
S32 SDK Documentation
S32K14x EAR 0.8.4

Generated by Doxygen 1.8.10

Wed Jun 28 2017 18:19:39

ii CONTENTS

Contents

1 S32 SDK 1

2 Components 3

3 Supported Platforms 5

4 Installation 5

5 Build Tools 6

6 IDE Support 7

7 Configuration 7

8 Acronyms and Abbreviations 7

9 MISRA Compliance 8

10 Error detection and reporting 8

11 Examples and Demos 9

11.1 Introduction . 9

11.2 Usage . 9

11.2.1 How to build . 9

11.2.2 How to debug . 10

11.2.3 Using terminal emulator . 11

11.3 S32K142 Examples . 12

11.3.1 Demo Applications . 13

11.4 S32K144 Examples . 16

11.4.1 Demo Applications . 16

11.4.2 Driver Examples . 33

11.4.3 ADC Hardware Trigger . 34

11.4.4 ADC Software Trigger . 36

11.4.5 CMP DAC . 37

11.4.6 FLEXIO I2C . 39

11.4.7 FLEXIO I2S . 41

11.4.8 FLEXIO SPI . 43

11.4.9 FLEXIO UART . 44

11.4.10 LPI2C MASTER . 46

11.4.11 LPI2C SLAVE . 48

11.4.12 LPSPI Transfer . 49

11.4.13 LPUART Echo . 51

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

CONTENTS iii

11.4.14 SBC UJA1169 . 52

11.4.15 CRC Checksum . 54

11.4.16 CSEc key configuration . 56

11.4.17 eDMA Transfer . 58

11.4.18 EWM Interrupt . 59

11.4.19 FLASH Partitioning . 61

11.4.20 MPU Memory Protection . 62

11.4.21 Power Mode Switch . 64

11.4.22 WDOG Interrupt . 66

11.4.23 FTM Combined PWM . 68

11.4.24 FTM Periodic Interrupt . 70

11.4.25 FTM PWM . 72

11.4.26 FTM Signal Measurement . 73

11.4.27 LPIT Periodic Interrupt . 75

11.4.28 LPTMR Periodic Interrupt . 76

11.4.29 LPTMR Pulse Counter . 78

11.4.30 PDB Periodic Interrupt . 79

11.4.31 RTC Alarm . 81

11.5 S32K148 Examples . 82

11.5.1 Demo Applications . 83

11.5.2 Driver Examples . 101

11.5.3 ADC Hardware Trigger . 102

11.5.4 ADC Software Trigger . 104

11.5.5 CMP DAC . 105

11.5.6 ENET Loopback . 107

11.5.7 FLEXIO I2C . 109

11.5.8 FLEXIO I2S . 110

11.5.9 FLEXIO SPI . 112

11.5.10 FLEXIO UART . 114

11.5.11 LPI2C MASTER . 115

11.5.12 LPI2C SLAVE . 117

11.5.13 LPSPI Transfer . 118

11.5.14 LPUART Echo . 121

11.5.15 SBC UJA1169 . 123

11.5.16 SAI . 125

11.5.17 CRC Checksum . 128

11.5.18 CSEc key configuration . 129

11.5.19 eDMA Transfer . 131

11.5.20 EWM Interrupt . 134

11.5.21 FLASH Partitioning . 135

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

iv CONTENTS

11.5.22 MPU Memory Protection . 136

11.5.23 Power Mode Switch . 138

11.5.24 WDOG Interrupt . 140

11.5.25 FTM Combined PWM . 142

11.5.26 FTM Periodic Interrupt . 144

11.5.27 FTM PWM . 146

11.5.28 FTM Signal Measurement . 147

11.5.29 LPIT Periodic Interrupt . 149

11.5.30 LPTMR Periodic Interrupt . 150

11.5.31 LPTMR Pulse Counter . 152

11.5.32 PDB Periodic Interrupt . 153

11.5.33 RTC Alarm . 155

12 Module Index 156

12.1 Modules . 156

13 Data Structure Index 160

13.1 Data Structures . 160

14 Module Documentation 161

14.1 ADC Driver . 161

14.1.1 Detailed Description . 161

14.1.2 Data Structure Documentation . 166

14.1.3 Enumeration Type Documentation . 169

14.1.4 Function Documentation . 172

14.2 Analog to Digital Converter (ADC) . 179

14.2.1 Detailed Description . 179

14.3 Backward Compatibility Symbols for S32K144 . 180

14.4 CRC Driver . 181

14.4.1 Detailed Description . 181

14.4.2 Data Structure Documentation . 181

14.4.3 Macro Definition Documentation . 182

14.4.4 Enumeration Type Documentation . 182

14.4.5 Function Documentation . 182

14.5 CRC Driver . 186

14.6 CSEc Driver . 188

14.6.1 Detailed Description . 188

14.6.2 Data Structure Documentation . 192

14.6.3 Macro Definition Documentation . 195

14.6.4 Typedef Documentation . 195

14.6.5 Enumeration Type Documentation . 196

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

CONTENTS v

14.6.6 Function Documentation . 198

14.7 Clock Manager . 209

14.7.1 Detailed Description . 209

14.7.2 Data Structure Documentation . 210

14.7.3 Typedef Documentation . 212

14.7.4 Enumeration Type Documentation . 212

14.7.5 Function Documentation . 213

14.8 Clock Manager Driver . 216

14.9 Clock_manager_s32k1xx . 217

14.9.1 Detailed Description . 217

14.9.2 Data Structure Documentation . 218

14.9.3 Macro Definition Documentation . 223

14.9.4 Enumeration Type Documentation . 223

14.9.5 Variable Documentation . 225

14.10Common Core API. 226

14.10.1 Detailed Description . 226

14.10.2 Macro Definition Documentation . 226

14.11Common Transport Layer API . 228

14.11.1 Detailed Description . 228

14.11.2 Macro Definition Documentation . 228

14.11.3 Function Documentation . 231

14.12Comparator (CMP) . 232

14.12.1 Detailed Description . 232

14.13Comparator Driver . 235

14.13.1 Detailed Description . 235

14.13.2 Data Structure Documentation . 237

14.13.3 Macro Definition Documentation . 241

14.13.4 Typedef Documentation . 241

14.13.5 Enumeration Type Documentation . 242

14.13.6 Function Documentation . 244

14.14Controller Area Network with Flexible Data Rate (FlexCAN) . 250

14.14.1 Detailed Description . 250

14.15Cooked API . 252

14.15.1 Detailed Description . 252

14.15.2 Function Documentation . 252

14.16Cryptographic Services Engine (CSEc) . 254

14.16.1 Detailed Description . 254

14.17Cyclic Redundancy Check (CRC) . 255

14.17.1 Detailed Description . 255

14.18Diagnostic services . 256

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

vi CONTENTS

14.18.1 Detailed Description . 256

14.18.2 Function Documentation . 257

14.19Direct Memory Access (DMA) . 260

14.19.1 Detailed Description . 260

14.20Driver and cluster management . 261

14.20.1 Detailed Description . 261

14.20.2 Function Documentation . 261

14.21EDMA Driver . 262

14.21.1 Detailed Description . 262

14.21.2 Data Structure Documentation . 267

14.21.3 Macro Definition Documentation . 272

14.21.4 Typedef Documentation . 273

14.21.5 Enumeration Type Documentation . 273

14.21.6 Function Documentation . 276

14.22EIM Driver . 285

14.22.1 Detailed Description . 285

14.22.2 Data Structure Documentation . 286

14.22.3 Macro Definition Documentation . 287

14.22.4 Function Documentation . 287

14.23ENET Driver . 289

14.23.1 Detailed Description . 289

14.23.2 Data Structure Documentation . 294

14.23.3 Macro Definition Documentation . 297

14.23.4 Typedef Documentation . 297

14.23.5 Enumeration Type Documentation . 298

14.23.6 Function Documentation . 301

14.24ERM Driver . 307

14.24.1 Detailed Description . 307

14.24.2 Data Structure Documentation . 307

14.24.3 Enumeration Type Documentation . 308

14.24.4 Function Documentation . 308

14.25EWM Driver . 311

14.25.1 Detailed Description . 311

14.25.2 Data Structure Documentation . 312

14.25.3 Enumeration Type Documentation . 313

14.25.4 Function Documentation . 313

14.26Error Injection Module (EIM) . 315

14.26.1 Detailed Description . 315

14.27Error Reporting Module (ERM) . 316

14.27.1 Detailed Description . 316

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

CONTENTS vii

14.27.2 ERM Driver Initialization . 316

14.27.3 ERM Driver Operation . 316

14.28Ethernet MAC (ENET) . 318

14.28.1 Detailed Description . 318

14.29External Watchdog Monitor (EWM) . 321

14.29.1 Detailed Description . 321

14.30FTM Common Driver . 322

14.30.1 Detailed Description . 322

14.30.2 Data Structure Documentation . 326

14.30.3 Typedef Documentation . 329

14.30.4 Enumeration Type Documentation . 329

14.30.5 Function Documentation . 330

14.30.6 Variable Documentation . 357

14.31FTM Input Capture Driver . 359

14.31.1 Detailed Description . 359

14.31.2 Data Structure Documentation . 359

14.31.3 Enumeration Type Documentation . 361

14.31.4 Function Documentation . 362

14.32FTM Module Counter Driver . 364

14.32.1 Detailed Description . 364

14.32.2 Data Structure Documentation . 364

14.32.3 Function Documentation . 365

14.33FTM Output Compare Driver . 367

14.33.1 Detailed Description . 367

14.33.2 Data Structure Documentation . 367

14.33.3 Enumeration Type Documentation . 368

14.33.4 Function Documentation . 369

14.34FTM Pulse Width Modulation Driver . 371

14.34.1 Detailed Description . 371

14.34.2 Data Structure Documentation . 372

14.34.3 Macro Definition Documentation . 376

14.34.4 Enumeration Type Documentation . 376

14.34.5 Function Documentation . 376

14.35FTM Quadrature Decoder Driver . 379

14.35.1 Detailed Description . 379

14.35.2 Data Structure Documentation . 379

14.35.3 Function Documentation . 381

14.36Flash Memory (Flash) . 383

14.36.1 Detailed Description . 383

14.37Flash Memory (Flash) . 386

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

viii CONTENTS

14.37.1 Detailed Description . 386

14.37.2 Data Structure Documentation . 389

14.37.3 Macro Definition Documentation . 390

14.37.4 Typedef Documentation . 393

14.37.5 Enumeration Type Documentation . 393

14.37.6 Function Documentation . 394

14.37.7 Variable Documentation . 400

14.38Flash_mx25l6433f_drv . 403

14.38.1 Detailed Description . 403

14.38.2 Data Structure Documentation . 404

14.38.3 Enumeration Type Documentation . 405

14.38.4 Function Documentation . 406

14.39FlexCAN Driver . 413

14.39.1 Detailed Description . 413

14.39.2 Data Structure Documentation . 418

14.39.3 Typedef Documentation . 423

14.39.4 Enumeration Type Documentation . 424

14.39.5 Function Documentation . 426

14.40FlexIO Common Driver . 435

14.40.1 Detailed Description . 435

14.40.2 Typedef Documentation . 435

14.40.3 Enumeration Type Documentation . 436

14.40.4 Function Documentation . 436

14.41FlexIO I2C Driver . 438

14.41.1 Detailed Description . 438

14.41.2 Data Structure Documentation . 440

14.41.3 Macro Definition Documentation . 442

14.41.4 Function Documentation . 442

14.42FlexIO I2S Driver . 446

14.42.1 Detailed Description . 446

14.42.2 Data Structure Documentation . 449

14.42.3 Typedef Documentation . 452

14.42.4 Function Documentation . 452

14.43FlexIO SPI Driver . 461

14.43.1 Detailed Description . 461

14.43.2 Data Structure Documentation . 464

14.43.3 Typedef Documentation . 467

14.43.4 Enumeration Type Documentation . 467

14.43.5 Function Documentation . 468

14.44FlexIO UART Driver . 474

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

CONTENTS ix

14.44.1 Detailed Description . 474

14.44.2 Data Structure Documentation . 476

14.44.3 Enumeration Type Documentation . 477

14.44.4 Function Documentation . 477

14.45FlexTimer (FTM) . 482

14.45.1 Detailed Description . 482

14.46Flexible I/O (FlexIO) . 489

14.46.1 Detailed Description . 489

14.47FreeRTOS . 490

14.48Initialization . 491

14.48.1 Detailed Description . 491

14.48.2 Function Documentation . 491

14.49Interface management . 492

14.49.1 Detailed Description . 492

14.49.2 Function Documentation . 492

14.50Interrupt Manager (Interrupt) . 494

14.50.1 Detailed Description . 494

14.50.2 Typedef Documentation . 495

14.50.3 Function Documentation . 495

14.51Interrupt vector numbers for S32K144 . 497

14.52J2602 Specific API . 498

14.53J2602 Transport Layer specific API . 499

14.53.1 Detailed Description . 499

14.54LIN 2.1 Specific API . 500

14.54.1 Detailed Description . 500

14.54.2 Function Documentation . 500

14.55LIN Core API . 502

14.55.1 Detailed Description . 502

14.56LIN Driver . 503

14.56.1 Detailed Description . 503

14.56.2 LIN Driver Overview . 503

14.56.3 LIN Driver Device structures . 503

14.56.4 LIN Driver Initialization . 503

14.56.5 LIN Data Transfers . 504

14.56.6 Autobaud feature . 504

14.56.7 Data Structure Documentation . 507

14.56.8 Macro Definition Documentation . 510

14.56.9 Typedef Documentation . 511

14.56.10Enumeration Type Documentation . 511

14.56.11Function Documentation . 512

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

x CONTENTS

14.57LIN Stack . 520

14.57.1 Detailed Description . 520

14.58LPI2C Driver . 521

14.58.1 Detailed Description . 521

14.58.2 Data Structure Documentation . 524

14.58.3 Typedef Documentation . 527

14.58.4 Enumeration Type Documentation . 527

14.58.5 Function Documentation . 528

14.59LPIT Driver . 537

14.59.1 Detailed Description . 537

14.59.2 Data Structure Documentation . 540

14.59.3 Macro Definition Documentation . 543

14.59.4 Enumeration Type Documentation . 543

14.59.5 Function Documentation . 544

14.60LPSPI Driver . 550

14.60.1 Detailed Description . 550

14.60.2 Data Structure Documentation . 552

14.60.3 Enumeration Type Documentation . 558

14.60.4 Function Documentation . 559

14.60.5 Variable Documentation . 566

14.61LPTMR Driver . 567

14.61.1 Detailed Description . 567

14.61.2 Data Structure Documentation . 569

14.61.3 Enumeration Type Documentation . 571

14.61.4 Function Documentation . 572

14.62LPUART Driver . 577

14.62.1 Detailed Description . 577

14.62.2 Data Structure Documentation . 579

14.62.3 Enumeration Type Documentation . 582

14.62.4 Function Documentation . 583

14.63Local Interconnect Network (LIN) . 592

14.63.1 Detailed Description . 592

14.64Low Power Inter-Integrated Circuit (LPI2C) . 593

14.64.1 Detailed Description . 593

14.65Low Power Interrupt Timer (LPIT) . 594

14.65.1 Detailed Description . 594

14.66Low Power Serial Peripheral Interface (LPSPI) . 595

14.66.1 Detailed Description . 595

14.67Low Power Timer (LPTMR) . 597

14.67.1 Detailed Description . 597

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

CONTENTS xi

14.68Low Power Universal Asynchronous Receiver-Transmitter (LPUART) 598

14.68.1 Detailed Description . 598

14.69Low level API . 599

14.69.1 Detailed Description . 599

14.69.2 Data Structure Documentation . 602

14.69.3 Macro Definition Documentation . 618

14.69.4 Typedef Documentation . 620

14.69.5 Enumeration Type Documentation . 621

14.69.6 Function Documentation . 625

14.69.7 Variable Documentation . 629

14.70MPU Driver . 631

14.70.1 Detailed Description . 631

14.70.2 Data Structure Documentation . 635

14.70.3 Enumeration Type Documentation . 637

14.70.4 Function Documentation . 641

14.71Memory Protection Unit (MPU) . 644

14.71.1 Detailed Description . 644

14.72Node configuration . 645

14.72.1 Detailed Description . 645

14.72.2 Function Documentation . 645

14.73Node configuration . 650

14.73.1 Detailed Description . 650

14.73.2 Function Documentation . 650

14.74Node identification . 652

14.74.1 Detailed Description . 652

14.74.2 Function Documentation . 652

14.75Notification . 653

14.76OS Interface (OSIF) . 654

14.76.1 Detailed Description . 654

14.76.2 Macro Definition Documentation . 655

14.76.3 Function Documentation . 655

14.77PDB Driver . 659

14.77.1 Detailed Description . 659

14.77.2 Data Structure Documentation . 662

14.77.3 Enumeration Type Documentation . 664

14.77.4 Function Documentation . 665

14.78PINS Driver . 670

14.78.1 Detailed Description . 670

14.78.2 Data Structure Documentation . 670

14.78.3 Typedef Documentation . 671

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

xii CONTENTS

14.78.4 Enumeration Type Documentation . 671

14.78.5 Function Documentation . 671

14.79Peripheral access layer for S32K144 . 675

14.80Pins Driver (PINS) . 676

14.80.1 Detailed Description . 676

14.81Power Manager . 677

14.81.1 Detailed Description . 677

14.81.2 Data Structure Documentation . 678

14.81.3 Typedef Documentation . 680

14.81.4 Enumeration Type Documentation . 681

14.81.5 Function Documentation . 682

14.82Power Manager Driver . 685

14.83Power_s32k1xx . 686

14.83.1 Detailed Description . 686

14.83.2 Data Structure Documentation . 687

14.83.3 Enumeration Type Documentation . 689

14.83.4 Function Documentation . 692

14.84Programmable Delay Block (PDB) . 693

14.84.1 Detailed Description . 693

14.85Qspi_drv . 694

14.85.1 Detailed Description . 694

14.85.2 Data Structure Documentation . 696

14.85.3 Macro Definition Documentation . 698

14.85.4 Typedef Documentation . 699

14.85.5 Enumeration Type Documentation . 699

14.85.6 Function Documentation . 701

14.85.7 Variable Documentation . 705

14.86Raw API . 706

14.86.1 Detailed Description . 706

14.86.2 Function Documentation . 706

14.87Real Time Clock Driver . 708

14.87.1 Detailed Description . 708

14.87.2 Data Structure Documentation . 710

14.87.3 Macro Definition Documentation . 714

14.87.4 Enumeration Type Documentation . 715

14.87.5 Function Documentation . 716

14.88Real Time Clock Driver (RTC) . 723

14.88.1 Detailed Description . 723

14.89S32K144 SoC Header file . 726

14.89.1 Detailed Description . 726

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

CONTENTS xiii

14.90S32K144 System Files . 727

14.91SAI Driver . 728

14.91.1 Detailed Description . 728

14.91.2 Data Structure Documentation . 730

14.91.3 Macro Definition Documentation . 733

14.91.4 Typedef Documentation . 734

14.91.5 Enumeration Type Documentation . 734

14.91.6 Function Documentation . 735

14.92Schedule management . 741

14.92.1 Detailed Description . 741

14.92.2 Function Documentation . 741

14.93Signal interaction . 742

14.94SoC Header file (SoC Header) . 743

14.94.1 Detailed Description . 743

14.95SoC Support . 744

14.95.1 Detailed Description . 744

14.96Synchronous Audio Interface (SAI) . 745

14.96.1 Detailed Description . 745

14.97System Basis Chip Driver (SBC) - UJA1169 Family . 746

14.97.1 Detailed Description . 746

14.98TRGMUX Driver . 751

14.98.1 Detailed Description . 751

14.98.2 Data Structure Documentation . 753

14.98.3 Enumeration Type Documentation . 754

14.98.4 Function Documentation . 757

14.99Transport layer API . 760

14.99.1 Detailed Description . 760

14.100Trigger MUX Control (TRGMUX) . 761

14.100.1Detailed Description . 761

14.101UJA1169 SBC Driver . 762

14.101.1Detailed Description . 762

14.101.2Data Structure Documentation . 769

14.101.3Macro Definition Documentation . 785

14.101.4Typedef Documentation . 785

14.101.5Enumeration Type Documentation . 786

14.102User provided call-outs . 803

14.102.1Detailed Description . 803

14.102.2Function Documentation . 803

14.103WDOG Driver . 804

14.103.1Detailed Description . 804

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

xiv CONTENTS

14.103.2Data Structure Documentation . 806

14.103.3Enumeration Type Documentation . 808

14.103.4Function Documentation . 808

14.104Watchdog timer (WDOG) . 812

14.104.1Detailed Description . 812

15 Data Structure Documentation 813

15.1 drv_config_t Struct Reference . 813

15.1.1 Detailed Description . 813

15.1.2 Field Documentation . 813

15.2 firc_config_t Struct Reference . 813

15.2.1 Detailed Description . 813

15.2.2 Field Documentation . 813

15.3 lin_product_id_t Struct Reference . 814

15.3.1 Detailed Description . 814

15.3.2 Field Documentation . 814

15.4 pcc_config_t Struct Reference . 815

15.4.1 Detailed Description . 815

15.4.2 Field Documentation . 815

15.5 periph_clk_config_t Struct Reference . 815

15.5.1 Detailed Description . 815

15.5.2 Field Documentation . 816

15.6 peripheral_clock_config_t Struct Reference . 816

15.6.1 Detailed Description . 816

15.6.2 Field Documentation . 816

15.7 pmc_config_t Struct Reference . 817

15.7.1 Detailed Description . 817

15.7.2 Field Documentation . 817

15.8 pmc_lpo_clock_config_t Struct Reference . 817

15.8.1 Detailed Description . 818

15.8.2 Field Documentation . 818

15.9 scg_clock_mode_config_t Struct Reference . 818

15.9.1 Detailed Description . 818

15.9.2 Field Documentation . 818

15.10scg_clockout_config_t Struct Reference . 819

15.10.1 Detailed Description . 819

15.10.2 Field Documentation . 819

15.11scg_config_t Struct Reference . 820

15.11.1 Detailed Description . 820

15.11.2 Field Documentation . 820

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

1 S32 SDK 1

15.12scg_firc_config_t Struct Reference . 821

15.12.1 Detailed Description . 821

15.12.2 Field Documentation . 821

15.13scg_rtc_config_t Struct Reference . 822

15.13.1 Detailed Description . 822

15.13.2 Field Documentation . 822

15.14scg_sirc_config_t Struct Reference . 823

15.14.1 Detailed Description . 823

15.14.2 Field Documentation . 823

15.15scg_sosc_config_t Struct Reference . 824

15.15.1 Detailed Description . 824

15.15.2 Field Documentation . 824

15.16scg_spll_config_t Struct Reference . 825

15.16.1 Detailed Description . 826

15.16.2 Field Documentation . 826

15.17sirc_config_t Struct Reference . 827

15.17.1 Detailed Description . 827

15.17.2 Field Documentation . 827

15.18sosc_config_t Struct Reference . 827

15.18.1 Detailed Description . 827

15.18.2 Field Documentation . 828

15.19spll_config_t Struct Reference . 828

15.19.1 Detailed Description . 828

15.19.2 Field Documentation . 828

15.20sys_clk_config_t Struct Reference . 829

15.20.1 Detailed Description . 829

15.20.2 Field Documentation . 829

Index 831

1 S32 SDK

Introduction

This topic provides an introduction to the S32 software development kit (S32 SDK), including intended audience,
purpose and scope, and detailed sections on technical considerations.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

2 CONTENTS

Intended Audience

S32 SDK documentation is written for software developers and system engineers who have a technical background,
and a working knowledge of embedded programming. The audience for the S32 SDK are users of S32 Processors.

Purpose and Scope

The S32 SDK is a embedded oriented development kit. It allows users to

1. Evaluate and explore the features of the S32 processors; experience how they are supported by working "out
of the box" on NXP development boards.

2. Develop embedded solutions; the NXP SDK is thoroughly tested from development to production.

S32 SDK Architecture Overview

The S32 SDK is an extensive suite of robust hardware interface and hardware abstraction layers, peripheral drivers,
RTOS, stacks, and middleware designed to simplify and accelerate application development on NXP S32 SOCs.
The addition of Processor Expert technology for software and board configuration provides unmatched ease of use
and flexibility. Included in the S32 SDK is full source code under a permissive open-source license for all hardware
abstraction and peripheral driver software. See the Release Notes for details. The S32 SDK consists of the following
runtime software components written in C:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

2 Components 3

2 Components

Header file

The S32 SDK contains a device-specific header files which provide direct access to the peripheral registers. Each
supported device in S32 SDK has an overall System-on-Chip (SoC) memory-mapped header file. This header file
contains the memory map and register base address for each peripheral and the IRQ vector table with associated
vector numbers.

Feature Header File

The HAL is designed to be reusable regardless of the peripheral configuration differences from one SOC device
to another. An overall Peripheral Feature Header File is provided for device to define the feature or configuration
differences for each SOC sub-family device.

Hardware Abstraction Layer

The HAL consists of low-level drivers for the SOC product family on-chip peripherals. The main goal is to abstract
the hardware peripheral register accesses into a set of stateless basic functional operations. The HAL itself can
be used with system services to build application-specific logic or as building blocks for use-case driven high-level
Peripheral Drivers. It primarily focuses on the functional control, configuration, and realization of basic peripheral
operations. The HAL hides register access details and various SOC peripheral instantiation differences so that,
either an application or high-level Peripheral Drivers, can be abstracted from the low-level HW details. Therefore,
hardware peripheral must be accessed through HAL.

The HAL can also support some high-level functions with certain logic, provided these high-level functions do
not depend on functions from other peripherals, nor impose any action to be taken in interrupt service routines.
For example, the UART HAL provides a blocking byte-send function that relies only on the features available in
the UART peripheral itself. These high-level functions enhance the usability of the HAL but remain stateless and
independent of other peripherals. Essentially, the HAL functional boundary is limited by the peripheral itself. There
is one HAL driver for each peripheral and the HAL only accesses the features available within the peripheral. In
addition, the HAL does not define interrupt service routine entries or support interrupt handling. These tasks must
be handled by a high-level Peripheral Driver together with the Interrupt Manager.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

4 CONTENTS

The HAL drivers can be found in the platform/hal directory.

Peripheral Drivers

The Peripheral Drivers are high-level drivers that implement high-level logic transactions based on one or more HAL
drivers, other Peripheral Drivers, and/or System Services. Consider, for example, the differences in the UART HAL
and the UART Peripheral Driver. The UART HAL mainly focuses on byte-level basic functional primitives, while the
UART Peripheral Driver operates on an interrupt-driven level using data buffers to transfer a stream of bytes. In
general, if a driver, that is mainly based on one peripheral, interfaces with functions beyond its own HAL and/or
requires interrupt servicing, the driver is considered a high-level Peripheral Driver.

The Peripheral Drivers support all instances of each peripheral instantiated on the SOC by using a simple integer
parameter for the peripheral instance number.The user of the Peripheral Driver does not need to know the peripheral
memory-mapped base address.

The Peripheral Drivers operate on a high-level logic that requires data storage for internal operation context handling.
However, the Peripheral Drivers do not allocate this memory space. Rather, the user passes in the memory for the
driver internal operation through the driver initialization function. Note that HAL is used for SOCs with restricted
RAM and FLASH size.

The Peripheral Drivers are designed to handle the entire functionality for a targeted use-case. An application should
be able to use only the Peripheral Driver to accomplish its purpose. The mixing of the Peripheral Driver and HAL
by an application for the same peripheral can be done, but is discouraged for architectural cleanliness and to avoid
cases where bypassing the Peripheral Driver results in logic errors within the Peripheral Driver.

The Peripheral Drivers can be found in the platform/drivers directory.

System Services

The System Services contain a set of software entities that can be used by the Peripheral Drivers. They may be
used with HAL Drivers to build the Peripheral Drivers or they can be used by an application directly. The following
sections describe each of the System Services software entities. These System Services are in the platform/drivers
directory.

Interrupt Manager

The Interrupt Manager provides functions to enable and disable individual interrupts within the Nested Vector In-
terrupt Controller (NVIC). It also provides functions to enable and disable the ARM core global interrupt (via the
CPSIE and CPSID instructions) for bare-metal critical section implementation. In addition to providing functions for
interrupt enabling and disabling, the Interrupt Manager provides Interrupt Service Routine (ISR) registration that
allows the application software to register or replace the interrupt handler for a specified IRQ vector. The drivers do
not set interrupt priorities. The interrupt priority scheme is entirely determined by the specific application logic and
its setting is handled by the user application. The user application manages the interrupt priorities.

Clock Manager

The Clock Manager provides centralized clock-related functions for the entire system. It can dynamically set the
system clock and perform clock gating/un-gating for specific peripherals. The Clock Manager also maintains knowl-
edge of the clock sources required for each peripheral and provides functions to obtain the clock frequency for each
supported clock used by the peripheral. The Clock Manager provides a notification framework which the software
components, such as drivers, uses to register callback functions and execute the predefined code flow during the
clock mode transition.

Power Manager

The Power Manager provides centralized power-related functions for the entire system. It dynamically sets the sys-
tem power mode. The Power Manager provides a notification framework which the software components, such as
drivers, uses to register callback functions and execute the predefined code flow during the power mode transition.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

3 Supported Platforms 5

Examples

The examples provided show how to build user applications using the S32 SDK. The examples can be found in the
top-level example directory. For details please see Examples and Demos .

3 Supported Platforms

Supported board and SoC versions can be found in the Release Notes. (SDK\ReleaseNotes.pdf)

4 Installation

Prerequisites

SDK can be used in two ways: bundled in S32 Design Studio and standalone.

S32 SDK is delivered bundled in the S32 Design Studio. In this case it’s already configured and ready to use.

S32 SDK is also delivered through a standalone installer. Using the standalone installer is recommended when
using a compiler which is not supported in S32 Design Studio or when the graphical interface is not required. In this
case the installer can configure an existing S32 Design Studio to use the configuration files delivered in the installer.

If the integration with the S32 Design Studio is not needed the path to S32 Design Studio can be left empty – and
in this case only the S32 SDK will be installed and configured.

Steps

1. Start the installer S32_SDK_<ReleaseSpecifc>.exe

2. Set the destination folder for the SDK, give optional location of S32DS and install. Example of S32DS path:
C:\NXP\S32ARMv1.3

3. Start using the SDK by creating a new project or importing a project

Background

The installer does the following things in background:

• Puts the SDK in the selected destination directory.

• Appends to S32SDK_PATH the path of the SDK.

– Note: Please make sure you uninstall previous SDK so that this variable will be empty.

• Copies necessary files into S32 Design Studio installation location.

• Overwrites existing SDK from S32 Design Studio with the version from destination directory

Uninstaller

Use “uninst.exe” to uninstall the SDK.

Note: If you want to reinstall the SDK please use a clean copy of S32DS. When you uninstall this does not delete
the copied files (ex: Config_01.pez), so a clean copy is needed.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

6 CONTENTS

5 Build Tools

Introduction

S32 SDK officially supports the following compilers:

• GreenHills

• IAR

• GCC (also included in S32 Design Studio for ARM)

• COSMIC Software CORTEX-M C Cross Compiler

• Wind River Diab Compiler

Note

Toolchain versions and options can be found in the Release Notes. (SDK\ReleaseNotes.pdf)

Compiler warnings disabled for S32 SDK

For Wind River DIAB Compiler the following warnings are not checked at S32 SDK build time:

• #1824: explicit cast discards volatile qualifier
Motivation: this warning has been deactivated because of false positive occurrences reported for Wind River
DIAB Compiler 5.9.4.8 under tickets TCDIAB-13994, TCDIAB-14098.

• #5387: explicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
Motivation: this warning has been disabled because it is reported for conversions required by the internal
SDK algorithms. Intermediary results requiring high precision are stored as uint64_t variables and converted
into uint32_t variables. Checks have been put in place to ensure that the cast is only done if the value to be
converted fits on 32 bits.

• #5388: conversion from pointer to same-sized integral type (potential portability problem)
Motivation: for S32 SDK conversions between uint32_t and memory addresses are made assuming that
pointers are stored on 32bits.

Makefiles

Multiple makefile projects are provided in the 'examples' folder, for all supported compilers. These projects can
be modified by adding application code, or the makefiles can be reused in different projects, after reconfiguring
the paths/variables. Please note that these projects require the designated compiler to be already installed on the
host (check the links above for installer retrieval, from web); also, the makefile path to compiler executable must be
updated before running make utility.

S32 Design Studio

S32 Design Studio for ARM is delivered with arm-gcc compiler support included ("{S32_Design_Studio_install_←↩

path}\Cross_Tools\gcc-arm-none-eabi). Eclipse plugins for gcc are already installed in S32 Design Studio IDE, so
new projects for this toolchain can be created and built directly from the IDE. To add S32 SDK source files to a clean
S32 Design Studio project, eclipse "linked resources" feature can be used: project properties->New->Folder->←↩

Advanced->'Link to alternate location' (e.g. "{S32_SDK_PATH}"). For S32 Design Studio project with Processor
Expert support, please import a project from "{S32_SDK_PATH} Name".

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

https://support.ghs.com/downloads/
https://www.iar.com/iar-embedded-workbench/downloads/
https://launchpad.net/gcc-arm-embedded/+download
http://cosmic-software.com/download.php
http://www.windriver.com/evaluations/compiler/

6 IDE Support 7

IAR Embedded Workbench

S32 SDK source files can be added to IAR Embedded Workbench projects through Project Menu->Add Files
option; this will create a link to the SDK files in the project instead of copying the files in the workspace. The project
files can be grouped in any layout, this will not affect the SDK folder structure on disk. After adding the necessary
sources, the user must set the include path: Project options->C/C++ Compiler->Preprocessor tab->Additional
include directories. Additionally, the linker command file can be overwritten; S32 SDK provides linker scripts for
all supported toolchains, both for RAM and Flash target memory; this can be done from Project options->Linker-
>Linker Configuration File->Check 'Overwrite default', then choose the S32 SDK IAR lcf for RAM/Flash ("{S32_←↩

SDK_install_path}\platform\devices\S32K144\linker\iar"). Finally, Project->Make (or F7 on the keyboard) builds the
application using IAR compiler for ARM; errors/warnings are shown in the Build Messages view.

6 IDE Support

S32 Design Studio

• S32 Design Studio for ARM is delivered with Processor Expert support included. Please see Configuration
chapter.

• To configure the S32 SDK path of the project, eclipse "S32 SDK Specific" feature can be used: patch project
properties->Processor Expert->S32 SDK Specific->SDK path

• Processor Expert repositories and paths can be configured as it follows: Window -> Preferences -> Proces-
sor Expert -> Repositories and Paths.

• S32 Design Studio projects can be imported from S32 SDK package. Please see Examples and Demos
chapter.

IAR Embedded Workbench

• There is no configuration support for S32 SDK in IAR.

• IAR Embedded Workbench projects can be imported from S32 SDK package. Please see Examples and
Demos chapter.

7 Configuration

Processor Expert software allows generation of configuration structures for peripheral drivers from S32 SDK. With
the help of Eclipse based graphical interface where you can configure your driver and generate corresponding
configuration structure. This tool doesn't generate source code for S32 family, it only generates configurations data
structures.

Processor Expert generates configuration header files that are included by application source code. The configu-
ration data structures from these files are defined in S32 SDK. All these header files are generated by this tool in
${ProjName}/Generated_Code directory.

Peripheral drivers are not stored directly in the project directory, these drivers are stored in S32 SDK repository.
Shared peripheral drivers repository is advantageous when more projects should share the same version of pe-
ripheral drivers. In this case, peripheral drivers are not physically placed in the project directory but each project is
virtually linked with shared, common repository from S32 SDK. This way the management of the projects’ drivers
can be done in one place and any changes made in the shared repository is automatically distributed across all of
the linked projects, for example in case of bug fixing or library update and also backup or archiving of the peripheral
drivers versions is very simple.

