
 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

1 

The latest ver sion of this document is here:  www.keil.com/appnotes/docs/apnt_313.asp  

The latest SAM  L11 tutorial is located here:   www.keil.com/appnotes/docs/apnt_314.asp  

Microchip SA M L10 Cortex - M23  Tutorial  

The SAML  10 Xplained Pro  evaluation board  

Arm ®  Keil ®  MDK 5  Toolkit         Summer  201 8  V 1.0   bob.boys@arm.com  
 

 

Introduction:  

The purpose of this tutorial is to introduce you to the Microchip SAM L10 Cortex®-M23 processor using the Arm® Keil® 

MDK toolkit featuring the IDE ɛVision®.  We will demonstrate all debugging features available on this processor.  At the end 

of this tutorial, you will be able to confidently work with these Arm processors and Keil MDK.   

Getting Started MDK 5:   www.keil.com/gsg.   Arm Compiler 6:   www.keil.com/appnotes/docs/apnt_298.asp 

Keil MDK supports and has examples for most Microchip (and Atmel) Arm processors.  Check the Keil Device Database® on 

www.keil.com/dd2.  This list is also provided by the ɛVision Pack Installer utility.  See www.keil.com/Microchip. 

Many Microchip 8051 processors are supported by Keil.  www.keil.com/dd/chips/atmel/8051.htm 

Keil MDK-LiteÊ is a free evaluation version that limits code size to 32 Kbytes.  SAM L10/L11 needs a valid MDK license. 

RTX RTOS:  All variants of MDK contain the full version of RTX with Source Code.  RTX has a BSD or Apache 2.0 license 

with source code.  www.keil.com/RTX and https://github.com/ARM-software/CMSIS_5  FreeRTOS is supported. 

Why Use Keil MDK ?  

MDK provides these features particularly suited for Microchip Cortex-M users: 

1. µVision IDE with Integrated Debugger, Flash programmer and the Arm® Compiler 

toolchain.  MDK is turn-key "out-of-the-box". 

2. Arm Compiler 5 (AC5) and Arm Compiler 6 (AC6)  (LLVM) are included.   

3. GCC is supported and available on Developer.arm.com. 

4. Dynamic Syntax checking on C/C++ source lines. 

5. Compiler Safety Certification Kit:   www.keil.com/safety/ 

6. TÜV certified.  SIL3 (IEC 61508) and ASILD (ISO 26262).   

7. RTX RTOS Safety Certification will be available 2Q18. 

8. MISRA C/C++ support using PC-Lint.  www.gimpel.com 

9. Keil Middleware:   Network, USB, Flash File and Graphics. 

10. NEW!  Event Recorder for Keil RTX RTOS and User programs.  Pages 13 & 19. 

11. CoreSightÊ Serial Wire Viewer (SWV) for most Cortex-M processors. 

12. ETM Instruction Trace:  For some Cortex-M processors.  Includes Code Coverage and Performance Analyzer.  

Consult your device datasheet availability. 

13. Debug Adapters:  On-board Microchip EDBG (CMSIS-DAP), Keil ULINKÊ2, ULINK plus, ULINK pro and J-Link. 

14. Affordable perpetual and term licensing with support.  Contact Keil sales for pricing options.  Inside-Sales@arm.com 

15. Keil Technical Support is included for one year and is renewable.  This helps you get your project completed faster. 

16. ULINK plus power analysis:  www.keil.com/mdk5/ulink/ulinkplus/  Contact Keil sales. 

This document includes details on these features  plus more : 

1. Real-time Read and Write to memory locations for the Watch, Memory and Peripheral windows.  These are non-

intrusive to your program.  No CPU cycles are stolen.  No instrumentation code is added to your source files. 

2. Four Hardware Breakpoints (can be set/unset on-the-fly) and two Watchpoints (also known as Access Breaks). 

3. RTX and RTX Threads windows: kernel awareness for RTX that updates while your program is running. 

4. NEW!  µVision Event Recorder.  You can use this in your own programs.  See pages 13 and 18. 

5. printf using Event Recorder (EVR).  No UART is required. 

