Applications

- ZigBee® systems
- 2.4 GHz IEEE 802.15.4 systems
- Home/building automation
- Industrial Control and Monitoring
- Low power wireless sensor networks
- Access Control
- PC peripherals
- Set-top boxes and remote controls
- Consumer Electronics
- Container/Vehicle Tracking
- Active RFID
- Inventory Control

Product Description

The CC2431 is a true System-On-Chip (SOC) for wireless sensor networking ZigBee®/IEEE 802.15.4 solutions. The chip includes a location detection hardware module that can be used in so-called blind nodes (i.e. nodes with unknown location) to receive signals from nodes with known location’s. Based on this the location engine calculates an estimate of a blind node’s position. The CC2431 enables ZigBee® nodes to be built with very low total bill-of-material costs. The CC2431 combines the excellent performance of the leading CC2420 RF transceiver with an industry-standard enhanced 8051 MCU, 128 KB flash memory, 8 KB RAM and many other powerful features. Combined with the industry leading ZigBee® protocol stack (Z-Stack™) from Texas Instruments, the CC2431 provides the market’s most competitive ZigBee® solution.

The CC2431 is highly suited for systems where ultra low power consumption is required. This is achieved by various operating modes. Short transition times between these modes further ensure low power consumption.

Key Features

- Location Engine calculates the location of a node in a network
- High performance and low power 8051 microcontroller core.
- 2.4 GHz IEEE 802.15.4 compliant RF transceiver (industry leading CC2420 radio core).
- ZigBee® protocol stack (Z-Stack™) from Texas Instruments includes support for CC2431’s location engine.
- Excellent receiver sensitivity and robustness to interferers
- 128 KB in-system programmable flash
- 8 KB RAM, 4 KB with data retention in all power modes
- Powerful DMA functionality
- Very few external components
- Only a single crystal needed for mesh network systems

- Low current consumption (RX: 27 mA, TX: 27 mA, microcontroller running at 32 MHz)
- Only 0.5µA current consumption in power-down mode, where external interrupts or the RTC can wake up the system
- 0.3 µA current consumption in power-down mode, where external interrupts can wake up the system
- Very fast transition times from low-power modes to active mode enables ultra low average power consumption in low duty-cycle systems
- CSMA/CA hardware support
- Wide supply voltage range (2.0 V – 3.6 V)
- Digital RSSI/ LQI support
- Battery monitor and temperature sensor
- ADC with up to eight inputs and configurable resolution
- 128-bit AES security coprocessor
Key Features (continued)

- Two powerful USARTs with support for several serial protocols.
- Hardware debug support
- Watchdog timer
- One IEEE 802.15.4 MAC Timer, one general 16-bit timer and two 8-bit timers
- RoHS compliant 7x7 mm QLP48 package
- 21 general I/O pins, two with 20 mA sink/source capability
- Powerful and flexible development tools available

Note:

The CC2431 and the CC2430 are pin compatible, and the MCU and RF parts of the CC2430-F128 are identical to the CC2431 except the Location Engine. This data sheet complements the CC2430 data sheet with a description of the Location Engine. For complete information about the CC2431, please refer to the CC2430 data sheet in addition to this data sheet. The CC2430 data sheet can be found here:

Table Of Contents

1. REGISTER CONVENTIONS ... 4
2. LOCATION ENGINE .. 5
 2.1 LOCATION ENGINE OPERATION ... 5
 2.2 LOCATION ENGINE REGISTER ... 10
3. ORDERING INFORMATION .. 12
4. GENERAL INFORMATION .. 13
 4.1 DOCUMENT HISTORY .. 13
5. ADDRESS INFORMATION ... 14
6. TI WORLDWIDE TECHNICAL SUPPORT .. 14
1 Register conventions

Each RF register is described in a separate table. The table heading is given in the following format:

REGISTER NAME (XDATA Address)

In the register descriptions, each register bit is shown with a symbol indicating the access mode of the register bit. The register values are always given in binary notation unless prefixed by ‘0x’ which indicates hexadecimal notation.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Access Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W</td>
<td>Read/write</td>
</tr>
<tr>
<td>R</td>
<td>Read only</td>
</tr>
<tr>
<td>R0</td>
<td>Read as 0</td>
</tr>
<tr>
<td>R1</td>
<td>Read as 1</td>
</tr>
<tr>
<td>W</td>
<td>Write only</td>
</tr>
<tr>
<td>W0</td>
<td>Write as 0</td>
</tr>
<tr>
<td>W1</td>
<td>Write as 1</td>
</tr>
<tr>
<td>H0</td>
<td>Hardware clear</td>
</tr>
<tr>
<td>H1</td>
<td>Hardware set</td>
</tr>
</tbody>
</table>
2 Location Engine

The Location Engine is used to estimate the position of nodes in an ad-hoc wireless network. Reference nodes exist with known coordinates, typically because they are part of an installed infrastructure. Other nodes are blind nodes, whose coordinates need to be estimated. These blind nodes are often mobile and attached to assets that need to be tracked.

The Location Engine implements a distributed computation algorithm that uses received signal strength indicator (RSSI) values from known reference nodes. Performing location calculations at the node level reduces network traffic and communication delays otherwise present in a centralized computation approach.

The Location Engine has the following main features:

- 3 to 16 reference nodes can be used for the location estimation algorithm
- Location estimate with readout resolution of 0.25 meters (note: The accuracy of the location estimate will depend on several factors described below).
- Time to estimate node location is 50 μs to 13 ms
- Location range 64 x 64 meters
- Runs location estimation with minimum CPU usage

To achieve the best possible accuracy one should use antennas that have near-isotropic radiation characteristics. The location error depends on signal environment, deployment pattern of reference nodes and the density of reference nodes in a given area. In general, having more reference nodes available improves the accuracy of the location estimation.

2.1 Location Engine Operation

This section describes the basic steps required to obtain location estimates from the Location Engine.

The Location Engine requires a set of three to 16 reference coordinates to be input together with a set of measured parameters. The output from the Location Engine consists of a pair of estimated location coordinates.

Before any input data is written, the Location Engine must be enabled by writing a 1 to the enable bit, LOCENG.EN. When the Location Engine is not in use, writing a 0 to LOCENG.EN will reduce the power consumption of the CC2431 by gating off the Engine’s clock signal.

Figure 1 shows the basic operation of the Location Engine.
Figure 1: Location Engine Operation
2.1.1 Reference Coordinates

The Location Engine requires a set of between three and 16 reference coordinates \([x_0, y_0, x_1, y_1, \ldots, x_{15}, y_{15}]\) to be input. The reference coordinates express each reference node position in meters, as unsigned values in the interval \([0, 63.75]\) meters. The finest possible readout resolution is 0.25 meter. The format used is fixed-point data with the two LSBs representing the fractional part and the remaining six bits representing the integer part, thus e.g. 63.75 is represented as 0xFF.

Reference coordinates are loaded into the RF register \(\text{REFCOORD}\). Before writing to \(\text{REFCOORD}\), a 1 must be written to the register bit \(\text{LOCENG.REFLD}\) to indicate that a set of reference coordinates are being written. Once the coordinate load process commences \((\text{LOCENG.REFLD} = 1)\), 16 coordinate pairs must always be written. However, it is possible for the Location Engine to use less than 16 reference coordinates, by marking certain reference coordinates as unused. Zeros shall be used to fill the unused reference coordinate slots, and they will be interpreted as unused when 0.0 is loaded as the RSSI value for those reference coordinates.

The reference coordinates are written in the order \([x_0, y_0, x_1, y_1, \ldots, x_{15}, y_{15}]\) to the register \(\text{REFCOORD}\). After all coordinates have been written, a 0 is written to the register bit \(\text{LOCENG.REFLD}\).

2.1.2 Measured Parameters

After the reference coordinates have been written, a set of measured parameters must be input to the Location Engine. These parameters consist of two radio parameters: Four search boundary coordinates and 16 RSSI values. The radio parameters are the values \(A\) and \(n\). These radio parameters are used in the Engine’s algorithm used to find the estimated location. The parameters \(A\) and \(n\) can be adjusted to describe the propagation environment in which a network of devices will operate.

2.1.2.1 Parameter Definitions

The measured parameters are described in this section together with how these should be estimated.

2.1.2.1.1 Parameter A

The radio parameter \(A\) is defined as the absolute value of the average power in dBm received at a close-in reference distance of one meter from the transmitter, assuming an omni-directional radiation pattern. For example, if the mean received power at one meter is -40 dBm, the parameter \(A\) is specified as 40.

The Engine expects the parameter \(A\) to be in the range \([30.0, 50.0]\) with precision 0.5. The parameter \(A\) is given as an unsigned fixed-point value where the LSB bit is the fractional bit and the remaining bits are the integer part. A typical value for \(A\) is 40.0.

2.1.2.1.2 Parameter n

The radio parameter \(n\) is defined as the path loss exponent that describes the rate at which the signal power decays with increasing distance from the transmitter. This decay is proportional to \(d^n\) where \(d\) is the distance between transmitter and receiver.

The actual parameter \(n\) value written to the Location Engine is an integer index value selected from a lookup table shown in Table 2.

As an example, in the case when the value \(n=2.98\) is found from measurements, the closest available value of \(n\) in the lookup table is 3.00, corresponding to index 13. Therefore, the integer value 13 is used for the parameter \(n\) written to the Location Engine.

Refer to section 2.1.2.1.3 in order to find the value for \(n\) to be used.
Table 2: \(n \) parameter lookup table

<table>
<thead>
<tr>
<th>(n) index</th>
<th>(n)</th>
<th>(n) index</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>16</td>
<td>3.375</td>
</tr>
<tr>
<td>1</td>
<td>1.250</td>
<td>17</td>
<td>3.500</td>
</tr>
<tr>
<td>2</td>
<td>1.500</td>
<td>18</td>
<td>3.625</td>
</tr>
<tr>
<td>3</td>
<td>1.750</td>
<td>19</td>
<td>3.750</td>
</tr>
<tr>
<td>4</td>
<td>1.875</td>
<td>20</td>
<td>3.875</td>
</tr>
<tr>
<td>5</td>
<td>2.000</td>
<td>21</td>
<td>4.000</td>
</tr>
<tr>
<td>6</td>
<td>2.125</td>
<td>22</td>
<td>4.125</td>
</tr>
<tr>
<td>7</td>
<td>2.250</td>
<td>23</td>
<td>4.250</td>
</tr>
<tr>
<td>8</td>
<td>2.375</td>
<td>24</td>
<td>4.375</td>
</tr>
<tr>
<td>9</td>
<td>2.500</td>
<td>25</td>
<td>4.500</td>
</tr>
<tr>
<td>10</td>
<td>2.625</td>
<td>26</td>
<td>4.625</td>
</tr>
<tr>
<td>11</td>
<td>2.750</td>
<td>27</td>
<td>5.000</td>
</tr>
<tr>
<td>12</td>
<td>2.875</td>
<td>28</td>
<td>5.500</td>
</tr>
<tr>
<td>13</td>
<td>3.000</td>
<td>29</td>
<td>6.000</td>
</tr>
<tr>
<td>14</td>
<td>3.125</td>
<td>30</td>
<td>7.000</td>
</tr>
<tr>
<td>15</td>
<td>3.250</td>
<td>31</td>
<td>8.000</td>
</tr>
</tbody>
</table>

The parameter \(n \) is written to the Location Engine as an integer index in the range \([0, 31]\) as the index is given as an integer value with no fractional bits, e.g. the value \(n = 7 \) is loaded as 00000111. The typical value for \(n \) depends on the environment.

