CMSIS-DSP  Version 1.5.2 CMSIS DSP Software Library
Complex Magnitude Squared

## Functions

void arm_cmplx_mag_squared_f32 (float32_t *pSrc, float32_t *pDst, uint32_t numSamples)
Floating-point complex magnitude squared. More...

void arm_cmplx_mag_squared_q15 (q15_t *pSrc, q15_t *pDst, uint32_t numSamples)
Q15 complex magnitude squared. More...

void arm_cmplx_mag_squared_q31 (q31_t *pSrc, q31_t *pDst, uint32_t numSamples)
Q31 complex magnitude squared. More...

## Description

Computes the magnitude squared of the elements of a complex data vector.

The `pSrc` points to the source data and `pDst` points to the where the result should be written. `numSamples` specifies the number of complex samples in the input array and the data is stored in an interleaved fashion (real, imag, real, imag, ...). The input array has a total of `2*numSamples` values; the output array has a total of `numSamples` values.

The underlying algorithm is used:

```for(n=0; n<numSamples; n++) {
pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2;
}
```

There are separate functions for floating-point, Q15, and Q31 data types.

## Function Documentation

 void arm_cmplx_mag_squared_f32 ( float32_t * pSrc, float32_t * pDst, uint32_t numSamples )
Parameters
 [in] *pSrc points to the complex input vector [out] *pDst points to the real output vector [in] numSamples number of complex samples in the input vector
Returns
none.
 void arm_cmplx_mag_squared_q15 ( q15_t * pSrc, q15_t * pDst, uint32_t numSamples )
Parameters
 *pSrc points to the complex input vector *pDst points to the real output vector numSamples number of complex samples in the input vector
Returns
none.

Scaling and Overflow Behavior:

The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.

References __SIMD32, and __SMUAD().

 void arm_cmplx_mag_squared_q31 ( q31_t * pSrc, q31_t * pDst, uint32_t numSamples )
Parameters
 *pSrc points to the complex input vector *pDst points to the real output vector numSamples number of complex samples in the input vector
Returns
none.

Scaling and Overflow Behavior:

The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format. Input down scaling is not required.