Keil Logo Arm Logo

Technical Support

On-Line Manuals

Linker User Guide

Conventions and feedback Overview of the linker Linking models supported by armlink Image structure and generation Using linker optimizations Getting information about images Accessing and managing symbols with armlink Using scatter files About scatter-loading When to use scatter-loading Scatter-loading command-line option Images with a simple memory map Images with a complex memory map Linker-defined symbols that are not defined when s Specifying stack and heap using the scatter file What is a root region? Creating root execution regions Using the FIXED attribute to create root regions Placing functions and data at specific addresses Placing a named section explicitly using scatter-l Placing unassigned sections with the .ANY module s Examples of using placement algorithms for .ANY se Example of next_fit algorithm showing behavior of Examples of using sorting algorithms for .ANY sect Selecting veneer input sections in scatter-loading Using __attribute__((section("name"))) t Using __at sections to place sections at a specifi Restrictions on placing __at sections Automatic placement of __at sections Manual placement of __at sections Placing a key in flash memory using __at Placing a structure over a peripheral register usi Placement of sections with overlays About placing ARM C and C++ library code Example of placing code in a root region Example of placing ARM C library code Example of placing ARM C++ library code Example of placing ARM library helper functions Reserving an empty region About creating regions on page boundaries Overalignment of execution regions and input secti Using preprocessing commands in a scatter file Expression evaluation in scatter files Using expression evaluation in a scatter file to a Equivalent scatter-loading descriptions for simple Type 1 image, one load region and contiguous execu Type 2 image, one load region and non-contiguous e Type 3 image, two load regions and non-contiguous Scatter file to ELF mapping

Placing a named section explicitly using scatter-loading

Placing a named section explicitly using scatter-loading

The following example shows how to place a named section explicitly using scatter-loading:

Example 16. Explicit section placement

LR1 0x0 0x10000
{
    ER1 0x0 0x2000                   ; Root Region, containing init code
    {
        init.o (INIT, +FIRST)        ; place init code at exactly 0x0
        *(+RO)                       ; rest of code and read-only data  
    }
    RAM_RW 0x400000 (0x1FF00-0x2000) ; RW & ZI data to be placed at 0x400000
    {
        *(+RW)
    }
    RAM_ZI +0
    {
        *(+ZI)
    }
    DATABLOCK 0x1FF00 0xFF           ; execution region at 0x1FF00
    {                                ; maximum space available for table is 0xFF
        data.o(+RO-DATA)             ; place RO data between 0x1FF00 and 0x1FFFF
    }
}

In this example, the scatter-loading description places:

  • The initialization code is placed in the INIT section in the init.o file. This example shows that the code from the INIT section is placed first, at address 0x0, followed by the remainder of the RO code and all of the RO data except for the RO data in the object data.o.

  • All global RW variables in RAM at 0x400000.

  • A table of RO-DATA from data.o at address 0x1FF00.

Copyright © 2007-2008, 2011-2012 ARM. All rights reserved.ARM DUI 0377D
Non-ConfidentialID062912

Keil logo

Arm logo
Important information

This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies.