Keil Logo

Technical Support

On-Line Manuals

Assembler User Guide

Preface Overview of the Assembler Overview of the ARM Architecture Structure of Assembly Language Modules Writing ARM Assembly Language Condition Codes Using the Assembler Symbols, Literals, Expressions, and Operators VFP Programming Assembler Command-line Options ARM and Thumb Instructions ARM and Thumb instruction summary Instruction width specifiers Flexible second operand (Operand2) Syntax of Operand2 as a constant Syntax of Operand2 as a register with optional shi Shift operations Saturating instructions Condition code suffixes ADC ADD ADR (PC-relative) ADR (register-relative) ADRL pseudo-instruction AND ASR B BFC BFI BIC BKPT BL BLX BX BXJ CBZ and CBNZ CDP and CDP2 CLREX CLZ CMP and CMN CPS CPY pseudo-instruction DBG DMB DSB EOR ERET HVC ISB IT LDC and LDC2 LDM LDR (immediate offset) LDR (PC-relative) LDR (register offset) LDR (register-relative) LDR pseudo-instruction LDR, unprivileged LDREX LSL LSR MCR and MCR2 MCRR and MCRR2 MLA MLS MOV MOV32 pseudo-instruction MOVT MRC and MRC2 MRRC and MRRC2 MRS (PSR to general-purpose register) MRS (system coprocessor register to ARM register) MSR (ARM register to system coprocessor register) MSR (general-purpose register to PSR) MUL MVN NEG pseudo-instruction NOP ORN (Thumb only) ORR PKHBT and PKHTB PLD and PLI POP PUSH QADD QADD8 QADD16 QASX QDADD QDSUB QSAX QSUB QSUB8 QSUB16 RBIT REV REV16 REVSH RFE ROR RRX RSB RSC SADD8 SADD16 SASX SBC SBFX SDIV SEL SETEND SEV SHADD8 SHADD16 SHASX SHSAX SHSUB8 SHSUB16 SMC SMLAxy SMLAD SMLAL SMLALD SMLALxy SMLAWy SMLSD SMLSLD SMMLA SMMLS SMMUL SMUAD SMULxy SMULL SMULWy SMUSD SRS SSAT SSAT16 SSAX SSUB8 SSUB16 STC and STC2 STM STR (immediate offset) STR (register offset) STR, unprivileged STREX SUB SUBS pc, lr SVC SWP and SWPB SXTAB SXTAB16 SXTAH SXTB SXTB16 SXTH SYS TBB and TBH TEQ TST UADD8 UADD16 UASX UBFX UDIV UHADD8 UHADD16 UHASX UHSAX UHSUB8 UHSUB16 UMAAL UMLAL UMULL UND pseudo-instruction UQADD8 UQADD16 UQASX UQSAX UQSUB8 UQSUB16 USAD8 USADA8 USAT USAT16 USAX USUB8 USUB16 UXTAB UXTAB16 UXTAH UXTB UXTB16 UXTH WFE WFI YIELD VFP Instructions Directives Reference Via File Syntax

LDR pseudo-instruction

10.46 LDR pseudo-instruction

Load a register with either a 32-bit immediate value or an address.

Note

This describes the LDR pseudo-instruction only, and not the LDR instruction.

Syntax

LDR{cond}{.W} Rt, =expr
LDR{cond}{.W} Rt, =label_expr
where:
cond
is an optional condition code.
.W
is an optional instruction width specifier.
Rt
is the register to be loaded.
expr
evaluates to a numeric value.
label_expr
is a PC-relative or external expression of an address in the form of a label plus or minus a numeric value.

Usage

When using the LDR pseudo-instruction:
  • If the value of expr can be loaded with a valid MOV or MVN instruction, the assembler uses that instruction.
  • If a valid MOV or MVN instruction cannot be used, or if the label_expr syntax is used, the assembler places the constant in a literal pool and generates a PC-relative LDR instruction that reads the constant from the literal pool.

    Note

    • An address loaded in this way is fixed at link time, so the code is not position-independent.
    • The address holding the constant remains valid regardless of where the linker places the ELF section containing the LDR instruction.
The assembler places the value of label_expr in a literal pool and generates a PC-relative LDR instruction that loads the value from the literal pool.
If label_expr is an external expression, or is not contained in the current section, the assembler places a linker relocation directive in the object file. The linker generates the address at link time.
If label_expr is either a named or numeric local label, the assembler places a linker relocation directive in the object file and generates a symbol for that local label. The address is generated at link time. If the local label references Thumb code, the Thumb bit (bit 0) of the address is set.
The offset from the PC to the value in the literal pool must be less than ±4KB (in an ARM or 32-bit Thumb encoding) or in the range 0 to +1KB (16-bit Thumb encoding). You are responsible for ensuring that there is a literal pool within range.
If the label referenced is in Thumb code, the LDR pseudo-instruction sets the Thumb bit (bit 0) of label_expr.

Note

In RealView® Compilation Tools (RVCT) v2.2, the Thumb bit of the address was not set. If you have code that relies on this behavior, use the command line option --untyped_local_labels to force the assembler not to set the Thumb bit when referencing labels in Thumb code.

LDR in Thumb code

You can use the .W width specifier to force LDR to generate a 32-bit instruction in Thumb code on ARMv6T2 and above processors. LDR.W always generates a 32-bit instruction, even if the immediate value could be loaded in a 16-bit MOV, or there is a literal pool within reach of a 16-bit PC-relative load.
If the value to be loaded is not known in the first pass of the assembler, LDR without .W generates a 16-bit instruction in Thumb code, even if that results in a 16-bit PC-relative load for a value that could be generated in a 32-bit MOV or MVN instruction. However, if the value is known in the first pass, and it can be generated using a 32-bit MOV or MVN instruction, the MOV or MVN instruction is used.
In UAL syntax, the LDR pseudo-instruction never generates a 16-bit flag-setting MOV instruction. Use the --diag_warning 1727 assembler command line option to check when a 16-bit instruction could have been used.
You can use the MOV32 pseudo-instruction for generating immediate values or addresses without loading from a literal pool.

Examples

        LDR     r3,=0xff0    ; loads 0xff0 into R3
                             ; =>  MOV.W r3,#0xff0
        LDR     r1,=0xfff    ; loads 0xfff into R1
                             ; =>  LDR r1,[pc,offset_to_litpool]
                             ;     ...
                             ;     litpool DCD 0xfff
        LDR     r2,=place    ; loads the address of
                             ; place into R2
                             ; =>  LDR r2,[pc,offset_to_litpool]
                             ;     ...
                             ;     litpool DCD place
Non-ConfidentialPDF file icon PDF versionARM DUI0379H
Copyright © 2007, 2008, 2011, 2012, 2014-2016 ARM. All rights reserved. 
  Arm logo
Important information

This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies.

Change Settings

Privacy Policy Update

Arm’s Privacy Policy has been updated. By continuing to use our site, you consent to Arm’s Privacy Policy. Please review our Privacy Policy to learn more about our collection, use and transfers
of your data.