6. Create your own µVision project from scratch.  Add Keil RTX to any project. 

http://www.keil.com/appnotes/docs/apnt_313.asp
http://www.keil.com/appnotes/docs/apnt_314.asp
http://www.keil.com/gsg
http://www.keil.com/appnotes/docs/apnt_298.asp
http://www.keil.com/dd2
http://www.keil.com/Microchip
http://www.keil.com/dd/chips/atmel/8051.htm
http://www.keil.com/RTX
https://github.com/ARM-software/CMSIS_5
http://www.keil.com/safety/
http://www.gimpel.com/
mailto:mInside-Sales@arm.com
http://www.keil.com/mdk5/ulink/ulinkplus/


 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

2 

General Information:  

1. Microchip Evaluation Boards & Keil Evaluation Software:   3 

2. MDK 5 Keil Software Information:  MDK 5.25 or later:   3 

3. Debug Adapters Supported:       3 

4. Arm CoreSight Definitions:       4 

 

Keil Software and Software Packs:  

5. Keil MDK Software Download and Installation:    5 

6. Install the µVision MDK Professional License:    5 

7. µVision Software Pack Download and Install Process:    5 

8. Install the Blinky example       5 

9. Other features of Software Packs:      6 

 

Blinky Example  using the Microchip Cortex - M23 SAM  L10  

10. Blinky example using the Microchip Cortex-M23 SAM L10:   7 

 

Arm CoreSight Debugging Features supported by Keil µVision:  

11. Hardware Breakpoints and Single Stepping:     8 

12. Call Stack & Locals window:       9 

13. Watch and Memory windows and how to use them:    10 

14. Peripheral System Viewer (SV):      11 

15. Watchpoints: Conditional Breakpoints:     12 

16. NEW !  printf using Event Recorder:      13 

 

NEW !  Power Measurement using Keil ULINK plus :  

17. Getting ULINKplus Connected to SAM L10 Xplained board via SWD:  14 

18. Connecting ULINKplus to the Power Management Connectors   15 

19. Displaying Power Measurement in System Analyzer:    16 

20. Displaying Event Statistics:       17 

21. More Features of Event Statistics:      18 

 

Creating a New µVision
®
 Project for SAM  L10:  

22. Creating a new µVision Project from Scratch:     19 

23. Adding Keil RTX RTOS to your Project:     22 

24. Adding a Second Thread (Task) to Your Project:    23 

25. NEW !  Event Recorder for RTX:      24 

 

Other Useful Information:  

26. Document Resources:       25 

27. Keil Products and Contact Information:     26 



 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

3 

1)  Microchip  Evaluation Boards  & Keil Evaluation Software :  

Keil MDK provides board support for many Microchip Cortex-M processors that were previously offered by Atmel. 

See www.keil.com/Microchip for the complete list. 

On the second last page of this document is an extensive list of resources that will help you successfully create your projects.  

This list includes application notes, books and labs and tutorials for other Microchip Arm boards. 

We recommend you obtain the latest Getting Started Guide for MDK5:   It is available free on www.keil.com/gsg/. 

Migrating from Arm Compiler 5 (AC5) to Arm Compiler 6 (AC6) :   www.keil.com/appnotes/docs/apnt_298.asp 

ARM  forums: https://developer.arm.com     Keil Forums:     www.keil.com/forum/ 

 

2)  MDK 5 Keil Software  Information :  This document use s MDK 5. 2 5  or later . 

MDK 5 Core is the heart of the MDK toolchain.  This will be in the form of MDK Lite which is the evaluation version.  The 

addition of a Keil license will turn it into one of the commercial versions available.  Contact Keil Sales for more information. 

Device and board support are distributed via Software Packs.  These Packs are downloaded from the web with the "Pack 

Installer", the version(s) selected with "Select Software Packs" and your project configured with "Manage Run-Time 

Environment" (MRTE).  These utilities are components of µVision. 

A Software Pack is an ordinary .zip file with the extension changed to..pack.  It contains various header, Flash programming 

and example files and more.  Contents of a Pack are described by a .pdsc file in XML format.  You can make your own Pack. 

See www.keil.com/dd2/pack for the current list of available Software Packs.  More Packs are always being added. 

Example Project Files:  This document uses examples provided outside of the Pack and are distributed with this document. 

3 )  Debug Adapters  Supported :  

These are listed below with a brief description.  Configuration instructions start on page 7. 

1. Microchip EDBG CMSIS -DAP:   Many Xplained boards contain EDBG: an on-board debug adapter that is 

CMSIS-DAP compliant.  You do not need an external debugger such as a ULINK2 to do this lab.  The SAM L10 

does not have any feature such as SWV or ETM that requires a specific adapter.  All other CoreSight functions found 

on SAM L10 are provided by EDBG CMSIS-DAP. 

To add CMSIS-DAP to a custom board.  See https://github.com/ARM-software/CMSIS_5. 