8 Acronyms and Abbreviations

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

8 CONTENTS

Acronym Description
CPSIE, CPSID Change Processor State Interrupt Enable / Disable
EAR Early Access Release
EVB Evaluation board
HAL Hardware Abstraction Layer
IRQ Interrupt Request
ISR Interrupt Service Routine
LLWU Low Leakage Wakeup Unit
NVIC Nested Vector Interrupt Controller
RTOS Real Time Operating System
S32DS S32 Design Studio
SDK Software Development Kit
SOC System-on-Chip
UART Universal Asynchronous Receiver / Transmitter

9 MISRA Compliance

This section describes how the S32 SDK project addresses MISRA Compliance.

The S32 SDK SW components which are implemented to be compliant with MISRA C 2012 are:

• all drivers & HALs

• generated driver code (including Cpu.c & .h)

• main.c (generated via graphical configurator)

Violations of MISRA C 2012 guidelines which remain not fixed, shall be documented as deviations at file level.

Other SW components included in the S32 SDK package which are not subject to MISRA C 2012 compliance:

• demo_apps & driver examples

• FreeRTOS

10 Error detection and reporting

S32 SDK drivers can use a mechanism to validate data coming from upper software layers (application code) by
performing a number of checks on input parameters' range or other invariants that can be statically checked (not
dependent on runtime conditions). A failed validation is indicative of a software bug in application code, therefore it
is important to use this mechanism during development.

The validation is performed by using DEV_ASSERT macro. A default implementation of this macro is provided
in this file. However, application developers can provide their own implementation in a custom file. This requires
defining the CUSTOM_DEVASSERT symbol with the specific file name in the project configuration (for example:
-DCUSTOM_DEVASSERT="custom_devassert.h")

The default implementation accommodates two behaviors, based on DEV_ERROR_DETECT symbol:

• When DEV_ERROR_DETECT symbol is defined in the project configuration (for example: -DDEV_ER←↩

ROR_DETECT), the validation performed by the DEV_ASSERT macro is enabled, and a failed validation
triggers a software breakpoint and further execution is prevented (application spins in an infinite loop) This
configuration is recommended for development environments, as it prevents further execution and allows
investigating potential problems from the point of error detection.

• When DEV_ERROR_DETECT symbol is not defined, the DEV_ASSERT macro is implemented as no-op,
therefore disabling all validations. This configuration can be used to eliminate the overhead of development-
time checks.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11 Examples and Demos 9

It is the application developer's responsibility to decide the error detection strategy for production code: one can
opt to disable development-time checking altogether (by not defining DEV_ERROR_DETECT symbol), or one can
opt to keep the checks in place and implement a recovery mechanism in case of a failed validation, by defining
CUSTOM_DEVASSERT to point to the file containing the custom implementation.

11 Examples and Demos

Applications that show the user how to initialize the peripherals for the basic use cases

11.1 Introduction

S32 SDK examples structure:

• Demo applications (SDK/examples/<CPU>/demo_apps), are demo applications for various IDEs and com-
pilers. Also this examples are using more advanced use-cases - FreeRTOS integration, LIN Stack, FlexCAN
usage and Clock Setup.

• Driver Examples (SDK/examples/<CPU>/driver_examples), are simple applications which exemplify a basic
use-case for a specific driver.

Examples are available for:

• S32K142 Examples

• S32K144 Examples

• S32K148 Examples

11.2 Usage

11.2.1 How to build

For makefile project

There are makefile projects in all compilers supported. In order to used them:

• Make utility (eg. GNU Make)

• Toolchain (eg. GCC Toolchain)

• Make sure the make and compiler are in Path (for Microsoft Windows : System -> Environmental
Variables)

• From command line execute the makefile: make all

The makefiles generate binary files for both RAM and FLASH configurations.

For IAR Embedded Workbench

From IAR Workbench for ARM use File > Open > Workspace and browse to the desired project. After the project
was opened you can see the files in "Workspace Files". Finally, the project can be executed from Project > Down-
load and Debug. Make sure that the debug probe you are using is selected and configured in Project options >
Debugger > Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

10 CONTENTS

For S32 Design Studio

From S32 Design Studio (See Release notes for the S32 Design Studio version), go to File -> New -> New Project
from Example and select the example you wish to import. This will copy the example project into workspace. Next
steps:

• Use Processor Expert to configure the components used in the example

• Use Project > Generate Processor Expert for generating the configuration

• Use Project > Build to build the project

• Use Project > Debug and launch your preferred debug configuration

11.2.2 How to debug

This section explains how to upload and debug the binary files generated after build. This assumes that you have a
debug probe(see release notes for supported debug probes) and a debug software installed on the machine.

Generic steps:

1. Launch the debug software

2. Load the binary file into the MCU

3. Execute the application

Loading with Segger JLink:

• Download and install the latest drivers and GDB server, named Software and documentation pack, from their
site

• Download your favorite GDB client (eg. arm-none-eabi-gdb)

• Browse to JLink installation folder and launch JLinkGDBServer

• Select the appropriate part from the device list and click on OK

• Open the GDB client and connect to the configured port - by default localhost:2331

• Upload the file and execute (see GDB client user manual for details regarding the commands used)

The following table is a small list of commands used in GNU ARM GDB with JLinkGDBServer to connect and run
the application:

Command Description
target remote:PortNumber Connect to the remote target at a specified port.

Please replace PortNumber with the port configured
in the GDB server.

monitor reset Reset the target MCU
monitor halt Halt the target MCU
file ApplicationName.elf Load the file and symbols. Please change

ApplicationName with your application name
load Download the executable to the target MCU
continue Begin executing the application

Loading with PEmicro OpenSDA/MultiLink:

• Download and install the latest drivers and GDB server, named P&E GDB Server for Kinetis with Windows
GUI, from their site

• Download your favorite GDB client (eg. arm-none-eabi-gdb)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

https://www.segger.com/jlink-software.html
https://www.pemicro.com

11.2 Usage 11

• Browse to PEmicro GDB Server installation folder and launch P&E GDB Server for Kinetis

• Select the appropriate part from the device list and click on Connect

• Open the GDB client and connect to the configured port - by default localhost:7224

• Upload the file and execute (see GDB client user manual for details regarding the commands used)

The following table is a small list of commands used in GNU ARM GDB with PEmicro GDB server to connect and
run the application:

Command Description
target remote:PortNumber Connect to the remote target at a specified port.

Please replace PortNumber with the port configured
in the GDB server.

monitor reset Reset the target MCU
file ApplicationName.elf Load the file and symbols. Please change

ApplicationName with your application name
load Download the executable to the target MCU
continue Begin executing the application

11.2.3 Using terminal emulator

To run the examples that use LPUART to help you visualize data you must download a terminal emulator (eg. Putty,
Termite, TeraTerm) and configure it.

Unless otherwise noted the standard communication parameters are:

• 115200 baud

• One stop bit

• No parity

• No flow control

Example configuration for Termite using OpenSDA

1) Download Termite from their site
2) Run the installer. Wait for the installation to be completed
3) Go to Start -> All Programs -> Termite and launch the program. The window from Fig.1 will appear ...

Termite
window

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

http://www.compuphase.com/software_termite.htm

12 CONTENTS

4) Click on Settings
5) As seen in Fig.2, configure the following communication parameters:

• Port(1) : COMx - where x must be replaced with the COM port number

• Baud Rate(2) : 115200

• Data Bits(3) : 8

• Stop Bits(4) : 1

• Parity(5) : None

• Flow Control(6) : None

• Forward(7) : None

Settings window

6) Click OK. Now the terminal should be configured

Note

For further help consult the terminal's documentation

11.3 S32K142 Examples

Demo applications and driver examples for S32K142

Examples for S32K142 are separated into two groups:

• Demo Applications

Note

Driver examples section is not available for S32K142

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.3 S32K142 Examples 13

11.3.1 Demo Applications

Applications that show more advanced use cases

Available demo applications:
Click on one of the project to see the corresponding documentation

• Hello World

• Hello World - IAR Embedded Workbench

• Hello World - Makefile

11.3.1.1 Hello World

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K142 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K142 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K142EVB-Q100

• S32K142-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K142EVB-Q100 S32K142-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select hello_world_S32K142.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(hello_world_S32K142). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
hello_world_S32K142 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
hello_world_S32K142 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
hello_world_S32K142 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
hello_world_S32K142 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.3.1.2 Hello World - IAR Embedded Workbench

Basic application that presents the project scenarios for S32 SDK and integration with IAR Embedded Workbench
IDE

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K142 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

Note

For information about how to run IAR projects please refer to Usage

Prerequisites

The run the example you will need to have the following items:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.3 S32K142 Examples 15

• 1 S32K142 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K142EVB-Q100

• S32K142-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K142EVB-Q100 S32K142-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

11.3.1.3 Hello World - Makefile

Basic application that presents the project scenarios for S32 SDK using makefiles for various compilers

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K142 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

There are five projects delivered with this package:

• Makefile project (GCC compiler)

• Makefile project (GHS compiler)

• Makefile project (IAR compiler)

• Makefile project (CSMC compiler)

• Makefile project (DCC compiler)

Note

For information about how to run the makefile please refer to Usage

Prerequisites

The run the example you will need to have the following items:

• 1 S32K142 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

16 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K142EVB-Q100

• S32K142-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K142EVB-Q100 S32K142-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

11.4 S32K144 Examples

Demo applications and driver examples for S32K144

Examples for S32K144 are separated into two groups:

• Demo Applications

• Driver Examples

11.4.1 Demo Applications

Applications that show more advanced use cases

Available demo applications:
Click on one of the project to see the corresponding documentation

• ADC Low Power

• AMMCLib

• FlexCAN Encrypted

• FreeMASTER

• FreeRTOS

• Hello World

• Hello World - IAR Embedded Workbench

• Hello World - Makefile

• LIN MASTER

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 17

• LIN SLAVE

• Structural Core Self Test Example

11.4.1.1 ADC Low Power

Demonstrates ADC trigger scheme using TRGMUX and LPIT, switches the power mode to stop and sends data
using LPUART and DMA

Application description

The purpose of this demo application is to show you the usage of a subset of the peripherals found on the S32K144
SoC.

• The application uses LPIT to trigger ADC conversions every 100ms via TRGMUX with the CPU in sleep
mode. The ADC is using Hardware Compare feature to validate an conversion only if the value is greater than
half of the reference voltage, in this case VDD/2. This way the CPU is woken up from sleep mode only if the
condition is met.

• When the conversion is complete the data is transformed into a bar graph and it is sent via LPUART using
DMA memory to peripheral transfer to the host PC. This way, the CPU can be put into a low power mode to
reduce the energy used.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

18 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select adc_low_power_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(adc_low_power_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
adc_low_power_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
adc_low_power_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
adc_low_power_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
adc_low_power_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

11.4.1.2 AMMCLib

Provides an example of integration of AMMCLib and S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with AMMCLib.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 19

• The application uses LPTMR to generate samples of a sinusoidal signal using trigonometric functions from
the AMMCLib. Calculated signal samples are then scaled to be in the range of the FTM PWM duty cycle and
are used to change the intesity of the RGB leds.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from USB)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION | S32K144EVB-Q100 | S32K144-MB

-------------—|------------—|-----------— FTM0 Channel 0 (PTD15) |RGB_RED - wired on the board | J12.18 - J11.31
FTM0 Channel 1 (PTD16) |RGB_GREEN - wired on the board | J12.17 - J11.32 FTM0 Channel 2 (PTD0) |RGB←↩

_BLUE - wired on the board | J12.31 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ammclib_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ammclib_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

20 CONTENTS

Configuration Name Description
ammclib_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ammclib_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ammclib_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
ammclib_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.1.3 FlexCAN Encrypted

Demo application showing the FlexCAN functionalities

Note

If running the encrypted communication: The encryption uses the first non-volatile user key, which needs
to be configured by running the CSEc Key Configuration in the driver examples folder.
Encrypted communication works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is
available on your device.
If one of the user keys was loaded using the CSEc Key Configuration, any further full erase of the Flash
requires a Challenge-Authentication process. This can be done by running the CSEc Key Configuration
example again and setting the ERASE_ALL_KEYS macro to 1.

Application description

The purpose of this demo application is to show you the usage of the FlexCAN module configured to use Flexible
Data Rate and the CSEc module from the S32K144 CPU using the S32 SDK API.

• In the first part, the application will setup the board clocks, pins and other system functions such as SBC if
the board uses this module as a CAN transceiver.

• Then it will configure the FlexCAN module features such as FD, Bitrate and Message buffers

• The application will wait for frames to be received on the configured message buffer or for an event raised by
pressing one of the two buttons which will trigger a frame send to the recipient.

• The frames are sent in plain text by default, but the encrypted mode can be enabled by holding one of the
buttons pressed and pressing the other.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 3 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 21

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
CAN HIGH (∗) CAN HIGH - J13.1 CAN HIGH - J60.2
CAN LOW (∗) CAN LOW - J13.2 CAN LOW - J60.3
BUTTON 2 (PTC13) BTN1 - wired on the board BTN3 - wired on the board
BUTTON 1 (PTC12) BTN0 - wired on the board BTN2 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
GND (GND) J3-11 - Slave GND J6 - Slave GND

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
CAN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexcan_encrypted_←↩

s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexcan_encrypted_s32k144). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexcan_encrypted_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexcan_encrypted_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexcan_encrypted_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

22 CONTENTS

flexcan_encrypted_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.1.4 FreeMASTER

Example application showing FreeMASTER Serial Communication usage

Application description

The purpose of this demo application is to show you how to use the FreeMASTER serial communication using
S32K144 on OpenSDA with this SDK.

This demo uses the FreeMASTER Run-Time Debugging Tool to visualise ADC conversions and allows the user to
monitor the ADC sampling rate for different ADC configurations (ADC sampling time and resolution can be controlled
through FreeMASTER Application Commands).

The ADC is configured to perform continous conversions and generate an interrupt after each conversion. The
LPTMR is configured to generate a periodic interrupt at 10 ms which reads the number of ADC conversions.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 1 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• FreeMASTER host application

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 23

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select freemaster_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(freemaster_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
freemaster_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
freemaster_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
freemaster_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
freemaster_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

• Open the FreeMASTER project and set the communication parameters: Go to Project/Options/Comm,
choose Direct RS232 and set the port and speed.

• Go to Project/Options/MAP Files and select the ∗.elf file of your project and set file format to ELF/DWARF.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

FreeMASTER host application can be downloaded from NXP's website. FreeMASTER Serial Communication is
included into the project (V2.0).

11.4.1.5 FreeRTOS

Demo application showing the integration of FreeRTOS and S32 SDK

Application description

The purpose of this demo application is to show you how to use the FreeRTOS with the S32 SDK for the S32K144
MCU.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

24 CONTENTS

This project defines a very simple demo that creates two tasks, one queue, and one timer. It also demonstrates
how Cortex-M4 interrupts can interact with FreeRTOS tasks/timers.

This simple demo project runs 'stand alone' (without the rest of the tower system) on the Freedom Board or Validation
Board, which is populated with a S32K144 Cortex-M4 microcontroller.

The idle hook function: The idle hook function demonstrates how to query the amount of FreeRTOS heap space
that is remaining (see vApplicationIdleHook() defined in this file).

The main() Function: main() creates one software timer, one queue, and two tasks. It then starts the scheduler.

The Queue Send Task: The queue send task is implemented by the prvQueueSendTask() function in this file. prv←↩

QueueSendTask() sits in a loop that causes it to repeatedly block for 200 milliseconds, before sending the value 100
to the queue that was created within main(). Once the value is sent, the task loops back around to block for another
200 milliseconds.

The Queue Receive Task: The queue receive task is implemented by the prvQueueReceiveTask() function in this
file. prvQueueReceiveTask() sits in a loop that causes it to repeatedly attempt to read data from the queue that was
created within main(). When data is received, the task checks the value of the data, and if the value equals the
expected 100, toggles the green LED. The 'block time' parameter passed to the queue receive function specifies
that the task should be held in the Blocked state indefinitely to wait for data to be available on the queue. The queue
receive task will only leave the Blocked state when the queue send task writes to the queue. As the queue send task
writes to the queue every 200 milliseconds, the queue receive task leaves the Blocked state every 200 milliseconds,
and therefore toggles the blue LED every 200 milliseconds.

The LED Software Timer and the Button Interrupt: The user button BTN1 is configured to generate an interrupt
each time it is pressed. The interrupt service routine switches the red LED on, and resets the LED software timer.
The LED timer has a 5000 millisecond (5 second) period, and uses a callback function that is defined to just turn
the LED off again. Therefore, pressing the user button will turn the LED on, and the LED will remain on until a full
five seconds pass without the button being pressed.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 25

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BTN (PTC13) BTN1 - wired on the board BTN3 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select freertos_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(freertos_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
freertos_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
freertos_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
freertos_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
freertos_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.1.6 Hello World

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

Prerequisites

The run the example you will need to have the following items:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

26 CONTENTS

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select hello_world_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(hello_world_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
hello_world_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
hello_world_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
hello_world_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
hello_world_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 27

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.1.7 Hello World - IAR Embedded Workbench

Basic application that presents the project scenarios for S32 SDK and integration with IAR Embedded Workbench
IDE

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

Note

For information about how to run IAR projects please refer to Usage

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

11.4.1.8 Hello World - Makefile

Basic application that presents the project scenarios for S32 SDK using makefiles for various compilers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

28 CONTENTS

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

There are five projects delivered with this package:

• Makefile project (GCC compiler)

• Makefile project (GHS compiler)

• Makefile project (IAR compiler)

• Makefile project (CSMC compiler)

• Makefile project (DCC compiler)

Note

For information about how to run the makefile please refer to Usage

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

11.4.1.9 LIN MASTER

Example that shows the usage of the LIN stack in master mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 29

Application description

This example demonstrates the LIN communication between S32K144 EVB Master and Slave using unconditional
frames.

• The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control.

• If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor.

• If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed.

• If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO←↩

TOR SPEED command through Motor1Selection signal to increase motor speed.

• When users press button SW2 on the Master board, the Master SeatECU switches its schedule table to
go-to-sleep table. So the Slave and Master enter sleep mode, RGB LEDS are off.

• When LIN cluster is in sleep mode, users press button SW3 on the Master board, the Master board sends a
wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
BUTTON 2 (PTC13) BTN1 - wired on the board BTN3 - wired on the board
BUTTON 1 (PTC12) BTN0 - wired on the board BTN2 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BLUE_LED (PTD16) RGB_GREEN - wired on the board J12.31 - J11.29
GND (GND) J3-11 - Slave GND J6 - Slave GND
LIN (∗) J11-1 - Slave LIN J48.4 - Slave LIN

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

30 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_master_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lin_master_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lin_master_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lin_master_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lin_master_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lin_master_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.1.10 LIN SLAVE

Example that shows the usage of the LIN stack in slave mode

Application description

This example demonstrates the LIN communication between S32K144 EVB Master and Slave using unconditional
frames.

• The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control.

• If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor.

• If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 31

• If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO←↩

TOR SPEED command through Motor1Selection signal to increase motor speed.

• When users press button SW2 on the Master board, the Master SeatECU switches its schedule table to
go-to-sleep table. So the Slave and Master enter sleep mode, RGB LEDS are off.

• When LIN cluster is in sleep mode, users press button SW3 on the Master board, the Master board sends a
wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
BUTTON 2 (PTC13) BTN1 - wired on the board BTN3 - wired on the board
BUTTON 1 (PTC12) BTN0 - wired on the board BTN2 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BLUE_LED (PTD16) RGB_GREEN - wired on the board J12.31 - J11.29
GND (GND) J3-11 - Master GND J6 - Master GND
LIN (∗) J11-1 - Master LIN J48.4 - Master LIN

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_slave_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lin_slave_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

32 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lin_slave_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lin_slave_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lin_slave_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lin_slave_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.1.11 Structural Core Self Test Example

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with sCST.

• The application will run the core self tests from the Structural Core Self Test library and will report the result
using the user leds.

• Please consult the sCST manual for more information about the library.

Note

This application uses a modified version of the linker file which defines the section used by the library.
As a consequence, the application will only run in flash.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• Debug probe (JLink, PEmicro, OpenSDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 33

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select scst_s32k144. Then click
on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(scst_s32k144). Then go to Project and
click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
scst_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
scst_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.2 Driver Examples

Applications that show the user how to initialize the peripherals for the basic use cases

There are currently examples for the following categories:
Click on one of the categories to see the available projects

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

34 CONTENTS

• Analog Driver Examples

• Communication Driver Examples

• System Driver Examples

• Timer Driver Examples

11.4.2.1 Analog Driver Examples

Applications that show the user how to initialize the analog peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• ADC Hardware Trigger

• ADC Software Trigger

• CMP DAC

11.4.3 ADC Hardware Trigger

How to trigger the ADC by hardware

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered in hardware by the
Programmable Delay Block from the S32K144 CPU using the S32 SDK API.

• The application uses PDB to trigger ADC conversions every 1s.

• When the conversion is complete the data is sent to the host PC using LPUART.

See also

PDB_Example_group
For alternate ADC Hardware triggering scheme see ADC_LOW_POWER_group

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 35

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select adc_hwtrigger_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(adc_hwtrigger_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
adc_hwtrigger_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
adc_hwtrigger_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
adc_hwtrigger_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
adc_hwtrigger_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

36 CONTENTS

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

11.4.4 ADC Software Trigger

How to trigger ADC by software

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered by software from the
S32K144 CPU using the S32 SDK API.

• The application uses software to trigger ADC conversions every 1s.

• When the conversion is complete the data is sent to the host PC using LPUART.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 37

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select adc_swtrigger_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(adc_swtrigger_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
adc_swtrigger_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
adc_swtrigger_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
adc_swtrigger_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
adc_swtrigger_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

11.4.5 CMP DAC

Driver examples showing the basic usage scenario of the CMP

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

38 CONTENTS

Application description

The purpose of this demo application is to show you how to use the Analog Comparator of the S32K144 MCU using
the S32 SDK API.
The Comparator is configured to compare analog input 0(AIN0) with half the reference voltage generated with the
internal DAC. Based on the input from the potentiometer the LEDs light by the following rules:

• 1) Vin < DAC voltage : RED on, GREEN off

• 2) Vin > DAC voltage : RED off, GREEN on

• 3) Unknown state : RED on, GREEN on

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
CMP Input 0 (PTA0) J4.14 - J5.7 J21.1 - J9.31

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select cmp_dac_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(cmp_dac_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 39

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
cmp_dac_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
cmp_dac_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
cmp_dac_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
cmp_dac_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.5.1 Communication Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• FLEXIO I2C

• FLEXIO I2S

• FLEXIO SPI

• FLEXIO UART

• LPI2C MASTER

• LPI2C SLAVE

• LPSPI Transfer

• LPUART Echo

• SBC UJA1169

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

40 CONTENTS

11.4.6 FLEXIO I2C

Example application showing FlexIO I2C driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO I2C driver found on the S32K144 SoC
using S32 SDK API.

The application uses FlexIO I2C driver to make a send and a receive data request. The slave device for this example
is the LPI2C instance, which is configured to act as a bus slave. The slave and master buffers will be checked after
each transfer by the application, user shall check isTransferOk variable to see if the transmissions are successful.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO SDA (PTD0) J1.1 - J6.1 J9.29 - J12.31
FLEXIO SCL (PTA11) J1.3 - J1.2 J9.30 - J9.22
LPI2C SDA (PTA2) J1.1 - J6.1 J9.29 - J12.31
LPI2C SCL (PTA3) J1.3 - J1.2 J9.30 - J9.22

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_i2c_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_i2c_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 41

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_i2c_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexio_i2c_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexio_i2c_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexio_i2c_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.7 FLEXIO I2S

Example application showing FlexIO I2S driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO I2S driver found on the S32K144 SoC
using S32 SDK API.

The application uses FlexIO I2S driver to make a data transfer of a defined size. The slave device for this example
is a second FlexIO I2S driver using the same FlexIO instance, which is configured to act as a bus slave. The slave
and master buffers will be checked after each transfer by the application, RED or GREEN led will be lit depending
on the check result.

The MASTER I2S driver is configured to use DMA for transfers.

Data size is configured by TRANSFER_SIZE define, by default is configured to be 2 KB.

Note

Since the driver is configured to tranfer 32 bit frames the data size must be modulo 4.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

42 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO_MASTER SCK (PTA0) J5.5 - J6.19 J9.31 - J9.23
FLEXIO_MASTER WS (PTA1) J5.7 - J6.17 J9.30 - J9.24
FLEXIO_MASTER TX (PTD0) J6.1 - J1.3 J12.31 - J9.30
FLEXIO_MASTER RX (PTA11) J1.2 - J1.1 J9.22 - J9.31
FLEXIO_SLAVE SCK (PTA8) J5.5 - J6.19 J9.31 - J9.23
FLEXIO_SLAVE WS (PTA9) J5.7 - J6.17 J9.30 - J9.24
FLEXIO_SLAVE TX (PTA2) J2.6 - J1.3 J9.22 - J9.30
FLEXIO_SLAVE RX (PTA3) J1.2 - J1.1 J12.31 - J9.31

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_i2s_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_i2s_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_i2s_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexio_i2s_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexio_i2s_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexio_i2s_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 43

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.8 FLEXIO SPI

Example application showing FlexIO SPI driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO SPI driver found on the S32K144 SoC
using S32 SDK API.

The application uses FlexIO SPI driver to make a data transfer of a defined size. The slave device for this example
is a second FlexIO SPI driver using the same FlexIO instance, which is configured to act as a bus slave. The slave
and master buffers will be checked after each transfer by the application, user shall check isTransferOk variable to
see if the transmissions are successful.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO_MASTER SS (PTA1) J5.5 - J6.19 J9.32 - J9.24
FLEXIO_MASTER SCK (PTA0) J5.7 - J6.17 J9.31 - J9.23
FLEXIO_MASTER MOSI (PTD0) J2.6 - J1.1 J12.31 - J9.32
FLEXIO_MASTER MISO (PTA11) J1.2 - J1.3 J9.22 - J9.30
FLEXIO_MASTER SS (PTA2) J5.5 - J6.19 J9.32 - J9.24
FLEXIO_MASTER SCK (PTA3) J5.7 - J6.17 J9.31 - J9.23
FLEXIO_MASTER MOSI (PTA8) J2.6 - J1.1 J12.31 - J9.32
FLEXIO_MASTER MISO (PTA9) J1.2 - J1.3 J9.22 - J9.30

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

44 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_spi_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_spi_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_spi_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexio_spi_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexio_spi_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexio_spi_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.9 FLEXIO UART

Example application showing FlexIO UART driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO UART driver found on the S32K144
SoC using S32 SDK API.

Two instances of the FlexIO UART driver are used to echo the data received from host.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 45

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO_UART RX (PTA11) J1.2 - J4.4 J9.22 - J20.5
FLEXIO_UART TX (PTA0) J5.7 - J4.2 J9.31 - J20.2

Note

The application uses on board USB - UART chips to transfer data from board to host PC

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_uart_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_uart_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_uart_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

46 CONTENTS

flexio_uart_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink
debuggers

flexio_uart_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro
debuggers

flexio_uart_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

11.4.10 LPI2C MASTER

Driver example that will show the LPI2C Master functionality

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K144 MCU
as a master using S32 SDK.

• The application uses S32 SDK API to initialize the LPI2C module as a master node and in Fast operation
speed after configuring the clocks and pins needed to use the I2C. The example sends to requests to a slave,
found at the configured address, the first being a TX request, while the other being a RX request.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 3 Dupont cables (male to male or female to female depending on the boards)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 47

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

48 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPI2C SCL (PTA3) J1-3 - Slave SCL J9-30 - Slave SCL
LPI2C SDA (PTA2) J1-1 - Slave SDA J9-29 - Slave SDA
GND (GND) J3-11 - Slave GND J6 - Slave GND

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpi2c_master_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpi2c_master_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpi2c_master_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpi2c_master_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lpi2c_master_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lpi2c_master_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.11 LPI2C SLAVE

Driver example that will show the LPI2C Slave functionality

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K144 MCU
as a slave using S32 SDK.

• The application uses S32 SDK API to initialize the LPI2C module as a slave node and in Fast operation speed
after configuring the clocks and pins needed to use the I2C. example uses the LPI2C callback to respond to
requests such as:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 49

– data receive

– data transmit

– buffer full or empty.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 3 Dupont cables (male to male or female to female depending on the boards)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPI2C SCL (PTA3) J1-3 - Master SCL J9-30 - Master SCL
LPI2C SDA (PTA2) J1-1 - Master SDA J9-29 - Master SDA
GND (GND) J3-11 - Master GND J6 - Master GND

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpi2c_slave_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpi2c_slave_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

50 CONTENTS

Configuration Name Description
lpi2c_slave_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpi2c_slave_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lpi2c_slave_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lpi2c_slave_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.12 LPSPI Transfer

Driver example that will show the LPSPI Master and Slave functionalities

Application description

The purpose of this application is to show the user how to use the Low Power Serial Peripheral Interface on the
S32K144 using the S32 SDK API.

• The application uses two on board instances of LPSPI, one in master configuration and the other one is slave
to communicate data via the SPI bus. Data will be gathered periodically from the ADC input and will be sent
to the master device which transforms it into a PWM signal.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 4(6) Dupont male to male cables

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 51

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPSPI0 CS (PTB0) J4.5 - J1.14 J10.31 - J12.30
LPSPI0 SCK (PTB2) J2.11 - J6.1 J10.29 - J12.31
LPSPI0 MOSI (PTE1) J5.14 - J6.3 J13.32 - J12.29
LPSPI0 MISO (PTB4) J2.7 - J6.2 J10.27 - J12.32
LPSPI1 CS (PTD3) J4.5 - J1.14 J10.31 - J12.30
LPSPI1 SCK (PTD0) J2.11 - J6.1 J10.29 - J12.31
LPSPI1 MOSI (PTD2) J5.14 - J6.3 J13.32 - J12.29
LPSPI1 MISO (PTD1) J2.7 - J6.2 J10.27 - J12.32
FTM0 Out Channel 0 (PTC0) J4.11 - J2.2 J11.31 - J11.31
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpspi_transfer_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpspi_transfer_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpspi_transfer_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpspi_transfer_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lpspi_transfer_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lpspi_transfer_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.13 LPUART Echo

Example application using the LPUART driver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

52 CONTENTS

Application description

The purpose of this demo application is to show you how to use the Low Power UART from the S32K144 CPU using
the S32 SDK API.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpuart_echo_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpuart_echo_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 53

Configuration Name Description
lpuart_echo_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpuart_echo_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lpuart_echo_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lpuart_echo_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

11.4.14 SBC UJA1169

Example application using the SBC_UJA1169 driver

Application description

The purpose of this demo application is to show you how to use Power modes of SBC_UJA1169

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

54 CONTENTS

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 55

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPSPI1 CS (PTD3) J4.5 - J1.14 J10.31 - J12.30
LPSPI1 SCK (PTD0) J2.11 - J6.1 J10.29 - J12.31
LPSPI1 MOSI (PTD2) J5.14 - J6.3 J13.32 - J12.29
LPSPI1 MISO (PTD1) J2.7 - J6.2 J10.27 - J12.32

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select S32K144_SBC_Uja1169.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(S32K144_SBC_Uja1169). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
S32K144_SBC_Uja1169 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
S32K144_SBC_Uja1169 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
S32K144_SBC_Uja1169 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
S32K144_SBC_Uja1169 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

Test require correct factory settings for example. FNMC bit must be disabled, SBC_UJA_SBC_SDMC_DIS must be
disabled and slpc must be allowed.

11.4.14.1 System Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

56 CONTENTS

• CRC Checksum

• CSEc key configuration

• eDMA Transfer

• EWM Interrupt

• FLASH Partitioning

• MPU Memory Protection

• Power Mode Switch

• WDOG Interrupt

11.4.15 CRC Checksum

Example application showing the usage of the CRC module

Application description

The purpose of this demo application is to show you how to use the Cyclic Redundancy Check of the S32K144
MCU with this SDK.

The CRC is configured to generate two configurations for CCITT standard and KERMIT standard.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

No connections are required for this example.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 57

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select crc_checksum_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(crc_checksum_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
crc_checksum_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
crc_checksum_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
crc_checksum_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
crc_checksum_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

The CRC module in S32K platform supports both big endian and little endian in source data.

11.4.16 CSEc key configuration

Basic application that presents basic usecases for the CSEc driver

Note

This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.
The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.
The user keys are non-volatile. Once the key was loaded, in order to update it, the counter should be
increased.
After the user key was loaded using this example, any further full erase of the Flash requires a
Challenge-Authentication process. This can be done by setting the ERASE_ALL_KEYS macro to 1.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

58 CONTENTS

Application description

The purpose of this demo application is to show the user how to use the Cryptographic Services Engine module
from the S32K144 MCU with the S32 SDK API.

The implementation demonstrates the following:

• the enablement of the CSEc module, by showing how the Flash should be partitioned (using the Flash driver);

• configuring the MASTER_ECU key;

• configuring the first user key, using the MASTER_ECU key as an authorization;

• using the user key for an encryption. In order to update the user key after they were configured using the
example the user should increase the counter used for loading the key. Erasing all the configured keys
(including the MASTER_ECU key) can be done by changing the value of the ERASE_ALL_KEYS macro to
1. This will place the part back into factory status (the partition command will need to be run again). Please
note that when the Flash is partitioned (the first time running the example on the board, or after a key erase),
the example should not be run from Flash (please use the RAM configuration).

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select csec_keyconfig_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(csec_keyconfig_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 59

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

60 CONTENTS

Configuration Name Description
csec_keyconfig_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
csec_keyconfig_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
csec_keyconfig_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
csec_keyconfig_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.17 eDMA Transfer

Example application showing a subset of the eDMA functionalities

Application description

The purpose of this driver example is to show you how to use the eDMA in the following transfer scenarios for the
S32K144 MCU with the S32 SDK API.

• Single block memory-to-memory transfer

• Loop memory-to-memory transfer

• Scatter/gather memory-to-memory transfer

• Memory-to-peripheral transfer

• Peripheral-to-memory transfer

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 61

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

62 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select edma_transfer_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(edma_transfer_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
edma_transfer_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
edma_transfer_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
edma_transfer_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
edma_transfer_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 63

11.4.18 EWM Interrupt

Driver example that shows the user how to use the External Watchdog Monitor

Application description

The purpose of this driver application is to show the user how to use the EWM from the S32K144 using the S32
SDK API.

The examples uses the SysTick timer from the ARM core to refresh the EWM counter for 30 times. Within this
interval the user can press the button associated with the EWM input pin to assert the interrupt and output pin.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
EWM INPUT (PTA3) J1.3 - J2.10 J9.30 - J11.19
EWM OUTPUT (PTA2) J1.1 - J2.4 J9.29 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ewm_interrupt_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ewm_interrupt_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

64 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ewm_interrupt_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ewm_interrupt_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ewm_interrupt_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
ewm_interrupt_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.19 FLASH Partitioning

Example application which shows the basic operations of the FLASH driver

Application description

The purpose of this demo application is to show you the usage of the FLASH driver with the S32 SDK API.

The examples does the following operations:

• Erases flash

• Partitions the flash

• Configures FlexNVM region as EEPROM

Note

The FlexNVM memory is partitioned to EEPROM use and is blocked for some erase commands (Erase
Sector and Erase Block). As a consequence, loading the program to flash memory may fail on some
debuggers. Please perform a mass erase operation on Flash to remove this partitioning after running
the example to be able to update your application on target.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 65

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

No connections are required for this example.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flash_partitioning_←↩

s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flash_partitioning_s32k144). Then go
to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flash_partitioning_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flash_partitioning_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flash_partitioning_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flash_partitioning_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.20 MPU Memory Protection

Example application that shows how to use the MPU module

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

66 CONTENTS

Application description

The purpose of this demo application is to show you how to use the Memory Protection Unit of the S32K144 MCU
with this SDK.

In this example, MPU regions are configured to have access rights as following:

Region Core Debugger DMA Address
1 rwx rwx rwx 0x00000000 -

0x0007FEFF
2 -w- rwx rwx 0x0007FF00 -

0x0007FF1F
3 rwx rwx rwx 0x0007FF20 -

0xFFFFFFFF

Run the example

1. After reset, GREEN LED of FRDM board always toggles indicating that read to flash location 0x0007FF04 is
permitted

2. Press SW2 to initialize MPU protection, and core has no read access to memory region from 0x0007FF00 to
0x0007FF1F.

3. RED LED on indicates there is violated read access. The program is stopped hardware fault exception handler
after get detail error access information.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select mpu_memory_←↩

protection_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 67

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(mpu_memory_protection_s32k144).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
mpu_memory_protection_s32k144 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

mpu_memory_protection_s32k144
Debug_FLASH Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

mpu_memory_protection_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

mpu_memory_protection_s32k144
Debug_FLASH PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

• Please note that this example runs only on Flash configuration

11.4.21 Power Mode Switch

Example application demonstrating S32K144 power modes

Application description

The purpose of the application is to show the user how to enter various power modes of the S32K144 SoC using
the S32 SDK API.

The application displays on the host PC terminal a menu in which the user can select to enter:

• High Speed Run (HSRUN)

• Normal Run (RUN)

• Very Low Power Run (VLPR)

• STOP (STOP)

• STOP mode 1 (STOP1)

• STOP mode 2 (STOP2)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

68 CONTENTS

• Very Low Power Stop (VLPS)

The CPU can be woken up from sleep modes by pressing BTN1 (PTC13).

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
BUTTON (PTC13) BTN1 - wired on the board SW4 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select power_mode_switch_←↩

s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(power_mode_switch_s32k144). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the bulid action to be completed before continuing to the next
step.

4. Building the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 69

Configuration Name Description
power_mode_switch_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
power_mode_switch_s32k144 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

power_mode_switch_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

power_mode_switch_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

11.4.22 WDOG Interrupt

Example application that will show the usage of the Watchdog

Application description

The purpose of this driver application is to show the user how to use the WDOG from the S32K144 using the S32
SDK API.

The examples uses the SysTick timer from the ARM core to refresh the WDOG counter for 8 times. After this the
Watchdog counter will expire and the CPU will be reset. If the FLASH configuration will be used, then the code will
use the Reset Control Module to detect if the reset was caused by the Watchdog and will stop the execution of the
program.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

70 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select wdog_interrupt_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(wdog_interrupt_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the bulid action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
wdog_interrupt_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
wdog_interrupt_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
wdog_interrupt_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
wdog_interrupt_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 71

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.22.1 Timer Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• FTM Combined PWM

• FTM Periodic Interrupt

• FTM PWM

• FTM Signal Measurement

• LPIT Periodic Interrupt

• LPTMR Periodic Interrupt

• LPTMR Pulse Counter

• PDB Periodic Interrupt

• RTC Alarm

11.4.23 FTM Combined PWM

Example application showing the FTM's combined PWM functionality

Application description

The purpose of this demo application is to show you the usage of the Combined PWM mode of the FlexTimer
module found on the S32K144 using S32 SDK API.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

72 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FTM0 Channel 0 (PTD15) RGB_RED - wired on the board J12.18 - J11.31
FTM0 Channel 1 (PTD16) RGB_GREEN - wired on the board J12.17 - J11.32

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_combined_pwm_←↩

s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_combined_pwm_s32k144). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ftm_combined_pwm_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ftm_combined_pwm_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ftm_combined_pwm_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

ftm_combined_pwm_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 73

11.4.24 FTM Periodic Interrupt

Example application showing the FTM's Timer functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Timer functionality from the
S32K144 CPU using the S32 SDK API.

• The application configures FTM0 to generate an interrupt every 1 second. The interrupt will toggle the con-
figured LED.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J11.31 - J12.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_periodic_interrupt←↩

_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_periodic_interrupt_s32k144).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button (Wait for the build action to be completed before continuing to the next
step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

74 CONTENTS

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 75

Configuration Name Description
ftm_periodic_interrupt_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ftm_periodic_interrupt_s32k144 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

ftm_periodic_interrupt_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

ftm_periodic_interrupt_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.25 FTM PWM

Example application showing the FTM's PWM functionality

Application description

The purpose of this demo application is to show you the usage of the PWM mode of the FlexTimer module found
on the S32K144 using S32 SDK API.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FTM0 Channel 0 (PTD15) RGB_RED - wired on the board J11.31 - J12.18

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

76 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select FTM_CombinedPWM_←↩

Example. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_pwm_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ftm_pwm_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ftm_pwm_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ftm_pwm_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
ftm_pwm_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.26 FTM Signal Measurement

Example application showing the FTM's Signal Measurement functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Signal Measurement functionality
from the S32K144 CPU using the S32 SDK API.

• The application is configured to generate a PWM signal with a variable frequency which will be measured
another FTM instance. The measurement result will be sent to the host PC via LPUART.

Prerequisites

The run the example you will need to have the following items:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 77

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Dupont cable (type depending on the board header type)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FTM0 Out Channel 0 (PTC0) J3.11 - J2.11 J11.31 - J10.29
FTM1 Input Channel 0 (PTB2) J3.11 - J2.11 J11.31 - J10.29
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_signal_←↩

measurement_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_signal_measurement_s32k144).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ftm_signal_measurement_s32k144 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

78 CONTENTS

ftm_signal_measurement_s32k144
Debug_FLASH Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

ftm_signal_measurement_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

ftm_signal_measurement_s32k144
Debug_FLASH PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

11.4.27 LPIT Periodic Interrupt

Driver example that will show the LPIT functionality

Application description

The purpose of this demo application is to show you how to use the Low Power Interrupt Timer from the S32K144
using the S32 SDK API.

• The example is configured to trigger an interrupt every second, which toggles a LED.

See also

For other LPIT usage scenario check: ADC_LOW_POWER_group

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 79

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J11.31 - J12.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpit_periodic_interrupt←↩

_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpit_periodic_interrupt_s32k144).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpit_periodic_interrupt_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpit_periodic_interrupt_s32k144 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

lpit_periodic_interrupt_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

lpit_periodic_interrupt_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.28 LPTMR Periodic Interrupt

Example application that shows the LPTMR's Timer feature

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

80 CONTENTS

Application description

The purpose of this demo application is to show you how to use the LPTMR's Timer functionality from the S32K144
using the S32 SDK API.

• The LPTMR is configured to generate a periodic interrupt at 1 seconds which toggles a LED.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 1 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J12.18 - J11.31

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lptmr_periodic_←↩

interrupt_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lptmr_periodic_interrupt_s32k144).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 81

Configuration Name Description
lptmr_periodic_interrupt_s32k144 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

lptmr_periodic_interrupt_s32k144 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

lptmr_periodic_interrupt_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

lptmr_periodic_interrupt_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.29 LPTMR Pulse Counter

Example application that shows the LPTMR's Pulse Counting feature

Application description

The purpose of this demo application is to show you how to use the Low Power Timer's Pulse Counter functionality
from the S32K144 using the S32 SDK API.

• The example is configured to trigger an interrupt after three pulses, sourced from one of the board's buttons.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1(2) Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

82 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J12.18 - J11.31
BUTTON (PTC12) J2.17 - J2.10 J13.22 - J11.19

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lptmr_pulse_counter_←↩

s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lptmr_pulse_counter_s32k144). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lptmr_pulse_counter_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lptmr_pulse_counter_s32k144 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

lptmr_pulse_counter_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

lptmr_pulse_counter_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.30 PDB Periodic Interrupt

Driver example using PDB

Application description

The purpose of this demo application is to show you how to use the Programmable Delay Block from the S32K144
using the S32 SDK API.

The PDB is configured to generate a periodic interrupt which toggles a LED.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.4 S32K144 Examples 83

See also

adc_hwtrigger_group

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GPIO Pin (PTD15) RGB_RED - wired on the board J11.31 - J12.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select pdb_periodic_interrupt←↩

_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(pdb_periodic_interrupt_s32k144).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

84 CONTENTS

pdb_periodic_interrupt_s32k144 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

pdb_periodic_interrupt_s32k144 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

pdb_periodic_interrupt_s32k144 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

pdb_periodic_interrupt_s32k144 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.4.31 RTC Alarm

Example application showing basic use cases for the RTC module

Application description

The purpose of this demo application is to show you how to use the Real Time Clock module from the S32K144
MCU with the S32 SDK API.

The RTC is configured to generate an interrupt every 1 second(LED1). If the alarm button is pressed an alarm
interrupt toggles the alarm led(LED2) after 5 seconds.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K144 board

• 1 Power Adapter 12V

• 3 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144EVB-Q100

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 85

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BUTTON (PTC12) BTN2 - wired on the board SW7 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select rtc_alarm_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(rtc_alarm_s32k144). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
rtc_alarm_s32k144 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
rtc_alarm_s32k144 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
rtc_alarm_s32k144 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
rtc_alarm_s32k144 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

If the example doesn't work, please Flash the Debug_FLASH configuration and enforce a power on reset of the
board. This is caused by the fact that the register which configures the RTC clock source is can only be written
once.

11.5 S32K148 Examples

Demo applications and driver examples for S32K148

Examples for S32K148 are separated into two groups:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

86 CONTENTS

• Demo Applications

• Driver Examples

11.5.1 Demo Applications

Applications that show more advanced use cases

Available demo applications:
Click on one of the project to see the corresponding documentation

• ADC Low Power

• AMMCLib

• FlexCAN Encrypted

• FreeMASTER

• FreeRTOS

• Hello World

• Hello World - IAR Embedded Workbench

• Hello World - Makefile

• LIN MASTER

• LIN SLAVE

• Structural Core Self Test Example

11.5.1.1 ADC Low Power

Demonstrates ADC trigger scheme using TRGMUX and LPIT, switches the power mode to stop and sends data
using LPUART and DMA

Application description

The purpose of this demo application is to show you the usage of a subset of the peripherals found on the S32K148
SoC.

• The application uses LPIT to trigger ADC conversions every 100ms via TRGMUX with the CPU in sleep
mode. The ADC is using Hardware Compare feature to validate an conversion only if the value is greater than
half of the reference voltage, in this case VDD/2. This way the CPU is woken up from sleep mode only if the
condition is met.

• When the conversion is complete the data is transformed into a bar graph and it is sent via LPUART using
DMA memory to peripheral transfer to the host PC. This way, the CPU can be put into a low power mode to
reduce the energy used.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 87

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select adc_low_power_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(adc_low_power_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
adc_low_power_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

88 CONTENTS

adc_low_power_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink
debuggers

adc_low_power_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro
debuggers

adc_low_power_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

11.5.1.2 AMMCLib

Provides an example of integration of AMMCLib and S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with AMMCLib.

• The application uses LPTMR to generate samples of a sinusoidal signal using trigonometric functions from
the AMMCLib. Calculated signal samples are then scaled to be in the range of the FTM PWM duty cycle and
are used to change the intesity of the RGB leds.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from USB)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 89

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION | S32K148EVB-Q100 | S32K148-MB

-------------—|------------—|-----------— FTM0 Channel 0 (PTD15) |RGB_RED - wired on the board | J12.18 - J11.31
FTM0 Channel 1 (PTD16) |RGB_GREEN - wired on the board | J12.17 - J11.32 FTM0 Channel 2 (PTD0) |RGB←↩

_BLUE - wired on the board | J12.31 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ammclib_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ammclib_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ammclib_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ammclib_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ammclib_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
ammclib_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.1.3 FlexCAN Encrypted

Demo application showing the FlexCAN functionalities

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

90 CONTENTS

Note

If running the encrypted communication: The encryption uses the first non-volatile user key, which needs
to be configured by running the CSEc Key Configuration in the driver examples folder.
Encrypted communication works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is
available on your device.
If one of the user keys was loaded using the CSEc Key Configuration, any further full erase of the Flash
requires a Challenge-Authentication process. This can be done by running the CSEc Key Configuration
example again and setting the ERASE_ALL_KEYS macro to 1.

Application description

The purpose of this demo application is to show you the usage of the FlexCAN module configured to use Flexible
Data Rate and the CSEc module from the S32K148 CPU using the S32 SDK API.

• In the first part, the application will setup the board clocks, pins and other system functions such as SBC if
the board uses this module as a CAN transceiver.

• Then it will configure the FlexCAN module features such as FD, Bitrate and Message buffers

• The application will wait for frames to be received on the configured message buffer or for an event raised by
pressing one of the two buttons which will trigger a frame send to the recipient.

• The frames are sent in plain text by default, but the encrypted mode can be enabled by holding one of the
buttons pressed and pressing the other.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 3 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
CAN HIGH (∗) CAN HIGH - J13.1 CAN HIGH - J60.2
CAN LOW (∗) CAN LOW - J13.2 CAN LOW - J60.3

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 91

BUTTON 2 (PTC13) BTN1 - wired on the board BTN3 - wired on the board
BUTTON 1 (PTC12) BTN0 - wired on the board BTN2 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
GND (GND) J3-11 - Slave GND J6 - Slave GND

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
CAN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexcan_encrypted_←↩

s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexcan_encrypted_s32k148). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexcan_encrypted_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexcan_encrypted_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexcan_encrypted_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexcan_encrypted_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.1.4 FreeMASTER

Example application showing FreeMASTER Serial Communication usage

Application description

The purpose of this demo application is to show you how to use the FreeMASTER serial communication using
S32K148 on OpenSDA with this SDK.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

92 CONTENTS

This demo uses the FreeMASTER Run-Time Debugging Tool to visualise ADC conversions and allows the user to
monitor the ADC sampling rate for different ADC configurations (ADC sampling time and resolution can be controlled
through FreeMASTER Application Commands).

The ADC is configured to perform continous conversions and generate an interrupt after each conversion. The
LPTMR is configured to generate a periodic interrupt at 10 ms which reads the number of ADC conversions.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 1 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• FreeMASTER host application

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select freemaster_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(freemaster_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 93

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

94 CONTENTS

Configuration Name Description
freemaster_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
freemaster_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
freemaster_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
freemaster_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

• Open the FreeMASTER project and set the communication parameters: Go to Project/Options/Comm,
choose Direct RS232 and set the port and speed.

• Go to Project/Options/MAP Files and select the ∗.elf file of your project and set file format to ELF/DWARF.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

FreeMASTER host application can be downloaded from NXP's website. FreeMASTER Serial Communication is
included into the project (V2.0).

11.5.1.5 FreeRTOS

Demo application showing the integration of FreeRTOS and S32 SDK

Application description

The purpose of this demo application is to show you how to use the FreeRTOS with the S32 SDK for the S32K148
MCU.

This project defines a very simple demo that creates two tasks, one queue, and one timer. It also demonstrates
how Cortex-M4 interrupts can interact with FreeRTOS tasks/timers.

This simple demo project runs 'stand alone' (without the rest of the tower system) on the Freedom Board or Validation
Board, which is populated with a S32K148 Cortex-M4 microcontroller.

The idle hook function: The idle hook function demonstrates how to query the amount of FreeRTOS heap space
that is remaining (see vApplicationIdleHook() defined in this file).

The main() Function: main() creates one software timer, one queue, and two tasks. It then starts the scheduler.

The Queue Send Task: The queue send task is implemented by the prvQueueSendTask() function in this file. prv←↩

QueueSendTask() sits in a loop that causes it to repeatedly block for 200 milliseconds, before sending the value 100
to the queue that was created within main(). Once the value is sent, the task loops back around to block for another
200 milliseconds.

The Queue Receive Task: The queue receive task is implemented by the prvQueueReceiveTask() function in this
file. prvQueueReceiveTask() sits in a loop that causes it to repeatedly attempt to read data from the queue that was
created within main(). When data is received, the task checks the value of the data, and if the value equals the
expected 100, toggles the green LED. The 'block time' parameter passed to the queue receive function specifies
that the task should be held in the Blocked state indefinitely to wait for data to be available on the queue. The queue
receive task will only leave the Blocked state when the queue send task writes to the queue. As the queue send task
writes to the queue every 200 milliseconds, the queue receive task leaves the Blocked state every 200 milliseconds,
and therefore toggles the blue LED every 200 milliseconds.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 95

The LED Software Timer and the Button Interrupt: The user button BTN1 is configured to generate an interrupt
each time it is pressed. The interrupt service routine switches the red LED on, and resets the LED software timer.
The LED timer has a 5000 millisecond (5 second) period, and uses a callback function that is defined to just turn
the LED off again. Therefore, pressing the user button will turn the LED on, and the LED will remain on until a full
five seconds pass without the button being pressed.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BTN (PTC13) BTN1 - wired on the board BTN3 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select freertos_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(freertos_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

96 CONTENTS

Configuration Name Description
freertos_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
freertos_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
freertos_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
freertos_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.1.6 Hello World

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K148 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 97

GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select hello_world_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(hello_world_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
hello_world_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
hello_world_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
hello_world_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
hello_world_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.1.7 Hello World - IAR Embedded Workbench

Basic application that presents the project scenarios for S32 SDK and integration with IAR Embedded Workbench
IDE

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K148 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

Note

For information about how to run IAR projects please refer to Usage

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

98 CONTENTS

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

11.5.1.8 Hello World - Makefile

Basic application that presents the project scenarios for S32 SDK using makefiles for various compilers

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K148 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

There are five projects delivered with this package:

• Makefile project (GCC compiler)

• Makefile project (GHS compiler)

• Makefile project (IAR compiler)

• Makefile project (CSMC compiler)

• Makefile project (DCC compiler)

Note

For information about how to run the makefile please refer to Usage

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 99

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

11.5.1.9 LIN MASTER

Example that shows the usage of the LIN stack in master mode

Application description

This example demonstrates the LIN communication between S32K148 EVB Master and Slave using unconditional
frames.

• The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control.

• If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor.

• If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed.

• If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO←↩

TOR SPEED command through Motor1Selection signal to increase motor speed.

• When users press button SW2 on the Master board, the Master SeatECU switches its schedule table to
go-to-sleep table. So the Slave and Master enter sleep mode, RGB LEDS are off.

• When LIN cluster is in sleep mode, users press button SW3 on the Master board, the Master board sends a
wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

100 CONTENTS

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
BUTTON 2 (PTC13) BTN1 - wired on the board BTN3 - wired on the board
BUTTON 1 (PTC12) BTN0 - wired on the board BTN2 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BLUE_LED (PTD16) RGB_GREEN - wired on the board J12.31 - J11.29
GND (GND) J3-11 - Slave GND J6 - Slave GND
LIN (∗) J11-1 - Slave LIN J48.4 - Slave LIN

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_master_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lin_master_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 101

Configuration Name Description
lin_master_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lin_master_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lin_master_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lin_master_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.1.10 LIN SLAVE

Example that shows the usage of the LIN stack in slave mode

Application description

This example demonstrates the LIN communication between S32K148 EVB Master and Slave using unconditional
frames.

• The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control.

• If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor.

• If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed.

• If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO←↩

TOR SPEED command through Motor1Selection signal to increase motor speed.

• When users press button SW2 on the Master board, the Master SeatECU switches its schedule table to
go-to-sleep table. So the Slave and Master enter sleep mode, RGB LEDS are off.

• When LIN cluster is in sleep mode, users press button SW3 on the Master board, the Master board sends a
wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

102 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
BUTTON 2 (PTC13) BTN1 - wired on the board BTN3 - wired on the board
BUTTON 1 (PTC12) BTN0 - wired on the board BTN2 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BLUE_LED (PTD16) RGB_GREEN - wired on the board J12.31 - J11.29
GND (GND) J3-11 - Master GND J6 - Master GND
LIN (∗) J11-1 - Master LIN J48.4 - Master LIN

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_slave_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lin_slave_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lin_slave_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lin_slave_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lin_slave_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 103

lin_slave_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.1.11 Structural Core Self Test Example

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with sCST.

• The application will run the core self tests from the Structural Core Self Test library and will report the result
using the user leds.

• Please consult the sCST manual for more information about the library.

Note

This application uses a modified version of the linker file which defines the section used by the library.
As a consequence, the application will only run in flash.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• Debug probe (JLink, PEmicro, OpenSDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

104 CONTENTS

GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select scst_s32k148. Then click
on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(scst_s32k148). Then go to Project and
click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
scst_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
scst_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.2 Driver Examples

Applications that show the user how to initialize the peripherals for the basic use cases

There are currently examples for the following categories:
Click on one of the categories to see the available projects

• Analog Driver Examples

• Communication Driver Examples

• System Driver Examples

• Timer Driver Examples

11.5.2.1 Analog Driver Examples

Applications that show the user how to initialize the analog peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 105

• ADC Hardware Trigger

• ADC Software Trigger

• CMP DAC

11.5.3 ADC Hardware Trigger

How to trigger the ADC by hardware

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered in hardware by the
Programmable Delay Block from the S32K148 CPU using the S32 SDK API.

• The application uses PDB to trigger ADC conversions every 1s.

• When the conversion is complete the data is sent to the host PC using LPUART.

See also

PDB_Example_group
For alternate ADC Hardware triggering scheme see ADC_LOW_POWER_group

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

106 CONTENTS

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select adc_hwtrigger_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(adc_hwtrigger_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
adc_hwtrigger_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
adc_hwtrigger_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
adc_hwtrigger_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
adc_hwtrigger_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 107

11.5.4 ADC Software Trigger

How to trigger ADC by software

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered by software from the
S32K148 CPU using the S32 SDK API.

• The application uses software to trigger ADC conversions every 1s.

• When the conversion is complete the data is sent to the host PC using LPUART.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select adc_swtrigger_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(adc_swtrigger_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

108 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
adc_swtrigger_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
adc_swtrigger_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
adc_swtrigger_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
adc_swtrigger_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

11.5.5 CMP DAC

Driver examples showing the basic usage scenario of the CMP

Application description

The purpose of this demo application is to show you how to use the Analog Comparator of the S32K148 MCU using
the S32 SDK API.
The Comparator is configured to compare analog input 0(AIN0) with half the reference voltage generated with the
internal DAC. Based on the input from the potentiometer the LEDs light by the following rules:

• 1) Vin < DAC voltage : RED on, GREEN off

• 2) Vin > DAC voltage : RED off, GREEN on

• 3) Unknown state : RED on, GREEN on

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 109

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
CMP Input 0 (PTA0) J4.14 - J5.7 J21.1 - J9.31

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select cmp_dac_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(cmp_dac_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
cmp_dac_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

110 CONTENTS

cmp_dac_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink
debuggers

cmp_dac_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro
debuggers

cmp_dac_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.5.1 Communication Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• ENET Loopback

• FLEXIO I2C

• FLEXIO I2S

• FLEXIO SPI

• FLEXIO UART

• LPI2C MASTER

• LPI2C SLAVE

• LPSPI Transfer

• LPUART Echo

• SBC UJA1169

• SAI

11.5.6 ENET Loopback

Example application using the ENET driver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 111

Application description

The purpose of this demo application is to show you how to use the ENET module from the S32K148 CPU using
the S32 SDK API.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PTD10 and PTD11 must be connected in order to provide the Rx clock for the ENET MII interface.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select enet_loopback_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(enet_loopback_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

112 CONTENTS

Configuration Name Description
enet_loopback_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
enet_loopback_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
enet_loopback_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
enet_loopback_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.7 FLEXIO I2C

Example application showing FlexIO I2C driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO I2C driver found on the S32K148 SoC
using S32 SDK API.

The application uses FlexIO I2C driver to make a send and a receive data request. The slave device for this example
is the LPI2C instance, which is configured to act as a bus slave. The slave and master buffers will be checked after
each transfer by the application, user shall check isTransferOk variable to see if the transmissions are successful.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 113

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
FLEXIO SDA (PTD0) J1.1 - J6.1 J9.29 - J12.31
FLEXIO SCL (PTA11) J1.3 - J1.2 J9.30 - J9.22
LPI2C SDA (PTA2) J1.1 - J6.1 J9.29 - J12.31
LPI2C SCL (PTA3) J1.3 - J1.2 J9.30 - J9.22

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_i2c_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_i2c_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_i2c_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexio_i2c_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexio_i2c_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexio_i2c_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.8 FLEXIO I2S

Example application showing FlexIO I2S driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO I2S driver found on the S32K148 SoC
using S32 SDK API.

The application uses FlexIO I2S driver to make a data transfer of a defined size. The slave device for this example
is a second FlexIO I2S driver using the same FlexIO instance, which is configured to act as a bus slave. The slave

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

114 CONTENTS

and master buffers will be checked after each transfer by the application, RED or GREEN led will be lit depending
on the check result.

The MASTER I2S driver is configured to use DMA for transfers.

Data size is configured by TRANSFER_SIZE define, by default is configured to be 2 KB.

Note

Since the driver is configured to tranfer 32 bit frames the data size must be modulo 4.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
FLEXIO_MASTER SCK (PTA0) J5.5 - J6.19 J9.31 - J9.23
FLEXIO_MASTER WS (PTA1) J5.7 - J6.17 J9.30 - J9.24
FLEXIO_MASTER TX (PTD0) J6.1 - J1.3 J12.31 - J9.30
FLEXIO_MASTER RX (PTA11) J1.2 - J1.1 J9.22 - J9.31
FLEXIO_SLAVE SCK (PTA8) J5.5 - J6.19 J9.31 - J9.23
FLEXIO_SLAVE WS (PTA9) J5.7 - J6.17 J9.30 - J9.24
FLEXIO_SLAVE TX (PTA2) J2.6 - J1.3 J9.22 - J9.30
FLEXIO_SLAVE RX (PTA3) J1.2 - J1.1 J12.31 - J9.31

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_i2s_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_i2s_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 115

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_i2s_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexio_i2s_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexio_i2s_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexio_i2s_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.9 FLEXIO SPI

Example application showing FlexIO SPI driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO SPI driver found on the S32K148 SoC
using S32 SDK API.

The application uses FlexIO SPI driver to make a data transfer of a defined size. The slave device for this example
is a second FlexIO SPI driver using the same FlexIO instance, which is configured to act as a bus slave. The slave
and master buffers will be checked after each transfer by the application, user shall check isTransferOk variable to
see if the transmissions are successful.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 4 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

116 CONTENTS

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
FLEXIO_MASTER SS (PTA1) J5.5 - J6.19 J9.32 - J9.24
FLEXIO_MASTER SCK (PTA0) J5.7 - J6.17 J9.31 - J9.23
FLEXIO_MASTER MOSI (PTD0) J2.6 - J1.1 J12.31 - J9.32
FLEXIO_MASTER MISO (PTA11) J1.2 - J1.3 J9.22 - J9.30
FLEXIO_MASTER SS (PTA2) J5.5 - J6.19 J9.32 - J9.24
FLEXIO_MASTER SCK (PTA3) J5.7 - J6.17 J9.31 - J9.23
FLEXIO_MASTER MOSI (PTA8) J2.6 - J1.1 J12.31 - J9.32
FLEXIO_MASTER MISO (PTA9) J1.2 - J1.3 J9.22 - J9.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_spi_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_spi_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_spi_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexio_spi_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexio_spi_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexio_spi_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 117

11.5.10 FLEXIO UART

Example application showing FlexIO UART driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO UART driver found on the S32K148
SoC using S32 SDK API.

Two instances of the FlexIO UART driver are used to echo the data received from host.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
FLEXIO_UART RX (PTA11) J1.2 - J4.4 J9.22 - J20.5
FLEXIO_UART TX (PTA0) J5.7 - J4.2 J9.31 - J20.2

Note

The application uses on board USB - UART chips to transfer data from board to host PC

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexio_uart_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

118 CONTENTS

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flexio_uart_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_uart_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flexio_uart_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flexio_uart_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flexio_uart_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

11.5.11 LPI2C MASTER

Driver example that will show the LPI2C Master functionality

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K148 MCU
as a master using S32 SDK.

• The application uses S32 SDK API to initialize the LPI2C module as a master node and in Fast operation
speed after configuring the clocks and pins needed to use the I2C. The example sends to requests to a slave,
found at the configured address, the first being a TX request, while the other being a RX request.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 119

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 3 Dupont cables (male to male or female to female depending on the boards)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPI2C SCL (PTA3) J1-3 - Slave SCL J9-30 - Slave SCL
LPI2C SDA (PTA2) J1-1 - Slave SDA J9-29 - Slave SDA
GND (GND) J3-11 - Slave GND J6 - Slave GND

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpi2c_master_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpi2c_master_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpi2c_master_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

120 CONTENTS

lpi2c_master_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink
debuggers

lpi2c_master_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro
debuggers

lpi2c_master_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.12 LPI2C SLAVE

Driver example that will show the LPI2C Slave functionality

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K148 MCU
as a slave using S32 SDK.

• The application uses S32 SDK API to initialize the LPI2C module as a slave node and in Fast operation speed
after configuring the clocks and pins needed to use the I2C. example uses the LPI2C callback to respond to
requests such as:

– data receive

– data transmit

– buffer full or empty.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 3 Dupont cables (male to male or female to female depending on the boards)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 121

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPI2C SCL (PTA3) J1-3 - Master SCL J9-30 - Master SCL
LPI2C SDA (PTA2) J1-1 - Master SDA J9-29 - Master SDA
GND (GND) J3-11 - Master GND J6 - Master GND

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpi2c_slave_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpi2c_slave_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpi2c_slave_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpi2c_slave_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lpi2c_slave_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lpi2c_slave_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.13 LPSPI Transfer

Driver example that will show the LPSPI Master and Slave functionalities

Application description

The purpose of this application is to show the user how to use the Low Power Serial Peripheral Interface on the
S32K148 using the S32 SDK API.

• The application uses two on board instances of LPSPI, one in master configuration and the other one is slave
to communicate data via the SPI bus. Data will be gathered periodically from the ADC input and will be sent
to the master device which transforms it into a PWM signal.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

122 CONTENTS

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 4(6) Dupont male to male cables

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPSPI0 CS (PTB0) J4.5 - J1.14 J10.31 - J12.30
LPSPI0 SCK (PTB2) J2.11 - J6.1 J10.29 - J12.31
LPSPI0 MOSI (PTE1) J5.14 - J6.3 J13.32 - J12.29
LPSPI0 MISO (PTB4) J2.7 - J6.2 J10.27 - J12.32
LPSPI1 CS (PTD3) J4.5 - J1.14 J10.31 - J12.30
LPSPI1 SCK (PTD0) J2.11 - J6.1 J10.29 - J12.31
LPSPI1 MOSI (PTD2) J5.14 - J6.3 J13.32 - J12.29
LPSPI1 MISO (PTD1) J2.7 - J6.2 J10.27 - J12.32
FTM0 Out Channel 0 (PTC0) J4.11 - J2.2 J11.31 - J11.31
ADC0 Input 12 (PTC14) POT - wired on the board J21.1 - J11.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpspi_transfer_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpspi_transfer_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 123

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

124 CONTENTS

Configuration Name Description
lpspi_transfer_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpspi_transfer_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lpspi_transfer_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lpspi_transfer_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.14 LPUART Echo

Example application using the LPUART driver

Application description

The purpose of this demo application is to show you how to use the Low Power UART from the S32K148 CPU using
the S32 SDK API.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 125

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpuart_echo_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpuart_echo_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpuart_echo_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpuart_echo_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
lpuart_echo_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
lpuart_echo_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

126 CONTENTS

11.5.15 SBC UJA1169

Example application using the SBC_UJA1169 driver

Application description

The purpose of this demo application is to show you how to use Power modes of SBC_UJA1169

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPSPI1 CS (PTD3) J4.5 - J1.14 J10.31 - J12.30
LPSPI1 SCK (PTD0) J2.11 - J6.1 J10.29 - J12.31
LPSPI1 MOSI (PTD2) J5.14 - J6.3 J13.32 - J12.29
LPSPI1 MISO (PTD1) J2.7 - J6.2 J10.27 - J12.32

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select S32K148_SBC_Uja1169.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(S32K148_SBC_Uja1169). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 127

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

128 CONTENTS

Configuration Name Description
S32K148_SBC_Uja1169 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
S32K148_SBC_Uja1169 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
S32K148_SBC_Uja1169 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
S32K148_SBC_Uja1169 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

Test require correct factory settings for example. FNMC bit must be disabled, SBC_UJA_SBC_SDMC_DIS must be
disabled and slpc must be allowed.

11.5.16 SAI

Example application showing SAI driver usage

Application description

The purpose of this demo application is to show the usage of the SAI driver found on the S32K148 SoC using S32
SDK API.

The application uses SAI driver to make a data transfer of a defined size. SAI 0 instance shall be transmitter and
SAI 1 instance shall be receiver. User can see other settings for SAI 0 and SAI 1 in Process Expert components.
To check if data is transfered correctly, put break point or let program run for about 2 second, then see if RecvData
content is the same as SendData.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 3 female to female jumper wire.

• 1 Personal Computer

• 1 Jlink Debugger

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q144

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 129

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

130 CONTENTS

PIN FUNCTION S32K14xCVD-Q144
SAI_BCLK P24.9 - P24.23
SAI_SYNC P24.10 - P24.25
SAI_DATA0 P24.11 - P24.29

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> Import Existing Projects and select Browse S32K148_SAI_←↩

Example. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(S32K148_SAI_Example). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
S32K148_SAI_Example Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
S32K148_SAI_Example Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.16.1 System Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• CRC Checksum

• CSEc key configuration

• eDMA Transfer

• EWM Interrupt

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 131

• FLASH Partitioning

• MPU Memory Protection

• Power Mode Switch

• WDOG Interrupt

11.5.17 CRC Checksum

Example application showing the usage of the CRC module

Application description

The purpose of this demo application is to show you how to use the Cyclic Redundancy Check of the S32K148
MCU with this SDK.

The CRC is configured to generate two configurations for CCITT standard and KERMIT standard.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

No connections are required for this example.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select crc_checksum_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

132 CONTENTS

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(crc_checksum_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
crc_checksum_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
crc_checksum_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
crc_checksum_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
crc_checksum_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

The CRC module in S32K platform supports both big endian and little endian in source data.

11.5.18 CSEc key configuration

Basic application that presents basic usecases for the CSEc driver

Note

This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.
The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.
The user keys are non-volatile. Once the key was loaded, in order to update it, the counter should be
increased.
After the user key was loaded using this example, any further full erase of the Flash requires a
Challenge-Authentication process. This can be done by setting the ERASE_ALL_KEYS macro to 1.

Application description

The purpose of this demo application is to show the user how to use the Cryptographic Services Engine module
from the S32K148 MCU with the S32 SDK API.

The implementation demonstrates the following:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 133

• the enablement of the CSEc module, by showing how the Flash should be partitioned (using the Flash driver);

• configuring the MASTER_ECU key;

• configuring the first user key, using the MASTER_ECU key as an authorization;

• using the user key for an encryption. In order to update the user key after they were configured using the
example the user should increase the counter used for loading the key. Erasing all the configured keys
(including the MASTER_ECU key) can be done by changing the value of the ERASE_ALL_KEYS macro to
1. This will place the part back into factory status (the partition command will need to be run again). Please
note that when the Flash is partitioned (the first time running the example on the board, or after a key erase),
the example should not be run from Flash (please use the RAM configuration).

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select csec_keyconfig_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(csec_keyconfig_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

134 CONTENTS

Configuration Name Description
csec_keyconfig_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
csec_keyconfig_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
csec_keyconfig_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
csec_keyconfig_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.19 eDMA Transfer

Example application showing a subset of the eDMA functionalities

Application description

The purpose of this driver example is to show you how to use the eDMA in the following transfer scenarios for the
S32K148 MCU with the S32 SDK API.

• Single block memory-to-memory transfer

• Loop memory-to-memory transfer

• Scatter/gather memory-to-memory transfer

• Memory-to-peripheral transfer

• Peripheral-to-memory transfer

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 135

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

136 CONTENTS

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select edma_transfer_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(edma_transfer_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
edma_transfer_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
edma_transfer_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
edma_transfer_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
edma_transfer_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 137

11.5.20 EWM Interrupt

Driver example that shows the user how to use the External Watchdog Monitor

Application description

The purpose of this driver application is to show the user how to use the EWM from the S32K148 using the S32
SDK API.

The examples uses the SysTick timer from the ARM core to refresh the EWM counter for 30 times. Within this
interval the user can press the button associated with the EWM input pin to assert the interrupt and output pin.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
EWM INPUT (PTA3) J1.3 - J2.10 J9.30 - J11.19
EWM OUTPUT (PTA2) J1.1 - J2.4 J9.29 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ewm_interrupt_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ewm_interrupt_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

138 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ewm_interrupt_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ewm_interrupt_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ewm_interrupt_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
ewm_interrupt_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.21 FLASH Partitioning

Example application which shows the basic operations of the FLASH driver

Application description

The purpose of this demo application is to show you the usage of the FLASH driver with the S32 SDK API.

The examples does the following operations:

• Erases flash

• Partitions the flash

• Configures FlexNVM region as EEPROM

Note

The FlexNVM memory is partitioned to EEPROM use and is blocked for some erase commands (Erase
Sector and Erase Block). As a consequence, loading the program to flash memory may fail on some
debuggers. Please perform a mass erase operation on Flash to remove this partitioning after running
the example to be able to update your application on target.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 139

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

No connections are required for this example.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flash_partitioning_←↩

s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(flash_partitioning_s32k148). Then go
to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flash_partitioning_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
flash_partitioning_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
flash_partitioning_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
flash_partitioning_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.22 MPU Memory Protection

Example application that shows how to use the MPU module

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

140 CONTENTS

Application description

The purpose of this demo application is to show you how to use the Memory Protection Unit of the S32K148 MCU
with this SDK.

In this example, MPU regions are configured to have access rights as following:

Region Core Debugger DMA Address
1 rwx rwx rwx 0x00000000 -

0x0007FEFF
2 -w- rwx rwx 0x0007FF00 -

0x0007FF1F
3 rwx rwx rwx 0x0007FF20 -

0xFFFFFFFF

Run the example

1. After reset, GREEN LED of FRDM board always toggles indicating that read to flash location 0x0007FF04 is
permitted

2. Press SW2 to initialize MPU protection, and core has no read access to memory region from 0x0007FF00 to
0x0007FF1F.

3. RED LED on indicates there is violated read access. The program is stopped hardware fault exception handler
after get detail error access information.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select mpu_memory_←↩

protection_s32k148. Then click on Finish.
The project should now be copied into you current workspace.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 141

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(mpu_memory_protection_s32k148).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
mpu_memory_protection_s32k148 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

mpu_memory_protection_s32k148
Debug_FLASH Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

mpu_memory_protection_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

mpu_memory_protection_s32k148
Debug_FLASH PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

• Please note that this example runs only on Flash configuration

11.5.23 Power Mode Switch

Example application demonstrating S32K148 power modes

Application description

The purpose of the application is to show the user how to enter various power modes of the S32K148 SoC using
the S32 SDK API.

The application displays on the host PC terminal a menu in which the user can select to enter:

• High Speed Run (HSRUN)

• Normal Run (RUN)

• Very Low Power Run (VLPR)

• STOP (STOP)

• STOP mode 1 (STOP1)

• STOP mode 2 (STOP2)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

142 CONTENTS

• Very Low Power Stop (VLPS)

The CPU can be woken up from sleep modes by pressing BTN1 (PTC13).

Prerequisites

To run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
BUTTON (PTC13) BTN1 - wired on the board SW4 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select power_mode_switch_←↩

s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(power_mode_switch_s32k148). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the bulid action to be completed before continuing to the next
step.

4. Building the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 143

Configuration Name Description
power_mode_switch_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
power_mode_switch_s32k148 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

power_mode_switch_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

power_mode_switch_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

11.5.24 WDOG Interrupt

Example application that will show the usage of the Watchdog

Application description

The purpose of this driver application is to show the user how to use the WDOG from the S32K148 using the S32
SDK API.

The examples uses the SysTick timer from the ARM core to refresh the WDOG counter for 8 times. After this the
Watchdog counter will expire and the CPU will be reset. If the FLASH configuration will be used, then the code will
use the Reset Control Module to detect if the reset was caused by the Watchdog and will stop the execution of the
program.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

144 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select wdog_interrupt_s32k148.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(wdog_interrupt_s32k148). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the bulid action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
wdog_interrupt_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
wdog_interrupt_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
wdog_interrupt_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
wdog_interrupt_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 145

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.24.1 Timer Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• FTM Combined PWM

• FTM Periodic Interrupt

• FTM PWM

• FTM Signal Measurement

• LPIT Periodic Interrupt

• LPTMR Periodic Interrupt

• LPTMR Pulse Counter

• PDB Periodic Interrupt

• RTC Alarm

11.5.25 FTM Combined PWM

Example application showing the FTM's combined PWM functionality

Application description

The purpose of this demo application is to show you the usage of the Combined PWM mode of the FlexTimer
module found on the S32K148 using S32 SDK API.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

146 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
FTM0 Channel 0 (PTD15) RGB_RED - wired on the board J12.18 - J11.31
FTM0 Channel 1 (PTD16) RGB_GREEN - wired on the board J12.17 - J11.32

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_combined_pwm_←↩

s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_combined_pwm_s32k148). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ftm_combined_pwm_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ftm_combined_pwm_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ftm_combined_pwm_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

ftm_combined_pwm_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 147

11.5.26 FTM Periodic Interrupt

Example application showing the FTM's Timer functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Timer functionality from the
S32K148 CPU using the S32 SDK API.

• The application configures FTM0 to generate an interrupt every 1 second. The interrupt will toggle the con-
figured LED.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J11.31 - J12.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_periodic_interrupt←↩

_s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_periodic_interrupt_s32k148).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button (Wait for the build action to be completed before continuing to the next
step.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

148 CONTENTS

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 149

Configuration Name Description
ftm_periodic_interrupt_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ftm_periodic_interrupt_s32k148 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

ftm_periodic_interrupt_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

ftm_periodic_interrupt_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.27 FTM PWM

Example application showing the FTM's PWM functionality

Application description

The purpose of this demo application is to show you the usage of the PWM mode of the FlexTimer module found
on the S32K148 using S32 SDK API.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
FTM0 Channel 0 (PTD15) RGB_RED - wired on the board J11.31 - J12.18

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

150 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select FTM_CombinedPWM_←↩

Example. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_pwm_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ftm_pwm_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
ftm_pwm_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
ftm_pwm_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
ftm_pwm_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.28 FTM Signal Measurement

Example application showing the FTM's Signal Measurement functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Signal Measurement functionality
from the S32K148 CPU using the S32 SDK API.

• The application is configured to generate a PWM signal with a variable frequency which will be measured
another FTM instance. The measurement result will be sent to the host PC via LPUART.

Prerequisites

The run the example you will need to have the following items:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 151

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Dupont cable (type depending on the board header type)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
FTM0 Out Channel 0 (PTC0) J3.11 - J2.11 J11.31 - J10.29
FTM1 Input Channel 0 (PTB2) J3.11 - J2.11 J11.31 - J10.29
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_signal_←↩

measurement_s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(ftm_signal_measurement_s32k148).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
ftm_signal_measurement_s32k148 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

152 CONTENTS

ftm_signal_measurement_s32k148
Debug_FLASH Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

ftm_signal_measurement_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

ftm_signal_measurement_s32k148
Debug_FLASH PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

11.5.29 LPIT Periodic Interrupt

Driver example that will show the LPIT functionality

Application description

The purpose of this demo application is to show you how to use the Low Power Interrupt Timer from the S32K148
using the S32 SDK API.

• The example is configured to trigger an interrupt every second, which toggles a LED.

See also

For other LPIT usage scenario check: ADC_LOW_POWER_group

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 153

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J11.31 - J12.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpit_periodic_interrupt←↩

_s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lpit_periodic_interrupt_s32k148).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpit_periodic_interrupt_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lpit_periodic_interrupt_s32k148 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

lpit_periodic_interrupt_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

lpit_periodic_interrupt_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.30 LPTMR Periodic Interrupt

Example application that shows the LPTMR's Timer feature

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

154 CONTENTS

Application description

The purpose of this demo application is to show you how to use the LPTMR's Timer functionality from the S32K148
using the S32 SDK API.

• The LPTMR is configured to generate a periodic interrupt at 1 seconds which toggles a LED.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 1 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J12.18 - J11.31

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lptmr_periodic_←↩

interrupt_s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lptmr_periodic_interrupt_s32k148).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 155

Configuration Name Description
lptmr_periodic_interrupt_s32k148 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

lptmr_periodic_interrupt_s32k148 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

lptmr_periodic_interrupt_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

lptmr_periodic_interrupt_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.31 LPTMR Pulse Counter

Example application that shows the LPTMR's Pulse Counting feature

Application description

The purpose of this demo application is to show you how to use the Low Power Timer's Pulse Counter functionality
from the S32K148 using the S32 SDK API.

• The example is configured to trigger an interrupt after three pulses, sourced from one of the board's buttons.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1(2) Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

156 CONTENTS

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
GPIO PIN (PTD15) RGB_RED - wired on the board J12.18 - J11.31
BUTTON (PTC12) J2.17 - J2.10 J13.22 - J11.19

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lptmr_pulse_counter_←↩

s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(lptmr_pulse_counter_s32k148). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lptmr_pulse_counter_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
lptmr_pulse_counter_s32k148 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

lptmr_pulse_counter_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

lptmr_pulse_counter_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.32 PDB Periodic Interrupt

Driver example using PDB

Application description

The purpose of this demo application is to show you how to use the Programmable Delay Block from the S32K148
using the S32 SDK API.

The PDB is configured to generate a periodic interrupt which toggles a LED.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

11.5 S32K148 Examples 157

See also

adc_hwtrigger_group

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
GPIO Pin (PTD15) RGB_RED - wired on the board J11.31 - J12.18

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select pdb_periodic_interrupt←↩

_s32k148. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(pdb_periodic_interrupt_s32k148).
Then go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

158 CONTENTS

pdb_periodic_interrupt_s32k148 Debug_RAM
Jlink

Debug the RAM configuration using Segger Jlink
debuggers

pdb_periodic_interrupt_s32k148 Debug_FLASH
Jlink

Debug the FLASH configuration using Segger Jlink
debuggers

pdb_periodic_interrupt_s32k148 Debug_RAM
PEMicro

Debug the RAM configuration using PEMicro
debuggers

pdb_periodic_interrupt_s32k148 Debug_FLASH
PEMicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

11.5.33 RTC Alarm

Example application showing basic use cases for the RTC module

Application description

The purpose of this demo application is to show you how to use the Real Time Clock module from the S32K148
MCU with the S32 SDK API.

The RTC is configured to generate an interrupt every 1 second(LED1). If the alarm button is pressed an alarm
interrupt toggles the alarm led(LED2) after 5 seconds.

Prerequisites

The run the example you will need to have the following items:

• 1 S32K148 board

• 1 Power Adapter 12V

• 3 Dupont male to male cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K148EVB-Q100

• S32K148-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

12 Module Index 159

PIN FUNCTION S32K148EVB-Q100 S32K148-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board J12.16 - J11.30
BUTTON (PTC12) BTN2 - wired on the board SW7 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select rtc_alarm_s32k148. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(rtc_alarm_s32k148). Then go to Project
and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
rtc_alarm_s32k148 Debug_RAM Jlink Debug the RAM configuration using Segger Jlink

debuggers
rtc_alarm_s32k148 Debug_FLASH Jlink Debug the FLASH configuration using Segger Jlink

debuggers
rtc_alarm_s32k148 Debug_RAM PEMicro Debug the RAM configuration using PEMicro

debuggers
rtc_alarm_s32k148 Debug_FLASH PEMicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

If the example doesn't work, please Flash the Debug_FLASH configuration and enforce a power on reset of the
board. This is caused by the fact that the register which configures the RTC clock source is can only be written
once.

12 Module Index

12.1 Modules

Here is a list of all modules:

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

160 CONTENTS

Analog to Digital Converter (ADC) 179

ADC Driver 161

Clock Manager 209

Clock Manager Driver 216

Clock_manager_s32k1xx 217

Comparator (CMP) 232

Comparator Driver 235

Controller Area Network with Flexible Data Rate (FlexCAN) 250

FlexCAN Driver 413

Cryptographic Services Engine (CSEc) 254

CSEc Driver 188

Cyclic Redundancy Check (CRC) 255

CRC Driver 181

CRC Driver 186

Direct Memory Access (DMA) 260

EDMA Driver 262

Error Injection Module (EIM) 315

EIM Driver 285

Error Reporting Module (ERM) 316

ERM Driver 307

Ethernet MAC (ENET) 318

ENET Driver 289

External Watchdog Monitor (EWM) 321

EWM Driver 311

Flash Memory (Flash) 383

Flash Memory (Flash) 386

Flash_mx25l6433f_drv 403

FlexTimer (FTM) 482

FTM Common Driver 322

FTM Input Capture Driver 359

FTM Module Counter Driver 364

FTM Output Compare Driver 367

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

12.1 Modules 161

FTM Pulse Width Modulation Driver 371

FTM Quadrature Decoder Driver 379

Flexible I/O (FlexIO) 489

FlexIO Common Driver 435

FlexIO I2C Driver 438

FlexIO I2S Driver 446

FlexIO SPI Driver 461

FlexIO UART Driver 474

FreeRTOS 490

Interrupt Manager (Interrupt) 494

Local Interconnect Network (LIN) 592

LIN Driver 503

LIN Stack 520

Diagnostic services 256

Node configuration 645

Node identification 652

LIN Core API 502

Common Core API. 226

Driver and cluster management 261

Interface management 492

Notification 653

Schedule management 741

Signal interaction 742

User provided call-outs 803

J2602 Specific API 498

LIN 2.1 Specific API 500

Low level API 599

Transport layer API 760

Common Transport Layer API 228

Cooked API 252

Initialization 491

Raw API 706

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

162 CONTENTS

J2602 Transport Layer specific API 499

Node configuration 650

Low Power Inter-Integrated Circuit (LPI2C) 593

LPI2C Driver 521

Low Power Interrupt Timer (LPIT) 594

LPIT Driver 537

Low Power Serial Peripheral Interface (LPSPI) 595

LPSPI Driver 550

Low Power Timer (LPTMR) 597

LPTMR Driver 567

Low Power Universal Asynchronous Receiver-Transmitter (LPUART) 598

LPUART Driver 577

Memory Protection Unit (MPU) 644

MPU Driver 631

OS Interface (OSIF) 654

Pins Driver (PINS) 676

PINS Driver 670

Power Manager 677

Power Manager Driver 685

Power_s32k1xx 686

Programmable Delay Block (PDB) 693

PDB Driver 659

Qspi_drv 694

Real Time Clock Driver (RTC) 723

Real Time Clock Driver 708

SoC Header file (SoC Header) 743

S32K144 SoC Header file 726

Backward Compatibility Symbols for S32K144 180

Interrupt vector numbers for S32K144 497

Peripheral access layer for S32K144 675

SoC Support 744

S32K144 System Files 727

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

13 Data Structure Index 163

Synchronous Audio Interface (SAI) 745

SAI Driver 728

System Basis Chip Driver (SBC) - UJA1169 Family 746

UJA1169 SBC Driver 762

Trigger MUX Control (TRGMUX) 761

TRGMUX Driver 751

Watchdog timer (WDOG) 812

WDOG Driver 804

13 Data Structure Index

13.1 Data Structures

Here are the data structures with brief descriptions:

drv_config_t 813

firc_config_t
SCG fast IRC clock configuration. Implements scg_firc_config_t_Class 813

lin_product_id_t
Product id structure Implements : lin_product_id_t_Class 814

pcc_config_t
PCC configuration. Implements pcc_config_t_Class 815

periph_clk_config_t
Peripheral instance clock configuration. Implements periph_clk_config_t_Class 815

peripheral_clock_config_t
PCC peripheral instance clock configuration. Implements peripheral_clock_config_t_Class 816

pmc_config_t
PMC configure structure 817

pmc_lpo_clock_config_t
PMC LPO configuration 817

scg_clock_mode_config_t
SCG Clock Mode Configuration structure. Implements scg_clock_mode_config_t_Class 818

scg_clockout_config_t
SCG ClockOut Configuration structure. Implements scg_clockout_config_t_Class 819

scg_config_t
SCG configure structure. Implements scg_config_t_Class 820

scg_firc_config_t
SCG fast IRC clock configuration. Implements scg_firc_config_t_Class 821

scg_rtc_config_t
SCG RTC configuration. Implements scg_rtc_config_t_Class 822

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

164 CONTENTS

scg_sirc_config_t
SCG slow IRC clock configuration. Implements scg_sirc_config_t_Class 823

scg_sosc_config_t
SCG system OSC configuration. Implements scg_sosc_config_t_Class 824

scg_spll_config_t
SCG system PLL configuration. Implements scg_spll_config_t_Class 825

sirc_config_t
SCG slow IRC clock configuration. Implements sirc_config_t_Class 827

sosc_config_t
SCG system OSC configuration. Implements scg_sosc_config_t_Class 827

spll_config_t 828

sys_clk_config_t
System clock configuration. Implements sys_clk_config_t_Class 829

14 Module Documentation

14.1 ADC Driver

14.1.1 Detailed Description

Analog to Digital Converter Peripheral Driver.

The ADC is a configurable 12-bit (selectable to between 8-bit, 10-bit and 12-bit resolution) single-ended SA←↩

R converter.

Features of the ADC include:

• up to 32 control channels (depending on the device variant), with configurable triggers

• up to 32 selectable external input sources (depending on the device variant) and multiple internal input
sources

• hardware compare and average functions

• auto-calibration feature

Hardware background

The ADC included in the S32K14x series is a selectable resolution (8, 10, 12-bit), single-ended, SAR converter.
Depending on the device variant, each ADC instance has up to 40 selectable input channels (up to 32 external and
up to 8 internal) and up to 32 control channels (each with a result register, an input channel selection register and
interrupt enable).

Sample time is configurable through selection of A/D clock and a configurable sample time (in A/D clocks).

Also provided are the Hardware Average and Hardware Compare Features.

Hardware Average will sample a selectable number of measurements and average them before signaling a Con-
version Complete.

Hardware Compare can be used to signal if an input channel goes outside (or inside) of a predefined range.

The Calibration features can be used to automatically calibrate or fine-tune the ADC before use.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 165

Driver consideration

The ADC Driver provides access to all features, but not all need to be configured to use the ADC. The user appli-
cation can use the default for most settings, changing only what is necessary. For example, if Compare or Average
features are not used, the user does not need to configure them.

The Driver uses structures for configuration. Each structure contains members that are specific to its respective
functionality. There is a converter structure, a hardware compare structure, a hardware average structure and a
calibration structure. Each struct has a corresponding InitStruct() method that can be used to initialize the
members to reset values, so the user can change only the values that are specific to the application.

The Driver also includes support for configuring the Trigger Latching and Arbitration Unit controlled from a separate
hardware module - System Integration Module (SIM).

Interrupt handling

The ADC Driver in S32 SDK does not use interrupts internally. These can be defined by the user application. There
are two ways to add an ADC interrupt:

1. Using the weak symbols defined by start-up code. If the methods ADCx_Handler(void) (x denotes
instance number) are not defined, the linker uses a default ISR. An error will be generated if methods with
the same name are defined multiple times. This method works regardless of the placement of the interrupt
vector table (Flash or RAM).

2. Using the Interrupt Manager's INT_SYS_InstallHandler() method. This can be used to dynamically
change the ISR at run-time. This method works only if the interrupt vector table is located in RAM (S32 SDK
behavior). To get the ADC instance's interrupt number, use ADC_DRV_GetInterruptNumber().

Clocking and pin configuration

The ADC Driver does not handle clock setup (from PCC) or any kind of pin configuration (done by PORT module).
This is handled by the Clock Manager and PORT module, respectively. The driver assumes that correct clock
configurations have been made, so it is the user's responsibility to set up clocking and pin configurations correctly.

Triggering a conversion

There are two separate ways for triggering an ADC conversion from a control channel:

1. Software triggering Only conversion from first control channel may be triggered from software - must enabled
at converter configuration Initiated by writing a valid input channel ID to the first control channel - use ADC←↩

_DRV_ConfigChan().

2. Hardware triggering Conversion from any control channel may be hardware triggered - however for first control
channel it must be enabled at converter configuration.

Data Structures

• struct adc_converter_config_t

Defines the converter configuration. More...

• struct adc_compare_config_t

Defines the hardware compare configuration. More...

• struct adc_average_config_t

Defines the hardware average configuration. More...

• struct adc_chan_config_t

Defines the control channel configuration. More...

• struct adc_calibration_t

Defines the user calibration configuration. More...

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

166 CONTENTS

Enumerations

• enum adc_clk_divide_t { ADC_CLK_DIVIDE_1 = 0x00U, ADC_CLK_DIVIDE_2 = 0x01U, ADC_CLK_DIVI←↩

DE_4 = 0x02U, ADC_CLK_DIVIDE_8 = 0x03U }

Clock Divider selection.

• enum adc_resolution_t { ADC_RESOLUTION_8BIT = 0x00U, ADC_RESOLUTION_12BIT = 0x01U, ADC←↩

_RESOLUTION_10BIT = 0x02U }

Conversion resolution selection.

• enum adc_input_clock_t { ADC_CLK_ALT_1 = 0x00U, ADC_CLK_ALT_2 = 0x01U, ADC_CLK_ALT_3 =
0x02U, ADC_CLK_ALT_4 = 0x03U }

Input clock source selection.

• enum adc_trigger_t { ADC_TRIGGER_SOFTWARE = 0x00U, ADC_TRIGGER_HARDWARE = 0x01U }

Trigger type selection.

• enum adc_pretrigger_sel_t { ADC_PRETRIGGER_SEL_PDB = 0x00U, ADC_PRETRIGGER_SEL_TRGM←↩

UX = 0x01U, ADC_PRETRIGGER_SEL_SW = 0x02U }

Pretrigger types selectable from Trigger Latching and Arbitration Unit.

• enum adc_trigger_sel_t { ADC_TRIGGER_SEL_PDB = 0x00U, ADC_TRIGGER_SEL_TRGMUX = 0x01U }

Trigger source selectable from Trigger Latching and Arbitration Unit.

• enum adc_sw_pretrigger_t {
ADC_SW_PRETRIGGER_DISABLED = 0x00U, ADC_SW_PRETRIGGER_0 = 0x04U, ADC_SW_PRETR←↩

IGGER_1 = 0x05U, ADC_SW_PRETRIGGER_2 = 0x06U,
ADC_SW_PRETRIGGER_3 = 0x07U }

Software pretriggers which may be set from Trigger Latching and Arbitration Unit.

• enum adc_voltage_reference_t { ADC_VOLTAGEREF_VREF = 0x00U, ADC_VOLTAGEREF_VALT =
0x01U }

Voltage reference selection.

• enum adc_average_t { ADC_AVERAGE_4 = 0x00U, ADC_AVERAGE_8 = 0x01U, ADC_AVERAGE_16 =
0x02U, ADC_AVERAGE_32 = 0x03U }

Hardware average selection.

• enum adc_inputchannel_t {
ADC_INPUTCHAN_EXT0 = 0x00U, ADC_INPUTCHAN_EXT1 = 0x01U, ADC_INPUTCHAN_EXT2 = 0x02U,
ADC_INPUTCHAN_EXT3 = 0x03U,
ADC_INPUTCHAN_EXT4 = 0x04U, ADC_INPUTCHAN_EXT5 = 0x05U, ADC_INPUTCHAN_EXT6 = 0x06U,
ADC_INPUTCHAN_EXT7 = 0x07U,
ADC_INPUTCHAN_EXT8 = 0x08U, ADC_INPUTCHAN_EXT9 = 0x09U, ADC_INPUTCHAN_EXT10 = 0x0←↩

AU, ADC_INPUTCHAN_EXT11 = 0x0BU,
ADC_INPUTCHAN_EXT12 = 0x0CU, ADC_INPUTCHAN_EXT13 = 0x0DU, ADC_INPUTCHAN_EXT14 =
0x0EU, ADC_INPUTCHAN_EXT15 = 0x0FU,
ADC_INPUTCHAN_DISABLED = ADC_SC1_ADCH_MASK, ADC_INPUTCHAN_INT0 = 0x15, ADC_INP←↩

UTCHAN_INT1 = 0x16, ADC_INPUTCHAN_INT2 = 0x17,
ADC_INPUTCHAN_INT3 = 0x1C, ADC_INPUTCHAN_TEMP = 0x1A, ADC_INPUTCHAN_BANDGAP =
0x1B, ADC_INPUTCHAN_VREFSH = 0x1D,
ADC_INPUTCHAN_VREFSL = 0x1E }

Enumeration of input channels assignable to a control channel.
Note 0: entries in this enum are affected by ::FEATURE_ADC_NUM_EXT_CHANS, which is device dependent and
controlled from "device_name"_features.h file.
Note 1: the actual number of external channels may differ between device packages and ADC instances. Reading a
channel that is not connected externally, will return a random value within the range. Please refer to the Reference
Manual for the maximum number of external channels for each device variant and ADC instance.

• enum adc_latch_clear_t { ADC_LATCH_CLEAR_WAIT, ADC_LATCH_CLEAR_FORCE }

Defines the trigger latch clear method Implements : adc_latch_clear_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 167

Converter

Converter specific methods. These are used to configure and use the A/D Converter specific functionality,
including:

• clock input and divider

• sample time in A/D clocks

• resolution

• trigger source

• voltage reference

• enable DMA

• enable continuous conversion on one channel

To start a conversion, a control channel (see Channel Configuration) and a trigger source must be configured. Once
a conversion is started, the user application can wait for it to be finished by calling the ADC_DRV_WaitConvDone()
function.

Only the first control channel can be triggered by software. To start a conversion in this case, an input channel
must be written in the channel selection register using the ADC_DRV_ConfigChan() method. Writing a value to the
control channel while a conversion is being performed on that channel will start a new conversion.

• void ADC_DRV_InitConverterStruct (adc_converter_config_t ∗const config)

Initializes the converter configuration structure.
• void ADC_DRV_ConfigConverter (const uint32_t instance, const adc_converter_config_t ∗const config)

Configures the converter with the given configuration structure.
• void ADC_DRV_GetConverterConfig (const uint32_t instance, adc_converter_config_t ∗const config)

Gets the current converter configuration.
• void ADC_DRV_Reset (const uint32_t instance)

Resets the converter (sets all configurations to reset values)
• void ADC_DRV_WaitConvDone (const uint32_t instance)

Waits for a conversion/calibration to finish.
• bool ADC_DRV_GetConvCompleteFlag (const uint32_t instance, const uint8_t chanIndex)

Gets the control channel Conversion Complete Flag state.

Hardware Compare

The Hardware Compare feature of the S32K144 ADC is a versatile mechanism that can be used to monitor that a
value is within certain values. Measurements can be monitored to be within certain ranges:

• less than/ greater than a fixed value

• inside or outside of a certain range

Two compare values can be configured (the second value is used only for range function mode). The compare
values must be written in 12-bit resolution mode regardless of the actual used resolution mode.

Once the hardware compare feature is enabled, a conversion is considered complete only when the measured value
is within the allowable range set by the configuration.

• void ADC_DRV_InitHwCompareStruct (adc_compare_config_t ∗const config)

Initializes the Hardware Compare configuration structure.
• void ADC_DRV_ConfigHwCompare (const uint32_t instance, const adc_compare_config_t ∗const config)

Configures the Hardware Compare feature with the given configuration structure.
• void ADC_DRV_GetHwCompareConfig (const uint32_t instance, adc_compare_config_t ∗const config)

Gets the current Hardware Compare configuration.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

168 CONTENTS

Hardware Average

The Hardware Average feature of the S32K144 allows for a set of measurements to be averaged together as a
single conversion. The number of samples to be averaged is selectable (4, 8, 16 or 32 samples).

• void ADC_DRV_InitHwAverageStruct (adc_average_config_t ∗const config)

Initializes the Hardware Average configuration structure.

• void ADC_DRV_ConfigHwAverage (const uint32_t instance, const adc_average_config_t ∗const config)

Configures the Hardware Average feature with the given configuration structure.

• void ADC_DRV_GetHwAverageConfig (const uint32_t instance, adc_average_config_t ∗const config)

Gets the current Hardware Average configuration.

Channel configuration

Control register specific functions. These functions control configurations for each control channel (input channel
selection and interrupt enable).

When software triggering is enabled, calling the ADC_DRV_ConfigChan() method for control channel 0 starts a new
conversion.

After a conversion is finished, the result can be retrieved using the ADC_DRV_GetChanResult() method.

• void ADC_DRV_InitChanStruct (adc_chan_config_t ∗const config)

Initializes the control channel configuration structure.

• void ADC_DRV_ConfigChan (const uint32_t instance, const uint8_t chanIndex, const adc_chan_config_←↩

t ∗const config)

Configures the selected control channel with the given configuration structure.

• void ADC_DRV_GetChanConfig (const uint32_t instance, const uint8_t chanIndex, adc_chan_config_←↩

t ∗const config)

Gets the current control channel configuration for the selected channel index.

• void ADC_DRV_SetSwPretrigger (const uint32_t instance, const adc_sw_pretrigger_t swPretrigger)

This function sets the software pretrigger - affects only first 4 control channels.

• void ADC_DRV_GetChanResult (const uint32_t instance, const uint8_t chanIndex, uint16_t ∗const result)

Gets the last result for the selected control channel.

Automatic Calibration

These methods control the Calibration feature of the ADC.

The ADC_DRV_AutoCalibration() method can be called to execute a calibration sequence, or a calibration can be
retrieved with the ADC_DRV_GetUserCalibration() and saved to non-volatile storage, to avoid calibration on every
power-on. The calibration structure can be written with the ADC_DRV_ConfigUserCalibration() method.

• void ADC_DRV_AutoCalibration (const uint32_t instance)

Executes an Auto-Calibration.

• void ADC_DRV_InitUserCalibrationStruct (adc_calibration_t ∗const config)

Initializes the User Calibration configuration structure.

• void ADC_DRV_ConfigUserCalibration (const uint32_t instance, const adc_calibration_t ∗const config)

Configures the User Calibration feature with the given configuration structure.

• void ADC_DRV_GetUserCalibration (const uint32_t instance, adc_calibration_t ∗const config)

Gets the current User Calibration configuration.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 169

Interrupts

This method returns the interrupt number for an ADC instance, which can be used to configure the interrupt, like in
Interrupt Manager.

• IRQn_Type ADC_DRV_GetInterruptNumber (const uint32_t instance)

Returns the interrupt number for the ADC instance.

Latched triggers processing

These functions provide basic operations for using the trigger latch mechanism.

• void ADC_DRV_ClearLatchedTriggers (const uint32_t instance, const adc_latch_clear_t clearMode)

Clear latched triggers under processing.

• void ADC_DRV_ClearTriggerErrors (const uint32_t instance)

Clear all latch trigger error.

• uint32_t ADC_DRV_GetTriggerErrorFlags (const uint32_t instance)

This function returns the trigger error flags bits of the ADC instance.

14.1.2 Data Structure Documentation

14.1.2.1 struct adc_converter_config_t

Defines the converter configuration.

This structure is used to configure the ADC converter

Implements : adc_converter_config_t_Class

Definition at line 214 of file adc_driver.h.

Data Fields

• adc_clk_divide_t clockDivide
• uint8_t sampleTime
• adc_resolution_t resolution
• adc_input_clock_t inputClock
• adc_trigger_t trigger
• adc_pretrigger_sel_t pretriggerSel
• adc_trigger_sel_t triggerSel
• bool dmaEnable
• adc_voltage_reference_t voltageRef
• bool continuousConvEnable

Field Documentation

14.1.2.1.1 adc_clk_divide_t clockDivide

Divider of the input clock for the ADC

Definition at line 216 of file adc_driver.h.

14.1.2.1.2 bool continuousConvEnable

Enable Continuous conversions

Definition at line 225 of file adc_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

170 CONTENTS

14.1.2.1.3 bool dmaEnable

Enable DMA for the ADC

Definition at line 223 of file adc_driver.h.

14.1.2.1.4 adc_input_clock_t inputClock

Input clock source

Definition at line 219 of file adc_driver.h.

14.1.2.1.5 adc_pretrigger_sel_t pretriggerSel

Pretrigger source selected from Trigger Latching and Arbitration Unit - affects only the first 4 control channels

Definition at line 221 of file adc_driver.h.

14.1.2.1.6 adc_resolution_t resolution

ADC resolution (8,10,12 bit)

Definition at line 218 of file adc_driver.h.

14.1.2.1.7 uint8_t sampleTime

Sample time in AD Clocks

Definition at line 217 of file adc_driver.h.

14.1.2.1.8 adc_trigger_t trigger

ADC trigger type (software, hardware) - affects only the first control channel

Definition at line 220 of file adc_driver.h.

14.1.2.1.9 adc_trigger_sel_t triggerSel

Trigger source selected from Trigger Latching and Arbitration Unit

Definition at line 222 of file adc_driver.h.

14.1.2.1.10 adc_voltage_reference_t voltageRef

Voltage reference used

Definition at line 224 of file adc_driver.h.

14.1.2.2 struct adc_compare_config_t

Defines the hardware compare configuration.

This structure is used to configure the hardware compare feature for the ADC

Implements : adc_compare_config_t_Class

Definition at line 236 of file adc_driver.h.

Data Fields

• bool compareEnable

• bool compareGreaterThanEnable

• bool compareRangeFuncEnable

• uint16_t compVal1

• uint16_t compVal2

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 171

Field Documentation

14.1.2.2.1 bool compareEnable

Enable the compare feature

Definition at line 238 of file adc_driver.h.

14.1.2.2.2 bool compareGreaterThanEnable

Enable Greater-Than functionality

Definition at line 239 of file adc_driver.h.

14.1.2.2.3 bool compareRangeFuncEnable

Enable Range functionality

Definition at line 240 of file adc_driver.h.

14.1.2.2.4 uint16_t compVal1

First Compare Value

Definition at line 241 of file adc_driver.h.

14.1.2.2.5 uint16_t compVal2

Second Compare Value

Definition at line 242 of file adc_driver.h.

14.1.2.3 struct adc_average_config_t

Defines the hardware average configuration.

This structure is used to configure the hardware average feature for the ADC

Implements : adc_average_config_t_Class

Definition at line 253 of file adc_driver.h.

Data Fields

• bool hwAvgEnable
• adc_average_t hwAverage

Field Documentation

14.1.2.3.1 adc_average_t hwAverage

Selection for number of samples used for averaging

Definition at line 256 of file adc_driver.h.

14.1.2.3.2 bool hwAvgEnable

Enable averaging functionality

Definition at line 255 of file adc_driver.h.

14.1.2.4 struct adc_chan_config_t

Defines the control channel configuration.

This structure is used to configure a control channel of the ADC

Implements : adc_chan_config_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

172 CONTENTS

Definition at line 267 of file adc_driver.h.

Data Fields

• bool interruptEnable
• adc_inputchannel_t channel

Field Documentation

14.1.2.4.1 adc_inputchannel_t channel

Selection of input channel for measurement

Definition at line 270 of file adc_driver.h.

14.1.2.4.2 bool interruptEnable

Enable interrupts for this channel

Definition at line 269 of file adc_driver.h.

14.1.2.5 struct adc_calibration_t

Defines the user calibration configuration.

This structure is used to configure the user calibration parameters of the ADC.

Implements : adc_calibration_t_Class

Definition at line 281 of file adc_driver.h.

Data Fields

• uint16_t userGain
• uint16_t userOffset

Field Documentation

14.1.2.5.1 uint16_t userGain

User-configurable gain

Definition at line 283 of file adc_driver.h.

14.1.2.5.2 uint16_t userOffset

User-configurable Offset (2's complement, subtracted from result)

Definition at line 284 of file adc_driver.h.

14.1.3 Enumeration Type Documentation

14.1.3.1 enum adc_average_t

Hardware average selection.

Implements : adc_average_t_Class

Enumerator

ADC_AVERAGE_4 Hardware average of 4 samples.

ADC_AVERAGE_8 Hardware average of 8 samples.

ADC_AVERAGE_16 Hardware average of 16 samples.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 173

ADC_AVERAGE_32 Hardware average of 32 samples.

Definition at line 138 of file adc_driver.h.

14.1.3.2 enum adc_clk_divide_t

Clock Divider selection.

Implements : adc_clk_divide_t_Class

Enumerator

ADC_CLK_DIVIDE_1 Input clock divided by 1.

ADC_CLK_DIVIDE_2 Input clock divided by 2.

ADC_CLK_DIVIDE_4 Input clock divided by 4.

