
[image: image1.png]
C Compilers • Real-Time OS • Simulators • Education • Evaluation Boards

Implementing Display DLL’s for
 Application Note 144
User Defined Outputs

Nov 26, 2007, Munich, Germany

by
Peter Holzer, Keil – An ARM Company support.intl@keil.com ++49 89 456040-0

The µVision Debugger supports an interface to display DLL’s. Display DLL’s can be used to present task and other status information of real-time operating systems. However the capabilities are not limited to real-time operating systems, every kind of status information, i.e. the file table structure of smart card operating systems can be displayed.

[image: image2.png]
Example: RTX-51 Tiny Task List dialog

Select the User Display DLL within µVision

The DLL Driver Name for external Display DLL’s is stored in the file C:\KEIL\TOOLS.INI. An new driver is installed by adding the name and path to the C:\KEIL\TOOLS.INI file. Each CPU family has its own section in the TOOLS.INI file.

Example for a TOOLS.INI file:

 [UV2]
 ORGANIZATION="Your company name"
 :

 [C166]
 PATH="C:\Keil\C166"
 BOOK0=HLP\RELEASE.TXT("Release Notes")
 :
 RTOS0=C:\CMX\BIN\UV2CMX.DLL ("CMX-166")
 RTOS1=C:\RTXC\UV2RTXC.DLL ("RTXC-166")

 [C51]
 PATH="C:\Keil\C166"
 RTOS0=C:\MYDLL\SMARTFILE.DLL ("SmartCard File System")

The display DLL’s that should be used during system debugging can be selected in the Options for Target - Target page under Operating System. At the time the µVision debugger is started, the display DLL is automatically loaded and initialized. The DLL dialog can be opened in the µVision menu under Peripherals – DLL Defined Name. The RTOSn identifiers are used to register display dynamic link libraries (dll) where ‘n’ is a number in range 1 to 6.

User Display DLL Interface Functions

A sample source code of a user display DLL can be found in the file RTXTINY.CPP. The following functions are used in context with the user display DLL interface.

	Function:
	Description:

	BootDll
	Generic µVision interface function to the Display DLL. This function is called from the µVision debugger with the following function codes:

nCode = 1: init call to display DLL. p1 is a data pointer to struct bom that contains interface functions and data of the µVision debugger. The display DLL may initilize the following pointers in the struct bom:

 pMrtx
address of menu array, see explanation below.
 RtxUpdate
address of update dialog function; called by µVision to update

the information in all open dialogs.
 TaskRun
address of _TaskRunning_ debug function. For a description of

the usage refer to the Getting Started and Creating Applications

User’s Guide, Chapter 8 RTX Kernel Aware Debugging.

nCode = 3: 2nd init call to display DLL. p1 is a data pointer to struct dbgblk that contains information about the target system and the debug environment.

nCode = 4: shut down call to display DLL. No further parameters passed. The DLL must free all resources and close open dialogs.

	pio
	Is a pointer to struct bom that is passed with the BootDLL function call. The files BOM.H and COMTYP.H contain various definitions that are used within the following functions. The struct bom contains the addresses the following functions:

	void FetchItem
	(UINT64 nAdr, TYP *tp, union v *pU)

Fetch CPU memory addressed by nAdr to union v. The data type (char, int, long, …) is given by TYP *tp.

	SYM * FindPub
	(char *name)

Returns the symbol information for a given public symbol name. A null pointer is returned if the search fails.

	SYM * PubSymByVal
	(UINT64 nVal, DWORD nMask)

Returns the symbol information for a given value nVal. nMask denotes the symbol table to search for. For example, nMask = F66_LOC searches for function entries or assembler labels. F66_VAR searches for data symbols. A null pointer is returned if the search fails.

	DWORD ReadMem
DWORD WriteMem
	(DWORD nAdr, DWORD nMany, BYTE *vp)

Read or Write to CPU memory at address nAdr. nMany is the number of bytes to transfer. vp is a pointer to the buffer. This functions returns a 0 if OK, otherwise the address is return where no memory access was possible.

Menu Structure

The µVision Display interface allows you to implement several menu entries under the µVision peripheral menu include pop-up menus. The following lists the struct defintions that are used to define menu items. All definitions are in the file BOM.H.

#define DLGD struct DlgDat
struct DlgDat { // every dialog has it's own structure
 DWORD iOpen; // auto reopen dialog (pos := 'rc')
 HWND hw; // Hwnd of Dialog
 BOOL (CALLBACK *wp) (HWND hw, UINT msg, WPARAM wp, LPARAM lp);
 RECT rc; // Position rectangle
 void (*Update) (void); // Update dialog content
 void (*Kill) (DLGD *pM); // Kill dialog
 void *vp; // reserved for C++ Dialogs (Dlg *this)
};

#define DYM struct DynaM
struct DynaM { // Menu item data structure
 int nDelim; // Menu template delimiter: 1=normal entry, 2=popup entry,
 -1=end of menu, -2=end of popup entry
 char *szText; // Menu item text
 void (*fp) (DYM *pM); // function to be activated on menu selection
 DWORD nID; // uv2 assigned ID_xxxx
 DWORD nDlgId; // Dialog ID
 DLGD *pDlg; // link to dialog attributes
};

Example for a user defined menu:

DLGD TaskDlg[] = { // must not use 'const' here !
//iOpen Hwnd Dlg Proc. Rect: -1 := default Update Fct Kill Fct
 { 0, NULL, NULL, { -1, -1, -1, -1, }, TaskUpdate, TaskKill },
};

DLGD Int0Dlg[] = { // must not use 'const' here !
//iOpen Hwnd Dlg Proc. Rect: -1 := default Update Fct Kill Fct
 { 0, NULL, NULL, { -1, -1, -1, -1, }, Int0Update, Int0Kill },
};

DLGD Int0Dlg[] = { // must not use 'const' here !
//iOpen Hwnd Dlg Proc. Rect: -1 := default Update Fct Kill Fct
 { 0, NULL, NULL, { -1, -1, -1, -1, }, Int0Update, Int0Kill },
};

DYM my_menu [] = {
//nDelim szText fp nID nDlgId pDlg
 { 1, "&Task Table" , TaskDisp, 0, IDD_TASK, &TaskDlg }, // Task Table display
 { 2, "&Interrupts" , NULL, 0, 0, NULL }, // Interupt pop-up menu
 { 1, "Interpt. &0" , Int0Disp, 0, IDD_INT0, &Int0Dlg }, // Interupt-0 display
 { 1, "Interpt. &1" , Int1Disp, 0, IDD_INT1, &Int1Dlg }, // Interupt-0 display
 { -2, NULL , NULL, 0, 0, NULL }, // End of Port-Group
 { -1, NULL , NULL, 0, 0, NULL }, // End of Table
};

A sample dialog project for the RTX Tiny debug DLL’s is available in source form as Microsoft Visual C .NET-2005 project and can be freely modified. This code can be used freely without any license and royalty issues.

PAGE
Implementing Display DLL’s for User Defined Outputs

Page 2 of 3