2.1.2.1.3 Parameter Estimation

The parameters \(A \) and \(n \) can be estimated empirically by collecting RSSI data (and therefore path loss data) for which the distances between the transmitting and receiving devices are known. Figure 2 is a scatter plot of abs(RSSI) data versus log distance in meters. A least-squares best-fit line is used to glean the specific values of \(A \) and \(n \) for the environment in which the data were measured:

- \(A \) is the y-intercept of the line, and
- \(n \) is the slope of the line

The data in Figure 2 give \(A=42.4 \) and \(n=2.98 \) for that environment. Note that the plot in this example does not show the actual y-intercept i.e. the point on the line where \(x=0 \).

The value of \(A \) loaded into the engine in this case would by 42.5. The value of \(n \) loaded into the engine, is seen to be 13 from Table 2.
2.1.2.1.4 Search Boundary Coordinates

It is possible to reduce error and estimation time by setting search boundaries for the estimated location X and Y coordinates. The maximum area that can be considered is with X and Y in the interval [0.0, 63.75] meters.

Assume that the Location Engine search is to be limited to include only the rectangular area bounded by the coordinates \([x_{\text{min}}, y_{\text{min}}]\) and \([x_{\text{max}}, y_{\text{max}}]\).

Four search boundary parameters are entered in the following order:

\[
x_{\text{min}}, x_{\text{delta}}, y_{\text{min}}, y_{\text{delta}}
\]

where:

\[
x_{\text{delta}} = x_{\text{max}} - x_{\text{min}}
\]
\[
y_{\text{delta}} = y_{\text{max}} - y_{\text{min}}
\]

Note that even when it is chosen to search in the whole possible search space, these coordinates must be entered as the coordinates for the whole space, i.e. the following values: 0.0, 63.75, 0.0, 63.75.

If some input parameters are omitted the Location Engine will not estimate correctly.

2.1.2.1.5 RSSI Values

The RSSI values are the RSSI measurements corresponding to the set of reference coordinates. The RSSI values are within the interval [-40 dBm, -95 dBm] with precision 0.5 dBm. The negative sign is removed in the value written. As an example, in the case where the value RSSI = -50.35 dB, this would be written into the location engine as 50.5.

Note that a value of 0.0 must be written as RSSI value for unused reference coordinates, if less than 16 reference nodes are used. The engine will not function correctly if only some of the parameters are loaded.

2.1.2.2 Loading Parameters

All measured parameters described in the previous sections are loaded into the RF register MEASPARM. Before writing to MEASPARM, a 1 must be written to the register bit LOCENG.PARLD to indicate that a set of measured parameters are being written. Once the parameter load process commences
(LOCENG.PARLD = 1), all 22 parameters must be written.

The measured parameters must be written in the order \([A, n, x_{\text{min}}, x_{\delta}, y_{\text{min}}, y_{\delta}, \text{RSSI}_0, \text{RSSI}_1, \ldots, \text{RSSI}_{15}]\) to the MEASPARM register. Once the parameter load process commences (LOCENG.PARLD = 1) it must be completed with all 22 parameters. Included in these are the 16 RSSI values which must be all written, so any unused slots must be written as zeros. After all 22 parameters have been written, a 0 must be written to the register bit LOCENG.PARLD.

2.1.3 Location Estimation

The estimated location coordinates are given in meters in the interval \([0.0, 63.75]\) with resolution 0.25 m. The data format uses the LSB bit as the fractional part.

When reference coordinates and measured parameters have been loaded, the location estimate is calculated by writing 1 to the LOCENG.RUN register bit. The estimated coordinates can be read from the LOCX and LOCY registers when LOCENG.DONE is set to 1. The time until estimated coordinates can be read varies with the search boundary parameters, from 50 µs to 13 ms (with 32 MHz system clock) after LOCENG.RUN was set to 1. The Location Engine does not produce any interrupt requests.

The value of the X coordinate estimate given by LOCX includes an offset value which must be removed to obtain the actual X coordinate. The offset removal must be performed after reading the LOCX register, to obtain the actual X value as follows:

\[X = (X_{\text{LOCX}} - x_{\text{min}} + 1) \mod (x_{\delta} + 1) + x_{\text{min}} \]

Where \(X_{\text{LOCX}}\) is the value read from register LOCX, and \(x_{\text{min}}\) and \(x_{\delta}\) are the boundary parameters used as inputs to limit the search as described in section 2.1.2.1.4. Notice that the Y coordinate read from LOCY can be used directly.

The estimated coordinates remain valid in the LOCX and LOCY registers until new results have been calculated or until a reset.

Note that LOCENG.EN must be 1 during operation of the Location Engine.

2.2 Location Engine Register

This section describes the RF registers associated with the Location Engine. These registers are:

- LOCENG

 - Location Engine control
- REFCOORD

 - Reference coordinates
- MEASPARM

 - Measured parameters
- LOCX

 - Location estimate X
- LOCY

 - Location estimate Y

The RF registers reside in XDATA memory space. Table 3 gives an overview of register addresses while the remaining tables in this section describe each register in detail. Refer also to section 1 for Register conventions.

For the remaining RF registers refer to the CC2430 Data Sheet.
Overview of Location Engine RF registers

<table>
<thead>
<tr>
<th>XDATA Address</th>
<th>Register name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xDF55</td>
<td>REFCOORD</td>
<td>Reference coordinates input</td>
</tr>
<tr>
<td>0xDF56</td>
<td>MEASPARM</td>
<td>Measured parameters input</td>
</tr>
<tr>
<td>0xDF57</td>
<td>LOCENG</td>
<td>Location Engine control and status</td>
</tr>
<tr>
<td>0xDF58</td>
<td>LOCX</td>
<td>Location estimate X coordinate</td>
</tr>
<tr>
<td>0xDF59</td>
<td>LOCY</td>
<td>Location estimate Y coordinate</td>
</tr>
<tr>
<td>0xDF60</td>
<td>CHVER</td>
<td>Chip Version</td>
</tr>
<tr>
<td>0xDF61</td>
<td>CHIPID</td>
<td>Chip Identification</td>
</tr>
</tbody>
</table>

REFCOORD (0xDF55)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Reset</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>REFCOORD</td>
<td>0</td>
<td>R/W</td>
<td>Location Engine reference coordinate [x0, y0, x1, y1, \ldots x15, y15]</td>
</tr>
</tbody>
</table>

MEASPARM (0xDF56)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Reset</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>MEASPARM</td>
<td>0</td>
<td>R/W</td>
<td>Location Engine measured parameters of channel and reference nodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[A, n, x_{\text{min}}, x_{\delta}, y_{\text{min}}, y_{\delta}, rssi_{0}, rssi_{1}, \ldots, rssi_{15}]</td>
</tr>
</tbody>
</table>

LOCENG (0xDF57)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Reset</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5</td>
<td>-</td>
<td>00</td>
<td>R0</td>
<td>Reserved, read as 0.</td>
</tr>
<tr>
<td>4</td>
<td>EN</td>
<td>0</td>
<td>R/W</td>
<td>Enable location engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 Disable location engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 Enable location engine</td>
</tr>
<tr>
<td>3</td>
<td>DONE</td>
<td>0</td>
<td>R</td>
<td>Estimation completed. After 1 has been written to RUN, this bit is cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and then set to 1 when the estimated data is ready.</td>
</tr>
<tr>
<td>2</td>
<td>PARLD</td>
<td>0</td>
<td>R/W</td>
<td>Load parameters. This bit shall be written as 1 before the set of parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>are written to MEASPARM. Write 0 to this bit after the last parameter has</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>been written.</td>
</tr>
<tr>
<td>1</td>
<td>REFLD</td>
<td>0</td>
<td>R/W</td>
<td>Load reference coordinates. This bit shall be written as 1 before the set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>of coordinates are written to REFCOORD. Write 0 to this bit after the last</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coordinate has been written.</td>
</tr>
<tr>
<td>0</td>
<td>RUN</td>
<td>0</td>
<td>R/W</td>
<td>Location estimate start. This bit shall be written as 1 when desired</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coordinates and parameters have been written to REFCOORD and MEASPARM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>registers. Estimation process starts when 1 is written to this bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Always read as 0.</td>
</tr>
</tbody>
</table>

LOCX (0xDF58)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Reset</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>LOCX</td>
<td>00h</td>
<td>R</td>
<td>Location estimate X coordinate with offset.</td>
</tr>
</tbody>
</table>
3 Ordering Information

Table 4: Ordering Information

<table>
<thead>
<tr>
<th>Ordering part number</th>
<th>Description</th>
<th>MOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2431RTC</td>
<td>CC2431, QLP48 package, RoHS compliant Pb-free assembly, trays with 260 pcs per tray, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver.</td>
<td>260</td>
</tr>
<tr>
<td>CC2431RTCR</td>
<td>CC2431, QLP48 package, RoHS compliant Pb-free assembly, T&R with 2500 pcs per reel, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver.</td>
<td>2500</td>
</tr>
<tr>
<td>CC2431ZRTC</td>
<td>CC2431, QLP48 package, RoHS compliant Pb-free assembly, trays with 260 pcs per tray, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver, including royalty for using TI’s ZigBee® Software Stack, Z-Stack™, in an end product</td>
<td>260</td>
</tr>
<tr>
<td>CC2431ZRTCR</td>
<td>CC2431, QLP48 package, RoHS compliant Pb-free assembly, T&R with 2500 pcs per reel, 128 Kbytes in-system programmable flash memory, System-on-chip RF transceiver, including royalty for using TI’s ZigBee® Software Stack, Z-Stack™, in an end product</td>
<td>2500</td>
</tr>
<tr>
<td>CC2431DK</td>
<td>CC2431 Development Kit</td>
<td>1</td>
</tr>
<tr>
<td>CC2431ZDK</td>
<td>CC2431 ZigBee® Development Kit</td>
<td>1</td>
</tr>
<tr>
<td>CC2431EMK</td>
<td>CC2431 Evaluation Module Kit</td>
<td>1</td>
</tr>
</tbody>
</table>

MOQ = Minimum Order Quantity
T&R = tape and reel
4 General Information

4.1 Document History

Table 5: Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description/Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>2007-05-30</td>
<td>First data sheet for released product. Preliminary data sheets exist for engineering samples and pre-production prototype devices, but these data sheets are not complete and may be incorrect in some aspects compared with the released product.</td>
</tr>
</tbody>
</table>
5 Address Information
Texas Instruments Norway AS
Gaustadalléen 21
N-0349 Oslo
NORWAY
Tel: +47 22 95 85 44
Fax: +47 22 95 85 46
Web site: http://www.ti.com/lpw

6 TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center Home Page: support.ti.com
TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase

Product Information Centers

Americas
Phone: +1(972) 644-5580
Fax: +1(972) 927-6377
Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East and Africa
Phone:
Belgium (English) +32 (0) 27 45 54 32
Finland (English) +358 (0) 9 25173948
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 180 949 0107
Italy 800 79 11 37
Netherlands (English) +31 (0) 546 87 95 45
Russia +7 (0) 95 363 4824
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Fax: +49 (0) 8161 80 2045
Internet: support.ti.com/sc/pic/euro.htm

Japan
Fax International +81-3-3344-5317
Domestic 0120-81-0036
Internet/Email International support.ti.com/sc/pic/japan.htm
Domestic www.tij.co.jp/pic
Asia

Phone
International +886-2-23786800
Domestic
Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-5941
India +91-80-51381665 (Toll)
Indonesia 001-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-886-0010

Fax +886-2-2378-6808

Email tiasia@ti.com or ti-china@ti.com

Internet support.ti.com/sc/pic/asia.htm
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their applications, and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI.

Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>Low Power Wireless</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td>Wireless</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated