

8/4/2 kB ISP Flash MCU Family

Analog Peripherals

- 12-Bit ADC

- ±1 LSB INL (C8051F52x/C8051F53x); no missing codes
- Programmable throughput up to 200 ksps
- Up to 6/16 external inputs
- Data dependent windowed interrupt generator Built-in temperature sensor

- Comparator

- Programmable hysteresis and response time
 Configurable as wake-up or reset source
- Low current
 POR/Brownout Detector
- Voltage Reference—1.5 to 2.2 V (programmable)

On-Chip Debug

- On-chip debug circuitry facilitates full-speed, nonintrusive in-system debug (No emulator required)
- Provides breakpoints, single stepping
- Inspect/modify memory and registers
- Complete development kit

Supply Voltage 2.7 to 5.25 V

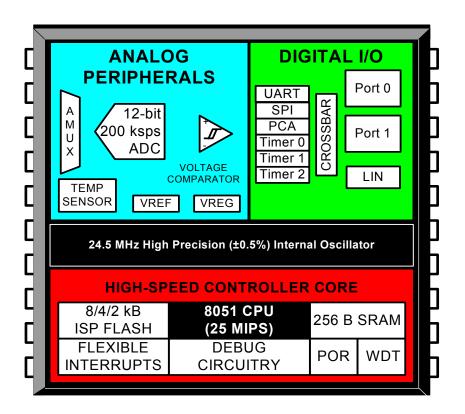
- Built-in LDO regulator

High Speed 8051 μC Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- Up to 25 MIPS throughput with 25 MHz system clock
- Expanded interrupt handler

Memory

- 8/4/2 kB Flash; In-system byte programmable in 512 byte sectors
- 256 bytes internal data RAM


Digital Peripherals

- 16/6 port I/O; push-pull or open-drain, 5 V tolerant
- Hardware SPI™, and UART serial port
- Hardware LIN (both master and slave, compatible with V1.3 and V2.0)
- Three general purpose 16-bit counter/timers
- Programmable 16-bit counter/timer array with three capture/compare modules, WDT

Clock Sources

- Internal oscillators: 24.5 MHz **±0.5%** accuracy supports UART and LIN-Master operation
- External oscillator: Crystal, RC, C, or Clock (1 or 2 pin modes)
- Can switch between clock sources on-the-fly **Packages:**
- 10-Pin QFN (3 x 3 mm)
- 20-pin QFN (3 x 3 mm)
- 20-pin GPN (4 X 4 1

Temperature Range: –40 to +125 °C

NOTES:

Table of Contents

1.	System Overview	17
	1.1. CIP-51™ Microcontroller	21
	1.1.1. Fully 8051 Compatible Instruction Set	21
	1.1.2. Improved Throughput	
	1.1.3. Additional Features	
	1.1.4. On-Chip Debug Circuitry	21
	1.2. On-Chip Memory	22
	1.3. Operating Modes	24
	1.4. 12-Bit Analog to Digital Converter	
	1.5. Programmable Comparator	
	1.6. Voltage Regulator	
	1.7. Serial Port	
	1.8. Port Input/Output	
2.	Absolute Maximum Ratings	
3.	Global DC Electrical Characteristics	
4.	Pinout and Package Definitions	
5.	12-Bit ADC (ADC0)	
	5.1. Analog Multiplexer	
	5.2. Temperature Sensor	
	5.3. ADC ⁰ Operation	
	5.3.1. Starting a Conversion	
	5.3.2. Tracking Modes	
	5.3.3. Timing	
	5.3.4. Burst Mode	
	5.3.5. Output Conversion Code	
	5.3.6. Settling Time Requirements	
	5.4. Programmable Window Detector	
	5.4.1. Window Detector In Single-Ended Mode	
	5.5. Selectable Attenuation	57
6.	Voltage Reference	
7.	-	
8.	Comparator	
9.	CIP-51 Microcontroller	73
	9.1. Instruction Set	74
	9.1.1. Instruction and CPU Timing	
	9.1.2. MOVX Instruction and Program Memory	
	9.2. Register Descriptions	
	9.3. Power Management Modes	
	9.3.1. Idle Mode	
	9.3.2. Stop Mode	
10	Memory Organization and SFRs	
5	10.1.Program Memory	
	10.2.Data Memory	

10.3.General Purpose Registers	
10.4.Bit Addressable Locations	
10.5.Stack	
10.6.Special Function Registers	85
11. Interrupt Handler	
11.1.MCU Interrupt Sources and Vectors	
11.2.Interrupt Priorities	
11.3.Interrupt Latency	
11.4.Interrupt Register Descriptions	
11.5.External Interrupts	
12. Reset Sources	
12.1.Power-On Reset	
12.2.Power-Fail Reset / VDD Monitor	
12.3.External Reset	
12.4.Missing Clock Detector Reset	
12.5.Comparator Reset	
12.6.PCA Watchdog Timer Reset	
12.7.Flash Error Reset	
12.8.Software Reset	
13. Flash Memory	
13.1.Programming The Flash Memory	
13.1.1.Flash Lock and Key Functions	
13.1.2.Flash Erase Procedure	
13.1.3.Flash Write Procedure	
13.2.Flash Write and Erase Guidelines	
$13.2.1.V_{DD}$ Maintenance and the V _{DD} monitor	
13.2.2.PSWE Maintenance	
13.2.3.System Clock	
13.3.Non-volatile Data Storage	
13.4. Security Options	
14. Port Input/Output	
14.1.Priority Crossbar Decoder	
14.2.Port I/O Initialization	
14.3.General Purpose Port I/O	
15. Oscillators	
15.1.Programmable Internal Oscillator	
15.1.1.Internal Oscillator Suspend Mode	
15.2.External Oscillator Drive Circuit	
15.2.1.Clocking Timers Directly Through the External Oscillator	
15.2.2.External Crystal Example	
15.2.3.External RC Example	
15.2.4.External Capacitor Example	
15.2.4.External Capacitor Example	
16.UART0	
16.1.Enhanced Baud Rate Generation	
IV. I. LIIII AIIVEN DANN I VALE VEHEIAUVII	

16.2 Operational Modeo	112
16.2.Operational Modes	140
16.2.1.8-Bit UART	
16.2.2.9-Bit UART	
16.3.Multiprocessor Communications	
17. LIN (C8051F520/523/526/530/533/536 only)	
17.1.Major Characteristics	
17.2. Software Interface with the LIN Peripheral	
17.3.LIN Registers	
17.3.1.LIN Direct Access SFR Registers Definition	
17.3.2.LIN Indirect Access SFR Registers Definition	
17.4.Bit Timing	159
17.4.1.Bit Timing Register adjustment of Master	
and Slave without Automatic Bit-Rate Detection	
17.4.2.Bit Timing Register adjustment of Slave with Automatic Bit-Rate\	160
17.4.3.LIN Master Mode Operation	161
17.4.4.LIN Slave Mode Operation	162
17.4.5.Sleep Mode and Wake-Up	163
17.4.6.Error Detection and Handling	163
18. Enhanced Serial Peripheral Interface (SPI0)	165
18.1.Signal Descriptions	166
18.1.1.Master Out, Slave In (MOSI)	
18.1.2.Master In, Slave Out (MISO)	
18.1.3.Serial Clock (SCK)	
18.1.4.Slave Select (NSS)	
18.2.SPI0 Master Mode Operation	
18.3.SPI0 Slave Mode Operation	
18.4.SPI0 Interrupt Sources	
18.5.Serial Clock Timing	
18.6.SPI Special Function Registers	
19. Timers	
19.1.Timer 0 and Timer 1	
19.1.1.Mode 0: 13-bit Counter/Timer	
19.1.2.Mode 1: 16-bit Counter/Timer	
19.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload	
19.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	
19.2.Timer 2	
19.2.1.16-bit Timer with Auto-Reload	
19.2.2.8-bit Timers with Auto-Reload	
19.2.3.External Capture Mode	
20. Programmable Counter Array (PCA0)	
20.1.PCA Counter/Timer	
20.2.Capture/Compare Modules	
20.2.1.Edge-triggered Capture Mode	
20.2.2.Software Timer (Compare) Mode	197

20.2.2.1 lists Created Output Made	100
	198
20.2.4.Frequency Output Mode	199
20.2.5.8-Bit Pulse Width Modulator Mode	200
20.2.6.16-Bit Pulse Width Modulator Mode	201
20.3.Watchdog Timer Mode	201
20.3.1.Watchdog Timer Operation	202
20.3.2.Watchdog Timer Usage	203
20.4.Register Descriptions for PCA	205
21. Revision Specific Behavior	209
21.1.Revision Identification	
21.2.Reset Behavior	210
21.3.UART Pins	210
21.4.LIN	210
	210
21.4.2.Synch Break and Synch Field Length Check	210
	211
22.1.C2 Interface Registers	211
	213
U	214

List of Figures

1.	System Overview	
	Figure 1.1. C8051F530 Block Diagram	19
	Figure 1.2. C8051F520 Block Diagram	
	Figure 1.3. Development/In-System Debug Diagram	22
	Figure 1.4. Memory Map	
	Figure 1.5. 12-Bit ADC Block Diagram	
	Figure 1.6. Comparator Block Diagram	
	Figure 1.7. Port I/O Functional Block Diagram	27
2.	Absolute Maximum Ratings	
3.	Global DC Electrical Characteristics	
4.	Pinout and Package Definitions	
	Figure 4.1. TSSOP-20 Package Diagram	37
	Figure 4.2. QFN-20 Package Diagram	38
	Figure 4.3. QFN-10 Package Diagram	39
5.	12-Bit ADC (ADC0)	
	Figure 5.1. ADC0 Functional Block Diagram	
	Figure 5.2. Typical Temperature Sensor Transfer Function	
	Figure 5.3. ADC0 Tracking Modes	
	Figure 5.4. 12-Bit ADC Tracking Mode Example	
	Figure 5.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4	
	Figure 5.6. ADC0 Equivalent Input Circuits	
	Figure 5.7. ADC Window Compare Example: Right-Justified Single-Ended Data	
-	Figure 5.8. ADC Window Compare Example: Left-Justified Single-Ended Data	56
6.	Voltage Reference	~ 4
_	Figure 6.1. Voltage Reference Functional Block Diagram	61
1.	Voltage Regulator (REG0)	~-
•	Figure 7.1. External Capacitors for Voltage Regulator Input/Output	65
ð.	Comparator	67
	Figure 8.1. Comparator Functional Block Diagram	
0	Figure 8.2. Comparator Hysteresis Plot	00
э.		72
10	Figure 9.1. CIP-51 Block Diagram	15
10.	Figure 10.1. Memory Map	83
11	Interrupt Handler	00
	Reset Sources	
•	Figure 12.1. Reset Sources	97
	Figure 12.2. Power-On and V_{DD} Monitor Reset Timing	
13.	Flash Memory	•••
	Figure 13.1. Flash Program Memory Map 1	10
14.	.Port Input/Output	-
	Figure 14.1. Port I/O Functional Block Diagram 1	15
	Figure 14.2. Port I/O Cell Block Diagram 1	

	Figure 14.3. Crossbar Priority Decoder with No Pins Skipped	
	(TSSOP 20 and QFN 20)	117
	Figure 14.4. Crossbar Priority Decoder with Crystal Pins Skipped	
	(TSSOP 20 and QFN 20)	
	Figure 14.5. Crossbar Priority Decoder with No Pins Skipped (QFN 10)	
	Figure 14.6. Crossbar Priority Decoder with Crystal Pins Skipped (QFN 10)	120
15	Oscillators	
	Figure 15.1. Oscillator Diagram	
	Figure 15.2. 32.768 Hz External Crystal Example	136
16	.UART0	
	Figure 16.1. UART0 Block Diagram	
	Figure 16.2. UARTO Baud Rate Logic	
	Figure 16.3. UART Interconnect Diagram	
	Figure 16.4. 8-Bit UART Timing Diagram	
	Figure 16.5. 9-Bit UART Timing Diagram	
	Figure 16.6. UART Multi-Processor Mode Interconnect Diagram	145
17	LIN (C8051F520/523/526/530/533/536 only)	
	Figure 17.1. LIN Flowchart	149
18	Enhanced Serial Peripheral Interface (SPI0)	
	Figure 18.1. SPI Block Diagram	
	Figure 18.2. Multiple-Master Mode Connection Diagram	
	Figure 18.3. 3-Wire Single Master and Slave Mode Connection Diagram	
	Figure 18.4. 4-Wire Single Master and Slave Mode Connection Diagram	
	Figure 18.5. Data/Clock Timing Relationship	170
	Figure 18.6. SPI Master Timing (CKPHA = 0)	
	Figure 18.7. SPI Master Timing (CKPHA = 1)	
	Figure 18.8. SPI Slave Timing (CKPHA = 0)	
	Figure 18.9. SPI Slave Timing (CKPHA = 1)	176
19	Timers	
	Figure 19.1. T0 Mode 0 Block Diagram	
	Figure 19.2. T0 Mode 2 Block Diagram	
	Figure 19.3. T0 Mode 3 Block Diagram	
	Figure 19.4. Timer 2 16-Bit Mode Block Diagram	
	Figure 19.5. Timer 2 8-Bit Mode Block Diagram	
	Figure 19.6. Timer 2 Capture Mode Block Diagram	189
20	Programmable Counter Array (PCA0)	
	Figure 20.1. PCA Block Diagram	
	Figure 20.2. PCA Counter/Timer Block Diagram	
	Figure 20.3. PCA Interrupt Block Diagram	
	Figure 20.4. PCA Capture Mode Diagram	
	Figure 20.5. PCA Software Timer Mode Diagram	
	Figure 20.6. PCA High-Speed Output Mode Diagram	
	Figure 20.7. PCA Frequency Output Mode	
	Figure 20.8. PCA 8-Bit PWM Mode Diagram	
	Figure 20.9. PCA 16-Bit PWM Mode	201

Figure 20.10. PCA Module 2 with Watchdog Timer Enabled	202	
21. Revision Specific Behavior		
Figure 21.1. Device Package - TSSOP 20	209	
Figure 21.2. Device Package - QFN 20		
Figure 21.3. Device Package - QFN 10	210	
22.C2 Interface		
Figure 22.1. Typical C2 Pin Sharing	213	

NOTES:

List of Tables

1.	System Overview	
	Table 1.1. Product Selection Guide	18
	Table 1.2. Operating Modes Summary	24
2.	Absolute Maximum Ratings	
	Table 2.1. Absolute Maximum Ratings	29
3.	Global DC Electrical Characteristics	
	Table 3.1. Global DC Electrical Characteristics	30
4.	Pinout and Package Definitions	
	Table 4.1. Pin Definitions for the C8051F520 (QFN 10)	
	Table 4.2. Pin Definitions for the C8051F530 (TSSOP 20)	33
	Table 4.3. Pin Definitions for the C8051F530 (QFN 20)	35
	Table 4.4. TSSOP-20 Package Diagram Dimensions	37
	Table 4.5. QFN-20 Package Diagram Dimensions	38
	Table 4.6. QFN-10 Package Diagram Dimensions	39
5.	12-Bit ADC (ADC0)	
	Table 5.1. ADC0 Electrical Characteristics (V_{DD} = 2.4 V, V_{REF} = 2.25 V)	58
	Table 5.2. ADC0 Electrical Characteristics (V_{DD} = 2.0 V, V_{REF} = 1.5 V)	59
6.	Voltage Reference	
	Table 6.1. Voltage Reference Electrical Characteristics	63
7.	Voltage Regulator (REG0)	
	Table 7.1. Voltage Regulator Electrical Specifications	66
8.	Comparator	
	Table 8.1. Comparator Electrical Characteristics	72
9.	CIP-51 Microcontroller	
	Table 9.1. CIP-51 Instruction Set Summary	75
10.	Memory Organization and SFRs	
	Table 10.1. Special Function Register (SFR) Memory Map	
	Table 10.2. Special Function Registers	86
11.	Interrupt Handler	
	Table 11.1. Interrupt Summary	90
12.	Reset Sources	
	Table 12.1. Reset Electrical Characteristics 1	03
13.	Flash Memory	
	Table 13.1. Flash Security Summary 1	
	Table 13.2. Flash Electrical Characteristics 1	14
14.	Port Input/Output	
	Table 14.1. Port I/O DC Electrical Characteristics 1	30
15.	Oscillators	
	Table 15.1. Oscillator Electrical Characteristics 1	40
16.		
	Table 16.1. Timer Settings for Standard Baud Rates	
	Using the Internal Oscillator 1	48

17.LIN (C8051F520/523/526/530/533/536 only)

•	
Table 17.1. LIN Registers (Indirectly Addressable)	52
Table 17.2. Number of Data Bytes 15	
Table 17.3. Bit Timing Examples Without Auto Bit-Rate	0
Table 17.4. Bit Timing Examples With Auto Bit-Rate	51
18. Enhanced Serial Peripheral Interface (SPI0)	
Table 18.1. SPI Slave Timing Parameters 17	'7
19. Timers	
20. Programmable Counter Array (PCA0)	
Table 20.1. PCA Timebase Input Options 19)4
Table 20.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 19)5
Table 20.3. Watchdog Timer Timeout Intervals 20)4
21. Revision Specific Behavior	
20 CO Interfere	

22.C2 Interface

List of Registers

SFR Definition 5.1. ADC0MX: ADC0 Channel Select	
SFR Definition 5.2. ADC0CF: ADC0 Configuration	
SFR Definition 5.3. ADC0H: ADC0 Data Word MSB	
SFR Definition 5.4. ADC0L: ADC0 Data Word LSB	
SFR Definition 5.5. ADC0CN: ADC0 Control	
SFR Definition 5.6. ADC0TK: ADC0 Tracking Mode Select	
SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte	54
SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte	54
SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte	55
SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte	55
SFR Definition 6.1. REF0CN: Reference Control	62
SFR Definition 7.1. REG0CN: Regulator Control	66
SFR Definition 8.1. CPT0CN: Comparator0 Control	69
SFR Definition 8.2. CPT0MX: Comparator0 MUX Selection	70
SFR Definition 8.3. CPT0MD: Comparator0 Mode Selection	
SFR Definition 9.1. SP: Stack Pointer	
SFR Definition 9.2. DPL: Data Pointer Low Byte	79
SFR Definition 9.3. DPH: Data Pointer High Byte	
SFR Definition 9.4. PSW: Program Status Word	
SFR Definition 9.5. ACC: Accumulator	
SFR Definition 9.6. B: B Register	
SFR Definition 9.7. PCON: Power Control	
SFR Definition 11.1. IE: Interrupt Enable	
SFR Definition 11.2. IP: Interrupt Priority	
SFR Definition 11.3. EIE1: Extended Interrupt Enable 1	
SFR Definition 11.4. EIP1: Extended Interrupt Priority 1	
SFR Definition 11.5. IT01CF: INT0/INT1 Configuration	
SFR Definition 12.1. VDDMON: VDD Monitor Control	
SFR Definition 12.2. RSTSRC: Reset Source	
SFR Definition 13.1. PSCTL: Program Store R/W Control	
SFR Definition 13.2. FLKEY: Flash Lock and Key	13
SFR Definition 14.1. XBR0: Port I/O Crossbar Register 0	
SFR Definition 14.2. XBR1: Port I/O Crossbar Register 1	
SFR Definition 14.3. P0: Port0	
SFR Definition 14.4. P0MDIN: Port0 Input Mode1	24
SFR Definition 14.5. P0MDOUT: Port0 Output Mode	25
SFR Definition 14.6. P0SKIP: Port0 Skip	
SFR Definition 14.7. P0MAT: Port0 Match	26
SFR Definition 14.8. P0MASK: Port0 Mask	
SFR Definition 14.9. P1: Port1	
SFR Definition 14.10. P1MDIN: Port1 Input Mode	27
SFR Definition 14.11. P1MDOUT: Port1 Output Mode	
SFR Definition 14.12. P1SKIP: Port1 Skip	

SFR Definition 14.13. P0SKIP: Port0 Skip	
SFR Definition 14.14. P1MAT: Port1 Match	
SFR Definition 14.15. P1MASK: Port1 Mask	
SFR Definition 15.1. OSCICN: Internal Oscillator Control	. 133
SFR Definition 15.2. OSCICL: Internal Oscillator Calibration	. 134
SFR Definition 15.3. OSCIFIN: Internal Fine Oscillator Calibration	. 134
SFR Definition 15.4. OSCXCN: External Oscillator Control	. 138
SFR Definition 15.5. CLKSEL: Clock Select	. 139
SFR Definition 16.1. SCON0: Serial Port 0 Control	
SFR Definition 16.2. SBUF0: Serial (UART0) Port Data Buffer	. 147
SFR Definition 17.1. LINADDR: Indirect Address Register	
SFR Definition 17.2. LINDATA: LIN Data Register	
SFR Definition 17.3. LINCF Control Mode Register	. 151
SFR Definition 17.4. LINDT1: LIN Data Byte	
SFR Definition 17.5. LINDT2: LIN Data Byte	. 153
SFR Definition 17.6. LINDT3: LIN Data Byte	. 153
SFR Definition 17.7. LINDT4: LIN Data Byte	. 153
SFR Definition 17.8. LINDT5: LIN Data Byte	. 153
SFR Definition 17.9. LINDT6: LIN Data Byte	. 154
SFR Definition 17.10. LINDT7: LIN Data Byte	. 154
SFR Definition 17.11. LINDT8: LIN Data Byte	. 154
SFR Definition 17.12. LINCTRL: LIN Control Register	
SFR Definition 17.13. LINST: LIN STATUS Register	
SFR Definition 17.14. LINERR: LIN ERROR Register	. 157
SFR Definition 17.15. LINSIZE: LIN Message Size Register	
SFR Definition 17.16. LINDIV: LIN Divider Register	
SFR Definition 17.17. LINMUL: LIN Multiplier Register	
SFR Definition 17.18. LINID: LIN ID Register	. 159
SFR Definition 18.1. SPI0CFG: SPI0 Configuration	
SFR Definition 18.2. SPI0CN: SPI0 Control	
SFR Definition 18.3. SPI0CKR: SPI0 Clock Rate	. 173
SFR Definition 18.4. SPI0DAT: SPI0 Data	. 174
SFR Definition 19.1. TCON: Timer Control	. 183
SFR Definition 19.2. TMOD: Timer Mode	. 184
SFR Definition 19.3. CKCON: Clock Control	
SFR Definition 19.4. TL0: Timer 0 Low Byte	. 186
SFR Definition 19.5. TL1: Timer 1 Low Byte	
SFR Definition 19.6. TH0: Timer 0 High Byte	
SFR Definition 19.7. TH1: Timer 1 High Byte	
SFR Definition 19.8. TMR2CN: Timer 2 Control	
SFR Definition 19.9. TMR2RLL: Timer 2 Reload Register Low Byte	. 191
SFR Definition 19.10. TMR2RLH: Timer 2 Reload Register High Byte	
SFR Definition 19.11. TMR2L: Timer 2 Low Byte	
SFR Definition 19.12. TMR2H Timer 2 High Byte	
SFR Definition 20.1. PCA0CN: PCA Control	

SFR Definition 20.2. PCA0MD: PCA Mode	206
SFR Definition 20.3. PCA0CPMn: PCA Capture/Compare Mode	207
SFR Definition 20.4. PCA0L: PCA Counter/Timer Low Byte	208
SFR Definition 20.5. PCA0H: PCA Counter/Timer High Byte	208
SFR Definition 20.6. PCA0CPLn: PCA Capture Module Low Byte	208
SFR Definition 20.7. PCA0CPHn: PCA Capture Module High Byte	208
C2 Register Definition 22.1. C2ADD: C2 Address	211
C2 Register Definition 22.2. DEVICEID: C2 Device ID	211
C2 Register Definition 22.3. REVID: C2 Revision ID	212
C2 Register Definition 22.4. FPCTL: C2 Flash Programming Control	212
C2 Register Definition 22.5. FPDAT: C2 Flash Programming Data	212

NOTES:

1. System Overview

The C8051F52x/C8051F53x family of devices are fully integrated, very low power, mixed-signal systemon-a-chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- True 12-bit 200 ksps ADC with analog multiplexer and up to 16 analog inputs
- Precision programmable 24.5 MHz internal oscillator that is ±0.5% across voltage and temperature
- Up to 7680 bytes of on-chip Flash memory
- 256 bytes of on-chip RAM
- Enhanced UART, and SPI serial interfaces implemented in hardware
- LIN 2.0 peripheral (V2.0 and V1.3 compatible, master and slave modes)
- Three general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with three capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, V_{DD} Monitor, and Temperature Sensor
- On-chip Voltage Comparator
- Up to 16 Port I/O

With on-chip Power-On Reset, V_{DD} monitor, Watchdog Timer, and clock oscillator, the C8051F52x/F53x devices are truly standalone system-on-a-chip solutions. The Flash memory is byte writable and can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Laboratories 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system programming and debugging without occupying package pins.

Each device is specified for 2.7 to 5.25 V operation (supply voltage can be up to 5.25 V using on-chip regulator) over the automotive temperature range (-40 to +125 °C). The F52x is available in the QFN10 (3 x 3 mm) package. The F53x is available in the QFN20 (4 x 4 mm) or the TSSOP20 package.

Ordering Part Number	MIPS (Peak)	Flash Memory	RAM	Calibrated Internal 24.5 MHz Oscillator Tolerance	SPI	UART	Timers (16-bit)	Programmable 3 Channels Counter Array	Port I/Os	12-bit ADC ±1 LSB INL	LIN	Internal Voltage Reference	Temperature Sensor	Analog Comparator	Package
C8051F520-IM	25	8 kB	256	0.5%	V	V	3	~	8	~	\checkmark	V	V	~	QFN-10
C8051F521-IM	25	8 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	8	\checkmark		\checkmark	\checkmark	\checkmark	QFN-10
C8051F523-IM	25	4 kB	256	0.5%	~	\checkmark	3	\checkmark	8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	QFN-10
C8051F524-IM	25	4 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	8	\checkmark	—	\checkmark	\checkmark	\checkmark	QFN-10
C8051F526-IM	25	2 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	QFN-10
C8051F527-IM	25	2 kB	256	0.5%	\checkmark	~	3	\checkmark	8	\checkmark	—	\checkmark	\checkmark	\checkmark	QFN-10
C8051F530-IM	25	8 kB	256	0.5%	\checkmark	~	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	QFN-20
C8051F531-IM	25	8 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	_	\checkmark	\checkmark	~	QFN-20
C8051F533-IM	25	4 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	~	QFN-20
C8051F534-IM	25	4 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	_	\checkmark	\checkmark	~	QFN-20
C8051F536-IM	25	2 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	QFN-20
C8051F537-IM	25	2 kB	256	0.5%	V	\checkmark	3	\checkmark	16	\checkmark		\checkmark	\checkmark	\checkmark	QFN-20
C8051F530-IT	25	8 kB	256	0.5%	V	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	TSSOP-20
C8051F531-IT	25	8 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	—	\checkmark	\checkmark	\checkmark	TSSOP-20
C8051F533-IT	25	4 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	TSSOP-20
C8051F534-IT	25	4 kB	256	0.5%	V	V	3	\checkmark	16	\checkmark		\checkmark	\checkmark	\checkmark	TSSOP-20
C8051F536-IT	25	2 kB	256	0.5%	V	V	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	TSSOP-20
C8051F537-IT	25	2 kB	256	0.5%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	—	\checkmark	\checkmark	\checkmark	TSSOP-20

 Table 1.1. Product Selection Guide

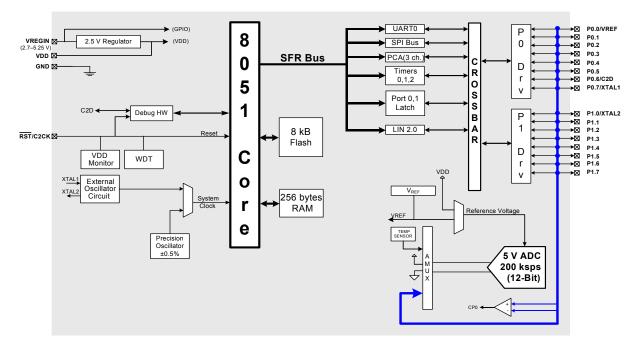


Figure 1.1. C8051F530 Block Diagram

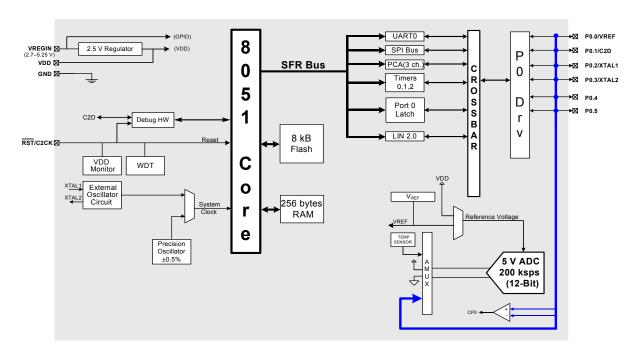


Figure 1.2. C8051F520 Block Diagram

1.1. CIP-51[™] Microcontroller

1.1.1. Fully 8051 Compatible Instruction Set

The C8051F52x/F53xdevices use Silicon Laboratories' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51[™] instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The C8051F52x/F53xfamily has a superset of all the peripherals included with a standard 8052.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12-to-24 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/4	3	3/5	4	5	4/6	6	8
Number of Instructions	26	50	5	10	7	5	2	1	2	1

1.1.3. Additional Features

The C8051F52x/F53x family includes several key enhancements to the CIP-51 core and peripherals to improve performance and ease of use in end applications.

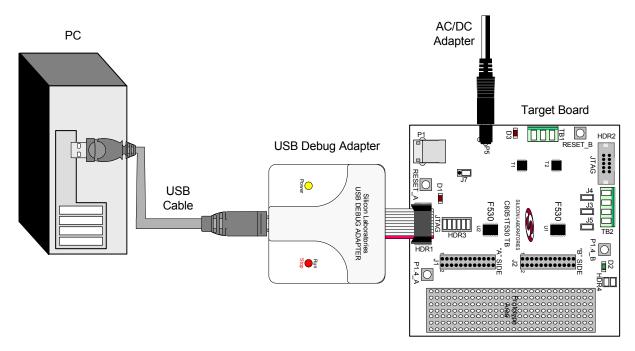
An extended interrupt handler allows the numerous analog and digital peripherals to operate independently of the controller core and interrupt the controller only when necessary. By requiring less intervention from the microcontroller core, an interrupt-driven system is more efficient and allows for easier implementation of multi-tasking, real-time systems.

Eight reset sources are available: power-on reset circuitry (POR), an on-chip V_{DD} monitor, a Watchdog Timer, a Missing Clock Detector, a voltage level detection from Comparator, a forced software reset, an external reset pin, and an illegal Flash access protection circuit. Each reset source except for the POR, Reset Input Pin, or Flash error may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.

The internal oscillator is factory calibrated to 24.5 MHz $\pm 0.5\%$ across the entire operating temperature and voltage range. An external oscillator drive circuit is also included, allowing an external crystal, ceramic resonator, capacitor, RC, or CMOS clock source to generate the system clock.

1.1.4. On-Chip Debug Circuitry

The C8051F52x/F53x devices include on-chip Silicon Laboratories 2-Wire (C2) debug circuitry that provides non-intrusive, full speed, in-circuit debugging of the production part *installed in the end application*.


Silicon Laboratories' debugging system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debug-

ging. All the peripherals (except for the ADC) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F530-DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F52x/F53x MCUs. The kit includes software with a developer's studio and debugger, a USB debug adapter, a target application board with the associated MCU installed, and the required cables and wall-mount power supply. The development kit requires a computer with Windows installed. As shown in Figure 1.3, the PC is connected to the USB debug adapter. A six-inch ribbon cable connects the USB debug adapter to the user's application board, picking up the two C2 pins and GND.

The Silicon Laboratories IDE interface is a vastly superior developing and debugging configuration, compared to standard MCU emulators that use on-board "ICE Chips" and require the MCU in the application board to be socketed. Silicon Laboratories' debug paradigm increases ease of use and preserves the performance of the precision analog peripherals.

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 7680 bytes ('F520/1 and 'F530/1), 4 kB ('F523/4 and 'F533/4), or 2 kB ('F526/7 and 'F536/7) of Flash. This memory is byte writable and erased in 512-byte sectors, and requires no special off-chip programming voltage.

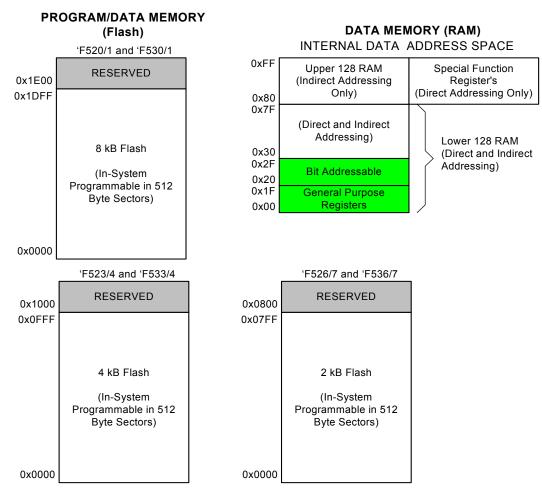


Figure 1.4. Memory Map

1.3. Operating Modes

The C8051F52x/F53x devices have four operating modes: Active (Normal), Idle, Suspend, and Stop. Active mode occurs during normal operation when the oscillator and peripherals are active. Idle mode halts the CPU while leaving the peripherals and internal clocks active. In Suspend and Stop mode, the CPU is halted, all interrupts and timers are inactive, and the internal oscillator is stopped. The various operating modes are described in Table 1.2 below:

	Properties	Power Consumption	How Entered?	How Exited?
Active	 SYSCLK active CPU active (accessing Flash) Peripherals active or inactive depending on user settings 	Full	_	—
ldle	 SYSCLK active CPU inactive (not accessing Flash) Peripherals active or inactive depending on user settings 	Less than Full	IDLE (PCON.0)	Any enabled interrupt or device reset
Suspend	 Internal oscillator inactive If SYSCLK is derived from the internal oscillator, the peripher- als and the CIP-51 will be stopped 	Low	SUSPEND (OSCICN.5)	Port 0 event match Port 1 event match Comparator 0 enabled and output is logic '0'
Stop	 SYSCLK inactive CPU inactive (not accessing Flash) Digital peripherals inactive; ana- log peripherals active or inactive depending on user settings 	Very low	STOP (PCON.1)	Device Reset

Table 1.2. Operating	Modes Summary
----------------------	---------------

See Section **"9.3. Power Management Modes" on page 81** for Idle and Stop mode details. See Section **"15.1.1. Internal Oscillator Suspend Mode**" on page **132** for more information on Suspend mode.