This tutorial uses only the on-board EDBG CMSIS-DAP.  For the SAM L10, this is all you need.  The Keil 

ULINK plus will provide power measurement for SAM L10.  See below. 

2. ULINK2 and ULINK - ME:  ULINK -ME is only offered as part of certain evaluation board packages.  ULINK2 can 

be purchased separately.  These are electrically the same and both support Serial Wire Viewer (SWV), Run-time 

memory reads and writes for the Watch and Memory windows and hardware breakpoint set/unset on-the-fly.  

3. ULINK pro :   ULINK pro supports all SWV features and adds ETM Instruction Trace.  ETM records all executed 

instructions.  ETM provides Code Coverage, Execution Profiling and Performance Analysis features.  ULINKpro 

also provides the fastest Flash programming times.  Not all SAM processors have ETM.  Consult your datasheet. 

4. NEW !   ULINK plus :  Power Measurement + High SWV performance and Test Automation. 

See www.keil.com/ulink/ulinkplus/ for details. 

5. Segger J - Link:   J-Link Version 6 (black) or later supports Serial Wire Viewer.   SWV data reads and writes are 

not currently supported with a J-Link. 

External J70 2 CORTEX DEBUG connector:  

An external debug adapter can be connected to the J702 Cortex Debug 10 pin connector. 

J702 is a 10 pin CoreSight standard connector.  For pinouts search the web for ñKeil connectorsò.  A special 10 to 20 

cable is provided with ULINK pro and ULINKplus.  ULINK2 and ULINK-ME will connect to J702. 

Contact Segger for a special adapter board for the J-Link series. 

  

http://www.keil.com/Microchip
http://www.keil.com/gsg/
http://www.keil.com/appnotes/docs/apnt_298.asp
https://developer.arm.com/
http://www.keil.com/forum/
http://www.keil.com/dd2/pack
https://github.com/ARM-software/CMSIS_5
http://www.keil.com/ulink/ulinkplus/


 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

4 

 

4 )  CoreSight
®
 Definitions:   It is useful to have a basic understanding of these terms:  

Not all processors have all features.  Cortex-M0/M0+/M23 do not have SWV, ITM or ETM trace.  They have DAP 

read/write.  Cortex-M3/M4/M7/M33 can have all or most of these features listed implemented.  MTB may be found on 

certain Cortex-M0+.  Consult your specific datasheet. 

1. JTAG:   Provides access to the CoreSight debugging module located on the Cortex processor.  It uses 4 to 5 pins. 

2. SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except Boundary Scan 

is not possible.  SWD is referenced as SW in the µVision Cortex-M Target Driver Setup. 

The SWJ box must be selected in ULINK2/ME or ULINKpro.  Serial Wire Viewer (SWV) must use SWD because 

the JTAG signal TDO shares the same pin as SWO.  The SWV data normally comes out the SWO pin or Trace Port. 

3. JTAG and SWD are functionally equivalent.  The signals and protocols are not directly compatible. 

4. DAP: Debug Access Port.  This is a component of the Arm CoreSight debugging module that is accessed via the 

JTAG or SWD port.  One of the features of the DAP are the memory read and write accesses which provide on-the-

fly memory accesses without the need for processor core intervention.  µVision uses the DAP to update Memory, 

Watch, Peripheral and RTOS kernel awareness windows while the processor is running.  You can also modify 

variable values on the fly.  No CPU cycles are used, the program can be running and no code stubs are needed. 

You do not need to configure or activate DAP.  µVision configures DAP when you select a function that uses it. 

Do not confuse this with CMSIS_DAP which is an Arm on-board debug adapter standard. 

5. SWV:  Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.  

6. SWO: Serial Wire Output: SWV frames usually come out this one pin output.  It shares the JTAG signal TDO. 

7. Trace Port:  A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than SWO pin). 

8. ITM:  Instrumentation Trace Macrocell:  As used by µVision, ITM is thirty-two 32 bit memory addresses (Port 0 

through 31) that when written to, will be output on either the SWO or Trace Port.  This is useful for printf type 

operations.  µVision uses Port 0 for printf and Port 31 for the RTOS Event Viewer.  The data can be saved to a file. 

9. ETM:   Embedded Trace Macrocell: Displays all the executed instructions.  The ULINKpro provides ETM.  ETM 

requires a special 20 pin CoreSight connector.  ETM also provides Code Coverage and Performance Analysis.  ETM 

is output on the Trace Port or accessible in the ETB (ETB has no Code Coverage or Performance Analysis). 

10. ETB:  Embedded Trace Buffer:  A small amount of internal RAM used as an ETM trace buffer.  This trace does not 

need a specialized debug adapter such as a ULINKpro.  ETB runs as fast as the processor and is especially useful for 

very fast Cortex-A processors.  Not all processors have ETB.  See your specific datasheet. 

11. MTB:   Micro Trace Buffer.  A portion of the device internal user RAM is used for an instruction trace buffer.  Only 

on Cortex-M0+ processors.  Cortex-M3/M4 and Cortex-M7 processors provide ETM trace instead. 

12. Hardware Breakpoints:  The Cortex-M0+ has 2 breakpoints. The Cortex-M3, M4 and M7 usually have 6.  These 

can be set/unset on-the-fly without stopping the processor.  They are no skid:  they do not execute the instruction they 

are set on when a match occurs.  The CPU is halted before the instruction is executed. 

13. Watchpoints:  Both the Cortex-M0, M0+, Cortex-M3, Cortex-M4, Cortex-M7 and Cortex-M23 can have 2 

Watchpoints.  These are conditional breakpoints.  They stop the program when a specified value is read and/or 

written to a specified address or variable.  There also referred to as Access Breaks in Keil documentation. 

Read - Only Source Files:  

Some source files in the Project window will have a yellow key on them:         This means they are read-only.  This is 

to help unintentional changes to these files.  This can cause difficult to solve problems.  These files normally need no 

modification.  µVision icon meanings are found here:  www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm 

If you need to modify one, you can use Windows Explorer to modify its permission. 

1. In the Projects window, double click on the file to open it in the Sources window. 

2. Right click on its source tab and select Open Containing folder. 

3. Explorer will open with the file selected. 

4. Right click on the file and select Properties. 

5. Unselect Read-only and click OK.  You are now able to change the file in the µVision editor. 

6. It is a good idea to make the file read-only when you are finished modifications. 

http://www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm


 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

5 

5 )  Keil MDK Software Download and Installation:  

1. Download MDK 5.25 or later from the Keil website.  www.keil.com/mdk5/install  

2. Install MDK into the default folder.  You can install into any folder, but this tutorial uses the default C:\Keil_v5 

3. We recommend you use the default folders for this tutorial.  We will use C:\00MDK\ for the examples. 

4. You do not need a debug adapter for the basic exercises: just the SAM L10 board, a USB cable and MDK installed. 

5. You do not need a Keil MDK license for this tutorial.  MDK-Lite, the evaluation version will work. 

 

6)  Install the µVision MDK Professional License :  

1. Select File/License Management.  If you have not used this feature 

previously, this icon is displayed in lower left corner: 

2. Click on this icon to obtain a temporary MDK Pro license.  Cortex-M23 needs at least MDK Essential. 

3. If this expires or is not available, please contact Keil Sales for temporary licenses:  Inside-Sales@arm.com 

 

7)  µVision Software Pack Download and Install Process:  

A Software Pack contain components such as header, Flash programming, documents and other files used in a project. 

1)  Start µVision and open Pack Installer  and i nstall The SAM L10  Software Pack  from the Web:  

1. Start µVision:     Connect your PC to the Internet to download files. 

2. Open the Pack Installer by clicking on its icon:    A Pack Installer Welcome screen will open.  Read and close it. 

3. This window opens up:  Select the Devices tab. 

4. Enter L10 in the Search: box.  Highlight as shown 

5. In the Packs tab, seelct Install as shown: 

6. The Pack will be installed into µVision. 

TIP:   You can also install the Pack by double-clicking on the 

.pack file.  It will be recognized and installed. 

 

8 )  Install the Blinky Example :  

1. Select the Devices tab in Pack Installer.  Select SAM L10 as shown above. 

2. Select the Examples tab and one Blinky example will display:   

3. Click on Copy.  The Copy Example window shown here opens: 

4. Enter C:\00MDK\ as shown.  Unselect Launch µVision.  Click OK. 

5. Blinky will copy to C:\00MDK\mdk\boards\Microchip\SAML10-XPRO\ 

6. The Pack status is indicated by the ñUp to dateò icon:  

   

7. Update means there is an updated Software Pack available for 

download.   

8. You can update any files at this time with a yellow Update box. 

9. Close Pack Installer.  You can open it any time by clicking on its 

icon. 

10. If a dialog box says Software Packs folder has modified, select Yes. 

 

TIP:   The left hand pane filters the selections displayed on the right pane.  You can start with either Devices or Boards. 

TIP:   For simplicity, we will use the default folder of C:\00MDK\ in this tutorial.  You can use any folder you prefer.  

http://www2.keil.com/mdk5/install
mailto:mInside-Sales@arm.com


 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

6 

9 )  Other features of Software Pack s:   This page is for reference:  

1)  Select Software Pack V ersion:  

This µVision utility provides the ability to choose among the various software pack versions installed in your computer.   

1. Open the Select Software Pack by clicking on its icon:  

2. This window opens up.  Note Use latest versions é is selected.  The latest version of the Pack will be used. 

3. Unselect this setting and the window changes to allow various versions of Packs to be selected. 

 

4. Note various options are visible as shown here:  

5. Select excluded and see the options as shown: 

6. Select Use latest versionsé Do not make any changes. 

7. Click Cancel to close this window to make sure no changes are made. 

 

2)  Manage Run -Time Environment  (MRTE) : 

1. From the main µVision menu, select Project/Open Project. 

2. Open the project: Blinky.uvprojx in C:\00MDK\mdk\boards\Microchip\SAML10-XPRO\. 

3. Click on the Manage Run-Time Environment (MRTE) icon:   The window below opens:  

4. Expand various headers and note the selections you can make.  A selection made here will automatically insert the 

appropriate source files into your project. 

5. Do not make any changes.  Click Cancel to close this window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIP:   µVision icon meanings are found here:  www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm   

http://www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm


 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

7 

Keil ULINK plus: 

Power Measurement System. 

10 )  Blinky  example program using the Microchip SAM L10  board :  

Now we will connect a Keil MDK development system using the SAM L10 board.  This page will use the Microchip 

EDBG CMSIS-DAP on-board debug adapter. 

1. Connect a USB cable between your PC and the SAM L10 board J200 DEBUG USB connector. 

2. The board will be powered by this USB connection.  The green POWER D201 LED will illuminate. 

3. Start µVision by clicking on its desktop icon.  

4. Select Project/Open Project. 

6. Open the file Blinky.uvprojx located in:  C:\00MDK\mdk\boards\Microchip\SAML10-XPRO\ 

5. Compile the source files by clicking on the Rebuild icon. .  If you get an error here stating ARM compiler does 

not support Cortex-M23, you need to obtain a MDK Essential license or higher.  See page 5. 

6. Enter Debug mode by clicking on the Debug icon.    The Flash memory will be programmed.  Progress will be 

indicated in the Output Window. 

7. The program will run from the RESET vector to the start of main() and stop.  This will be indicated in the main.c C 

source window. 

8. Click on the RUN icon.      

 

The yellow LED LEDO will now blink  on the SAM L10  board . 

Now you know how to compile a program ,  program  it into the SAM L10  processor Flash , run it  and stop it  !  

 Note:  The board will start Blinky stand -alone.  Blinky  is now permanently programmed in the Flash  until reprogrammed . 

 

 

 

Set Optimization to Level -01:  

This is needed for the breakpoints step on the next page. 

1. Stop the program   and exit Debug mode . 

2. Select Options for Target:   or ALT-F7. 

3. Select the C/C++ (AC6) tab. 

4. Select Optimization level -01 as shown here: 

 

 

5. Click OK to close this window. 

6. Select File/Save All or click . 

7. Compile the source files by clicking on the Rebuild icon. .  

8. Enter Debug mode.    The Flash memory will be programmed.  

Progress will be indicated in the Output Window. 

9. Click on the RUN icon.    

  



 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

8 

1 1 )  Hardware Breakpoints:  

The SAM L10 has four hardware breakpoints that can be set or unset on the fly while the program is running.  Arm hardware 

breakpoints are no-skid ï that is, they do not execute an instruction they are set to when it is encountered. 

1. With Blinky running, in the Blinky.c window, click on a darker grey block on the left on a suitable part of the source 

code.  This means assembly instructions are present at these points.  Inside the while(1) loop between near lines 91 

through 94 is a good place:  You can also click in the Disassembly window to set a breakpoint. 

2. A red circle will appear and the program will presently stop. 

3. Note the breakpoint is displayed in both the Disassembly and source windows as shown here: 

4. Set a second breakpoint in the while(1) loop as before. 

5. Every time you click on the RUN icon  the program will run 

until the breakpoint is again encountered. 

6. The yellow arrow is the current program counter value. 

7. Clicking in the source window will indicate the appropriate code 

line in the Disassembly window and vice versa.  This is relationship 

indicated by the cyan arrow and the yellow highlight: 

8. Open Debug/Breakpoints or Ctrl-B and you can see any 

breakpoints set.  You can temporarily unselect them or delete them. 

9. Delete all breakpoints. 

10. Close the Breakpoint window if it is open. 

11. You can also delete the breakpoints by clicking on the red circle. 

 

TIP:  If you set too many breakpoints, µVision will warn you.   

TIP:  Arm hardware breakpoints do not execute the instruction they are set to and land on.  Arm CoreSight hardware 

breakpoints are no-skid.  This is a rather important feature for effective debugging.  

 

Single - Stepping:   

1. RUN icon  for a short time.  Stop the program with the STOP icon.   

2. The program will probably stop inside the Delay() function starting near line 29 in Blinky.c. 

By Assembly Instruction: 

3. Click on the top margin of the Disassembly window to bring it into focus.  Clicking Step  or F11 advances the 

program counter one assembly instruction at a time. 

By C/C++ Source Lines: 

4. Click inside the Blinky.c source code window or better, on the Blinky.c tab. 

5. Click on Step Out  to exit the Delay() function.  Step is not able to correctly step inside this function. 

6. Click on the Step icon   or F11 a few times:  You will see the program counter jumps a C line at a time.  The 

yellow arrow indicates the next C line to be executed. 

7. When you enter the Delay(); function, stepping will no longer work.  This is because interrupts are disabled during 

single-stepping and this function uses the SystTick handler which is interrupt driven. 

8. Click Step Out  to exit the Delay function and return to main(). 

9. Stop the program  if it is running. 

 



 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

9 

1 2 )  Call Sta ck + Locals Window:  

Local Variables: 

The Call Stack and Locals windows are incorporated into one integrated window.  Whenever the program is stopped, the Call 

Stack + Locals window will display call stack contents as well as any local variables located in the active function or thread. 

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed.  The 

Call + Stack window presence or visibility can be toggled by selecting View/Call Stack Window in the main µVision window 

when in Debug mode. 

1. Run  and Stop    the Blinky program.  It will probably stop inside the Delay() function. 

2. Click on the Call Stack + Locals tab if necessary to open it.  Expand some of the entries. 

3. The Call Stack + Locals window will show Delay and main as shown here:  Local variables are displayed. 

4. Click on Step Out   to exit the Delay() function.  

Only main will remain. 

5. Click on the Step In icon   to enter a few functions. 

6. As you click on Step In, you can see the program 

entering and perhaps leaving various functions.  Note the 

local variables are displayed. 

7. Shown is an example Call Stack + Locals window while 

the program is in the LED_Off function:  

8. The functions as they were called are displayed.  If these 

functions had local variables, they are displayed.  If the 

functions are in scope, their values are displayed. 

9. The Blinky program is very simple.  Call Stack + Locals 

is very useful in sorting out stack issues in more 

complicated programs  

 

 

10. Right click on a function and select either Callee or Caller code and this will be highlighted in the source and 

disassembly windows. 

 

11. When you ready to continue, remove the hardware breakpoint by clicking on its red circle !  You can also type Ctrl-

B, select Kill All and then Close. 

 

TIP:  You can modify a variable value in the Call Stack & Locals window only when the program is stopped. 

TIP:  This window is only valid when the processor is halted.  It does not update while the program is running because locals 

are normally kept in a CPU register.  These cannot be read by the debugger while the program is running.  Any local variable 

values are visible only when they are in scope. 

If you need to monitor any variables, make it static or global and enter it in a Watch or Memory window. 

Do not forget to remove any hardware breakpoints before continuing. 



 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

10 

1 3 )   Watch and Memory Windows  and how to use them :  

The Watch and Memory windows will display updated variable values in real-time.  It does this using the Arm CoreSight 

debugging technology that is part of Cortex-M processors.  It is also possible to ñputò or insert variable values into a Watch or 

Memory window in real-time.  It is possible to enter variable names into windows manually.  You can also right click on a 

variable and select Add varname to.. and select the appropriate window.  The System Viewer windows work using the same 
CoreSight technology.  Call Stack, Watch and Memory windows canôt see local variables unless stopped in their function (in 

scope). 

Watch window : 

A global variable:  The global variable msTicks is declared in main.c near line 17. 

1. Leave Blinky running. Click Run:   The yellow LED will be blinking. 

2. You can configure a Watch or Memory window while the program is running.   

3. In Blinky.c, right click on msTicks and select Add msTicks to é and select Watch 1. 

4. Watch 1 will automatically open.  msTicks will be displayed: 

5. msTicks is updated in real-time ï no CPU cycles are stolen. 

