Keil Logo

Technical Support

On-Line Manuals

Compiler User Guide

Preface Overview of the Compiler Getting Started with the Compiler Compiler Features Compiler intrinsics Performance benefits of compiler intrinsics ARM assembler instruction intrinsics Generic intrinsics Compiler intrinsics for controlling IRQ and FIQ in Compiler intrinsics for inserting optimization bar Compiler intrinsics for inserting native instructi Compiler intrinsics for Digital Signal Processing Compiler support for European Telecommunications S Overflow and carry status flags for C and C++ code Texas Instruments (TI) C55x intrinsics for optimiz Compiler support for accessing registers using nam Pragmas recognized by the compiler Compiler and processor support for bit-banding Compiler type attribute, __attribute__((bitband)) --bitband compiler command-line option How the compiler handles bit-band objects placed o Compiler support for thread-local storage Compiler support for literal pools Compiler eight-byte alignment features Precompiled Header (PCH) files Automatic Precompiled Header (PCH) file processing Precompiled Header (PCH) file processing and the h Precompiled Header (PCH) file creation requirement Compilation with multiple Precompiled Header (PCH) Obsolete Precompiled Header (PCH) files Manually specifying the filename and location of a Selectively applying Precompiled Header (PCH) file Suppressing Precompiled Header (PCH) file processi Message output during Precompiled Header (PCH) pro Performance issues with Precompiled Header (PCH) f Default compiler options that are affected by opti Compiler Coding Practices Compiler Diagnostic Messages Using the Inline and Embedded Assemblers of the AR Compiler Command-line Options Language Extensions Compiler-specific Features C and C++ Implementation Details What is Semihosting? Via File Syntax Summary Table of GNU Language Extensions Standard C Implementation Definition Standard C++ Implementation Definition C and C++ Compiler Implementation Limits

Compiler intrinsics

3.1 Compiler intrinsics

Compiler intrinsics are functions provided by the compiler. They enable you to easily incorporate domain-specific operations in C and C++ source code without resorting to complex implementations in assembly language.

The C and C++ languages are suited to a wide variety of tasks but they do not provide in-built support for specific areas of application, for example, Digital Signal Processing (DSP).
Within a given application domain, there is usually a range of domain-specific operations that have to be performed frequently. However, often these operations cannot be efficiently implemented in C or C++. A typical example is the saturated add of two 32-bit signed two’s complement integers, commonly used in DSP programming. The following example shows a C implementation of saturated add operation
#include <limits.h>
int L_add(const int a, const int b)
{
    int c;
    c = a + b;
    if (((a ^ b) & INT_MIN) == 0)
    {
        if ((c ^ a) & INT_MIN)
        {
            c = (a < 0) ? INT_MIN : INT_MAX;
        }
    }
    return c;
}
Using compiler intrinsics, you can achieve more complete coverage of target architecture instructions than you would from the instruction selection of the compiler.
An intrinsic function has the appearance of a function call in C or C++, but is replaced during compilation by a specific sequence of low-level instructions. When implemented using an intrinsic, for example, the saturated add function previous example has the form:
#include <dspfns.h>    /* Include ETSI intrinsics */
...
int a, b, result;
...
result = L_add(a, b);  /* Saturated add of a and b */
Non-ConfidentialPDF file icon PDF versionARM DUI0375H
Copyright © 2007, 2008, 2011, 2012, 2014-2016 ARM. All rights reserved. 
  Arm logo
Important information

This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies.

Change Settings

Privacy Policy Update

Arm’s Privacy Policy has been updated. By continuing to use our site, you consent to Arm’s Privacy Policy. Please review our Privacy Policy to learn more about our collection, use and transfers
of your data.