1.4. 12-Bit Analog to Digital Converter

The C8051F52x/F53x devices include an on-chip 12-bit SAR ADC with a maximum throughput of 200 ksps. The ADC system includes a configurable analog multiplexer that selects the positive ADC input, which is measured with respect to GND. Ports 0 and 1 are available as ADC inputs; additionally, the ADC includes an innovative half gain selection which allows for inputs up to twice the Vref voltage to be sampled. The on-chip Temperature Sensor output and the core supply voltage (V_{DD}) are also available as ADC inputs. User firmware may shut down the ADC or use it in Burst Mode to save power.

Conversions can be initiated in three ways: a software command, an overflow of Timer 2 or an external convert start signal. This flexibility allows the start of conversion to be triggered by software events, a periodic signal (timer overflows), or external HW signals. Conversion completions are indicated by a status bit and an interrupt (if enabled) and occur after 1, 4, 8, or 16 samples have been accumulated by a hardware accumulator. The resulting 12-bit to 16-bit data word is latched into the ADC data SFRs upon completion of a conversion. When the system clock is slow, Burst Mode allows ADC0 to automatically wake from a low power shutdown state, acquire and accumulate samples, then re-enter the low power shutdown state without CPU intervention.

Window compare registers for the ADC data can be configured to interrupt the controller when ADC data is either within or outside of a specified range. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within/outside the specified range.

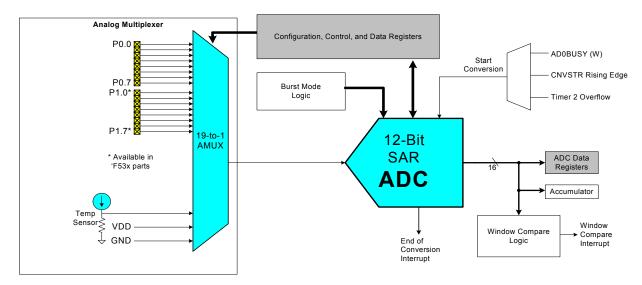


Figure 1.5. 12-Bit ADC Block Diagram

1.5. Programmable Comparator

C8051F52x/F53x devices include a software-configurable voltage comparator with an input multiplexer. The comparator offers programmable response time and hysteresis and an output that is optionally available at the Port pins: a synchronous "latched" output (CP0). The comparator interrupt may be generated on rising, falling, or both edges. When in IDLE or SUSPEND mode, these interrupts may be used as a "wake-up" source for the processor. The Comparator may also be configured as a reset source. A block diagram of the comparator is shown in Figure 1.6.

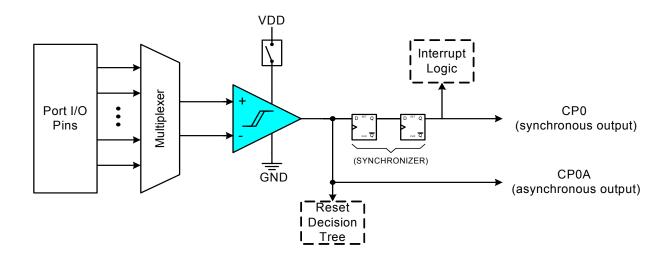


Figure 1.6. Comparator Block Diagram

1.6. Voltage Regulator

C8051F52x/F53x devices include an on-chip low dropout voltage regulator (REG0). The input to REG0 at the V_{REGIN} pin can be as high as 5.25 V. The output can be selected by software to 2.0 V or 2.5 V. When enabled, the output of REG0 powers the device and drives the V_{DD} pin. The voltage regulator can be used to power external devices connected to V_{DD}.

1.7. Serial Port

The C8051F52x/F53x Family includes a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

1.8. Port Input/Output

C8051F52x/F53x devices include up to 16 I/O pins. Port pins are organized as two byte-wide ports. The port pins behave like typical 8051 ports with a few enhancements. Each port pin can be configured as a digital or analog I/O pin. Pins selected as digital I/O can be configured for push-pull or open-drain operation. The "weak pullups" that are fixed on typical 8051 devices may be globally disabled to save power.

The Digital Crossbar allows mapping of internal digital system resources to port I/O pins. On-chip counter/timers, serial buses, hardware interrupts, and other digital signals can be configured to appear on the port pins using the Crossbar control registers. This allows the user to select the exact mix of general-purpose port I/O, digital, and analog resources needed for the application.

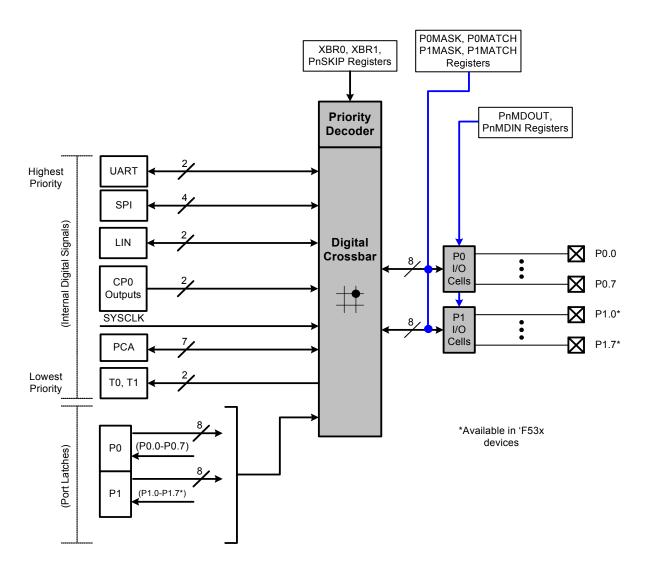


Figure 1.7. Port I/O Functional Block Diagram

NOTES:

2. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units		
Ambient temperature under bias		-55	—	125	°C		
Storage Temperature		-65	—	150	°C		
Voltage on V _{REGIN} with respect to GND		-0.3	—	5.5	V		
Voltage on VDD with respect to GND		-0.3	—	2.8	V		
Voltage on XTAL1 with respect to GND		-0.3	—	V _{DD} + 0.3	V		
Voltage on XTAL2 with respect to GND		-0.3	—	V _{DD} + 0.3	V		
Voltage on any Port I/O Pin (except Port 0 pins) or RST with respect to GND		-0.3	—	V _{IO} + 0.3	V		
Voltage on any Port 0 Pin with respect to GND		0.3	—	5.5	V		
Maximum output current sunk by any Port pin		—	—	100	mA		
Maximum output current sourced by any Port pin		_	_	100	mA		
Maximum Total current through V_{IO},V_{REGIN},and GND			—	500	mA		
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.							

Table 2.1. Absolute Maximum Ratings

3. Global DC Electrical Characteristics

Table 3.1. Global DC Electrical Characteristics

-40 to +125 °C, 25 MHz System Clock unless otherwise specified. Typical values are given at 25 °C

Parameter	Conditions	Min.	Тур.	Max.	Units
Supply Input Voltage (V _{REGIN}) ¹	Output Current = 1 mA	2.7	_	5.25	V
I/O Supply Voltage (V _{IO})		2.7		5.25	V
Core Supply Current with CPU active ²	V _{DD} = 2.0 V: Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz V _{DD} = 2.4 V: Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz		13 40 0.25 9 21 84 0.45 9		μΑ μΑ mA mA μΑ μΑ mA
Core Supply Current with CPU inactive (not accessing Flash)	V _{DD} = 2.0 V: Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz V _{DD} = 2.4 V: Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz		10 22 0.15 3 15 34 0.23 4		μΑ μΑ mA mA μΑ μΑ mA
Core Supply Current (suspend)	Oscillator not running		TBD		μA
Core Supply Current (shutdown)	Oscillator not running		TBD	_	μA
Core Supply RAM Data Retention Voltage		— —	TBD	—	V
SYSCLK (System Clock) ²		0	—	25	MHz
Specified Operating Temperature Range		-40		+125	°C

2. SYSCLK must be at least 32 kHz to enable debugging.

4. Pinout and Package Definitions

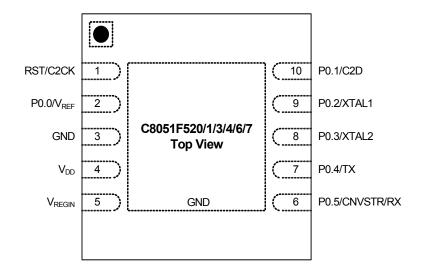
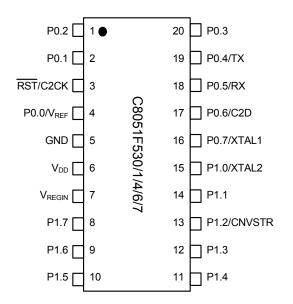


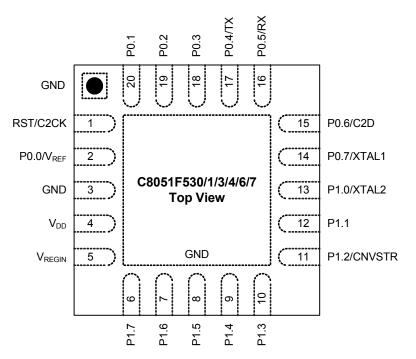
Table 4.1. Pin Definitions for the C8051F520 (QFN 10)


Name	Pin	Туре	Description
RST/	1	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 15 μ s. A 1 k Ω pullup to V_{DD} is recommended. See Reset Sources Section for a complete description.
C2CK		D I/O	Clock signal for the C2 Debug Interface.
P0.0/		D I/O or A In	Port 0.0. See Port I/O Section for a complete description.
V _{REF}	2	A O or D In	External V _{REF} Input. See V _{REF} Section.
GND	3		Ground.
V _{DD}	4		Core Supply Voltage.
V _{REGIN}	5		On-Chip Voltage Regulator Input.
P0.5/RX*/ CNVSTR	6	D I/O or A In D In	Port 0.5. See Port I/O Section for a complete description. External Converter start input for the ADC0, see Section "5. 12-Bit
			ADC (ADC0)" on page 41 for a complete description.
P0.4/TX*	7	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
Note: Please	refer to Se	ection "21.	Revision Specific Behavior" on page 209.

Name	Pin	Туре	Description
P0.3		D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
XTAL2	8	D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "15. Oscillators" on page 131.
P0.2		D I/O or	Port 0.2. See Port I/O Section for a complete description.
	9		
XTAL1		A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. Section " 15. Oscillators " on page 131 .
P0.1/		D I/O or A In	Port 0.1. See Port I/O Section for a complete description.
	10		
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface
*Note: Please	refer to Se	ection "21.	Revision Specific Behavior" on page 209.

Table 4.1. Pin Definitions for the C8051F520 (QFN 10) (Continued)

Table 4.2. Pin Definitions for the C8051F530 (TSSOP 20)


Name	Pin	Туре	Description				
P0.2	1	D I/O or A In	Port 0.2. See Port I/O Section for a complete description.				
P0.1	2	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.				
RST/	3	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 15 µs. A 1 k Ω pullup to V_{DD} is recommended. See Reset Sources Section for a complete description.				
C2CK		D I/O	Clock signal for the C2 Debug Interface.				
P0.0/		D I/O or A In	Port 0.0. See Port I/O Section for a complete description.				
V _{REF}	4	A O or D In	External V _{REF} Input. See V _{REF} Section.				
GND	5		Ground.				
V _{DD}	6		Core Supply Voltage.				
V _{REGIN}	7		On-Chip Voltage Regulator Input.				
P1.7	8	D I/O or A In	Port 1.7. See Port I/O Section for a complete description.				
P1.6	9	D I/O or A In	Port 1.6. See Port I/O Section for a complete description.				
*Note: Please	lote: Please refer to Section "21. Revision Specific Behavior" on page 209.						

Name	Pin	Туре	Description
P1.5	10	D I/O or A In	Port 1.5. See Port I/O Section for a complete description.
P1.4	11	D I/O or A In	Port 1.4. See Port I/O Section for a complete description.
P1.3	12	D I/O or A In	Port 1.3. See Port I/O Section for a complete description.
P1.2/		D I/O or A In	Port 1.2. See Port I/O Section for a complete description.
CNVSTR	13	D In	External Converter start input for the ADC0, see Section "5. 12-Bit ADC (ADC0)" on page 41 for a complete description.
P1.1	14	D I/O or A In	Port 1.1. See Port I/O Section for a complete description.
P1.0/		D I/O or A In	Port 1.0. See Port I/O Section for a complete description.
XTAL2	15	D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "15. Oscillators" on page 131.
P0.7/	40	D I/O or A In	Port 0.7. See Port I/O Section for a complete description.
XTAL1	16	A In	External Clock Input. This pin is the external oscillator return for a crys tal or resonator. Section "15. Oscillators" on page 131.
P0.6/	17	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface.
P0.5/RX*	18	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.
P0.4/TX*	19	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.3	20	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.

Table 4.2. Pin Definitions for the C8051F530 (TSSOP 20) (Continued)

Name	Pin	Туре	Description
RST/	1	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 15 µs. A 1 k Ω pullup to V_{DD} is recommended. See Reset Sources Section for a complete description.
C2CK		D I/O	Clock signal for the C2 Debug Interface.
P0.0/	2	D I/O or A In	Port 0.0. See Port I/O Section for a complete description.
V _{REF}	2	A O or D In	External V _{REF} Input. See V _{REF} Section.
GND	3		Ground.
V _{DD}	4		Core Supply Voltage.
V _{REGIN}	5		On-Chip Voltage Regulator Input.
P1.7	6	D I/O or A In	Port 1.7. See Port I/O Section for a complete description.
P1.6	7	D I/O or A In	Port 1.6. See Port I/O Section for a complete description.
P1.5	8	D I/O or A In	Port 1.5. See Port I/O Section for a complete description.
*Note: Please	refer to Se	ection "21.	Revision Specific Behavior" on page 209.

Name	Pin	Туре	Description
P1.4	9	D I/O or A In	Port 1.4. See Port I/O Section for a complete description.
P1.3	10	D I/O or A In	Port 1.3. See Port I/O Section for a complete description.
P1.2/		D I/O or A In	Port 1.2. See Port I/O Section for a complete description.
CNVSTR	11	D In	External Converter start input for the ADC0, see Section "5. 12-Bit ADC (ADC0)" on page 41 for a complete description.
P1.1	12	D I/O or A In	Port 1.1. See Port I/O Section for a complete description.
P1.0/		D I/O or A In	Port 1.0. See Port I/O Section for a complete description.
XTAL2	13	D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. Section "15. Oscillators" on page 131.
P0.7/		D I/O or	Port 0.7. See Port I/O Section for a complete description.
XTAL1	14	A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. See Oscillator Section.
P0.6/	15	D I/O or A In	Port 0.6. See Port I/O Section for a complete description.
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface.
P0.5/RX*	16	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.
P0.4/TX*	17	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.3	18	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
P0.2	19	D I/O or A In	Port 0.2. See Port I/O Section for a complete description.
P0.1	20	D I/O or A In	Port 0.1. See Port I/O Section for a complete description.
*Note: Please	refer to Se	ection "21.	Revision Specific Behavior" on page 209.

Table 4.3. Pin Definitions for the C8051F530 (QFN 20) (Continued)

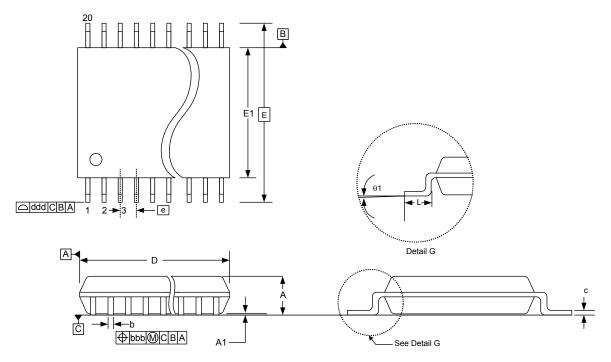



Figure 4.1. TSSOP-20 Package Diagram

Symbol	Millimeters								
	Min	Nom	Max						
A		—	1.20						
A1	0.05	—	0.15						
b	0.19		0.30						
С	0.09	—	0.20						
D	6.40	6.50	6.60						
е		0.65 BSC							
E		6.40 BSC							
E1	4.30	4.40	4.50						
L	0.45	0.60	0.75						
θ1	0°		8°						
bbb		0.10							
ddd		0.20							

Table 4.4. TSSOP-20 Package Diagram Dimensions

Figure 4.2. QFN-20 Package Diagram

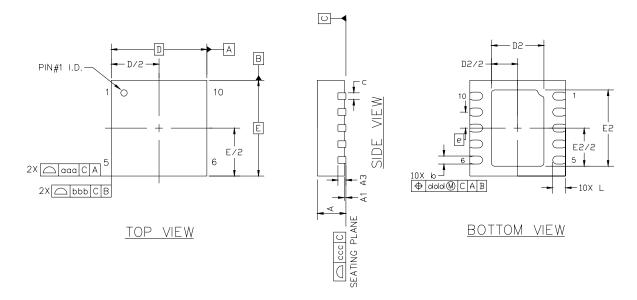

Dimension	MIN	NOM	MAX						
A	0.80	0.90	1.00						
A1	0.00	0.02	0.05						
A3		0.25 TYP.							
b	0.20	0.25	0.30						
С		0.204 TYP.							
D		4.00 BSC.							
D2	2.55	2.70	2.85						
е	0.50 BSC.								
E		4.00 BSC.							
E2	2.55	2.70	2.85						
L	0.30	0.40	0.50						
aaa			0.10						
bbb			0.10						
CCC			0.08						
ddd			0.10						
		neters (mm) unless of r ANSI Y14.5M-1994.							

Table 4.5. QFN-20 Package Diagram Dimensions

3. This drawing conforms to JEDEC outline MO-220, variation VGGD-5

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Figure 4.3. QFN-10 Package Diagram

Dimension	MIN	NOM	MAX				
A	0.80	0.90	1.00				
A1	0.00	0.02	0.05				
A3		0.25 TYP.					
b	0.20 0.25						
С	0.204 TYP.						
D	3.00 BSC.						
D2	1.496	1.646	1.796				
е		0.50 BSC.					
E		3.00 BSC.					
E2	2.234	2.384	2.534				
L	0.30	0.40	0.50				
aaa			0.10				
bbb			0.10				
CCC			0.08				
ddd			0.10				
otes:		l					

Table 4.6. QFN-10 Package Diagram Dimensions

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

NOTES:

5. 12-Bit ADC (ADC0)

The ADC0 subsystem for the C8051F52x/F53x Family consists of an analog multiplexer (AMUX0) with 16/6 total input selections, and a 200 ksps, 12-bit successive-approximation-register ADC with integrated track-and-hold, programmable window detector, programmable attenuation (1:2), and hardware accumulator. The ADC0 subsystem has a special Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 inputs are single-ended and may be configured to measure P0.0-P2.7, the Temperature Sensor output, V_{DD} , or GND with respect to GND. ADC0 is enabled when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1, or when performing conversions in Burst Mode. ADC0 is in low power shutdown when AD0EN is logic 0 and no Burst Mode conversions are taking place.

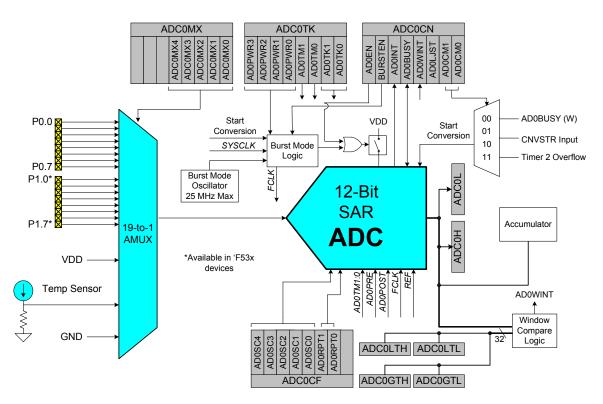


Figure 5.1. ADC0 Functional Block Diagram

5.1. Analog Multiplexer

AMUX0 selects the input channel to the ADC. Any of the following may be selected as an input: P0.0–P1.7, the on-chip temperature sensor, the core power supply (V_{DD}), or ground (GND). **ADC0 is single-ended and all signals measured are with respect to GND.** The ADC0 input channels are selected using the ADC0MX register as described in SFR Definition 5.1.

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to '0' the corresponding bit in register PnMDIN (for n = 0,1). To force the Crossbar to skip a Port

pin, set to '1' the corresponding bit in register PnSKIP (for n = 0,1). See Section "14. Port Input/Output" on page 115 for more Port I/O configuration details.

5.2. Temperature Sensor

The typical temperature sensor transfer function is shown in Figure 5.2. The output voltage (V_{TEMP}) is the positive ADC input when the temperature sensor is selected by bits AD0MX4–0 in register ADC0MX.

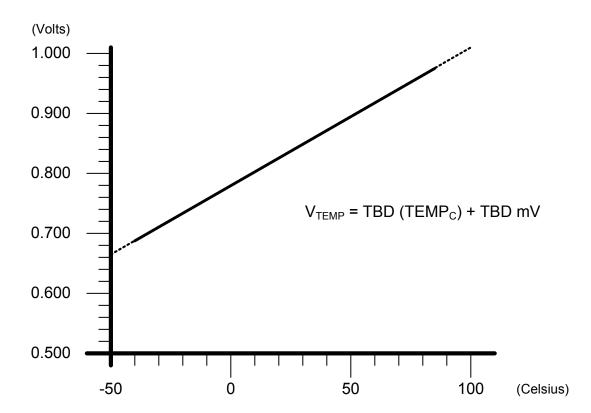


Figure 5.2. Typical Temperature Sensor Transfer Function

5.3. ADC0 Operation

In a typical system, ADC0 is configured using the following steps:

- Step 1. If an attenuation (1:2) is required please refer to Section "5.5. Selectable Attenuation" on page 57.
- Step 2. Choose the start of conversion source.
- Step 3. Choose Normal Mode or Burst Mode operation.
- Step 4. If Burst Mode, choose the ADC0 Idle Power State and set the Power-Up Time.
- Step 5. Choose the tracking mode. Note that Pre-Tracking Mode can only be used with Normal Mode.
- Step 6. Calculate required settling time and set the post convert-start tracking time using the AD0TK bits.
- Step 7. Choose the repeat count.
- Step 8. Choose the output word justification (Right-Justified or Left-Justified).
- Step 9. Enable or disable the End of Conversion and Window Comparator Interrupts.

5.3.1. Starting a Conversion

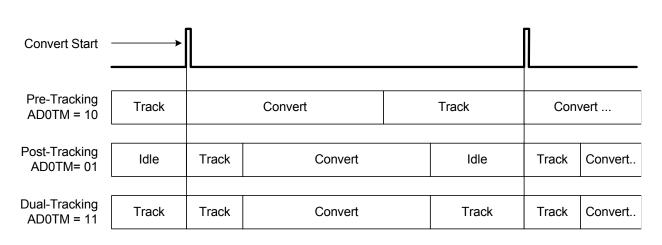
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM1–0) in register ADC0CN. Conversions may be initiated by one of the following:

- Writing a '1' to the AD0BUSY bit of register ADC0CN
- A rising edge on the CNVSTR input signal (pin P0.6)
- A Timer 2 overflow (i.e., timed continuous conversions)

Writing a '1' to AD0BUSY provides software control of ADC0 whereby conversions are performed "ondemand." During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. Note that when Timer 2 overflows are used as the conversion source, Low Byte overflows are used if Timer2 is in 8-bit mode; High byte overflows are used if Timer2 is in 16-bit mode. See Section **"19. Timers" on page 179** for timer configuration.

5.3.2. Tracking Modes

According to Table 5.1 and Table 5.2, each ADC0 conversion must be preceded by a minimum tracking time for the converted result to be accurate. ADC0 has three tracking modes: Pre-Tracking, Post-Tracking, and Dual-Tracking. Pre-Tracking Mode provides the minimum delay between the convert start signal and end of conversion by tracking continuously before the convert start signal. This mode requires software management in order to meet minimum tracking requirements. In Post-Tracking Mode, a programmable tracking time starts after the convert start signal and is managed by hardware. Dual-Tracking Mode maximizes tracking time by tracking before and after the convert start signal. Figure 5.3 shows examples of the three tracking modes.


Pre-Tracking Mode is selected when AD0TM is set to 10b. Conversions are started immediately following the convert start signal. ADC0 is tracking continuously when not performing a conversion. Software must allow at least the minimum tracking time between each end of conversion and the next convert start signal. The minimum tracking time must also be met prior to the first convert start signal after ADC0 is enabled.

Post-Tracking Mode is selected when AD0TM is set to 01b. A programmable tracking time based on AD0TK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 does not track the input. Rather, the sampling capacitor remains disconnected from the input making the input pin high-impedance until the next convert start signal.

Dual-Tracking Mode is selected when AD0TM is set to 11b. A programmable tracking time based on AD0TK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 tracks continuously until the next conversion is started.

Depending on the output connected to the ADC input, additional tracking time, more than is specified in Table 5.1 and Table 5.2, may be required after changing MUX settings. See the settling time requirements described in Section "5.3.6. Settling Time Requirements" on page 48.

5.3.3. Timing

ADC0 has a maximum conversion speed specified in Table 5.1 and Table 5.2. ADC0 is clocked from the ADC0 Subsystem Clock (FCLK). The source of FCLK is selected based on the BURSTEN bit. When BURSTEN is logic 0, FCLK is derived from the current system clock. When BURSTEN is logic 1, FCLK is derived from the Burst Mode Oscillator, an independent clock source with a maximum frequency of 25 MHz.

When ADC0 is performing a conversion, it requires a clock source that is typically slower than FCLK. The ADC0 SAR conversion clock (SAR clock) is a divided version of FCLK. The divide ratio can be configured using the AD0SC bits in the ADC0CF register. The maximum SAR clock frequency is listed in Table 5.1 and Table 5.2.

ADC0 can be in one of three states at any given time: tracking, converting, or idle. Tracking time depends on the tracking mode selected. For Pre-Tracking Mode, tracking is managed by software and ADC0 starts conversions immediately following the convert start signal. For Post-Tracking and Dual-Tracking Modes, the tracking time after the convert start signal is equal to the value determined by the AD0TK bits plus 2 FCLK cycles. Tracking is immediately followed by a conversion. The ADC0 conversion time is always 13 SAR clock cycles plus an additional 2 FCLK cycles to start and complete a conversion. Figure 5.4 shows timing diagrams for a conversion in Pre-Tracking Mode and tracking plus conversion in Post-Tracking or Dual-Tracking Mode. In this example, repeat count is set to one.

Со	nvert Start —	*							\Box
				Pre-Tracki	ng Moo	de			
ſ	Time		F S1 S2 ·	S12 S13	F				
ł	ADC0 State		Cor	nvert					
	AD0INT Flag								
		8777		ing or Dual-Track	ing Mo				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Time		F S1 S2 F	F S1 S2]	S12	S13	F //////	
$\left\{ \right.$	ADC0 State		Track		Conver	t			
Ĺ	AD0INT Flag								
			Кеу						
			F Equal to c	one period of FCL	_K.				
			Sn Each Sn i	is equal to one pe	eriod of	the SA	R clock	κ.	

Figure 5.4. 12-Bit ADC Tracking Mode Example

5.3.4. Burst Mode

Burst Mode is a power saving feature that allows ADC0 to remain in a very low power state between conversions. When Burst Mode is enabled, ADC0 wakes from a very low power state, accumulates 1, 4, 8, or 16 samples using an internal Burst Mode clock (approximately 25 MHz), then re-enters a very low power state. Since the Burst Mode clock is independent of the system clock, ADC0 can perform multiple conversions then enter a very low power state within a single system clock cycle, even if the system clock is slow (e.g. 32.768 kHz), or suspended.

Burst Mode is enabled by setting BURSTEN to logic 1. When in Burst Mode, AD0EN controls the ADC0 idle power state (i.e. the state ADC0 enters when not tracking or performing conversions). If AD0EN is set to logic 0, ADC0 is powered down after each burst. If AD0EN is set to logic 1, ADC0 remains enabled after each burst. On each convert start signal, ADC0 is awakened from its Idle Power State. If ADC0 is powered down, it will automatically power up and wait the programmable Power-Up Time controlled by the AD0PWR bits. Otherwise, ADC0 will start tracking and converting immediately. Figure 5.5 shows an example of Burst Mode Operation with a slow system clock and a repeat count of 4.

Important Note: When Burst Mode is enabled, only Post-Tracking and Dual-Tracking modes can be used.

When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat count. When Burst Mode is disabled, a convert start is required to initiate each conversion. In both modes, the ADC0 End of Conversion Interrupt Flag (AD0INT) will be set after "repeat count" conversions have been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

Note: When using Burst Mode, care must be taken to issue a convert start signal no faster than once every four SYSCLK periods. This includes external convert start signals.

System Clock																	
									L				J				
Convert Start	>																
Post-Tracking AD0TM = 01	Powered	Pow	er-Up	Т	с	Т	с	т	С	т	С	Powered	Po	wer-	Up	Т	С
AD01M = 01 AD0EN = 0	Down	and Idle		<u> </u>			C		C		C	Down	and Idle	<u> '</u>	С.		
Dual-Tracking							-										
AD0TM = 11 AD0EN = 0	Powered Down		er-Up Track	Т	С	Т	С	т	С	Т	С	Powered Down		wer- d Tra		Т	С
		← AD0	PWR 🤊														
Post-Tracking															1	—	
AD0TM = 01 AD0EN = 1	Idle	T C	T C	T	С	Т	С					Idle	ТС	; т	С	Т	С
			• •	•	•	•	•	•									
Dual-Tracking AD0TM = 11 AD0EN = 1	Track	тс	ТС	Т	С	Т	С					Track	тс	; т	С	Т	С
	T = Tracking C = Converti																

Figure 5.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4

5.3.5. Output Conversion Code

The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code. When the repeat count is set to 1, conversion codes are represented in 12-bit unsigned integer format and the output conversion code is updated after each conversion. Inputs are measured from '0' to $V_{REF} \times 4095/4096$. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.2). Unused bits in the ADC0H and ADC0L registers are set to '0'. Example codes are shown below for both right-justified and left-justified data.

Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)				
V _{REF} x 4095/4096	0x0FFF	0xFFF0				
V _{REF} x 2048/4096	0x0800	0x8000				
V _{REF} x 2047/4096	0x07FF	0x7FF0				
0	0x0000	0x0000				

When the ADC0 Repeat Count is greater than 1, the output conversion code represents the accumulated result of the conversions performed and is updated after the last conversion in the series is finished. The output value can be 14-bit (4 samples), 15-bit (8 samples), or 16-bit (16 samples) in unsigned integer format based on the selected repeat count. The repeat count can be selected using the AD0RPT bits in the ADC0CF register. The value must be right-justified (AD0LJST = "0"), and unused bits in the ADC0H and ADC0L registers are set to '0'. The following example shows right-justified codes for repeat counts greater than 1. Notice that accumulating 2^n samples is equivalent to left-shifting by *n* bit positions when all samples returned from the ADC have the same value.

Input Voltage	Repeat Count = 4	Repeat Count = 8	Repeat Count = 16
V _{REF} x 4095/4096	0x3FFC	0x7FF8	0xFFF0
V _{REF} x 2048/4096	0x2000	0x4000	0x8000
V _{REF} x 2047/4096	0x1FFC	0x3FF8	0x7FF0
0	0x0000	0x0000	0x0000

5.3.6. Settling Time Requirements

A minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion.

Figure 5.6 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature Sensor output or V_{DD} with respect to GND, R_{TOTAL} reduces to R_{MUX} . See Table 5.1 and Table 5.2 for ADC0 minimum settling time requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 5.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (12).

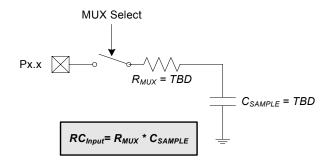
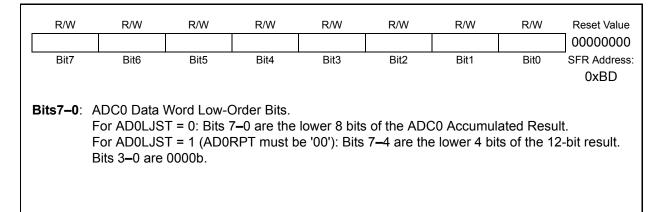


Figure 5.6. ADC0 Equivalent Input Circuits

SFR Definition 5.1. ADC0MX: ADC0 Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-			AD0MX			00011111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
								0xBB
1407 E.		aad - 000	h. \//::to _ o	lon't coro				
	UNUSED. R AD0MX4-0:				1			
JII34-0.			Usitive inpu					
	AD0MX		AD	C0 Input C	hannel			
	0000			P0.0				
	0000			P0.1				
	0001			P0.2				
	0001			P0.3				
	0010			P0.4				
	0010			P0.5				
	0011			P0.6*				
	0011			P0.7*				
	0100			P1.0*				
	0100			P1.1*				
	0101			P1.2*				
	0101			P1.3*				
	0110			P1.4*				
	0110			P1.5*				
	0111			P1.6*				
	0111			P1.7*				
	1100	0		Temp Sen	sor			
	1100	1		V_{DD}				
	11010 - 1	1111		GND				


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
		AD0SC			AD0	RPT	ATTEN	11111000				
Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 E		Bit0	SFR Address					
								0xBC				
Bits7–3:	AD0SC4-0:	ADC0 SAR	Conversio	n Clock Pe	riod Bits.							
	SAR Conve				•	•						
	to the 5-bit v Table 5.1.	alue held in	bits AD0S	C4 – 0. SAR	Conversion	i clock requ	irements a	re given in				
	BURSTEN = 0: FCLK is the current system clock.											
	BURSTEN = 0. FOLK is the current system clock. BURSTEN = 1: FCLK is a maximum of 25 MHz, independent of the current system clock.											
					•		,					
	AD0SC =	$\frac{FCLK}{CLK_{SAR}}$	-1* c	or CLK	$S_{SAR} = \frac{1}{AD}$	$\overline{00SC+1}$						
	*Note: Round	d the result up										
Bits2–1:	AD0RPT1-0											
	Controls the											
	Conversion start is requi											
	convert star											
	accumulated		•									
	than '00', th			•								
	00: 1 conver											
	01: 4 conver	•										
	10: 8 conver 11: 16 conve	•										
					nateu.							
Bit0:	ATTEN: Atte											
Bit0:	ATTEN: Atte Controls the the following	attenuation	programm					e refer to				

SFR Definition 5.3. ADC0H: ADC0 Data Word MSB

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xBE
F C C 1 1 F	ADC0 Data \ For AD0LJS 00: Bits 3–0 01: Bits 4–0 10: Bits 5–0 11: Bits 7–0 For AD0LJS 2-bit result.	T = 0 and A are the upp are the upp are the upp are the upp	DORPT as ber 4 bits of ber 5 bits of ber 6 bits of er 8 bits of	the 12-bit re the 14-bit re the 15-bit re the 16-bit re	esult. Bits 7 esult. Bits 7 esult.	–5 are 000k –6 are 00b.	D.	of the ADC0

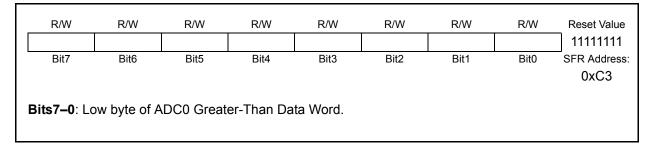
SFR Definition 5.4. ADC0L: ADC0 Data Word LSB

SFR Definition 5.5. ADC0CN: ADC0 Control

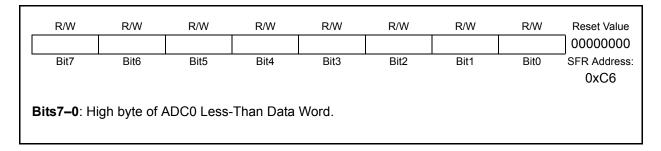
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
AD0EI	BURSTEN	AD0INT	AD0BUSY	ADOWINT	AD0LJST	AD0CM1	AD0CM0	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
						(bi	t addressable)	0xE8					
Bit7:	AD0EN: AD0	C0 Enable	Bit.										
	0: ADC0 Disabled. ADC0 is in low-power shutdown.												
	1: ADC0 Enabled. ADC0 is active and ready for data conversions.												
Bit6:	BURSTEN: A			able Bit.									
	0: ADC0 Bur												
D'45	1: ADC0 Bur												
Bit5:	ADOINT: ADO					at time AD		oorod					
	0: ADC0 has 1: ADC0 has				since the la	ast time AD	UINT Was C	eareu.					
Bit4:	ADOBUSY: A	•											
DICH.	Read:	(DOO DOOy	Dit.										
	0: ADC0 con	version is o	complete or	a conversion	on is not cu	rrently in pro	ogress. AD	DINT is set					
	to logic 1 on					, ,	0						
	1: ADC0 con	version is i	in progress.										
	Write:												
	0: No Effect.												
	1: Initiates Al			-									
Bit3:	ADOWINT: A		•		-lag.								
	This bit must 0: ADC0 Win				not occurr	od cinco thi	e flag wae k	est cloared					
	1: ADC0 Win						s liay was lo	ast cleared.					
Bit2:	AD0LJST: A				occurred.								
	0: Data in AD				tified.								
	1: Data in AD					tion should	not be use	d with a					
	repeat count												
Bits1–0	AD0CM1-0:												
	00: ADC0 co					BUSY.							
	01: ADC0 co												
	10: ADC0 co					NVSTR.							
	11: ADC0 co	nversion in	illiated on o	vertiow of I	imer 2.								

SFR Definition 5.6. ADC0TK: ADC0 Tracking Mode Select

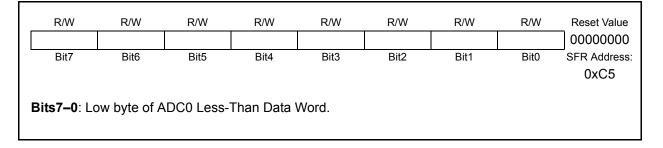
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	AD0F	PWR		AD	ОТМ	AD	0TK	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bi	t addressable) 0xBA
Bits7–4∶	ADOPWR3-(For BURSTE ADC0 power For BURSTE ADC0 remain For BURSTE ADC0 enters after each co equation: ADOPWR	N = 0: state contr N = 1 and ns enabled N = 1 and the very lo nvert start	olled by AE AD0EN = 1 and does r AD0EN = 0 w power sta signal. The	DOEN. ; iot enter the : ate as speci Power Up t	fied in Table ime is progr	5.1 and Ta ammed acc	ording to th	
	AD0TM1–0 : 00: Reserved 01: ADC0 is 10: ADC0 is 11: ADC0 is AD0TK1–0 : Post-Tracking 00: Post-Trac 01: Post-Trac 10: Post-Trac 11: Post-Trac	d. configured configured configured ADC0 Post g time is co cking time i cking time i cking time i	to Post-Trac to Pre-Trac to Dual-Tra -Track Time ontrolled by s equal to 2 s equal to 2 s equal to 2	cking Mode cking Mode cking Mode cking Mode c c AD0TK as AD0TK as SAR clock SAR clock SAR clock	e. e (default). follows: c cycles + 2 c cycles + 2 c cycles + 2	FCLK cycle FCLK cycle	es. es.	


5.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.


SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 11111111 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 SFR Address: Bit0 0xC4 Bits7–0: High byte of ADC0 Greater-Than Data Word.

SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte



SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

5.4.1. Window Detector In Single-Ended Mode

window Figure 5.7 shows two example comparisons for right-justified with data ADC0LTH:ADC0LTL = 0x0200 (512d) and ADC0GTH:ADC0GTL = 0x0100 (256d). The input voltage can range from '0' to V_{REF} x (4095/4096) with respect to GND, and is represented by a 12-bit unsigned integer value. The repeat count is set to one. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0100 < ADC0H:ADC0L < 0x0200). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0100 or ADC0H:ADC0L > 0x0200). Figure 5.8 shows an example using left-justified data with the same comparison values.

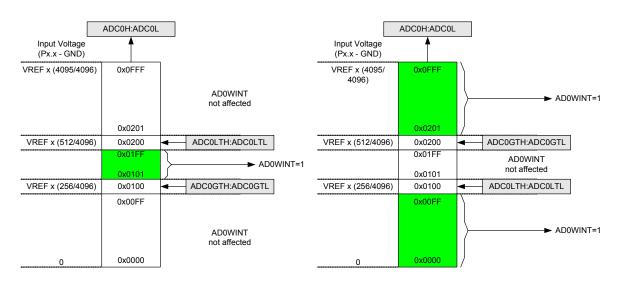


Figure 5.7. ADC Window Compare Example: Right-Justified Single-Ended Data

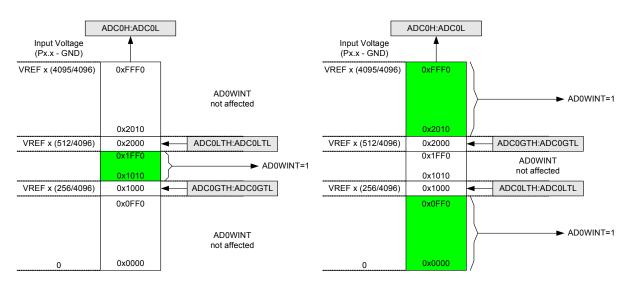


Figure 5.8. ADC Window Compare Example: Left-Justified Single-Ended Data

5.5. Selectable Attenuation

The C8051F52x/F53x family of devices implements an ADC that provides a new and innovative selectable attenuation option. This option allows the designer to take the ADC Input and either keep its input value unchanged or attenuate by a factor of 2 (value divided by two).

The attenuation selection is performed using the following steps:

- Step 1. Set the ATTEN bit (ADC0CF.0)
- Step 2. Load the ADC0H with 0x04
- Step 3. Load ADC0L with 0xFC if no attenuation (1/1 gain) is required or 0x7C to attenuate the signal (1/2 gain)
- Step 4. Reset the ATTEN bit (ADC0CF.0)

Notes:

- 1. During the Attenuation selection no ADC conversion should be performed as the results will be incorrect.
- 2. The maximum input voltage value is still limited to Vregin and the maximum value of the signal after attenuation is limited to Vref otherwise the ADC will saturate.

Table 5.1. ADC0 Electrical Characteristics (V_{DD} = 2.4 V, V_{REF} = 2.25 V)

V_{DD} = 2.4 V, V_{REF} = 2.25 V (REFSL=0), –40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy			1		
Resolution			12		bits
Integral Nonlinearity	C8051F52x/C8051F53x devices	_	_	±1 ±2	LSB
Differential Nonlinearity	Guaranteed Monotonic			±1	LSB
Offset Error		—	TBD		LSB
Full Scale Error	Differential mode	—	TBD		LSB
Offset Temperature Coefficient		—	TBD		ppm/°C
Dynamic Performance (10 kHz s	sine-wave Single-ended input,	0 to 1 dE	B below	Full Sca	ale, 200 ksps)
Signal-to-Noise Plus Distortion	C8051F52x/C8051F53x devices	68 64	_		dB
Total Harmonic Distortion	Up to the 5 th harmonic	-	TBD	—	dB
Spurious-Free Dynamic Range		-	TBD		dB
Conversion Rate	1				
SAR Conversion Clock		_		10	MHz
Conversion Time in SAR Clocks ¹		—	13	_	clocks
Track/Hold Acquisition Time ²		1	—	—	μs
Throughput Rate		_	—	200	ksps
Analog Inputs	·		•		
Input Voltage Range ³		0	_	4.6 or 2.3	V
Input Capacitance		—	TBD		pF
Temperature Sensor	1			1	
Linearity ^{4,5}		—	±TBD	_	°C
Gain ^{4,5}		—	TBD	—	μV / °C
Offset ^{4,5}	(Temp = 0 °C)	-	TBD	—	mV
Power Specifications	1			1	
Power Supply Current (V _{DD} supplied to ADC)	Operating Mode, 200 ksps	_	680	TBD	μA
Burst Mode (Idle)		—	TBD		μA
Power-On Time		TBD	—	—	μs
Power Supply Rejection		—	TBD	—	mV/V
Notes:	1			1	

Notes:

1. An additional 2 FCLK cycles are required to start and complete a conversion.

2. Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "5.3.6. Settling Time Requirements" on page 48.

3. The maximum input voltage is 2.3 V without attenuation and 4.6 V with attenuation when using the internal reference. If an external reference is used then the input is limited to the external reference value.

4. Represents one standard deviation from the mean.

5. Includes ADC offset, gain, and linearity variations.

Table 5.2. ADC0 Electrical Characteristics (V_{DD} = 2.0 V, V_{REF} = 1.5 V)

 V_{DD} = 2.0 V, V_{REF} = 1.5 V (REFSL = 0), -40 to +125 °C unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy			1		
Resolution			12		bits
Integral Nonlinearity	C8051F52x/C8051F53x devices		_	±1 ±2	LSB
Differential Nonlinearity	Guaranteed Monotonic	—		±1	LSB
Offset Error		—	TBD		LSB
Full Scale Error	Differential mode	—	TBD		LSB
Offset Temperature Coefficient		—	TBD		ppm/°C
Dynamic Performance (10 kHz s	ine-wave Single-ended input, (to 1 dE	below	Full Sca	le, 200 ksps)
Signal-to-Noise Plus Distortion	C8051F52x/C8051F53x devices	68 64	_	_	dB
Total Harmonic Distortion	Up to the 5 th harmonic	_	TBD	_	dB
Spurious-Free Dynamic Range		—	TBD	_	dB
Conversion Rate					
SAR Conversion Clock		_		10	MHz
Conversion Time in SAR Clocks	Note 1	—	13		clocks
Track/Hold Acquisition Time	Note 2	1	—		μs
Throughput Rate		—	—	200	ksps
Analog Inputs		•			
Input Voltage Range		0		V_{REF}	V
Input Capacitance		—	TBD		pF
Temperature Sensor			1		
Linearity	Notes 3, 4	_	±TBD		°C
Gain	Notes 3, 4	—	TBD		μV / °C
Offset	Notes 3, 4 (Temp = 0 °C)	—	TBD		mV
Power Specifications	•				
Power Supply Current (V _{DD} sup- plied to ADC0)	Operating Mode, 200 ksps	_	650	TBD	μA
Burst Mode (Idle)		I —	TBD		μA
Power-On Time		TBD	—	—	μs
Power Supply Rejection			TBD	_	mV/V

1. An additional 2 FCLK cycles are required to start and complete a conversion.

2. Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "5.3.6. Settling Time Requirements" on page 48.

- 3. Represents one standard deviation from the mean.
- **4.** Includes ADC offset, gain, and linearity variations.

NOTES:

6. Voltage Reference

The Voltage reference MUX on C8051F52x/F53x devices is configurable to use an externally connected voltage reference, the internal reference voltage generator, or the V_{DD} power supply voltage (see Figure 6.1). The REFSL bit in the Reference Control register (REF0CN) selects the reference source. For an external source or the internal reference applied to the V_{REF} pin, REFSL should be set to '0'. To use V_{DD} as the reference source, REFSL should be set to '1'.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and internal oscillators. This bit is forced to logic 1 when any of the aforementioned peripherals are enabled. The bias generator may be enabled manually by writing a '1' to the BIASE bit in register REF0CN; see SFR Definition 6.1 for REF0CN register details. The electrical specifications for the voltage reference circuit are given in Table 6.1.

The internal voltage reference circuit consists of a temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The output voltage is selectable between 1.5 V and 2.25 V. The internal voltage reference can be driven out on the V_{REF} pin by setting the REFBE bit in register REF0CN to a '1' (see Figure 6.1). The load seen by the V_{REF} pin must draw less than 200 µA to GND. When using the internal voltage reference, bypass capacitors of 0.1 µF and 4.7 µF are recommended from the V_{REF} pin to GND. If the internal reference is not used, the REFBE bit should be cleared to '0'. Electrical specifications for the internal voltage reference are given in Table 6.1.

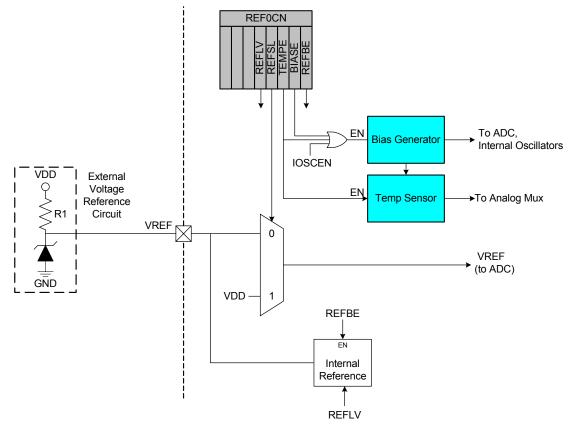


Figure 6.1. Voltage Reference Functional Block Diagram

Important Note About the V_{REF} Pin: Port pin P0.0 is used as the external V_{REF} input and as an output for the internal V_{REF}. When using either an external voltage reference or the internal reference circuitry, P0.0 should be configured as an analog pin, and skipped by the Digital Crossbar. To configure P0.0 as an analog pin, clear Bit 2 in register P0MDIN to '0'. To configure the Crossbar to skip P0.0, set Bit 0 in register P0SKIP to '1'. Refer to **Section "14. Port Input/Output" on page 115** for complete Port I/O configuration details. The TEMPE bit in register REF0CN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
_		ZTCEN	REFLV	REFSL	TEMPE	BIASE	REFBE	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xD1	
Bits7–6:	RESERVED	. Read = 0t	. Must write	e 0b.					
Bit5:	ZTCEN: Zer	o-TempCo l	Bias Enable	e Bit.					
	0: ZeroTC B	ias Genera	tor automat	ically enable	ed when ne	eded.			
	1: ZeroTC B								
Bit4:	REFLV: Volt	•	•						
	This bit sele				internal vol	tage referer	nce.		
	0: Internal vo	-							
D:40.	1: Internal vo								
Bit3:	REFSL: Volt	-			ao roforona	20			
	0: V _{RFF} pin u				ige releterit	<i>.</i> с.			
	1: V _{DD} used		-	100.					
Bit2:		-		ala Dit					
DILZ.	TEMPE : Ten 0: Internal Te	•							
	1: Internal Te								
Bit1:	BIASE: Inter				Bit				
2	0: Internal A	-				vhen neede	ed.		
	1: Internal A				,		-		
Bit0:	REFBE: Inte	-							
	0: Internal R	eference B	uffer disable	ed.					
	1: Internal R	eference B	uffer enable	ed. Internal	voltage refe	rence drive	n on the V _F	_{REF} pin.	

SFR Definition 6.1. REF0CN: Reference Control

Table 6.1. Voltage Reference Electrical Characteristics

Parameter	Conditions	Min	Тур	Мах	Units
Internal Reference (REFBE =	1)				
Output Voltage	25 °C ambient (REFLV = 0) 25 °C ambient (REFLV = 1), V _{DD} = 2.4 V	TBD TBD	1.5 2.2	TBD TBD	V
V _{REF} Short-Circuit Current		—	—	TBD	mA
V _{REF} Temperature Coefficient		—	TBD	—	ppm/°C
Power Consumption (Internal)		—	TBD	—	μA
Load Regulation	Load = 0 to 200 µA to GND	—	TBD	—	ppm/µA
V _{REF} Turn-on Time 1	4.7 μF tantalum, 0.1 μF ceramic bypass	—	TBD		ms
V _{REF} Turn-on Time 2	no bypass cap	—	TBD	—	μs
Power Supply Rejection		—	TBD	—	ppm/V
External Reference (REFBE =	= 0)				
Input Voltage Range		0		V_{DD}	V
Input Current	Sample Rate = 200 ksps; V _{REF} = TBD V	—	TBD		μA
Bias Generators					
ADC Bias Generator	BIASE = '1'	—	TBD	—	μA
Reference Bias Generator		—	TBD		μA

 V_{DD} = 2.0 V; -40 to +125 °C unless otherwise specified.

NOTES:

7. Voltage Regulator (REG0)

C8051F52x/F53x devices include an on-chip low dropout voltage regulator (REG0). The input to REG0 at the V_{REGIN} pin can be as high as 5.25 V. The output can be selected by software to 2.0 V or 2.4 V. When enabled, the output of REG0 appears on the V_{DD} pin, powers the microcontroller core, and can be used to power external devices. On reset, REG0 is enabled and can be disabled by software.

The input (V_{REGIN}) and output (V_{DD}) of the voltage regulator should both be bypassed with a large capacitor (4.7 μ F + 0.1 μ F) to ground. This capacitor will eliminate power spikes and provide any immediate power required by the microcontroller. The settling time associated with the voltage regulator is shown in Table 7.1.

The Voltage regulator can also generate an interrupt (if enabled by EREG0, EIE1.6) that is triggered whenever the Vregin Input voltage drops below the dropout threshold. (see Table 7.1)

This dropout interrupt has no pending flag and the recommended procedure to use it is as follows:

- Step 1. Wait enough time to ensure the Vregin input voltage is stable
- Step 2. Enable the dropout interrupt (EREG0, EIE1.6) and select the proper priority (PREG0, PIE1.6)
- Step 3. If triggered, inside the interrupt disable it (clear EREG0, EIE1.6), execute all procedures necessary to protect your application (put it in a safe mode and leave the interrupt now disabled.
- Step 4. In the main application, now running in the safe mode, regularly checks the DROPOUT bit (REG0CN.0). Once it is cleared by the regulator hardware the application can enable the interrupt again (EREG0, EIE1.6) and return to the normal mode operation.

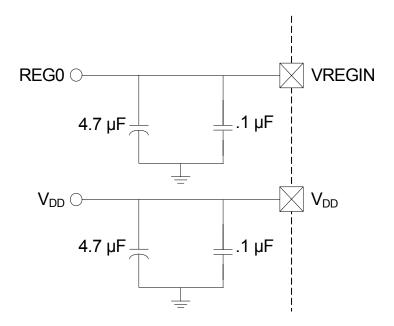


Figure 7.1. External Capacitors for Voltage Regulator Input/Output

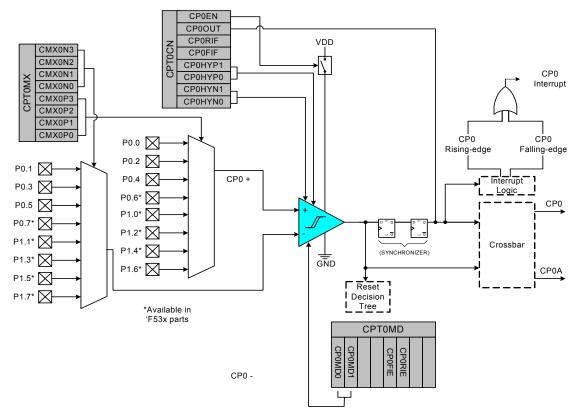
R/W	R/W	R	R/W	R	R	R	R	Reset Value
REGDIS	8 Reserved		REG0MD	_	_		DROPOU	Г 00010000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0xC9
Bit7: Bit6: Bit5: Bit4: Bits3–1: Bit0:	REGDIS: Vol This bit disab 0: Voltage Re 1: Voltage Re RESERVED. UNUSED. Re REGOMD: Vo This bit selec 0: Voltage Re UNUSED. Re DROPOUT: V 0: Voltage Re	egulator E egulator D Read = 0 ead = 0b. 1 oltage Reg egulator ou egulator ou ead = 0b. 1 /oltage Reg	es the Voltage nabled. isabled. b. Must write Write = don't julator Mode age Regulato utput is 2.0 V. utput is 2.4 V Write = don't gulator Drop	e Regulato Ob. care. Select Bit. or output vo (default). care. out Indicat	oltage.			

SFR Definition 7.1. REG0CN: Regulator Control

Table 7.1. Voltage Regulator Electrical Specifications

 V_{DD} = 2.0 or 2.4 V; -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
Input Voltage Range (V _{REGIN})*		2.7*		5.25	V
Dropout Voltage (V _{DO})	Output Current = 1 mA Output Current = 50 mA	TBD TBD	10 500	TBD TBD	mV
Output Voltage (V _{DD})	2.0 V operation (REG0MD = '0') 2.0 V operation (REG0MD = '1') Output Current = 1 to 50 mA	TBD TBD —	2.0 2.4 —	TBD TBD —	V
Bias Current	2.0 V operation (REG0MD = '0') 2.4 V operation (REG0MD = '1')	_	1 1	TBD TBD	μA
Dropout Indicator Detection Threshold		TBD	_	TBD	V
Output Voltage Tempco			TBD	_	mV/ºC
VREG Settling Time	50 mA load with V_{REGIN} = 2.4 V and V_{DD} load capacitor of 4.8 µF	_	250	_	μs
*Note: The minimum input voltage is	s 2.7 V or V_{DD} + V_{DO} (max load), whichever i	s greater.			


8. Comparator

C8051F52x/F53x devices include one on-chip programmable voltage comparator. The Comparator is shown in Figure 8.1;

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0), or an asynchronous "raw" output (CP0A). The asynchronous CP0A signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP or SUS-PEND mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see Section "14.2. Port I/O Initialization" on page 121). The Comparator may also be used as a reset source (see Section "12.5. Comparator Reset" on page 100).

The Comparator inputs are selected in the CPT0MX register (SFR Definition 8.2). The CMX0P3–CMX0P0 bits select the Comparator0 positive input; the CMX0N3–CMX0N0 bits select the Comparator0 negative input.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see **Section "14.3. General Purpose Port I/O" on page 123**)

Figure 8.1. Comparator Functional Block Diagram

The Comparator has two input modes: Low-Speed Analog Mode and High-Speed Analog Mode. The difference between the two modes is that Comparator input resistance is decreased in High-Speed Analog

Mode, but power consumption is slightly increased. High-Speed Analog Mode is enabled by setting the CPnHIQE bit in CPTnMD.

The Comparator output can be polled in software, used as an interrupt source, internal oscillator suspend awakening source and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP or SUSPEND mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to less than 100 nA. See Section "14.1. Priority Crossbar Decoder" on page 117 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 8.1.

The Comparator response time may be configured in software via the CPTnMD register (see SFR Definition 8.3). Selecting a longer response time reduces the Comparator supply current. See Table 8.1 for complete timing and current consumption specifications.

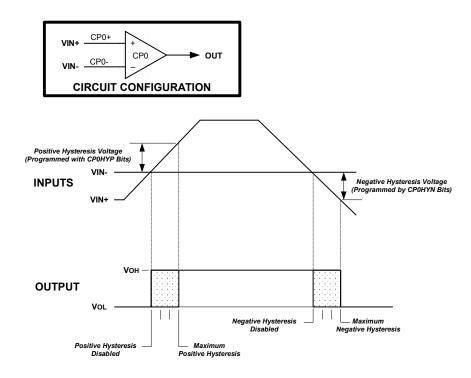


Figure 8.2. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPT0CN (for n = 0 or 1). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3–0 in the Comparator Control Register CPT0CN (shown in SFR Definition 8.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Table 8.1, settings of 20, 10 or 5 mV of negative hysteresis can be

programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see **Section "11. Interrupt Handler" on page 89**). The CP0FIF flag is set to logic 1 upon a Comparator falling-edge detect, and the CPnRIF flag is set to logic 1 upon the Comparator rising-edge detect. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CP0EN bit to logic 1, and is disabled by clearing this bit to logic 0.

The output state of the Comparator can be obtained at any time by reading the CP0OUT bit. The Comparator is enabled by setting the CP0EN bit to logic 1, and is disabled by clearing this bit to logic 0. When the Comparator is enabled, the internal oscillator is awakened from SUSPEND mode if the Comparator output is logic 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered-on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 8.1 on page 72.

CPOEN CPOOUT CPORIF CPOFIF CPOHYP1 CPOHYP1 CPOHYN1 CPOHYN0 CPOHYN0 CO0000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: Ox98 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: Ox98 Bit7: CPOEN: Comparator0 Enable Bit. 0: Comparator0 Enable Bit. 0: Comparator0 Enable Bit. 0: Comparator0 Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 Bit5: CPORIF: Comparator0 Rising Edge has occurred. Bit3 Bit3 Bit3 Bit3 Bit3 Bit4 Bit3 Bit3 Bit4 D: Oxoparator0 D: Oxoparator0 D: Oxoparator0 D: Dxoparator0 D: Dxoparator0 Disting-Edge Flag. D: No Comparator0 Falling-Edge Flag. D: No Comparator0 Falling-Edge has occurred. Bit4 CPOFIF: Comparator0 Falling-Edge has occurred. Bit5. D: Positive Hysteresis Disabled. D: Positive Hysteresis Disabled. D: Positive Hysteresis Disabled. D: Positive Hysteresis Disabled. D: Positive Hysteresis = 5 mV. D: Negative Hysteresis =	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0x9B Bit7: CP0EN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled. 0: Comparator0 Enabled. 0: Comparator0 Enabled. Bit6: CP0OUT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred. Bit4: CP0FIF: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.									-			
Dx9B Bit7: CP0EN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled. Bit6: CP0OUT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred. Bit5: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 0: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.												
 Bit7: CP0EN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled. Bit6: CP0OUT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge has occurred. Bit5-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bit51-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: No Regative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 11: Positive Hysteresis = 10 mV. 12: Negative Hysteresis = 5 mV. 13: Negative Hysteresis = 5 mV. 14: Negative Hysteresis = 10 mV. 	Diti	Dito	Bito	Ditt	Bito	Bitte	Bitt	Bito				
 0: Comparator0 Disabled. 1: Comparator0 Enabled. Bit6: CP0OUT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge flag. 0: No Comparator0 Falling-Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge has occurred. Bit5-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis Disabled. 11: Negative Hysteresis = 10 mV. 12: Negative Hysteresis = 5 mV. 13: Negative Hysteresis = 10 mV. 14: Negative Hysteresis = 10 mV. 15: Negative Hysteresis = 10 mV. 16: Negative Hysteresis = 10 mV. 17: Negative Hysteresis = 10 mV. 									0,00			
 Bit6: 0: Comparator0 Disabled. 1: Comparator0 Enabled. Bit6: CP00UT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred. Bit5: CP0FIF: Comparator0 Falling-Edge has occurred. Bit3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 	Bit7:	CP0EN: Cor	nparator0 E	nable Bit.								
Bit6: CP0OUT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis Disabled. 01: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.			•									
 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Positive Hysteresis = 10 mV. 12: Negative Hysteresis = 10 mV. 13: Negative Hysteresis = 10 mV. 14: Negative Hysteresis = 10 mV. 15: Negative Hysteresis = 10 mV. 16: Negative Hysteresis = 10 mV. 		•										
1: Voltage on CP0+ > CP0 Bit5: CP0RIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis Disabled. 01: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis Disabled. 01: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.	Bit6:	CPOOUT: Co	omparator0	Output Sta	ite Flag.							
 Bit5: CPORIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CPOFIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CPOHYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. Bits1-0: CPOHYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 		0: Voltage or	n CP0+ < C	P0–.	-							
 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 11: Positive Hysteresis = 10 mV. 12: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 		1: Voltage or	n CP0+ > C	P0–.								
 1: Comparator0 Rising Edge has occurred. Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 11: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 	Bit5:		•		•							
 Bit4: CP0FIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Positive Hysteresis Disabled. 12: Negative Hysteresis = 10 mV. 13: Negative Hysteresis = 10 mV. 14: Negative Hysteresis = 10 mV. 15: Negative Hysteresis = 10 mV. 16: Negative Hysteresis = 10 mV. 						since this fl	ag was last	cleared.				
0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.												
 1: Comparator0 Falling-Edge has occurred. Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 	Bit4:											
 Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 						I since this f	lag was last	cleared.				
00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. Bits1–0: CP0HYN1–0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.												
01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. Bits1–0: CP0HYN1–0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.	Bits3-2:		•		e Hysteres	s Control Bi	ts.					
 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. Bits1–0: CP0HYN1–0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 												
 11: Positive Hysteresis = 20 mV. Bits1–0: CP0HYN1–0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 												
 Bits1–0: CP0HYN1–0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 												
00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.	Rite1_0				ivo Uvetoro	sic Control E	Pite					
01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV.	Dits I-0.		•	•	ve i lystere:		5115.					
10: Negative Hysteresis = 10 mV.												
• •		•										
		-	•									
		······		20 111 0.								

SFR Definition 8.1. CPT0CN: Comparator0 Control

SFR Definition 8.2. CPT0MX: Comparator0 MUX Selection	
---	--

								Reset Value
CMXON						CMX0P1	CMX0P0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address 0x9F
Bits7–4∶					e Input MUX Se the Comparate		e input.	
	CMX0N3	CMX0N2	CMX0N1	CMX0N0	Negative Inp	out		
	0	0	0	0	P0.1			
	0	0	0	1	P0.3			
	0	0	1	0	P0.5			
	0	0	1	1	P0.7*			
	0	1	0	0	P1.1*			
	0	1	0	1	P1.3*			
	0	1	1	0	P1.5*			
	0	1	•	U				
Bits1–0:	0 *Note: Avai	1 lable only or	1 1 the C8051	1 F53x device	P1.7*	ect.		
Bits1-0:	0 *Note: Avai CMX0P3- These bits	1 lable only or C MX0P0 : (select whic	1 <i>the C8051</i> Comparato ch Port pin	1 F53x device r0 Positive is used as	P1.7* s Input MUX Sel the Comparato	or0 positive	input.	
Bits1–0:	0 *Note: Avai CMX0P3– These bits CMX0P3	1 Iable only or CMX0P0: (select white CMX0P2	1 Comparato Ch Port pin CMX0P1	1 F53x devices r0 Positive is used as CMX0P0	P1.7* s Input MUX Sel the Comparato Positive Inp	or0 positive	input.	
Bits1−0:	0 *Note: Avai CMX0P3- These bits CMX0P3 0	1 lable only or CMX0P0: (select white CMX0P2 0	1 Comparato Ch Port pin CMX0P1 0	1 F53x devices r0 Positive is used as CMX0P0 0	P1.7* s Input MUX Sel the Comparato Positive Inp P0.0	or0 positive	input.	
Bits1−0:	0 *Note: Avai CMX0P3- These bits CMX0P3 0 0	1 Iable only or CMX0P0: (select white CMX0P2 0 0	1 Comparato Ch Port pin CMX0P1 0 0	1 F53x device. r0 Positive is used as CMX0P0 0 1	P1.7* s Input MUX Sel the Comparato Positive Inp P0.0 P0.2	or0 positive	input.	
Bits1–0:	0 *Note: Avai CMX0P3- These bits CMX0P3 0	1 lable only or CMX0P0: (select white CMX0P2 0	1 Comparato Ch Port pin CMX0P1 0	1 F53x devices r0 Positive is used as CMX0P0 0	P1.7* s Input MUX Sel the Comparato Positive Inp P0.0	or0 positive	input.	
Bits1–0:	0 *Note: Avai CMX0P3 These bits CMX0P3 0 0 0	1 lable only or CMX0P0: (select white CMX0P2 0 0 0	1 Comparato Ch Port pin CMX0P1 0 0 1	1 F53x devices r0 Positive is used as CMX0P0 0 1 0	P1.7* s Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4	or0 positive	input.	
Bits1–0:	0 *Note: Avai CMX0P3- These bits CMX0P3 0 0 0 0	1 lable only or CMX0P0: C select white CMX0P2 0 0 0 0 0	1 Comparato Ch Port pin CMX0P1 0 0 1 1	1 F53x devices r0 Positive is used as CMX0P0 0 1 0 1	P1.7* s Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6*	or0 positive	input.	
Bits1–0:	0 *Note: Avai CMX0P3- These bits CMX0P3 0 0 0 0 0 0 0	1 lable only or CMX0P0: (select white CMX0P2 0 0 0 0 0 1	1 Comparato ch Port pin CMX0P1 0 0 1 1 1 0	1F53x devicesr0 Positiveis used asCMX0P0010100	P1.7* s Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6* P1.0*	or0 positive	input.	
Bits1–0:	0 *Note: Avai CMX0P3 These bits CMX0P3 0 0 0 0 0 0 0 0	1 lable only or CMX0P0: (select white 0 0 0 0 0 1 1	1 Comparato Ch Port pin CMX0P1 0 0 1 1 1 0 0 0	1F53x device.r0 Positiveis used asCMX0P001010101	P1.7* s Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.4 P0.6* P1.0* P1.2*	or0 positive	input.	

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
CP0HIQ		CPORIE	CP0FIE	-	-	CP0MD1	CP0MD0					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
DILI	BILO	DIU	DII4	DILJ	DILZ	DILI	DILU	0x9D				
								UX9D				
Bit7:	CP0HIQE:	High_Speed		de Enable F	Rit							
Ditt .	0: Compara					de						
Bit6:	1: Comparator input configured to High-Speed Analog Mode. UNUSED. Read = 0b. Write = don't care.											
Bit5:	CPORIE : Comparator Rising-Edge Interrupt Enable.											
	0: Comparator rising-edge interrupt disabled.											
	1: Comparator rising-edge interrupt enabled.											
Bit4:	CP0FIE: Co	0	U 1		nable.							
	0: Compara	•										
	1: Compara	•	•									
	Note: It is ne	ecessary to	enable both	CP0xIE an	d the corres	spondent E	CPx bit loca	ted in EIE1				
	SFR.	-										
Bits3-2:	UNUSED. F	Read = 00b.	Write = dor	n't care.								
Bits1–0:	CP0MD1-C	POMDO: Co	omparator0	Mode Seled	t							
	These bits s	elect the re	sponse time	e for Compa	arator0.							
	Mode	CP0MD1	CP0MD0	CP0 Fal	ling Edge	•						
		-	-		Time (TYF	,						
	0	0	0	Faste	st Respons	se Time						
	1	0	1									
	2	1	0		—							
	3	1	1	Lowest	Power Cor	sumption						
	Note: Rising	g Edge resp	onse times	are approxi	mately dou	ble the Falli	ng Edge re	sponse				
	times.											

SFR Definition 8.3. CPT0MD: Comparator0 Mode Selection

Table 8.1. Comparator Electrical Characteristics

 V_{DD} = 2.0 V, -40 to +125 °C unless otherwise noted.

All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Response Time:	CP0+ – CP0– = 100 mV	—	TBD	—	ns
Mode 0, Vcm ¹ = 1.5 V	CP0+ – CP0– = –100 mV	—	TBD	—	ns
Response Time:	CP0+ – CP0– = 100 mV	—	TBD	—	ns
Mode 1, Vcm ¹ = 1.5 V	CP0+ – CP0– = –100 mV	—	TBD	—	ns
Response Time:	CP0+ – CP0– = 100 mV	—	TBD	—	ns
Mode 2, Vcm ¹ = 1.5 V	CP0+ – CP0– = –100 mV	—	TBD	—	ns
Response Time:	CP0+ – CP0– = 100 mV	—	TBD	—	ns
Mode 3, Vcm ¹ = 1.5 V	CP0+ – CP0– = –100 mV	—	TBD	—	ns
Common-Mode Rejection Ratio		_	TBD	TBD	mV/V
Positive Hysteresis 1	CP0HYP1-0 = 00	—	TBD	TBD	mV
Positive Hysteresis 2	CP0HYP1-0 = 01	TBD	TBD	TBD	mV
Positive Hysteresis 3	CP0HYP1-0 = 10	TBD	TBD	TBD	mV
Positive Hysteresis 4	CP0HYP1-0 = 11	TBD	TBD	TBD	mV
Negative Hysteresis 1	CP0HYN1-0 = 00	—	TBD	TBD	mV
Negative Hysteresis 2	CP0HYN1-0 = 01	TBD	TBD	TBD	mV
Negative Hysteresis 3	CP0HYN1-0 = 10	TBD	TBD	TBD	mV
Negative Hysteresis 4	CP0HYN1-0 = 11	TBD	TBD	TBD	mV
Inverting or Non-Inverting Input Voltage Range		-0.25		V _{DD} + 0.25	V
Input Capacitance		—	TBD	—	pF
Input Bias Current		—	TBD	—	nA
Input Offset Voltage		TBD		TBD	mV
Input Impedance	High Quality Mode (CP1HIQE = '1') Low Quality Mode (CP1HIQE = '0')	_	TBD TBD	_	kΩ kΩ
Power Supply					
Power Supply Rejection ²		_	TBD	TBD	mV/V
Power-up Time			TBD		μs
Power Consumption	High Quality Mode (CP1HIQE = '1') Low Quality Mode (CP1HIQE = '0')		TBD TBD	_	mA mA
	Mode 0	1 —	TBD	TBD	μA
Quarter Quart at DQ	Mode 1	1 —	TBD	TBD	μA
Supply Current at DC	Mode 2	1 —	TBD	TBD	μA
	Mode 3	<u> </u>	TBD	TBD	μΑ

1. Vcm is the common-mode voltage on CP0+ and CP0-.

2. Guaranteed by design and/or characterization.

9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The C8051F52x/C8051F53x family has a superset of all the peripherals included with a standard 8051. See Section **"1. System Overview"** on page **17** for more information about the available peripherals. The CIP-51 includes on-chip debug hardware which interfaces directly with the analog and digital subsystems, providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram). The CIP-51 core includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput
- 256 Bytes of Internal RAM
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- Integrated Debug Logic
- Program and Data Memory Security

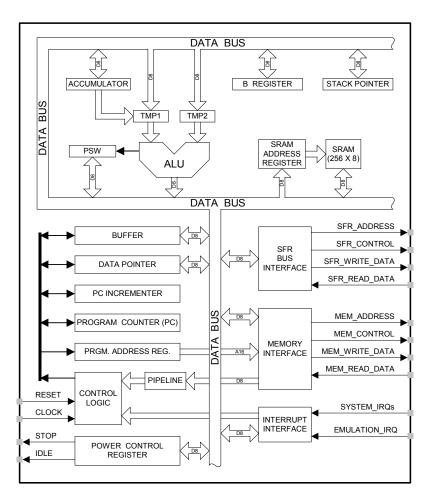


Figure 9.1. CIP-51 Block Diagram

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/4	3	3/5	4	5	4/6	6	8
Number of Instructions	26	50	5	10	7	5	2	1	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire (C2) interface. Note that the re-programmable Flash can also be read and written a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Laboratories, Inc. and third party vendors. Silicon Laboratories provides an integrated development environment (IDE) including editor, evaluation compiler, assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the on-chip debug logic to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

9.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

9.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take two less clock cycles to complete when the branch is not taken as opposed to when the branch is taken. Table 9.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

9.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access data stored in XDATA memory space. In the CIP-51, the MOVX instruction can also be used to write or erase on-chip program memory space implemented as reprogrammable Flash memory. The Flash access feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "13. Flash Memory" on page 105** for further details.

Mnemonic	Description	Bytes	Clock Cycles
	Arithmetic Operations	•	•
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
	Logical Operations	•	•
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2

Table 9.1. CIP-51 Instruction Set Summary¹

Table 9.1. CIP-51 Instru	ction Set Summary ¹	(Continued)
--------------------------	--------------------------------	-------------

Mnemonic	Description	Bytes	Clock Cycles
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
	Data Transfer		
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	4 to 7 ²
MOVC A, @A+PC	Move code byte relative PC to A	1	4 to 7 ²
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2

Table 9.1. CIP-51 Instruction Set Summary ¹	(Continued)
--	-------------

Mnemonic	Description	Bytes	Clock Cycles
	Boolean Manipulation		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/4
JNC rel	Jump if Carry is not set	2	2/4
JB bit, rel	Jump if direct bit is set	3	3/5
JNB bit, rel	Jump if direct bit is not set	3	3/5
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/5
	Program Branching		
ACALL addr11	Absolute subroutine call	2	4
LCALL addr16	Long subroutine call	3	5
RET	Return from subroutine	1	6
RETI	Return from interrupt	1	6
AJMP addr11	Absolute jump	2	4
LJMP addr16	Long jump	3	5
SJMP rel	Short jump (relative address)	2	4
JMP @A+DPTR	Jump indirect relative to DPTR	1	4
JZ rel	Jump if A equals zero	2	2/4
JNZ rel	Jump if A does not equal zero	2	2/4
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/5
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/5
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/5
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/6
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/4
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/5
NOP	No operation	1	1

Notes:

Assumes PFEN = 1 for all instruction timing.
 MOVC instructions take 4 to 7 clock cycles depending on instruction alignment and the FLRT setting.

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0–R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

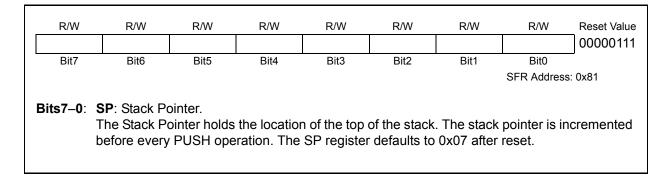
rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00– 0x7F) or an SFR (0x80–0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

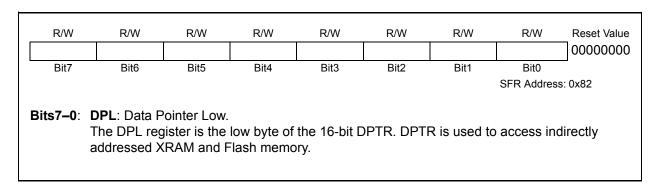
bit - Direct-accessed bit in Data RAM or SFR

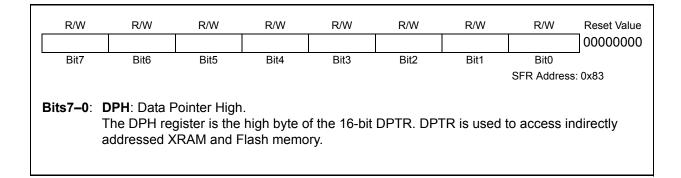

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 7680 bytes of program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

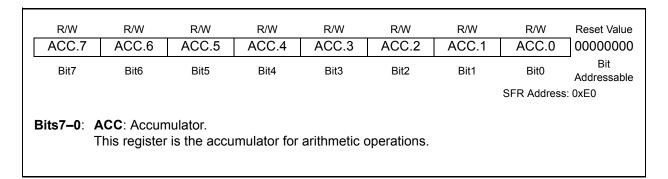
9.2. Register Descriptions


Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic 1. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

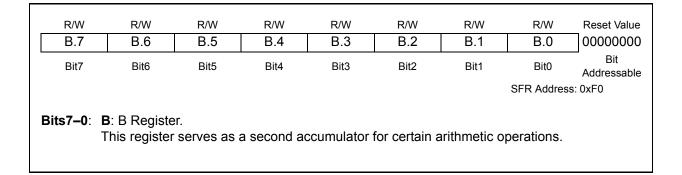

SFR Definition 9.1. SP: Stack Pointer

SFR Definition 9.2. DPL: Data Pointer Low Byte

SFR Definition 9.3. DPH: Data Pointer High Byte



R/W	R/W	R/W	R/W	R/W		R/W	Р	Reset Value
CY	AC	F0	RS1	RS0	R/W OV	F1	R PARITY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
Diti	Bito	Dito	Ditt	Dito	DILL	Ditt		Addressable
							SFR Address	s: 0xD0
Bit7:	CY: Carry	Flag.						
	This bit is	set when the	e last arithmet	ic operatio	n resulted	l in a carry (a	ddition) or a	a borrow
			red to 0 by all	other arith	imetic ope	erations.		
Bit6:		ary Carry Fla						
			e last arithmeti					
			high order nib	ble. It is cl	eared to 0	by all other	arithmetic o	perations.
Bit5:	F0: User F	0						
			ole, general pu	irpose flag	for use u	nder software	e control.	
Bits4–3:		Register B					_	
	I nese bits	select whic	h register ban	k is used o	auring regi	ster accesse	S.	
	RS1	RS0 R	egister Bank	Add	ress			
	0	0	0	0x00-	-0x07			
	0	1	1	0x08-	0x0F			
	v		•		0/101			
	1	0	2	0x10-				
	-		-		-0x17			
Bit2	1 1	0 1	2	0x10-	-0x17			
Bit2:	1 1 OV : Overfl	0 1 ow Flag.	2 3	0x10- 0x18-	-0x17 -0x1F			
Bit2:	1 1 OV: Overfl This bit is	0 1 ow Flag. set to 1 und	2 3 er the followin	0x10- 0x18- g circumst	0x17 0x1F ances:	ange overflo	w.	
Bit2:	1 1 OV: Overfl This bit is : • An ADD,	0 1 ow Flag. set to 1 und ADDC, or S	2 3 er the followin SUBB instructio	0x10- 0x18- g circumst	0x17 0x1F ances: a sign-cha			
Bit2:	1 OV : Overfil This bit is • An ADD, • A MUL in	0 1 ow Flag. set to 1 und ADDC, or S struction re	2 3 er the followin SUBB instructions sults in an over	0x10- 0x18- g circumst on causes erflow (resu	0x17 0x1F ances: a sign-cha			
Bit2:	1 1 OV : Overfil This bit is • An ADD, • A MUL in • A DIV ins	0 1 ow Flag. set to 1 und ADDC, or S struction re-	2 3 er the followin SUBB instructio	0x10- 0x18- g circumst on causes erflow (resu	0x17 0x1F ances: a sign-cha ult is great ndition.	er than 255).		in all othe
Bit2:	1 1 OV : Overfil This bit is • An ADD, • A MUL in • A DIV ins	0 1 ow Flag. set to 1 und ADDC, or S struction re-	2 3 er the followin SUBB instruction sults in an over uses a divide-b	0x10- 0x18- g circumst on causes erflow (resu	0x17 0x1F ances: a sign-cha ult is great ndition.	er than 255).		in all othe
	1 OV : Overfl This bit is • An ADD, • A MUL in • A DIV ins The OV bit	0 1 ow Flag. set to 1 und ADDC, or S struction re- struction cau t is cleared t	2 3 er the followin SUBB instruction sults in an over uses a divide-b	0x10- 0x18- g circumst on causes erflow (resu	0x17 0x1F ances: a sign-cha ult is great ndition.	er than 255).		in all othe
Bit1:	1 1 1 OV: Overfl This bit is • An ADD, • A MUL in • A DIV ins The OV bit cases. F1: User F This is a b	0 1 ow Flag. set to 1 und ADDC, or S istruction re- struction cau t is cleared t lag 1.	2 3 er the followin SUBB instruction sults in an over uses a divide-b	0x10- 0x18- g circumst on causes erflow (resu by-zero con D, ADDC,	0x17 0x1F ances: a sign-cha ult is great ndition. SUBB, MI	er than 255). UL, and DIV	instructions	in all othe
Bit1:	1 OV: Overfil This bit is • An ADD, • A MUL in • A DIV ins The OV bit cases. F1: User F This is a b PARITY: F	0 1 ow Flag. set to 1 und ADDC, or S struction re- struction cau t is cleared t ilag 1. it-addressat 'arity Flag.	2 3 er the followin SUBB instruction sults in an over uses a divide-b to 0 by the AD ole, general put	0x10- 0x18- g circumst on causes erflow (resu by-zero con D, ADDC, urpose flag	0x17 0x1F ances: a sign-cha ult is great ndition. SUBB, MI	er than 255). UL, and DIV nder software	instructions e control.	
Bit2: Bit1: Bit0:	1 1 1 OV: Overfil This bit is a • An ADD, • A MUL in • A DIV ins The OV bit cases. F1: User F This is a b PARITY: F This bit is a	0 1 ow Flag. set to 1 und ADDC, or S struction re- struction cau t is cleared t ilag 1. it-addressat 'arity Flag.	2 3 er the followin SUBB instructio sults in an ove uses a divide-b to 0 by the AD	0x10- 0x18- g circumst on causes erflow (resu by-zero con D, ADDC, urpose flag	0x17 0x1F ances: a sign-cha ult is great ndition. SUBB, MI	er than 255). UL, and DIV nder software	instructions e control.	
Bit1:	1 OV: Overfil This bit is • An ADD, • A MUL in • A DIV ins The OV bit cases. F1: User F This is a b PARITY: F	0 1 ow Flag. set to 1 und ADDC, or S struction re- struction cau t is cleared t ilag 1. it-addressat 'arity Flag.	2 3 er the followin SUBB instruction sults in an over uses a divide-b to 0 by the AD ole, general put	0x10- 0x18- g circumst on causes erflow (resu by-zero con D, ADDC, urpose flag	0x17 0x1F ances: a sign-cha ult is great ndition. SUBB, MI	er than 255). UL, and DIV nder software	instructions e control.	


SFR Definition 9.4. PSW: Program Status Word

SFR Definition 9.5. ACC: Accumulator

SFR Definition 9.6. B: B Register

9.3. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the peripherals and internal clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. SFR Definition 9.7 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off the oscillators lowers power consumption considerably; however a reset is required to restart the MCU.

9.3.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system.

9.3.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout period of 100 μ s.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	STOP	IDLE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0x87
Bits7–2: Bit1: Bit0:	RESERVED STOP: STOF Writing a '1' 1: CIP-51 for IDLE: IDLE I Writing a '1' 1: CIP-51 for and all perip	^P Mode Sel to this bit w rced into po Mode Selec to this bit w rced into ID	ill place the wer-down r t. ill place the LE mode. (i	node. (Turn CIP-51 into	s off interna	al oscillator) e. This bit v). will always r	read '0'.

SFR Definition 9.7. PCON: Power Control

10. Memory Organization and SFRs

The memory organization of the C8051F52x/F53x is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory map is shown in Figure 10.1.

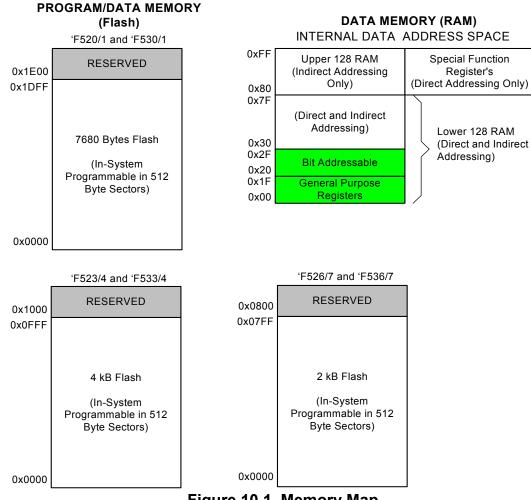


Figure 10.1. Memory Map

10.1. Program Memory

The CIP-51 core has a 64k-byte program memory space. The C8051F520/1 and 'F530/1 implement 8 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Addresses above 0x1DFF are reserved on the 8 kB devices. The C8051F523/4 and 'F533/4 implement 4 kB of Flash from addresses 0x0000 to 0x0FFF. The C8051F526/7 and 'F536/7 implement 2 kB of Flash from addresses 0x0000 to 0x07FF.

Program memory is normally assumed to be read-only. However, the C8051F52x/F53x can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX write instruction. This feature provides a mechanism for updates to program code and use of the program memory space for non-volatile data storage. Refer to Section "13. Flash Memory" on page 105 for further details.

10.2. Data Memory

The C8051F52x/F53x includes 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFRs) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory organization of the C8051F52x/C8051F53x.

10.3. General Purpose Registers

The lower 32 bytes of data memory (locations 0x00 through 0x1F) may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 9.4. PSW: Program Status Word). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

10.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51[™] assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

10.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

10.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51[™] instruction set. Table 10.1 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table 10.2, for a detailed description of each register.

F8	SPI0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0			VDDMON
F0	В	POMDIN	P1MDIN				EIP1	
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2			RSTSRC
E0	ACC	XBR0	XBR1		IT01CF		EIE1	
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REF0CN			P0SKIP	P1SKIP		P0MAT
C8	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H		P1MAT
C0				ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	P0MASK
B8	IP		ADC0TK	ADC0MX	ADC0CF	ADC0L	ADC0	P1MASK
B0	OSCIFIN	OSCXCN	OSCICN	OSCICL				FLKEY
A8	IE	CLKSEL						
A0	—	SPI0CFG	SPI0CKR	SPI0DAT	POMDOUT	P1MDOUT		
98	SCON0	SBUF0		CPT0CN		CPT0MD		CPT0MX
90	P1		LINADDR	LINDATA		LINCF		
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
		1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 10.1. Special Function Register (SFR) Memory Map

Table 10.2. Special Function Registers

Register	Address	Description	Page
ACC	0xE0	Accumulator	81
ADC0CF	0xBC	ADC0 Configuration	50
ADC0CN	0xE8	ADC0 Control	52
ADC0H	0xBE	ADC0	51
ADC0L	0xBD	ADC0	51
ADC0GTH	0xC4	ADC0 Greater-Than Data High Byte	54
ADC0GTL	0xC3	ADC0 Greater-Than Data Low Byte	54
ADC0LTH	0xC6	ADC0 Less-Than Data High Byte	55
ADC0LTL	0xC5	ADC0 Less-Than Data Low Byte	55
ADC0MX	0xBB	ADC0 Channel Select	49
ADC0TK	0xBA	ADC0 Tracking Mode Select	53
В	0xF0	B Register	81
CKCON	0x8E	Clock Control	185
CLKSEL	0xA9	Clock Select	139
CPT0CN	0x9B	Comparator0 Control	69
CPT0MD	0x9D	Comparator0 Mode Selection	71
CPT0MX	0x9F	Comparator0 MUX Selection	70
DPH	0x83	Data Pointer High	79
DPL	0x82	Data Pointer Low	79
EIE1	0xE6	Extended Interrupt Enable 1	93
EIP1	0xF6	Extended Interrupt Priority 1	94
FLKEY	0xB7	Flash Lock and Key	113
IE	0xA8	Interrupt Enable	91
IP	0xB8	Interrupt Priority	92
IT01CF	0xE4	INT0/INT1 Configuration	96
LINADDR	0x92	LIN indirect address pointer	151
LINCF	0x95	LIN master-slave and automatic baud rate selection	151
LINDATA	0x93	LIN indirect data buffer	151
OSCICL	0xB3	Internal Oscillator Calibration	134
OSCICN	0xB2	Internal Oscillator Control	133
OSCXCN	0xB1	External Oscillator Control	138
P0	0x80	Port 0 Latch	124
P0MASK	0xC7	Port 0 Mask	126
POMAT	0xD7	Port 0 Match	126
P0MDIN	0xF1	Port 0 Input Mode Configuration	124
P0MDOUT	0xA4	Port 0 Output Mode Configuration	125
P0SKIP	0xD4	Port 0 Skip	125
P1	0x90	Port 1 Latch	127

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Table 10.2. Special Function Registers (Continued)

Register	Address	Description	Page
P1MASK	0xBF	Port 1 Mask	129
P1MAT	0xCF	Port 1 Match	129
P1MDIN	0xF2	Port 1 Input Mode Configuration	127
P1MDOUT	0xA5	Port 1 Output Mode Configuration	128
P1SKIP	0xD5	Port 1 Skip	128
PCA0CN	0xD8	PCA Control	205
PCA0CPH0	0xFC	PCA Capture 0 High	208
PCA0CPH1	0xEA	PCA Capture 1 High	208
PCA0CPH2	0xEC	PCA Capture 2 High	208
PCA0CPL0	0xFB	PCA Capture 0 Low	208
PCA0CPL1	0xE9	PCA Capture 1 Low	208
PCA0CPL2	0xEB	PCA Capture 2 Low	208
PCA0CPM0	0xDA	PCA Module 0 Mode	207
PCA0CPM1	0xDB	PCA Module 1 Mode	207
PCA0CPM2	0xDC	PCA Module 2 Mode	207
PCA0H	0xFA	PCA Counter High	208
PCA0L	0xF9	PCA Counter Low	208
PCA0MD	0xD9	PCA Mode	206
PCON	0x87	Power Control	82
PSCTL	0x8F	Program Store R/W Control	113
PSW	0xD0	Program Status Word	80
REF0CN	0xD1	Voltage Reference Control	62
REG0CN	0xC9	Voltage Regulator Control	66
RSTSRC	0xEF	Reset Source Configuration/Status	102
SBUF0	0x99	UART0 Data Buffer	147
SCON0	0x98	UART0 Control	146
SP	0x81	Stack Pointer	78
SPI0CFG	0xA1	SPI Configuration	171
SPI0CKR	0xA2	SPI Clock Rate Control	173
SPIOCN	0xF8	SPI Control	172
SPIODAT	0xA3	SPI Data	174
TCON	0x88	Timer/Counter Control	183
TH0	0x8C	Timer/Counter 0 High	186
TH1	0x8D	Timer/Counter 1 High	186
TL0	0x8A	Timer/Counter 0 Low	186
TL1	0x8B	Timer/Counter 1 Low	186
TMOD	0x89	Timer/Counter Mode	184
TMR2CN	0xC8	Timer/Counter 2 Control	190

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Table 10.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
TMR2H	0xCD	Timer/Counter 2 High	191
TMR2L	0xCC	Timer/Counter 2 Low	191
TMR2RLH	0xCB	Timer/Counter 2 Reload High	191
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	191
VDDMON	0xFF	V _{DD} Monitor Control	100
XBR0	0xE1	Port I/O Crossbar Control 0	122
XBR1	0xE2	Port I/O Crossbar Control 1	123

11. Interrupt Handler

The C8051F52x/F53x family includes an extended interrupt system with two selectable priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending state, and will not be serviced until the EA bit is set back to logic 1.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

11.1. MCU Interrupt Sources and Vectors

The MCUs support 15 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order, and control bits are summarized in Table 11.1 on page 90. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

11.2. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 11.1.

11.3. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 7 system clock cycles: 1 clock cycle to detect the interrupt, 1 clock cycle to execute a single instruction, and 5 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next

instruction. In this case, the response time is 19 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 5 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0(/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1(/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	Ν	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	Ν	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	Ν	ESPI0 (IE.6)	PSPI0 (IP.6)
ADC0 Window Comparator	0x003B	7	AD0WINT (ADC0CN.3)	Y	Ν	EWADC0 (EIE1.0)	PWADC0 (EIP1.0)
ADC0 End of Conversion	0x0043	8	AD0INT (ADC0CN.5)	Y	Ν	EADC0 (EIE1.1)	PADC0 (EIP1.1)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	Ν	EPCA0 (EIE1.2)	PPCA0 (EIP1.2)
Comparator Falling Edge	0x0053	10	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	Ν	Ν	ECPF (EIE1.3)	PCPF (EIP1.3)
Comparator Rising Edge	0x005B	11	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	Ν	Ν	ECPR (EIE1.4)	PCPR (EIP1.4)
LIN Interrupt	0x0063	12	LININT (LINST.3)	Ν	N*	ELIN (EIE1.5)	PLIN (EIP1.5)
Voltage Regulator Dropout	0x006B	13	N/A	N/A	N/A	EREG0 (EIE1.6)	PREG0 (EIP1.6)
Port Match	0x0073	14	N/A	N/A	N/A	EMAT (EIE1.7)	PMAT (EIP1.7)
*Note: To clear LININT requir	es the appli	cation to s	et the RSTINT bit (LINCTF	RL.3)			

Table 11.1. Interrupt Summary

11.4. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Addres	S: UXAO
Bit7:	EA: Global I	nterrunt En	ahle					
Ditt .	This bit globa			Il interrupts	It override	s the individ	lual interru	ot mask set-
	tings.							
	0: Disable al	l interrupt s	ources.					
	1: Enable ea	ch interrup	t according	to its individ	dual mask s	etting.		
Bit6:	ESPI0: Enab		•	•	<i>,</i> .			
	This bit sets		•	10 interrupts	3.			
	0: Disable al		•	ted by CDI	`			
Bit5:	1: Enable int ET2: Enable		•	aled by SPI	J.			
Dito.	This bit sets		•	ner 2 interru	nt			
	0: Disable Ti				P			
	1: Enable int		•	ated by the	TF2L or TF2	2H flags.		
Bit4:	ES0: Enable	UART0 Int	errupt.	-		-		
	This bit sets		•	RT0 interru	pt.			
	0: Disable U		•					
D:40.	1: Enable UA		•					
Bit3:	ET1: Enable This bit sets		•	or 1 intorru	nt			
	0: Disable al		•		μι.			
	1: Enable int		•	ated by the	TF1 flag.			
Bit2:	EX1: Enable		•	,				
	This bit sets	the maskin	g of the ext	ernal interru	upt 1.			
	0: Disable ex		•					
	1: Enable ex			ts.				
Bit1:	ETO: Enable		•	on O intorn	~t			
	This bit sets 0: Disable al		•	ier o interru	ρι.			
	1: Enable int			ated by the	TF0 flag			
Bit0:	EX0: Enable		•		n o nag.			
	This bit sets			ernal interru	upt 0.			
	0: Disable ex				-			
	1: Enable ex	tern interru	pt 0 reques	ts.				

SFR Definition 11.1. IE: Interrupt Enable

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	PSPI0	PT2	PS0	PT1	PX1	PT0	PX0	10000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
								Addressable
							SFR Addres	s: UXB8
Bit7:	UNUSED. RO	ead = 1 W	rite = don't	care				
Bit6:	PSPI0: Seria	,			rupt Priority	Control.		
	This bit sets	•		· /				
	0: SPI0 inter							
	1: SPI0 inter	rupt set to I	high priority	level.				
Bit5:	PT2: Timer 2	•						
	This bit sets			•	t.			
	0: Timer 2 int	•	•					
-	1: Timer 2 int	•	• •					
Bit4:	PS0: UARTO				L			
	This bit sets				[.			
	0: UART0 int 1: UART0 int	•	•					
Bit3:	PT1 : Timer 1	•	• •					
Dito.	This bit sets	•			t			
	0: Timer 1 int			•				
	1: Timer 1 in	•						
Bit2:	PX1: Externa	al Interrupt	0 Priority C	ontrol.				
	This bit sets	the priority	of the exter	nal interrup	ot 0.			
	0: Int 0 interr	•						
	1: Int 0 interr	•	• • •					
Bit1:	PT0: Timer 0	•						
	This bit sets			•	t.			
	0: Timer 0 int	•	•					
Bit0:	1: Timer 0 int PX0: Externa	•	• •					
DILV.	This bit sets				ht O			
	0: Int 0 interr				<i>n</i> 0.			
	1: Int 0 interr							
			5					

SFR Definition 11.2. IP: Interrupt Priority

SFR Definition 11.3. EI	E1: Extended	Interrupt Enable 1
-------------------------	--------------	--------------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
EMAT	EREG0	ELIN	ECPR	ECPF	EPCA0	EADC0	EWADC0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
							SFR Address:	0xE6		
3:47 .		o Dort Mote	h Interrupt							
Bit7:	EMAT:Enable This bit sets		•	t Match int	arrunt					
	0: Disable th		•		enupi.					
	1: Enable the		•							
Bit6:	EREGO: Ena			Interrunt						
5110.	This bit sets				ator Dropou	t interrupt.				
	0: Disable th		•	• •	•					
	1: Enable the	•	•	•	•					
Bit5:	ELIN: Enable	•	•	•	•					
	This bit sets	the maskin	g of the LIN	l interrupt.						
	0: Disable LI									
	1: Enable LI	V interrupt i	requests.							
Bit4:	ECPR: Enable Comparator 0 Rising Edge Interrupt									
	This bit sets				lge interrup	t.				
	0: Disable Cl	•	•	•						
	1: Enable CF	•	•							
Bit3:	ECPF: Enab									
	This bit sets				lge interrup	t.				
	0: Disable Cl	•	•	•						
-: +0.	1: Enable CF	•	•	•						
Bit2:	EPCA0: Ena This bit sets	•			· /	errupt.				
	0: Disable all			Au interrup	15.					
	1: Enable int		•	tod by DC/	0					
Bit1:	EADC0: Ena		•							
JICT.	This bit sets			•	•	ete interrun	t			
	0: Disable Al									
	1: Enable int		•		•	1.				
Bit0:	EWADC0: E					J.				
	This bit sets			•	•	on interrupt				
	0: Disable Al									

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PMAT	PREG0	PLIN	PCPR	PCPF	PPAC0	PREG0	PWADC0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	: 0xF6
				• • •				
Bit7:	PMAT. Port N							
	This bit sets				rupt.			
	0: Port Match	•	•					
Bit6:	1: Port Match PREG0: Volt	•	• •					
DILO.	This bit sets	0 0	•					
	0: Voltage Re			• •	•			
	1: Voltage Re	•		•	•			
Bit5:	PLIN: LIN Int	•	•	• •	ty level.			
Bitto.	This bit sets	•						
	0: LIN interru			•				
	1: LIN interru	•						
Bit4:	PCPR: Com	•			ritv Control.			
	This bit sets			•				
	0: Comparate			0 0	•	•		
	1: Comparate							
Bit3:	PCPF: Comp							
	This bit sets	the priority	of the Fallin	ng Edge Co	mparator in	terrupt.		
	0: Comparate	or interrupt	set to low p	oriority leve				
	1: Comparate	or interrupt	set to high	priority leve	el.			
Bit2:	PPAC0: Prog	grammable	Counter Ar	ray (PCA0)	Interrupt P	riority Cont	rol.	
	This bit sets			•				
	0: PCA0 inte	•						
	1: PCA0 inte							
Bit1:	PREGO: ADO		•	•				
	This bit sets				•	•		
	0: ADC0 Cor		•	•				
	1: ADC0 Cor		•	•	• • •			
Bit0:	PWADC0: A		•					
	This bit sets				•			
	0: ADC0 Win							
	1: ADC0 Win	idow Comp	arison inter	rupt set to	nan priority	level.		

SFR Definition 11.4. EIP1: Extended Interrupt Priority 1

11.5. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The IN0PL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (**Section "19.1. Timer 0 and Timer 1" on page 179**) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	/INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	/INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 11.5). Note that /INT0 and /INT0 Port pin assignments are independent of any Crossbar assignments. /INT0 and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INT0 and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see Section "14.1. Priority Crossbar Decoder" on page 117 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
IN1PL	IN1SL2	IN1SL1	IN1SL0	INOPL	IN0SL2	IN0SL1	INOSLO	00000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Ditt	Bito	Dito	Ditt	Bito	Ditt	Ditt	SFR Address	:0xE4
Note: Refer	to SFR Definition	19.1. "TCO	N: Timer Conti	rol" on page 18	3 for INT0/1 e	dae- or level-s		
						-9		
Bit 7:	IN1PL: /INT1	Polarity						
	0: /INT1 input							
	1: /INT1 input							
Bits 6–4:	IN1SL2-0: /IN					a that this n	in oppignm	ant in inde
	These bits sel pendent of the							
	peripheral tha							
	assign the Po							
	setting to '1' th							
	0		Ũ	U	,			
	IN1SL2-	0	/INT1 Po	ort Pin				
	000		P0.					
	001	P0.1						
	010		P0.2					
	011		P0.					
	100		P0.					
	101		P0.					
	110 111		P0. P0.					
	*Note: Availat	ole in the C	80151F53x p	oarts.				
D '(0)		Delevite						
Bit 3:	INOPL: /INT0 0: /INT0 interr	•						
	1: /INT0 interr							
Bits 2–0:	INT0SL2-0: /	•	•	on Bits				
	These bits sel				/INT0. Note	e that this p	in assignme	ent is inde-
	pendent of the							
	peripheral that		•	•				
	assign the Po					the selected	d pin (accon	nplished by
	setting to '1' th	ne corresp	i na gniano	n register P	USKIP).			
	IN0SL2-	0	/INT0 Pc	ort Pin				
	000	•	P0.					
	001		P0.					
	010		P0.		-			
	011		P0.	3	-			
	100		P0.	4				
	101		P0.	5	-			
	110		P0.	6*				
	111		P0.	7*				
	*Note: Availat	ole in the C	80151F53x p	oarts.				
			•					

12. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to **Section "15. Oscillators" on page 131** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (**Section "20.3. Watchdog Timer Mode" on page 201** details the use of the Watchdog Timer). Program execution begins at location 0x0000.

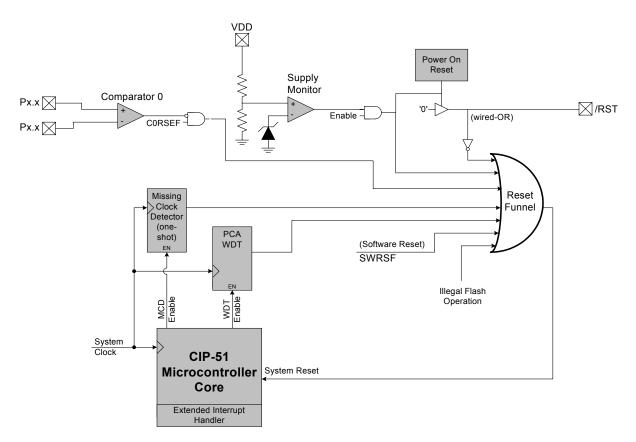


Figure 12.1. Reset Sources

12.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. An additional delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{RST}). Figure 12.2 plots the power-on and V_{DD} monitor reset timing. For valid ramp times (less than 1 ms), the power-on reset delay (T_{PORDelav}) is typically less than 0.3 ms.

Note: The maximum V_{DD} ramp time is 1 ms; slower ramp times may cause the device to be released from reset before V_{DD} reaches the V_{RST} level.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to determine if a power-up was the cause of reset. The contents of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled following a power-on reset.

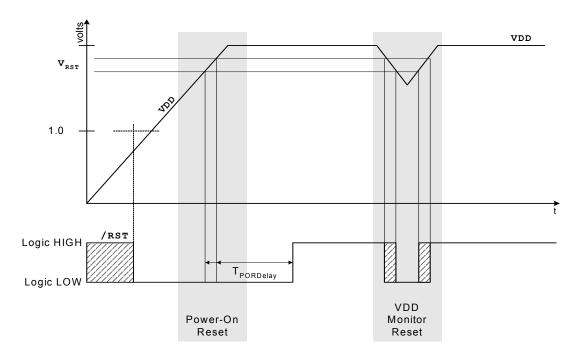


Figure 12.2. Power-On and V_{DD} Monitor Reset Timing

12.2. Power-Fail Reset / V_{DD} Monitor

When a power-down transition or power irregularity causes V_{DD} to drop below V_{RST} , the power supply monitor will drive the \overline{RST} pin low and hold the CIP-51 in a reset state (see Figure 12.2). When V_{DD} returns to a level above V_{RST} , the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads '1', the data may no longer be valid. The V_{DD} monitor is enabled and is not selected as a reset source after power-on resets; however its defined state (enabled/disabled) is not altered by any other reset source. For example, if the V_{DD} monitor is disabled by software, and a software reset is performed, the V_{DD} monitor must be enabled to the higher setting (VDMLVL = '1') and selected as a reset source if software contains routines which erase or write Flash memory. If the V_{DD} monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device reset.

The V_{DD} monitor must be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. The procedure for reenabling the V_{DD} monitor and configuring the V_{DD} monitor as a reset source is shown below:

- Step 1. Enable the V_{DD} monitor (VDMEN bit in VDM0CN = '1').
- Step 2. Wait for the V_{DD} monitor to stabilize (see Table 12.1 for the V_{DD} Monitor turn-on time). Note: This delay should be omitted if software contains routines which erase or write Flash memory.
- Step 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = '1').

See Figure 12.2 for V_{DD} monitor timing; note that the reset delay is not incurred after a V_{DD} monitor reset. See Table 12.1 for complete electrical characteristics of the V_{DD} monitor.

Note: Software should take care not to inadvertently disable the V_{DD} Monitor as a reset source when writing to RSTSRC to enable other reset sources or to trigger a software reset. All writes to RSTSRC should explicitly set PORSF to '1' to keep the V_{DD} Monitor enabled as a reset source.

R/W	R	R/W	R	R	R	R	R	Reset Value			
	N VDDSTAT	VDMLVL	Reserved								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0]			
							SFR Address	0xFF			
Bit7:	VDDMON: V	_{DD} Monitor	Enable.								
	This bit turns	s the V _{DD} m	onitor circu	it on/off. The	e V _{DD} Monif	tor cannot g	enerate sys	tem resets			
	until it is also	selected a	s a reset so	urce in regi	ster RSTSF	RC (SFR De	finition 12.2). The V _{DD}			
	Monitor can	be allowed	to stabilize	before it is	selected as	a reset sou	urce. Select	ing the			
	V _{DD} monito							-			
	See Table 12	See Table 12.1 for the minimum V_{DD} Monitor turn-on time.									
	0: V _{DD} Monitor Disabled.										
	1: V _{DD} Monit										
Bit6:			()								
	This bit indic		rrent power	supply stat	us (Vpp Ma	onitor outpu	t).				
						inter earpa	•)•				
		 V_{DD} is at or below the V_{DD} Monitor Threshold. V_{DD} is above the V_{DD} Monitor Threshold. 									
Bit5:				il conola.							
DILJ.	-				lofoult)						
	0: V _{DD} Monit					io no mulno e		tom that			
	1: V _{DD} Monit				-	is required	a for any sys	stem that			
	includes cod										
BIts4–0:	RESERVED	. Read = Va	ariadie. Writ	e = don't ca	are.						

SFR Definition 12.1. VDDMON: V_{DD} Monitor Control

12.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. As<u>serting</u> an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 12.1 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

12.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than 100 μ s, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read '1', signifying the MCD as the reset source; otherwise, this bit reads '0'. Writing a '1' to the MCDRSF bit enables the Missing Clock Detector; writing a '0' disables it. The state of the RST pin is unaffected by this reset.

12.5. Comparator Reset

Comparator0 can be configured as a reset source by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-

inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the device is put into the reset state. After a Comparator0 reset, the C0RSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the RST pin is unaffected by this reset.

12.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "20.3. Watchdog Timer Mode" on page 201; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to '1'. The state of the RST pin is unaffected by this reset.

12.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to '1' and a MOVX write operation targets an address above the Lock Byte address.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above the Lock Byte address.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above the Lock Byte address.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "13.4. Security Options" on page 110).
- A Flash write or erase is attempted while the V_{DD} Monitor is disabled.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

12.8. Software Reset

Software may force a reset by writing a '1' to the SWRSF bit (RSTSRC.4). The SWRSF bit will read '1' following a software forced reset. The state of the RST pin is unaffected by this reset.

SFR Definition 12.2. RSTSRC: Reset Source

R/W	R	R/W	R/W	R	R/W	R/W	R	Reset Value
	FERROR	C0RSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	0xEF
lote: So	ftware should	avoid read	modify wr	ito instructio	ne when wri	tina values	to RSTSR	`
					10 WHEN WH	ang values		
Bit7:	UNUSED. R	ead = 1, Wr	ite = don't	care.				
Bit6:	FERROR: FI							
	0: Source of					ror.		
	1: Source of							
Bit5:	CORSEF: Co							
	0: Read: Sou				aloru.			
	1: Read: Sou	mparator0 is			n			
				ource (active				
Bit4:	SWRSF: Sof	•		•	5 1017).			
	0: Read: Sou			•	o the SWRS	SF bit.		
	Write: No	Effect.						
	1: Read: Sou	urce of last v	was a writ	e to the SWI	RSF bit.			
	Write: For	ces a syste	m reset.					
Bit3:	WDTRSF: W	/atchdog Tir	ner Reset	Flag.				
	0: Source of							
	1: Source of							
Bit2:	MCDRSF: M	-		-				
	0: Read: Sou				g Clock Det	ector timed	but.	
	1: Read: Sou	sing Clock			ook Dotoot	r timoout		
				enabled; trigg			a clock conc	lition is
	detected.					n a missing	g clock cond	
Bit1:	PORSF: Pov	ver-On Res	et Force a	nd Flag.				
-	This bit is se			-	. Writing thi	s bit enable	es/disables	the V _{DD}
	monitor as a	-			-			
	and stabilize			-		_		
	0: Read: Las	-	-		-		(
		_o monitor is			5			
	1: Read: Las	-			nitor reset: a	all other res	set flags inde	eterminate
		$_{\rm D}$ monitor is					ot nogo nice	
Bit0:	PINRSF: HW							
Situ.	0: Source of			 T pin				
	1: Source of							

Table 12.1. Reset Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	I _{OL} = 8.5 mA, V _{DD} = 2.0 V		_	TBD	V
RST Input High Voltage		0.7 x V _{DD}	—	—	V
RST Input Low Voltage		—	_	0.3 x V _{DD}	V
RST Input Pullup Current	RST = 0.0 V	_	TBD	TBD	μA
V _{DD} Monitor Threshold (V _{RST-LOW})		TBD	1.7	TBD	V
V _{DD} Monitor Threshold (V _{RST-HIGH})		TBD	2.2	TBD	V
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	TBD	TBD	TBD	μs
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	TBD	_	_	μs
Minimum RST Low Time to Generate a System Reset		TBD	_	_	μs
V _{DD} Monitor Turn-on Time		TBD	_	_	μs
V _{DD} Monitor Supply Current			TBD	TBD	μA

–40 to +125 $^\circ\text{C}$ unless otherwise specified.

NOTES:

13. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface or by software using the MOVX write instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operations is not required. Code execution is stalled during Flash write/erase operations. Refer to Table 13.2 for complete Flash memory electrical characteristics.

13.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see **Section "22. C2 Interface" on page 211**.

To protect the integrity of Flash contents, the V_{DD} monitor must be enabled to the higher setting (VDMLVL = '1') and selected as a reset source if software contains routines which erase or write Flash memory. If the V_{DD} monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device reset.

The V_{DD} monitor must be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. The procedure for reenabling the V_{DD} monitor and configuring the V_{DD} monitor as a reset source is shown below:

- Step 1. Enable the V_{DD} monitor (VDMEN bit in VDM0CN = '1').
- Step 2. Wait for the V_{DD} monitor to stabilize (see Table 12.1 for the V_{DD} Monitor turn-on time). Note: This delay should be omitted if software contains routines which erase or write Flash memory.
- Step 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = '1').

13.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 13.2.

13.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. **A byte location to be programmed should be erased before a new value is written.** The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Write the first key code to FLKEY: 0xA5.
- Step 3. Write the second key code to FLKEY: 0xF1.
- Step 4. Set the PSEE bit (register PSCTL).
- Step 5. Set the PSWE bit (register PSCTL).
- Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
- Step 7. Clear the PSWE and PSEE bits.
- Step 8. Re-enable interrupts.

13.1.3. Flash Write Procedure

Bytes in Flash memory can be written one byte at a time. The FLBWE bit in register PFE0CN (SFR Definition 13.1) controls whether a single byte or a block of two bytes is written to Flash during a write operation. When FLBWE is cleared to '0', the Flash will be written one byte at a time. When FLBWE is set to '1', the Flash will be written in two-byte blocks. Block writes are performed in the same amount of time as singlebyte writes, which can save time when storing large amounts of data to Flash memory.

During a single-byte write to Flash, bytes are written individually, and a Flash write will be performed after each MOVX write instruction. The recommended procedure for writing Flash in single bytes is:

- Step 1. Disable interrupts.
- Step 2. Clear the FLBWE bit (register PFE0CN) to select single-byte write mode.
- Step 3. Write the first key code to FLKEY: 0xA5.
- Step 4. Write the second key code to FLKEY: 0xF1.
- Step 5. Set the PSWE bit (register PSCTL).
- Step 6. Clear the PSEE bit (register PSCTL).
- Step 7. Using the MOVX instruction, write a single data byte to the desired location within the 512byte sector.
- Step 8. Clear the PSWE bit.
- Step 9. Re-enable interrupts.

Steps 3–8 must be repeated for each byte to be written.

For block Flash writes, the Flash write procedure is only performed after the last byte of each block is written with the MOVX write instruction. A Flash write block is two bytes long, from even addresses to odd addresses. Writes must be performed sequentially (i.e. addresses ending in 0b and 1b must be written in order). The Flash write will be performed following the MOVX write that targets the address ending in 1b. If a byte in the block does not need to be updated in Flash, it should be written to 0xFF. The recommended procedure for writing Flash in blocks is:

- Step 1. Disable interrupts.
- Step 2. Set the FLBWE bit (register PFE0CN) to select block write mode.
- Step 3. Write the first key code to FLKEY: 0xA5.
- Step 4. Write the second key code to FLKEY: 0xF1.
- Step 5. Set the PSWE bit (register PSCTL).
- Step 6. Clear the PSEE bit (register PSCTL).
- Step 7. Using the MOVX instruction, write the first data byte to the even block location (ending in 0b).
- Step 8. Clear the PSWE bit (register PSCTL).
- Step 9. Write the first key code to FLKEY: 0xA5.
- Step 10. Write the second key code to FLKEY: 0xF1.
- Step 11. Set the PSWE bit (register PSCTL).
- Step 12. Clear the PSEE bit (register PSCTL).
- Step 13. Using the MOVX instruction, write the second data byte to the odd block location (ending in 1b).
- Step 14. Clear the PSWE bit (register PSCTL).
- Step 15. Re-enable interrupts.

Steps 3–14 must be repeated for each block to be written.

13.2. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of V_{DD} , system clock frequency, or temperature. This accidental execution of Flash modi-fying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

The following guidelines are recommended for any system which contains routines which write or erase Flash from code.

13.2.1. V_{DD} Maintenance and the V_{DD} monitor

- 1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
- 2. Make certain that the minimum V_{DD} rise time specification of 1 ms is met. If the system cannot meet this rise time specification, then add an external V_{DD} brownout circuit to the \overline{RST} pin of the device that holds the device in reset until V_{DD} reaches 2.7 V and re-asserts \overline{RST} if V_{DD} drops below 2.7 V.
- 3. Enable the on-chip V_{DD} monitor and enable the V_{DD} monitor as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For 'C'-based systems, this will involve modifying the startup code added by the 'C' compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the V_{DD} monitor and enabling the V_{DD} monitor as a reset source. Code examples showing this can be found in "AN201: Writing to Flash from Firmware", available from the Silicon Laboratories web site.
- 4. As an added precaution, explicitly enable the V_{DD} monitor and enable the V_{DD} monitor as a reset source inside the functions that write and erase Flash memory. The V_{DD} monitor enable instructions should be placed just after the instruction to set PSWE to a '1', but before the Flash write or erase operation instruction.
- Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 0x02" is correct. "RSTSRC |= 0x02" is incorrect.
- 6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a '1'. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

13.2.2. PSWE Maintenance

- 7. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a '1'. There should be exactly one routine in code that sets PSWE to a '1' to write Flash bytes and one routine in code that sets PSWE and PSEE both to a '1' to erase Flash pages.
- 8. Minimize the number of variable accesses while PSWE is set to a '1'. Handle pointer address updates and loop variable maintenance outside the "PSWE = 1; ... PSWE = 0;" area. Code examples showing this can be found in *AN201, "Writing to Flash from Firmware"*, available from the Silicon Laboratories web site.
- 9. Disable interrupts prior to setting PSWE to a '1' and leave them disabled until after PSWE has been reset to '0'. Any interrupts posted during the Flash write or erase operation will be serviced in priority order after the Flash operation has been completed and interrupts have been re-enabled by software.
- 10. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.
- 11. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

13.2.3. System Clock

- 12. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 13. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in *AN201, "Writing to Flash from Firm-ware"*, available from the Silicon Laboratories web site.

13.3. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

13.4. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to '1' before software can modify the Flash memory; both PSWE and PSEE must be set to '1' before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the 1's complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are '1') and locked when any other Flash pages are locked (any bit of the Lock Byte is '0'). See example below.

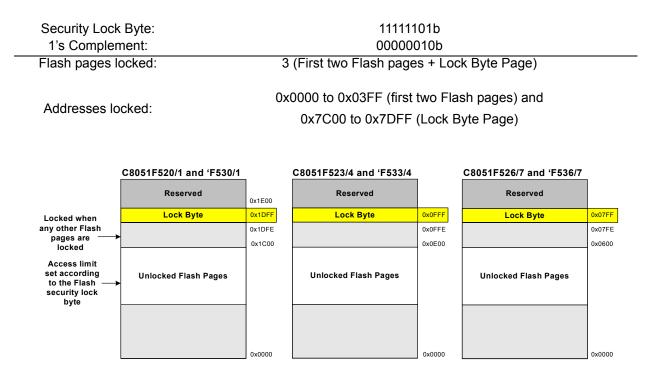


Figure 13.1. Flash Program Memory Map

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages.

Accessing Flash from the C2 debug interface:

- 1. Any unlocked page may be read, written, or erased.
 - 2. Locked pages cannot be read, written, or erased.
 - 3. The page containing the Lock Byte may be read, written, or erased if it is unlocked.
 - 4. Reading the contents of the Lock Byte is always permitted only if no pages are locked.
 - 5. Locking additional pages (changing '1's to '0's in the Lock Byte) is not permitted.
 - 6. Unlocking Flash pages (changing '0's to '1's in the Lock Byte) requires the C2 Device Erase command, which erases all Flash pages including the page containing the Lock Byte and the Lock Byte itself.
 - 7. The Reserved Area cannot be read, written, or erased.

Accessing Flash from user firmware executing from an unlocked page:

- 1. Any unlocked page except the page containing the Lock Byte may be read, written, or erased.
 - 2. Locked pages cannot be read, written, or erased. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
 - The page containing the Lock Byte cannot be erased. It may be read or written only if it is unlocked. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
 - 4. Reading the contents of the Lock Byte is always permitted.
 - 5. Locking additional pages (changing '1's to '0's in the Lock Byte) is not permitted.
 - 6. Unlocking Flash pages (changing '0's to '1's in the Lock Byte) is not permitted.
 - 7. The Reserved Area cannot be read, written, or erased. Any attempt to access the reserved area, or any other locked page, will result in a Flash Error device reset.

Accessing Flash from user firmware executing from a locked page:

- 1. Any unlocked page except the page containing the Lock Byte may be read, written, or erased.
 - 2. Any locked page except the page containing the Lock Byte may be read, written, or erased. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
 - 3. **The page containing the Lock Byte cannot be erased.** It may only be read or written. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
 - 4. Reading the contents of the Lock Byte is always permitted.
 - 5. Locking additional pages (changing '1's to '0's in the Lock Byte) is not permitted.
 - 6. Unlocking Flash pages (changing '0's to '1's in the Lock Byte) is not permitted.
 - 7. The Reserved Area cannot be read, written, or erased. Any attempt to access the reserved area, or any other locked page, will result in a Flash Error device reset.

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 13.1 summarizes the Flash security features of the 'F330/1/2/3/4/5 devices.

Action	C2 Debug	User Firmware executing from:				
	Interface	an unlocked page	a locked page			
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted			
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	Flash Error Reset	Permitted			
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted			
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted			
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted			
Read contents of Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted			
Erase page containing Lock Byte (if no pages are locked)	Permitted	Flash Error Reset	Flash Error Reset			
Erase page containing Lock Byte - Unlock all pages (if any page is locked)	C2 Device Erase Only	Flash Error Reset	Flash Error Reset			
Lock additional pages (change '1's to '0's in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset			
Unlock individual pages (change '0's to '1's in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset			
Read, Write or Erase Reserved Area	Not Permitted	Flash Error Reset	Flash Error Reset			

Table 13.1. Flash Security Summary

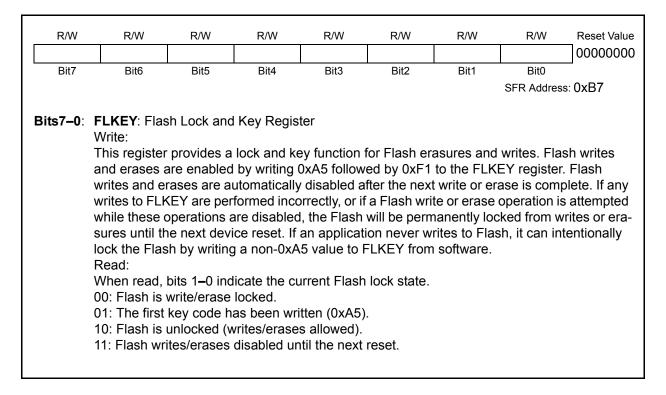
C2 Device Erase - Erases all Flash pages including the page containing the Lock Byte.

Flash Error Reset - Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).

- Locking any Flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.


- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

SFR Definition 13.1. PSCTL: Program Store R/W Control

Р	Р	D	Р	D	Р			Depart \/al···-
R	R	R	R	R	R	R/W	R/W	Reset Value
-	-	-	-	-	-	PSEE	PSWE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0x8F
Bits7–2: Bit1: Bit0:	UNUSED: Re PSEE: Progr Setting this to to be erased Flash memo tion addresse 0: Flash prog 1: Flash prog PSWE: Prog Setting this to write instruct 0: Writes to F 1: Writes to F memory.	am Store E bit (in combi . If this bit is ry using the ed by the N gram memo gram memo gram Store N bit allows we tion. The Fla Flash program	rase Enabl nation with s logic 1 an MOVX inst IOVX instru- ory erasure Write Enabl riting a byte ash locatior am memory	e PSWE) allo d Flash writ truction will loction. The v disabled. e e of data to t n should be v disabled.	ws an entir es are enat erase the e alue of the he Flash pr erased befo	oled (PSWE entire page data byte w ogram men ore writing o	E is logic 1) that contair written does nory using data.	, a write to no the loca- not matter.

SFR Definition 13.2. FLKEY: Flash Lock and Key

Table 13.2. Flash Electrical Characteristics

Parameter	Conditions	Min	Тур	Мах	Units
	C8051F520/1 and 'F530/1	7680			
Flash Size	C8051F523/4 and 'F533/4	4096	—	—	bytes
	C8051F526/7 and 'F536/7	2048			
Endurance	V _{DD} is 2.2 V or greater	40 k	150 k	—	Erase/Write
Erase Cycle Time		32	40	48	ms
Write Cycle Time		76	92	114	μs
V _{DD}	Write/Erase Operations	2.25	—	—	V

 V_{DD} = 1.8 to 2.75 V; –40 to +125 °C unless otherwise specified

14. Port Input/Output

Digital and analog resources are available through up to 16 I/O pins. Port pins are organized as two or one byte-wide Ports. Each of the Port pins can be defined as general-purpose I/O (GPIO) or analog input/out-put; Port pins P0.0 - P1.7 can be assigned to one of the internal digital resources as shown in Figure 14.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the peripheral priority order of the Priority Decoder (Figure 14.3 and Figure 14.4). The registers XBR0 and XBR1, defined in SFR Definition 14.1 and SFR Definition 14.2, are used to select internal digital functions.

Port I/Os on P0 are 5.25 V tolerant over the operating range of V_{IO} . Figure 14.2 shows the Port cell circuit. The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnM-DOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Table 14.1 on page 130.

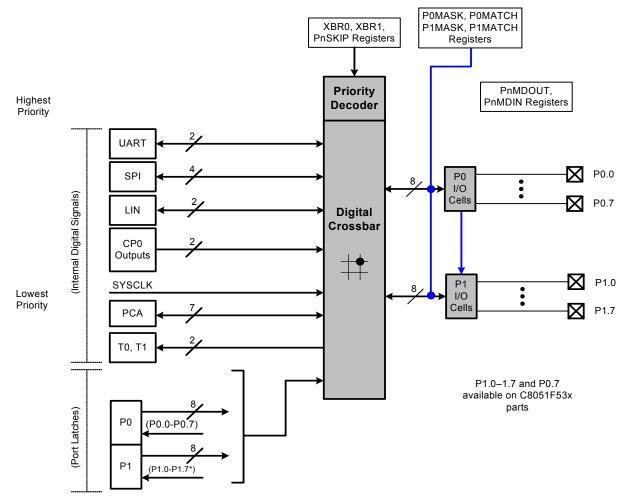
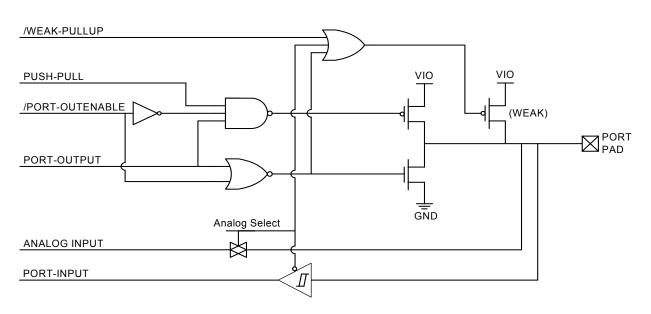
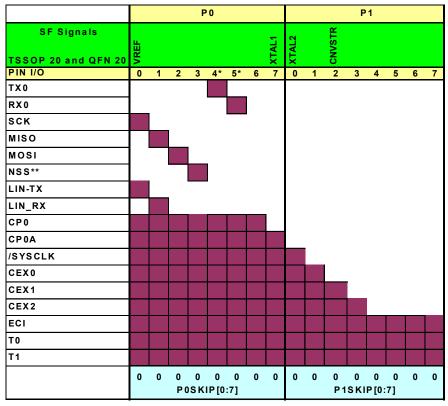
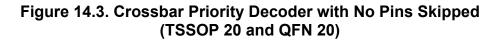


Figure 14.1. Port I/O Functional Block Diagram




Figure 14.2. Port I/O Cell Block Diagram

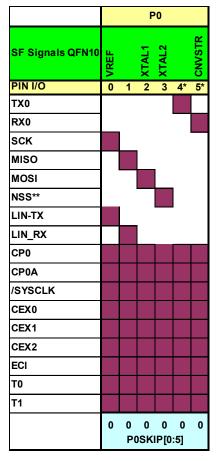

14.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 14.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UART0, which will be assigned to pins P0.4 and P0.5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P1.0 and/or P0.7 ('F530) or P0.2 and/or P0.3 ('F5250) for the external oscillator, P0.0 for V_{REF}, P1.2 ('F530) or P0.5 ('F530) for the external CNVSTR signal, and any selected ADC or comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 14.3 shows the Crossbar Decoder priority with no Port pins skipped (P0SKIP, P1SKIP); Figure 14.4 shows the Crossbar Decoder priority with the XTAL1 (P1.0) and XTAL2 (P1.1) pins skipped (P1SKIP = 0x03).

*Note: Refer to Section "21. Revision Specific Behavior" on page 209. **Note: 4-Wire SPI Only.

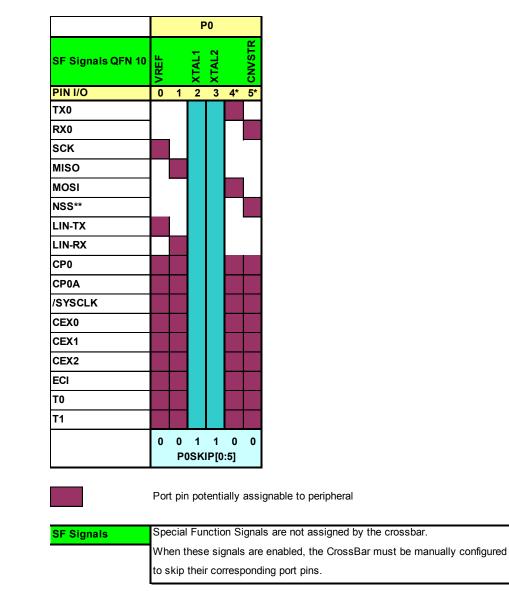
				P	0				P1							
SF Signals								Ŧ.	2		STR					
TSSOP 20 and QFN 20	VREF							XTAL1	XTAL2		CNVSTR					
PIN I/O	0	1	2	3	4*	5*	6	7	0	1	2	3	4	5	6	7
ТХО																
RX0		_														
SCK							-									
MISO																
MOSI																
NSS**																
LIN-TX					-											
LIN-RX																
CP0																
CP0A																
/SYSCLK																
CEX0																
CEX1																
CEX2																
ECI															_	_
ТО																
T1																
	0	0	0 P(0 DSK	0 IP[0	0 :7]	0	1	1	0 P	0 15K	0 IP[0	0 :7] =	0 • 0x	0 03	0


SF Signals	Special Function Signals are not assigned by the crossbar.
	When these signals are enabled, the CrossBar must be manually configured
	to skip their corresponding port pins.

*Note: Refer to Section "21. Revision Specific Behavior" on page 209. **Note: 4-Wire SPI Only.

Port pin potentially assignable to peripheral

Figure 14.4. Crossbar Priority Decoder with Crystal Pins Skipped (TSSOP 20 and QFN 20)



*Note: Refer to Section "21. Revision Specific Behavior" on page 209. **Note: 4-Wire SPI Only.

Figure 14.5. Crossbar Priority Decoder with No Pins Skipped (QFN 10)

*Note: Refer to Section "21. Revision Specific Behavior" on page 209. **Note: 4-Wire SPI Only.

Figure 14.6. Crossbar Priority Decoder with Crystal Pins Skipped (QFN 10)

Registers XBR0 and XBR1 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when the UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UART0 pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.3 or P0.4*; UART RX0 is always assigned to P0.4 or P0.5*. Standard Port I/Os appear contiguously starting at P0.0 after prioritized functions and skipped pins are assigned.

*Note: Refer to Section "21. Revision Specific Behavior" on page 209.

Important Note: The SPI can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1–NSSMD0 bits in register SPI0CN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

14.2. Port I/O Initialization

Port I/O initialization consists of the following steps:

- Step 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
- Step 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- Step 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- Step 4. Assign Port pins to desired peripherals using the XBRn registers.
- Step 5. Enable the Crossbar (XBARE = '1').

All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a '1' indicates a digital input, and a '0' indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 14.4 for the PnMDIN register details.

Important Note: Port 0 and Port 1 pins are 5.25 V tolerant across the operating range of V_{REGIN}.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. When the WEAKPUD bit in XBR1 is '0', a weak pullup is enabled for all Port I/O configured as open-drain. WEAK-PUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a '0' and for pins configured for analog input mode to avoid unnecessary power dissipation.

Registers XBR0 and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to '1' enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. **Port output drivers** are disabled while the Crossbar is disabled.

								-						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
-	-	CP0AE	CP0E	SYSCKE	LINE	SPI0E	URT0E	00000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0							
							SFR Address	s: 0xE1						
Bit7–6:	RESERVED	. Read = 0b	; Must writ	e 0b.										
Bit5:	CP0AE: Comparator0 Asynchronous Output Enable													
	0: Asynchronous CP0 unavailable at Port pin.													
	1: Asynchronous CP0 routed to Port pin.													
Bit4:	CP0E: Comparator0 Output Enable													
	0: CP0 unav	0: CP0 unavailable at Port pin.												
	1: CP0 route	•												
Bit3:	SYSCKE: /S		•											
	0: /SYSCLK		•											
	1: /SYSCLK	•		pin.										
Bit2:	LINE . Lin Οι	•	9											
Bit1:	SPIOE: SPI I													
	0: SPI I/O ur		•											
	1: SPI I/O ro		•	e that the SP	I can be as	signed eith	er 3 or 4 Gl	PIO pins.						
Bit0:	URTOE: UA	•												
	0: UART I/O		•											
	1: UART TX	0, RX0 rout	ed to Port p	oins (P0.3 ar	nd P0.4) or	(P0.4 and F	P0.5).							
N. 4		0	Devision		- I I ¹	000								
Note:	Please refer to	5 Section "2"	I. REVISION	эреснис в	enavior" or	i page 209.								

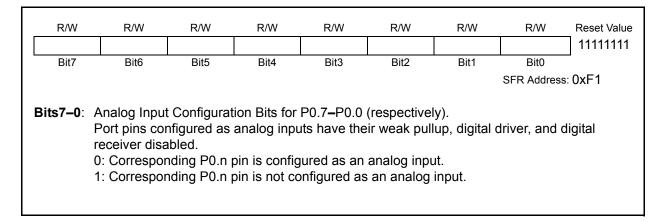
SFR Definition 14.2. XBR1: Port I/O Crossbar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
WEAKP	JD XBARE	T1E	T0E	ECIE	_	PCA	AOME	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
							SFR Addres	s: 0xE2					
Bit7:	WEAKPUD:	Port I/O We	eak Pullup I	Disable.									
	0: Weak Pull			or Ports who	ose I/O are	configured	as analog	input).					
	1: Weak Pullups disabled.												
Bit6:	XBARE: Cro		le.										
	0: Crossbar												
	1: Crossbar enabled.												
Bit5:	T1E : T1 Ena												
	0: T1 unavai		•										
D:44.	1: T1 routed												
Bit4:	TOE: TO Ena		t nin										
	0: T0 unavai 1: T0 routed		•										
Bit3:	ECIE: PCA0	•		t Enabla									
DILJ.	0: ECI unava		•										
	1: ECI routed		•										
Bit2:	Reserved.												
	PCA0ME: P	CA Module	I/O Enable	Bits.									
	00: All PCA	/O unavaila	ble at Port	pins.									
	01: CEX0 ro			r -									
	10: CEX0, C		•	S.									
	11: CEX0, C		•										
				•									

14.3. General Purpose Port I/O

Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Ports P0–P1 are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

In addition to performing general purpose I/O, P0 and P1 can generate a port match event if the logic levels of the Port's input pins match a software controlled value. A port match event is generated if

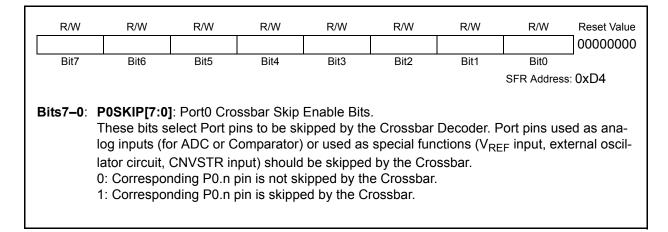


(P0 & P0MASK) does not equal (P0MATCH & P0MASK) or if (P1 & P1MASK) does not equal (P1MATCH & P1MASK). This allows Software to be notified if a certain change or pattern occurs on P0 or P1 input pins regardless of the XBRn settings. A port match event can cause an interrupt if EMAT (EIE2.1) is set to '1' or cause the internal oscillator to awaken from SUSPEND mode. See Section "15.1.1. Internal Oscillator Suspend Mode" on page 132 for more information.

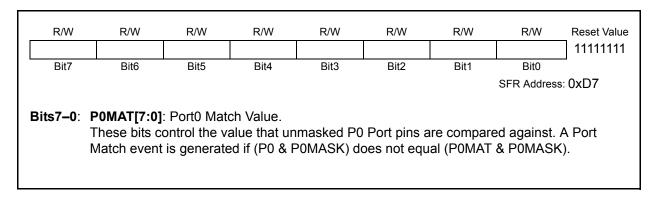
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 11111111 Rit Bit5 Bit7 Bit6 Bit4 Bit3 Bit2 Bit1 Bit0 Addressable SFR Address: 0x80 Bits7-0: P0.[7:0] Write - Output appears on I/O pins per Crossbar Registers. 0: Logic Low Output. 1: Logic High Output (high impedance if corresponding P0MDOUT.n bit = 0). Read - Always reads '0' if selected as analog input in register P0MDIN. Directly reads Port pin when configured as digital input. 0: P0.n pin is logic low. 1: P0.n pin is logic high.

SFR Definition 14.3. P0: Port0

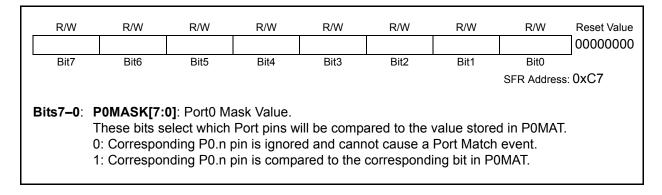
SFR Definition 14.4. P0MDIN: Port0 Input Mode



SFR Definition 14.5. P0MDOUT: Port0 Output Mode

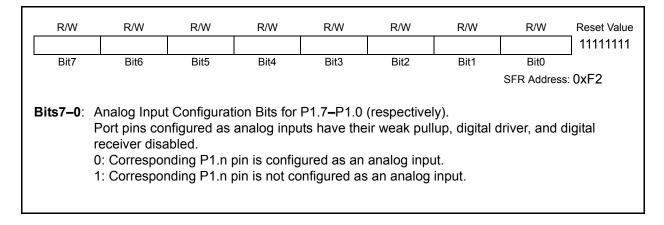

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1			
		SFR Address: 0xA4										
В	its7–0:	Output Confi ter P0MDIN 0: Correspor 1: Correspor (Note: When of the value	is logic 0. Inding P0.n (Inding P0.n (SDA and S	Output is op Output is pu SCL appear	oen-drain. Ish-pull.	., .			-			

SFR Definition 14.6. P0SKIP: Port0 Skip

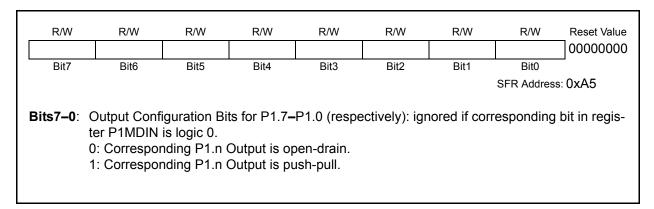


SFR Definition 14.7. P0MAT: Port0 Match

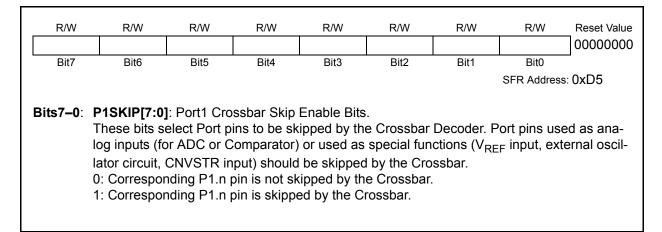
SFR Definition 14.8. P0MASK: Port0 Mask



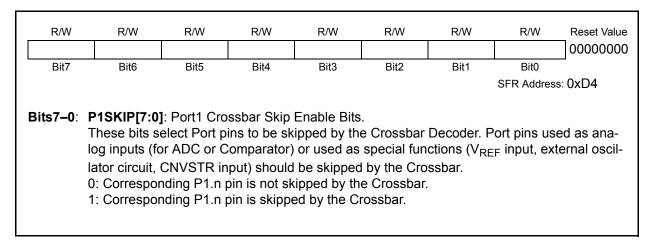
SFR Definition 14.9. P1: Port1


R/W P1.7	R/W P1.6	R/W P1.5	R/W P1.4	R/W P1.3	R/W P1.2	R/W P1.1	R/W P1.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address	: 0x90
Bits7–0:	P1.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alway pin when con 0: P1.n pin is 1: P1.n pin is	o Output. n Output (hi ys reads '0' nfigured as s logic low.	gh impedar if selected digital input	nce if corres as analog i	ponding P1	IMDOUT.n		eads Port

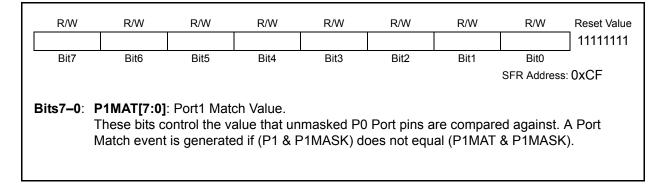
SFR Definition 14.10. P1MDIN: Port1 Input Mode

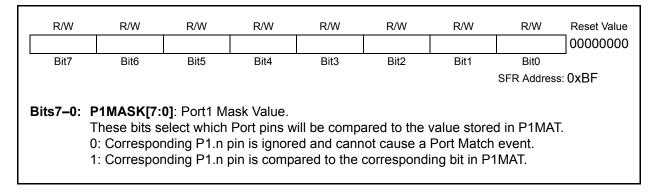


SFR Definition 14.11. P1MDOUT: Port1 Output Mode



SFR Definition 14.12. P1SKIP: Port1 Skip

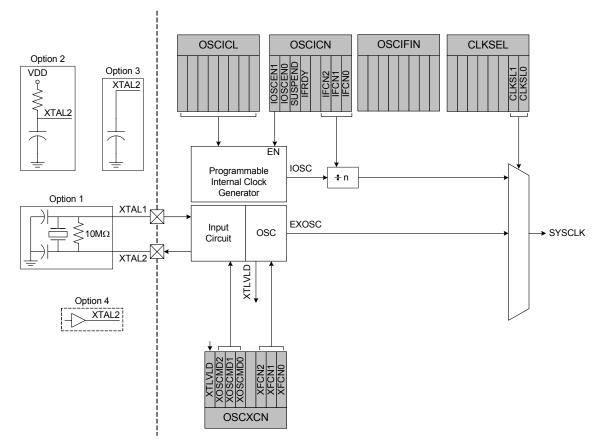



SFR Definition 14.13. P0SKIP: Port0 Skip

SFR Definition 14.14. P1MAT: Port1 Match

SFR Definition 14.15. P1MASK: Port1 Mask

Table 14.1. Port I/O DC Electrical Characteristics


Parameters	Conditions	Min	Тур	Max	Units
	I _{OH} = –3 mA, Port I/O push-pull	TBD	—	_	
Output High Voltage	I _{OH} = –10 μA, Port I/O push-pull	TBD	—	_	V
	I _{OH} = –10 mA, Port I/O push-pull	_	TBD	—	
	V = 2.7 V:				
	I _{OL} = 10 μA	—	—	TBD	
	I _{OL} = TBD	—	—	TBD	
Output Low Voltage	I _{OL} = TBD	—	TBD	—	V
Oulput Low Voltage	V = 5.25 V:				v
	I _{OL} = 10 μA	—	—	TBD	
	I _{OL} = 8.5 mA	_	—	TBD	
	I _{OL} = 25 mA	—	TBD	—	
Input High Voltage		TBD	—	—	V
Input Low Voltage		—	—	TBD	V
	Weak Pullup Off	_	_	±TBD	
Input Leakage Current	Weak Pullup On, V _{IN} = 0 V; V = 2.0 V	—	< 0.11	TBD	μA
	Weak Pullup On, V _{IN} = 0 V; V = 2.4 V		< 0.14	TBD	

 V_{IO} = 2.7 to 5.25 V, –40 to +125 $^{\circ}\text{C}$ unless otherwise specified

15. Oscillators

C8051F52x/53x devices include a programmable internal oscillator, an external oscillator drive circuit. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 15.1. The system clock (SYSCLK) can be derived from the internal oscillator, external oscillator circuit. Oscillator electrical specifications are given in Table 15.1 on page 140.

15.1. Programmable Internal Oscillator

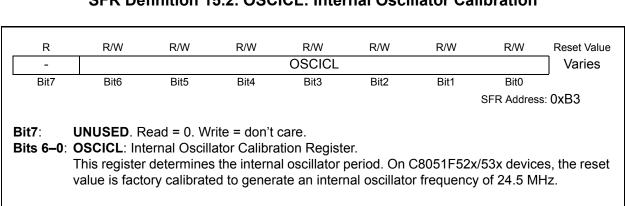
All C8051F52x/53x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register, shown in SFR Definition 15.2. On C8051F52x/53x devices, OSCICL and OSCIFIN are factory calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 15.1 on page 140. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, 8, 16, 32, 64, or 128 as defined by the IFCN bits in register OSCICN. The divide value defaults to 128 following a reset.

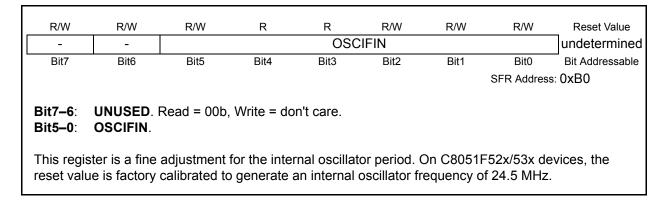
15.1.1. Internal Oscillator Suspend Mode

When software writes a logic 1 to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until one of the following events occur:

- Port 0 Match Event.
- Port 1 Match Event.
- Comparator 0 enabled and output is logic 0.


When one of the internal oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation, regardless of whether the event also causes an interrupt. The CPU resumes execution at the instruction following the write to SUSPEND.

SFR Definition 15.1. OSCICN: Internal Oscillator Control


R/W	R/W	R/W	R	R	R/W	R/W	R/W	Reset Value						
IOSCEN	1 IOSCEN0	SUSPEND	IFRDY	-	IFCN2	IFCN1	IFCN0	11000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0							
							SFR Address	: 0xB2						
Bit7–6:	IOSCEN[1:0]: Internal O	scillator Er	nable Bits.										
	00: Oscillato	r Disabled. A	bsolute M	inimum Pov	ver Consur	nption.								
	01: Oscillato													
		10: Oscillator Enabled in Normal Mode and Disabled in Suspend Mode, Low Power.												
	11: Oscillator Enabled in Normal Mode and Disabled in Suspend Mode.													
Bit5:	SUSPEND: Internal Oscillator Suspend Enable Bit.													
		Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The internal oscil- lator resumes operation when one of the SUSPEND mode awakening events occur.												
D:44		•				e awakenir	ng events of	ccur.						
Bit4:	IFRDY: Inter		•	• •	-	201								
	0: Internal O: 1: Internal O:													
Bits3:	UNUSED. R			-	nequency									
	IFCN2–0: Int	,			l Bits									
2.102 0.	000: SYSCL		•			128 (defaul	t).							
	001: SYSCL						-7							
	010: SYSCL				•									
	011: SYSCLI	K derived fro	m Internal	Oscillator of	divided by '	16.								
	100: SYSCL													
	101: SYSCL													
	110: SYSCLI													
	111: SYSCL	< derived fro	m Internal	Oscillator of	livided by 1									

SFR Definition 15.2. OSCICL: Internal Oscillator Calibration

SFR Definition 15.3. OSCIFIN: Internal Fine Oscillator Calibration

15.2. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 15.1. A 10 M Ω resistor also must be wired across the XTAL1 and XTAL2 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 15.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 15.4. OSCXCN: External Oscillator Control).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.7 and P1.0 ('F53x) or P0.2 and P0.3 ('F52x) are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P1.0 ('F530) or P0.3 ('F52x) is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see Section "14.1. Priority Crossbar Decoder" on page 117 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as analog inputs. In CMOS clock mode, the associated pin should be configured as a digital input. See Section "14.2. Port I/O Initialization" on page 121 for details on Port input mode selection.

15.2.1. Clocking Timers Directly Through the External Oscillator

The external oscillator source divided by eight is a clock option for the timers (Section "19. Timers" on page 179) and the Programmable Counter Array (PCA) (Section "20. Programmable Counter Array (PCA0)" on page 193). When the external oscillator is used to clock these peripherals, but is not used as the system clock, the external oscillator frequency must be less than or equal to the system clock frequency. In this configuration, the clock supplied to the peripheral (external oscillator / 8) is synchronized with the system clock; the jitter associated with this synchronization is limited to ±0.5 system clock cycles.

15.2.2. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 15.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 15.4. For example, a 12 MHz crystal requires an XFCN setting of 111b.

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

- Step 1. Configure XTAL1 and XTAL2 pins by writing '1' to the port latch.
- Step 2. Configure XTAL1 and XTAL2 as analog inputs.
- Step 3. Enable the external oscillator.
- Step 4. Wait at least 1 ms.
- Step 5. Poll for XTLVLD => '1'.
- Step 6. Switch the system clock to the external oscillator.

Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 Hz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 15.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 15.2.

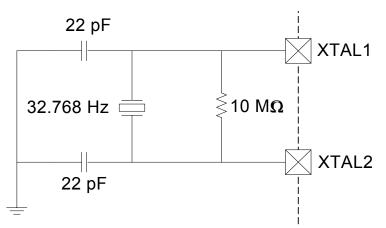


Figure 15.2. 32.768 Hz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

15.2.3. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 15.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

f = 1.23(10³) / RC = 1.23(10³) / [246 x 50] = 0.1 MHz = 100 kHz

Referring to the table in SFR Definition 15.4, the required XFCN setting is 010b. Programming XFCN to a higher setting in RC mode will improve frequency accuracy at a slightly increased external oscillator supply current.

15.2.4. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 15.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the frequency of oscillation and calculate the capacitance to be used from the equations below. Assume V_{DD} = 2.0 V and f = 75 kHz:

f = KF / (C x V_{DD}) 0.075 MHz = KF / (C x 2.0)

Since the frequency of roughly 75 kHz is desired, select the K Factor from the table in SFR Definition 15.4 as KF = 7.7:

0.075 MHz = 7.7 / (C x 2.0)

C x 2.0 = 7.7 / 0.075 MHz

C = 102.6 / 2.0 pF = 51.3 pF

Therefore, the XFCN value to use in this example is 010b.

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
XTLVLD	XOSCMD2	XOSCMD1	(OSCMD0	Reserved	XFCN2	XFCN1	XFCN0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Address	:: 0xB1			
	XTLVLD: Cr					(OSCMD =	= 11x.)				
	0: Crystal Oscillator is unused or not yet stable.										
	1: Crystal Oscillator is running and stable.										
	XOSCMD2–0: External Oscillator Mode Bits.										
	00x: External Oscillator circuit off.										
	010: External CMOS Clock Mode.										
	011: External CMOS Clock Mode with divide by 2 stage. 100: RC Oscillator Mode.										
	100: RC Oscillator Mode. 101: Capacitor Oscillator Mode.										
	110: Crystal Oscillator Mode.										
	111: Crystal Oscillator Mode with divide by 2 stage.										
	RESERVED			•	5						
Bits2–0:	XFCN2-0: E	xternal Osc	illator Frequ	uency Contr	ol Bits.						
000-111: See table below:											
	XFCN		DSCMD = 1	I1x) RC	RC (XOSCMD = 10x)		C (XOSCMD = 10x)				
	000	f≤	20 kHz		f≤25 kHz		K Factor = 0.87				
	001	20 kHz	< f ≤ 58 kHz	z 25	$kHz < f \le s$	50 kHz	K Facto	or = 2.6			
	010	58 kHz <	< f ≤ 155 kH	lz 50 l	$Hz < f \le 1$	00 kHz	K Facto	or = 7.7			
	011	155 kHz	< f ≤ 415 k⊦	Hz 100	$kHz < f \le 2$	200 kHz	K Facto				
	100		< f ≤ 1.1 Mŀ		$kHz < f \le 4$		K Facto				
	101		< f ≤ 3.1 Mł		$kHz < f \le 8$		K Facto				
	110		< f ≤ 8.2 Mł		$kHz < f \le 1$			or = 664			
	111	8.2 MHz	< f ≤ 25 M⊦	lz 1.6 l	$MHz < f \le 3$	3.2 MHz	K Factor	= 1590			
Crystal M	ode (Circuit	from Figure	15.1. Optio	n 1: XOSCI	MD = 11x)						
	Choose XFC										
	(Circuit from				•	.,					
	Choose XFC										
	$f = 1.23(10^3)$) / (R x C), w	/here	2							
	f = frequenc										
C = capacitor value in pF											
R = Pullup resistor value in $k\Omega$											
•	Circuit from F	-	•		,						
Choose K Factor (KF) for the oscillation frequency desired:											
f = KF / (C x V _{DD}), where											
f = frequency of clock in MHz											
	C = capacitor value the XTAL2 pin in pF										
V _{DD} = Power Supply on MCU in volts											

15.3. System Clock Selection

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. **To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.** RC and C modes typically require no startup time.

The CLKSL bit in register CLKSEL selects which oscillator source is used as the system clock. CLKSL must be set to '1' for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when another oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator and external oscillator, as long as the selected clock source is enabled and has settled.

R	R	R/W	R/W	R	R/W	R/W	R/W	Reset Value				
-	-	Reserved	Reserved	-	Reserved	Reserved	CLKSL	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_				
							SFR Address: 0xA9					
Bits5–4: Bit3:	Unused. Rea Reserved. Rea Reserved. R CLKSL : Sys 0: Internal O 1: External O	ead = 0b; M ad = 0b; Wr ead = 0b; M stem Clock s scillator (as	/lust write 0 ite = don't c /lust write 0 Select	b. :are. b.	CN bits in re	gister OSCI	CN).					

SFR Definition 15.5. CLKSEL: Clock Select

Table 15.1. Oscillator Electrical Characteristics

Parameter	Conditions	Min	Тур	Мах	Units
Internal Oscillator Frequency	Reset Frequency	24	24.5	25	MHz
Internal Oscillator OFF Supply Current	OSCICN.7 = 0 OSCICN.6 = 0	_	_	_	μA
Internal Oscillator ON (Ultra Low Power Mode) Supply Current	OSCICN.7 = 0 OSCICN.6 = 1	_	_	_	μA
Internal Oscillator ON (Very Low Power Mode) Supply Current	OSCICN.7 = 1 OSCICN.6 = 0	_	_	_	μA
Internal Oscillator ON (Low Power Mode) Supply Current	OSCICN.7 = 1 OSCICN.6 = 1	_	_	_	μA

-40 to +125 °C unless otherwise specified

16. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in **Section "16.1. Enhanced Baud Rate Generation" on page 142**). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte. (Please refer to **Section "21. Revision Specific Behavior" on page 209** for more information on the pins associated with the UART interface.)

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

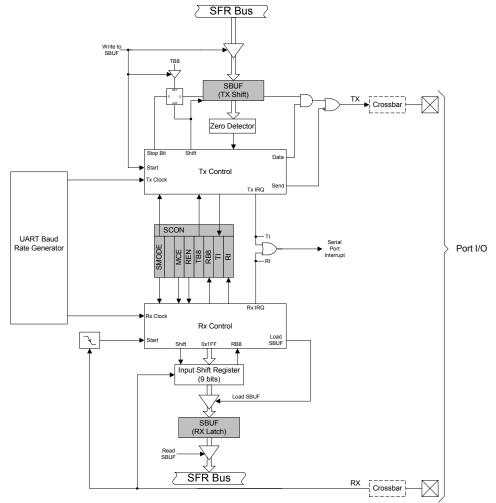
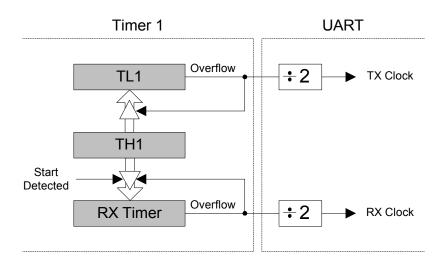



Figure 16.1. UART0 Block Diagram

16.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 16.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 181). The Timer 1 reload value should be set so that over-flows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. The UART0 baud rate is determined by Equation 16.1-A and Equation 16.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 16.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (8-bit auto-reload mode reload value). Timer 1 clock frequency is selected as described in Section "19. Timers" on page 179. A quick reference for typical baud rates and system clock frequencies is given in Table 16.1. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

16.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown below.

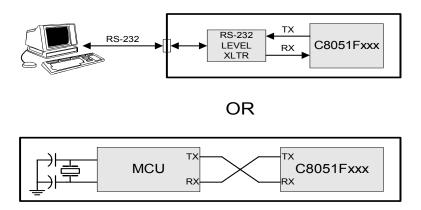


Figure 16.3. UART Interconnect Diagram

16.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

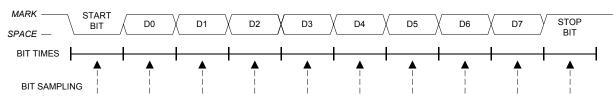


Figure 16.4. 8-Bit UART Timing Diagram

16.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to '1'. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: (1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to '1'. A UART0 interrupt will occur if enabled when either TI0 or RI0 is set to '1'.

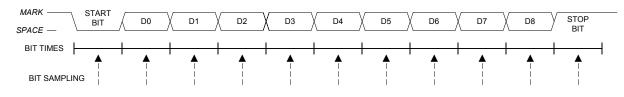


Figure 16.5. 9-Bit UART Timing Diagram

16.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

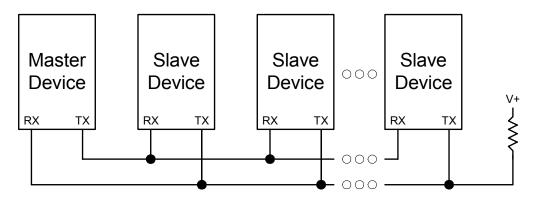


Figure 16.6. UART Multi-Processor Mode Interconnect Diagram

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
SOMOD	E -	MCE0	REN0	TB80	RB80	TI0	RI0	0100000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressabl
							SFR Addres	
Bit7:	SOMODE: S	Serial Port 0	Operation I	Mode.				
	This bit sele	ects the UAF	T0 Operati	on Mode.				
	0: 8-bit UAF	RT with Varia	ble Baud R	late.				
	1: 9-bit UAF	RT with Varia	ble Baud R	late.				
Bit6:	UNUSED. F	Read = 1b. V	Vrite = don'	t care.				
Bit5:		tiprocessor (
					rial Port 0 O	peration M	ode.	
		0: Checks f						
		ogic level of	•	•				
				•	is logic level	1.		
		1: Multiproc			s Enable.			
		ogic level of		•				
				pt is genera	ated only who	en the nint	h bit is log	ic 1.
Bit4:		eive Enable						
		bles/disable		receiver.				
		eception dis						
D:40.		eception ena						
Bit3:		n Transmissi					: O -:+ A	
	•			•	e ninth transi			ART Mode. I
Bit2:		n 8-bil UAR 1 Receive Bi		set or cleare	ed by softwa	re as requi	rea.	
DILZ.					Mode 0; it is	accienced	the velue	of the Oth
	data bit in N	•				sassiyileu	the value	or the stri
Bit1:		nit Interrupt F						
SILT.		•	0	ta has hoor	n transmitted) (after the	8th hit in 8
					P bit in 9-bit			
					CPU to vect			
	•	s bit must be	•					
Bit0:		e Interrupt F		anually by s	soltware.			
Bitto.				of data has	been receive	ed by UAR	T0 (set at t	he STOP bi
					enabled, set		•	
	to vector to	,		•		•		

SFR Definition 16.1. SCON0: Serial Port 0 Control

SFR Definition 16.2. SBUF0: Serial (UART0) Port Data Buffer

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0x99
Bits7–0∶	SBUF0[7:0] This SFR ac data is writte sion. Writing tents of the r	cesses two en to SBUF(a byte to S	registers; a 0, it goes to BUF0 initia	transmit sh the transmi	hift register a it shift regis	ter and is h	eld for seria	al transmis-

Frequency: 24.5 MHz											
Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)					
230400	- 0.32%	106	SYSCLK	XX	1	0xCB					
115200	- 0.32%	212	SYSCLK	XX	1	0x96					
57600	0.15%	426	SYSCLK	XX	1	0x2B					
28800	- 0.32%	848	SYSCLK / 4	01	0	0x96					
14400	0.15%	1704	SYSCLK / 12	00	0	0xB9					
9600	- 0.32%	2544	SYSCLK / 12	00	0	0x96					
2400	- 0.32%	10176	SYSCLK / 48	10	0	0x96					
1200	0.15%	20448	SYSCLK / 48	10	0	0x2B					

Table 16.1. Timer Settings for Standard Baud RatesUsing the Internal Oscillator

X = Don't care

*Note: SCA1–SCA0 and T1M bit definitions can be found in Section 19.1.

17. LIN (C8051F520/523/526/530/533/536 only)

LIN is an asynchronous, serial communications interface used primarily in automotive networks. This document assumes previous knowledge of the interface. For more information about the LIN concept including specifications please refer to the LIN consortium (http://www.lin-subbus.org/).

17.1. Major Characteristics

Silicon Laboratories LIN peripheral implements a complete LIN interface and presents the following features:

- 1. Selectable Master and Slave Modes
- 2. Unique Self-Synchronization without a quartz crystal or ceramic resonator in both Master and Slave modes. Silicon Laboratories innovative internal oscillator design technology allows the oscillator to reach 0.5% precision across the entire supply voltage and temperature range.
- Fully configurable transmission/reception characteristics via SFRs Important: The minimum system clock (SYSCLK) to be used when using the LIN peripheral is of 8 MHz.

The following Figure describes LIN main blocks.

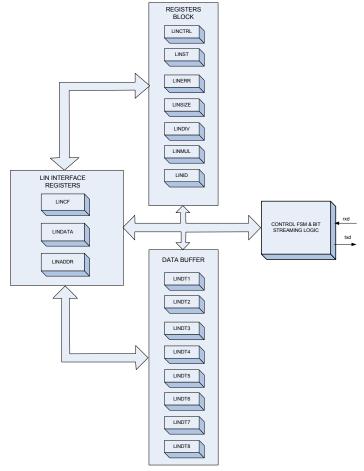


Figure 17.1. LIN Flowchart

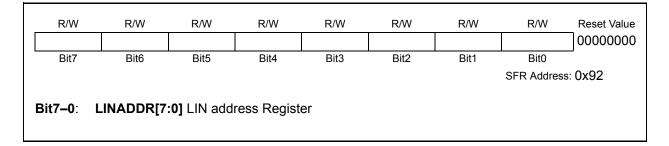
The LIN peripheral is made of four major logic groups:

- LIN Interface Registers Provide the interface between the microcontroller core and the peripheral.
- Data Buffer Contains the registers where transmitted and received message data bytes are placed
- Registers Block Contain all registers used to control the functionality of the interface
- Control State Machine and Bit Streaming Logic Contains the hardware the serializes messages and the timing control of the peripheral.

The LIN module does not directly support LIN Version 1.3 Extended Frames. In the case of a slave configuration if the application detects an extended frame it has to write a '1' to the **STOP** bit (**LINCTRL**) instead of setting the **DTACK** bit (steps 1b...1e can then be skipped). In that case the LIN peripheral stops the processing of the LIN communication until the next SYNC BREAK is received.

17.2. Software Interface with the LIN Peripheral

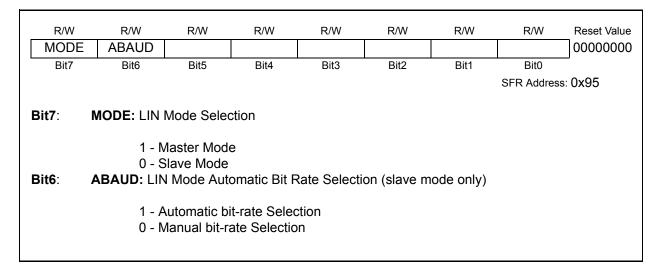
The communication with the LIN interface is done indirectly through a pair of registers called LINADDR and LINDATA and the Selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LINCF register. To write into a specific register other than these three ones require the user to first load the LINADDR register with the address of the required LIN register and then load the data to be transferred to the register using LINDATA.



17.3. LIN Registers

The following Special Function Registers (SFRs) are available:

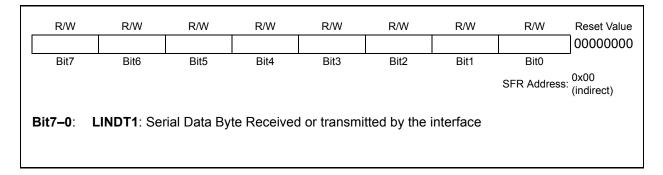
17.3.1. LIN Direct Access SFR Registers Definition


SFR Definition 17.1. LINADDR: Indirect Address Register

SFR Definition 17.2. LINDATA: LIN Data Register

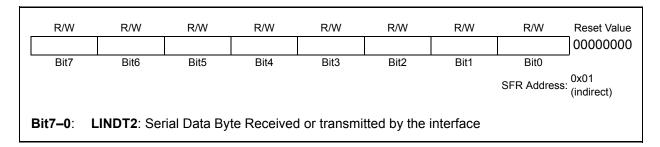
_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
									00000000		
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
								SFR Addres	s: 0x93		
В	Bit7–0: LINDATA[7:0] LIN Data Register										

SFR Definition 17.3. LINCF Control Mode Register

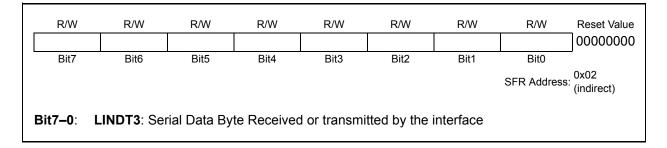

17.3.2. LIN Indirect Access SFR Registers Definition

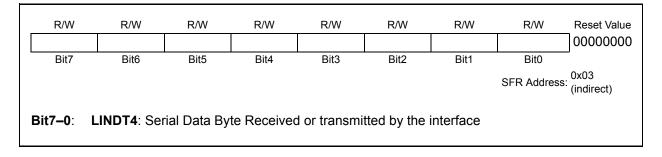
Name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
LINDT1	0x00			1	data byte	0[7:0]	I	1					
LINDT2	0x01				data byte	1[7:0]							
LINDT3	0x02		data byte 2[7:0]										
LINDT4	0x03		data byte 3[7:0]										
LINDT5	0x04		data byte 4[7:0]										
LINDT6	0x05				data byte	5[7:0]							
LINDT7	0x06		data byte 6[7:0]										
LINDT8	0x07				data byte	7[7:0]							
LINCTRL	0x08	STOP(s)	SLEEP(s)	TXRX	DTACK(s)	RSTINT	RSTERR	WUPREQ	STREQ(m)				
LINST	0x09	ACTIVE	IDLTOUT	ABORT(s)	DTREQ(s)	LININT	ERROR	WAKEUP	DONE				
LINERR	0x0A				SYNCH(s)	PRTY(s)	TOUT	СНК	BITERR				
LINSIZE	0x0B	ENHCHK					data le	ngth [3:0]					
LINDIV	0x0C				baud divid	er[7:0]							
LINMUL	0x0D	PRESCL1	PRESCL1 PRESCL0 MUL4 MUL3 MUL2 MUL1 MUL0 DIV										
LINID	0x0E			ID5	ID4	ID3	ID2	ID1	ID0				

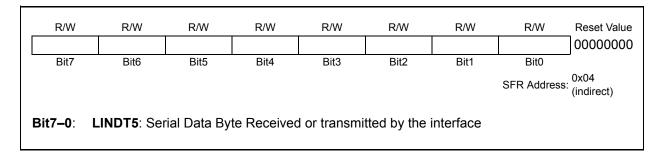
Table 17.1. LIN Registers* (Indirectly Addressable)


*These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are accessible in both modes.

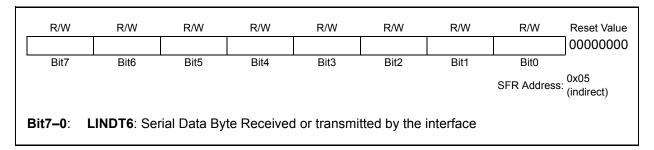
SFR Definition 17.4. LINDT1: LIN Data Byte



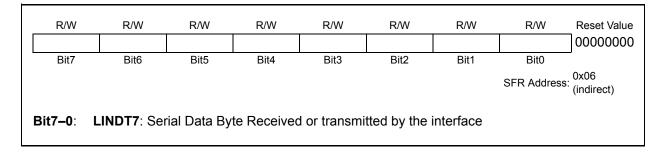

SFR Definition 17.5. LINDT2: LIN Data Byte

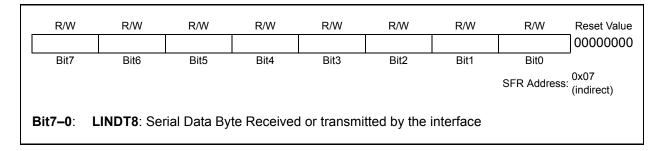

SFR Definition 17.6. LINDT3: LIN Data Byte

SFR Definition 17.7. LINDT4: LIN Data Byte



SFR Definition 17.8. LINDT5: LIN Data Byte





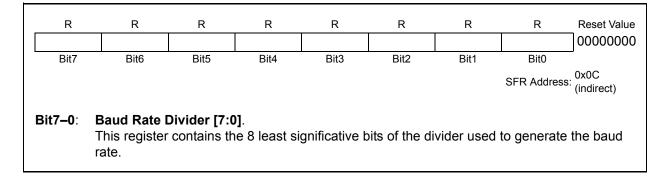
SFR Definition 17.10. LINDT7: LIN Data Byte

SFR Definition 17.11. LINDT8: LIN Data Byte

SFR Definition 17.12. LINCTRL: LIN Control Register

W	W	W	R/W	R/W	R/W	R/W	R/W	Reset Value
STOP	SLEEP	TXRX	DTACK	RSTINT	RSTERR	WUPREQ	STREQ	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	3: 0x08 (indirect)
Bit7:	STOP : Proce This bit is to until the next request inter '0').	be set by th t SYNCH B	ne applicati REAK signa	on to block al. It is used	the process	sing of the Ll application is	IN Commu s handling	a data
Bit6:	SLEEP : Slee This bit is to received and The applicat	be set by th that the Br ion must re	ne applicati us is in slee set it when	ep mode or i a Wake-Up	f a Bus Idle	timeout inte		
Bit5:	TXRX : Trans This bit is to receive fram 1 - Transmit 0 - Receive 0	be set by the. Operation Operation	ne applicati	on to select		nt frame is a	a transmit f	rame or a
Bit4:	DTACK : Dat This bit is to peripheral.)	be set by th	ne applicati			a request int	errupt (res	et by the
Bit3:	RSTINT : Inte This bit must ter).	t be set by t	he applicat	ion to reset	the "INT" b	it in the LIN	ST (LIN sta	itus regis-
Bit2:	RSTERR: En The applicati ister) and the	ion must se e LINERR (t this bit in LIN Error R			bits in the L	INST (LIN	status Reg-
Bit1:	WUPREQ: V This bit must Wake-Up Sig	t be set by t gnal. (reset	he applicat	pheral)	he sleep mo	ode of the Ll	IN bus by s	sending a
Bit0:	STREQ: Star This bit must loading the id the transmis	t be set by t dentifier, da	he applicat ta length ar	ion to start				

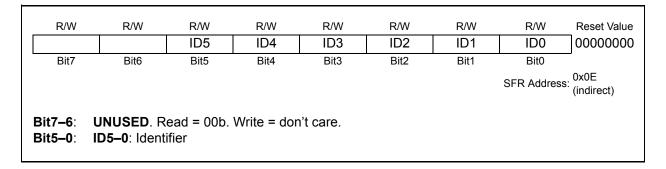
R	R	R	R	R/W	R	R	R	Reset Value
ACTIVE		ABORT	DTREQ	LININT	ERROR	WAKEUP	DONE	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0x09 (indirect)
Bit7:	ACTIVE: LIN	Bus Activi	ty Bit.					
	This bit show					tected by the	e periphera	al.
	1 - Transmis							
Bit6:	0 - No transr							
DILO.	IDLTOUT: Bu This bit is se					d over a ne	riod of 4 se	conds and
	the SLEEP b							
	ting this bit th							
	can then ass					et the SLEE	P bit.	
Bit5:	ABORT: Abo					ALC . I.		c
	This bit is se end of the la							
	This bit is als							
	BREAK sign							
Bit4:	DTREQ: Dat		•			,	0	
	The peripher					id requests a	an interrup	. The appli-
	cation has th	•		•				
	1- Decode th tion.	ie identifier	to decide w	vnetner the	current fran	ne is a trans	mit or a rec	ceive opera-
	2- Adjust the	TXRX bit (in LINCTRI) and to loa	ad the data	lenath.		
	3- In case of						ouffer.	
	4- Set the D	•		ledge) four	id in the LIN	ICTRL regis	ster.	
Bit3:	LININT: Inter							
	This bit is se the RSTINT		•	ssued and	has to be re	eset by the a	pplication	by setting
Bit2:	ERROR: Col	•	,					
5112.	The peripher				detected. 7	The bit has to	o be reset l	by the appli-
	cation by set							, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Bit1:	WAKEUP: W	•	•					
	The bit is set	t when the I	peripheral is	s transmittir	ng a Wake-I	Up signal or	has receiv	ed a Wake-
Bit0:	Up signal. DONE: Trans	emission C	omplata Dit					
BILV.	The peripher				cessful tran	smission an	d resets it	at the start
	of another tra							


SFR Definition 17.14. LINERR: LIN ERROR Register

R	R	R	R	R	R	R	R	Reset Value					
			SYNCH	PRTY	TOUT	CHK	BITERR	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
							SFR Address	3: 0x0A (indirect)					
Bit7–5:	UNUSED. R	ead = 000b	o. Write = do	on't care.									
Bit4:	SYNCH: Synchronization Error bit.(slave mode only)												
	The peripher	al detected	d edges of th	ne SYNCH	FIELD outs	ide the max	kimum tolera	ance.					
Bit3:	PRTY: Parity												
	This bit is se	•		detected.									
Bit2:	TOUT: Timeo		-										
	This bit is se			•									
	1- The maste	er detects a	a timeout eri	ror if it is ex	pecting data	a from the b	ous but no s	lave does					
	respond.			4 h a fua				f					
	2- If the slave		to late and	the frame is	s not finisne	ed within th	e maximum	frame					
	length T _{FRAN}	_				6	4	41 1					
	3- The slave				ecting data	from the ma	aster or ano	ther slave					
	but no data i					μ - FRΔI	ME MAX.						
	4- If the fram	e is not fin	ished within	the maxim	um frame le	ength I'''	is re	ached.					
	5- The slave				•		•						
	(for selecting												
	set the DTAC	•	,	IOP bit (LIN	ICTRL) unu	ii the end o	i the recepti	on of the					
	6- The slave			r if it has tra	nemitted a	wakoun sir	h ti bac lear	otocts no					
	sync field (fro				anonnileu a	wareup si	grial and it u						
Bit1:	CHK: Check		,	100 1113.									
	The bit is set		-	letects a ch	ecksum erro	or.							
Bit0:	BITERR: Bit		periprisi di d										
	This error bit		n the bit val	ue monitore	ed by the pe	eripheral is	different fro	m the one					
	sent.	-	-		, , , , ,	•	-	-					

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
ENHCH	K -	-	-	LINSIZE3	LINSIZE2	LINSIZE1	LINSIZE0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
							SFR Address	0x0B (indirect)				
Bit7: Bit6–4: Bit3–0:	 1 - Spec. 2.0, inverted eight bit sum with carry over all data bytes and protected identifier. 0 - Spec 1.3, inverted eight bit sum with carry over all data bytes. 6-4: UNUSED. Read = 00b. Write = don't care. 											
	ID5	ID4	Number of	Bytes in the	Data Field	t						
	0	0		2 bytes								
	0	1		2 bytes								
	1	0		4 bytes								
	1	1		8 bytes								
Bit0:	UNUSED.	Read = 00	b. Write = do	n't care.								

SFR Definition 17.16. LINDIV: LIN Divider Register



SFR Definition 17.17. LINMUL: LIN Multiplier Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PRESCL	1 PRESCL0	MUL4	MUL3	MUL2	MUL1	MUL0	DIV	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Addres	s: 0x0D (indirect)			
Bit7–6: Bit5–1: Bit0:	Bit5–1: MUL4–0: Multiplier used to create the baud rate.										

SFR Definition 17.18. LINID: LIN ID Register

17.4. Bit Timing

The LIN bit rate is based on the SYSCLK and the Bit-Timing Registers according to the following equation:

f_{bit} = SYSCLK (MHz) / (2^(prescaler + 1) x divider x (multiplier+1))

The divider factor must be in the range of 200 to 511 and the SYSCLK must be at least of 8 MHz in order to achieve the tolerances required by the LIN protocol. Also the procedure to adjust the Bit-Timing registers is different between master mode, slave mode with automatic bit-rate detection and slave without bit-rate detection.

17.4.1. Bit Timing Register adjustment of Master and Slave without Automatic Bit-Rate Detection

The necessary steps to adjust the Bit-Timing registers of a master or slave without automatic bit-rate detection are:

1. Set up the bit time multiplier depending on used LIN data rate f_{Bit} according to the following equation:

(the result multiplier value must be rounded down to the nearest integer)

multiplier =
$$((20 \text{ kB/s})/f_{\text{Bit}}) - 1$$

 Set up the prescaler register depending on system clock, data rate and bit time multiplier according to the following equation: (the result prescaler value must be rounded down to the nearest integer)

prescaler = (In(SYSCLK/((multiplier + 1) x f_{Bit} x 200)/(In2)) - 1

3. Adjusting the bit time divider depending on system clock, data rate, bit time multiplier and prescaler according to the following equation:

divider = SYSCLK/ $(2^{(\text{prescaler + 1})} \times (\text{multiplier + 1}) \times f_{\text{BIT}})$

SYSCLK	LIN Baud Rate	Multiplier	Prescaler	Divider
24.5 MHz	19.2 KHz	0	1	319
24.5 MHz	9.6 KHz	1	1	319
24.5 MHz	1 KHz	19	1	306

 Table 17.3. Bit Timing Examples Without Auto Bit-Rate

17.4.2. Bit Timing Register adjustment of Slave with Automatic Bit-Rate\

The necessary steps to adjust the Bit-Timing registers of a slave with automatic bit-rate detection are:

1. Setting up the prescaler register depending on system clock according to the following equation:

prescaler = (In(SYSCLK/(20 KHz x 200))/In2) - 1

2. Adjusting the bit time divider depending on system clock and prescaler according to the following equation:

divider = SYSCLK/(2^(prescaler + 1) x 20 KHz)

SYSCLK	Prescaler	Divider
8 MHz	0	200
12, 25 MHz	0	306
24.5 MHz	1	306

Table 17.4. Bit Timing Examples With Auto Bit-Rate

17.4.3. LIN Master Mode Operation

The operation setup of the LIN peripheral in Master mode requires that the LIN bus is not active (**ACTIVE** bit in **LINST** register set to '0').

The master is responsible for the schedule of the messages. It sends the header of each frame that contains SYNC BREAK FIELD, SYNC FIELD and IDENTIFIER FIELD. The steps for scheduling a message frame are explained in the following paragraphs.

1. Load the 6-bit Identifier into the ID register (LINID).

2. Load the "data length" in the **LINSIZE** register (number of data bytes or value "1111b" if the data length should be decoded from the identifier) and set the checksum type (classic or enhanced, defined by the **ENHCHK** bit also in the **LINSIZE** register).

3. Adjust the TXRX bit (LINCTRL.5):

"1" - If the current frame is a transmit operation for the master.

"0" – If the current frame is a receive operation for the master.

4. Load the data bytes to transmit into the data buffer (LINDT1 to LINDT8 and transmit operation only).

5. The **STREQ** bit (**LINCTRL**) is set to start the message transfer. After that the LIN peripheral schedules the message frame and request an interrupt if the message transfer is successfully completed or if an error is occurred.

6. The following steps have to be performed by the application when an interrupt is requested.

6a. Check the **DONE** bit and the **ERROR** bit (**LINST**)

6b. Load the received data from the data buffer if the transfer was successful (for receive operation only).

6c. If the transfer was not successful, check the error register to determine the kind of error. Further error handling has to be done by the application.

6d. Set the **RSTINT** and **RSTERR** bits in the status register (**LINST**) to reset the interrupt request and the error flags.

17.4.4. LIN Slave Mode Operation

Once the Baud rate has been selected and the checksum type selected (classic or enhanced) the LIN peripheral can start receiving messages.

Access from application to data buffer and ID registers of the LIN core slave is possible when a data request is pending (**DTREQ** bit in **LINST** register is '1') and also when the LIN bus is not active (**ACTIVE** bit in **LINST** register set to '0').

The LIN peripheral in slave mode detects the header of the message frame sent by the LIN master. If slave synchronization is enabled (autobaud), the slave synchronizes its internal bit time to the master bit time. An interrupt is requested after the reception of the IDENTIFIER FIELD, when an error is detected or when the message transfer is completed.

The following steps have to be done by the application when an interrupt is requested.

- 1. Check the **DTREQ** bit in the status register (**LINST**) is set.(set when the IDENTIFIER FIELD has been received). If set then:
- 2. Load the identifier from the LINID register and process it
- Adjust the TXRX bit in the control register (LINCTRL) (set to "1" if the current frame is a transmit operation for the slave and set to "0" if the current frame is a receive operation for the slave)
- 4. Load the "data length" in the **LINSIZE** register (number of data bytes or value "1111b" if the data length should be decoded from the identifier)
- 5. Load the data to transmit into the data buffer. (for transmit operation only)
- 6. Set the **DTACK** bit in the **LINCTRL** register.

Notes:

- 1. Steps 1a...1e have to be done during the IN-FRAME RESPONSE SPACE, if the current frame is a transmit operation for the slave; otherwise a timeout will be detected by the master. If the current frame is a receive operation for the slave, steps 1a...1e have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the LIN peripheral will be overwritten and a timeout error will be detected in the LIN peripheral.
- If the application detects an unknown identifier (e.g. extended identifier) it has to write a '1' to the STOP bit (LINCTRL) instead of setting the DTACK bit (steps 1b...1e can then be skipped). In that case the LIN peripheral stops the processing of the LIN communication until the next SYNC BREAK is received.
- **3.** Changing the setup of the checksum (classic to enhanced or vice versa) during a transaction will cause the interface to reset and the transaction to be lost. Therefore no change in the checksum should be performed while there is a transaction in progress.
- 4. The same applies to changes in the LIN interface mode from slave mode to master mode and from master mode to slave mode.
- 5. Check the **DONE** bit in the status register if the **DTREQ** bit is not set. The transmission was successful if the **DONE** bit is set.
- 6. If the transmission was successful and the current frame was a receive operation for the slave, load the received data bytes from the data buffer. Else check the error register (LINERR) to determine the kind of error. Further error handling has to be done by the application.
- 7. Set the **RSTINT** and **RSTERR** bits in the status register (LINCTRL) to reset the interrupt request and the error flags.

17.4.5. Sleep Mode and Wake-Up

To reduce the systems power consumption the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request has to be started by the LIN master application in the same way as a normal transmit message. The LIN slave application has to decode the Sleep Mode Frame from Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by setting the **SLEEP** bit in the control register (**LINCTRL**).

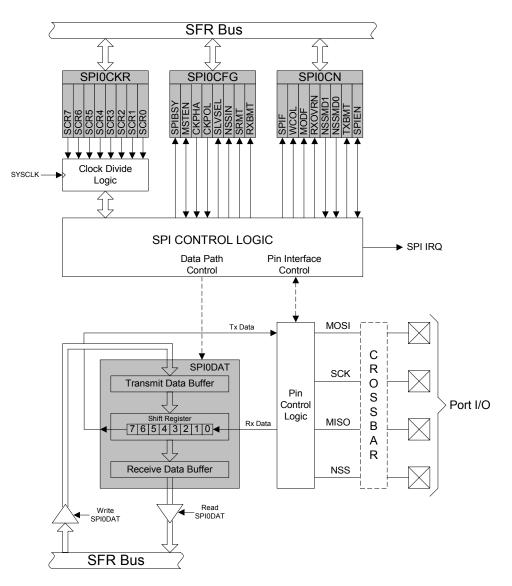
If the **SLEEP** bit in the control register (**LINCTRL**) of the LIN slave application is not set and there is no bus activity for 4 s (specified bus idle timeout) the **IDLTOUT** bit in the status register (**LINST**) is set and an interrupt request is generated. After that the application may assume that the LIN bus is in Sleep Mode and set the **SLEEP** bit in the control register (**LINCTRL**).

Sending a Wakeup signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To send a Wakeup signal, the application has to set the **WUPREQ** bit in the status register (**LINST**). After successful transmission of the wakeup signal the **DONE** bit in the status register (**LINST**) of the master node is set and an interrupt request is generated. The LIN slave does not generate an interrupt request after successful transmission of the Wakeup signal but it generates an interrupt request if the master does not respond to the Wakeup signal within 150 ms. In that case the **ERROR** bit in status register (**LINST**) and **TOUT** bit in **LINERR** register are set. The application has to decide whether to transmit another Wakeup signal or not.

All LIN nodes that detect a wakeup signal will set the **WAKEUP** bit in status register (**LINST**) and generate an interrupt request. After that, the application has to reset the **SLEEP** bit in the control register of the LIN slave.

17.4.6. Error Detection and Handling

The LIN peripheral generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing the error register (LINERR). After that, it has to reset the error register (LINERR) and the ERROR bit in status register (LINST) by writing a '1' to the RSTERR bit in the control register (LINCTRL). Starting a new message with the LIN peripheral selected as master or sending a Wakeup signal with the LIN peripheral selected as a master or slave is possible only if ERROR bit in status register is set to '0'.



NOTES:

18. Enhanced Serial Peripheral Interface (SPI0)

The Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

18.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

18.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

18.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift register.

18.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

18.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

- NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-point communication between a master and one slave.
- NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple master devices can be used on the same SPI bus.
- NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration should only be used when operating SPI0 as a master device.

See Figure 18.2, Figure 18.3, and Figure 18.4 for typical connection diagrams of the various operational modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or 3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "14. Port Input/Output" on page 115 for general purpose port I/O and crossbar information.

18.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers data to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 18.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 18.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 18.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

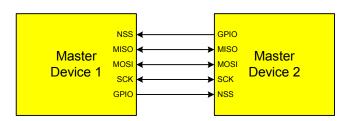


Figure 18.2. Multiple-Master Mode Connection Diagram

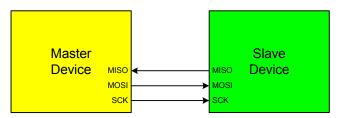
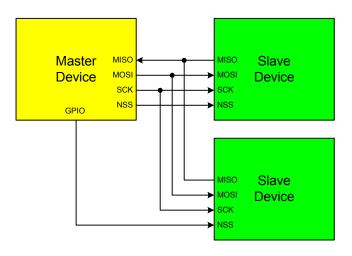



Figure 18.3. 3-Wire Single Master and Slave Mode Connection Diagram

18.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted into the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

The shift register contents are locked after the slave detects the first edge of SCK. Writes to SPI0DAT that occur after the first SCK edge will be held in the TX latch until the end of the current transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 18.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

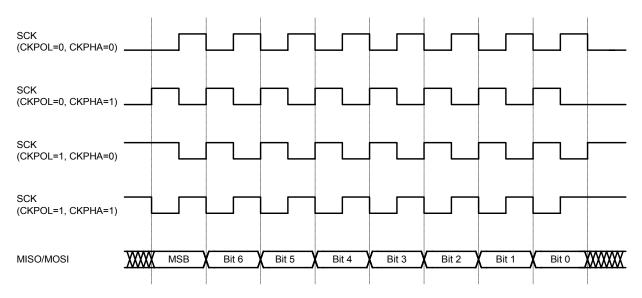
3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is not a way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. Figure 18.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

18.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

Note that all of the following interrupt bits must be cleared by software.

- 1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- 3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master in multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- 4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed while the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.


18.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between a rising edge or a falling edge. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships are shown in Figure 18.5.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 18.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz,

whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

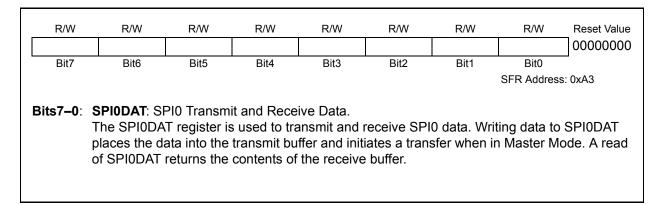
18.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

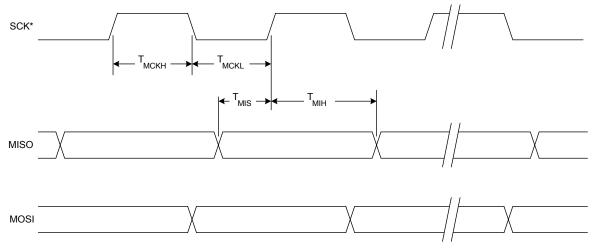
SFR Definition 18.1. SPI0CFG: SPI0 Configuration

R	R/W	R/W	R/W	R	R	R	R	Reset Value
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	0000011
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0.11
							SFR Address	: 0xA1
Bit 7 :	SPIBSY: SP	l Rusy (rea	d only)					
	This bit is se			transfer is	in progress	(Master or	Slave Mode	;)
	MSTEN: Ma				p. e.g. eee	(
	0: Disable m			n slave mod	e.			
	1: Enable ma							
Bit 5:	CKPHA: SP	10 Clock Ph	ase.					
	This bit cont	rols the SP	0 clock pha	ise.				
	0: Data cente							
	1: Data cente		•	of SCK perio	od.*			
	CKPOL: SP							
	This bit cont			arity.				
	0: SCK line I							
	1: SCK line h	•		ار با مع				
	SLVSEL: Sla This bit is se				ia low india	oting SDIO i	a tha aalaat	ad alava I
	is cleared to							
	instantaneou							
	NSSIN: NSS		•		•			Jul.
	This bit mimi					the NSS of	ort pin at the	time that
	the register i					and noo p	one pint de une	
	SRMT: Shift					ılv).		
	This bit will b	•					of the shift	register.
	and there is							
	receive buffe	er. It returns	to logic 0 v	vhen a data	byte is trar	sferred to t	he shift regi	ster from
	the transmit	buffer or by	a transitior	n on SCK.	•			
	NOTE: SRM	T = 1 when	in Master I	Mode.				
	RXBMT: Red					• /		
	This bit will b							
	information.			ion availabl	e in the rece	eive buffer t	hat has not	been read
	this bit will re	0						
	NOTE: RXB	MI = 1 whe	en in Mastei	⁻ Mode.				
	Table 18.1 fo							

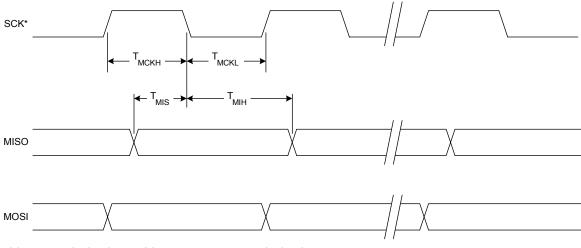
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address	s: 0xF8
Bit7:	SPIF: SPI0 I	•	0					
	This bit is se							
	setting this b automatically					•	routine. In	iis bit is not
Bit6:	WCOL: Write	, .		it must be	cleared by a	Sollware.		
	This bit is se		0	e (and gene	erates a SPI	0 interrupt)	to indicate	a write to
	the SPI0 dat	•	•				gress. This	bit is not
D:45.	automatically	· ·	,	It must be	cleared by s	software.		
Bit5:	MODF: Mod This bit is se			e (and dene	erates a SPI	0 interrunt)	when a m	aster mode
	collision is de							
	matically cle							
Bit4:	RXOVRN: R							
	This bit is se							
	buffer still ho shifted into t							
	be cleared b					ally cleared	a by naruwa	are. it must
Bits3-2:	NSSMD1-N			Mode.				
	Selects betw							
	(See Section				ation" on pa	age 167 an	d Section	"18.3. SPI0
	Slave Mode 00: 3-Wire S		· · ·	,	signal is no	t routed to	a nort nin	
	01: 4-Wire S							device.
	1x: 4-Wire S			•	,		•	
	assume the							
Bit1:	TXBMT: Trai			ouv data ba	o hoon writt	on to the tr	onomit huff	or Whon
	This bit will the tr							
	indicating the							it to logio 1,
Bit0:	SPIEN: SPIC			-				
	This bit enab		s the SPI.					
	0: SPI disabl							
	I. OFI EIIdDI	cu.						



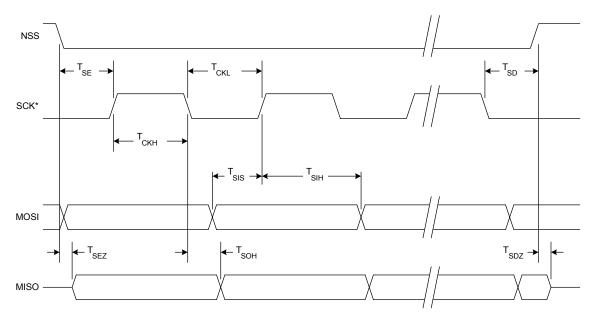
SFR Definition 18.3. SPI0CKR: SPI0 Clock Rate


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0xA2
D:4-7 0.	0007 000		ali Data					
DILS/-U.	SCR7-SCR These bits d			of the SCk	output whe	on the SDIA	modulo is	configured
	for master m				•			•
	clock, and is	•						
	and SPIOCK	•	•	•				
					•			
	$f_{SCK} = \frac{1}{2 \times 10^{-5}}$	SYSCL	K					
	$J_{SCK} = 2 \times$	(SPI0CH	(R + 1)					
	for 0 <= SPI	0CKR <= 2	55					
			00					
Example:	If SYSCLK =	2 MHz and	SPIOCKR	= 0x04,				
C	2000000							
f_{SCK} =	$=\frac{2000000}{2\times(4+1)}$)						
	2 / (1 / 1							
<i>(</i> –	200111							
$J_{SCK} =$	200 <i>kHz</i>							

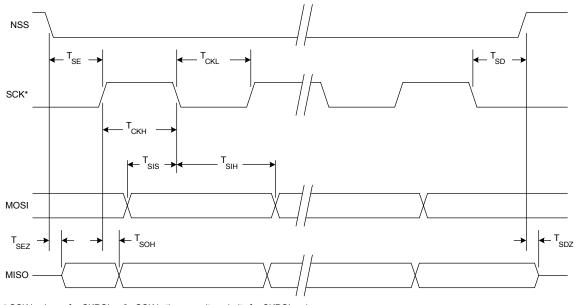
SFR Definition 18.4. SPI0DAT: SPI0 Data



* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.



* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.


Figure 18.7. SPI Master Timing (CKPHA = 1)

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 18.9. SPI Slave Timing (CKPHA = 1)

Parameter	Description	Min	Max	Units			
Master Mode Timing* (See Figure 18.6 and Figure 18.7)							
т _{мскн}	SCK High Time	1 x T _{SYSCLK}	—	ns			
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	—	ns			
т _{міs}	MISO Valid to SCK Sample Edge	20	—	ns			
т _{мін}	SCK Sample Edge to MISO Change	0	—	ns			
Slave Mode T	Slave Mode Timing* (See Figure 18.8 and Figure 18.9)						
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	—	ns			
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}	—	ns			
T _{SEZ}	NSS Falling to MISO Valid	—	4 x T _{SYSCLK}	ns			
T _{SDZ}	NSS Rising to MISO High-Z	—	4 x T _{SYSCLK}	ns			
т _{скн}	SCK High Time	5 x T _{SYSCLK}	—	ns			
Т _{СКL}	SCK Low Time	5 x T _{SYSCLK}	—	ns			
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}	—	ns			
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}	—	ns			
т _{ѕон}	SCK Shift Edge to MISO Change	—	4 x T _{SYSCLK}	ns			
*Note: T _{SYSCLK} is equal to one period of the device system clock (SYSCLK) in ns. The maximum possible frequency of the SPI can be calculated as: Transmission: SYSCLK/2 Reception: SYSCLK/10							

 Table 18.1. SPI Slave Timing Parameters

NOTES:

19. Timers

Each MCU includes three counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit auto-reload timer for use with other device peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offer 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:	
13-bit counter/timer	16-bit timer with auto-reload	
16-bit counter/timer		
8-bit counter/timer with auto-reload		
Two 8-bit counter/timers	Two 8-bit timers with auto-reload	
(Timer 0 only)		

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M– T0M) and the Clock Scale bits (SCA1–SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 19.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it must be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

19.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (Section "11.4. Interrupt Register Descriptions" on page 91); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section 11.4). Both counter/Timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

19.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section "14.1. Priority Crossbar Decoder" on page 117 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 19.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 11.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to '1' allows the timer to be controlled by the external input signal /INT0 (see Section "11.4. Interrupt Register Descriptions" on page 91), facilitating pulse width measurements.

TR0	GATE0	/INT0	Counter/Timer		
0	Х	Х	Disabled		
1	0	Х	Enabled		
1	1	0	Disabled		
1	1	1	Enabled		
X = Don't Care					

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 11.5. IT01CF: INT0/INT1 Configuration).

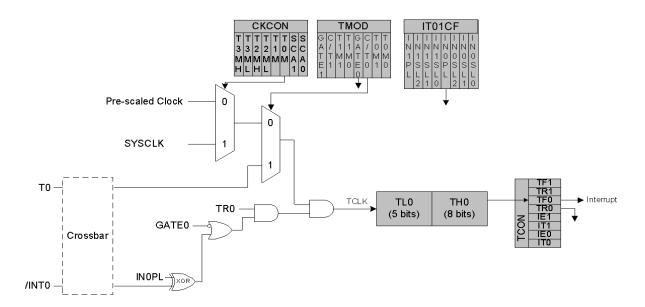


Figure 19.1. T0 Mode 0 Block Diagram

19.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see Section "11.5. External Interrupts" on page 95 for details on the external input signals /INT0 and /INT1).

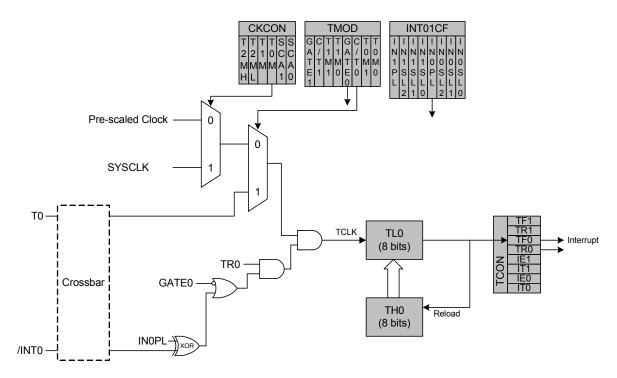


Figure 19.2. T0 Mode 2 Block Diagram

19.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and UART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

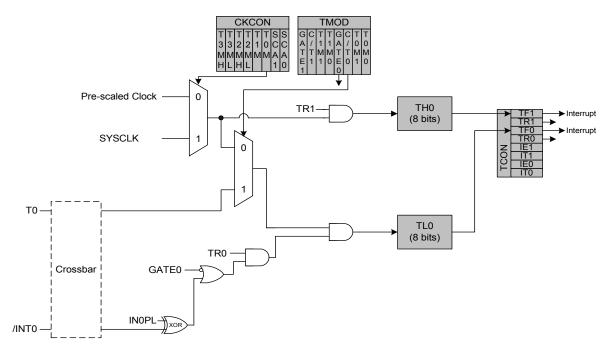
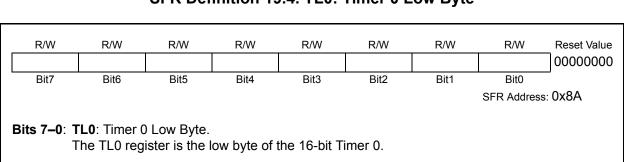


Figure 19.3. T0 Mode 3 Block Diagram

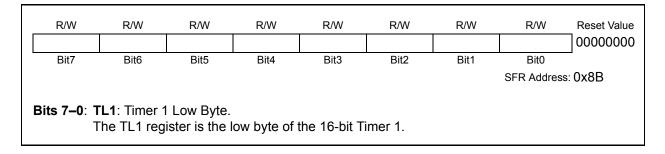
SFR Definition 19.1. TCON: Timer Control

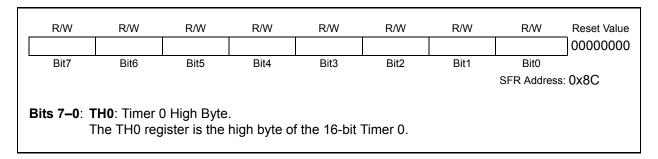
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressabl			
	SFR Address: 0>										
							SI IN Addie	33. 0700			
Bit7:	TF1: Timer 1	Overflow F	-laq.								
	Set by hardw		-	rflows. This	flag can be	e cleared b	y software	but is auto-			
	matically clea	ared when	the CPU ve	ctors to the	Timer 1 int	errupt serv	vice routine				
	0: No Timer	1 overflow (detected.								
	1: Timer 1 ha										
Bit6:	TR1: Timer 1		ol.								
	0: Timer 1 di										
D'45	1: Timer 1 er		-1								
Bit5:	TF0: Timer 0			flaura Thia	flog oon be	a la arad b					
	Set by hardw matically clear				-		•				
	0: No Timer (enupt serv		•			
	1: Timer 0 ha										
Bit4:	TR0: Timer C										
-	0: Timer 0 di		-								
	1: Timer 0 er	nabled.									
Bit3:	IE1: External										
	This flag is s										
	cleared by so										
	rupt 1 service										
	defined by bi		register 110	ICF (see S	FR Definitio	n 11.5. "II	01CF: INT	0/INT1 Con			
Bit2:	figuration" or		loot								
DILZ.	IT1: Interrupt This bit select			red /INT1 i	ntorrunt will	ha adaa a	r loval con	sitivo /INIT1			
	is configured										
	Definition 11.										
	0: /INT1 is le					3)-					
	1: /INT1 is ed										
Bit1:	IE0: External	I Interrupt 0									
	This flag is s										
	cleared by so										
	rupt 0 service routine if IT0 = 1. When IT0 = 0, this flag is set to '1' when /INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 11.5. "IT01CF: INT0/INT1 Con-										
			register 110	ICF (see S	FR Definitio	n 11.5. "II	01CF: INT	0/INT1 Con			
D:40	figuration" or		laat								
Bit0:	IT0: Interrupt This bit select			rod /INT0 i	ntorrunt will	ha adaa a		sitivo /INITO			
	is configured							Silve. /INTO			
	Definition 11.		• •		•	•					
	0: /INT0 is le			. comgare		<u> </u>					
			ed.								

