CMSIS-DSP  Version 1.5.2 CMSIS DSP Software Library
Matrix Inverse

## Functions

arm_status arm_mat_inverse_f32 (const arm_matrix_instance_f32 *pSrc, arm_matrix_instance_f32 *pDst)
Floating-point matrix inverse. More...

arm_status arm_mat_inverse_f64 (const arm_matrix_instance_f64 *pSrc, arm_matrix_instance_f64 *pDst)
Floating-point matrix inverse. More...

## Description

Computes the inverse of a matrix.

The inverse is defined only if the input matrix is square and non-singular (the determinant is non-zero). The function checks that the input and output matrices are square and of the same size.

Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix inversion of floating-point matrices.

Algorithm
The Gauss-Jordan method is used to find the inverse. The algorithm performs a sequence of elementary row-operations until it reduces the input matrix to an identity matrix. Applying the same sequence of elementary row-operations to an identity matrix yields the inverse matrix. If the input matrix is singular, then the algorithm terminates and returns error status `ARM_MATH_SINGULAR`.
Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method

## Function Documentation

 arm_status arm_mat_inverse_f32 ( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst )
Parameters
 [in] *pSrc points to input matrix structure [out] *pDst points to output matrix structure
Returns
The function returns `ARM_MATH_SIZE_MISMATCH` if the input matrix is not square or if the size of the output matrix does not match the size of the input matrix. If the input matrix is found to be singular (non-invertible), then the function returns `ARM_MATH_SINGULAR`. Otherwise, the function returns `ARM_MATH_SUCCESS`.

Referenced by main().

 arm_status arm_mat_inverse_f64 ( const arm_matrix_instance_f64 * pSrc, arm_matrix_instance_f64 * pDst )
Parameters
 [in] *pSrc points to input matrix structure [out] *pDst points to output matrix structure
Returns
The function returns `ARM_MATH_SIZE_MISMATCH` if the input matrix is not square or if the size of the output matrix does not match the size of the input matrix. If the input matrix is found to be singular (non-invertible), then the function returns `ARM_MATH_SINGULAR`. Otherwise, the function returns `ARM_MATH_SUCCESS`.