
Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 1

and

Present

Developing with

CMSIS-RTOS , RTX and
the STM32F0 Discovery

Board

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 2

Table of Contents

1.0 RTX Workshop for Beginners and Intermediate Users.. 3

1.1 Equipment needed ... 3

1.2 Hardware Connection ... 3

1.3 Learning Structure ... 4

1.5 Document Conventions .. 4

1.6 Installing the workbook Files .. 4

2.0 Session 1 – Setting up RTX and debugging ... 6

2.1 Configuration of RTX ... 6

2.3 Basic Task Creation ...10

2.4 RTX Idle Daemon ..15

2.4 Debugging an RTX application with MDK ...16

3.0 Session 2 – Using Interrupts and Signals ...22

3.1 Starting up the project ..22

3.2 Adding code to deal with the interrupt ..23

3.3 Analyze the program in Debug ..28

4.0 Workbook Conclusion ...32

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 3

1.0 RTX Workshop for Beginners and Intermediate Users

This workshop and workbook are designed to provide an introduction to the
CMSIS-RTOS API and the open source edition of the RTX Real Time Operating
System.

RTX is provided by ARM as the reference implementation for CMSIS-RTOS
compliant RTOS implementations. It is available under a simple BSD license
making it straightforward to use and redistribute.

The examples in this workbook are written to work on the STM32F05x
Discovery Board and make use of the STM32 Standard Peripheral Library and
could therefore be easily translated to any other STM32 platform.

1.1 Equipment needed

1. STM32F05x Discovery Board
2. MDK-ARM v4.5 or higher (The free version called MDK-Lite is adequate

for running the examples in this workshop)

1.2 Hardware Connection

Connect the hardware as shown in Figure 1.

Figure 1. Hardware Connection

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 4

1.3 Learning Structure

Each session will focus on a key learning area and will make extensive use of
hands-on examples.

When you look at the example files, you will notice that there is a Hardware
Abstraction Layer (or HAL). While this may seem over complicated, it is done
this way deliberately to ensure that the learning experience is focused on RTX
rather than configuration of the MCU it is being used on.

Session 1

 Basic setup and configuration of CMSIS-RTOS : RTX in a MDK project
 Writing a task for RTX
 Use of the RTX aware debug tools built in to MDK

Session 2

 Use of Interrupts in an RTX application
 Introduction to RTX events system

1.5 Document Conventions

Where there are actions for the user of the document to take they will appear in
blue-background boxes like this:

Actions for the user will be in a box like this.

There may also be pictures or icons to help guide you to the correct place in the
example.

Any additional information will appear as standard text.

1.6 Installing the workbook Files

You will have been provided with a zip file called KeilWS5.zip, this needs ot be
copied to your PC and unzipped to be used in the workshop.

Unzip the file KeilWS5.zip to C:\

If you choose another path, you must remember it as the workbook instructions
will assume you have use the path above.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 5

When the workbook is extracted to the default location, the directory structure
will look like this:

There are folders for the examples, an electronic copy of the work book and a
folder called ‘Library_code’.

The Library_code folder contains all the source material used for CMSIS, RTX and
for the STM32 standard peripheral libraries. The various examples in this
workbook link to the files in this directory as required.

There is also full documentation for the CMSIS v3 implementation included, this
documentation can be viewed using a standard web browser such as internet
explorer or Chrome.

The CMSIS documentation can be found in:

C:\KeilWS5\Library_code\CMSIS

And double click the index.html file to open the documentation.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 6

2.0 Session 1 – Setting up RTX and debugging

This Session will run through the configuration of CMSIS-RTOS : RTX in a MDK
project, the basic creation of tasks (and the Idle Daemon) and will then move on
to using the RTX aware debug tools that are part of MDK.

2.1 Configuration of RTX

Open the project for Example 1.

Assuming you followed the default installation instructions (section 1.6) you will
find this in the following directory:

C:\KeilWS2\EX1

The workspace project is called:

EX1_RTX_config.uvproj

Next, we need to make sure that the project will be ready to use the RTX Real
Time Operating System. We do this using the project options dialog.

Open the project option dialog using the magic wand icon.

In the project Options dialog, select the Target tab.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 7

In the Target tab, find the drop-down box for Operating System Support and
select the RTX option.

Click on OK to close the Target Option Dialog.

This action ensures that MDK is fully aware that we are using the RTX RTOS and
will enable the RTX aware debug windows.

The next action is to configure the RTX RTOS to work the way we need it to for
our application.

The project needs to have access to the file RTX_Conf_CM.c as this is the main
configuration file for RTX. In this example the file is already added to the project
source list, however if you should need to locate this file for a different project
you can copy it from this example project or it can be found in the standard Keil
installation directory at C:\KEIL\ARM\STARTUP.

As we have the file in our application already we can move directly to the
configuration phase.

In the project, open the file RTX_Conf_CM.c (double click on the file to open it)

Scroll to line 35, notice the include:

#include “cmsis_os.h”

This is a call to include the CMSIS-RTOS API header.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 8

Notice at the bottom of the window you can see a tab for the source file and a tab
for a Configuration Wizard.

Click on the Configuration Wizard Tab.

In the RTX Configuration Wizard we can change all the major elements of how
RTX will operate.

Click the Expand All button to see all the configuration options.

Any changes made in the Configuration Wizard will appear directly in the source
code for RTX_Conf_CM.c

We can now configure RTX to make sure it will operate the way we need it to for
our application.

Figure 4 shows how we need RTX to be configured:

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 9

Figure 4. RTX Configuration for KeilWS5 Ex1

When you left click on a parameter the information panel at the bottom of the
configuration wizard offers some explanation for the chosen parameter.

The Number of Concurrent Running Tasks can be set to a maximum of 250 but
you can have an unlimited number of Defined Tasks.

The Task Stack Size in Bytes when set here will apply to all tasks in the
application. It is possible to set individual stack sizes for tasks if required.

The only hardware resource that RTX consumes is the Systick Timer on the
Cortex-M microcontroller. Here we can configure the clock that is applied to the
Systick and subsequently the Timer Tick value that will be used as a Heart Beat
for RTX to manage the tasks and timing in the application.

In our example we are using a Timer Tick of 1 ms.

If required, using this dialog you can also select Round Robin task switching and
fix the delay at which the Round Robin switch will occur.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 10

For our application all task switching will be co-operative (so when a thread has
finished what it needs to do, it passes runtime on to the next available thread).

We will also make use of thread Priority levels – a higher priority thread can take
runtime from an active low priority task.

Ensure your RTX Configuration window shows the same values as in Figure 4,
correct anything that is different!

2.3 Basic Task Creation

In an RTOS, the basic unit of execution is a “Task”. A task is very similar to a C
procedure, but has some fundamental differences.

Table 1. Task and Procedure differences

We always expect to return from C functions, however, once started an RTOS
task must contain an endless loop, so that it never terminates and thus runs
forever.

You can think of a task or thread as a mini self-contained program that runs
within the RTOS. While each task runs in an endless loop, the task itself may be
started by other tasks and stopped by itself or other tasks.

When a thread is created, it is allocated its own thread ID. This is a variable,
which acts as a handle for each task and is used when we want to manage the
activity of the task.

Some ‘system’ threads are created automatically by RTX, such as the idle
daemon. We will look at the idel daemon in more detail later in this workbook.

Let’s create the first thread for our application.

Open the file EX1_RTX_config.c

In our application, this will be the main source file and will contain all out
threads and their definitions.

The thread we create now will be called LED_0, it will simply toggle and LED on
the target hardware every 500 msec.

The HAL (LED.c in this case) will take care of the manipulation of the hardware
registers so that you can focus on learning about CMSIS-RTOS and RTX.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 11

In the file EX1_RTX_config.c at line 55 add the following (use the comments in
the file to guide you):

void led_0 (void const *argument) {

 for (;;){

 }

}

This gives us the basic elements of the thread. The first line:

void LED_Task (void const *argument) {

is used to create the basic element of the thread.

Next, the for(;;) command sets up the main loop in the thread that will run
forever. Now we need to add some action into our thread to make the LED on
the board flash.

Inside the while(1) loop add the following:

LED_On(0); /* Turn LED 0 On */

osDelay(500);

 /* Delay running task for 500 ticks */

LED_Off(0);

 /* Turn LED 0 On */

osDelay(500);

 /* Delay running task for 500 ticks */

LED_0_toggle_counter++; /* Increment LED 0 toggle counter */

The LED_On and LED_Off calls are into the HAL for control of the MCU hardware.
IF you are interested to know how the HAL works you can look into the files but
they are not relevant for learning RTX.

The line osDelay(500) will put the task into a state where it is waiting for a fixed
period of time (500 OS Ticks, which in our application is 500 msec).

When a thread is in this state, it is no longer the running/active thread so other
threads in the RTOS application are able to execute. When the delay specified
has elapsed, the thread returns to a ready state and is scheduled by RTX.

A thread can be in one of four basic states:

RUNNING, READY, WAITING, or INACTIVE.

In a given system, only one thread can be running, that is, the CPU is executing its
instructions while all the other threads are suspended in one of the other states.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 12

RTX has various methods of inter-thread communication: signals, semaphores,
and messages. Here, a thread may be suspended to wait to be signalled by
another thread before it resumes its READY state, at which point it can be placed
into RUNNING state by the RTX scheduler.

At any moment a single thread may be running. Threads may also be waiting on
an OS event. When this occurs, the threads return to the READY state and are
scheduled by the kernel.

Figure 5. Possible Task states and transitions in RTX

If you have entered all the code correctly, your finished task should look like this:

Figure 6. Completed LED_0 thread for Session 1

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 13

Next we need to declare the Thread ID using the CMSIS-RTOS API.

In the file Ex1_RTX_config.c

At line 28 insert the following:

osThreadId T_led_0;

The line osThreadId T_led_0; makes a declaration to RTX of the name of the
thread, in this case T_LED_0.

This is a variable, which acts as a handle for each thread and is used when we
want to manage the activity of the thread.

We need to link this thread ID to the actual code of the thread itself. We can do
that in the same line of code we use to initialise the thread in the application.
Before we do that however, we need to define our thread. This is achieved using
the CMSIS-RTOS API function osThreadDef(). This function has four parameters:

name name of the thread function.

priority initial priority of the thread function.

instances number of possible thread instances.

stacksz stack size (in bytes) requirements for the thread function.

In the file Ex1_RTX_config.c

At line 42 insert the following

osThreadDef(led_0, osPriorityNormal, 1, 0);

This defines the thread to have:

name led_0

priority normal

instances 1

stacksz 0 (uses the default thread stack size we configured earlier)

We also need to create a Forward reference so the compiler can handle the
thread declaration efficiently.

In the file Ex1_RTX_config.c

At line 35 insert the following

void led_0 (void const *argument);

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 14

Now we need to initialise our RTX application.

We do this in main() int the file Ex1_RTX_config.c and this is where we will also
link the thread ID we made earlier to the thread definition and the thread code.

Main() is also treated like a thread in CMSIS-RTOS and RTX but as it is a ‘system’
function it doesn’t need a thread ID or a definition.

In the file Ex1_RTX_config.c at line 94 add the following:

T_led_0 = osThreadCreate(osThread(led_0), NULL);

T_led_0 This section determines which task the rest of the line affects.
Its the thread Id we created earlier.

osThreadCreate This is a CMSIS-RTOS API command to RTX to actually create
the task, it is followed by parameters for the task to be
created.

Table 2. Breakdown of Thread Creation code line

The thread function receives the argument pointer as function argument when
the function is started. When the priority of the created thread function is higher
than the current RUNNING thread, the created thread function starts instantly
and becomes the new RUNNING thread.

As main() is also treated as a thread, we need to make sure it doesn’t take
runtime in the application unless needed. To do this we can add a simple CMSIS-
RTOs API command to surrender runtime from the main() thread to the rest of
the application.

In the file Ex1_RTX_config.c

At line 97 insert the following:

osThreadYield();

This line will cause the main() thread to delete yield its requirement for runtime
once it has completed. We only need it to run once, so having it yield frees up
resources in the application for other threads to use in run time.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 15

2.4 RTX Idle Demon

The thread we have created will spend a lot of its time in the WAIT DELAY state.
You will have noticed as we went through the exercise that there was also
another thread, similar to the one you created, that will control a different LED at
a different speed. Both tasks will spend a majority of their time in WAIT DELAY.

As there are no other threads running in our application, there could be a lot of
‘down time’ where there is no active running thread. In this case we could use an
idle demon.

RTX creates the idle demon for you, there is no need to add or modify any code to
have this idle demon active in your application but you can control what happens
when the application is running the idle demon.

In this example we do not want anything special to happen in the idle demon, but
a variable has been added to act as a counter to provide a visualisation for you in
the debugger so you can see the time spent in the active threads and the time
spent in the idle demon.

The code for the Idle Demon is in the file RTX_Conf_CM.c, the default location in
the file is line 211:

Figure 7. Idle Demon in RTX Configuration File

Now we have all the elements we need to complete the session 1 code.

Build the Session 1 application buy pressing the Re-Build All Button

The project should build with zero errors or warnings.

If you have any problems please ask the person running the workshop for help!

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 16

2.4 Debugging an RTX application with MDK

Now we have the application successfully built, we can enter debug. In this
workbook and associated exercises, all of the debug settings are pre-configured
so we can simply enter directly into the debug session. (If you want to learn
more about configuration of the debug settings, please refer to KeilWS1.)

Enter the debug session by pressing the Start/Stop Debug button (or by
pressing Ctrl+F5)

Now we need to open the special RTX aware debug windows. We can do this
through the Debug menu in the debug environment.

From the Menu bar select:

Debug > OS Support > RTX Tasks and System

This will open a new window on the right hand side of the MDK debug view. The
RTX Tasks and System window will update while the application is running and
will show you information about the configuration of RTX as determined by the

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 17

settings you put into the Configuration Wizard earlier in this exercise (making it
easy to spot any configuration mistakes) and information on all threads that
have been created in the application, such as thread name and priority, running
state and stack usage.

We also want to watch a few variables to give us an indication of how the
program is behaving. We can do this easily using the command line to set the
variables to watch in watch window 1.

Open the Watch1 window using:

View \ Watch Windows \ Watch 1

Check for the following variables:

idle_count

LED_0_toggle_counter

LED_1_toggle_counter

If they are NOT present, add them using the following commands:

Locate the Command Input line near the bottom left of the MDK-ARM window

At the command prompt type:

WS 1, `idle_count

And press ‘enter’

Then type

WS 1, `LED_0_toggle_counter

And press enter

And lastly type

WS 1, `LED_1_toggle_counter

And press enter

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 18

Look to the right hand side of the MDK-ARM debug environment and you will see
the Watch 1 window with the variables you just added.

Note, you could also add variable to the watch window by locating them in the
source code window and using the right-click context menu.

We have now configured the debug environment to show us what we need for
this example.

Start the application running with the run button.

Look in the RTX Task and System window to see the data changing.

See also on the target hardware that the LEDs are flashing at different rates.

Note:

The speed at which this data updates is directly related to the debug adaptor that
is being used. The ST-Link hardware can only run the SWD interface at a speed
of 1MHz which limits the rate at which this data can be extracted from the target
MCU. Switching to the ULINKpro debug adaptor would give you the option of
running this interface much faster (up to 50MHz) and the data in this window
would then update much faster.

After a few seconds, stop the application using the stop button.

The RTX Tasks and System window will look similar to that shown in Figure 8.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 19

Figure 8. RTX Task and System Viewer in Session 1

The sections of data highlighted in the teal colour show they have been updated
since the last refresh of the window.

You can see clearly the information on the tasks in the system too, showing the
task name, priority, current operating state along with other elements.

You can see using the Watch 1 window that a significantly greater amount of
time has been spent in the idle daemon than in the LED flash threads.

Figure 9. Watch window from example 1

You can see more information about the resources used by threads in the
application by looking at the Call Stack + Locals window.

Click on the Call Stack + Locals tab (near the bottom right of the debug window)

Expand the + sign next to led_0

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 20

The Call Stack + Locals window provides the developer with up to date
information for the threads running in the RTOs application.

You can see each function in a given thread and the data associated with that
function. All entries are labelled so it is easy to identify what you are looking for.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 21

Note:

The Cortex-M0 does not support the SWO (Serial Wire Output) debug interface
so we cannot use MDK-ARM’s RTX event viewer, but it is worth pointing out that
this same application run on a Cortex-M3 or Cortex-M4 would be able to show a
complete historical timeline of the thread transitions and present various data
for each thread such as min, max and average runtime, number of calls etc.
There are also measurement cursors in the event viewer so the developer can
easily determine the behaviour of their RTX based application.

An active event viewer window will look similar to this:

Figure 10. Event Viewer sample screenshot

There are many other debug functions available in MDK-ARM but they are
beyond the scope of this workbook (we are concentrating on RTX!) .

When you are finished, exit debug using the start/stop debug button.

This concludes Session 1. You have seen how to configure RTX, how to create a
thread and how to debug an RTX application using the RTOS aware debug tools
in MDK.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 22

3.0 Session 2 – Using Interrupts and Signals

In this session, we will introduce the usage of interrupts in an RTX application,
primarily to demonstrate how using RTX has no negative impact on the interrupt
system in a Cortex-M Microcontroller but additionally to show that it is easy to
implement as well! Additionally we will use RTX signals to re-activate the thread
from a waiting state.

3.1 Starting up the project

We need to be working in the Example 2 project for this session.

Close the project from session 1 if it is still open.

Navigate in the workshop directories to find the project for example 2:

C:\KeilWS5\Ex2\Ex2_RTX_events.uvproj

As with all exercises in this workbook, the HAL will manage the necessary
registers in the MCU for configuration and hardware recourses, the interrupt
settings in this case. This is of course hardware specific. The way RTX works
with them however is always the same and that is what we are more interested
in here.

The LED.c file from the previous exercise is present, but this time there is also a
file called Button.c, this has the configuration in it for setting up the interrupts on
the STM32F05x. This setup is done using the STM32 Standard Peripheral
Library.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 23

3.2 Adding code to deal with the interrupt

To demonstrate the use of interrupts we will use the ‘user’ button on the
Discovery board to generate an interrupt. When this intruupt occurs we will use
the Interrupt Service Routine to set one of the signal flags in another task to
allow it to move out of the waiting state. To achieve this we need to create a new
task, called button_control, to take care of the button press and manage the
Interrupt Service Request (ISR).

In the file Ex2_RTX_events.c add the following at line 30:

osThreadId T_button_control;

The Forward Reference has been added for you already.

And at line 44 replace the ‘xxx’ with the information below to complete the
thread definition

Name: button_control

Priority: osPriorityRealtime

Instances: 1

Stack: 0

Setting the priority to osPriorityRealtime will put this thread as the highest
priority thread in the system, so if there is a clash for required runtime in the
RTOS, this task will win and be able to serve the ISR.

At Line 114 replace the ‘xxx’ with the information necessary to create the thread
link it to its thread ID.

Thread ID: T_button_control

Thread Name: button_control

That will cover everything we need in the Ex2_RTX_events.c file to include and
create the new thread for the button press. Now we need to create the thread
itself and the handler for the Interrupt Request.

For this exercise, when we get a button press, we will simply increment a
counter variable but you could easily modify this example to do much more.

It is important to note that RTX will not add any delay to the way an interrupt
works on a Cortex-M microcontroller, so in the case of the Cortex-M3 the fixed 12
cycle entry to the ISR will remain valid.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 24

First we will look at the interrupt handler for the Interrupt Request and we are
going to make use of the signals system in RTX to trigger the button thread from
the Interrupt handler.

When each thread is first created, it has sixteen signal flags. These are stored in
the Thread Control Block. It is possible to halt the execution of a thread until a
particular signal flag or group of signal flags are set by another thread in the
system.

Figure 11. Event Flags

Each thread has upto 31 signal flags (set by a define in the CMSIS-RTOS API). A
thread may be placed into a waiting state until a pattern of flags is set by another
thread. When this happens, it will return to the READY state and wait to be
scheduled by the kernel.

The osSignalWait call to the CMSIS-RTOS API suspends execution of the thread
and places it into the WAITING state. We can wait for a group of event flags to be
set or until one flag in a selected group is set. It is also possible to define a
periodic timeout after which the waiting task will move back to the READY state,
so that it can resume execution when selected by the scheduler. Additionally, a
value of osWaitForever can be used to define an infinite timeout period.

Any thread can set the signal flags of any other thread with the CMSIS-RTOS API
call osSignalSet or clear them with osSignalClear. The flags can also be set
and cleared by Interrupt Service Routines using the same API calls The Thread
ID is used to determine the target for those API calls.

When a thread resumes execution after it has been waiting for an osSignalWait
function to complete, it may need to determine which event flag has been set.
The osSignalGet function allows you to determine the signal flag that was set in
the current running thread. You can then execute the correct code for this
condition.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 25

In the file Ex2_RTX_rvents.c look at line 52 for the function

void Button_IRQHandler (void)

This function Button_IRQHandler() is the handler for the Interrupt Service
Routine used by RTX (the hardware level for the IRQ handler is dealt with in the
HAL in button.c). In here we need to set an signal that will control the behavior of
the button_control thread.

In the function void Button_IRQHandler (void) insert the following:

osSignalSet (T_button_control,0x0001);

We have now set an signal flag (flag 1) from inside the Interrupt Service Routine
for the thread button_control. Now we can move on to the button_control
thread content itself.

In the file Ex2_RTX_events.c find at line 87:

void button_control (void const *argument) {

You will notice there is some code in this thread already, the basics are there but
we will now add the lines to deal with the signal flags.

The way we want this thread to run is as follows:

Upon the thread being created and run for the first time, it will enable the IRQ for
the button and then go into a wait mode until the signal flag from the button
interrupt is set. When this flag is set, the thread will continue to run – clear the
signal flag and increment the counter variable, run a debounce delay for the
button (during which time other threads can run) then enable the IRQ again (it
was disabled by the IRQ request). It will then go back to the wait state (so other
threads can run) until another interrupt occurs to set the signal flag. See figure
12 below for flow diagram.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 26

Figure 12. button_control thread Flow Diagram

In the button_control thread enter the following:

After the line EnableButtonIRQ(); insert

osSignalWait (0x0001,osWaitForever);

This tells the thread to wait for signal flag 0x0001. The osWaitForever is the time
to wait – in this case an infinite period – you could also specify a value of OS ticks
here instead.

On the next line add

osSignalClear (T_button_control, 0x01);

This clears signal flag 0x0001 in thread button_control.

If you have entered all the lines correctly your button_control thread should
look like this:

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 27

Figure 13. Completed button_control thread for Session 2

Now you can compile the project and enter debug to see how it works!

Compile the project using the Rebuild All button

Enter debug using the Start/Stop Debug Button

If the project does not build, ask for help from your instructor.

The configuration of the project for entering debug is already setup, and is the
same as for example 1. An additional variable has been added to the Watch 1
window to count and show the number of times the button gets pressed.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 28

3.3 Analyze the program in Debug

In the debug environment we can see how this application behaves. The button
on the target hardware we will use to generate the interrupt is labeled on the
board as ‘USER’. It is located on the bottom edge of the board on the left hand
side.

When in the debug environment, open the RTX Task and System Window using
the menu options:

Debug > OS Support > RTX Task and System

Notice the Watch 1 window has 4 variables in it, the two LED counters and the
idle counter from session 1 and now a button press counter aswell.

Next, start the application running using the start button

In the RTX Task and System window we can that see the tasks are correctly
created and have the priority we set for them.

Figure 14. RTX System Viewer in Session 2

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 29

With the application running you can see the variables in the watch window
incrementing the same as in example 1.

You can also see in the RTX system window that the thread button_control is sat
waiting for a signal flag and you can verify that the signal mask is set to what you
intended.

Press the USER button on the discovery board.

Note that the button_counter variable has incremented!

Press the button a few more times to see the variable increment – how exciting!!

We can see the signals flags being cleared if we set a couple of breakpoints. We
don’t need to stop the application to add the breakpoints.

In the source window, ensure the file Ex1_RTX_events.c is in focus.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 30

At line 53 insert a breakpoint (left click in the margin to the left of the source
code)

Scroll to line 92 in the same file and insert another breakpoint

With the application running, press the USER button on the hardware, the first
breakpoint (in the ISR handler) will be hit. At this point the signal flag is not set
to the mask in the RTX system viewer still shows:

Press the run button to move on to the next breakpoint

Now we can see that the event flag has been set as we have been able to progress
past the ‘wait forever’ condition inside the button_control thread. Also in the
RTX system viewer we can see the pending signal mask has been satisfied.

Press the run button again and you will see that the RTX system viewer
once again shows the signal mask that the button_control thread is waiting for.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 31

This concludes session 2. We have covered the usage of interrupts from the
system into an CMSIS-RTOs based application and we did not have to do
anything ‘special’ to the interrupts to make them work, there were defined just
the same as in a system that did not make use of an RTOS.

We have also seen how to use the signal system to control the behavior of
threads in the RTOS application. In this example we used a real-world interrupt
to control the behavior of one of the threads, but you could also pass these
signals between threads inside the RTOS.

Developing with CMSIS-RTOS and RTX (open source) V1.5 Page 32

4.0 Workbook Conclusion

This workbook is not intended to make you an expert on using CMSIS-RTOS and
RTX, but it does give you a solid base from which to start.

You now have first hand, practical experience of using both the CMSIS-RTOS API
and the RTX real time operating system and have manipulated some of the major
elements.

You also have good projects to use as a reference platform from which to build
your own application.

Further information on using RTX can be read at:

www.keil.com/arm

http://www.keil.com/support/man/docs/rlarm/rlarm_ar_artxarm.htm