SFR Definition 19.2. TMOD: Timer Mode

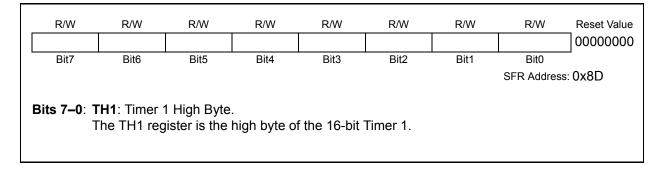

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
	SFR Address: 0x89										
Bit7:	GATE1: Ti	mer 1 Gate	e Control.								
	0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level. 1: Timer 1 enabled only when TR1 = 1 AND /INT1 is active as defined by bit IN1PL in regis-										
			Definition 11.	5. "IT01CF:	INT0/INT1	Configurat	tion" on pag	je 96).			
Bit6:	C/T1: Cour										
			mer 1 increme								
		Function:	Timer 1 increi	mented by h	ign-to-low	transitions of	on external	input pin			
	(T1).	0. Timor	1 Mode Select								
BItS5-4:			Timer 1 opera								
	THESE DILS	select the									
	T1M1	T1M0		Mode)						
	0	0	Mode	e 0: 13-bit c	r						
	0	1	Mod	e 1: 16-bit c	ounter/time	r					
	1	0	Mode 2: 8-bi	t counter/tin	ner with aut	o-reload					
	1	1	Мс	de 3: Timer	1 inactive						
	. <u> </u>										
Bit3:	GATE0: Ti										
			hen TR0 = 1 i								
			nly when TR0								
			Definition 11.	5. "IT01CF:	IN I 0/IN I 1	Configurat	tion" on pag	je 96).			
	C/T0: Cour										
Bit2:	0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3).1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin										
Bit2:							on ovtornal				
Bit2:	1: Counter						on external				
	1: Counter (T0).	Function:	Timer 0 increi	mented by h			on external				
	1: Counter (T0). T0M1–T0M	Function: 10 : Timer (Timer 0 increi) Mode Select	mented by h			on external				
	1: Counter (T0). T0M1–T0M	Function: 10 : Timer (Timer 0 increi	mented by h			on external				
	1: Counter (T0). T0M1–T0N These bits	Function: 10: Timer (select the T0M0	Timer 0 increi 0 Mode Select Timer 0 opera	mented by h ation mode. Mode	igh-to-low †	transitions of	on external				
	1: Counter (T0). T0M1–T0N These bits T0M1 0	Function: 10 : Timer (select the	Timer 0 increi 0 Mode Select Timer 0 opera Mod	mented by h ation mode. Mode e 0: 13-bit c	igh-to-low f	ransitions o	on external				
	1: Counter (T0). T0M1–T0N These bits	Function: 10: Timer (select the TOMO 0 1	Timer 0 increi 0 Mode Select Timer 0 opera Mod Mod	mented by h ation mode. Mode e 0: 13-bit c e 1: 16-bit c	igh-to-low f	r r	on external				
	1: Counter (T0). T0M1–T0N These bits T0M1 0	Function: 10: Timer (select the TOM0 0	Timer 0 increa 0 Mode Select Timer 0 opera Mod Mode 2: 8-b	mented by h ation mode. Mode e 0: 13-bit c e 1: 16-bit c	igh-to-low b ounter/time ounter/time ner with au	r r to-reload	on external				

SFR Definition 19.3. CKCON: Clock Control


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
_		T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	SFR Address: 0x8E									
Bit7–6:	RESERVE		•							
Bit5:	T2MH: Time									
					• •		is configure	ed in split 8-		
	bit timer mo		•				DOON			
	0: Timer 2 h				the T2XCL	K bit in TMI	R2CN.			
Bit4:	T2ML: Time	• •	es the syste							
DIL4.			k supplied t		f Timor 2 is	configured	in chlit 8 h	it timor		
	mode, this l					•	in spiit o-b			
	0: Timer 2 l			•			2CN			
			s the syster				2011.			
Bit3:	T1M: Timer									
	This select	the clock so	ource supplie	ed to Timer	1. T1M is i	gnored whe	n C/T1 is se	et to logic 1.		
	0: Timer 1 u	uses the clo	ck defined b	y the prese	ale bits, SC	CA1–SCA0.		Ū.		
	1: Timer 1 u	ises the sys	tem clock.							
Bit2:	TOM: Timer									
		ects the cloc	k source su	pplied to Ti	mer 0. T0N	1 is ignored	when C/T0	is set to		
	logic 1.									
	0: Counter/				he prescal	e bits, SCA1	SCA0.			
D:4-4 0.			s the system							
Bits1-0:	SCA1–SCA These bits of				plied to Tin	oor 0 and Ti	mor 1 if cou	ofigured to		
	use prescal			e clock sup				inguieu to		
			/013.							
	SCA1	SCA0	Presc	aled Clock	ζ					
	0	0	System clo	ck divided	by 12					
	0	1	System clo	ock divided	by 4					
	1	0	System clo	ck divided	by 48					
	1 1 External clock divided by 8									
	Note: Exter	rnal clock di	vided by 8 is	synchroniz	zed with					
	the system	clock.								



SFR Definition 19.4. TL0: Timer 0 Low Byte


SFR Definition 19.5. TL1: Timer 1 Low Byte

SFR Definition 19.6. TH0: Timer 0 High Byte

SFR Definition 19.7. TH1: Timer 1 High Byte

19.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode. Timer 2 can also be used in Capture Mode to measure the RTC0 clock frequency or the External Oscillator clock frequency.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external oscillator source divided by 8 is synchronized with the system clock.

19.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 19.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

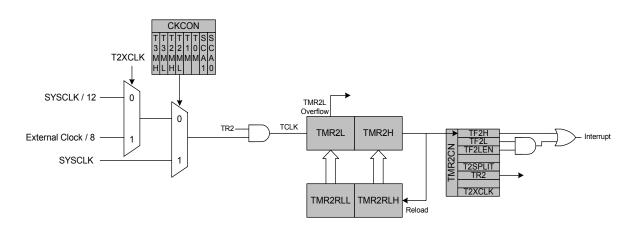


Figure 19.4. Timer 2 16-Bit Mode Block Diagram

19.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 19.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

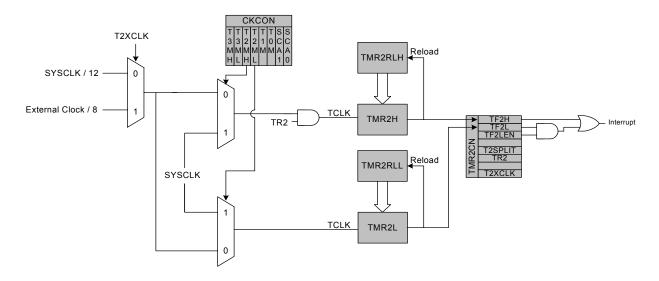


Figure 19.5. Timer 2 8-Bit Mode Block Diagram

19.2.3. External Capture Mode

Capture Mode allows either the external oscillator to be measured against the system clock. The external oscillator clock can also be compared against each other. Timer 2 can be clocked from the system clock, the system clock divided by 12, the external oscillator divided by 8, depending on the T2ML (CKCON.4), T2XCLK, and T2RCLK settings. The timer will capture either every 8 eternal clock cycles, depending on the T2RCLK setting. When a capture event is generated, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. By recording the difference between two successive timer capture values, the external oscillator can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. Timer 2 should be in 16-bit auto-reload mode when using Capture Mode.

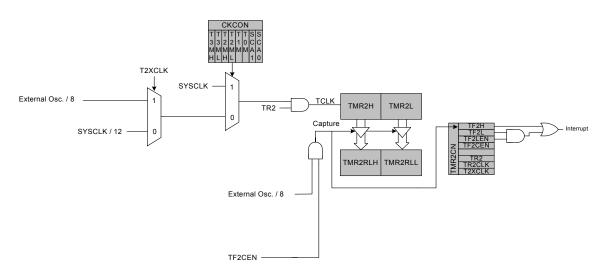
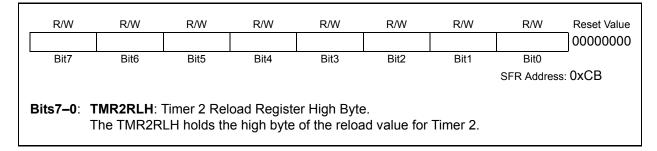
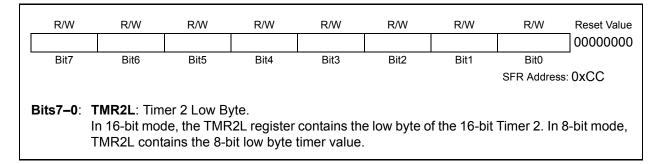


Figure 19.6. Timer 2 Capture Mode Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2	T2RCLK	T2XCLK	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
								Addressabl
							SFR Address	EUXC8
Bit7:	TE2U: Timo	r 2 Lliah Dut	o Ovorflow	Flog				
DILT.	TF2H: Time Set by hard				orflowe fr	om OvEE to	0v00 ln 16	hit modo
	this will occu							
	enabled, set							•
	TF2H is not	-					•	
Bit6:	TF2L: Timer		•	•			by soltware	•
Dito.	Set by hard				orflows fro	m 0xEE to 0	x00 When	this hit is
	set, an interi							
	will set when							
	ically cleared	•		e regulatee				
Bit5:	TF2LEN: Tir	•		ot Enable.				
	This bit enal				errupts. If T	F2LEN is s	et and Time	er 2 inter-
	rupts are en				•			
	This bit shou							
	0: Timer 2 L		•	•				
	1: Timer 2 L	•	•					
Bit4:	TF2CEN. Ti							
	0: Timer 2 c	apture mode	e disabled.					
	1: Timer 2 c	apture mode	e enabled.					
Bit3:	T2SPLIT: Ti	mer 2 Split I	Mode Enab	le.				
	When this b	it is set, Tim	er 2 operat	es as two 8-	bit timers	with auto-re	load.	
	0: Timer 2 o	perates in 1	6-bit auto-r	eload mode				
	1: Timer 2 o	perates as t	wo 8-bit au	to-reload tin	ners.			
Bit2:	TR2: Timer 2							
	This bit enal				e, this bit e	enables/disa	bles TMR2H	H only;
	TMR2L is al		ed in this m	ode.				
	0: Timer 2 d							
	1: Timer 2 e							
Bit1:	T2RCLK: Ti	•						
	This bit cont						CLK = 1 an	d I2ML
	(CKCON.4)						• •	
	0: Capture e	every RIC c	10CK/8. If 12	2XCLK = 1a	nd 12ML	(CKCON.4)	= 0, count a	at external
	oscillator/8.		ماممالامم		1/ - 1 and		(0,1)	a a unit at
	1: Capture e		al oscillator	/8. IT 12XCL	K = 1 and		JON.4) = 0,	count at
D:+0.	RTC0 clock/ T2XCLK: Ti		nal Clask C	alaat				
Bit0:					nor 2 If T	imor 2 io in (hit mode	thic bit
	This bit sele selects the e							
	Select bits (ii be useu lo	Select DelV	
	external cloc 0: Timer 2 e					ided by 12		
				•		•		
	1: Timer 2 e		v uses the t		a by the L	ZRUEN DIL		


SFR Definition 19.8. TMR2CN: Timer 2 Control


SFR Definition 19.9. TMR2RLL: Timer 2 Reload Register Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xCA
	TMR2RLL : T TMR2RLL ho					2.		

SFR Definition 19.10. TMR2RLH: Timer 2 Reload Register High Byte

SFR Definition 19.11. TMR2L: Timer 2 Low Byte

SFR Definition 19.12. TMR2H Timer 2 High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xCD
Bits7–0:	TMR2H : Tim In 16-bit moo mode, TMR2	de, the TMF	R2H registe		• •	e of the 16-	bit Timer 2.	In 8-bit

NOTES:

20. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "14.1. Priority Crossbar Decoder" on page 117 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of three modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "20.2. Capture/Compare Modules" on page 195). The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 20.1

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 20.3 for details.

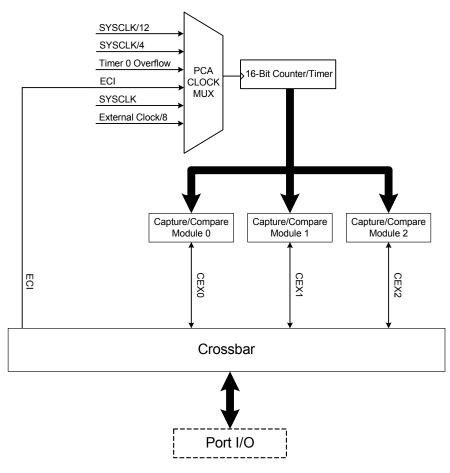
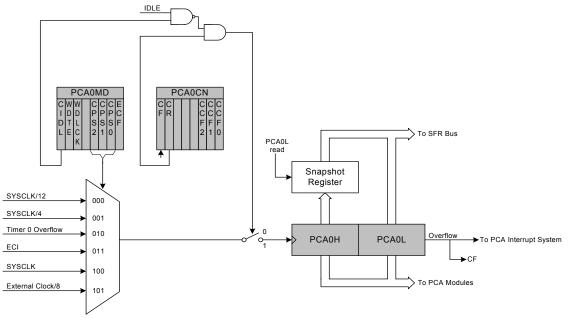


Figure 20.1. PCA Block Diagram

20.1. PCA Counter/Timer


The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H into a "snapshot" register; the following PCA0H read accesses this "snapshot" register. **Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter.** Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 20.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1). Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8*
1	1	0	RTC clock divided by 8*

Table 20.1. PCA Timebase Input Options

*Note: External clock divided by 8 and RTC0 clock divided by 8 are synchronized with the system clock.

20.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 20.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 20.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn
Х	1	0	0	1	0	0	Х	Software Timer
Х	1	0	0	1	1	0	Х	High Speed Output
Х	1	0	0	Х	1	1	Х	Frequency Output
0	1	0	0	Х	0	1	Х	8-Bit Pulse Width Modulator
1	1	0	0	Х	0	1	Х	16-Bit Pulse Width Modulator
X = Don'	t Care	•				•		

Table 20.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

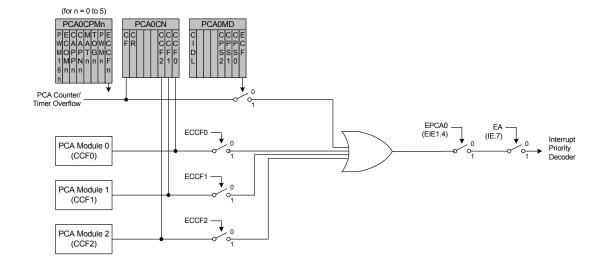


Figure 20.3. PCA Interrupt Block Diagram

20.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

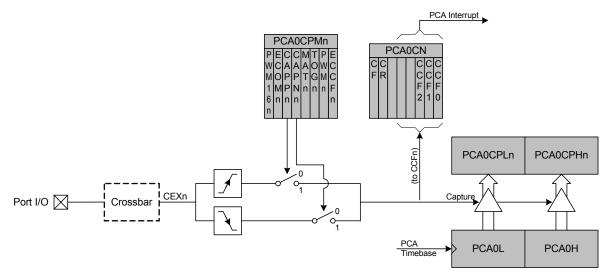


Figure 20.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

20.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

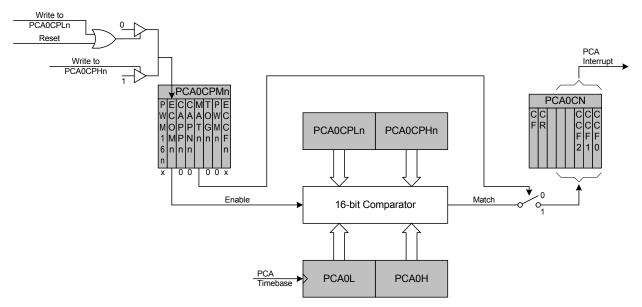


Figure 20.5. PCA Software Timer Mode Diagram

20.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

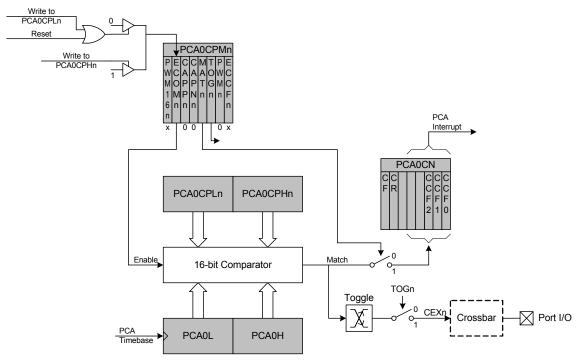


Figure 20.6. PCA High-Speed Output Mode Diagram

Note: The initial state of the Toggle output is logic 1 and is initialized to this state when the module enters High Speed Output Mode.

20.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 20.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 20.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

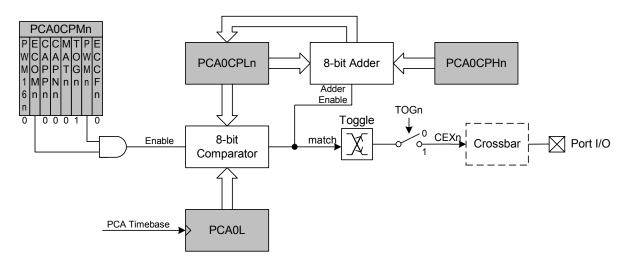
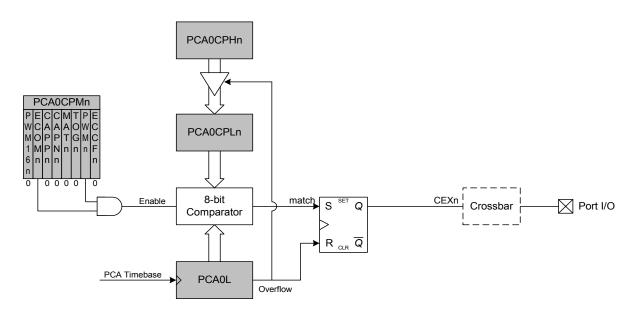


Figure 20.7. PCA Frequency Output Mode

20.2.5. 8-Bit Pulse Width Modulator Mode


Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPHn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 20.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 20.2.

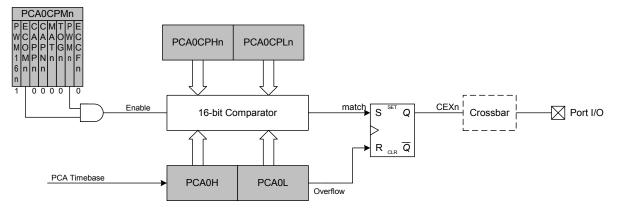
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

$$DutyCycle = \frac{(256 - PCA0CPHn)}{256}$$

Equation 20.2. 8-Bit PWM Duty Cycle

Using Equation 20.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

20.2.6. 16-Bit Pulse Width Modulator Mode


A PCA module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. The duty cycle for 16-Bit PWM Mode is given by Equation 20.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

$$DutyCycle = \frac{(65536 - PCA0CPn)}{65536}$$

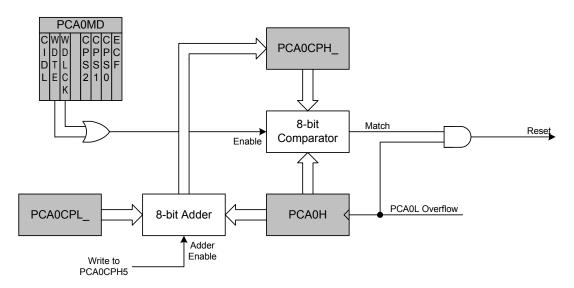
Equation 20.3. 16-Bit PWM Duty Cycle

Using Equation 20.3, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

20.3. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 2. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 2 operates as a watchdog timer (WDT). The Module 2 high byte is compared to the PCA counter high byte; the Module 2 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.



20.3.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2-CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 2 is forced into software timer mode.
- Writes to the Module 2 mode register (PCA0CPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH2 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH2. Upon a PCA0CPH2 write, PCA0H plus the offset held in PCA0CPL2 is loaded into PCA0CPH2 (See Figure 20.10).

Figure 20.10. PCA Module 2 with Watchdog Timer Enabled

Note that the 8-bit offset held in PCA0CPH2 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total offset is then given (in PCA clocks) by Equation 20.4, where PCA0L is the value of the PCA0L register at the time of the update.

 $Offset = (256 \times PCA0CPL2) + (256 - PCA0L)$

Equation 20.4. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. Software may force a WDT reset by writing a '1' to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

20.3.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- Disable the WDT by writing a '0' to the WDTE bit.
- Select the desired PCA clock source (with the CPS2-CPS0 bits).
- Load PCA0CPL2 with the desired WDT update offset value.
- Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- Enable the WDT by setting the WDTE bit to '1'.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCA0L defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 20.4, this results in a WDT timeout interval of 3072 system clock cycles. Table 20.3 lists some example timeout intervals for typical system clocks.

System Clock (Hz)	PCA0CPL2	Timeout Interval (ms)
24,500,000	255	32.1
24,500,000	128	16.2
24,500,000	32	4.1
18,432,000	255	42.7
18,432,000	128	21.5
18,432,000	32	5.5
11,059,200	255	71.1
11,059,200	128	35.8
11,059,200	32	9.2
3,062,500	255	257
3,062,500	128	129.5
3,062,500	32	33.1
191,406 ²	255	4109
191,406 ²	128	2070
191,406 ²	32	530
32,000	255	24576
32,000	128	12384
32,000	32	3168
Notes: 1. Assumes SYSCLK / value of 0x00 at the	update time.	k source, and a PCA0L

Table 20.3. Watchdog Timer Timeout Intervals¹

2. Internal oscillator reset frequency.

20.4. Register Descriptions for PCA

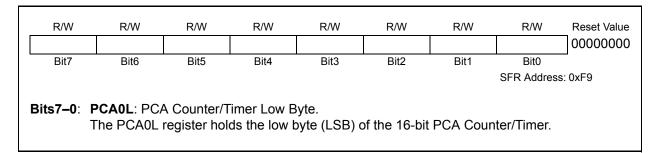
Following are detailed descriptions of the special function registers related to the operation of the PCA.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu			
CF	CR	—	—	—	CCF2	CCF1	CCF0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressabl			
	SFR Address: 0xD8										
Bit7:	CF: PCA Counter/Timer Overflow Flag.										
	Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the										
	Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and										
	must be cleared by software.										
Bit6:	CR : PCA Counter/Timer Run Control.										
	This bit enables/disables the PCA Counter/Timer.										
	0: PCA Counter/Timer disabled.										
	1: PCA Counter/Timer enabled.										
Bits5–3∶	Reserved.										
Bit2:	CCF2: PCA Module 2 Capture/Compare Flag.										
	This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is										
	enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This										
B	bit is not automatically cleared by hardware and must be cleared by software.										
Bit1:	CCF1: PCA Module 1 Capture/Compare Flag.										
Bit0.	This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is										
	enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This										
	bit is not automatically cleared by hardware and must be cleared by software.										
Rit0.	CCF0 : PCA Module 0 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is										
Bit0:			•		nture occu	rs When th	e CCE0 inte	errunt is			
Bit0:		t by hardwa	are when a	match or ca							

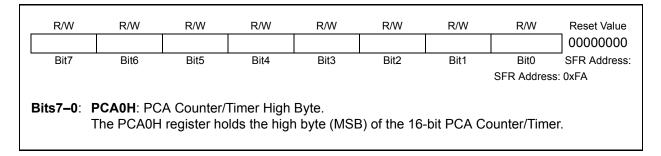
SFR Definition 20.1. PCA0CN: PCA Control

R/W	R/W	R/W	F	R R/W	R/W	R/W	R/W	Reset Value				
CIDL	WDTE	WDLC	K ·	- CPS2	CPS1	CPS0	ECF	0100000				
Bit7	Bit6	Bit5	Bi	t4 Bit3	Bit2	Bit1	Bit0	Bit Addressable				
							SFR Addres					
Bit7:	CIDL: PC	A Counter	Timer Idl	e Control.								
	CIDL: PCA Counter/Timer Idle Control. Specifies PCA behavior when CPU is in Idle Mode.											
	0: PCA continues to function normally while the system controller is in Idle Mode. 1: PCA operation is suspended while the system controller is in Idle Mode.											
D:40.					em controlle	er is in Idle N	Node.					
Bit6:	WDTE: W	•		ole 2 is used as the v	vatchdoa tii	nor						
					watendog til							
	0: Watchdog Timer disabled. 1: PCA Module 2 enabled as Watchdog Timer.											
Bit5:		WDLCK: Watchdog Timer Lock										
	This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog											
	Timer may not be disabled until the next system reset. 0: Watchdog Timer Enable unlocked.											
	1: Watchdog Timer Enable Unlocked.											
Bit4:	UNUSED.	Read = 0	b, Write =	don't care.								
Bits3–1∶	CPS2-CP	SO : PCA (Counter/T	imer Pulse Sele	ct.							
	These bits select the timebase source for the PCA counter.											
	CPS2 CPS1 CPS0 Timebase											
	0	0	0	System clock d		2						
	0	0	1	System clock divided by 4								
	0	1	0	Timer 0 overflow								
	0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)								
	1	0	0	System clock								
	1	0	1	External clock divided by 8 [*]								
	1	1	0	RTC clock divid								
	1	1	1	Reserved								
	*Note: External clock divided by 8 and RTC0 clock divided by 8 are synchronized with the system											
	*Note: Ex	ternal clock	divided by	v 8 and RTC0 cloc	k divided by	8 are synchro	onized with t	the system				
	*Note: Ex		divided by	y 8 and RTC0 cloc	k divided by	8 are synchro	onized with f	the system				
			divided by	y 8 and RTC0 cloc	k divided by	8 are synchro	onized with t	the system				
Bit0:	clo ECF: PCA	ck. Counter/	Timer Ove	erflow Interrupt E	nable.			the system				
Bit0:	clo ECF: PCA This bit se	ck. Counter/ its the mas	Timer Ove		nable.			the system				
Bit0:	clo ECF: PCA This bit se 0: Disable	ck. Counter/ ts the mas the CF in	Timer Ove sking of th terrupt.	erflow Interrupt E ne PCA Counter/	nable. Timer Over	low (CF) int	terrupt.					
Bit0:	clo ECF: PCA This bit se 0: Disable	ck. Counter/ ts the mas the CF in	Timer Ove sking of th terrupt.	erflow Interrupt E	nable. Timer Over	low (CF) int	terrupt.					
	clo ECF: PCA This bit se 0: Disable 1: Enable	ck. Counter/ tts the mas the CF in a PCA Co	Timer Ove sking of th terrupt. unter/Tim	erflow Interrupt E ne PCA Counter/ ner Overflow inter	inable. Timer Overf	flow (CF) inf	terrupt. (PCA0CN.	7) is set.				
Note: Wł	clo ECF: PCA This bit se 0: Disable 1: Enable	ck. Counter/ tts the mas the CF in a PCA Co DTE bit is	Timer Ove sking of th terrupt. unter/Tim set to '1'	erflow Interrupt E ne PCA Counter/	nable. Timer Overf rrupt reques egister car	low (CF) int t when CF	terrupt. (PCA0CN. ⁻ dified. To (7) is set.				

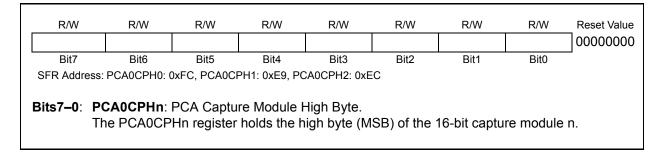
SFR Definition 20.2. PCA0MD: PCA Mode



SFR Definition 20.3. PCA0CPMn: PCA Capture/Compare Mode


Reset Valu									
0000000									
n = 1).									
0: Disabled. 1: Enabled.									
CAPNn : Capture Negative Function Enable. This bit enables/disables the negative edge capture for PCA module n.									
tches of									
This bit enables/disables the match function for PCA module n. When enabled, matches of the PCA counter with a module's capture/compare register cause the CCFn bit in PCA0MD									
register to be set to logic 1.									
0: Disabled.									
tches of									
the PCA counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency									
lse widtl									
ed; 16-b									
erates i									

SFR Definition 20.4. PCA0L: PCA Counter/Timer Low Byte


SFR Definition 20.5. PCA0H: PCA Counter/Timer High Byte

SFR Definition 20.6. PCA0CPLn: PCA Capture Module Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
								00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
SFR Address: PCA0CPL0: 0xFB, PCA0CPL1: 0xE9, PCA0CPL2: 0xEB										
Bits7–0: PCA0CPLn: PCA Capture Module Low Byte.										
The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.										

SFR Definition 20.7. PCA0CPHn: PCA Capture Module High Byte

21. Revision Specific Behavior

This chapter contains behavioral differences between C8051F52x/F53x "REV_A" and "REV_B" or later devices.

These differences do not affect the functionality or performance of most systems and are described below.

21.1. Revision Identification

The Lot ID Code on the top side of the device package can be used for decoding device revision information. On C8051F52x and C8051F53x devices the revision letter is the first letter of the Lot ID Code.

Figures 21.1, 21.2, and 21.3 show how to find the Lot ID Code on the top side of the device package.

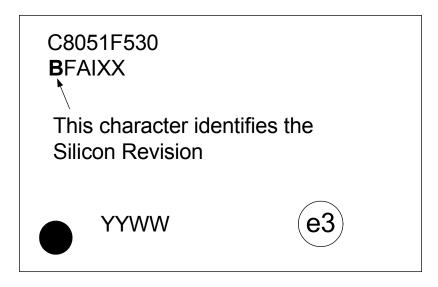


Figure 21.1. Device Package - TSSOP 20

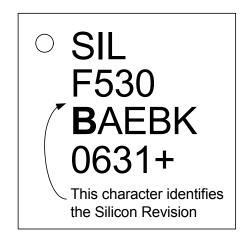


Figure 21.2. Device Package - QFN 20

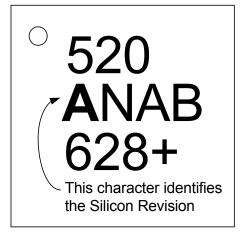


Figure 21.3. Device Package - QFN 10

21.2. Reset Behavior

The reset behavior of C8051F52x and C8051F53x "REV A" devices is different than "REV B" and later devices. The differences affect the state of the RST pin during a VDD Monitor reset.

On "REV A" devices, a V_{DD} Monitor reset does not affect the state of the RST pin. On "REV B" and later devices, a V_{DD} Monitor reset will pull the RST pin low for the duration of the brownout condition.

21.3. UART Pins

The reset behavior of C8051F52x and C8051F53x "REV A" devices is different than "REV B" and later devices. The location of the pins used by the serial UART interface is different between "REV A" and "REV B" devices.

On "REV A" devices, the TX and RX pins used by the UART interface are mapped to the P0.3 (TX) and P0.4 (RX) pins. On "REV B" and later devices, the TX and RX pins used by the UART interface are mapped to the P0.4 (TX) and P0.5 (RX) pins.

21.4. LIN

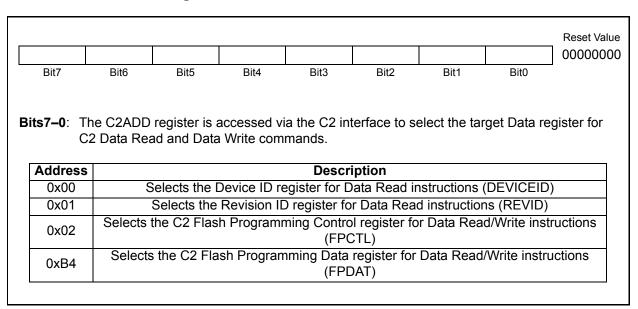
The LIN peripheral behavior in "REV A" is different than the behavior of "REV B" and later devices. The differences are:

21.4.1. Stop Bit Check

On "REV A" devices, the stop bits of the fields in the LIN frame are not checked and no error is generated if the stop bits could not be sent or received correctly. On "REV B" and later devices, the stop bits are checked, and an error will be generated if the stop bit was not sent or received correctly.

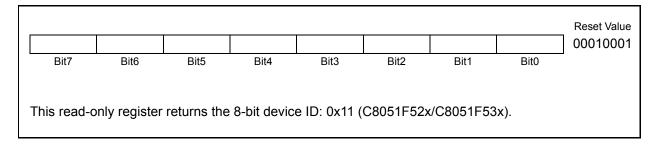
21.4.2. Synch Break and Synch Field Length Check

On "REV A" devices, the check of sync field length versus sync break length is incorrect. On "REV B" and later devices, the sync break length must be larger than 10 bit times (of the measured bit time) to enable the synchronization.

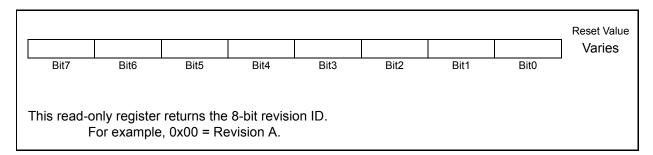


22. C2 Interface

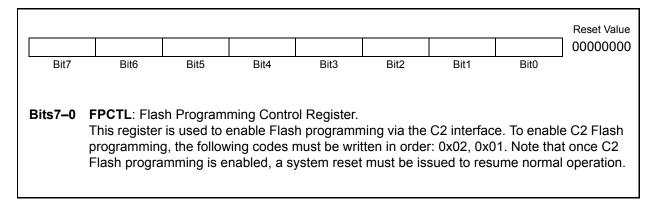
C8051F52x/F53x devices include an on-chip Silicon Laboratories 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

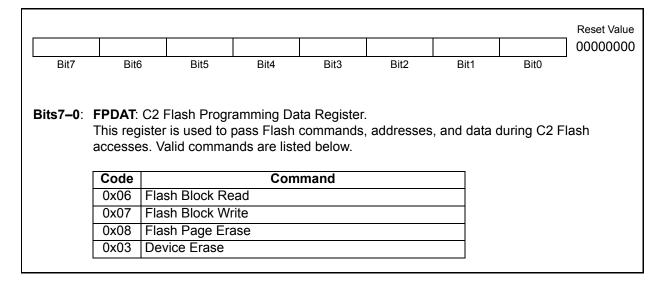

22.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.


C2 Register Definition 22.1. C2ADD: C2 Address

C2 Register Definition 22.2. DEVICEID: C2 Device ID




C2 Register Definition 22.3. REVID: C2 Revision ID

C2 Register Definition 22.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 22.5. FPDAT: C2 Flash Programming Data

22.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming functions may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (/RST) and C2D (P2.7) pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 22.1.

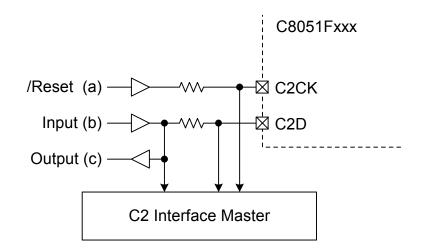


Figure 22.1. Typical C2 Pin Sharing

The configuration in Figure 22.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The /RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Email: MCUinfo@silabs.com Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders

