
Core8051 Instruction Set Details

 User’s Guide

Core8051_UG.book Page i Friday, October 3, 2003 5:23 PM

Actel Corporation, Mountian View, CA 94043

© 2003 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200005-1

Release: October 2003

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any im-
plied warranties of merchantability or fitness for a particular purpose. Information in
this document is subject to change without notice. Actel assumes no responsibility for
any errors that may appear in this document.

This document contains confidential proprietary information that is not to be dis-
closed to any unauthorized person without prior written consent of Actel Corpora-
tion.

Trademarks
Actel and the Actel logo are registered trademarks of
Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of
Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks
of their respective holders.

Core8051_UG.book Page ii Friday, October 3, 2003 5:23 PM

Table of Contents

Core8051_UG.book Page iii Friday, October 3, 2003 5:23 PM
Introduction 1
Document Organization . .1

Actel Datasheet .1

1 Mnemonic Notes 3

2 Instruction List - Functions 5

3 Instruction List - Hexadecimal Code 11

4 Instructions 17
ACALL addr11 . 17

ADD A, <src-byte> . 18

ADDC A, < src-byte> . 20

AJMP addr11 . 22

ANL <dest-byte>, <src-byte> . 22

ANL C, <src-bit> . 25

CJNE <dest-byte >, < src-byte >, rel . 26

CLR A . 29

CLR <bit-type> . 29

CPL A . 30

CPL <bit-type> . 31

DA A. . 32

DEC byte . 33

DIV AB . 35

DJNZ <byte>, <rel-addr> . 36

INC <byte>. . 37

INC DPTR . 39

JB bit, rel . 40

JBC bit,rel . 40

JC rel . 41

JMP @A + DPTR . 42

JNB bit,rel . 42
Core8051 Instruction Set Details User’s Guide iii

Core8051_UG.book Page iv Friday, October 3, 2003 5:23 PM
JNC rel . 43

JNZ rel . 44

JZ rel . 45

LCALL addr16 . 45

LJMP addr16. . 46

MOV <dest-byte>, <src-byte> . 47

MOV <dest-bit>, <src-bit>. . 53

MOV DPTR, #data16 . 54

MOVC A, @A + <base-reg> . 55

MOVX <dest-byte>, <src-byte> . 56

MUL AB. . 58

NOP . 59

ORL <dest-byte>, <src-byte> . 59

ORL C, <src-bit> . 62

POP direct . 63

PUSH direct . 64

RET . 64

RETI . 65

RL A . 66

RLC A . 66

RR A . 67

RRC A . 68

SETB <bit-type> . 68

SJMP rel . 69

SUBB A, <src-byte> . 70

SWAP A . 72

XCH A, <byte> . 73

XCHD A,@Ri . 74

XRL <dest-byte>, <src-byte>. . 75

Index 79
iv Core8051 Instruction Set Details User’s Guide

Core8051_UG.book Page 1 Friday, October 3, 2003 5:23 PM
Introduction

This guide contains detailed information about all of the instructions supported by Core8051. A
brief example of how each instruction might be used is given, as well as its effect on the Program
Status Word (PSW) flags from the ALU. The number of bytes, the binary machine language
encoding, and a symbolic description or restatement of the function is also provided.

Note: Only the carry, auxiliary carry, and overflow flags are discussed.

The parity bit is always computed from the actual content of the accumulator. Similarly, instructions
that alter directly addressed registers could affect the other status flags if the instruction is applied to
the PSW. Status flags can also be modified by bit manipulation.

Document Organization
This guide is divided into the following chapters:

Chapter 1 – Mnemonic Notes details the mnemonic notes used throughout this document.

Chapter 2 – Instruction List - Functions provides a concise list of the instructions, grouped
according to function.

Chapter 3 – Instruction List - Hexadecimal Code for a list of the instructions, listed in order of
hexadecimal opcode.

Chapter 4 – Instructions provides detailed information about all of the instructions supported by
Core8051.

Actel Datasheet
Datasheets are available on our web site at http://www.actel.com/techdocs/ds/.

For Core8051 specific information, refer to the Core8051 datasheet.
Core8051 Instruction Set Details User’s Guide 1

http://www.actel.com/techdocs/ds/

Core8051_UG.book Page 2 Friday, October 3, 2003 5:23 PM

Core8051_UG.book Page 3 Friday, October 3, 2003 5:23 PM
1
Mnemonic Notes

This chapter details the mnemonic notes used in this document.

Table 1-1. Notes on Data Addressing Modules

Rn Working register R0-R7. Listed in Encoding sections as “r r r”

direct 128 internal RAM locations, any I/O port, control or status register

@Ri
Indirect internal or external RAM location addressed by register R0
or R1. Listed in Encoding sections as “i”

#data Eight-bit constant included in instruction

#data 16 16-bit constant included as bytes 2 and 3 of instruction

bit 128 software flags, any bit-addressable I/O pin, control or status bit

A Accumulator

Table 1-2. Notes on Program Addressing Modes

addr16
Destination address for LCALL and LJMP may be anywhere
within the 64kB program memory address space

addr11
Destination address for ACALL and AJMP will be within the
same 2kB page of program memory as the first byte of the follow-
ing instruction

Rel
SJMP and all conditional jumps include an eight-bit offset byte.
Range is +127/-128 bytes relative to the first byte of the following
instruction
Core8051 Instruction Set Details User’s Guide 3

Core8051_UG.book Page 4 Friday, October 3, 2003 5:23 PM
Table 1-3. Additional Notation

PC Program Counter

SP Stack Pointer

PSW Program Status Word

C Carry Flag

DPTR Data Pointer

P Parity Flag

Table 1-4. Operators

+ Bit-wise addition

- Bit-wise subtraction

/ Unsigned bit-wise division

* Unsigned bit-wise multiplication

| Bit-wise logical OR

& Bit-wise logical AND

~ Bit-wise logical NOT

^ Bit-wise logical XOR

|| Boolean logical OR

&& Boolean logical AND

! Boolean logical NOT

< Less than

> Greater than

<> Not equal

= Equal
4 Core8051 Instruction Set Details User’s Guide

Core8051_UG.book Page 5 Friday, October 3, 2003 5:23 PM
2
Instruction List - Functions

This chapter provides a concise list of the instructions used in this document. The instructions are
grouped according to function.

Table 2-1. Arithmetic Operations

Mnemonic Description Byte Cycle

ADD A,Rn Adds the register to the accumulator 1 1

ADD A,direct Adds the direct byte to the accumulator 2 2

ADD A,@Ri Adds the indirect RAM to the accumulator 1 2

ADD A,#data Adds the immediate data to the accumulator 2 2

ADDC A,Rn
Adds the register to the accumulator with a
carry flag

1 1

ADDC A,direct Adds the direct byte to A with a carry flag 2 2

ADDC A,@Ri Adds the indirect RAM to A with a carry flag 1 2

ADDC A,#data Adds the immediate data to A with carry a flag 2 2

SUBB A,Rn Subtracts the register from A with a borrow 1 1

SUBB A,direct Subtracts the direct byte from A with a borrow 2 2

SUBB A,@Ri
Subtracts the indirect RAM from A with a bor-
row

1 2

SUBB A,#data
Subtracts the immediate data from A with a
borrow

2 2

INC A Increments the accumulator 1 1

INC Rn Increments the register 1 2

INC direct Increments the direct byte 2 3

INC @Ri Increments the indirect RAM 1 3

DEC A Decrements the accumulator 1 1
Core8051 Instruction Set Details Advanced User’s Guide 5

Core8051_UG.book Page 6 Friday, October 3, 2003 5:23 PM
DEC Rn Decrements the register 1 1

DEC direct Decrements the direct byte 1 2

DEC @Ri Decrements the indirect RAM 2 3

INC DPTR Increments the data pointer 1 3

MUL A,B Multiplies A and B 1 5

DIV A,B Divides A by B 1 5

DA A Decimal adjust accumulator 1 1

Table 2-2. Logic Operations

Mnemonic Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 2

ANL A,@Ri AND indirect RAM to accumulator 1 2

ANL A,#data AND immediate data to accumulator 2 2

ANL direct,A AND accumulator to direct byte 2 3

ANL direct,#data AND immediate data to direct byte 3 4

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 2

ORL A,@Ri OR indirect RAM to accumulator 1 2

ORL A,#data OR immediate data to accumulator 2 2

ORL direct,A OR accumulator to direct byte 2 3

ORL direct,#data OR immediate data to direct byte 3 4

XRL A,Rn Exclusive OR register to accumulator 1 1

Table 2-1. Arithmetic Operations (Continued)
6 Core8051 Instruction Set Details Advanced User’s Guide

Core8051_UG.book Page 7 Friday, October 3, 2003 5:23 PM
XRL A,direct Exclusive OR direct byte to accumulator 2 2

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 2

XRL A,#data Exclusive OR immediate data to accumulator 2 2

XRL direct,A Exclusive OR accumulator to direct byte 2 3

XRL direct,#data Exclusive OR immediate data to direct byte 3 4

CLR A Clears the accumulator 1 1

CPL A Complements the accumulator 1 1

RL A Rotates the accumulator left 1 1

RLC A Rotates the accumulator left through carry 1 1

RR A Rotates the accumulator right 1 1

RRC A Rotates the accumulator right through carry 1 1

SWAP A Swaps nibbles within the accumulator 1 1

Table 2-3. Data Transfer Operations

Mnemonic Description Byte Cycle

MOV A,Rn Moves the register to the accumulator 1 1

MOV A,direct Moves the direct byte to the accumulator 2 2

MOV A,@Ri Moves the indirect RAM to the accumulator 1 2

MOV A,#data Moves the immediate data to the accumulator 2 2

MOV Rn,A Moves the accumulator to the register 1 2

MOV Rn,direct Moves the direct byte to the register 2 4

MOV Rn,#data Moves the immediate data to the register 2 2

MOV direct,A Moves the accumulator to the direct byte 2 3

Table 2-2. Logic Operations (Continued)
Core8051 Instruction Set Details Advanced User’s Guide 7

