Keil Logo

Technical Support

On-Line Manuals

Compiler Reference Guide

Preface Arm Compiler Tools Overview armclang Reference armlink Reference armlink Command-line Options --any_contingency --any_placement=algorithm --any_sort_order=order --api, --no_api --autoat, --no_autoat --bare_metal_pie --base_platform --be8 --be32 --bestdebug, --no_bestdebug --blx_arm_thumb, --no_blx_arm_thumb --blx_thumb_arm, --no_blx_thumb_arm --bpabi --branchnop, --no_branchnop --callgraph, --no_callgraph --callgraph_file=filename --callgraph_output=fmt --callgraph_subset=symbol[,symbol,...] --cgfile=type --cgsymbol=type --cgundefined=type --comment_section, --no_comment_section --cppinit, --no_cppinit --cpu=list (armlink) --cpu=name (armlink) --crosser_veneershare, --no_crosser_veneershare --datacompressor=opt --debug, --no_debug --diag_error=tag[,tag,…] (armlink) --diag_remark=tag[,tag,…] (armlink) --diag_style={arm|ide|gnu} (armlink) --diag_suppress=tag[,tag,…] (armlink) --diag_warning=tag[,tag,…] (armlink) --dll --dynamic_linker=name --eager_load_debug, --no_eager_load_debug --eh_frame_hdr --edit=file_list --emit_debug_overlay_relocs --emit_debug_overlay_section --emit_non_debug_relocs --emit_relocs --entry=location --errors=filename --exceptions, --no_exceptions --export_all, --no_export_all --export_dynamic, --no_export_dynamic --filtercomment, --no_filtercomment --fini=symbol --first=section_id --force_explicit_attr --force_so_throw, --no_force_so_throw --fpic --fpu=list (armlink) --fpu=name (armlink) --got=type --gnu_linker_defined_syms --help (armlink) --import_cmse_lib_in=filename --import_cmse_lib_out=filename --import_unresolved, --no_import_unresolved --info=topic[,topic,…] (armlink) --info_lib_prefix=opt --init=symbol --inline, --no_inline --inline_type=type --inlineveneer, --no_inlineveneer input-file-list (armlink) --keep=section_id (armlink) --keep_intermediate --largeregions, --no_largeregions --last=section_id --legacyalign, --no_legacyalign --libpath=pathlist --library=name --library_security=protection --library_type=lib --list=filename --list_mapping_symbols, --no_list_mapping_symbols --load_addr_map_info, --no_load_addr_map_info --locals, --no_locals --lto, --no_lto --lto_keep_all_symbols, --no_lto_keep_all_symbols --lto_intermediate_filename --lto_level --lto_relocation_model --mangled, --unmangled --map, --no_map --max_er_extension=size --max_veneer_passes=value --max_visibility=type --merge, --no_merge --merge_litpools, --no_merge_litpools --muldefweak, --no_muldefweak -o filename, --output=filename (armlink) --output_float_abi=option --overlay_veneers --override_visibility -Omax (armlink) --pad=num --paged --pagesize=pagesize --partial --pie --piveneer, --no_piveneer --pixolib --pltgot=type --pltgot_opts=mode --predefine="string" --preinit, --no_preinit --privacy (armlink) --ref_cpp_init, --no_ref_cpp_init --ref_pre_init, --no_ref_pre_init --reloc --remarks --remove, --no_remove --ro_base=address --ropi --rosplit --rw_base=address --rwpi --scanlib, --no_scanlib --scatter=filename --section_index_display=type --shared --show_cmdline (armlink) --show_full_path --show_parent_lib --show_sec_idx --soname=name --sort=algorithm --split --startup=symbol, --no_startup --stdlib --strict --strict_flags, --no_strict_flags --strict_ph, --no_strict_ph --strict_preserve8_require8 --strict_relocations, --no_strict_relocations --strict_symbols, --no_strict_symbols --strict_visibility, --no_strict_visibility --symbols, --no_symbols --symdefs=filename --symver_script=filename --symver_soname --sysv --tailreorder, --no_tailreorder --tiebreaker=option --unaligned_access, --no_unaligned_access --undefined=symbol --undefined_and_export=symbol --unresolved=symbol --use_definition_visibility --userlibpath=pathlist --veneerinject, --no_veneerinject --veneer_inject_type=type --veneer_pool_size=size --veneershare, --no_veneershare --verbose --version_number (armlink) --via=filename (armlink) --vsn (armlink) --xo_base=address --xref, --no_xref --xrefdbg, --no_xrefdbg --xref{from|to}=object(section) --zi_base=address Linking Models Supported by armlink Overview of linking models Bare-metal linking model overview Partial linking model overview Base Platform Application Binary Interface (BPABI) Base Platform linking model overview SysV linking model overview Concepts common to both BPABI and SysV linking mod Image Structure and Generation The structure of an Arm ELF image Views of the image at each link stage Input sections, output sections, regions, and prog Load view and execution view of an image Methods of specifying an image memory map with the Image entry points Restrictions on image structure Simple images Types of simple image Type 1 image structure, one load region and contig Type 2 image structure, one load region and non-co Type 3 image structure, multiple load regions and Section placement with the linker Default section placement Section placement with the FIRST and LAST attribut Section alignment with the linker Linker support for creating demand-paged files Linker reordering of execution regions containing Linker-generated veneers What is a veneer? Veneer sharing Veneer types Generation of position independent to absolute ven Reuse of veneers when scatter-loading Generation of secure gateway veneers Command-line options used to control the generatio Weak references and definitions How the linker performs library searching, selecti How the linker searches for the Arm standard libra Specifying user libraries when linking How the linker resolves references The strict family of linker options Linker Optimization Features Elimination of common section groups Elimination of unused sections Optimization with RW data compression How the linker chooses a compressor Options available to override the compression algo How compression is applied Considerations when working with RW data compressi Function inlining with the linker Factors that influence function inlining About branches that optimize to a NOP Linker reordering of tail calling sections Restrictions on reordering of tail calling section Linker merging of comment sections Merging identical constants Accessing and Managing Symbols with armlink About mapping symbols Linker-defined symbols Region-related symbols Types of region-related symbols Image$$ execution region symbols Load$$ execution region symbols Load$$LR$$ load region symbols Region name values when not scatter-loading Linker defined symbols and scatter files Methods of importing linker-defined symbols in C a Methods of importing linker-defined symbols in Arm Section-related symbols Types of section-related symbols Image symbols Input section symbols Access symbols in another image Creating a symdefs file Outputting a subset of the global symbols Reading a symdefs file Symdefs file format Edit the symbol tables with a steering file Specifying steering files on the linker command-li Steering file command summary Steering file format Hide and rename global symbols with a steering fil Use of $Super$$ and $Sub$$ to patch symbol definit Scatter-loading Features The scatter-loading mechanism Overview of scatter-loading When to use scatter-loading Linker-defined symbols that are not defined when s Placing the stack and heap with a scatter file Scatter-loading command-line options Scatter-loading images with a simple memory map Scatter-loading images with a complex memory map Root region and the initial entry point Effect of the ABSOLUTE attribute on a root region Effect of the FIXED attribute on a root region Methods of placing functions and data at specific Placing functions and data in a named section Placing __at sections at a specific address Restrictions on placing __at sections Automatically placing __at sections Manually placing __at sections Placing a key in flash memory with an __at section Example of how to explicitly place a named section Placement of unassigned sections Default rules for placing unassigned sections Command-line options for controlling the placement Prioritizing the placement of unassigned sections Specify the maximum region size permitted for plac Examples of using placement algorithms for .ANY se Example of next_fit algorithm showing behavior of Examples of using sorting algorithms for .ANY sect Behavior when .ANY sections overflow because of li Placing veneers with a scatter file Placement of CMSE veneer sections for a Secure ima Reserving an empty block of memory Characteristics of a reserved empty block of memor Example of reserving an empty block of memory Placement of Arm C and C++ library code Placing code in a root region Placing Arm C library code Placing Arm C++ library code Aligning regions to page boundaries Aligning execution regions and input sections Preprocessing a scatter file Default behavior for armclang -E in a scatter file Using other preprocessors in a scatter file Example of using expression evaluation in a scatte Equivalent scatter-loading descriptions for simple Command-line options for creating simple images Type 1 image, one load region and contiguous execu Type 2 image, one load region and non-contiguous e Type 3 image, multiple load regions and non-contig How the linker resolves multiple matches when proc How the linker resolves path names when processing Scatter file to ELF mapping Scatter File Syntax BNF notation used in scatter-loading description s Syntax of a scatter file Load region descriptions Components of a load region description Syntax of a load region description Load region attributes Inheritance rules for load region address attribut Inheritance rules for the RELOC address attribute Considerations when using a relative address +offs Execution region descriptions Components of an execution region description Syntax of an execution region description Execution region attributes Inheritance rules for execution region address att Considerations when using a relative address +offs Input section descriptions Components of an input section description Syntax of an input section description Examples of module and input section specification Expression evaluation in scatter files Expression usage in scatter files Expression rules in scatter files Execution address built-in functions for use in sc ScatterAssert function and load address related fu Symbol related function in a scatter file AlignExpr(expr, align) function GetPageSize() function SizeOfHeaders() function Example of aligning a base address in execution sp Scatter files containing relative base address loa BPABI and SysV Shared Libraries and Executables About the Base Platform Application Binary Interfa Platforms supported by the BPABI Features common to all BPABI models About importing and exporting symbols for BPABI mo Symbol visibility for BPABI models Automatic import and export for BPABI models Manual import and export for BPABI models Symbol versioning for BPABI models RW compression for BPABI models SysV linking model SysV standard memory model Using the C and C++ libraries Using a dynamic Linker Automatic dynamic symbol table rules in the SysV l Symbol definitions defined for SysV compatibility Addressing modes in the SysV linking model Thread local storage in the SysV linking model Linker command-line options for the SysV linking m Bare metal and DLL-like memory models BPABI standard memory model Customization of the BPABI standard memory model Linker command-line options for bare metal and DLL Mandatory symbol versioning in the BPABI DLL-like Automatic dynamic symbol table rules in the BPABI Addressing modes in the BPABI DLL-like model C++ initialization in the BPABI DLL-like model Symbol versioning Overview of symbol versioning Embedded symbols The symbol versioning script file Example of creating versioned symbols Linker options for enabling implicit symbol versio Features of the Base Platform Linking Model Restrictions on the use of scatter files with the Scatter files for the Base Platform linking model Placement of PLT sequences with the Base Platform Linker Steering File Command Reference EXPORT steering file command HIDE steering file command IMPORT steering file command RENAME steering file command REQUIRE steering file command RESOLVE steering file command SHOW steering file command fromelf Reference armar Reference armasm Legacy Assembler Reference Appendixes

How the linker resolves multiple matches when processing scatter files

C6.14 How the linker resolves multiple matches when processing scatter files

An input section must be unique. In the case of multiple matches, the linker attempts to assign the input section to a region based on the attributes of the input section description.

The linker assignment of the input section is based on a module_select_pattern and input_section_selector pair that is the most specific. However, if a unique match cannot be found, the linker faults the scatter-loading description.

The following variables describe how the linker matches multiple input sections:

  • m1 and m2 represent module selector patterns.
  • s1 and s2 represent input section selectors.

For example, if input section A matches m1,s1 for execution region R1, and A matches m2,s2 for execution region R2, the linker:

  • Assigns A to R1 if m1,s1 is more specific than m2,s2.
  • Assigns A to R2 if m2,s2 is more specific than m1,s1.
  • Diagnoses the scatter-loading description as faulty if m1,s1 is not more specific than m2,s2 and m2,s2 is not more specific than m1,s1.

armlink uses the following strategy to determine the most specific module_select_pattern, input_section_selector pair:

Resolving the priority of two module_selector, section_selector pairs m1, s1 and m2, s2

The strategy starts with two module_select_pattern, input_section_selector pairs. m1,s1 is more specific than m2,s2 only if any of the following are true:

  1. s1 is either a literal input section name, that is it contains no pattern characters, or a section type and s2 matches input section attributes.
  2. m1 is more specific than m2.
  3. s1 is more specific than s2.

The conditions are tested in order so condition 1 takes precedence over condition 2 and 3, and condition 2 takes precedence over condition 3.

Resolving the priority of two module selectors m1 and m2 in isolation
For the module selector patterns, m1 is more specific than m2 if the text string m1 matches pattern m2 and the text string m2 does not match pattern m1.
Resolving the priority of two section selectors s1 and s2 in isolation

For the input section selectors:

  • If one of s1 or s2 matches the input section name or type and the other matches the input section attributes, s1 and s2 are unordered and the description is diagnosed as faulty.
  • If both s1 and s2 match the input section name or type, the following relationships determine whether s1 is more specific than s2:
    • Section type is more specific than section name.
    • If both s1 and s2 match input section type, s1 and s2 are unordered and the description is diagnosed as faulty.
    • If s1 and s2 are both patterns matching section names, the same definition as for module selector patterns is used.
  • If both s1 and s2 match input section attributes, the following relationships determine whether s1 is more specific than s2s:
    • ENTRY is more specific than RO-CODE, RO-DATA, RW-CODE, or RW-DATA.
    • RO-CODE is more specific than RO.
    • RO-DATA is more specific than RO.
    • RW-CODE is more specific than RW.
    • RW-DATA is more specific than RW.
    • There are no other members of the (s1 more specific than s2) relationship between section attributes.

This matching strategy has the following consequences:

  • Descriptions do not depend on the order they are written in the file.
  • Generally, the more specific the description of an object, the more specific the description of the input sections it contains.
  • The input_section_selectors are not examined unless:
    • Object selection is inconclusive.
    • One selector specifies a literal input section name or a section type and the other selects by attribute. In this case, the explicit input section name or type is more specific than any attribute. This is true even if the object selector associated with the input section name is less specific than that of the attribute.

The .ANY module selector is available to assign any sections that cannot be resolved from the scatter-loading description.

Example

The following example shows multiple execution regions and pattern matching:

LR_1 0x040000            
{                            
    ER_ROM 0x040000              ; The startup exec region address is the same
    {                            ; as the load address.  
        application.o (+ENTRY)   ; The section containing the entry point from
    }                            ; the object is placed here.
    ER_RAM1 0x048000      
    {
        application.o (+RO-CODE) ; Other RO code from the object goes here
    }
    ER_RAM2 0x050000     
    {
        application.o (+RO-DATA) ; The RO data goes here
    }
    ER_RAM3 0x060000 
    {
        application.o (+RW)      ; RW code and data go here
    }
    ER_RAM4 +0                   ; Follows on from end of ER_R3
    {
        *.o (+RO, +RW, +ZI)      ; Everything except for application.o goes here
    }
}
Non-ConfidentialPDF file icon PDF version101754_0614_00_en
Copyright © 2019, 2020 Arm Limited or its affiliates. All rights reserved. 
  Arm logo
Important information

This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies.

Change Settings

Privacy Policy Update

Arm’s Privacy Policy has been updated. By continuing to use our site, you consent to Arm’s Privacy Policy. Please review our Privacy Policy to learn more about our collection, use and transfers
of your data.