
1

Advanced Debugging for
Cortex™-M Microcontroller

Reinhard Keil
Director MCU Tools

2

Agenda
 CoreSight™ Debug Technology for Cortex-M MCUs
 Debug and Trace Components of a Cortex-M Microcontroller
 Debug and Trace Connectors
 Debug and Trace Adapters and Streaming Trace Concept

 Using Debug and Trace
 Debugging Systems without Stopping Code Execution
 Trace Record Displays
 ITM: Instrumented Trace with Code Annotations
 DWT: Exception Trace, Timing Information, Data Access Trace
 ETM: Instruction Trace for Code Execution Analysis

 Development Tool Demonstration

CONFIDENTIAL3

Coresight™ Debug Technology (Cortex-M)
Start, Stop, and Single-step

User Program

8 Hardware
Breakpoints in
User Program

Application Trace
Information:
Debug printf,
RTOS nfo,
Unit Test,

UML Annotation

ITM, DWT, ETM
Output via

4 trace data pins
+ 1 clock pin

Data Trace or
Access Breakpoints

for 4 Variables

Timing Information
PC Sampling,

Event Counters,
Interrupt Execution

On-the-Fly (while
User Program runs)
read/write access
to Variables and

Memory Contents

JTAG (5-pin) or
Serial Wire (2-pin

+ 1 trace pin)

Instruction Stream for
Code Execution Analysis,

Time Profiling, Code Coverage

ITM, DWT Output via
1 serial trace data pin

(UART or Manchester Mode)

Trace (ETM, ITM, DWT) not available on Cortex-M0

4

Debug and Trace Connectors

20-pin (0.1”) ARM JTAG

10-pin (0.05”) Cortex Debug

20-pin (0.05”)
Cortex Debug+ETM

More Information: www.keil.com/coresight/connectors.asp

20-pin (0.1”) or 10-pin (0.05”) Connector
 Identical Debugging capabilities
Support 2 Operating Modes:

 Standard 5-pin JTAG mode (device chaining)
 Serial CoreSight mode
 2-pin Serial Wire Debug (SWD)
 1-pin Serial Wire Trace Output (SWO) for

Data Trace at minimum system cost

20-pin (0.05”) Debug+ETM Connector
 Superset of 10-pin 0.05” Connector
 Adds 4 (trace data) +1 (trace clock) pins

for high-speed Data + Instruction Trace in
any operating mode (JTAG or SWD)

Presenter
Presentation Notes
Enhanced Debug UnitMore breakpointsMore data watchpointsOn-the-fly debuggingDebug running applicationsSet breakpointsRead/write memoryInstrumented TraceFlexible trace optionsData Trace (Cortex-M3)Optional Instruction Trace (ETM)Smaller Low-cost Connectors10-pin 0.05” JTAG or 2-pin interfaceSingle Pin Data Trace20-pin 0.05”Adds ETM interface

5

Debug and Trace Adapters
ULINK2: Debug + Serial Wire Trace
 Flash Programming + Run-Control
 Memory + Breakpoint (access while running)
 Serial Wire Trace Capturing up to 1Mbit/sec

(UART mode)

ULINKpro: adds ETM + Streaming Trace
 Cortex-M processors running up to 200MHz
 50MHz JTAG clock speed
 Serial Wire Trace Capturing up to 100Mbit/sec

(Manchester Mode)
 ETM Trace Capturing up to 800Mbit/sec

 Virtually un-limited Trace Buffer
 Streaming Trace allows complete

Code Coverage and Performance Analysis

Presenter
Presentation Notes
Enhanced Debug UnitMore breakpointsMore data watchpointsOn-the-fly debuggingDebug running applicationsSet breakpointsRead/write memoryInstrumented TraceFlexible trace optionsData Trace (Cortex-M3)Optional Instruction Trace (ETM)Smaller Low-cost Connectors10-pin 0.05” JTAG or 2-pin interfaceSingle Pin Data Trace20-pin 0.05”Adds ETM interface

6

What is Streaming Trace?
 Trace data transferred in

real-time to debug host
 Capture size only limited by host

resources (harddisk)
 Trace for minutes, hours, or longer
 Required for full code-coverage

and timing analysis
 Today’s workstations can present

trace data instantly

Presenter
Presentation Notes
Enhanced Debug UnitMore breakpointsMore data watchpointsOn-the-fly debuggingDebug running applicationsSet breakpointsRead/write memoryInstrumented TraceFlexible trace optionsData Trace (Cortex-M3)Optional Instruction Trace (ETM)Smaller Low-cost Connectors10-pin 0.05” JTAG or 2-pin interfaceSingle Pin Data Trace20-pin 0.05”Adds ETM interface

7

Using Debug and Trace

8

Run-Stop Debugging has Limitations
 Stopping code execution changes system behaviour
 Execution timing cannot be analyzed

 Not servicing interrupts may have catastrophic results
 Buffers may overrun or connected hardware gets no service

 Many practical problems result from a run-stop debugging
 Communications systems get into timeout state
 Motor controllers freeze in high current state

9

Cortex-M CoreSight Offers Simple Solutions

 #1: Direct memory access to running system
 Native support in the debugger interface
 Values updated dynamically
 In-place editing of live variables
 Breakpoints can be set while system running
 No software overhead, no extra hardware,

works with any Cortex-M device!

 #2: printf-style output via an ITM Channel
 Output details to a debug console
 Uses CMSIS standard interface
 Intrusive (the debug printf is a routine that

adds to execution time and needs memory),
but can be shipped within the end product

10

Trace Records (DWT + ITM)
 Trace Records display program flow
 Capture timestamp, PC sample, and Read/Write accesses
 Time delay and lost cycles are noted

 Raw trace data from all trace sources
 Filter window to refine the view
 Updated while

target system
is running

11

Instrumented Trace (ITM)
 32 ITM channels: write to memory location creates trace data
 Channel 0: for printf-style debug information
 Channel 31: for RTX event viewer

 Remaining ITM channels
for user data output

// Output 32-bit variable
// to ITM channel 1
ITM->PORT[1].u32 = value;

A write operation to an ITM
channel memory location creates
a trace record with output value,

time stamp, and program location.

12

Detailed Code Analysis (ITM)
 Parasoft C++ Test™

 Complete C/C++ quality solution for:
 Static code analysis and coding policy enforcement
 Automated code review
 Automated unit and regression testing
 Host and target test execution
 Coverage analysis

 Integrated support with MDK-ARM
 Based on ULINKpro streaming trace
 Annotated code uses ITM channel

for unit test result feedback

 More information:
 Parasoft Booth: 11-202

13

Exception and Interrupt Trace (DWT)
 Statistical information about exceptions and interrupts
 Captures detailed information
 Name and number of exception; number of times entered
 Max and Min time spent in and out of exceptions

14

Event Counters (DWT)
 Display real-time values of specific event counters
 Provide performance indications
 Extra cycles taken to execute instructions
 May be due to memory contentions (Flash waitstates)

 Cycles of overhead caused by handling exceptions
 Cycles spent in sleep mode
 Number of cycles spent

performing memory accesses
 Number of folded branch

instructions

15

Logic Analyzer (DWT)
 Allows signals to be monitored graphically
 Monitor variables in the application

 Accurate timing
 Easy, fast analysis of signal timing with access to source code
 View delta changes from

cursor to current location

 Code analysis
 View instruction that

caused variable change

16

Instruction Trace (ETM)
 Execution history of all executed instructions
 Instruction Trace window displays: cycle count (timing) and assembly

code synchronized to the C source code.

 Instruction Trace is useful to analyze sporadic problems
 Data corruption by incorrect interrupt/thread protection
 Incorrect timing caused by interrupt/thread nesting

17

Sporadic Data Problem (ETM)
void Alert (void) { // Alarm Function

if (clock.min != 59 && // Validate Time

clock.hour != 12) {

debug_printf ("System Should never be there");

}

}

void CheckAlert (void) { // check for alarm at 12:59

if (clock.min == 59 && // check minute for 59

clock.hour == 12) { // check hour for 12

Alert (); // call Alarm Function

:

Instruction Trace shows Interrupt Execution
within the compare statement

18

Code Coverage (ETM)
 Complete software validation requires code coverage
 Product liability and industry standards (IEC61508) demand for testing

according to “State of Science and Technology” methodologies

 ETM enabled devices provide complete instruction stream
 Non-intrusive - use final, optimized code at full speed

 Feedback provided directly in the debugger window
 Source & disassembly view
 Color-coded details for

individual instructions
 Summary analysis by

function or module

 Log File Support
 Coverage information can

be saved for documentation

19

Execution Time Profiling and Analysis (ETM)
 Instruction Trace provides timing information
 Identify where most time is spent in your application

 Isolate problems by finding which C statements take longer
than expected to execute

20

Compiler Optimizations
 Compilation tools feature range of optimization options
 These enable you to target your application to its needs

 User control
 Select optimization options to suit target application/device

 Intelligent tools
 Automatic optimizations,

no changes required in
source code
 Does not interfere with

the functional behaviour
of the code

21

Optimization examples - RVCT
 Application optimized for smallest code size †

 Application optimized for best performance ‡

 C:\Keil\ARM\Boards\Keil\MCBSTM32\Measure\Measure.uv2 †

 C:\Keil\ARM\Examples\DHRY\DHRY.uv2 using an Atmel AT91SAM7 device ‡

Optimization Compile Size Size Reduction %age Reduction
No optimization 13,656 Bytes

MicroLIB 8,960 Bytes 4,696 Bytes 34.4%

Optimization Level 2 12,936 Bytes 720 Bytes 5.3%

Both Options 8,264 Bytes 5,392 Bytes 39.5%

Measurement No Optimization Fully Optimized Improvement
dhry_1 2.829s 1.695s 40.1% faster

dhry_2 2.014s 1.011s 49.8% faster

µs per Dhrystone 138.0 70 49.3% faster

22

END

Thank you

	Advanced Debugging for �Cortex™-M Microcontroller ��Reinhard Keil�Director MCU Tools
	Agenda
	Coresight™ Debug Technology (Cortex-M)
	Debug and Trace Connectors
	Debug and Trace Adapters
	What is Streaming Trace?
	Using Debug and Trace
	Run-Stop Debugging has Limitations
	Cortex-M CoreSight Offers Simple Solutions
	Trace Records (DWT + ITM)
	Instrumented Trace (ITM)
	Detailed Code Analysis (ITM)
	Exception and Interrupt Trace (DWT)
	Event Counters (DWT)
	Logic Analyzer (DWT)
	Instruction Trace (ETM)
	Sporadic Data Problem (ETM)
	Code Coverage (ETM)
	Execution Time Profiling and Analysis (ETM)
	Compiler Optimizations
	Optimization examples - RVCT
	END

