architecture Reference Manual.

DWT_FUNCTION1 Function Register in the ARMv6-M Architecture Reference Manual.

a. Supports masking up to 2GB.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-7
ID011713 Non-Confidential

Debug
Note
 Software cannot access the debug registers.
ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. 7-8
ID011713 Non-Confidential

ARM DDI 0484C Copyright © 2012 ARM. All rights reserved. A-1
ID011713 Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

Table A-1 Issue A

Change Location Affects

First Release - -

Table A-2 Differences between issue A and Issue B

Change Location Affects

No technical changes - -

Table A-3 Differences between issue B and Issue C

Change Location Affects

Updated CPUID for r0p1 CPUID Register on page 4-3 r0p1

Corrected memory map addresses Default memory map usage on page 3-8. All

	Cortex-M0+ Technical Reference Manual
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 About the processor
	1.2 Features
	1.3 Interfaces
	1.4 Configurable options
	1.4.1 Configurable multiplier

	1.5 Product documentation, design flow and architecture
	1.5.1 Documentation
	1.5.2 Design Flow
	1.5.3 Architecture and protocol information

	1.6 Product revisions

	2: Functional Description
	2.1 About the functions
	2.2 Interfaces
	2.2.1 AHB-Lite interface
	2.2.2 Single-cycle I/O port
	2.2.3 Debug Access Port
	2.2.4 Execution Trace Interface

	3: Programmers Model
	3.1 About the programmers model
	3.2 Modes of operation and execution
	3.3 Instruction set summary
	3.3.1 Binary compatibility with other Cortex processors

	3.4 Memory model
	3.5 Processor core registers summary
	3.6 Exceptions
	3.6.1 Exception handling

	4: System Control
	4.1 About system control
	4.2 System control register summary
	4.2.1 CPUID Register

	5: Nested Vectored Interrupt Controller
	5.1 About the NVIC
	5.1.1 SysTick timer option
	5.1.2 Low power modes

	5.2 NVIC register summary

	6: Memory Protection Unit
	6.1 About the MPU
	6.2 MPU register summary

	7: Debug
	7.1 About debug
	7.1.1 Cortex-M0+ ROM table identification and entries
	7.1.2 System Control Space
	7.1.3 Data watchpoint unit
	7.1.4 Breakpoint unit

	7.2 Debug register summary

	A: Revisions