Core8051_UG.book Page 8 Friday, October 3, 2003 5:23 PM
MOV direct,Rn Moves the register to the direct byte 2 3

MOV direct,direct Moves the direct byte to the direct byte 3 4

MOV direct,@Ri Moves the indirect RAM to the direct byte 2 4

MOV direct,#data Moves the immediate data to the direct byte 3 3

MOV @Ri,A Moves the accumulator to the indirect RAM 1 3

MOV @Ri,direct Moves the direct byte to the indirect RAM 2 5

MOV @Ri, #data
Moves the immediate data to the indirect
RAM

2 3

MOV DPTR, #data16 Loads the data pointer with a 16-bit constant 3 3

MOVC A,@A + DPTR
Moves the code byte relative to the DPTR to
the accumulator

1 3

MOVC A,@A + PC
Moves the code byte relative to the PC to the
accumulator

1 3

MOVX A,@Ri
Moves the external RAM (eight-bit address) to
A

1 3-10

MOVX A,@DPTR Moves the external RAM (16-bit address) to A 1 3-10

MOVX @Ri,A
Moves A to the external RAM (eight-bit
address)

1 4-11

MOVX @DPTR,A Moves A to the external RAM (16-bit address) 1 4-11

PUSH direct Pushes the direct byte onto the stack 2 4

POP direct Pops the direct byte from the stack 2 3

XCH A,Rn Exchanges the register with the accumulator 1 2

XCH A,direct Exchanges the direct byte with the accumulator 2 3

XCH A,@Ri
Exchanges the indirect RAM with the accumu-
lator

1 3

Table 2-3. Data Transfer Operations (Continued)
8 Core8051 Instruction Set Details Advanced User’s Guide

Core8051_UG.book Page 9 Friday, October 3, 2003 5:23 PM
XCHD A,@Ri
Exchanges the low-order nibble indirect RAM
with A

1 3

Table 2-4. Boolean Manipulation Operations

Mnemonic Description Byte Cycle

CLR C Clears the carry flag 1 1

CLR bit Clears the direct bit 2 3

SETB C Sets the carry flag 1 1

SETB bit Sets the direct bit 2 3

CPL C Complements the carry flag 1 1

CPL bit Complements the direct bit 2 3

ANL C,bit AND direct bit to the carry flag 2 2

ANL C,bit AND complements of direct bit to the carry 2 2

ORL C,bit OR direct bit to the carry flag 2 2

ORL C,bit OR complements of direct bit to the carry 2 2

MOV C,bit Moves the direct bit to the carry flag 2 2

MOV bit,C Moves the carry flag to the direct bit 2 3

Table 2-5. Program Branch Operations

Mnemonic Description Byte Cycle

ACALL addr11 Absolute subroutine call 2 6

LCALL addr16 Long subroutine call 3 6

RET Return Return from subroutine 1 4

RETI Return Return from interrupt 1 4

Table 2-3. Data Transfer Operations (Continued)
Core8051 Instruction Set Details Advanced User’s Guide 9

Core8051_UG.book Page 10 Friday, October 3, 2003 5:23 PM
AJMP addr11 Absolute jump 2 3

LJMP addr16 Long jump 3 4

SJMP rel Short jump (relative address) 2 3

JMP @A + DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if accumulator is zero 2 3

JNZ rel Jump if accumulator is not zero 2 3

JC rel Jump if carry flag is set 2 3

JNC rel Jump if carry flag is not set 2 3

JB bit,rel Jump if direct bit is set 3 4

JNB bit,rel Jump if direct bit is not set 3 4

JBC bit,rel Jump if direct bit is set and clears bit 3 4

CJNE A,direct,rel
Compares direct byte to A and jumps if not
equal

3 4

CJNE A,#data,rel
Compares immediate to A and jumps if not
equal

3 4

CJNE Rn,#data rel
Compares immediate to the register and jumps
if not equal

3 4

CJNE @Ri,#data,rel
Compares immediate to indirect and jumps if
not equal

3 4

DJNZ Rn,rel Decrements register and jumps if not zero 2 3

DJNZ direct,rel Decrements direct byte and jumps if not zero 3 4

NOP No operation 1 1

Table 2-5. Program Branch Operations (Continued)
10 Core8051 Instruction Set Details Advanced User’s Guide

Core8051_UG.book Page 11 Friday, October 3, 2003 5:23 PM
3
Instruction List - Hexadecimal Code

This chapter lists the instructions in order of hexadecimal code.

Table 3-1. Core8051 Instruction Set in Hexadecimal Order

Opcode Mnemonic Opcode Mnemonic

00H NOP 10H JBC bit,rel

01H AJMP addr11 11H ACALL addr11

02H LJMP addr16 12H LCALL addr16

03H RR A 13H RRC A

04H INC A 14H DEC A

05H INC direct 15H DEC direct

06H INC @R0 16H DEC @R0

07H INC @R1 17H DEC @R1

08H INC R0 18H DEC R0

09H INC R1 19H DEC R1

0AH INC R2 1AH DEC R2

0BH INC R3 1BH DEC R3

0CH INC R4 1CH DEC R4

0DH INC R5 1DH DEC R5

0EH INC R6 1EH DEC R6

0FH INC R7 1FH DEC R7

20H JB bit,rel 30H JNB bit,rel

21H AJMP addr11 31H ACALL addr11

22H RET 32H RETI

23H RL A 33H RLC A
Core8051 Instruction Set Details User’s Guide 11

Core8051_UG.book Page 12 Friday, October 3, 2003 5:23 PM
24H ADD A,#data 34H ADDC A,#data

25H ADD A,direct 35H ADDC A,direct

26H ADD A,@R0 36H ADDC A,@R0

27H ADD A,@R1 37H ADDC A,@R1

28H ADD A,R0 38H ADDC A,R0

29H ADD A,R1 39H ADDC A,R1

2AH ADD A,R2 3AH ADDC A,R2

2BH ADD A,R3 3BH ADDC A,R3

2CH ADD A,R4 3CH ADDC A,R4

2DH ADD A,R5 3DH ADDC A,R5

2EH ADD A,R6 3EH ADDC A,R6

2FH ADD A,R7 3FH ADDC A,R7

40H JC rel 50H JNC rel

41H AJMP addr11 51H ACALL addr11

42H ORL direct,A 52H ANL direct,A

43H ORL direct,#data 53H ANL direct,#data

44H ORL A,#data 54H ANL A,#data

45H ORL A,direct 55H ANL A,direct

46H ORL A,@R0 56H ANL A,@R0

47H ORL A,@R1 57H ANL A,@R1

48H ORL A,R0 58H ANL A,R0

49H ORL A,R1 59H ANL A,R1

Table 3-1. Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic
12 Core8051 Instruction Set Details User’s Guide

Core8051_UG.book Page 13 Friday, October 3, 2003 5:23 PM
4AH ORL A,R2 5AH ANL A,R2

4BH ORL A,R3 5BH ANL A,R3

4CH ORL A,R4 5CH ANL A,R4

4DH ORL A,R5 5DH ANL A,R5

4EH ORL A,R6 5EH ANL A,R6

4FH ORL A,R7 5FH ANL A,R7

60H JZ rel 70H JNZ rel

61H AJMP addr11 71H ACALL addr11

62H XRL direct,A 72H ORL C,direct

63H XRL direct,#data 73H JMP @A+DPTR

64H XRL A,#data 74H MOV A,#data

65H XRL A,direct 75H MOV direct,#data

66H XRL A,@R0 76H MOV @R0,#data

67H XRL A,@R1 77H MOV @R1,#data

68H XRL A,R0 78H MOV R0,#data

69H XRL A,R1 79H MOV R1,#data

6AH XRL A,R2 7AH MOV R2,#data

6BH XRL A,R3 7BH MOV R3,#data

6CH XRL A,R4 7CH MOV R4,#data

6DH XRL A,R5 7DH MOV R5,#data

6EH XRL A,R6 7EH MOV R6,#data

6FH XRL A,R7 7FH MOV R7,#data

Table 3-1. Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic
Core8051 Instruction Set Details User’s Guide 13

Core8051_UG.book Page 14 Friday, October 3, 2003 5:23 PM
80H SJMP rel 90H MOV DPTR,#data16

81H AJMP addr11 91H ACALL addr11

82H ANL C,bit 92H MOV bit,C

83H MOVC A,@A+PC 93H MOVC A,@A+DPTR

84H DIV AB 94H SUBB A,#data

85H MOV direct,direct 95H SUBB A,direct

86H MOV direct,@R0 96H SUBB A,@R0

87H MOV direct,@R1 97H SUBB A,@R1

88H MOV direct,R0 98H SUBB A,R0

89H MOV direct,R1 99H SUBB A,R1

8AH MOV direct,R2 9AH SUBB A,R2

8BH MOV direct,R3 9BH SUBB A,R3

8CH MOV direct,R4 9CH SUBB A,R4

8DH MOV direct,R5 9DH SUBB A,R5

8EH MOV direct,R6 9EH SUBB A,R6

8FH MOV direct,R7 9FH SUBB A,R7

A0H ORL C,bit B0H ANL C,~bit

A1H AJMP addr11 B1H ACALL addr11

A2H MOV C,bit B2H CPL bit

A3H INC DPTR B3H CPL C

A4H MUL AB B4H CJNE A,#data,rel

A5H – B5H CJNE A,direct,rel

Table 3-1. Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic
14 Core8051 Instruction Set Details User’s Guide

Core8051_UG.book Page 15 Friday, October 3, 2003 5:23 PM
A6H MOV @R0,direct B6H CJNE @R0,#data,rel

A7H MOV @R1,direct B7H CJNE @R1,#data,rel

A8H MOV R0,direct B8H CJNE R0,#data,rel

A9H MOV R1,direct B9H CJNE R1,#data,rel

AAH MOV R2,direct BAH CJNE R2,#data,rel

ABH MOV R3,direct BBH CJNE R3,#data,rel

ACH MOV R4,direct BCH CJNE R4,#data,rel

ADH MOV R5,direct BDH CJNE R5,#data,rel

AEH MOV R6,direct BEH CJNE R6,#data,rel

AFH MOV R7,direct BFH CJNE R7,#data,rel

C0H PUSH direct D0H POP direct

C1H AJMP addr11 D1H ACALL addr11

C2H CLR bit D2H SETB bit

C3H CLR C D3H SETB C

C4H SWAP A D4H DA A

C5H XCH A,direct D5H DJNZ direct,rel

C6H XCH A,@R0 D6H XCHD A,@R0

C7H XCH A,@R1 D7H XCHD A,@R1

C8H XCH A,R0 D8H DJNZ R0,rel

C9H XCH A,R1 D9H DJNZ R1,rel

CAH XCH A,R2 DAH DJNZ R2,rel

CBH XCH A,R3 DBH DJNZ R3,rel

Table 3-1. Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic
Core8051 Instruction Set Details User’s Guide 15

Core8051_UG.book Page 16 Friday, October 3, 2003 5:23 PM
CCH XCH A,R4 DCH DJNZ R4,rel

CDH XCH A,R5 DDH DJNZ R5,rel

CEH XCH A,R6 DEH DJNZ R6,rel

CFH XCH A,R7 DFH DJNZ R7,rel

E0H MOVX A,@DPTR F0H MOVX @DPTR,A

E1H AJMP addr11 F1H ACALL addr11

E2H MOVX A,@R0 F2H MOVX @R0,A

E3H MOVX A,@R1 F3H MOVX @R1,A

E4H CLR A F4H CPL A

E5H MOV A,direct F5H MOV direct,A

E6H MOV A,@R0 F6H MOV @R0,A

E7H MOV A,@R1 F7H MOV @R1,A

E8H MOV A,R0 F8H MOV R0,A

E9H MOV A,R1 F9H MOV R1,A

EAH MOV A,R2 FAH MOV R2,A

EBH MOV A,R3 FBH MOV R3,A

ECH MOV A,R4 FCH MOV R4,A

EDH MOV A,R5 FDH MOV R5,A

EEH MOV A,R6 FEH MOV R6,A

EFH MOV A,R7 FFH MOV R7,A

Table 3-1. Core8051 Instruction Set in Hexadecimal Order (Continued)

Opcode Mnemonic Opcode Mnemonic
16 Core8051 Instruction Set Details User’s Guide

Core8051_UG.book Page 17 Friday, October 3, 2003 5:23 PM
4
Instructions

This chapter lists the Core8051 instructions in alphabetical order.

ACALL addr11
Function

Absolute call

Description

ACALL unconditionally calls a subroutine located at the indicated address. The instruction
increments the PC twice to obtain the address of the following instruction, then pushes the 16-bit
result onto the stack (low-order byte first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating the five high-order bits of the incremented PC,
operation code bits 7, 6, and 5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2kB block of program memory as the first byte of the instruction
following ACALL. No flags are affected.

Operation

ACALL

(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP))← (PC[7:0])
(SP) ← (SP) + 1
((SP))← (PC[15:8])
(PC[10:0])←page address

Bytes

2

Encoding

a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
Core8051 Instruction Set Details User’s Guide 17

ADD A, <src-byte> ADD A, Rn

Core8051_UG.book Page 18 Friday, October 3, 2003 5:23 PM
ADD A, <src-byte>
Function

Add

Description

ADD adds the byte variable indicated to the accumulator, leaving the result in the accumulator. The
carry and auxiliary carry flags are set if there is a carry out of bit 7 or bit 3, and cleared otherwise.
When adding unsigned integers, the carry flag indicates an overflow occurred. OV is set if there is a
carry out of bit 6 but not of bit 7, or a carry out of bit 7 but not of bit 6. Otherwise, OV is cleared.
When adding signed integers, OV indicates a negative number produced as the sum of two positive
operands, or a positive sum from two negative operands. Four source operand addressing modes are
allowed: register, direct, register-indirect, or immediate.

ADD A, Rn

Operation

ADD

(A) ← (A) + (Rn)

Bytes

1

ADD A, direct

Operation

ADD

(A) ← (A) + (direct)

Encoding

0 0 1 0 1 r r r
18 Core8051 Instruction Set Details User’s Guide

ADD A, @Ri ADD A, <src-byte>

Core8051_UG.book Page 19 Friday, October 3, 2003 5:23 PM
Bytes

2

ADD A, @Ri

Operation

ADD

(A) ← (A) + ((Ri))

Bytes

1

ADD A, #data

Operation

ADD

(A) ← (A) + #data

Bytes

2

Encoding

0 0 1 0 0 1 0 1 direct address

Encoding

0 0 1 0 0 1 1 i

Encoding

0 0 1 0 0 1 0 0 immediate data
Core8051 Instruction Set Details User’s Guide 19

ADDC A, < src-byte> ADDC A, Rn

Core8051_UG.book Page 20 Friday, October 3, 2003 5:23 PM
ADDC A, < src-byte>
Function

Add with carry

Description

ADDC simultaneously adds the byte variable indicated, the carry flag, and the accumulator
contents, leaving the result in the accumulator. The carry and auxiliary carry flags are set if there is a
carry out of bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag
indicates an overflow occurred. OV is set if there is a carry out of bit 6 but not of bit 7, or a carry out
of bit 7 but not of bit 6. Otherwise OV is cleared. When adding signed integers, OV indicates a
negative number produced as the sum of two positive operands or a positive sum from two negative
operands. Four source operand-addressing modes are allowed: register, direct, register-indirect, or
immediate.

ADDC A, Rn

Operation

ADDC

(A) ← (A) + (C) + (Rn)

Bytes

1

ADDC A, direct

Operation

ADDC

(A) ← (A) + (C) + (direct)

Encoding

0 0 1 1 1 r r r
20 Core8051 Instruction Set Details User’s Guide

ADDC A, @Ri ADDC A, < src-byte>

Core8051_UG.book Page 21 Friday, October 3, 2003 5:23 PM
Bytes

2

ADDC A, @Ri

Operation

ADDC

(A) ← (A) + (C) + ((Ri))

Bytes

1

ADDC A, #data

Operation

ADDC

(A) ← (A) + (C) + #data

Bytes

2

Encoding

0 0 1 1 0 1 0 1 direct address

Encoding

0 0 1 1 0 1 1 i

Encoding

0 0 1 1 0 1 0 0 immediate data
Core8051 Instruction Set Details User’s Guide 21

AJMP addr11 ADDC A, #data

Core8051_UG.book Page 22 Friday, October 3, 2003 5:23 PM
AJMP addr11
Function

Absolute jump

Description

AJMP transfers program execution to the indicated address, which is formed at run-time by
concatenating the high-order five bits of the PC (after incrementing the PC twice), operation code
bits 7, 6, and 5, and the second byte of the instruction. The destination must be within the same 2kB
block of program memory as the first byte of the instruction following AJMP.

Operation

AJMP

(PC) ← (PC) + 2
(PC[10:0])←page address

Bytes

2

ANL <dest-byte>, <src-byte>
Function

Bit-wise logical AND for byte variables

Description

ANL performs the bit-wise logical AND operation between the variables indicated and stores the
results in the destination variable. No flags are affected (except P, if <dest-byte>=A). The two
operands allow six addressing mode combinations. When the destination is an accumulator, the
source can use register, direct, register-indirect, or immediate addressing. When the destination is a
direct address, the source can be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port
data will be read from the output data latch, not the input pins.

Encoding

a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
22 Core8051 Instruction Set Details User’s Guide

ANL A,Rn ANL <dest-byte>, <src-byte>

Core8051_UG.book Page 23 Friday, October 3, 2003 5:23 PM
ANL A,Rn

Operation

ANL

(A) ← (A) & (Rn)

Bytes

1

ANL A,direct

Operation

ANL

(A) ← (A) & (direct)

Bytes

2

ANL A, @Ri

Operation

ANL

(A) ← (A) & ((Ri))

Encoding

0 1 0 1 1 r r r

Encoding

0 1 0 1 0 1 0 1 direct address
Core8051 Instruction Set Details User’s Guide 23

ANL <dest-byte>, <src-byte> ANL A, #data

Core8051_UG.book Page 24 Friday, October 3, 2003 5:23 PM
Bytes

1

ANL A, #data

Operation

ANL

(A) ← (A) & #data

Bytes

2

ANL direct,A

Operation

ANL

(direct)←(direct) & (A)

Bytes

2

Encoding

0 1 0 1 0 1 1 i

Encoding

0 1 0 1 0 1 0 0 immediate data

Encoding

0 1 0 1 0 0 1 0 direct address
24 Core8051 Instruction Set Details User’s Guide

ANL direct, #data ANL C, <src-bit>

Core8051_UG.book Page 25 Friday, October 3, 2003 5:23 PM
ANL direct, #data

Operation

ANL

(direct)←(direct) & #data

Bytes

3

ANL C, <src-bit>
Function

Bit-wise logical AND for bit variables

Description

If the Boolean value of the source bit is a logic 0, then the carry flag is cleared. Otherwise, the carry
flag is left in its current state. A tilde (“~”) preceding the operand in the assembly language indicates
that the bit-wise logical complement of the addressed bit is used as the source value, but the source
bit itself is not affected. No other flags are affected. Only direct bit addressing is allowed for the
source operand.

ANL C,bit

Operation

ANL

(C) ← (C) & (bit)

Encoding

0 1 0 1 0 0 1 1

direct address

immediate data
Core8051 Instruction Set Details User’s Guide 25

CJNE <dest-byte >, < src-byte >, rel ANL C,~bit

Core8051_UG.book Page 26 Friday, October 3, 2003 5:23 PM
Bytes

2

ANL C,~bit

Operation

ANL

(C) ← (C) & ~ (bit)

Bytes

2

CJNE <dest-byte >, < src-byte >, rel
Function

Compare and jump if not equal

Description

CJNE compares the magnitudes of the first two operands and branches if their values are not equal.
The branch destination is computed by adding the signed relative displacement in the last
instruction byte to the PC, after incrementing the PC to the start of the next instruction. The carry
flag is set if the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>. Otherwise, the carry is cleared and neither operand is affected. The first two operands allow
four addressing mode combinations; the accumulator may be compared with any directly addressed
byte or immediate data, and any indirect RAM location or working register can be compared with an
immediate constant.

Encoding

1 0 0 0 0 0 1 0 bit address

Encoding

1 0 1 1 0 0 0 0 bit address
26 Core8051 Instruction Set Details User’s Guide

CJNE A,direct,rel CJNE <dest-byte >, < src-byte >, rel

Core8051_UG.book Page 27 Friday, October 3, 2003 5:23 PM
CJNE A,direct,rel

Operation
(PC)← (PC) + 3
if (A) < > (direct)
then (PC)←(PC) + relative offset
if (A) < (direct)
then (C)←1
else (C)←0

Bytes

3

CJNE A, #data,rel

Operation
(PC)← (PC) + 3
if (A) < > data
then (PC)← (PC) + relative offset
if (A) < data
then (C)←1
else (C)←0

Bytes

3

Encoding

1 0 1 1 0 1 0 1

direct address

relative address

Encoding

1 0 1 1 0 1 0 0

immediate data

relative address
Core8051 Instruction Set Details User’s Guide 27

CJNE <dest-byte >, < src-byte >, rel CJNE RN, #data, rel

Core8051_UG.book Page 28 Friday, October 3, 2003 5:23 PM
CJNE RN, #data, rel

Operation
(PC)←(PC) + 3
if (Rn) < > data
then (PC)←(PC) + relative offset
if (Rn) < data
then (C)← 1
else (C)← 0

Bytes

3

CJNE @Ri, #data, rel

Operation
(PC)←(PC) + 3
if ((Ri)) < > data
then (PC)← (PC) + relative offset
if ((Ri)) < data
then (C)←1
else (C)← 0

Bytes

3

Encoding

1 0 1 1 1 r r r

immediate data

relative address

Encoding

1 0 1 1 0 1 1 i

immediate data

relative address
28 Core8051 Instruction Set Details User’s Guide

CLR C CLR A

Core8051_UG.book Page 29 Friday, October 3, 2003 5:23 PM
CLR A
Function
Clear accumulator

Description

The accumulator is cleared (all bits set to zero). No flags are affected.

Operation

CLR

(A) ←0

Bytes

1

CLR <bit-type>
Function

Clear bit

Description

The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the carry
flag or any directly addressable bit.

CLR C

Operation

CLR C

(C) ← 0

Encoding

1 1 1 0 0 1 0 0
Core8051 Instruction Set Details User’s Guide 29

CPL A CLR bit

Core8051_UG.book Page 30 Friday, October 3, 2003 5:23 PM
Bytes

1

CLR bit

Operation

CLR

(bit)← 0

Bytes

2

CPL A
Function

Complement accumulator

Description

Each bit of the accumulator is complemented (one’s complement). Bits that previously contained a
logic 1 are changed to logic 0 and vice versa. No flags are affected.

Operation

CPL

(A) ← ~ (A)

Encoding

1 1 0 0 0 0 1 1

Encoding

1 1 0 0 0 0 1 0 bit address
30 Core8051 Instruction Set Details User’s Guide

CPL C CPL <bit-type>

Core8051_UG.book Page 31 Friday, October 3, 2003 5:23 PM
Bytes

1

CPL <bit-type>
Function

Complement bit

Description

The bit variable specified is complemented. A bit that was a one is changed to zero and vice versa.
No other flags are affected. CPL can operate on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original data is
read from the output data latch, not the input pin.

CPL C

Operation

CPL

(C) ← ~ (C)

Bytes

1

CPL bit

Operation

CPL

(bit)← ∼ (bit)

Encoding

1 1 1 1 0 1 0 0

Encoding

1 0 1 1 0 0 1 1
Core8051 Instruction Set Details User’s Guide 31

DA A CPL bit

Core8051_UG.book Page 32 Friday, October 3, 2003 5:23 PM
Bytes

2

DA A
Function

Decimal adjust accumulator for addition

Description

DA A adjusts the eight-bit value in the accumulator resulting from the earlier addition of two
variables (each in packed BCD format), producing two four-bit digits. Any ADD or ADDC
instruction may be used to perform the addition. If accumulator bits 3 down to 0 are greater than
nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to the accumulator producing the
proper BCD digit in the low-order nibble. This internal addition would set the carry flag if a carry-
out of the low-order four-bit field propagated through all high-order bits, but it would not clear the
carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx),
these high-order bits are incremented by six, producing the proper BCD digit in the high-order
nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but
wouldn't clear the carry. The carry flag indicates if the sum of the original two BCD variables is
greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the decimal
conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on initial accumulator
and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD notation, nor
does DA A apply to decimal subtraction.

Encoding

1 0 1 1 0 0 1 0 bit address
32 Core8051 Instruction Set Details User’s Guide

DEC A DEC byte

Core8051_UG.book Page 33 Friday, October 3, 2003 5:23 PM
Operation

DA

contents of accumulator are BCD
if ((A[3:0]) > 9) || ((AC) = 1))
then A[3:0] ← (A[3:0]) + 6
and
if ((A[7:4]) > 9) || ((C) = 1))
then (A[7:4]) ← (A[7:4]) + 6

Bytes

1

DEC byte
Function
Decrement

Description
The variable indicated is decremented by 1. An original value of 00H will underflow to 0FFH. No
flags are affected. Four operand addressing modes are allowed: accumulator, register, direct, or
register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port
data is read from the output data latch, not the input pins.

DEC A

Operation

DEC

(A) ← (A) - 1

Encoding

1 1 0 1 0 1 0 0
Core8051 Instruction Set Details User’s Guide 33

DEC byte DEC Rn

Core8051_UG.book Page 34 Friday, October 3, 2003 5:23 PM
Bytes

1

DEC Rn

Operation

DEC

(Rn) ← (Rn) - 1

Bytes

1

DEC direct

Operation

DEC

(direct) ← (direct) - 1

Bytes
2

Encoding

0 0 0 1 0 1 0 0

Encoding

0 0 0 1 1 r r r

Encoding

0 0 0 1 0 1 0 1 direct address
34 Core8051 Instruction Set Details User’s Guide

DEC @Ri DIV AB

Core8051_UG.book Page 35 Friday, October 3, 2003 5:23 PM
DEC @Ri

Operation

DEC

((Ri)) ← ((Ri)) - 1

Bytes

1

DIV AB
Function

Divide

Description

DIV AB divides the unsigned eight-bit integer in the accumulator by the unsigned eight-bit integer
in register B. The accumulator receives the integer part of the quotient while register B receives the
integer remainder. The carry and OV flags will be cleared.

Exception

If B had originally contained 00H , the values returned in the accumulator and B register are
undefined and the overflow flag is set. The carry flag is cleared in any case.

Operation

DIV

(A)← quotient ((A) / (B))
(B)← remainder ((A) / (B))

Encoding

0 0 0 1 0 1 1 i
Core8051 Instruction Set Details User’s Guide 35

DJNZ <byte>, <rel-addr> DJNZ Rn,rel

Core8051_UG.book Page 36 Friday, October 3, 2003 5:23 PM
Bytes

1

DJNZ <byte>, <rel-addr>
Function

Decrement and jump if not zero

Description

DJNZ decrements the location indicated by 1 and branches to the address indicated by the second
operand if the resulting value is not zero. An original value of 00H will underflow to 0FFH. No flags
are affected. The branch destination is computed by adding the signed relative-displacement value in
the last instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction. The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port
data is read from the output data latch, not the input pins.

DJNZ Rn,rel

Operation

DJNZ

(PC) ← (PC) + 2
(Rn) ← (Rn) - 1
if (Rn) > 0 or (Rn) < 0
then (PC) ← (PC) + rel

Bytes

2

Encoding

1 0 0 0 0 1 0 0

Encoding

1 1 0 1 1 r r r rel. address
36 Core8051 Instruction Set Details User’s Guide

DJNZ direct,rel INC <byte>

Core8051_UG.book Page 37 Friday, October 3, 2003 5:23 PM
DJNZ direct,rel

Operation

DJNZ

(PC) ← (PC) + 2
(direct) ← (direct) - 1
if (direct) > 0 or (direct) < 0
then (PC) ← (PC) + rel

Bytes

3

INC <byte>
Function

Increment

Description

INC increments the indicated variable by 1. An original value of 0FFH will overflow to 00H . No
flags are affected. Three addressing modes are allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port
data is read from the output data latch, not the input pins.

INC A

Operation

INC

(A) ← (A) + 1

Encoding

1 1 0 1 0 1 0 1

direct address

relative address
Core8051 Instruction Set Details User’s Guide 37

INC <byte> INC Rn

Core8051_UG.book Page 38 Friday, October 3, 2003 5:23 PM
Bytes

1

INC Rn

Operation

INC

(Rn) ← (Rn) + 1

Bytes

1

INC direct

Operation

INC

(direct) ← (direct) + 1

Bytes

2

Encoding

0 0 0 0 0 1 0 0

Encoding

0 0 0 0 1 r r r

Encoding

0 0 0 0 0 1 0 1 direct address
38 Core8051 Instruction Set Details User’s Guide

INC @Ri INC DPTR

Core8051_UG.book Page 39 Friday, October 3, 2003 5:23 PM
INC @Ri

Operation

INC

((Ri)) ← ((Ri)) + 1

Bytes

1

INC DPTR
Function

Increment data pointer

Description

Increments the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed. An
overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H will increment the
high-order byte (DPH). No flags are affected. This is the only 16-bit register that can be
incremented.

Operation

INC

(DPTR) ← (DPTR) + 1

Bytes

1

Encoding

0 0 0 0 0 1 1 i

Encoding

1 0 1 0 0 0 1 1
Core8051 Instruction Set Details User’s Guide 39

JB bit, rel INC @Ri

Core8051_UG.book Page 40 Friday, October 3, 2003 5:23 PM
JB bit, rel
Function

Jump if bit is set

Description

If the indicated bit is a one, jumps to the address indicated. Otherwise, proceeds with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the
third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction.
The bit tested is not modified. No flags are affected.

Operation

JB

(PC) ← (PC) + 3
if (bit) = 1
then (PC) ← (PC) + rel

Bytes

3

JBC bit,rel
Function

Jump if bit is set and clear bit

Description

If the indicated bit is one, branches to the address indicated. Otherwise, proceeds with the next
instruction. In either case, the designated bit is cleared. The branch destination is computed by
adding the signed relative displacement in the third instruction byte to the PC, after incrementing
the PC to the first byte of the next instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data is read
from the output data latch, not the input pin.

Encoding

0 0 1 0 0 0 0 0
40 Core8051 Instruction Set Details User’s Guide

INC @Ri JC rel

Core8051_UG.book Page 41 Friday, October 3, 2003 5:23 PM
Operation

JBC

(PC) ← (PC) + 3
if (bit) = 1
then (bit) ← 0
(PC) ← (PC) + rel

Bytes

3

JC rel
Function

Jump if carry is set

Description

If the carry flag is set, branches to the address indicated. Otherwise, proceeds with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the
second instruction byte to the PC, after incrementing the PC twice. No flags are affected.

Operation

JC

(PC) ← (PC) + 2
if (C) = 1
then (PC) ← (PC) + rel

Encoding

0 0 0 1 0 0 0 0

bit address

relative address
Core8051 Instruction Set Details User’s Guide 41

JMP @A + DPTR INC @Ri

Core8051_UG.book Page 42 Friday, October 3, 2003 5:23 PM
Bytes

2

JMP @A + DPTR
Function

Jump indirect

Description

Add the eight-bit unsigned contents of the accumulator with the sixteen-bit data pointer and loads
the resulting sum into the program counter. This will be the address for subsequent instruction
fetches. Sixteen-bit addition is performed (modulo 216) and a carry-out from the low-order eight
bits propagates through the higher-order bits. Neither the accumulator nor the data pointer is
altered. No flags are affected.

Operation

JMP

(PC) ← (A) + (DPTR)

Bytes

1

JNB bit,rel
Function

Jump if bit is not set

Encoding

0 1 0 0 0 0 0 0 relative address

Encoding

0 1 1 1 0 0 1 1
42 Core8051 Instruction Set Details User’s Guide

INC @Ri JNC rel

Core8051_UG.book Page 43 Friday, October 3, 2003 5:23 PM
Description

If the indicated bit is a zero, branches to the indicated address. Otherwise, proceeds with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the
third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction.
The bit tested is not modified. No flags are affected.

Operation

JNB

(PC) ← (PC) + 3
if (bit) = 0
then (PC) ← (PC) + rel

Bytes

3

JNC rel
Function

Jump if carry is not set

Description

If the carry flag is a zero, branches to the address indicated. Otherwise, proceeds with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the
second instruction byte to the PC, after incrementing the PC twice to point to the next instruction.
The carry flag is not modified.

Encoding

0 0 1 1 0 0 0 0

bit address

relative address
Core8051 Instruction Set Details User’s Guide 43

JNZ rel INC @Ri

Core8051_UG.book Page 44 Friday, October 3, 2003 5:23 PM
Operation

JNC

(PC) ← (PC) + 2
if (C) = 0
then (PC) ← (PC) + rel

Bytes

2

JNZ rel
Function

Jump if accumulator is not zero

Description

If any bit of the accumulator is a one, branches to the indicated address. Otherwise, proceeds with
the next instruction. The branch destination is computed by adding the signed relative-displacement
in the second instruction byte to the PC, after incrementing the PC twice. The accumulator is not
modified. No flags are affected.

Operation

JNZ

(PC) ← (PC) + 2
if (A) <> 0
then (PC) ← (PC) + rel

Bytes

2

Encoding

0 1 0 1 0 0 0 0 relative address

Encoding

0 1 1 1 0 0 0 0 relative address
44 Core8051 Instruction Set Details User’s Guide

INC @Ri JZ rel

Core8051_UG.book Page 45 Friday, October 3, 2003 5:23 PM
JZ rel
Function

Jump if accumulator is zero

Description

If all bits of the accumulator are zero, branches to the address indicated. Otherwise, proceeds with
the next instruction. The branch destination is computed by adding the signed relative-displacement
in the second instruction byte to the PC, after incrementing the PC twice. The accumulator is not
modified. No flags are affected.

Operation

JZ

(PC) ← (PC) + 2
if (A) = 0
then (PC) ← (PC) + rel

Bytes

2

LCALL addr16
Function

Long call

Description

LCALL calls a subroutine located at the indicated address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit result
onto the stack (low byte first), incrementing the stack pointer by two. The high-order and low-order
bytes of the PC are then loaded with the second and third bytes of the LCALL instruction. Program
execution continues with the instruction at this address. The subroutine may therefore begin
anywhere in the full 64kB program memory address space. No flags are affected.

Encoding

0 1 1 0 0 0 0 0 relative address
Core8051 Instruction Set Details User’s Guide 45

LJMP addr16 INC @Ri

Core8051_UG.book Page 46 Friday, October 3, 2003 5:23 PM
Operation

LCALL

(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC[7:0])
(SP) ← (SP) + 1
((SP)) ← (PC[15:8])
(PC) ← addr[15:0]

Bytes

3

LJMP addr16
Function

Long jump

Description

LJMP causes an unconditional branch to the indicated address by loading the high-order and low-
order bytes of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the full 64kB program memory address space. No flags are affected.

Operation

LJMP

(PC) ← addr[15:0]

Encoding

0 0 0 1 0 0 1 0

addr [15:8]

addr [7:0]
46 Core8051 Instruction Set Details User’s Guide

MOV A,Rn MOV <dest-byte>, <src-byte>

Core8051_UG.book Page 47 Friday, October 3, 2003 5:23 PM
Bytes

3

MOV <dest-byte>, <src-byte>
Function

Move byte variable

Description

The byte variable indicated by the second operand is copied into the location specified by the first
operand. The source byte is not affected. No other register or flag is affected. This is by far the most
flexible operation. Fifteen combinations of source and destination addressing modes are allowed.

MOV A,Rn

Operation

MOV

(A) ← (Rn)

Bytes

1

Encoding

0 0 0 0 0 0 1 0

addr [15:8]

addr [7:0]

Encoding

1 1 1 0 1 r r r
Core8051 Instruction Set Details User’s Guide 47

MOV <dest-byte>, <src-byte> MOV A,direct

Core8051_UG.book Page 48 Friday, October 3, 2003 5:23 PM
MOV A,direct1

Operation

MOV

(A) ← (direct)

Bytes

2

MOV A,@Ri

Operation

MOV

(A) ← ((Ri))

Bytes

1

MOV A, #data

Operation

MOV

(A) ← #data

1. MOV A,ACC is not a valid instruction. The content of the accumulator after the execution of this instruction is

undefined.

Encoding

1 1 1 0 0 1 0 1 direct address

Encoding

1 1 1 0 0 1 1 i
48 Core8051 Instruction Set Details User’s Guide

MOV Rn,A MOV <dest-byte>, <src-byte>

Core8051_UG.book Page 49 Friday, October 3, 2003 5:23 PM
Bytes

2

MOV Rn,A

Operation

MOV

(Rn) ← (A)

Bytes

1

MOV Rn,direct

Operation

MOV

(Rn) ← (direct)

Bytes

2

Encoding

0 1 1 1 0 1 0 0 immediate data

Encoding

1 1 1 1 1 r r r

Encoding

1 0 1 0 1 r r r direct address
Core8051 Instruction Set Details User’s Guide 49

MOV <dest-byte>, <src-byte> MOV Rn, #data

Core8051_UG.book Page 50 Friday, October 3, 2003 5:23 PM
MOV Rn, #data

Operation

MOV

(Rn) ← #data

Bytes

2

MOV direct,A

Operation

MOV

(direct) ← (A)

Bytes

2

MOV direct,Rn

Operation

MOV

(direct) ← (Rn)

Encoding

0 1 1 1 1 r r r immediate data

Encoding

1 1 1 1 0 1 0 1 direct address
50 Core8051 Instruction Set Details User’s Guide

MOV direct,direct MOV <dest-byte>, <src-byte>

Core8051_UG.book Page 51 Friday, October 3, 2003 5:23 PM
Bytes

2

MOV direct,direct

Operation

MOV

(direct) ← (direct)

Bytes

3

MOV direct, @ Ri

Operation

MOV

(direct) ← ((Ri))

Bytes

2

Encoding

1 0 0 0 1 r r r direct address

Encoding

1 0 0 0 0 1 0 1

Direct address (source)

Direct address (destination)

Encoding

1 0 0 0 0 1 1 i direct address
Core8051 Instruction Set Details User’s Guide 51

MOV <dest-byte>, <src-byte> MOV direct, #data

Core8051_UG.book Page 52 Friday, October 3, 2003 5:23 PM
MOV direct, #data

Operation

MOV

(direct) ← #data

Bytes

3

MOV @ Ri,A

Operation

MOV

((Ri)) ← (A)

Bytes

1

Encoding

0 1 1 1 0 1 0 1

direct address (source)

immediate data

Encoding

1 1 1 1 0 1 1 i
52 Core8051 Instruction Set Details User’s Guide

MOV @ Ri,direct MOV <dest-bit>, <src-bit>

Core8051_UG.book Page 53 Friday, October 3, 2003 5:23 PM
MOV @ Ri,direct

Operation

MOV

((Ri)) ← (direct)

Bytes

2

MOV @ Ri,#data

Operation

MOV

((Ri)) ← #data

Bytes

2

MOV <dest-bit>, <src-bit>
Function

Move bit data

Description

The Boolean variable indicated by the second operand is copied into the location specified by the
first operand. One of the operands must be the carry flag, the other may be any directly addressable
bit. No other register or flag is affected.

Encoding

1 0 1 0 0 1 1 i direct address

Encoding

0 1 1 1 0 1 1 i immediate data
Core8051 Instruction Set Details User’s Guide 53

MOV DPTR, #data16 MOV C,bit

Core8051_UG.book Page 54 Friday, October 3, 2003 5:23 PM
MOV C,bit

Operation

MOV

(C) ← (bit)

Bytes

2

MOV bit,C

Operation

MOV

(bit) ← (C)

Bytes

2

MOV DPTR, #data16
Function

Load data pointer with a 16-bit constant

Description

The data pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded into the
second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the
third byte (DPL) holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

Encoding

1 0 1 0 0 0 1 0 bit address

Encoding

1 0 0 1 0 0 1 0 bit address
54 Core8051 Instruction Set Details User’s Guide

MOVC A, @A + DPTR MOVC A, @A + <base-reg>

Core8051_UG.book Page 55 Friday, October 3, 2003 5:23 PM
Operation

MOV

(DPTR) ← #data[15:0]
DPH DPL ← #data[15:8] #data[7:0]

Bytes

3

MOVC A, @A + <base-reg>
Function

Move code byte

Description

The MOVC instructions load the accumulator with a code byte or constant from program memory.
The address of the byte fetched is the sum of the original unsigned eight-bit accumulator contents
and the contents of a 16-bit base register, which may be either the data pointer or the PC. In the
latter case, the PC is incremented to the address of the following instruction before being added to
the accumulator; otherwise the base register is not altered. 16-bit addition is performed so a carry-
out from the low-order eight-bits may propagate through higher-order bits. No flags are affected.

MOVC A, @A + DPTR

Operation

MOVC

(A) ← ((A) + (DPTR))

Encoding

1 0 0 0 0 1 0 1

immediate data [15:8]

immediate data [7:0]
Core8051 Instruction Set Details User’s Guide 55

MOVX <dest-byte>, <src-byte> MOVC A, @A + PC

Core8051_UG.book Page 56 Friday, October 3, 2003 5:23 PM
Bytes

1

MOVC A, @A + PC

Operation

MOVC

(PC) ← (PC) + 1
(A) ← ((A) + (PC))

Bytes

1

MOVX <dest-byte>, <src-byte>
Function

Move external

Description

The MOVX instructions transfer data between the accumulator and a byte of external data memory,
hence the X appended to MOV. There are two types of instructions, differing in whether they
provide an eight-bit or 16-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit address.
In the second type of MOVX instructions, the data pointer generates a 16-bit address. Please refer
to the section “External Data Memory” of the Core8051 data sheet. This data sheet can be found at
http://www.actel.com/techdocs/ds/.

Encoding

1 0 0 1 0 0 1 1

Encoding

1 0 0 0 0 0 1 1
56 Core8051 Instruction Set Details User’s Guide

http://www.actel.com/techdocs/ds/

MOVX A,@Ri MOVX <dest-byte>, <src-byte>

Core8051_UG.book Page 57 Friday, October 3, 2003 5:23 PM
MOVX A,@Ri

Operation

MOVX

(A) ← ((Ri))

Bytes

1

MOVX A,@DPTR

Operation

MOVX

(A) ← ((DPTR))

Bytes

1

MOVX @Ri,A

Operation

MOVX

((Ri)) ← (A)

Encoding

1 1 1 0 0 0 1 i

Encoding

1 1 1 0 0 0 0 0
Core8051 Instruction Set Details User’s Guide 57

MUL AB MOVX @DPTR,A

Core8051_UG.book Page 58 Friday, October 3, 2003 5:23 PM
Bytes

1

MOVX @DPTR,A

Operation

MOVX

((DPTR))← (A)

Bytes

1

MUL AB
Function

Multiply

Description
MUL AB multiplies the unsigned eight-bit integers in the accumulator and register B. The low-
order byte of the 16-bit product is left in the accumulator, and the high-order byte in B. If the
product is greater than 255 (0FFH) the overflow flag is set, otherwise it is cleared. The carry flag is
always cleared.

Operation

MUL

product ← (A) * (B)
(A) ← product[7:0], (B) ← product[15:8]
if (product > 255)
then OV ← 1
else OV ← 0

Encoding

1 1 1 1 0 0 1 i

Encoding

1 1 1 1 0 0 0 0
58 Core8051 Instruction Set Details User’s Guide

MOVX @DPTR,A NOP

Core8051_UG.book Page 59 Friday, October 3, 2003 5:23 PM
Bytes

1

NOP
Function

No operation

Description

Execution continues at the following instruction. Other than the PC, no registers or flags are
affected.

Operation

NOP

Bytes

1

ORL <dest-byte>, <src-byte>
Function

Bit-wise logical OR for byte variables

Description

ORL performs the bit-wise logical OR operation between the indicated variables, storing the results
in the destination byte. No flags are affected (except P, if <dest-byte>=A).

The two operands allow six addressing mode combinations. When the destination is the
accumulator, the source can use register, direct, register-indirect or immediate addressing. When the
destination is a direct address, the source can be the accumulator or immediate data.

Encoding

1 0 1 0 0 1 0 0

Encoding

0 0 0 0 0 0 0 0
Core8051 Instruction Set Details User’s Guide 59

ORL <dest-byte>, <src-byte> ORL A,Rn

Core8051_UG.book Page 60 Friday, October 3, 2003 5:23 PM
Note: When this instruction is used to modify an output port, the value used as the original port
data is read from the output data latch, not the input pins.

ORL A,Rn

Operation

ORL

(A) ← (A) | (Rn)

Bytes

1

ORL A,direct

Operation

ORL

(A) ← (A) | (direct)

Bytes

2

ORL A,@Ri

Operation

ORL

(A) ← (A) | ((Ri))

Encoding

0 1 0 0 1 r r r

Encoding

0 1 0 0 0 1 0 1 direct address
60 Core8051 Instruction Set Details User’s Guide

ORL A,#data ORL <dest-byte>, <src-byte>

Core8051_UG.book Page 61 Friday, October 3, 2003 5:23 PM
Bytes

1

ORL A,#data

Operation

ORL

(A) ← (A) | #data

Bytes

2

ORL direct,A

Operation

ORL

(direct) ← (direct) | (A)

Bytes

2

Encoding

0 1 0 0 0 1 1 i

Encoding

0 1 0 0 0 1 0 0 immediate data

Encoding

0 1 0 0 0 0 1 0 direct address
Core8051 Instruction Set Details User’s Guide 61

ORL C, <src-bit> ORL direct, #data

Core8051_UG.book Page 62 Friday, October 3, 2003 5:23 PM
ORL direct, #data

Operation

ORL

(direct) ← (direct) | #data

Bytes

3

ORL C, <src-bit>
Function

Bit-wise logical OR for bit variables

Description

Sets the carry flag if the Boolean value is a logic 1. Leaves the carry in its current state otherwise. A
tilde (“~”) preceding the operand in the assembly language indicates that the bit-wise logical
complement of the addressed bit is used as the source value, but the source bit itself is not affected.
No other flags are affected.

ORL C,bit

Operation

ORL

(C) ← (C) | (bit)

Encoding

0 1 0 0 0 0 1 1

direct address

Immediate data
62 Core8051 Instruction Set Details User’s Guide

ORL C,~bit POP direct

Core8051_UG.book Page 63 Friday, October 3, 2003 5:23 PM
Bytes

2

ORL C,~bit

Operation

ORL

(C) ← (C) | ~ (bit)

Bytes

2

POP direct
Function

Pop from stack

Description

The contents of the internal RAM location addressed by the stack pointer are read and the stack
pointer is decremented by one. The value read is transferred to the directly addressed byte indicated.
No flags are affected.

Operation

POP

(direct) ← ((SP))
(SP) ← (SP) - 1

Encoding

0 1 1 1 0 0 1 0 bit address

Encoding

1 0 1 0 0 0 0 0 bit address
Core8051 Instruction Set Details User’s Guide 63

PUSH direct ORL C,~bit

Core8051_UG.book Page 64 Friday, October 3, 2003 5:23 PM
Bytes

2

PUSH direct
Function

Push onto stack

Description

The stack pointer is incremented by one. The contents of the indicated variable are then copied into
the internal RAM location addressed by the stack pointer. Otherwise, no flags are affected.

Operation

PUSH

(SP) ← (SP) + 1
((SP)) ← (direct)

Bytes

2

RET
Function

Return from subroutine

Description

RET pops the high and low-order bytes of the PC successively from the stack, decrementing the
stack pointer by two. Program execution continues at the resulting address, generally the instruction
immediately following an ACALL or LCALL instruction. No flags are affected.

Encoding

1 1 0 1 0 0 0 0 direct address

Encoding

1 1 0 0 0 0 0 0 direct address
64 Core8051 Instruction Set Details User’s Guide

ORL C,~bit RETI

Core8051_UG.book Page 65 Friday, October 3, 2003 5:23 PM
Operation

RET

(PC[15:8]) ← ((SP))
(SP) ← (SP) - 1
(PC[7:0]) ← ((SP))
(SP) ← (SP) - 1

Bytes

1

RETI
Function

Return from interrupt

Description

RETI pops the high and low-order bytes of the PC successively from the stack and restores the
interrupt logic to accept additional interrupts at the same priority level as the one just processed. The
stack pointer is left decremented by two. No other registers are affected. The PSW is not
automatically restored to its pre-interrupt status. Program execution continues at the resulting
address, which is generally the instruction immediately after the point at which the interrupt request
was detected. If a lower or same-level interrupt is pending when the RETI instruction is executed,
that one instruction is executed before the pending interrupt is processed.

Operation

RETI

(PC[15:8]) ← ((SP))
(SP) ← (SP) - 1
(PC[7:0]) ← ((SP))
(SP) ← (SP) - 1

Encoding

0 0 1 0 0 0 1 0
Core8051 Instruction Set Details User’s Guide 65

RL A ORL C,~bit

Core8051_UG.book Page 66 Friday, October 3, 2003 5:23 PM
Bytes

1

RL A
Function

Rotate accumulator left

Description

The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0
position. No flags are affected.

Operation

RL

(A[7:1]) ← (A[6:0])
(A[0]) ← (A[7])

Bytes

1

RLC A
Function

Rotate accumulator left through carry flag

Description

The eight bits in the accumulator and the carry flag are rotated together one bit to the left. Bit 7
moves into the carry flag and the original state of the carry flag moves into the bit 0 position. No
other flags are affected.

Encoding

0 0 1 1 0 0 1 0

Encoding

0 0 1 0 0 0 1 1
66 Core8051 Instruction Set Details User’s Guide

ORL C,~bit RR A

Core8051_UG.book Page 67 Friday, October 3, 2003 5:23 PM
Operation

RLC

(A[7:1]) ← (A[6:0])
(A[0]) ← (C)
(C) ← (A[7])

Bytes

1

RR A
Function

Rotate accumulator right

Description

The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7
position. No flags are affected.

Operation

RR

(A[6:0]) ← (A[7:1])
(A[7]) ← (A[0])

Bytes

1

Encoding

0 0 1 1 0 0 1 1

Encoding

0 0 0 0 0 0 1 1
Core8051 Instruction Set Details User’s Guide 67

RRC A ORL C,~bit

Core8051_UG.book Page 68 Friday, October 3, 2003 5:23 PM
RRC A
Function

Rotate accumulator right through carry flag

Description

The eight bits in the accumulator and the carry flag are rotated together one bit to the right. Bit 0
moves into the carry flag and the original value of the carry flag moves into the bit 7 position. No
other flags are affected.

Operation

RRC

(A[6:0]) ← (A[7:1])
(A[7]) ← (C)
(C) ← (A[0])

Bytes

1

SETB <bit-type>
Function

Set bit

Description

SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable
bit. No other flags are affected.

Encoding

0 0 0 1 0 0 1 1
68 Core8051 Instruction Set Details User’s Guide

SETB C SJMP rel

Core8051_UG.book Page 69 Friday, October 3, 2003 5:23 PM
SETB C

Operation

SETB

(C) ← 1

Bytes

1

SETB bit

Operation

SETB

(bit) ← 1

Bytes

2

SJMP rel
Function

Short jump

Description

Program control branches unconditionally to the address indicated. The branch destination is
computed by adding the signed displacement in the second instruction byte to the PC, after
incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes preceding
this instruction to 127 bytes following it.

Encoding

1 1 0 1 0 0 1 1

Encoding

1 1 0 1 0 0 1 0 bit address
Core8051 Instruction Set Details User’s Guide 69

SUBB A, <src-byte> SETB bit

Core8051_UG.book Page 70 Friday, October 3, 2003 5:23 PM
Note: Under the above conditions the instruction following SJMP will be at 102H.

Therefore, the displacement byte of the instruction will be the relative offset (0123H -
0102H) =21H. In other words, a SJMP with a displacement of 0FEH would be a one-
instruction infinite loop.

Operation

SJMP

(PC) ← (PC) + 2
(PC) ← (PC) + rel

Bytes

2

SUBB A, <src-byte>
Function

Subtract with borrow

Description

SUBB subtracts the indicated variable and the carry flag from the accumulator, leaving the result in
the accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, otherwise it clears
C. (If C was set before executing a SUBB instruction, this indicates that a borrow was needed for
the previous step in a multiple precision subtraction, so the carry is subtracted from the accumulator
along with the source operand). AC is set if a borrow is needed for bit 3, and cleared otherwise. OV
is set if a borrow is needed into bit 6 but not into bit 7, or into bit 7 but not bit 6.

When subtracting signed integers, OV indicates a negative number produced when a negative value
is subtracted from a positive value or a positive result when a positive number is subtracted from a
negative number.

The source operand allows four addressing modes: register, direct, register-indirect or immediate.

Encoding

1 0 0 0 0 0 0 0 relative address
70 Core8051 Instruction Set Details User’s Guide

SUBB A,Rn SUBB A, <src-byte>

Core8051_UG.book Page 71 Friday, October 3, 2003 5:23 PM
SUBB A,Rn

Operation

SUBB

(A) ← (A) - (C) - (Rn)

Bytes

1

SUBB A,direct

Operation

SUBB

(A) ← (A) - (C) - (direct)

Bytes

2

SUBB A, @ Ri

Operation

SUBB

(A) ← (A) - (C) - ((Ri))

Encoding

1 0 0 1 1 r r r

Encoding

1 0 0 1 0 1 0 1 direct address
Core8051 Instruction Set Details User’s Guide 71

SWAP A SUBB A, #data

Core8051_UG.book Page 72 Friday, October 3, 2003 5:23 PM
Bytes

1

SUBB A, #data

Operation

SUBB

(A) ← (A) - (C) - #data

Bytes

2

SWAP A
Function

Swap nibbles within the accumulator

Description

SWAP A interchanges the low and high-order nibbles (four-bit fields) of the accumulator. The
operation can also be thought of as a four-bit rotate instruction. No flags are affected.

Encoding

1 0 0 1 0 1 1 i

Encoding

1 0 0 1 0 1 0 0 immediate data
72 Core8051 Instruction Set Details User’s Guide

XCH A,Rn XCH A, <byte>

Core8051_UG.book Page 73 Friday, October 3, 2003 5:23 PM
Operation

SWAP

A[3:0] ← A[7:4], A[7:4] ← A[3:0]

Bytes

1

XCH A, <byte>
Function

Exchange accumulator with byte variable

Description

XCH loads the accumulator with the contents of the indicated variable, while writing the original
accumulator contents to the indicated variable at the same time. The source/destination operand can
use register, direct or register-indirect addressing.

XCH A,Rn

Operation

XCH

(A) ← (Rn), (Rn) ← (A)

Bytes

1

Encoding

1 1 0 0 0 1 0 0

Encoding

1 1 0 0 1 r r r
Core8051 Instruction Set Details User’s Guide 73

XCHD A,@Ri XCH A,direct

Core8051_UG.book Page 74 Friday, October 3, 2003 5:23 PM
XCH A,direct

Operation

XCH

(A) ← (direct), (direct) ← (A)

Bytes

2

XCH A, @ Ri

Operation

XCH

(A) ← ((Ri)), ((Ri)) ← (A)

Bytes

1

XCHD A,@Ri
Function

Exchange digit

Description

XCHD exchanges the low-order nibble of the accumulator (generally representing a hexadecimal or
BCD digit), with that of the internal RAM location indirectly addressed by the specified register.
The high-order nibbles of each register are not affected. No flags are affected.

Encoding

1 1 0 0 0 1 0 1 direct address

Encoding

1 1 0 0 0 1 1 i
74 Core8051 Instruction Set Details User’s Guide

XRL A,Rn XRL <dest-byte>, <src-byte>

Core8051_UG.book Page 75 Friday, October 3, 2003 5:23 PM
Operation

XCHD

(A[3:0]) ← ((Ri[3:0])), ((Ri[3:0])) ← (A[3:0])

Bytes

1

XRL <dest-byte>, <src-byte>
Function

Bit-wise logical Exclusive OR for byte variables

Description

XRL performs the bit-wise logical Exclusive OR operation between the indicated variables, storing
the results in the destination. No flags are affected (except P, if <dest-byte>=A).

The two operands allow six addressing mode combinations. When the destination is the
accumulator, the source can use register, direct, register-indirect, or immediate addressing. When
the destination is a direct address, the source can be accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port
data is read from the output data latch, not the input pins.

XRL A,Rn

Operation

XRL

(A) ← (A) ^ (Rn)

Encoding

1 1 0 1 0 1 1 i
Core8051 Instruction Set Details User’s Guide 75

XRL <dest-byte>, <src-byte> XRL A,direct

Core8051_UG.book Page 76 Friday, October 3, 2003 5:23 PM
Bytes

1

XRL A,direct

Operation

XRL

(A) ← (A) ^ (direct)

Bytes

2

XRL A, @ Ri

Operation

XRL

(A) ← (A) ^ ((Ri))

Bytes

1

Encoding

0 1 1 0 1 r r r

Encoding

0 1 1 0 0 1 0 1 direct address

Encoding

0 1 1 0 0 1 1 i
76 Core8051 Instruction Set Details User’s Guide

XRL A, #data XRL <dest-byte>, <src-byte>

Core8051_UG.book Page 77 Friday, October 3, 2003 5:23 PM
XRL A, #data

Operation

XRL

(A) ← (A) ^ #data

Bytes

2

XRL direct,A

Operation

XRL

(direct) ← (direct) ^ (A)

Bytes

2

Encoding

0 1 1 0 0 1 0 0 immediate data

Encoding

0 1 1 0 0 0 1 0 direct address
Core8051 Instruction Set Details User’s Guide 77

XRL <dest-byte>, <src-byte> XRL direct, #data

Core8051_UG.book Page 78 Friday, October 3, 2003 5:23 PM
XRL direct, #data

Operation

XRL

(direct) ← (direct) ^ #data

Bytes

3

Encoding

0 1 1 0 0 0 1 1

direct address

immediate data
78 Core8051 Instruction Set Details User’s Guide

Index

Core8051_UG.book Page 79 Friday, October 3, 2003 5:23 PM
A
ACALL addr11 17
Actel

Manuals 1
ADD A 18
ADD A, #data 19
ADD A, @Ri 19
ADD A, direct 18
ADD A, Rn 18
ADDC A 20
ADDC A, #data 21
ADDC A, @Ri 21
ADDC A, direct 20
ADDC A, Rn 20
AJMP addr11 22
ANL 22
ANL A, #data 24
ANL A, @Ri 23
ANL A,direct 23
ANL A,Rn 23
ANL C 25
ANL C,~bit 26
ANL C,bit 25
ANL direct, #data 25
ANL direct,A 24

C
CJNE 26
CJNE @Ri, #data, rel 28
CJNE A, #data,rel 27
CJNE A,direct,rel 27
CJNE RN, #data, rel 28
CLR A 29
CLR bit 29, 30
CPL A 30
CPL bit 31

CPL C 31

D
DA A 32
DEC @Ri 35
DEC A 33
DEC byte 33
DEC direct 34
DEC Rn 34
DIV AB 35
DJNZ 36
DJNZ direct,rel 37
DJNZ Rn,rel 36
Document Organization 1

I
INC 37
INC @Ri 39
INC A 37
INC direct 38
INC DPTR 39
INC Rn 38

J
JB bit, rel 40
JBC bit,rel 40
JC rel 41
JMP @A + DPTR 42
JNB bit,rel 42
JNC rel 43
JNZ rel 44
JZ rel 45

L
LCALL addr16 45
LJMP addr16 46
Core8051 Instruction Set Details User’s Guide 79

Index

Core8051_UG.book Page 80 Friday, October 3, 2003 5:23 PM
M
Mnemonic 3
MOV 47, 53
MOV @ Ri,#data 53
MOV @ Ri,A 52
MOV @ Ri,direct 53
MOV A, #data 48
MOV A,@Ri 48
MOV A,direct *) 48
MOV A,Rn 47
MOV bit,C 54
MOV C,bit 54
MOV direct, #data 52
MOV direct, @ Ri 51
MOV direct,A 50
MOV direct,direct 51
MOV direct,Rn 50
MOV DPTR, #data16 54
MOV Rn, #data 50
MOV Rn,A 49
MOV Rn,direct 49
MOVC A, @A 55
MOVC A, @A + DPTR 55
MOVC A, @A + PC 56
MOVX 56
MOVX @DPTR,A 58
MOVX @Ri,A 57
MOVX A,@DPTR 57
MOVX A,@Ri 57
MUL AB 58

N
NOP 59

O
Ordering Information 78

ORL 59
ORL A,#data 61
ORL A,@Ri 60
ORL A,direct 60
ORL A,Rn 60
ORL C 62
ORL C,~bit 63
ORL C,bit 62
ORL direct, #data 62
ORL direct,A 61

P
POP direct 63
PUSH direct 64

R
Related Manuals 1
RET 64
RETI 65
RL A 66
RLC A 66
RR A 67
RRC A 68

S
SETB 68
SETB bit 69
SETB C 69
SJMP rel 69
SUBB A 70
SUBB A, #data 72
SUBB A, @ Ri 71
SUBB A,direct 71
SUBB A,Rn 71
SWAP A 72
80 Core8051 Instruction Set Details User’s Guide

Index

Core8051_UG.book Page 81 Friday, October 3, 2003 5:23 PM
X
XCH A 73
XCH A, @ Ri 74
XCH A,direct 74
XCH A,Rn 73
XCHD A,@Ri 74
XRL 75

XRL A, #data 77
XRL A, @ Ri 76
XRL A,direct 76
XRL A,Rn 75
XRL direct, #data 78
XRL direct,A 77
Core8051 Instruction Set Details User’s Guide 81

For more information about Actel’s products, visit our website at
http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • Dunlop House, Riverside Way • Camberley, Surrey GU15 3YL United Kingdom
Tel: +44 (0)1276.401452 • Fax: +44 (0)1276.401490

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Toyko 150 • Japan
Tel: +81.03.3445.7671 Fax: +81.03.3445.7668

50200005-1/10.03

Core8051_UG.book Page 82 Friday, October 3, 2003 5:23 PM

	Introduction
	Document Organization
	Actel Datasheet

	Mnemonic Notes
	Instruction List - Functions
	Instruction List - Hexadecimal Code
	Instructions
	ACALL addr11
	ADD A, <src-byte>
	ADD A, Rn
	ADD A, direct
	ADD A, @Ri
	ADD A, #data

	ADDC A, < src-byte>
	ADDC A, Rn
	ADDC A, direct
	ADDC A, @Ri
	ADDC A, #data

	AJMP addr11
	ANL <dest-byte>, <src-byte>
	ANL A,Rn
	ANL A,direct
	ANL A, @Ri
	ANL A, #data
	ANL direct,A
	ANL direct, #data

	ANL C, <src-bit>
	ANL C,bit
	ANL C,~bit

	CJNE <dest-byte >, < src-byte >, rel
	CJNE A,direct,rel
	CJNE A, #data,rel
	CJNE RN, #data, rel
	CJNE @Ri, #data, rel

	CLR A
	CLR <bit-type>
	CLR C
	CLR bit

	CPL A
	CPL <bit-type>
	CPL C
	CPL bit

	DA A
	DEC byte
	DEC A
	DEC Rn
	DEC direct
	DEC @Ri

	DIV AB
	DJNZ <byte>, <rel-addr>
	DJNZ Rn,rel
	DJNZ direct,rel

	INC <byte>
	INC A
	INC Rn
	INC direct
	INC @Ri

	INC DPTR
	JB bit, rel
	JBC bit,rel
	JC rel
	JMP @A + DPTR
	JNB bit,rel
	JNC rel
	JNZ rel
	JZ rel
	LCALL addr16
	LJMP addr16
	MOV <dest-byte>, <src-byte>
	MOV A,Rn
	MOV A,direct
	MOV A,@Ri
	MOV A, #data
	MOV Rn,A
	MOV Rn,direct
	MOV Rn, #data
	MOV direct,A
	MOV direct,Rn
	MOV direct,direct
	MOV direct, @ Ri
	MOV direct, #data
	MOV @ Ri,A
	MOV @ Ri,direct
	MOV @ Ri,#data

	MOV <dest-bit>, <src-bit>
	MOV C,bit
	MOV bit,C

	MOV DPTR, #data16
	MOVC A, @A + <base-reg>
	MOVC A, @A + DPTR
	MOVC A, @A + PC

	MOVX <dest-byte>, <src-byte>
	MOVX A,@Ri
	MOVX A,@DPTR
	MOVX @Ri,A
	MOVX @DPTR,A

	MUL AB
	NOP
	ORL <dest-byte>, <src-byte>
	ORL A,Rn
	ORL A,direct
	ORL A,@Ri
	ORL A,#data
	ORL direct,A
	ORL direct, #data

	ORL C, <src-bit>
	ORL C,bit
	ORL C,~bit

	POP direct
	PUSH direct
	RET
	RETI
	RL A
	RLC A
	RR A
	RRC A
	SETB <bit-type>
	SETB C
	SETB bit

	SJMP rel
	SUBB A, <src-byte>
	SUBB A,Rn
	SUBB A,direct
	SUBB A, @ Ri
	SUBB A, #data

	SWAP A
	XCH A, <byte>
	XCH A,Rn
	XCH A,direct
	XCH A, @ Ri

	XCHD A,@Ri
	XRL <dest-byte>, <src-byte>
	XRL A,Rn
	XRL A,direct
	XRL A, @ Ri
	XRL A, #data
	XRL direct,A
	XRL direct, #data

	Index