6. Click and select the entire variable value of msTicks. 

7. Enter 0 (or any other value) and press Enter. 

8. The value of msTicks is set to zero.  Incrementing will resume. 

 

 

 

 

 

 

Memory w indow:  

1. Right click on msTicks and select Add msTicks to é and select Memory 1. 

2. Note the value of msTicks is displaying its address in Memory 1 as if it is a pointer.  This is useful to see what 

address a pointer is pointing to but this not what we want to see at this time. 

3. Add an ampersand ñ&ò in front of the variable name and press Enter.  The physical address here is 0x2000_0008. 

4. Right click in the Memory window and select Unsigned/Int. 

5. The data contents of msTicks is displayed as shown here:  

6. The Memory window is also updated in real-time. 

7. Right-click with the mouse cursor over the desired data field 

and select Modify Memory.  You can change a memory or 

variable on-the-fly while the program is still running. 

 

SystemCoreClock :  

1. In the Watch1 window, double click on <Enter Expression> and type in SystemCoreClock. 

2. Right click on SystemCoreClock and unselect Hexadecimal Display.   

3. 4 MHz will be displayed.  SystemCoreClock is provided by CMSIS to help determine the CPU clock frequency. 

 

TIP:  No CPU cycles are used to perform these operations. 

TIP:   To view variables and their location use the Symbol window.  Select View/Symbol Window while in Debug mode. 

TIP: A Watch or Memory window can display and update global and static variables, structures and 

peripheral addresses while the program is running.  These are unable to display local variables because 

these are typically stored in a CPU register.  These cannot be read by µVision in real-time.  To view a 

local variable in these windows, convert it to a static or global variable. 



 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

11 

1 4 )  Peripheral System Viewer (SV):  

The System Viewer provides the ability to view certain registers in the CPU core and in peripherals.  In most cases, these 

Views are updated in real-time while your program is running. These Views are available only while in Debug mode.  There 

are two ways to access these Views:  a) View/System Viewer and b) Peripherals/System Viewer. 

1. Click on RUN.  You can open SV windows when your program is running. 

Select ADC0: 

1. Select Peripherals/System Viewer and then PORT and PORT as shown here. 

2. This window opens up.  Expand GROUP: 

3. You can now see the ports update as the LED blinks. 

4. You can change the values in the System Viewer on-the-fly.   In this 

case, the values are updated quickly so it is hard to see the change. 

5. You can look at other Peripherals contained in the System View 

windows. 

TIP:   If you click on a register in the properties column, a description about 

this register will appear at the bottom of the window.  This is very useful and 

is an easy way to find the address of a peripheral port. 

 

 

 

SysTick Timer: 

This program uses the SysTick timer as a tick timer for the Delay() function.   

Blinky.c programs Systick in main() near line 76 with this CMSIS function: 

SysTick_Config(SystemCoreClock / 1000);     /* Setup SysTick for 1 msec */  

 

1. Select Peripherals/Core Peripherals and then select SysTick S Timer.  ñSò means Secure state. 

2. The SysTick window shown below opens: 

3. Note it also updates in real-time while your program runs.  These windows use the same CoreSight DAP technology 

as the Watch, Memory and Peripheral windows. 

4. Note the SysTick->LOAD register.  This is the reload register value.  This is set during the SysTick configuration. 

5. Note that it is set to 0x0F9F.  This is the same hex value of 4,000,000/1000-1 (0x0FA0)-1) that is programmed by 

Blinky.c.  This is where this value comes from.  Changing the variable passed to this function is how you change how 

often the SysTick timer creates its interrupt 15. 

6. In the SysTick->LOAD register in the SysTick window, while the program is running, type in 0x300 and press Enter. 

7. The blinking LED will speed up.  This will convince you of the power of Arm CoreSight debugging. 

8. Replace RELOAD with 0x0F9F.  A CPU RESET   and RUN  will also do this. 

9. When you are done, stop the program  and close all the System Viewer windows that are open. 

 

TIP:   It is true: you can modify values in the SV while the program is running.  

This is very useful for making slight timing value changes instead of the usual 

modify, compile, program, run cycle. 

You must make sure a given peripheral register allows and will properly react to 

such a change.  Changing such values indiscriminately is a good way to cause 

serious and difficult to find problems.  



 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

12 

1 5 )  Watchpoints: Conditional Breakpoints  

The SAM L10 Cortex-M23 processor has two Watchpoints.  Watchpoints can be thought of as conditional breakpoints.  

Watchpoints are also referred to as Access Breaks in Keil documents.  Cortex-M23 processors do not have the equality test ï 

only address matching.  Using a data test causes ʈVision to stop the processor creating substantial program delays.  Cortex-

M3/M4/M7 and M33 have data tests implemented. 

Watchpoints can be useful to detect a read or a write to a specified address.  When the specified address is accessed, the 

program will stop.  This can be used to determine the range of the Stack Pointer.  It is also useful for determining instructions 

making reads or writes to memory.  We will demonstrate the Stack Pointer here. 

This test will put the program in the main() function.  The first time Delay() function is called, a write to the Stack Pointer will 

trigger a Watchpoint and stop the processor. 

1. Stop the program  .  Normally you can configure a Watchpoint while the program is running or halted. 

2. The program will probably stop in the Delay() function. 

3. Click Step Out   so that only main() is indicated in the Call Stack + Locals window. 

4. Select Debug in the main µVision window and then select Breakpoints or press Ctrl-B. 

5. Select Access to Write as shown here: 

6. Enter:  msTicks in the Expression box.  This window 

will display: 

7. Click on Define or press Enter and the expression will be 

accepted into the Current Breakpoints: box as shown 

below in the bottom Breakpoints window: 

8. Click on Close. 

9. Click on RUN.  . 

10. When the program writes to the msTick variable, the 

Watchpoint will detect this and stop the program. 

 

 

11. The command window displays the cause of the halt:  

12. This is the instruction at 0x0000 01EC that caused the write. 

13. This instruction is displayed in the Disassembly window: 

14. Select Debug/Breakpoints (or Ctrl-B) and delete the Watchpoint 

with Kill All and select Close. 

15. Exit Debug mode.   

 

TIP:  To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the 

configuration area.  Clicking on Define will create another Watchpoint.  You should delete the old one by highlighting it and 

click on Kill Selected or try the next TIP: 

 

 

 

 

 

TIP:   The checkbox beside the expression allows you to temporarily unselect or disable a Watchpoint without deleting it.   

TIP:   Raw addresses can be used with a Watchpoint.  An example is:  *((unsigned long *)0x20000004) 



 Copyright © 2018 ARM Ltd. All rights reserved 

Microchip SAM L10 Cortex-M23 Lab using ARM® KeilÊ MDK 5 toolkit            www.keil.com 

 

13 

1 6 )  printf  using Event Recorder:  

printf is provided by Event Recorder instrumentation that requires minimal user code.  

printf data will be displayed in the Debug (printf) Viewer and Event Recorder windows.  If 

you are using a Coretx-M3/M4/M7/M33 you can send this data out the ITM port 0 using 

SWV (Serial Wire Viewer).  Cortex-M0/M0+ and M23 do not have SWV.  They use DAP. 

1. Stop the program   and exit Debug mode . 

Add STDOUT File (retarget_io.c): 

1. Open the Manage Run-Time Environment window (MRTE)   .  

2. Expand Compiler and I/O as shown here:  

3. Select Event Recorder and then DAP as shown: 

4. Select STDOUT and then EVR.  This adds the file retarget_io.c to the project. 

5. Ensure all blocks are green and click OK to close the MRTE.  Click Resolve if there are red or orange blocks. 

TIP:  If you selected ITM instead of EVR, printf will require SWV.  Cortex-M23 does not have SWV, only DAP. 

Add printf and ER statements to Blinky.c: 

1. At the top of main.c, right-click and select óInsert #include fileô and then select EventRecorder.h". 

2. At the beginning of main() near line 73, add this line:  EventRecorderInitialize (EventRecordAll, 1); 

3. Inside the while(1) loop in main(); add this line:  printf("msTicks = %d\n", msTicks); 

Increase the Stack and Heap: 

1. In the Project window, double-click on startup_SAM L10.s to open it. 

2. Select the Configuration Wizard tab at the bottom of this window. 

3. Change Stack to 0x300 bytes and Heap to 0x100 bytes. 

Compile and Run the Project: 

1. Select File/Save All or click . 

2. Rebuild the source files  and enter Debug mode  . 

3. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN. 

4. In the Debug (printf) Viewer you will see the printf statements appear as shown here: 

5. Right click on the Debug window and select Mixed Hex ASCII mode.  Note other useful 

settings that are available. 

6. Select the small arrow beside the Analysis window icon and select Event Recorder. 

7. Event Recorder opens and the ASCII printf frames are displayed as shown below: 

8. It is possible to annotate your code with Event Recorder with your own messages. 

9. See www.keil.com/pack/doc/compiler/EventRecorder/html/ 

10. Stop the program   and exit Debug mode . 

 

 

 

 

 

 

 

 

 