ADC_CLK_DIVIDE_8 Input clock divided by 8.

Definition at line 41 of file adc_driver.h.

14.1.3.3 enum adc_input_clock_t

Input clock source selection.

Implements : adc_input_clock_t_Class

Enumerator

ADC_CLK_ALT_1 Input clock alternative 1.

ADC_CLK_ALT_2 Input clock alternative 2.

ADC_CLK_ALT_3 Input clock alternative 3.

ADC_CLK_ALT_4 Input clock alternative 4.

Definition at line 66 of file adc_driver.h.

14.1.3.4 enum adc_inputchannel_t

Enumeration of input channels assignable to a control channel.
Note 0: entries in this enum are affected by ::FEATURE_ADC_NUM_EXT_CHANS, which is device dependent and
controlled from "device_name"_features.h file.
Note 1: the actual number of external channels may differ between device packages and ADC instances. Reading
a channel that is not connected externally, will return a random value within the range. Please refer to the Reference
Manual for the maximum number of external channels for each device variant and ADC instance.

Implements : adc_inputchannel_t_Class

Enumerator

ADC_INPUTCHAN_EXT0 External input channel 0

ADC_INPUTCHAN_EXT1 External input channel 1

ADC_INPUTCHAN_EXT2 External input channel 2

ADC_INPUTCHAN_EXT3 External input channel 3

ADC_INPUTCHAN_EXT4 External input channel 4

ADC_INPUTCHAN_EXT5 External input channel 5

ADC_INPUTCHAN_EXT6 External input channel 6

ADC_INPUTCHAN_EXT7 External input channel 7

ADC_INPUTCHAN_EXT8 External input channel 8

ADC_INPUTCHAN_EXT9 External input channel 9

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

174 CONTENTS

ADC_INPUTCHAN_EXT10 External input channel 10

ADC_INPUTCHAN_EXT11 External input channel 11

ADC_INPUTCHAN_EXT12 External input channel 12

ADC_INPUTCHAN_EXT13 External input channel 13

ADC_INPUTCHAN_EXT14 External input channel 14

ADC_INPUTCHAN_EXT15 External input channel 15

ADC_INPUTCHAN_DISABLED Channel disabled

ADC_INPUTCHAN_INT0 Internal input channel 0

ADC_INPUTCHAN_INT1 Internal input channel 1

ADC_INPUTCHAN_INT2 Internal input channel 2

ADC_INPUTCHAN_INT3 Internal input channel 3

ADC_INPUTCHAN_TEMP Temperature Sensor

ADC_INPUTCHAN_BANDGAP Band Gap

ADC_INPUTCHAN_VREFSH Voltage Reference Select High

ADC_INPUTCHAN_VREFSL Voltage Reference Select Low

Definition at line 156 of file adc_driver.h.

14.1.3.5 enum adc_latch_clear_t

Defines the trigger latch clear method Implements : adc_latch_clear_t_Class.

Enumerator

ADC_LATCH_CLEAR_WAIT Clear by waiting all latched triggers to be processed

ADC_LATCH_CLEAR_FORCE Process current trigger and clear all latched

Definition at line 291 of file adc_driver.h.

14.1.3.6 enum adc_pretrigger_sel_t

Pretrigger types selectable from Trigger Latching and Arbitration Unit.

Implements : adc_pretrigger_sel_t_Class

Enumerator

ADC_PRETRIGGER_SEL_PDB PDB pretrigger selected.

ADC_PRETRIGGER_SEL_TRGMUX TRGMUX pretrigger selected.

ADC_PRETRIGGER_SEL_SW Software pretrigger selected.

Definition at line 90 of file adc_driver.h.

14.1.3.7 enum adc_resolution_t

Conversion resolution selection.

Implements : adc_resolution_t_Class

Enumerator

ADC_RESOLUTION_8BIT 8-bit resolution mode

ADC_RESOLUTION_12BIT 12-bit resolution mode

ADC_RESOLUTION_10BIT 10-bit resolution mode

Definition at line 54 of file adc_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 175

14.1.3.8 enum adc_sw_pretrigger_t

Software pretriggers which may be set from Trigger Latching and Arbitration Unit.

Implements : adc_sw_pretrigger_t_Class

Enumerator

ADC_SW_PRETRIGGER_DISABLED SW pretrigger disabled.

ADC_SW_PRETRIGGER_0 SW pretrigger 0.

ADC_SW_PRETRIGGER_1 SW pretrigger 1.

ADC_SW_PRETRIGGER_2 SW pretrigger 2.

ADC_SW_PRETRIGGER_3 SW pretrigger 3.

Definition at line 113 of file adc_driver.h.

14.1.3.9 enum adc_trigger_sel_t

Trigger source selectable from Trigger Latching and Arbitration Unit.

Implements : adc_trigger_sel_t_Class

Enumerator

ADC_TRIGGER_SEL_PDB PDB trigger selected.

ADC_TRIGGER_SEL_TRGMUX TRGMUX trigger selected.

Definition at line 102 of file adc_driver.h.

14.1.3.10 enum adc_trigger_t

Trigger type selection.

Implements : adc_trigger_t_Class

Enumerator

ADC_TRIGGER_SOFTWARE Software trigger.

ADC_TRIGGER_HARDWARE Hardware trigger.

Definition at line 79 of file adc_driver.h.

14.1.3.11 enum adc_voltage_reference_t

Voltage reference selection.

Implements : adc_voltage_reference_t_Class

Enumerator

ADC_VOLTAGEREF_VREF VrefH and VrefL as Voltage reference.

ADC_VOLTAGEREF_VALT ValtH and ValtL as Voltage reference.

Definition at line 127 of file adc_driver.h.

14.1.4 Function Documentation

14.1.4.1 void ADC_DRV_AutoCalibration (const uint32_t instance)

Executes an Auto-Calibration.

This functions executes an Auto-Calibration sequence. It is recommended to run this sequence before using the
ADC converter.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

176 CONTENTS

Parameters

in instance instance number

Definition at line 490 of file adc_driver.c.

14.1.4.2 void ADC_DRV_ClearLatchedTriggers (const uint32_t instance, const adc_latch_clear_t clearMode)

Clear latched triggers under processing.

This function clears all trigger latched flags of the ADC instance. This function must be called after the hardware
trigger source for the ADC has been deactivated.

Parameters

in instance instance number of the ADC
in clearMode The clearing method for the latched triggers

• ADC_LATCH_CLEAR_WAIT : Wait for all latched triggers to be pro-
cessed.

• ADC_LATCH_CLEAR_FORCE : Clear latched triggers and wait for trig-
ger being process to finish.

Definition at line 605 of file adc_driver.c.

14.1.4.3 void ADC_DRV_ClearTriggerErrors (const uint32_t instance)

Clear all latch trigger error.

This function clears all trigger error flags of the ADC instance.

Parameters

in instance instance number of the ADC

Definition at line 630 of file adc_driver.c.

14.1.4.4 void ADC_DRV_ConfigChan (const uint32_t instance, const uint8_t chanIndex, const adc_chan_config_t ∗const
config)

Configures the selected control channel with the given configuration structure.

When Software Trigger mode is enabled, configuring control channel index 0, implicitly triggers a new conversion
on the selected ADC input channel. Therefore, ADC_DRV_ConfigChan can be used for sw-triggering conversions.

Configuring any control channel while it is actively controlling a conversion (sw or hw triggered) will implicitly abort
the on-going conversion.

Parameters

in instance instance number
in chanIndex the control channel index
in config the configuration structure

Definition at line 331 of file adc_driver.c.

14.1.4.5 void ADC_DRV_ConfigConverter (const uint32_t instance, const adc_converter_config_t ∗const config)

Configures the converter with the given configuration structure.

This function configures the ADC converter with the options provided in the provided structure.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 177

Parameters

in instance instance number
in config the configuration structure

Definition at line 83 of file adc_driver.c.

14.1.4.6 void ADC_DRV_ConfigHwAverage (const uint32_t instance, const adc_average_config_t ∗const config)

Configures the Hardware Average feature with the given configuration structure.

This function sets the configuration for the Hardware Average feature.

Parameters

in instance instance number
in config the configuration structure

Definition at line 268 of file adc_driver.c.

14.1.4.7 void ADC_DRV_ConfigHwCompare (const uint32_t instance, const adc_compare_config_t ∗const config)

Configures the Hardware Compare feature with the given configuration structure.

This functions sets the configuration for the Hardware Compare feature using the configuration structure.

Parameters

in instance instance number
in config the configuration structure

Definition at line 205 of file adc_driver.c.

14.1.4.8 void ADC_DRV_ConfigUserCalibration (const uint32_t instance, const adc_calibration_t ∗const config)

Configures the User Calibration feature with the given configuration structure.

This function sets the configuration for the user calibration registers.

Parameters

in instance instance number
in config the configuration structure

Definition at line 551 of file adc_driver.c.

14.1.4.9 void ADC_DRV_GetChanConfig (const uint32_t instance, const uint8_t chanIndex, adc_chan_config_t ∗const
config)

Gets the current control channel configuration for the selected channel index.

This function returns the configuration for a control channel

Parameters

in instance instance number
in chanIndex the control channel index
out config the configuration structure

Definition at line 352 of file adc_driver.c.

14.1.4.10 void ADC_DRV_GetChanResult (const uint32_t instance, const uint8_t chanIndex, uint16_t ∗const result)

Gets the last result for the selected control channel.

This function returns the conversion result from a control channel.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

178 CONTENTS

Parameters

in instance instance number
in chanIndex the converter control channel index
out result the result raw value

Definition at line 456 of file adc_driver.c.

14.1.4.11 bool ADC_DRV_GetConvCompleteFlag (const uint32_t instance, const uint8_t chanIndex)

Gets the control channel Conversion Complete Flag state.

This function returns the state of the Conversion Complete flag for a control channel. This flag is set when a
conversion is complete or the condition generated by the Hardware Compare feature is evaluated to true.

Parameters

in instance instance number
in chanIndex the adc control channel index

Returns

the Conversion Complete Flag state

Definition at line 429 of file adc_driver.c.

14.1.4.12 void ADC_DRV_GetConverterConfig (const uint32_t instance, adc_converter_config_t ∗const config)

Gets the current converter configuration.

This functions returns the configuration for converter in the form of a configuration structure.

Parameters

in instance instance number
out config the configuration structure

Definition at line 110 of file adc_driver.c.

14.1.4.13 void ADC_DRV_GetHwAverageConfig (const uint32_t instance, adc_average_config_t ∗const config)

Gets the current Hardware Average configuration.

This function returns the configuration for the Hardware Average feature.

Parameters

in instance instance number
out config the configuration structure

Definition at line 287 of file adc_driver.c.

14.1.4.14 void ADC_DRV_GetHwCompareConfig (const uint32_t instance, adc_compare_config_t ∗const config)

Gets the current Hardware Compare configuration.

This function returns the configuration for the Hardware Compare feature.

Parameters

in instance instance number
out config the configuration structure

Definition at line 227 of file adc_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 179

14.1.4.15 IRQn_Type ADC_DRV_GetInterruptNumber (const uint32_t instance)

Returns the interrupt number for the ADC instance.

This function returns the interrupt number for the specified ADC instance.

Parameters

in instance instance number of the ADC

Returns

irq_number: the interrupt number (index) of the ADC instance, used to configure the interrupt

Definition at line 588 of file adc_driver.c.

14.1.4.16 uint32_t ADC_DRV_GetTriggerErrorFlags (const uint32_t instance)

This function returns the trigger error flags bits of the ADC instance.

Parameters

in instance instance number of the ADC

Returns

trigErrorFlags The Trigger Error Flags bit-mask

Definition at line 646 of file adc_driver.c.

14.1.4.17 void ADC_DRV_GetUserCalibration (const uint32_t instance, adc_calibration_t ∗const config)

Gets the current User Calibration configuration.

This function returns the current user calibration register values.

Parameters

in instance instance number
out config the configuration structure

Definition at line 570 of file adc_driver.c.

14.1.4.18 void ADC_DRV_InitChanStruct (adc_chan_config_t ∗const config)

Initializes the control channel configuration structure.

This function initializes the control channel configuration structure to default values (Reference Manual resets). This
function should be called on a structure before using it to configure a channel (ADC_DRV_ConfigChan), otherwise
all members must be written by the caller. This function insures that all members are written with safe values, so
the user can modify only the desired members.

Parameters

out config the configuration structure

Definition at line 309 of file adc_driver.c.

14.1.4.19 void ADC_DRV_InitConverterStruct (adc_converter_config_t ∗const config)

Initializes the converter configuration structure.

This function initializes the members of the adc_converter_config_t structure to default values (Reference Manual
resets). This function should be called on a structure before using it to configure the converter with ADC_DRV←↩

_ConfigConverter(), otherwise all members must be written (initialized) by the user. This function insures that all
members are written with safe values, so the user can modify only the desired members.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

180 CONTENTS

Parameters

out config the configuration structure

Definition at line 59 of file adc_driver.c.

14.1.4.20 void ADC_DRV_InitHwAverageStruct (adc_average_config_t ∗const config)

Initializes the Hardware Average configuration structure.

This function initializes the Hardware Average configuration structure to default values (Reference Manual resets).
This function should be called before configuring the Hardware Average feature (ADC_DRV_ConfigHwAverage),
otherwise all members must be written by the caller. This function insures that all members are written with safe
values, so the user can modify the desired members.

Parameters

out config the configuration structure

Definition at line 252 of file adc_driver.c.

14.1.4.21 void ADC_DRV_InitHwCompareStruct (adc_compare_config_t ∗const config)

Initializes the Hardware Compare configuration structure.

This function initializes the Hardware Compare configuration structure to default values (Reference Manual resets).
This function should be called before configuring the Hardware Compare feature (ADC_DRV_ConfigHwCompare),
otherwise all members must be written by the caller. This function insures that all members are written with safe
values, so the user can modify the desired members.

Parameters

out config the configuration structure

Definition at line 186 of file adc_driver.c.

14.1.4.22 void ADC_DRV_InitUserCalibrationStruct (adc_calibration_t ∗const config)

Initializes the User Calibration configuration structure.

This function initializes the User Calibration configuration structure to default values (Reference Manual resets).
This function should be called on a structure before using it to configure the User Calibration feature (ADC_DRV_←↩

ConfigUserCalibration), otherwise all members must be written by the caller. This function insures that all members
are written with safe values, so the user can modify only the desired members.

Parameters

out config the configuration structure

Definition at line 535 of file adc_driver.c.

14.1.4.23 void ADC_DRV_Reset (const uint32_t instance)

Resets the converter (sets all configurations to reset values)

This function resets all the internal ADC registers to reset values.

Parameters

in instance instance number

Definition at line 137 of file adc_driver.c.

14.1.4.24 void ADC_DRV_SetSwPretrigger (const uint32_t instance, const adc_sw_pretrigger_t swPretrigger)

This function sets the software pretrigger - affects only first 4 control channels.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.1 ADC Driver 181

Parameters

in instance instance number
in swPretrigger the swPretrigger to be enabled

Definition at line 372 of file adc_driver.c.

14.1.4.25 void ADC_DRV_WaitConvDone (const uint32_t instance)

Waits for a conversion/calibration to finish.

This functions waits for a conversion to complete by continuously polling the Conversion Active Flag.

Parameters

in instance instance number

Definition at line 409 of file adc_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

182 CONTENTS

14.2 Analog to Digital Converter (ADC)

14.2.1 Detailed Description

The S32 SDK provides a Peripheral Driver (PD) for the Analog to Digital Converter (ADC) module of S32 SDK
devices.

Modules

• ADC Driver

Analog to Digital Converter Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.3 Backward Compatibility Symbols for S32K144 183

14.3 Backward Compatibility Symbols for S32K144

This module covers backward compatibility symbols.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

184 CONTENTS

14.4 CRC Driver

14.4.1 Detailed Description

This section describes the programming interface of the CRC driver.

Data Structures

• struct crc_user_config_t

CRC configuration structure. Implements : crc_user_config_t_Class. More...

Macros

• #define CRC_DEFAULT_WRITE_TRANSPOSE CRC_TRANSPOSE_NONE
• #define CRC_DEFAULT_SEED (0xFFFFU)

Enumerations

• enum crc_transpose_t { CRC_TRANSPOSE_NONE = 0x00U, CRC_TRANSPOSE_BITS = 0x01U, CRC_←↩

TRANSPOSE_BITS_AND_BYTES = 0x02U, CRC_TRANSPOSE_BYTES = 0x03U }

CRC type of transpose of read write data Implements : crc_transpose_t_Class.

CRC DRIVER API

• status_t CRC_DRV_Init (uint32_t instance, const crc_user_config_t ∗userConfigPtr)

Initializes the CRC module.

• status_t CRC_DRV_Deinit (uint32_t instance)

Sets the default configuration.

• uint32_t CRC_DRV_GetCrc32 (uint32_t instance, uint32_t data, bool newSeed, uint32_t seed)

Appends 32-bit data to the current CRC calculation and returns new result.

• uint32_t CRC_DRV_GetCrc16 (uint32_t instance, uint16_t data, bool newSeed, uint32_t seed)

Appends 16-bit data to the current CRC calculation and returns new result.

• uint32_t CRC_DRV_GetCrc8 (uint32_t instance, uint8_t data, bool newSeed, uint32_t seed)

Appends 8-bit data to the current CRC calculation and returns new result.

• void CRC_DRV_WriteData (uint32_t instance, const uint8_t ∗data, uint32_t dataSize)

Appends a block of bytes to the current CRC calculation.

• uint32_t CRC_DRV_GetCrcResult (uint32_t instance)

Returns the current result of the CRC calculation.

• status_t CRC_DRV_Configure (uint32_t instance, const crc_user_config_t ∗userConfigPtr)

Configures the CRC module from a user configuration structure.

• status_t CRC_DRV_GetConfig (uint32_t instance, crc_user_config_t ∗const userConfigPtr)

Get configures of the CRC module currently.

• status_t CRC_DRV_GetDefaultConfig (crc_user_config_t ∗const userConfigPtr)

Get default configures the CRC module for configuration structure.

14.4.2 Data Structure Documentation

14.4.2.1 struct crc_user_config_t

CRC configuration structure. Implements : crc_user_config_t_Class.

Definition at line 87 of file crc_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.4 CRC Driver 185

Data Fields

• crc_transpose_t writeTranspose
• bool complementChecksum
• uint32_t seed

Field Documentation

14.4.2.1.1 bool complementChecksum

True if the result shall be complement of the actual checksum.

Definition at line 99 of file crc_driver.h.

14.4.2.1.2 uint32_t seed

Starting checksum value.

Definition at line 100 of file crc_driver.h.

14.4.2.1.3 crc_transpose_t writeTranspose

Type of transpose when writing CRC input data.

Definition at line 98 of file crc_driver.h.

14.4.3 Macro Definition Documentation

14.4.3.1 #define CRC_DEFAULT_SEED (0xFFFFU)

Definition at line 44 of file crc_driver.h.

14.4.3.2 #define CRC_DEFAULT_WRITE_TRANSPOSE CRC_TRANSPOSE_NONE

Definition at line 42 of file crc_driver.h.

14.4.4 Enumeration Type Documentation

14.4.4.1 enum crc_transpose_t

CRC type of transpose of read write data Implements : crc_transpose_t_Class.

Enumerator

CRC_TRANSPOSE_NONE No transpose

CRC_TRANSPOSE_BITS Transpose bits in bytes

CRC_TRANSPOSE_BITS_AND_BYTES Transpose bytes and bits in bytes

CRC_TRANSPOSE_BYTES Transpose bytes

Definition at line 50 of file crc_driver.h.

14.4.5 Function Documentation

14.4.5.1 status_t CRC_DRV_Configure (uint32_t instance, const crc_user_config_t ∗ userConfigPtr)

Configures the CRC module from a user configuration structure.

This function configures the CRC module from a user configuration structure

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

186 CONTENTS

Parameters

in instance The CRC instance number
in userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 239 of file crc_driver.c.

14.4.5.2 status_t CRC_DRV_Deinit (uint32_t instance)

Sets the default configuration.

This function sets the default configuration

Parameters

in instance The CRC instance number

Returns

Execution status (success)

Definition at line 91 of file crc_driver.c.

14.4.5.3 status_t CRC_DRV_GetConfig (uint32_t instance, crc_user_config_t ∗const userConfigPtr)

Get configures of the CRC module currently.

This function Get configures of the CRC module currently

Parameters

in instance The CRC instance number
in userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 271 of file crc_driver.c.

14.4.5.4 uint32_t CRC_DRV_GetCrc16 (uint32_t instance, uint16_t data, bool newSeed, uint32_t seed)

Appends 16-bit data to the current CRC calculation and returns new result.

This function appends 16-bit data to the current CRC calculation and returns new result. If the newSeed is true,
seed set and result are calculated from the seed new value (new CRC calculation)

Parameters

in instance The CRC instance number
in data Input data for CRC calculation
in newSeed Sets new CRC calculation

• true: New seed set and used for new calculation.

• false: Seed argument ignored, continues old calculation.

in seed New seed if newSeed is true, else ignored

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.4 CRC Driver 187

Returns

New CRC result

Definition at line 142 of file crc_driver.c.

14.4.5.5 uint32_t CRC_DRV_GetCrc32 (uint32_t instance, uint32_t data, bool newSeed, uint32_t seed)

Appends 32-bit data to the current CRC calculation and returns new result.

This function appends 32-bit data to the current CRC calculation and returns new result. If the newSeed is true,
seed set and result are calculated from the seed new value (new CRC calculation)

Parameters

in instance The CRC instance number
in data Input data for CRC calculation
in newSeed Sets new CRC calculation

• true: New seed set and used for new calculation.

• false: Seed argument ignored, continues old calculation.

in seed New seed if newSeed is true, else ignored

Returns

New CRC result

Definition at line 111 of file crc_driver.c.

14.4.5.6 uint32_t CRC_DRV_GetCrc8 (uint32_t instance, uint8_t data, bool newSeed, uint32_t seed)

Appends 8-bit data to the current CRC calculation and returns new result.

This function appends 8-bit data to the current CRC calculation and returns new result. If the newSeed is true, seed
set and result are calculated from the seed new value (new CRC calculation)

Parameters

in instance The CRC instance number
in data Input data for CRC calculation
in newSeed Sets new CRC calculation

• true: New seed set and used for new calculation.

• false: Seed argument ignored, continues old calculation.

in seed New seed if newSeed is true, else ignored

Returns

New CRC result

Definition at line 172 of file crc_driver.c.

14.4.5.7 uint32_t CRC_DRV_GetCrcResult (uint32_t instance)

Returns the current result of the CRC calculation.

This function returns the current result of the CRC calculation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

188 CONTENTS

Parameters

in instance The CRC instance number

Returns

Result of CRC calculation

Definition at line 223 of file crc_driver.c.

14.4.5.8 status_t CRC_DRV_GetDefaultConfig (crc_user_config_t ∗const userConfigPtr)

Get default configures the CRC module for configuration structure.

This function Get default configures the CRC module for user configuration structure

Parameters

in userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 303 of file crc_driver.c.

14.4.5.9 status_t CRC_DRV_Init (uint32_t instance, const crc_user_config_t ∗ userConfigPtr)

Initializes the CRC module.

This function initializes CRC driver based on user configuration input. The user must make sure that the clock is
enabled

Parameters

in instance The CRC instance number
in userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 68 of file crc_driver.c.

14.4.5.10 void CRC_DRV_WriteData (uint32_t instance, const uint8_t ∗ data, uint32_t dataSize)

Appends a block of bytes to the current CRC calculation.

This function appends a block of bytes to the current CRC calculation

Parameters

in instance The CRC instance number
in data Data for current CRC calculation
in dataSize Length of data to be calculated

Definition at line 200 of file crc_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.5 CRC Driver 189

14.5 CRC Driver

Basic Operations of CRC

1. To initialize the CRC module, call CRC_DRV_Init() function and pass the user configuration data structure to
it.

This is example code to configure the CRC driver:

#define INST_CRC1 (0U)

/* CRC-16-CCITT standard configuration as follows */
/* Configuration structure crc1_InitConfig0 */
const crc_user_config_t crc1_InitConfig0 = {

.crcWidth = CRC_BITS_16,

.seed = 0xFFFFU,

.polynomial = 0x1021U,

.writeTranspose = CRC_TRANSPOSE_NONE,

.readTranspose = CRC_TRANSPOSE_NONE,

.complementChecksum = false
};

/* KERMIT standard configuration as follows */
/* Configuration structure crc1_InitConfig1 */
const crc_user_config_t crc1_InitConfig1 = {

.crcWidth = CRC_BITS_16,

.seed = 0U,

.polynomial = 0x1021U,

.writeTranspose = CRC_TRANSPOSE_BITS,

.readTranspose = CRC_TRANSPOSE_BITS,

.complementChecksum = false
};

/* Initializes the CRC */
CRC_DRV_Init(INST_CRC1, &crc1_InitConfig0);

1. To configuration and operation CRC module: Function CRC_DRV_Configure() shall be used to write user
configuration to CRC hardware module before starting operation by calling CRC_DRV_WriteData(). Finally,
using CRC_DRV_GetCrcResult() function to get the result of CRC calculation.

This is example code to Configure and get CRC block:

#define INST_CRC1 (0U)

uint8_t buffer[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x30 };
uint32_t result;

/* Set the CRC configuration */
CRC_DRV_Configure(INST_CRC1, &crc1_InitConfig0);
/* Write data to the current CRC calculation */
CRC_DRV_WriteData(INST_CRC1, buffer, 10U);
/* Get result of CRC calculation (0x3218U) */
result = CRC_DRV_GetCrcResult(INST_CRC1);

/* Set the other CRC configuration */
CRC_DRV_Configure(INST_CRC1, &crc1_InitConfig1);
/* Write data to the current CRC calculation */
CRC_DRV_WriteData(INST_CRC1, buffer, 10U);
/* Get result of CRC calculation (0x6B28U) */
result = CRC_DRV_GetCrcResult(INST_CRC1);

/* De-init */
CRC_DRV_Deinit(INST_CRC1);

1. To Get result of 32-bit data then call CRC_DRV_GetCrc32() function.

#define INST_CRC1 (0U)

uint32_t seed = 0xFFFFFFFFU;
uint32_t data = 0x12345678U;
uint32_t result;

/* Get result of 32-bit data */
result = CRC_DRV_GetCrc32(INST_CRC1, data, true, seed);

2. To Get result of 16-bit data then call CRC_DRV_GetCrc16() function.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

190 CONTENTS

#define INST_CRC1 (0U)

uint32_t seed = 0xFFFFU;
uint16_t data = 0x1234U;
uint32_t result;

/* Get result of 16-bit data */
result = CRC_DRV_GetCrc16(INST_CRC1, data, true, seed);

3. To Get current configuration of the CRC module, just call CRC_DRV_GetConfig() function.

#define INST_CRC1 (0U)
crc_user_config_t crc1_InitConfig0;

/* Get current configuration of the CRC module */
CRC_DRV_GetConfig(INST_CRC1, &crc1_InitConfig0);

4. To Get default configuration of the CRC module, just call CRC_DRV_GetDefaultConfig() function.

#define INST_CRC1 (0U)
crc_user_config_t crc1_InitConfig0;

/* Get default configuration of the CRC module */
CRC_DRV_GetDefaultConfig(INST_CRC1, &crc1_InitConfig0);

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 191

14.6 CSEc Driver

14.6.1 Detailed Description

Cryptographic Services Engine Peripheral Driver.

How to use the CSEc driver in your application

To access the command feature set, the part must be configured for EEE operation, using the PGMPART command.
This can be implemented by using the Flash driver. By enabling security features and configuring a number of user
keys, the total size of the 4 KByte EEERAM will be reduced by the space required to store the user keys. The user
key space will then effectively be unaddressable space in the EEERAM.

At the bottom of this page is an example of making this configuration using the Flash driver. For more details related
to the FLASH_DRV_DEFlashPartition function, please refer to the Flash driver documentation. Please note that
this configuration is required only once and should not be lanched from Flash memory.

In order to use the CSEc driver in your application, the CSEC_DRV_Init function should be called prior to using
the rest of the API. The parameter of this function is used for holding the internal state of the driver throughout the
lifetime of the application.

Key/seed/random number generation

This is the high level flow in which to initialize and generate random numbers.

1. Run CSEC_DRV_InitRNG to initialize a random seed from the internal TRNG

• CSEC_DRV_InitRNG must be run after every POR, and before the first execution of CSEC_DRV_←↩

GenerateRND

• Note that if the next step (run CSEC_DRV_GenerateRND) is run without initializing the seed, CSEC←↩

_RNG_SEED will be returned.

2. Run CSEC_DRV_GenerateRND to generate a random numer The PRNG uses the PRNG_STATE/KEY and
Seed per SHE spec and the AIS20 standard.

3. For additional random numbers the user may continue executing CSEC_DRV_GenerateRND unless a POR
event occurred.

Memory update protocol

In order to update a key, the user must have knowledge of a valid authentication secret, i.e. another key (AuthID). If
the key AuthID is empty, the key update will only work if AuthID = ID (the key that will be updated will represent the
AuthID from now on), otherwise CSEC_KEY_EMPTY is returned.

The M1-M3 values need to be computed according to the SHE Specification in order to update a key slot. The
CSEC_DRV_LoadKey function will require those values. After successfully updating the key slot, two verification
values will be returned: M4 and M5. The user can compute the two values and compare them with the ones returned
by the CSEC_DRV_LoadKey function in order to ensure the slot was updated as desired. Please refer to the CSEc
driver example for a reference implementation of the memory update protocol.

Examples:

Using the Flash driver to partition Flash for CSEc operation

flash_ssd_config_t flashSSDConfig;

FLASH_DRV_Init(&flash1_InitConfig0, &flashSSDConfig);

/* Configure the part for EEE operation, with 20 keys for CSEc */
FLASH_DRV_DEFlashPartition(&flashSSDConfig, 0x2, 0x4, 0x3, false);

Encryption using AES EBC mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

192 CONTENTS

uint8_t plainText[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF};

uint8_t plainKey[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

csec_error_code_t stat;
uint8_t cipherText[16];

csec_state_t csecState;

CSEC_DRV_Init(&csecState);

stat = CSEC_DRV_LoadPlainKey(plainKey);
if (stat != CSEC_NO_ERROR)
{

/* Loading the key failed, encryption will not have the expected result */
return false;

}

stat = CSEC_DRV_EncryptECB(CSEC_RAM_KEY, plainText, 16, cipherText);
if (stat != CSEC_NO_ERROR)
{

/* Encryption was successful */
return true;

}

Generating and verifying CMAC for a message

uint8_t plainKey[16] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab,
0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};

uint8_t msg[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

uint8_t cmac[16];
bool verifStatus;
csec_error_code_t stat;

csec_state_t csecState;

CSEC_DRV_Init(&csecState);

stat = CSEC_DRV_LoadPlainKey(plainKey);
if (stat != CSEC_NO_ERROR)

return false;

stat = CSEC_DRV_GenerateMAC(CSEC_RAM_KEY, msg, 128, cmac);
if (stat != CSEC_NO_ERROR)

return false;

stat = CSEC_DRV_VerifyMAC(CSEC_RAM_KEY, msg, 128, cmac, 128, &verifStatus);
if (stat != CSEC_NO_ERROR)

return false;

if (!verifStatus)
{

/* The given CMAC did not matched with the one computed internally */
return false;

}

Generating random bits

csec_error_code_t stat;
csec_status_t status;
uint8_t rnd[16];

csec_state_t csecState;

CSEC_DRV_Init(&csecState);

stat = CSEC_DRV_InitRNG();
if (stat != CSEC_NO_ERROR)

return false;

/* Check RNG is initialized */
status = CSEC_DRV_GetStatus();
if (!(status & CSEC_STATUS_RND_INIT))

return false;

stat = CSEC_DRV_GenerateRND(rnd);
if (stat != CSEC_NO_ERROR)

return false;

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 193

Data Structures

• struct csec_state_t

Internal driver state information. More...

Macros

• #define CSEC_STATUS_BUSY (0x1U)

The bit is set whenever SHE is processing a command.

• #define CSEC_STATUS_SECURE_BOOT (0x2U)

The bit is set if the secure booting is activated.

• #define CSEC_STATUS_BOOT_INIT (0x4U)

The bit is set if the secure booting has been personalized during the boot sequence.

• #define CSEC_STATUS_BOOT_FINISHED (0x8U)

The bit is set when the secure booting has been finished by calling either CMD_BOOT_FAILURE or CMD_BOOT←↩

_OK or if CMD_SECURE_BOOT failed in verifying BOOT_MAC.

• #define CSEC_STATUS_BOOT_OK (0x10U)

The bit is set if the secure booting (CMD_SECURE_BOOT) succeeded. If CMD_BOOT_FAILURE is called the bit is
erased.

• #define CSEC_STATUS_RND_INIT (0x20U)

The bit is set if the random number generator has been initialized.

• #define CSEC_STATUS_EXT_DEBUGGER (0x40U)

The bit is set if an external debugger is connected to the chip.

• #define CSEC_STATUS_INT_DEBUGGER (0x80U)

The bit is set if the internal debugging mechanisms of SHE are activated.

Typedefs

• typedef uint8_t csec_status_t

Represents the status of the CSEc module. Provides one bit for each status code as per SHE specification. CSE←↩

C_STATUS_∗ masks can be used for verifying the status.

• typedef void(∗ csec_callback_t) (csec_cmd_t completedCmd, void ∗callbackParam)

CSEc asynchronous command complete callback function type.

Enumerations

• enum csec_key_id_t {
CSEC_SECRET_KEY = 0x0U, CSEC_MASTER_ECU, CSEC_BOOT_MAC_KEY, CSEC_BOOT_MAC,
CSEC_KEY_1, CSEC_KEY_2, CSEC_KEY_3, CSEC_KEY_4,
CSEC_KEY_5, CSEC_KEY_6, CSEC_KEY_7, CSEC_KEY_8,
CSEC_KEY_9, CSEC_KEY_10, CSEC_RAM_KEY = 0xFU, CSEC_KEY_11 = 0x14U,
CSEC_KEY_12, CSEC_KEY_13, CSEC_KEY_14, CSEC_KEY_15,
CSEC_KEY_16, CSEC_KEY_17, CSEC_KEY_18, CSEC_KEY_19,
CSEC_KEY_20, CSEC_KEY_21 }

Specify the KeyID to be used to implement the requested cryptographic operation.

• enum csec_cmd_t {
CSEC_CMD_ENC_ECB = 0x1U, CSEC_CMD_ENC_CBC, CSEC_CMD_DEC_ECB, CSEC_CMD_DEC_←↩

CBC,
CSEC_CMD_GENERATE_MAC, CSEC_CMD_VERIFY_MAC, CSEC_CMD_LOAD_KEY, CSEC_CMD_L←↩

OAD_PLAIN_KEY,
CSEC_CMD_EXPORT_RAM_KEY, CSEC_CMD_INIT_RNG, CSEC_CMD_EXTEND_SEED, CSEC_CM←↩

D_RND,
CSEC_CMD_RESERVED_1, CSEC_CMD_BOOT_FAILURE, CSEC_CMD_BOOT_OK, CSEC_CMD_GE←↩

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

194 CONTENTS

T_ID,
CSEC_CMD_BOOT_DEFINE, CSEC_CMD_DBG_CHAL, CSEC_CMD_DBG_AUTH, CSEC_CMD_TRN←↩

G_RND,
CSEC_CMD_RESERVED_2, CSEC_CMD_MP_COMPRESS }

CSEc commands which follow the same values as the SHE command definition.

• enum csec_call_sequence_t { CSEC_CALL_SEQ_FIRST, CSEC_CALL_SEQ_SUBSEQUENT }

Specifies if the information is the first or a following function call.

• enum csec_boot_flavor_t { CSEC_BOOT_STRICT, CSEC_BOOT_SERIAL, CSEC_BOOT_PARALLEL, C←↩

SEC_BOOT_NOT_DEFINED }

Specifies the boot type for the BOOT_DEFINE command.

Functions

• void CSEC_DRV_Init (csec_state_t ∗state)

Initializes the internal state of the driver and enables the FTFC interrupt.

• void CSEC_DRV_Deinit (void)

Clears the internal state of the driver and disables the FTFC interrupt.

• status_t CSEC_DRV_EncryptECB (csec_key_id_t keyId, const uint8_t ∗plainText, uint32_t length, uint8_t
∗cipherText)

Performs the AES-128 encryption in ECB mode.

• status_t CSEC_DRV_DecryptECB (csec_key_id_t keyId, const uint8_t ∗cipherText, uint32_t length, uint8_t
∗plainText)

Performs the AES-128 decryption in ECB mode.

• status_t CSEC_DRV_EncryptCBC (csec_key_id_t keyId, const uint8_t ∗plainText, uint32_t length, const
uint8_t ∗iv, uint8_t ∗cipherText)

Performs the AES-128 encryption in CBC mode.

• status_t CSEC_DRV_DecryptCBC (csec_key_id_t keyId, const uint8_t ∗cipherText, uint16_t length, const
uint8_t ∗iv, uint8_t ∗plainText)

Performs the AES-128 decryption in CBC mode.

• status_t CSEC_DRV_GenerateMAC (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen, uint8_←↩

t ∗cmac)

Calculates the MAC of a given message using CMAC with AES-128.

• status_t CSEC_DRV_GenerateMACAddrMode (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen,
uint8_t ∗cmac)

Calculates the MAC of a given message (located in Flash) using CMAC with AES-128.

• status_t CSEC_DRV_VerifyMAC (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen, const uint8_t
∗mac, uint16_t macLen, bool ∗verifStatus)

Verifies the MAC of a given message using CMAC with AES-128.

• status_t CSEC_DRV_VerifyMACAddrMode (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen,
const uint8_t ∗mac, uint16_t macLen, bool ∗verifStatus)

Verifies the MAC of a given message (located in Flash) using CMAC with AES-128.

• status_t CSEC_DRV_LoadKey (csec_key_id_t keyId, const uint8_t ∗m1, const uint8_t ∗m2, const uint8_t
∗m3, uint8_t ∗m4, uint8_t ∗m5)

Updates an internal key per the SHE specification.

• status_t CSEC_DRV_LoadPlainKey (const uint8_t ∗plainKey)

Updates the RAM key memory slot with a 128-bit plaintext.

• status_t CSEC_DRV_ExportRAMKey (uint8_t ∗m1, uint8_t ∗m2, uint8_t ∗m3, uint8_t ∗m4, uint8_t ∗m5)

Exports the RAM_KEY into a format protected by SECRET_KEY.

• status_t CSEC_DRV_InitRNG (void)

Initializes the seed and derives a key for the PRNG.

• status_t CSEC_DRV_ExtendSeed (const uint8_t ∗entropy)

Extends the seed of the PRNG.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 195

• status_t CSEC_DRV_GenerateRND (uint8_t ∗rnd)

Generates a vector of 128 random bits.
• status_t CSEC_DRV_BootFailure (void)

Signals a failure detected during later stages of the boot process.
• status_t CSEC_DRV_BootOK (void)

Marks a successful boot verification during later stages of the boot process.
• status_t CSEC_DRV_BootDefine (uint32_t bootSize, csec_boot_flavor_t bootFlavor)

Implements an extension of the SHE standard to define both the user boot size and boot method.
• static csec_status_t CSEC_DRV_GetStatus (void)

Returns the content of the status register.
• status_t CSEC_DRV_GetID (const uint8_t ∗challenge, uint8_t ∗uid, uint8_t ∗sreg, uint8_t ∗mac)

Returns the identity (UID) and the value of the status register protected by a MAC over a challenge and the data.
• status_t CSEC_DRV_DbgChal (uint8_t ∗challenge)

Obtains a random number which the user shall use along with the MASTER_ECU_KEY and UID to return an autho-
rization request.

• status_t CSEC_DRV_DbgAuth (const uint8_t ∗authorization)

Erases all keys (actual and outdated) stored in NVM Memory if the authorization is confirmed by CSEc.
• status_t CSEC_DRV_MPCompress (const uint8_t ∗msg, uint16_t msgLen, uint8_t ∗mpCompress)

Compresses the given messages by accessing the Miyaguchi-Prenell compression feature with in the CSEc feature
set.

• status_t CSEC_DRV_EncryptECBAsync (csec_key_id_t keyId, const uint8_t ∗plainText, uint32_t length,
uint8_t ∗cipherText)

Asynchronously performs the AES-128 encryption in ECB mode.
• status_t CSEC_DRV_DecryptECBAsync (csec_key_id_t keyId, const uint8_t ∗cipherText, uint32_t length,

uint8_t ∗plainText)

Asynchronously performs the AES-128 decryption in ECB mode.
• status_t CSEC_DRV_EncryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗cipherText, uint16_t length,

const uint8_t ∗iv, uint8_t ∗plainText)

Asynchronously performs the AES-128 encryption in CBC mode.
• status_t CSEC_DRV_DecryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗cipherText, uint32_t length,

const uint8_t ∗iv, uint8_t ∗plainText)

Asynchronously performs the AES-128 decryption in CBC mode.
• status_t CSEC_DRV_GenerateMACAsync (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen,

uint8_t ∗cmac)

Asynchronously calculates the MAC of a given message using CMAC with AES-128.
• status_t CSEC_DRV_VerifyMACAsync (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen, const

uint8_t ∗mac, uint16_t macLen, bool ∗verifStatus)

Asynchronously verifies the MAC of a given message using CMAC with AES-128.
• status_t CSEC_DRV_GetAsyncCmdStatus (void)

Checks the status of the execution of an asynchronous command.
• void CSEC_DRV_InstallCallback (csec_callback_t callbackFunc, void ∗callbackParam)

Installs a callback function which will be invoked when an asynchronous command finishes its execution.

14.6.2 Data Structure Documentation

14.6.2.1 struct csec_state_t

Internal driver state information.

Note

The contents of this structure are internal to the driver and should not be modified by users. Also, contents of
the structure are subject to change in future releases.

Implements : csec_state_t_Class

Definition at line 196 of file csec_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

196 CONTENTS

Data Fields

• bool cmdInProgress
• csec_cmd_t cmd
• const uint8_t ∗ inputBuff
• uint8_t ∗ outputBuff
• uint32_t index
• uint32_t fullSize
• uint32_t partSize
• csec_key_id_t keyId
• status_t errCode
• const uint8_t ∗ iv
• csec_call_sequence_t seq
• uint32_t msgLen
• bool ∗ verifStatus
• bool macWritten
• const uint8_t ∗ mac
• uint32_t macLen
• csec_callback_t callback
• void ∗ callbackParam

Field Documentation

14.6.2.1.1 csec_callback_t callback

The callback invoked when an asynchronous command is completed

Definition at line 213 of file csec_driver.h.

14.6.2.1.2 void∗ callbackParam

User parameter for the command completion callback

Definition at line 214 of file csec_driver.h.

14.6.2.1.3 csec_cmd_t cmd

Specifies the type of the command in execution

Definition at line 198 of file csec_driver.h.

14.6.2.1.4 bool cmdInProgress

Specifies if a command is in progress

Definition at line 197 of file csec_driver.h.

14.6.2.1.5 status_t errCode

Specifies the error code of the last executed command

Definition at line 205 of file csec_driver.h.

14.6.2.1.6 uint32_t fullSize

Specifies the size of the input of the command in execution

Definition at line 202 of file csec_driver.h.

14.6.2.1.7 uint32_t index

Specifies the index in the input buffer of the command in execution

Definition at line 201 of file csec_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 197

14.6.2.1.8 const uint8_t∗ inputBuff

Specifies the input of the command in execution

Definition at line 199 of file csec_driver.h.

14.6.2.1.9 const uint8_t∗ iv

Specifies the IV of the command in execution (for encryption/decryption using CBC mode)

Definition at line 206 of file csec_driver.h.

14.6.2.1.10 csec_key_id_t keyId

Specifies the key used for the command in execution

Definition at line 204 of file csec_driver.h.

14.6.2.1.11 const uint8_t∗ mac

Specifies the MAC to be verified for a MAC verification command

Definition at line 211 of file csec_driver.h.

14.6.2.1.12 uint32_t macLen

Specifies the number of bits of the MAC to be verified for a MAC verification command

Definition at line 212 of file csec_driver.h.

14.6.2.1.13 bool macWritten

Specifies if the MAC to be verified was written in CSE_PRAM for a MAC verification command

Definition at line 210 of file csec_driver.h.

14.6.2.1.14 uint32_t msgLen

Specifies the message size (in bits) for the command in execution (for MAC generation/verification)

Definition at line 208 of file csec_driver.h.

14.6.2.1.15 uint8_t∗ outputBuff

Specifies the output of the command in execution

Definition at line 200 of file csec_driver.h.

14.6.2.1.16 uint32_t partSize

Specifies the size of the chunck of the input currently processed

Definition at line 203 of file csec_driver.h.

14.6.2.1.17 csec_call_sequence_t seq

Specifies if the information is the first or a following function call.

Definition at line 207 of file csec_driver.h.

14.6.2.1.18 bool∗ verifStatus

Specifies the result of the last executed MAC verification command

Definition at line 209 of file csec_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

198 CONTENTS

14.6.3 Macro Definition Documentation

14.6.3.1 #define CSEC_STATUS_BOOT_FINISHED (0x8U)

The bit is set when the secure booting has been finished by calling either CMD_BOOT_FAILURE or CMD_BOO←↩

T_OK or if CMD_SECURE_BOOT failed in verifying BOOT_MAC.

Definition at line 72 of file csec_driver.h.

14.6.3.2 #define CSEC_STATUS_BOOT_INIT (0x4U)

The bit is set if the secure booting has been personalized during the boot sequence.

Definition at line 68 of file csec_driver.h.

14.6.3.3 #define CSEC_STATUS_BOOT_OK (0x10U)

The bit is set if the secure booting (CMD_SECURE_BOOT) succeeded. If CMD_BOOT_FAILURE is called the bit
is erased.

Definition at line 75 of file csec_driver.h.

14.6.3.4 #define CSEC_STATUS_BUSY (0x1U)

The bit is set whenever SHE is processing a command.

Definition at line 63 of file csec_driver.h.

14.6.3.5 #define CSEC_STATUS_EXT_DEBUGGER (0x40U)

The bit is set if an external debugger is connected to the chip.

Definition at line 79 of file csec_driver.h.

14.6.3.6 #define CSEC_STATUS_INT_DEBUGGER (0x80U)

The bit is set if the internal debugging mechanisms of SHE are activated.

Definition at line 82 of file csec_driver.h.

14.6.3.7 #define CSEC_STATUS_RND_INIT (0x20U)

The bit is set if the random number generator has been initialized.

Definition at line 77 of file csec_driver.h.

14.6.3.8 #define CSEC_STATUS_SECURE_BOOT (0x2U)

The bit is set if the secure booting is activated.

Definition at line 65 of file csec_driver.h.

14.6.4 Typedef Documentation

14.6.4.1 typedef void(∗ csec_callback_t) (csec_cmd_t completedCmd, void ∗callbackParam)

CSEc asynchronous command complete callback function type.

Implements : csec_callback_t_Class

Definition at line 185 of file csec_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 199

14.6.4.2 typedef uint8_t csec_status_t

Represents the status of the CSEc module. Provides one bit for each status code as per SHE specification. CSE←↩

C_STATUS_∗ masks can be used for verifying the status.

Implements : csec_status_t_Class

Definition at line 91 of file csec_driver.h.

14.6.5 Enumeration Type Documentation

14.6.5.1 enum csec_boot_flavor_t

Specifies the boot type for the BOOT_DEFINE command.

Implements : csec_boot_flavor_t_Class

Enumerator

CSEC_BOOT_STRICT

CSEC_BOOT_SERIAL

CSEC_BOOT_PARALLEL

CSEC_BOOT_NOT_DEFINED

Definition at line 173 of file csec_driver.h.

14.6.5.2 enum csec_call_sequence_t

Specifies if the information is the first or a following function call.

Implements : csec_call_sequence_t_Class

Enumerator

CSEC_CALL_SEQ_FIRST

CSEC_CALL_SEQ_SUBSEQUENT

Definition at line 163 of file csec_driver.h.

14.6.5.3 enum csec_cmd_t

CSEc commands which follow the same values as the SHE command definition.

Implements : csec_cmd_t_Class

Enumerator

CSEC_CMD_ENC_ECB

CSEC_CMD_ENC_CBC

CSEC_CMD_DEC_ECB

CSEC_CMD_DEC_CBC

CSEC_CMD_GENERATE_MAC

CSEC_CMD_VERIFY_MAC

CSEC_CMD_LOAD_KEY

CSEC_CMD_LOAD_PLAIN_KEY

CSEC_CMD_EXPORT_RAM_KEY

CSEC_CMD_INIT_RNG

CSEC_CMD_EXTEND_SEED

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

200 CONTENTS

CSEC_CMD_RND

CSEC_CMD_RESERVED_1

CSEC_CMD_BOOT_FAILURE

CSEC_CMD_BOOT_OK

CSEC_CMD_GET_ID

CSEC_CMD_BOOT_DEFINE

CSEC_CMD_DBG_CHAL

CSEC_CMD_DBG_AUTH

CSEC_CMD_TRNG_RND

CSEC_CMD_RESERVED_2

CSEC_CMD_MP_COMPRESS

Definition at line 133 of file csec_driver.h.

14.6.5.4 enum csec_key_id_t

Specify the KeyID to be used to implement the requested cryptographic operation.

Implements : csec_key_id_t_Class

Enumerator

CSEC_SECRET_KEY

CSEC_MASTER_ECU

CSEC_BOOT_MAC_KEY

CSEC_BOOT_MAC

CSEC_KEY_1

CSEC_KEY_2

CSEC_KEY_3

CSEC_KEY_4

CSEC_KEY_5

CSEC_KEY_6

CSEC_KEY_7

CSEC_KEY_8

CSEC_KEY_9

CSEC_KEY_10

CSEC_RAM_KEY

CSEC_KEY_11

CSEC_KEY_12

CSEC_KEY_13

CSEC_KEY_14

CSEC_KEY_15

CSEC_KEY_16

CSEC_KEY_17

CSEC_KEY_18

CSEC_KEY_19

CSEC_KEY_20

CSEC_KEY_21

Definition at line 99 of file csec_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 201

14.6.6 Function Documentation

14.6.6.1 status_t CSEC_DRV_BootDefine (uint32_t bootSize, csec_boot_flavor_t bootFlavor)

Implements an extension of the SHE standard to define both the user boot size and boot method.

The function implements an extension of the SHE standard to define both the user boot size and boot method.

Parameters

in bootSize Number of blocks of 128-bit data to check on boot. Maximum size is 512k←↩

Bytes.
in bootFlavor The boot method.

Returns

Error Code after command execution.

Definition at line 817 of file csec_driver.c.

14.6.6.2 status_t CSEC_DRV_BootFailure (void)

Signals a failure detected during later stages of the boot process.

The function is called during later stages of the boot process to detect a failure.

Returns

Error Code after command execution.

Definition at line 753 of file csec_driver.c.

14.6.6.3 status_t CSEC_DRV_BootOK (void)

Marks a successful boot verification during later stages of the boot process.

The function is called during later stages of the boot process to mark successful boot verification.

Returns

Error Code after command execution.

Definition at line 785 of file csec_driver.c.

14.6.6.4 status_t CSEC_DRV_DbgAuth (const uint8_t ∗ authorization)

Erases all keys (actual and outdated) stored in NVM Memory if the authorization is confirmed by CSEc.

This function erases all keys (actual and outdated) stored in NVM Memory if the authorization is confirmed by CSEc.

Parameters

in authorization Pointer to the 128-bit buffer containing the authorization value.

Returns

Error Code after command execution.

Definition at line 944 of file csec_driver.c.

14.6.6.5 status_t CSEC_DRV_DbgChal (uint8_t ∗ challenge)

Obtains a random number which the user shall use along with the MASTER_ECU_KEY and UID to return an
authorization request.

This function obtains a random number which the user shall use along with the MASTER_ECU_KEY and UID to
return an authorization request.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

202 CONTENTS

Parameters

out challenge Pointer to the 128-bit buffer where the challenge data will be stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 905 of file csec_driver.c.

14.6.6.6 status_t CSEC_DRV_DecryptCBC (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint16_t length, const uint8_t
∗ iv, uint8_t ∗ plainText)

Performs the AES-128 decryption in CBC mode.

This function performs the AES-128 decryption in CBC mode of the input cipher text buffer.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 279 of file csec_driver.c.

14.6.6.7 status_t CSEC_DRV_DecryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint32_t length, const
uint8_t ∗ iv, uint8_t ∗ plainText)

Asynchronously performs the AES-128 decryption in CBC mode.

This function performs the AES-128 decryption in CBC mode of the input cipher text buffer, in an asynchronous
manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1132 of file csec_driver.c.

14.6.6.8 status_t CSEC_DRV_DecryptECB (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint32_t length, uint8_t ∗
plainText)

Performs the AES-128 decryption in ECB mode.

This function performs the AES-128 decryption in ECB mode of the input cipher text buffer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 203

Parameters

in keyId KeyID used to perform the cryptographic operation
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 203 of file csec_driver.c.

14.6.6.9 status_t CSEC_DRV_DecryptECBAsync (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint32_t length, uint8_t
∗ plainText)

Asynchronously performs the AES-128 decryption in ECB mode.

This function performs the AES-128 decryption in ECB mode of the input cipher text buffer, in an asynchronous
manner.

Parameters

in keyId KeyID used to perform the cryptographic operation
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1074 of file csec_driver.c.

14.6.6.10 void CSEC_DRV_Deinit (void)

Clears the internal state of the driver and disables the FTFC interrupt.

Definition at line 151 of file csec_driver.c.

14.6.6.11 status_t CSEC_DRV_EncryptCBC (csec_key_id_t keyId, const uint8_t ∗ plainText, uint32_t length, const uint8_t
∗ iv, uint8_t ∗ cipherText)

Performs the AES-128 encryption in CBC mode.

This function performs the AES-128 encryption in CBC mode of the input plaintext buffer.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

204 CONTENTS

in iv Pointer to the initialization vector buffer.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 239 of file csec_driver.c.

14.6.6.12 status_t CSEC_DRV_EncryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint16_t length, const
uint8_t ∗ iv, uint8_t ∗ plainText)

Asynchronously performs the AES-128 encryption in CBC mode.

This function performs the AES-128 encryption in CBC mode of the input plaintext buffer, in an asynchronous
manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1102 of file csec_driver.c.

14.6.6.13 status_t CSEC_DRV_EncryptECB (csec_key_id_t keyId, const uint8_t ∗ plainText, uint32_t length, uint8_t ∗
cipherText)

Performs the AES-128 encryption in ECB mode.

This function performs the AES-128 encryption in ECB mode of the input plain text buffer

Parameters

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 166 of file csec_driver.c.

14.6.6.14 status_t CSEC_DRV_EncryptECBAsync (csec_key_id_t keyId, const uint8_t ∗ plainText, uint32_t length, uint8_t
∗ cipherText)

Asynchronously performs the AES-128 encryption in ECB mode.

This function performs the AES-128 encryption in ECB mode of the input plain text buffer, in an asynchronous
manner.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 205

Parameters

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1046 of file csec_driver.c.

14.6.6.15 status_t CSEC_DRV_ExportRAMKey (uint8_t ∗ m1, uint8_t ∗ m2, uint8_t ∗ m3, uint8_t ∗ m4, uint8_t ∗ m5)

Exports the RAM_KEY into a format protected by SECRET_KEY.

This function exports the RAM_KEY into a format protected by SECRET_KEY.

Parameters

out m1 Pointer to a buffer where the M1 parameter will be exported.
out m2 Pointer to a buffer where the M2 parameter will be exported.
out m3 Pointer to a buffer where the M3 parameter will be exported.
out m4 Pointer to a buffer where the M4 parameter will be exported.
out m5 Pointer to a buffer where the M5 parameter will be exported.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 591 of file csec_driver.c.

14.6.6.16 status_t CSEC_DRV_ExtendSeed (const uint8_t ∗ entropy)

Extends the seed of the PRNG.

Extends the seed of the PRNG by compressing the former seed value and the supplied entropy into a new seed.
This new seed is then to be used to generate a random number by invoking the CMD_RND command. The random
number generator must be initialized by CMD_INIT_RNG before the seed may be extended.

Parameters

in entropy Pointer to a 128-bit buffer containing the entropy.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 677 of file csec_driver.c.

14.6.6.17 status_t CSEC_DRV_GenerateMAC (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, uint8_t ∗ cmac
)

Calculates the MAC of a given message using CMAC with AES-128.

This function calculates the MAC of a given message using CMAC with AES-128.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

206 CONTENTS

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 319 of file csec_driver.c.

14.6.6.18 status_t CSEC_DRV_GenerateMACAddrMode (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen,
uint8_t ∗ cmac)

Calculates the MAC of a given message (located in Flash) using CMAC with AES-128.

This function calculates the MAC of a given message using CMAC with AES-128. It is different from the CSEC_←↩

DRV_GenerateMAC function in the sense that it does not involve an extra copy of the data on which the CMAC is
computed and the message pointer should be a pointer to Flash memory.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer (pointing to Flash memory).
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 359 of file csec_driver.c.

14.6.6.19 status_t CSEC_DRV_GenerateMACAsync (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, uint8_t ∗
cmac)

Asynchronously calculates the MAC of a given message using CMAC with AES-128.

This function calculates the MAC of a given message using CMAC with AES-128, in an asynchronous manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1162 of file csec_driver.c.

14.6.6.20 status_t CSEC_DRV_GenerateRND (uint8_t ∗ rnd)

Generates a vector of 128 random bits.

The function returns a vector of 128 random bits. The random number generator has to be initialized by calling
CSEC_DRV_InitRNG before random numbers can be supplied.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 207

Parameters

out rnd Pointer to a 128-bit buffer where the generated random number has to be
stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 714 of file csec_driver.c.

14.6.6.21 status_t CSEC_DRV_GetAsyncCmdStatus (void)

Checks the status of the execution of an asynchronous command.

This function checks the status of the execution of an asynchronous command. If the command is still in progress,
returns STATUS_BUSY.

Returns

Error Code after command execution.

Definition at line 1226 of file csec_driver.c.

14.6.6.22 status_t CSEC_DRV_GetID (const uint8_t ∗ challenge, uint8_t ∗ uid, uint8_t ∗ sreg, uint8_t ∗ mac)

Returns the identity (UID) and the value of the status register protected by a MAC over a challenge and the data.

This function returns the identity (UID) and the value of the status register protected by a MAC over a challenge and
the data.

Parameters

in challenge Pointer to the 128-bit buffer containing Challenge data.
out uid Pointer to 120 bit buffer where the UID will be stored.
out sreg Value of the status register.
out mac Pointer to the 128 bit buffer where the MAC generated over challenge and UID

and status will be stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 854 of file csec_driver.c.

14.6.6.23 static csec_status_t CSEC_DRV_GetStatus (void) [inline], [static]

Returns the content of the status register.

The function shall return the content of the status register.

Returns

Value of the status register.

Implements : CSEC_DRV_GetStatus_Activity

Definition at line 530 of file csec_driver.h.

14.6.6.24 void CSEC_DRV_Init (csec_state_t ∗ state)

Initializes the internal state of the driver and enables the FTFC interrupt.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

208 CONTENTS

Parameters

in state Pointer to the state structure which will be used for holding the internal state of
the driver.

Definition at line 133 of file csec_driver.c.

14.6.6.25 status_t CSEC_DRV_InitRNG (void)

Initializes the seed and derives a key for the PRNG.

The function initializes the seed and derives a key for the PRNG. The function must be called before CMD_RND
after every power cycle/reset.

Returns

Error Code after command execution.

Definition at line 642 of file csec_driver.c.

14.6.6.26 void CSEC_DRV_InstallCallback (csec_callback_t callbackFunc, void ∗ callbackParam)

Installs a callback function which will be invoked when an asynchronous command finishes its execution.

Parameters

in callbackFunc The function to be invoked.
in callbackParam The parameter to be passed to the callback function.

Definition at line 1599 of file csec_driver.c.

14.6.6.27 status_t CSEC_DRV_LoadKey (csec_key_id_t keyId, const uint8_t ∗ m1, const uint8_t ∗ m2, const uint8_t ∗ m3,
uint8_t ∗ m4, uint8_t ∗ m5)

Updates an internal key per the SHE specification.

This function updates an internal key per the SHE specification.

Parameters

in keyId KeyID of the key to be updated.
in m1 Pointer to the 128-bit M1 message containing the UID, Key ID and Authentica-

tion Key ID.
in m2 Pointer to the 256-bit M2 message contains the new security flags, counter

and the key value all encrypted using a derived key generated from the Au-
thentication Key.

in m3 Pointer to the 128-bit M3 message is a MAC generated over messages M1
and M2.

out m4 Pointer to a 256 bits buffer where the computed M4 parameter is stored.
out m5 Pointer to a 128 bits buffer where the computed M5 parameters is stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 502 of file csec_driver.c.

14.6.6.28 status_t CSEC_DRV_LoadPlainKey (const uint8_t ∗ plainKey)

Updates the RAM key memory slot with a 128-bit plaintext.

The function updates the RAM key memory slot with a 128-bit plaintext. The key is loaded without encryption and
verification of the key, i.e. the key is handed over in plaintext. A plain key can only be loaded into the RAM_KEY
slot.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 209

Parameters

in plainKey Pointer to the 128-bit buffer containing the key that needs to be copied in R←↩

AM_KEY slot.

Returns

Error Code after command execution.

Definition at line 555 of file csec_driver.c.

14.6.6.29 status_t CSEC_DRV_MPCompress (const uint8_t ∗ msg, uint16_t msgLen, uint8_t ∗ mpCompress)

Compresses the given messages by accessing the Miyaguchi-Prenell compression feature with in the CSEc feature
set.

This function accesses a Miyaguchi-Prenell compression feature within the CSEc feature set to compress the given
messages.

Parameters

in msg Pointer to the messages to be compressed. Messages must be pre-processed
per SHE specification if they do not already meet the full 128-bit block size
requirement.

in msgLen The number of 128 bit messages to be compressed.
out mpCompress Pointer to the 128 bit buffer storing the compressed data.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 980 of file csec_driver.c.

14.6.6.30 status_t CSEC_DRV_VerifyMAC (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, const uint8_t ∗
mac, uint16_t macLen, bool ∗ verifStatus)

Verifies the MAC of a given message using CMAC with AES-128.

This function verifies the MAC of a given message using CMAC with AES-128.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 403 of file csec_driver.c.

14.6.6.31 status_t CSEC_DRV_VerifyMACAddrMode (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, const
uint8_t ∗ mac, uint16_t macLen, bool ∗ verifStatus)

Verifies the MAC of a given message (located in Flash) using CMAC with AES-128.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

210 CONTENTS

This function verifies the MAC of a given message using CMAC with AES-128. It is different from the CSEC_DRV←↩

_VerifyMAC function in the sense that it does not involve an extra copy of the data on which the CMAC is computed
and the message pointer should be a pointer to Flash memory.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.6 CSEc Driver 211

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer (pointing to Flash memory).
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 450 of file csec_driver.c.

14.6.6.32 status_t CSEC_DRV_VerifyMACAsync (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, const
uint8_t ∗ mac, uint16_t macLen, bool ∗ verifStatus)

Asynchronously verifies the MAC of a given message using CMAC with AES-128.

This function verifies the MAC of a given message using CMAC with AES-128, in an asynchronous manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1191 of file csec_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

212 CONTENTS

14.7 Clock Manager

14.7.1 Detailed Description

This module covers the clock management API and clock related functionality.

This section describes the programming interface of the clock_manager driver. Clock_manager achieves its func-
tionality by configuring the hardware modules involved in clock distribution and management.

Notes

Current implementation assumes that the clock configurations are valid and are applied in a valid sequence. Mainly
this means that the configuration doesn't reinitialize the clock used as the system clock.

Code Example

This is an example for switching between two configurations:

CLOCK_SYS_Init(g_clockManConfigsArr,
CLOCK_MANAGER_CONFIG_CNT,
g_clockManCallbacksArr,
CLOCK_MANAGER_CALLBACK_CNT);

CLOCK_SYS_UpdateConfiguration(0,
CLOCK_MANAGER_POLICY_FORCIBLE);

CLOCK_SYS_UpdateConfiguration(1,
CLOCK_MANAGER_POLICY_FORCIBLE);

Modules

• Clock Manager Driver

This module covers the device-specific clock_manager functionality implemented for S32K144 SOC.

• Clock_manager_s32k1xx

Data Structures

• struct clock_manager_user_config_t

Clock configuration structure. Implements clock_manager_user_config_t_Class. More...

• struct clock_notify_struct_t

Clock notification structure passed to clock callback function. Implements clock_notify_struct_t_Class. More...

• struct clock_manager_callback_user_config_t

Structure for callback function and its parameter. Implements clock_manager_callback_user_config_t_Class. More...

• struct clock_manager_state_t

Clock manager state structure. Implements clock_manager_state_t_Class. More...

Typedefs

• typedef status_t(∗ clock_manager_callback_t) (clock_notify_struct_t ∗notify, void ∗callbackData)

Type of clock callback functions.

Enumerations

• enum clock_manager_notify_t { CLOCK_MANAGER_NOTIFY_RECOVER = 0x00U, CLOCK_MANAGER←↩

_NOTIFY_BEFORE = 0x01U, CLOCK_MANAGER_NOTIFY_AFTER = 0x02U }

The clock notification type. Implements clock_manager_notify_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.7 Clock Manager 213

• enum clock_manager_callback_type_t { CLOCK_MANAGER_CALLBACK_BEFORE = 0x01U, CLOCK_M←↩

ANAGER_CALLBACK_AFTER = 0x02U, CLOCK_MANAGER_CALLBACK_BEFORE_AFTER = 0x03U }

The callback type, indicates what kinds of notification this callback handles. Implements clock_manager_callback←↩

_type_t_Class.

• enum clock_manager_policy_t { CLOCK_MANAGER_POLICY_AGREEMENT, CLOCK_MANAGER_POL←↩

ICY_FORCIBLE }

Clock transition policy. Implements clock_manager_policy_t_Class.

Dynamic clock setting

• status_t CLOCK_SYS_Init (clock_manager_user_config_t const ∗∗clockConfigsPtr, uint8_t configsNumber,
clock_manager_callback_user_config_t ∗∗callbacksPtr, uint8_t callbacksNumber)

Install pre-defined clock configurations.

• status_t CLOCK_SYS_UpdateConfiguration (uint8_t targetConfigIndex, clock_manager_policy_t policy)

Set system clock configuration according to pre-defined structure.

• status_t CLOCK_SYS_SetConfiguration (clock_manager_user_config_t const ∗config)

Set system clock configuration.

• uint8_t CLOCK_SYS_GetCurrentConfiguration (void)

Get current system clock configuration.

• clock_manager_callback_user_config_t ∗ CLOCK_SYS_GetErrorCallback (void)

Get the callback which returns error in last clock switch.

• status_t CLOCK_SYS_GetFreq (clock_names_t clockName, uint32_t ∗frequency)

Gets the clock frequency for a specific clock name.

14.7.2 Data Structure Documentation

14.7.2.1 struct clock_manager_user_config_t

Clock configuration structure. Implements clock_manager_user_config_t_Class.

Definition at line 73 of file clock_manager.h.

Data Fields

• mc_me_config_t mcmeConfig
• cgm_config_t cgmConfig
• cgmcs_config_t cgmcsConfig

Field Documentation

14.7.2.1.1 cgm_config_t cgmConfig

CGM configuration.

Definition at line 84 of file clock_manager.h.

14.7.2.1.2 cgmcs_config_t cgmcsConfig

CGM Clock Sources configuration.

Definition at line 85 of file clock_manager.h.

14.7.2.1.3 mc_me_config_t mcmeConfig

MC_ME configuration.

Definition at line 83 of file clock_manager.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

214 CONTENTS

14.7.2.2 struct clock_notify_struct_t

Clock notification structure passed to clock callback function. Implements clock_notify_struct_t_Class.

Definition at line 125 of file clock_manager.h.

Data Fields

• uint8_t targetClockConfigIndex

• clock_manager_policy_t policy

• clock_manager_notify_t notifyType

Field Documentation

14.7.2.2.1 clock_manager_notify_t notifyType

Clock notification type.

Definition at line 129 of file clock_manager.h.

14.7.2.2.2 clock_manager_policy_t policy

Clock transition policy.

Definition at line 128 of file clock_manager.h.

14.7.2.2.3 uint8_t targetClockConfigIndex

Target clock configuration index.

Definition at line 127 of file clock_manager.h.

14.7.2.3 struct clock_manager_callback_user_config_t

Structure for callback function and its parameter. Implements clock_manager_callback_user_config_t_Class.

Definition at line 142 of file clock_manager.h.

Data Fields

• clock_manager_callback_t callback

• clock_manager_callback_type_t callbackType

• void ∗ callbackData

Field Documentation

14.7.2.3.1 clock_manager_callback_t callback

Entry of callback function.

Definition at line 144 of file clock_manager.h.

14.7.2.3.2 void∗ callbackData

Parameter of callback function.

Definition at line 146 of file clock_manager.h.

14.7.2.3.3 clock_manager_callback_type_t callbackType

Callback type.

Definition at line 145 of file clock_manager.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.7 Clock Manager 215

14.7.2.4 struct clock_manager_state_t

Clock manager state structure. Implements clock_manager_state_t_Class.

Definition at line 153 of file clock_manager.h.

Data Fields

• clock_manager_user_config_t const ∗∗ configTable
• uint8_t clockConfigNum
• uint8_t curConfigIndex
• clock_manager_callback_user_config_t ∗∗ callbackConfig
• uint8_t callbackNum
• uint8_t errorCallbackIndex

Field Documentation

14.7.2.4.1 clock_manager_callback_user_config_t∗∗ callbackConfig

Pointer to callback table.

Definition at line 158 of file clock_manager.h.

14.7.2.4.2 uint8_t callbackNum

Number of clock callbacks.

Definition at line 159 of file clock_manager.h.

14.7.2.4.3 uint8_t clockConfigNum

Number of clock configurations.

Definition at line 156 of file clock_manager.h.

14.7.2.4.4 clock_manager_user_config_t const∗∗ configTable

Pointer to clock configure table.

Definition at line 155 of file clock_manager.h.

14.7.2.4.5 uint8_t curConfigIndex

Index of current configuration.

Definition at line 157 of file clock_manager.h.

14.7.2.4.6 uint8_t errorCallbackIndex

Index of callback returns error.

Definition at line 160 of file clock_manager.h.

14.7.3 Typedef Documentation

14.7.3.1 typedef status_t(∗ clock_manager_callback_t) (clock_notify_struct_t ∗notify, void ∗callbackData)

Type of clock callback functions.

Definition at line 135 of file clock_manager.h.

14.7.4 Enumeration Type Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

216 CONTENTS

14.7.4.1 enum clock_manager_callback_type_t

The callback type, indicates what kinds of notification this callback handles. Implements clock_manager_callback←↩

_type_t_Class.

Enumerator

CLOCK_MANAGER_CALLBACK_BEFORE Callback handles BEFORE notification.

CLOCK_MANAGER_CALLBACK_AFTER Callback handles AFTER notification.

CLOCK_MANAGER_CALLBACK_BEFORE_AFTER Callback handles BEFORE and AFTER notification

Definition at line 104 of file clock_manager.h.

14.7.4.2 enum clock_manager_notify_t

The clock notification type. Implements clock_manager_notify_t_Class.

Enumerator

CLOCK_MANAGER_NOTIFY_RECOVER Notify IP to recover to previous work state.

CLOCK_MANAGER_NOTIFY_BEFORE Notify IP that system will change clock setting.

CLOCK_MANAGER_NOTIFY_AFTER Notify IP that have changed to new clock setting.

Definition at line 93 of file clock_manager.h.

14.7.4.3 enum clock_manager_policy_t

Clock transition policy. Implements clock_manager_policy_t_Class.

Enumerator

CLOCK_MANAGER_POLICY_AGREEMENT Clock transfers gracefully.

CLOCK_MANAGER_POLICY_FORCIBLE Clock transfers forcefully.

Definition at line 115 of file clock_manager.h.

14.7.5 Function Documentation

14.7.5.1 uint8_t CLOCK_SYS_GetCurrentConfiguration (void)

Get current system clock configuration.

Returns

Current clock configuration index.

Definition at line 208 of file clock_manager.c.

14.7.5.2 clock_manager_callback_user_config_t∗ CLOCK_SYS_GetErrorCallback (void)

Get the callback which returns error in last clock switch.

When graceful policy is used, if some IP is not ready to change clock setting, the callback will return error and
system stay in current configuration. Applications can use this function to check which IP callback returns error.

Returns

Pointer to the callback which returns error.

Definition at line 220 of file clock_manager.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.7 Clock Manager 217

14.7.5.3 status_t CLOCK_SYS_GetFreq (clock_names_t clockName, uint32_t ∗ frequency)

Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock frequency for a specific clock
name defined in clock_names_t. The SCG must be properly configured before using this function. See the reference
manual for supported clock names for different chip families. The returned value is in Hertz. If it cannot find the clock
name or the name is not supported for a specific chip family, it returns an STATUS_UNSUPPORTED. If frequency
is required for a peripheral and the module is not clocked, then STATUS_MCU_GATED_OFF status is returned.
Frequency is returned if a valid address is provided. If frequency is required for a peripheral that doesn't support
functional clock, the zero value is provided.

Parameters

in clockName Clock names defined in clock_names_t
out frequency Returned clock frequency value in Hertz

Returns

status Error code defined in status_t

Definition at line 797 of file clock_S32K1xx.c.

14.7.5.4 status_t CLOCK_SYS_Init (clock_manager_user_config_t const ∗∗ clockConfigsPtr, uint8_t configsNumber,
clock_manager_callback_user_config_t ∗∗ callbacksPtr, uint8_t callbacksNumber)

Install pre-defined clock configurations.

This function installs the pre-defined clock configuration table to clock manager.

Parameters

in clockConfigsPtr Pointer to the clock configuration table.
in configsNumber Number of clock configurations in table.
in callbacksPtr Pointer to the callback configuration table.
in callbacks←↩

Number
Number of callback configurations in table.

Returns

Error code.

Definition at line 57 of file clock_manager.c.

14.7.5.5 status_t CLOCK_SYS_SetConfiguration (clock_manager_user_config_t const ∗ config)

Set system clock configuration.

This function sets the system to target configuration, it only sets the clock modules registers for clock mode change,
but not send notifications to drivers. This function is different by different SoCs.

Parameters

in config Target configuration.

Returns

Error code.

Note

If external clock is used in the target mode, please make sure it is enabled, for example, if the external oscillator
is used, please setup EREFS/HGO correctly and make sure OSCINIT is set.

Definition at line 244 of file clock_S32K1xx.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

218 CONTENTS

14.7.5.6 status_t CLOCK_SYS_UpdateConfiguration (uint8_t targetConfigIndex, clock_manager_policy_t policy)

Set system clock configuration according to pre-defined structure.

This function sets system to target clock configuration; before transition, clock manager will send notifications to all
drivers registered to the callback table. When graceful policy is used, if some drivers are not ready to change, clock
transition will not occur, all drivers still work in previous configuration and error is returned. When forceful policy is
used, all drivers should stop work and system changes to new clock configuration.

Parameters

in targetConfig←↩

Index
Index of the clock configuration.

in policy Transaction policy, graceful or forceful.

Returns

Error code.

Note

If external clock is used in the target mode, please make sure it is enabled, for example, if the external oscillator
is used, please setup EREFS/HGO correctly and make sure OSCINIT is set.

Definition at line 90 of file clock_manager.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.8 Clock Manager Driver 219

14.8 Clock Manager Driver

This module covers the device-specific clock_manager functionality implemented for S32K144 SOC.

The support for S32K144 consist in the following items:

1. Clock names enumeration clock_names_t is an enumeration which contains all clock names which are rele-
vant for S32K144.

2. Submodule configuration structures

• scg_config_t

• pcc_config_t

• sim_clock_config_t

3. Submodule configuration functions The following functions were implemented for S32K144:

• CLOCK_SYS_SetScgConfiguration

• CLOCK_SYS_SetPccConfiguration

• CLOCK_SYS_SetSimConfiguration

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

220 CONTENTS

14.9 Clock_manager_s32k1xx

14.9.1 Detailed Description

Data Structures

• struct sim_clock_out_config_t

SIM ClockOut configuration. Implements sim_clock_out_config_t_Class. More...

• struct sim_lpo_clock_config_t

SIM LPO Clocks configuration. Implements sim_lpo_clock_config_t_Class. More...

• struct sim_tclk_config_t

SIM Platform Gate Clock configuration. Implements sim_tclk_config_t_Class. More...

• struct sim_plat_gate_config_t

SIM Platform Gate Clock configuration. Implements sim_plat_gate_config_t_Class. More...

• struct sim_qspi_ref_clk_gating_t

SIM QSPI reference clock gating. Implements sim_qspi_ref_clk_gating_t_Class. More...

• struct sim_trace_clock_config_t

SIM Debug Trace clock configuration. Implements sim_trace_clock_config_t_Class. More...

• struct sim_clock_config_t

SIM configure structure. Implements sim_clock_config_t_Class. More...

• struct scg_system_clock_config_t

SCG system clock configuration. Implements scg_system_clock_config_t_Class. More...

Macros

• #define NUMBER_OF_TCLK_INPUTS 3U

Enumerations

• enum sim_rtc_clk_sel_src_t { SIM_RTCCLK_SEL_SOSCDIV1_CLK = 0x0U, SIM_RTCCLK_SEL_LPO_32K
= 0x1U, SIM_RTCCLK_SEL_RTC_CLKIN = 0x2U, SIM_RTCCLK_SEL_FIRCDIV1_CLK = 0x3U }

SIM CLK32KSEL clock source select Implements sim_rtc_clk_sel_src_t_Class.

• enum sim_lpoclk_sel_src_t { SIM_LPO_CLK_SEL_LPO_128K = 0x0, SIM_LPO_CLK_SEL_NO_CLOCK =
0x1, SIM_LPO_CLK_SEL_LPO_32K = 0x2, SIM_LPO_CLK_SEL_LPO_1K = 0x3 }

SIM LPOCLKSEL clock source select Implements sim_lpoclk_sel_src_t_Class.

• enum sim_clkout_src_t {
SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT = 0x0U, SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK =
0x2U, SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK = 0x4U, SIM_CLKOUT_SEL_SYSTEM_FIRC_DI←↩

V2_CLK = 0x6U,
SIM_CLKOUT_SEL_SYSTEM_HCLK = 0x7U, SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK = 0x8U, S←↩

IM_CLKOUT_SEL_SYSTEM_BUS_CLK = 0x9U, SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK = 0x10U,
SIM_CLKOUT_SEL_SYSTEM_LPO_CLK = 0x12U, SIM_CLKOUT_SEL_SYSTEM_RTC_CLK = 0x14U }

SIM CLKOUT select.

• enum sim_clkout_div_t {
SIM_CLKOUT_DIV_BY_1 = 0x0U, SIM_CLKOUT_DIV_BY_2 = 0x1U, SIM_CLKOUT_DIV_BY_3 = 0x2U,
SIM_CLKOUT_DIV_BY_4 = 0x3U,
SIM_CLKOUT_DIV_BY_5 = 0x4U, SIM_CLKOUT_DIV_BY_6 = 0x5U, SIM_CLKOUT_DIV_BY_7 = 0x6U,
SIM_CLKOUT_DIV_BY_8 = 0x7U }

SIM CLKOUT divider.

• enum clock_trace_src_t { CLOCK_TRACE_SRC_CORE_CLK = 0x0, CLOCK_TRACE_SRC_PLATFORM←↩

_CLK = 0x1 }

Debug trace clock source select Implements clock_trace_src_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.9 Clock_manager_s32k1xx 221

• enum scg_system_clock_src_t {
SCG_SYSTEM_CLOCK_SRC_SYS_OSC = 1U, SCG_SYSTEM_CLOCK_SRC_SIRC = 2U, SCG_SYST←↩

EM_CLOCK_SRC_FIRC = 3U, SCG_SYSTEM_CLOCK_SRC_SYS_PLL = 6U,
SCG_SYSTEM_CLOCK_SRC_NONE = 255U }

SCG system clock source. Implements scg_system_clock_src_t_Class.

• enum scg_system_clock_div_t {
SCG_SYSTEM_CLOCK_DIV_BY_1 = 0U, SCG_SYSTEM_CLOCK_DIV_BY_2 = 1U, SCG_SYSTEM_CL←↩

OCK_DIV_BY_3 = 2U, SCG_SYSTEM_CLOCK_DIV_BY_4 = 3U,
SCG_SYSTEM_CLOCK_DIV_BY_5 = 4U, SCG_SYSTEM_CLOCK_DIV_BY_6 = 5U, SCG_SYSTEM_CL←↩

OCK_DIV_BY_7 = 6U, SCG_SYSTEM_CLOCK_DIV_BY_8 = 7U,
SCG_SYSTEM_CLOCK_DIV_BY_9 = 8U, SCG_SYSTEM_CLOCK_DIV_BY_10 = 9U, SCG_SYSTEM_C←↩

LOCK_DIV_BY_11 = 10U, SCG_SYSTEM_CLOCK_DIV_BY_12 = 11U,
SCG_SYSTEM_CLOCK_DIV_BY_13 = 12U, SCG_SYSTEM_CLOCK_DIV_BY_14 = 13U, SCG_SYSTE←↩

M_CLOCK_DIV_BY_15 = 14U, SCG_SYSTEM_CLOCK_DIV_BY_16 = 15U }

SCG system clock divider value. Implements scg_system_clock_div_t_Class.

Variables

• const uint8_t peripheralFeaturesList [CLOCK_NAME_COUNT]

Peripheral features list Constant array storing the mappings between clock names of the peripherals and feature lists.

• uint32_t g_TClkFreq [NUMBER_OF_TCLK_INPUTS]
• uint32_t g_xtal0ClkFreq
• uint32_t g_RtcClkInFreq

14.9.2 Data Structure Documentation

14.9.2.1 struct sim_clock_out_config_t

SIM ClockOut configuration. Implements sim_clock_out_config_t_Class.

Definition at line 119 of file clock_S32K1xx.h.

Data Fields

• bool initialize
• bool enable
• sim_clkout_src_t source
• sim_clkout_div_t divider

Field Documentation

14.9.2.1.1 sim_clkout_div_t divider

SIM ClockOut divide ratio.

Definition at line 124 of file clock_S32K1xx.h.

14.9.2.1.2 bool enable

SIM ClockOut enable.

Definition at line 122 of file clock_S32K1xx.h.

14.9.2.1.3 bool initialize

Initialize or not the ClockOut clock.

Definition at line 121 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

222 CONTENTS

14.9.2.1.4 sim_clkout_src_t source

SIM ClockOut source select.

Definition at line 123 of file clock_S32K1xx.h.

14.9.2.2 struct sim_lpo_clock_config_t

SIM LPO Clocks configuration. Implements sim_lpo_clock_config_t_Class.

Definition at line 132 of file clock_S32K1xx.h.

Data Fields

• bool initialize
• sim_rtc_clk_sel_src_t sourceRtcClk
• sim_lpoclk_sel_src_t sourceLpoClk
• bool enableLpo32k
• bool enableLpo1k

Field Documentation

14.9.2.2.1 bool enableLpo1k

MSCM Clock Gating Control enable.

Definition at line 138 of file clock_S32K1xx.h.

14.9.2.2.2 bool enableLpo32k

MSCM Clock Gating Control enable.

Definition at line 137 of file clock_S32K1xx.h.

14.9.2.2.3 bool initialize

Initialize or not the LPO clock.

Definition at line 134 of file clock_S32K1xx.h.

14.9.2.2.4 sim_lpoclk_sel_src_t sourceLpoClk

LPO clock source select.

Definition at line 136 of file clock_S32K1xx.h.

14.9.2.2.5 sim_rtc_clk_sel_src_t sourceRtcClk

RTC_CLK source select.

Definition at line 135 of file clock_S32K1xx.h.

14.9.2.3 struct sim_tclk_config_t

SIM Platform Gate Clock configuration. Implements sim_tclk_config_t_Class.

Definition at line 145 of file clock_S32K1xx.h.

Data Fields

• bool initialize
• uint32_t tclkFreq [NUMBER_OF_TCLK_INPUTS]

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.9 Clock_manager_s32k1xx 223

14.9.2.3.1 bool initialize

Initialize or not the Trace clock.

Definition at line 147 of file clock_S32K1xx.h.

14.9.2.3.2 uint32_t tclkFreq[NUMBER_OF_TCLK_INPUTS]

TCLKx frequency.

Definition at line 148 of file clock_S32K1xx.h.

14.9.2.4 struct sim_plat_gate_config_t

SIM Platform Gate Clock configuration. Implements sim_plat_gate_config_t_Class.

Definition at line 155 of file clock_S32K1xx.h.

Data Fields

• bool initialize

• bool enableMscm

• bool enableMpu

• bool enableDma

• bool enableErm

• bool enableEim

Field Documentation

14.9.2.4.1 bool enableDma

DMA Clock Gating Control enable.

Definition at line 160 of file clock_S32K1xx.h.

14.9.2.4.2 bool enableEim

EIM Clock Gating Control enable.

Definition at line 162 of file clock_S32K1xx.h.

14.9.2.4.3 bool enableErm

ERM Clock Gating Control enable.

Definition at line 161 of file clock_S32K1xx.h.

14.9.2.4.4 bool enableMpu

MPU Clock Gating Control enable.

Definition at line 159 of file clock_S32K1xx.h.

14.9.2.4.5 bool enableMscm

MSCM Clock Gating Control enable.

Definition at line 158 of file clock_S32K1xx.h.

14.9.2.4.6 bool initialize

Initialize or not the Trace clock.

Definition at line 157 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

224 CONTENTS

14.9.2.5 struct sim_qspi_ref_clk_gating_t

SIM QSPI reference clock gating. Implements sim_qspi_ref_clk_gating_t_Class.

Definition at line 169 of file clock_S32K1xx.h.

Data Fields

• bool enableQspiRefClk

Field Documentation

14.9.2.5.1 bool enableQspiRefClk

qspi internal reference clock gating control enable.

Definition at line 171 of file clock_S32K1xx.h.

14.9.2.6 struct sim_trace_clock_config_t

SIM Debug Trace clock configuration. Implements sim_trace_clock_config_t_Class.

Definition at line 190 of file clock_S32K1xx.h.

Data Fields

• bool initialize

• bool divEnable

• clock_trace_src_t source

• uint8_t divider

• bool divFraction

Field Documentation

14.9.2.6.1 bool divEnable

Trace clock divider enable.

Definition at line 193 of file clock_S32K1xx.h.

14.9.2.6.2 bool divFraction

Trace clock divider fraction.

Definition at line 196 of file clock_S32K1xx.h.

14.9.2.6.3 uint8_t divider

Trace clock divider divisor.

Definition at line 195 of file clock_S32K1xx.h.

14.9.2.6.4 bool initialize

Initialize or not the Trace clock.

Definition at line 192 of file clock_S32K1xx.h.

14.9.2.6.5 clock_trace_src_t source

Trace clock select.

Definition at line 194 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.9 Clock_manager_s32k1xx 225

14.9.2.7 struct sim_clock_config_t

SIM configure structure. Implements sim_clock_config_t_Class.

Definition at line 203 of file clock_S32K1xx.h.

Data Fields

• sim_clock_out_config_t clockOutConfig
• sim_lpo_clock_config_t lpoClockConfig
• sim_tclk_config_t tclkConfig
• sim_plat_gate_config_t platGateConfig
• sim_trace_clock_config_t traceClockConfig
• sim_qspi_ref_clk_gating_t qspiRefClkGating

Field Documentation

14.9.2.7.1 sim_clock_out_config_t clockOutConfig

Clock Out configuration.

Definition at line 205 of file clock_S32K1xx.h.

14.9.2.7.2 sim_lpo_clock_config_t lpoClockConfig

Low Power Clock configuration.

Definition at line 206 of file clock_S32K1xx.h.

14.9.2.7.3 sim_plat_gate_config_t platGateConfig

Platform Gate Clock configuration.

Definition at line 208 of file clock_S32K1xx.h.

14.9.2.7.4 sim_qspi_ref_clk_gating_t qspiRefClkGating

Qspi Reference Clock Gating.

Definition at line 210 of file clock_S32K1xx.h.

14.9.2.7.5 sim_tclk_config_t tclkConfig

Platform Gate Clock configuration.

Definition at line 207 of file clock_S32K1xx.h.

14.9.2.7.6 sim_trace_clock_config_t traceClockConfig

Trace clock configuration.

Definition at line 209 of file clock_S32K1xx.h.

14.9.2.8 struct scg_system_clock_config_t

SCG system clock configuration. Implements scg_system_clock_config_t_Class.

Definition at line 255 of file clock_S32K1xx.h.

Data Fields

• scg_system_clock_div_t divSlow
• scg_system_clock_div_t divBus
• scg_system_clock_div_t divCore
• scg_system_clock_src_t src

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

226 CONTENTS

Field Documentation

14.9.2.8.1 scg_system_clock_div_t divBus

BUS clock divider.

Definition at line 258 of file clock_S32K1xx.h.

14.9.2.8.2 scg_system_clock_div_t divCore

Core clock divider.

Definition at line 259 of file clock_S32K1xx.h.

14.9.2.8.3 scg_system_clock_div_t divSlow

Slow clock divider.

Definition at line 257 of file clock_S32K1xx.h.

14.9.2.8.4 scg_system_clock_src_t src

System clock source.

Definition at line 260 of file clock_S32K1xx.h.

14.9.3 Macro Definition Documentation

14.9.3.1 #define NUMBER_OF_TCLK_INPUTS 3U

Definition at line 49 of file clock_S32K1xx.h.

14.9.4 Enumeration Type Documentation

14.9.4.1 enum clock_trace_src_t

Debug trace clock source select Implements clock_trace_src_t_Class.

Enumerator

CLOCK_TRACE_SRC_CORE_CLK core clock

CLOCK_TRACE_SRC_PLATFORM_CLK platform clock

Definition at line 179 of file clock_S32K1xx.h.

14.9.4.2 enum scg_system_clock_div_t

SCG system clock divider value. Implements scg_system_clock_div_t_Class.

Enumerator

SCG_SYSTEM_CLOCK_DIV_BY_1 Divided by 1.

SCG_SYSTEM_CLOCK_DIV_BY_2 Divided by 2.

SCG_SYSTEM_CLOCK_DIV_BY_3 Divided by 3.

SCG_SYSTEM_CLOCK_DIV_BY_4 Divided by 4.

SCG_SYSTEM_CLOCK_DIV_BY_5 Divided by 5.

SCG_SYSTEM_CLOCK_DIV_BY_6 Divided by 6.

SCG_SYSTEM_CLOCK_DIV_BY_7 Divided by 7.

SCG_SYSTEM_CLOCK_DIV_BY_8 Divided by 8.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.9 Clock_manager_s32k1xx 227

SCG_SYSTEM_CLOCK_DIV_BY_9 Divided by 9.

SCG_SYSTEM_CLOCK_DIV_BY_10 Divided by 10.

SCG_SYSTEM_CLOCK_DIV_BY_11 Divided by 11.

SCG_SYSTEM_CLOCK_DIV_BY_12 Divided by 12.

SCG_SYSTEM_CLOCK_DIV_BY_13 Divided by 13.

SCG_SYSTEM_CLOCK_DIV_BY_14 Divided by 14.

SCG_SYSTEM_CLOCK_DIV_BY_15 Divided by 15.

SCG_SYSTEM_CLOCK_DIV_BY_16 Divided by 16.

Definition at line 231 of file clock_S32K1xx.h.

14.9.4.3 enum scg_system_clock_src_t

SCG system clock source. Implements scg_system_clock_src_t_Class.

Enumerator

SCG_SYSTEM_CLOCK_SRC_SYS_OSC System OSC.

SCG_SYSTEM_CLOCK_SRC_SIRC Slow IRC.

SCG_SYSTEM_CLOCK_SRC_FIRC Fast IRC.

SCG_SYSTEM_CLOCK_SRC_SYS_PLL System PLL.

SCG_SYSTEM_CLOCK_SRC_NONE MAX value.

Definition at line 218 of file clock_S32K1xx.h.

14.9.4.4 enum sim_clkout_div_t

SIM CLKOUT divider.

Enumerator

SIM_CLKOUT_DIV_BY_1 Divided by 1

SIM_CLKOUT_DIV_BY_2 Divided by 2

SIM_CLKOUT_DIV_BY_3 Divided by 3

SIM_CLKOUT_DIV_BY_4 Divided by 4

SIM_CLKOUT_DIV_BY_5 Divided by 5

SIM_CLKOUT_DIV_BY_6 Divided by 6

SIM_CLKOUT_DIV_BY_7 Divided by 7

SIM_CLKOUT_DIV_BY_8 Divided by 8

Definition at line 102 of file clock_S32K1xx.h.

14.9.4.5 enum sim_clkout_src_t

SIM CLKOUT select.

Enumerator

SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT SCG CLKOUT

SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK SOSC DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK SIRC DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_FIRC_DIV2_CLK FIRC DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_HCLK HCLK

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

228 CONTENTS

SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK SPLL DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_BUS_CLK BUS_CLK

SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK LPO_CLK 128 Khz

SIM_CLKOUT_SEL_SYSTEM_LPO_CLK LPO_CLK as selected by SIM LPO CLK Select

SIM_CLKOUT_SEL_SYSTEM_RTC_CLK RTC CLK as selected by SIM CLK 32 KHz Select

Definition at line 85 of file clock_S32K1xx.h.

14.9.4.6 enum sim_lpoclk_sel_src_t

SIM LPOCLKSEL clock source select Implements sim_lpoclk_sel_src_t_Class.

Enumerator

SIM_LPO_CLK_SEL_LPO_128K

SIM_LPO_CLK_SEL_NO_CLOCK

SIM_LPO_CLK_SEL_LPO_32K

SIM_LPO_CLK_SEL_LPO_1K

Definition at line 74 of file clock_S32K1xx.h.

14.9.4.7 enum sim_rtc_clk_sel_src_t

SIM CLK32KSEL clock source select Implements sim_rtc_clk_sel_src_t_Class.

Enumerator

SIM_RTCCLK_SEL_SOSCDIV1_CLK

SIM_RTCCLK_SEL_LPO_32K

SIM_RTCCLK_SEL_RTC_CLKIN

SIM_RTCCLK_SEL_FIRCDIV1_CLK

Definition at line 62 of file clock_S32K1xx.h.

14.9.5 Variable Documentation

14.9.5.1 uint32_t g_RtcClkInFreq

Definition at line 72 of file clock_S32K1xx.c.

14.9.5.2 uint32_t g_TClkFreq[NUMBER_OF_TCLK_INPUTS]

Definition at line 69 of file clock_S32K1xx.c.

14.9.5.3 uint32_t g_xtal0ClkFreq

Definition at line 75 of file clock_S32K1xx.c.

14.9.5.4 const uint8_t peripheralFeaturesList[CLOCK_NAME_COUNT]

Peripheral features list Constant array storing the mappings between clock names of the peripherals and feature
lists.

Definition at line 131 of file clock_S32K1xx.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.10 Common Core API. 229

14.10 Common Core API.

14.10.1 Detailed Description

This group contains general core APIs that used for both protocol LIN 2.1 and J2602.

Modules

• Driver and cluster management

API perform the initialization of the LIN core.

• Interface management

This group contains APIs that help users manage interface(s) in LIN node.

• Notification

This group contains APIs that let users know when a signal's value changed.

• Schedule management

This group contains APIs that help users manage schedule tables in master node only.

• Signal interaction

This group contains APIs that help users interract with signals of LIN node.

• User provided call-outs

This group contains APIs which may be called from within the LIN module in order to enable/disable LIN communica-
tion interrupts.

Macros

• #define SAVE_CONFIG_SET 0x0040U
• #define EVENT_TRIGGER_COLLISION_SET 0x0020U
• #define BUS_ACTIVITY_SET 0x0010U
• #define GO_TO_SLEEP_SET 0x0008U
• #define OVERRUN 0x0004U
• #define SUCCESSFULL_TRANSFER 0x0002U
• #define ERROR_IN_RESPONSE 0x0001U

14.10.2 Macro Definition Documentation

14.10.2.1 #define BUS_ACTIVITY_SET 0x0010U

Bus activity

Definition at line 35 of file lin_common_api.h.

14.10.2.2 #define ERROR_IN_RESPONSE 0x0001U

Error in response

Definition at line 39 of file lin_common_api.h.

14.10.2.3 #define EVENT_TRIGGER_COLLISION_SET 0x0020U

Event triggered frame collision

Definition at line 34 of file lin_common_api.h.

14.10.2.4 #define GO_TO_SLEEP_SET 0x0008U

Go to sleep

Definition at line 36 of file lin_common_api.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

230 CONTENTS

14.10.2.5 #define OVERRUN 0x0004U

Overrun

Definition at line 37 of file lin_common_api.h.

14.10.2.6 #define SAVE_CONFIG_SET 0x0040U

Save configuration

Definition at line 33 of file lin_common_api.h.

14.10.2.7 #define SUCCESSFULL_TRANSFER 0x0002U

Successful transfer

Definition at line 38 of file lin_common_api.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.11 Common Transport Layer API 231

14.11 Common Transport Layer API

14.11.1 Detailed Description

Contains Transport Layer APIs that used for both protocols LIN 2.1 and J2602.

Modules

• Cooked API

Cooked processing of diagnostic messages manages one complete message at a time.

• Initialization

Initialize transport layer (queues, status, ...).

• Raw API

The raw API is operating on PDU level and it is typically used to gateway PDUs between CAN and LIN.

Macros

• #define LD_READ_OK 0x33U
• #define LD_LENGTH_TOO_SHORT 0x34U
• #define LD_DATA_ERROR 0x43U
• #define LD_LENGTH_NOT_CORRECT 0x44U
• #define LD_SET_OK 0x45U
• #define SERVICE_TARGET_RESET 0xB5U
• #define RES_POSITIVE 0x40U
• #define LIN_PRODUCT_ID 0x00U
• #define LIN_SERIAL_NUMBER 0x01U
• #define LD_BROADCAST 0x7FU
• #define LD_FUNCTIONAL_NAD 0x7EU
• #define LD_ANY_SUPPLIER 0x7FFFU
• #define LD_ANY_FUNCTION 0xFFFFU
• #define LD_ANY_MESSAGE 0xFFFFU
• #define RES_NEGATIVE 0x7FU
• #define GENERAL_REJECT 0x10U
• #define SERVICE_NOT_SUPPORTED 0x11U
• #define SUBFUNCTION_NOT_SUPPORTED 0x12U
• #define NEGATIVE 0U
• #define POSITIVE 1U
• #define TRANSMITTING 0U
• #define RECEIVING 1U
• #define DIAG_SERVICE_CALLBACK_HANDLER(iii, sid) lin_diag_service_callback((iii), (sid))

Functions

• void lin_diag_service_callback (l_ifc_handle iii, l_u8 sid)

14.11.2 Macro Definition Documentation

14.11.2.1 #define DIAG_SERVICE_CALLBACK_HANDLER(iii, sid) lin_diag_service_callback((iii), (sid))

Definition at line 89 of file lin_commontl_api.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

232 CONTENTS

14.11.2.2 #define GENERAL_REJECT 0x10U

Error code raised when request for service not supported comes

Definition at line 74 of file lin_commontl_api.h.

14.11.2.3 #define LD_ANY_FUNCTION 0xFFFFU

Function

Definition at line 69 of file lin_commontl_api.h.

14.11.2.4 #define LD_ANY_MESSAGE 0xFFFFU

Message

Definition at line 70 of file lin_commontl_api.h.

14.11.2.5 #define LD_ANY_SUPPLIER 0x7FFFU

Supplier

Definition at line 68 of file lin_commontl_api.h.

14.11.2.6 #define LD_BROADCAST 0x7FU

Broadcast NAD

Definition at line 66 of file lin_commontl_api.h.

14.11.2.7 #define LD_DATA_ERROR 0x43U

Data error

Definition at line 53 of file lin_commontl_api.h.

14.11.2.8 #define LD_FUNCTIONAL_NAD 0x7EU

Functional NAD

Definition at line 67 of file lin_commontl_api.h.

14.11.2.9 #define LD_LENGTH_NOT_CORRECT 0x44U

Length not correct

Definition at line 54 of file lin_commontl_api.h.

14.11.2.10 #define LD_LENGTH_TOO_SHORT 0x34U

Length too short

Definition at line 51 of file lin_commontl_api.h.

14.11.2.11 #define LD_READ_OK 0x33U

Read OK

Definition at line 50 of file lin_commontl_api.h.

14.11.2.12 #define LD_SET_OK 0x45U

Set OK

Definition at line 55 of file lin_commontl_api.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.11 Common Transport Layer API 233

14.11.2.13 #define LIN_PRODUCT_ID 0x00U

Node product identifier

Definition at line 62 of file lin_commontl_api.h.

14.11.2.14 #define LIN_SERIAL_NUMBER 0x01U

Serial number

Definition at line 63 of file lin_commontl_api.h.

14.11.2.15 #define NEGATIVE 0U

Negative response

Definition at line 79 of file lin_commontl_api.h.

14.11.2.16 #define POSITIVE 1U

Positive response

Definition at line 80 of file lin_commontl_api.h.

14.11.2.17 #define RECEIVING 1U

Receiving

Definition at line 83 of file lin_commontl_api.h.

14.11.2.18 #define RES_NEGATIVE 0x7FU

Negative response

Definition at line 73 of file lin_commontl_api.h.

14.11.2.19 #define RES_POSITIVE 0x40U

Positive response

Definition at line 59 of file lin_commontl_api.h.

14.11.2.20 #define SERVICE_NOT_SUPPORTED 0x11U

Error code in negative response for not supported service

Definition at line 75 of file lin_commontl_api.h.

14.11.2.21 #define SERVICE_TARGET_RESET 0xB5U

Target reset service

Definition at line 58 of file lin_commontl_api.h.

14.11.2.22 #define SUBFUNCTION_NOT_SUPPORTED 0x12U

Error code in negative response for not supported sub function

Definition at line 76 of file lin_commontl_api.h.

14.11.2.23 #define TRANSMITTING 0U

Transmitting

Definition at line 82 of file lin_commontl_api.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

234 CONTENTS

14.11.3 Function Documentation

14.11.3.1 void lin_diag_service_callback (l_ifc_handle iii, l_u8 sid)

Definition at line 1059 of file lin_diagnostic_service.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.12 Comparator (CMP) 235

14.12 Comparator (CMP)

14.12.1 Detailed Description

Hardware background

The comparator (CMP) module is an analog comparator integrated in MCU.

Features of the CMP module include:

• 8 bit DAC with 2 voltage reference source

• 8 analog inputs from external pins

• Round robin check. In summary, this allow the CMP to operate independently in STOP and VLPS mode,
whilst being triggered periodically to sample up to 8 inputs. Only if an input changes state is a full wakeup
generated.

• Operational over the entire supply range

• Inputs may range from rail to rail

• Programmable hysteresis control

• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output

• Selectable inversion on comparator output

• Capability to produce a wide range of outputs such as: sampled, windowed, which is ideal for certain PWM
zero-crossing-detection applications and digitally filtered

• A comparison event can be selected to trigger a DMA transfer

• The window and filter functions are not available in STOP modes.

How to use the CMP driver in your application

The user can configure the CMP in many ways: -CMP_DRV_Init - configures all CMP features -CMP_DRV_←↩

ConfigDAC - configures only DAC features -CMP_DRV_ConfigTriggerMode - configures only trigger mode features
-CMP_DRV_ConfigComparator - configures only analog comparator features -CMP_DRV_ConfigMUX - configures
only MUX features

Also the current configuration can be read using: -CMP_DRV_GetConfigAll - gets all CMP configuration -CM←↩

P_DRV_GetDACConfig - gets only DAC configuration -CMP_DRV_GetMUXConfig - gets only MUX configuration
-CMP_DRV_GetInitTriggerMode - gets only trigger mode configuration -CMP_DRV_GetComparatorConfig - gets
only analog comparator features

When the MCU exits from STOP mode CMP_DRV_GetInputFlags can be used to get the channel which triggered
the wakeup. Please use this function only in this use case. CMP_DRV_ClearInputFlags will be used to clear this
input change flags.

CMP_DRV_GetOutputFlags can be used to get output flag state and CMP_DRV_GetOutputFlags to clear them.

The main structure used to configure your application is cmp_module_t. This structure includes configuration
structures for trigger mode, MUX, DAC and comparator: cmp_comparator_t, cmp_anmux_t, cmp_dac_t and
cmp_trigger_mode_t

Example:

The next example will compare 2 external signals (CMP input 0 an CMP input 1). The output can be measured on
port E, pin 4.

const cmp_module_t cmp_general_config =
{

{
.dmaTriggerState = false,

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

236 CONTENTS

.outputInterruptTrigger = CMP_NO_EVENT,

.mode = CMP_CONTINUOUS,

.filterSamplePeriod = 0,

.filterSampleCount = 0,

.powerMode = CMP_LOW_SPEED,

.inverterState = CMP_NORMAL,

.outputSelect = CMP_COUT,

.pinState = CMP_AVAILABLE,

.offsetLevel = CMP_LEVEL_OFFSET_0,

.hysteresisLevel = CMP_LEVEL_HYS_0
},

{
.positivePortMux = CMP_MUX,
.negativePortMux = CMP_MUX,
.positiveInputMux = 0,
.negativeInputMux = 1

},

{
.voltageReferenceSource = CMP_VIN1,
.voltage = 120,
.state = false,

},

{
.roundRobinState = false,
.roundRobinInterruptState = false,
.fixedPort = CMP_PLUS_FIXED,
.fixedChannel = 0,
.samples = 0,
.initializationDelay = 0,
/* Channel 0 is enabled for round robin check */
/* Channel 1 is enabled for round robin check */
/* Channel 2 is enabled for round robin check */
/* Channel 3 is enabled for round robin check */
/* Channel 4 is enabled for round robin check */
/* Channel 5 is enabled for round robin check */
/* Channel 6 is enabled for round robin check */
/* Channel 7 is enabled for round robin check */
.roundRobinChannelsState = 255,
/* Initial comparison result for channel 0 is 1 */
/* Initial comparison result for channel 1 is 1 */
/* Initial comparison result for channel 2 is 1 */
/* Initial comparison result for channel 3 is 1 */
/* Initial comparison result for channel 4 is 1 */
/* Initial comparison result for channel 5 is 1 */
/* Initial comparison result for channel 6 is 1 */
/* Initial comparison result for channel 7 is 1 */
.programedState = 255

}
};

#define COMPARATOR_PORT PORTA
#define COMPARATOR_INPUT1_PIN 0UL
#define COMPARATOR_INPUT2_PIN 1UL
#define COMPARATOR_OUTPUT 4UL
#define COMPARATOR_INSTANCE 0UL

int main(void)
{

/* Write your local variable definition here */
PCC_Type *pccBase = PCC_BASE_PTRS;
/* Enable clock source for CMP0 */
PCC_HAL_SetClockMode(pccBase, PCC_CMP0_CLOCK, true);

/* Enable clock source for PORTA */
PCC_HAL_SetClockMode(pccBase, PCC_PORTA_CLOCK, true);

/* Set pins used by CMP */
/* The negative port is connected to PTA0 and positive port is connected to PTA1. The
comparator output can be visualized on PTA4 */
PORT_HAL_SetMuxModeSel(COMPARATOR_PORT, COMPARATOR_INPUT1_PIN, PORT_PIN_DISABLED);
PORT_HAL_SetMuxModeSel(COMPARATOR_PORT, COMPARATOR_INPUT2_PIN, PORT_PIN_DISABLED);
/* Please DISCONNECT JTAG. If not the comparator output will be connected to JTAG_TMS.*/
PORT_HAL_SetMuxModeSel(COMPARATOR_PORT, COMPARATOR_OUTPUT, PORT_MUX_ALT4);
/* Init CMP module */
CMP_DRV_Init(COMPARATOR_INSTANCE, &cmp_general_config);
for (;;)

{}
return(0);

}

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.12 Comparator (CMP) 237

Modules

• Comparator Driver

Comparator Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

238 CONTENTS

14.13 Comparator Driver

14.13.1 Detailed Description

Comparator Peripheral Driver.

Definitions

Data Structures

• struct cmp_comparator_t

Defines the block configuration. More...

• struct cmp_anmux_t

Defines the analog mux. More...

• struct cmp_dac_t

Defines the DAC block. More...

• struct cmp_trigger_mode_t

Defines the trigger mode. More...

• struct cmp_module_t

Defines the comparator module configuration. More...

Macros

• #define CMP_INPUT_FLAGS_MASK 0xFF0000
• #define CMP_INPUT_FLAGS_SHIFT 16U
• #define CMP_ROUND_ROBIN_CHANNELS_MASK 0xFF0000
• #define CMP_ROUND_ROBIN_CHANNELS_SHIFT 16U

Typedefs

• typedef uint8_t cmp_ch_list_t

Comparator channels list (1bit/channel) |------—|------—|--—|------—|------—| |CH7_state|CH6_state|.....|CH1_←↩

state|CH0_state| |------—|------—|--—|------—|------—| Implements : cmp_ch_list_t_Class.

• typedef uint8_t cmp_ch_number_t

Number of channel Implements : cmp_ch_number_t_Class.

Enumerations

• enum cmp_power_mode_t { CMP_LOW_SPEED = 0U, CMP_HIGH_SPEED = 1U }

Power Modes selection Implements : cmp_power_mode_t_Class.

• enum cmp_voltage_reference_t { CMP_VIN1 = 0U, CMP_VIN2 = 1U }

Voltage Reference selection Implements : cmp_voltage_reference_t_Class.

• enum cmp_port_mux_t { CMP_DAC = 0U, CMP_MUX = 1U }

Port Mux Source selection Implements : cmp_port_mux_t_Class.

• enum cmp_inverter_t { CMP_NORMAL = 0U, CMP_INVERT = 1U }

Comparator output invert selection Implements : cmp_inverter_t_Class.

• enum cmp_output_select_t { CMP_COUT = 0U, CMP_COUTA = 1U }

Comparator output select selection Implements : cmp_output_select_t_Class.

• enum cmp_output_enable_t { CMP_UNAVAILABLE = 0U, CMP_AVAILABLE = 1U }

Comparator output pin enable selection Implements : cmp_output_enable_t_Class.

• enum cmp_offset_t { CMP_LEVEL_OFFSET_0 = 0U, CMP_LEVEL_OFFSET_1 = 1U }

Comparator hard block offset control Implements : cmp_offset_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.13 Comparator Driver 239

• enum cmp_hysteresis_t { CMP_LEVEL_HYS_0 = 0U, CMP_LEVEL_HYS_1 = 1U, CMP_LEVEL_HYS_2 =
2U, CMP_LEVEL_HYS_3 = 3U }

Comparator hysteresis control Implements : cmp_hysteresis_t_Class.

• enum cmp_fixed_port_t { CMP_PLUS_FIXED = 0U, CMP_MINUS_FIXED = 1U }

Comparator Round-Robin fixed port Implements : cmp_fixed_port_t_Class.

• enum cmp_output_trigger_t { CMP_NO_EVENT = 0U, CMP_FALLING_EDGE = 1U, CMP_RISING_EDGE =
2U, CMP_BOTH_EDGES = 3U }

Comparator output interrupt configuration Implements : cmp_output_trigger_t_Class.

• enum cmp_mode_t {
CMP_DISABLED = 0U, CMP_CONTINUOUS = 1U, CMP_SAMPLED_NONFILTRED_INT_CLK = 2U, CM←↩

P_SAMPLED_NONFILTRED_EXT_CLK = 3U,
CMP_SAMPLED_FILTRED_INT_CLK = 4U, CMP_SAMPLED_FILTRED_EXT_CLK = 5U, CMP_WINDO←↩

WED = 6U, CMP_WINDOWED_RESAMPLED = 7U,
CMP_WINDOWED_FILTRED = 8U }

Comparator functional modes Implements : cmp_mode_t_Class.

cMP DRV.

• status_t CMP_DRV_Reset (const uint32_t instance)

Reset all registers.

• status_t CMP_DRV_GetInitConfigAll (cmp_module_t ∗config)

Get reset configuration for all registers.

• status_t CMP_DRV_Init (const uint32_t instance, const cmp_module_t ∗const config)

Configure all comparator features with the given configuration structure.

• status_t CMP_DRV_GetConfigAll (const uint32_t instance, cmp_module_t ∗const config)

Gets the current comparator configuration.

• status_t CMP_DRV_GetInitConfigDAC (cmp_dac_t ∗config)

Get reset configuration for registers related with DAC.

• status_t CMP_DRV_ConfigDAC (const uint32_t instance, const cmp_dac_t ∗config)

Configure only the DAC component.

• status_t CMP_DRV_GetDACConfig (const uint32_t instance, cmp_dac_t ∗const config)

Return current configuration for DAC.

• status_t CMP_DRV_GetInitConfigMUX (cmp_anmux_t ∗config)

Get reset configuration for registers related with MUX.

• status_t CMP_DRV_ConfigMUX (const uint32_t instance, const cmp_anmux_t ∗config)

Configure only the MUX component.

• status_t CMP_DRV_GetMUXConfig (const uint32_t instance, cmp_anmux_t ∗const config)

Return configuration only for the MUX component.

• status_t CMP_DRV_GetInitTriggerMode (cmp_trigger_mode_t ∗config)

Get reset configuration for registers related with Trigger Mode.

• status_t CMP_DRV_ConfigTriggerMode (const uint32_t instance, const cmp_trigger_mode_t ∗config)

Configure trigger mode.

• status_t CMP_DRV_GetTriggerModeConfig (const uint32_t instance, cmp_trigger_mode_t ∗const config)

Get current trigger mode configuration.

• status_t CMP_DRV_GetOutputFlags (const uint32_t instance, cmp_output_trigger_t ∗flags)

Get comparator output flags.

• status_t CMP_DRV_ClearOutputFlags (const uint32_t instance)

Clear comparator output flags.

• status_t CMP_DRV_GetInputFlags (const uint32_t instance, cmp_ch_list_t ∗flags)

Gets input channels change flags.

• status_t CMP_DRV_ClearInputFlags (const uint32_t instance)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

240 CONTENTS

Clear comparator input channels flags.

• status_t CMP_DRV_GetInitConfigComparator (cmp_comparator_t ∗config)

Get reset configuration for registers related with comparator features.

• status_t CMP_DRV_ConfigComparator (const uint32_t instance, const cmp_comparator_t ∗config)

Configure only comparator features.

• status_t CMP_DRV_GetComparatorConfig (const uint32_t instance, cmp_comparator_t ∗config)

Return configuration for comparator from CMP module.

14.13.2 Data Structure Documentation

14.13.2.1 struct cmp_comparator_t

Defines the block configuration.

This structure is used to configure only comparator block module(filtering, sampling, power_mode etc.) Implements
: cmp_comparator_t_Class

Definition at line 170 of file cmp_driver.h.

Data Fields

• bool dmaTriggerState
• cmp_output_trigger_t outputInterruptTrigger
• cmp_mode_t mode
• uint8_t filterSamplePeriod
• uint8_t filterSampleCount
• cmp_power_mode_t powerMode
• cmp_inverter_t inverterState
• cmp_output_enable_t pinState
• cmp_output_select_t outputSelect
• cmp_offset_t offsetLevel
• cmp_hysteresis_t hysteresisLevel

Field Documentation

14.13.2.1.1 bool dmaTriggerState

True if DMA transfer trigger from comparator is enable.

Definition at line 172 of file cmp_driver.h.

14.13.2.1.2 uint8_t filterSampleCount

Number of sample count for filtering.

Definition at line 179 of file cmp_driver.h.

14.13.2.1.3 uint8_t filterSamplePeriod

Filter sample period.

Definition at line 178 of file cmp_driver.h.

14.13.2.1.4 cmp_hysteresis_t hysteresisLevel

CMP_LEVEL_HYS_0 if hard block output has level 0 hysteresis. CMP_LEVEL_HYS_1 if hard block output has level
1 hysteresis. CMP_LEVEL_HYS_2 if hard block output has level 2 hysteresis. CMP_LEVEL_HYS_3 if hard block
output has level 3 hysteresis.

Definition at line 190 of file cmp_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.13 Comparator Driver 241

14.13.2.1.5 cmp_inverter_t inverterState

CMP_NORMAL if does not invert the comparator output. CMP_INVERT if inverts the comparator output.

Definition at line 182 of file cmp_driver.h.

14.13.2.1.6 cmp_mode_t mode

Configuration structure which define: the comparator functional mode, sample period and sample count.

Definition at line 177 of file cmp_driver.h.

14.13.2.1.7 cmp_offset_t offsetLevel

CMP_LEVEL_OFFSET_0 if hard block output has level 0 offset. CMP_LEVEL_OFFSET_1 if hard block output has
level 1 offset.

Definition at line 188 of file cmp_driver.h.

14.13.2.1.8 cmp_output_trigger_t outputInterruptTrigger

CMP_NO_INTERRUPT comparator output would not trigger any interrupt. CMP_FALLING_EDGE comparator out-
put would trigger an interrupt on falling edge. CMP_RISING_EDGE comparator output would trigger an interrupt on
rising edge. CMP_BOTH_EDGES comparator output would trigger an interrupt on rising and falling edges.

Definition at line 173 of file cmp_driver.h.

14.13.2.1.9 cmp_output_select_t outputSelect

CMP_COUT if output signal is equal to COUT(filtered). CMP_COUTA if output signal is equal to COUTA(unfiltered).

Definition at line 186 of file cmp_driver.h.

14.13.2.1.10 cmp_output_enable_t pinState

CMP_UNAVAILABLE if comparator output is not available to package pin. CMP_AVAILABLE if comparator output
is available to package pin.

Definition at line 184 of file cmp_driver.h.

14.13.2.1.11 cmp_power_mode_t powerMode

CMP_LOW_SPEED if low speed mode is selected. CMP_HIGH_SPEED if high speed mode is selected

Definition at line 180 of file cmp_driver.h.

14.13.2.2 struct cmp_anmux_t

Defines the analog mux.

This structure is used to configure the analog multiplexor to select compared signals Implements : cmp_anmux_←↩

t_Class

Definition at line 202 of file cmp_driver.h.

Data Fields

• cmp_port_mux_t positivePortMux

• cmp_port_mux_t negativePortMux

• cmp_ch_number_t positiveInputMux

• cmp_ch_number_t negativeInputMux

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

242 CONTENTS

14.13.2.2.1 cmp_ch_number_t negativeInputMux

Select which channel is selected for the minus mux.

Definition at line 211 of file cmp_driver.h.

14.13.2.2.2 cmp_port_mux_t negativePortMux

Select negative port signal. CMP_DAC if source is digital to analog converter. CMP_MUX if source is 8 ch MUX

Definition at line 207 of file cmp_driver.h.

14.13.2.2.3 cmp_ch_number_t positiveInputMux

Select which channel is selected for the plus mux.

Definition at line 210 of file cmp_driver.h.

14.13.2.2.4 cmp_port_mux_t positivePortMux

Select positive port signal. CMP_DAC if source is digital to analog converter. CMP_MUX if source is 8 ch MUX

Definition at line 204 of file cmp_driver.h.

14.13.2.3 struct cmp_dac_t

Defines the DAC block.

This structure is used to configure the DAC block integrated in comparator module Implements : cmp_dac_t_Class

Definition at line 220 of file cmp_driver.h.

Data Fields

• cmp_voltage_reference_t voltageReferenceSource

• uint8_t voltage

• bool state

Field Documentation

14.13.2.3.1 bool state

True if DAC is enabled.

Definition at line 225 of file cmp_driver.h.

14.13.2.3.2 uint8_t voltage

The digital value which is converted to analog signal.

Definition at line 224 of file cmp_driver.h.

14.13.2.3.3 cmp_voltage_reference_t voltageReferenceSource

CMP_VIN1 if selected voltage reference is VIN1. CMP_VIN2 if selected voltage reference is VIN2.

Definition at line 222 of file cmp_driver.h.

14.13.2.4 struct cmp_trigger_mode_t

Defines the trigger mode.

This structure is used to configure the trigger mode operation when MCU enters STOP modes Implements : cmp←↩

_trigger_mode_t_Class

Definition at line 234 of file cmp_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.13 Comparator Driver 243

Data Fields

• bool roundRobinState
• bool roundRobinInterruptState
• cmp_fixed_port_t fixedPort
• cmp_ch_number_t fixedChannel
• uint8_t samples
• uint8_t initializationDelay
• cmp_ch_list_t roundRobinChannelsState
• cmp_ch_list_t programedState

Field Documentation

14.13.2.4.1 cmp_ch_number_t fixedChannel

Select which channel would be assigned to the fixed port.

Definition at line 240 of file cmp_driver.h.

14.13.2.4.2 cmp_fixed_port_t fixedPort

CMP_PLUS_FIXED if plus port is fixed. CMP_MINUS_FIXED if minus port is fixed.

Definition at line 238 of file cmp_driver.h.

14.13.2.4.3 uint8_t initializationDelay

Select dac and comparator initialization delay(clock cycles).

Definition at line 242 of file cmp_driver.h.

14.13.2.4.4 cmp_ch_list_t programedState

Pre-programmed state for comparison result.

Definition at line 247 of file cmp_driver.h.

14.13.2.4.5 cmp_ch_list_t roundRobinChannelsState

One bite for each channel state. |———|———|—–|———|———| |CH7_state|CH6_state|.....|CH1_state|CH0←↩

_state| |------—|------—|--—|------—|------—|

Definition at line 243 of file cmp_driver.h.

14.13.2.4.6 bool roundRobinInterruptState

True if Round-Robin interrupt is enabled.

Definition at line 237 of file cmp_driver.h.

14.13.2.4.7 bool roundRobinState

True if Round-Robin is enabled.

Definition at line 236 of file cmp_driver.h.

14.13.2.4.8 uint8_t samples

Select number of round-robin clock cycles for a given channel.

Definition at line 241 of file cmp_driver.h.

14.13.2.5 struct cmp_module_t

Defines the comparator module configuration.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

244 CONTENTS

This structure is used to configure all components of comparator module Implements : cmp_module_t_Class

Definition at line 256 of file cmp_driver.h.

Data Fields

• cmp_comparator_t comparator
• cmp_anmux_t mux
• cmp_dac_t dac
• cmp_trigger_mode_t triggerMode

Field Documentation

14.13.2.5.1 cmp_comparator_t comparator

Definition at line 258 of file cmp_driver.h.

14.13.2.5.2 cmp_dac_t dac

Definition at line 260 of file cmp_driver.h.

14.13.2.5.3 cmp_anmux_t mux

Definition at line 259 of file cmp_driver.h.

14.13.2.5.4 cmp_trigger_mode_t triggerMode

Definition at line 261 of file cmp_driver.h.

14.13.3 Macro Definition Documentation

14.13.3.1 #define CMP_INPUT_FLAGS_MASK 0xFF0000

Definition at line 33 of file cmp_driver.h.

14.13.3.2 #define CMP_INPUT_FLAGS_SHIFT 16U

Definition at line 34 of file cmp_driver.h.

14.13.3.3 #define CMP_ROUND_ROBIN_CHANNELS_MASK 0xFF0000

Definition at line 35 of file cmp_driver.h.

14.13.3.4 #define CMP_ROUND_ROBIN_CHANNELS_SHIFT 16U

Definition at line 36 of file cmp_driver.h.

14.13.4 Typedef Documentation

14.13.4.1 typedef uint8_t cmp_ch_list_t

Comparator channels list (1bit/channel) |------—|------—|--—|------—|------—| |CH7_state|CH6_state|.....|CH1_←↩

state|CH0_state| |------—|------—|--—|------—|------—| Implements : cmp_ch_list_t_Class.

Definition at line 157 of file cmp_driver.h.

14.13.4.2 typedef uint8_t cmp_ch_number_t

Number of channel Implements : cmp_ch_number_t_Class.

Definition at line 162 of file cmp_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.13 Comparator Driver 245

14.13.5 Enumeration Type Documentation

14.13.5.1 enum cmp_fixed_port_t

Comparator Round-Robin fixed port Implements : cmp_fixed_port_t_Class.

Enumerator

CMP_PLUS_FIXED The Plus port is fixed. Only the inputs to the Minus port are swept in each round.

CMP_MINUS_FIXED The Minus port is fixed. Only the inputs to the Plus port are swept in each round.

Definition at line 118 of file cmp_driver.h.

14.13.5.2 enum cmp_hysteresis_t

Comparator hysteresis control Implements : cmp_hysteresis_t_Class.

Enumerator

CMP_LEVEL_HYS_0

CMP_LEVEL_HYS_1

CMP_LEVEL_HYS_2

CMP_LEVEL_HYS_3

Definition at line 107 of file cmp_driver.h.

14.13.5.3 enum cmp_inverter_t

Comparator output invert selection Implements : cmp_inverter_t_Class.

Enumerator

CMP_NORMAL Output signal isn't inverted.

CMP_INVERT Output signal is inverted.

Definition at line 71 of file cmp_driver.h.

14.13.5.4 enum cmp_mode_t

Comparator functional modes Implements : cmp_mode_t_Class.

Enumerator

CMP_DISABLED

CMP_CONTINUOUS

CMP_SAMPLED_NONFILTRED_INT_CLK

CMP_SAMPLED_NONFILTRED_EXT_CLK

CMP_SAMPLED_FILTRED_INT_CLK

CMP_SAMPLED_FILTRED_EXT_CLK

CMP_WINDOWED

CMP_WINDOWED_RESAMPLED

CMP_WINDOWED_FILTRED

Definition at line 138 of file cmp_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

246 CONTENTS

14.13.5.5 enum cmp_offset_t

Comparator hard block offset control Implements : cmp_offset_t_Class.

Enumerator

CMP_LEVEL_OFFSET_0

CMP_LEVEL_OFFSET_1

Definition at line 98 of file cmp_driver.h.

14.13.5.6 enum cmp_output_enable_t

Comparator output pin enable selection Implements : cmp_output_enable_t_Class.

Enumerator

CMP_UNAVAILABLE Comparator output isn't available to a specific pin

CMP_AVAILABLE Comparator output is available to a specific pin

Definition at line 89 of file cmp_driver.h.

14.13.5.7 enum cmp_output_select_t

Comparator output select selection Implements : cmp_output_select_t_Class.

Enumerator

CMP_COUT Select COUT as comparator output signal.

CMP_COUTA Select COUTA as comparator output signal.

Definition at line 80 of file cmp_driver.h.

14.13.5.8 enum cmp_output_trigger_t

Comparator output interrupt configuration Implements : cmp_output_trigger_t_Class.

Enumerator

CMP_NO_EVENT Comparator output interrupts are disabled OR no event occurred.

CMP_FALLING_EDGE Comparator output interrupts will be generated only on falling edge OR only falling
edge event occurred.

CMP_RISING_EDGE Comparator output interrupts will be generated only on rising edge OR only rising edge
event occurred.

CMP_BOTH_EDGES Comparator output interrupts will be generated on both edges OR both edges event
occurred.

Definition at line 127 of file cmp_driver.h.

14.13.5.9 enum cmp_port_mux_t

Port Mux Source selection Implements : cmp_port_mux_t_Class.

Enumerator

CMP_DAC Select DAC as source for the comparator port.

CMP_MUX Select MUX8 as source for the comparator port.

Definition at line 62 of file cmp_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.13 Comparator Driver 247

14.13.5.10 enum cmp_power_mode_t

Power Modes selection Implements : cmp_power_mode_t_Class.

Enumerator

CMP_LOW_SPEED Module in low speed mode.

CMP_HIGH_SPEED Module in high speed mode.

Definition at line 44 of file cmp_driver.h.

14.13.5.11 enum cmp_voltage_reference_t

Voltage Reference selection Implements : cmp_voltage_reference_t_Class.

Enumerator

CMP_VIN1 Use Vin1 as supply reference source for DAC.

CMP_VIN2 Use Vin2 as supply reference source for DAC.

Definition at line 53 of file cmp_driver.h.

14.13.6 Function Documentation

14.13.6.1 status_t CMP_DRV_ClearInputFlags (const uint32_t instance)

Clear comparator input channels flags.

This function clear comparator input channels flags.

Parameters

instance - instance number

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 463 of file cmp_driver.c.

14.13.6.2 status_t CMP_DRV_ClearOutputFlags (const uint32_t instance)

Clear comparator output flags.

This function clear comparator output flags(rising and falling edge).

Parameters

instance - instance number

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 418 of file cmp_driver.c.

14.13.6.3 status_t CMP_DRV_ConfigComparator (const uint32_t instance, const cmp_comparator_t ∗ config)

Configure only comparator features.

This function configure only features related with comparator: DMA request, power mode, output select, interrupts
enable, invert, offset, hysteresis.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

248 CONTENTS

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 510 of file cmp_driver.c.

14.13.6.4 status_t CMP_DRV_ConfigDAC (const uint32_t instance, const cmp_dac_t ∗ config)

Configure only the DAC component.

This function configures the DAC with the options provided in the config structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 238 of file cmp_driver.c.

14.13.6.5 status_t CMP_DRV_ConfigMUX (const uint32_t instance, const cmp_anmux_t ∗ config)

Configure only the MUX component.

This function configures the MUX with the options provided in the config structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 293 of file cmp_driver.c.

14.13.6.6 status_t CMP_DRV_ConfigTriggerMode (const uint32_t instance, const cmp_trigger_mode_t ∗ config)

Configure trigger mode.

This function configures the trigger mode with the options provided in the config structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 354 of file cmp_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.13 Comparator Driver 249

14.13.6.7 status_t CMP_DRV_GetComparatorConfig (const uint32_t instance, cmp_comparator_t ∗ config)

Return configuration for comparator from CMP module.

This function return configuration for features related with comparator: DMA request, power mode, output select,
interrupts enable, invert, offset, hysteresis.

Parameters

instance - instance number
config - the configuration structure returned

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 536 of file cmp_driver.c.

14.13.6.8 status_t CMP_DRV_GetConfigAll (const uint32_t instance, cmp_module_t ∗const config)

Gets the current comparator configuration.

This function returns the current configuration for comparator as a configuration structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 180 of file cmp_driver.c.

14.13.6.9 status_t CMP_DRV_GetDACConfig (const uint32_t instance, cmp_dac_t ∗const config)

Return current configuration for DAC.

This function returns current configuration only for DAC.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 256 of file cmp_driver.c.

14.13.6.10 status_t CMP_DRV_GetInitConfigAll (cmp_module_t ∗ config)

Get reset configuration for all registers.

This function returns a configuration structure with reset values for all registers from comparator module.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

250 CONTENTS

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 99 of file cmp_driver.c.

14.13.6.11 status_t CMP_DRV_GetInitConfigComparator (cmp_comparator_t ∗ config)

Get reset configuration for registers related with comparator features.

This function return a configuration structure with reset values for features associated with comparator (DMA re-
quest, power mode, output select, interrupts enable, invert, offset, hysteresis).

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 485 of file cmp_driver.c.

14.13.6.12 status_t CMP_DRV_GetInitConfigDAC (cmp_dac_t ∗ config)

Get reset configuration for registers related with DAC.

This function returns a configuration structure with reset values for features associated with DAC.

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 222 of file cmp_driver.c.

14.13.6.13 status_t CMP_DRV_GetInitConfigMUX (cmp_anmux_t ∗ config)

Get reset configuration for registers related with MUX.

This function returns a configuration structure with reset values for features associated with MUX.

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 275 of file cmp_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.13 Comparator Driver 251

14.13.6.14 status_t CMP_DRV_GetInitTriggerMode (cmp_trigger_mode_t ∗ config)

Get reset configuration for registers related with Trigger Mode.

This function returns a configuration structure with reset values for features associated with Trigger Mode.

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 333 of file cmp_driver.c.

14.13.6.15 status_t CMP_DRV_GetInputFlags (const uint32_t instance, cmp_ch_list_t ∗ flags)

Gets input channels change flags.

This function return in <flags> all input channels flags as uint8_t(1 bite for each channel flag).

Parameters

instance - instance number
flags - pointer to input flags

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 445 of file cmp_driver.c.

14.13.6.16 status_t CMP_DRV_GetMUXConfig (const uint32_t instance, cmp_anmux_t ∗const config)

Return configuration only for the MUX component.

This function returns current configuration to determine which signals go to comparator ports.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 313 of file cmp_driver.c.

14.13.6.17 status_t CMP_DRV_GetOutputFlags (const uint32_t instance, cmp_output_trigger_t ∗ flags)

Get comparator output flags.

This function returns in <flags> comparator output flags(rising and falling edge).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

252 CONTENTS

Parameters

instance - instance number
- flags - pointer to output flags NO_EVENT RISING_EDGE FALLING_EDGE BOTH_EDGE

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 400 of file cmp_driver.c.

14.13.6.18 status_t CMP_DRV_GetTriggerModeConfig (const uint32_t instance, cmp_trigger_mode_t ∗const config)

Get current trigger mode configuration.

This function returns the current trigger mode configuration for trigger mode.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 377 of file cmp_driver.c.

14.13.6.19 status_t CMP_DRV_Init (const uint32_t instance, const cmp_module_t ∗const config)

Configure all comparator features with the given configuration structure.

This function configures the comparator module with the options provided in the config structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 137 of file cmp_driver.c.

14.13.6.20 status_t CMP_DRV_Reset (const uint32_t instance)

Reset all registers.

This function set all CMP registers to reset values.

Parameters

instance - instance number

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 69 of file cmp_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.14 Controller Area Network with Flexible Data Rate (FlexCAN) 253

14.14 Controller Area Network with Flexible Data Rate (FlexCAN)

14.14.1 Detailed Description

The S32 SDK provides a Peripheral Driver for the FlexCAN module of S32 SDK devices.

Hardware background

The FlexCAN module is a communication controller implementing the CAN protocol according to the ISO 11898-1
standard and CAN 2.0 B protocol specifications. The FlexCAN module is a full implementation of the CAN protocol
specification, the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0 version B protocol, which supports
both standard and extended message frames and long payloads up to 64 bytes transferred at faster rates up to 8
Mbps. The message buffers are stored in an embedded RAM dedicated to the FlexCAN module.

The FlexCAN module includes these distinctive features:

• Full implementation of the CAN with Flexible Data Rate (CAN FD) protocol specification and CAN protocol
specification, Version 2.0 B

– Standard data frames

– Extended data frames

– Zero to sixty four bytes data length

– Programmable bit rate (see the chip-specific FlexCAN information for the specific maximum rate config-
uration)

– Content-related addressing

• Compliant with the ISO 11898-1 standard

• Flexible mailboxes configurable to store 0 to 8, 16, 32 or 64 bytes data length

• Each mailbox configurable as receive or transmit, all supporting standard and extended messages

• Individual Rx Mask registers per mailbox

• Full-featured Rx FIFO with storage capacity for up to six frames and automatic internal pointer handling with
DMA support

• Transmission abort capability

• Flexible message buffers (MBs) configurable as Rx or Tx (see the FEATURE_CAN_MAX_MB_NUM define
for the specific maximum number of message buffers configurable on each platform)

• Programmable clock source to the CAN Protocol Interface, either peripheral clock or oscillator clock (this
feature might differ depending on the platform, see FEATURE_CAN_HAS_PE_CLKSRC_SELECT define for
the availability of this feature on each platform)

• RAM not used by reception or transmission structures can be used as general purpose RAM space

• Listen-Only mode capability

• Programmable Loop-Back mode supporting self-test operation

• Maskable interrupts

• Short latency time due to an arbitration scheme for high-priority messages

• Low power modes or matching with received frames - Pretended Networking (this feature might not be avail-
able on some platforms, see FEATURE_CAN_HAS_PRETENDED_NETWORKING define for the availability
of this feature on each platform)

• Transceiver Delay Compensation feature when transmitting CAN FD messages at faster data rates

• Remote request frames may be handled automatically or by software

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

254 CONTENTS

• CAN bit time settings and configuration bits can only be written in Freeze mode

• SYNCH bit available in Error in Status 1 register to inform that the module is synchronous with CAN bus

• CRC status for transmitted message

• Rx FIFO Global Mask register

• Selectable priority between mailboxes and Rx FIFO during matching process

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 128 extended, 256 standard,
or 512 partial (8 bit) IDs, with up to 32 individual masking capability

• 100% backward compatibility with previous FlexCAN version

• Supports Pretended Networking functionality in low power: Stop mode (this feature might not be available on
some platforms, see chip-specific FlexCAN information for details)

• Supports detection and correction of errors in memory read accesses. Errors in one bit can be corrected and
errors in 2 bits can be detected but not corrected (this feature might not be available on some platforms, see
chip-specific FlexCAN information for details)

Modules

• FlexCAN Driver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.15 Cooked API 255

14.15 Cooked API

14.15.1 Detailed Description

Cooked processing of diagnostic messages manages one complete message at a time.

Functions

• void ld_send_message (l_ifc_handle iii, l_u16 length, l_u8 NAD, const l_u8 ∗const data)

Pack the information specified by data and length into one or multiple diagnostic frames.

• void ld_receive_message (l_ifc_handle iii, l_u16 ∗const length, l_u8 ∗const NAD, l_u8 ∗const data)

Prepare the LIN diagnostic module to receive one message and store it in the buffer pointed to by data.

• l_u8 ld_tx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

• l_u8 ld_rx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

14.15.2 Function Documentation

14.15.2.1 void ld_receive_message (l_ifc_handle iii, l_u16 ∗const length, l_u8 ∗const NAD, l_u8 ∗const data)

Prepare the LIN diagnostic module to receive one message and store it in the buffer pointed to by data.

Parameters

in iii Lin interface handle
in length Length of data to receive
in NAD Node address of slave node
in data Data to be sent

Returns

void

Prepare the LIN diagnostic module to receive one message and store it in the buffer pointed to by data. At the
call, length shall specify the maximum length allowed. When the reception has completed, length is changed to the
actual length and NAD to the NAD in the message.

Definition at line 385 of file lin_commontl_api.c.

14.15.2.2 l_u8 ld_rx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

Parameters

in iii Lin interface handle

Returns

l_u8

The call returns the status of the last made call to ld_receive_message. < br / > The following values can be
returned: < br / > LD_IN_PROGRESS: The reception is not yet completed. < br / > LD_COMPLETED: The
reception has completed successfully and all < br / > information (length, NAD, data) is available. (You can < br
/ > also issue a new ld_receive_message call). This < br / > value is also returned after initialization of the < br
/ > transport layer. < br / > LD_FAILED: The reception ended in an error. The data was only < br / > partially
received and should not be trusted. Initialize < br / > before processing further transport layer messages. < br /

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

256 CONTENTS

> For LIN2.0 and J2602 Users can make a new call to ld_receive_message. For LIN2.1 and above, the transport
layer shall be reinitialized before processing further messages. To find out why a transmission has failed, check
the status management function l_ifc_read_status. ∗ LD_N_CR_TIMEOUT The reception failed because of a N_Cr
timeout (For LIN2.1 and above only)< br / > LD_WRONG_SN The reception failed because of an unexpected
sequence number. (For LIN2.1 and above only)

Definition at line 431 of file lin_commontl_api.c.

14.15.2.3 void ld_send_message (l_ifc_handle iii, l_u16 length, l_u8 NAD, const l_u8 ∗const data)

Pack the information specified by data and length into one or multiple diagnostic frames.

Parameters

in iii Lin interface handle
in length Length of data to send
in NAD Node address of slave node
in data Data to be sent

Returns

void

Pack the information specified by data and length into one or multiple diagnostic frames. If the call is made in a
master node application the frames are transmitted to the slave node with the address NAD. If the call is made in a
slave node application the frames are transmitted to the master node with the address NAD. The parameter NAD is
not used in slave nodes.

Definition at line 214 of file lin_commontl_api.c.

14.15.2.4 l_u8 ld_tx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

Parameters

in iii Lin interface handle

Returns

l_u8

Get the status of the last made call to ld_send_message. The following values can be returned: LD_IN_PRO←↩

GRESS: The transmission is not yet completed. LD_COMPLETED: The transmission has completed successfully
(and you can issue a new ld_send_message call). This value is also returned after initialization of the transport
layer. LD_FAILED: The transmission ended in an error. The data was only partially sent. The transport layer shall
be reinitialized before processing further messages. To find out why a transmission has failed, check the status
management function l_read_status. For LIN2.0 and J2602 Users can make a new call to ld_send_message. For
LIN2.1 and above, the transport layer shall be reinitialized before processing further messages. LD_N_AS_TIME←↩

OUT: The transmission failed because of a N_As timeout. This applies for LIN2.1 and above only.

Definition at line 415 of file lin_commontl_api.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.16 Cryptographic Services Engine (CSEc) 257

14.16 Cryptographic Services Engine (CSEc)

14.16.1 Detailed Description

The S32 SDK provides a Peripheral Driver for the Cryptographic Services Engine (CSEc) module of S32 SDK
devices.

The FTFC module has added features to comply with the SHE specification. By using an embedded processor,
firmware and hardware assisted AES-128 sub-block, the FTFC macro enables encryption, decryption and message
generation and authentication algorithms for secure messaging applications. Additionally a TRNG and Miyaguchi-
Prenell compression sub-blocks enables true random number generation (entropy generator for PRNG in AES
sub-block).

Hardware background

Features of the CSEc module include:

• Secure cryptographic key storage (ranging from 3 to 21 user keys)

• AES-128 encryption and decryption

• AES-128 CMAC (Cipher-based Message Authentication Code) calculation and authentication

• ECB (Electronic Cypher Book) Mode - encryption and decryption

• CBC (Cipher Block Chaining) Mode - encryption and decryption

• True and Pseudo random number generation

• Miyaguchi-Prenell compression function

• Secure Boot Mode (user configurable)

– Sequential Boot Mode

– Parallel Boot Mode

– Strict Sequential Boot Mode (unchangeable once set)

Modules

• CSEc Driver

Cryptographic Services Engine Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

258 CONTENTS

14.17 Cyclic Redundancy Check (CRC)

14.17.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Cyclic Redundancy Check (CRC) module of S32 SDK devices.
.

The cyclic redundancy check (CRC) module generates 16/32-bit CRC code for error detection.
The CRC module provides a programmable polynomial, seed, and other parameters required to implement a 16-bit
or 32-bit CRC standard.
The 16/32-bit code is calculated for 32 bits of data at a time.

Modules

• CRC Driver
• CRC Driver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.18 Diagnostic services 259

14.18 Diagnostic services

14.18.1 Detailed Description

Diagnostic services defines methods to implement diagnostic data transfer between a master node connected with
a diagnostic tester and the slave nodes.

Three different classes of diagnostic nodes are supported.

The master node and the diagnostic tester are connected via a back-bone bus (e.g. CAN). The master node
shall receive all diagnostic requests addressed to the slave nodes from the back-bone bus, and gateway them to
the correct LIN cluster(s). Responses from the slave nodes shall be gatewayed back to the back-bone bus through
the master node.

All diagnostic requests and responses (services) addressed to the slave nodes can be routed in the network
layer (i.e. no application layer routing). In this case, the master node must implement the LIN transport protocol,
see Transport Layer Specification, as well as the transport protocols used on the back- bone busses (e.g. IS←↩

O15765-2 on CAN).

Currently, LinStack support some service. With other service which LinStack doesn't support or user want to
add action when any service is received, user can choose or create service in supported services of PEX GUI and
use API of transport layer to implement it. in application.

Example in slave node:

for(;;)
{

/* length shall specify the maximum length allowed */
length = 106;
ld_receive_message(LI0,&length, &nad, req_data);
/* if receive READ_DATA_BY_IDENTIFIER master request successfully */
if(diag_get_flag(LI0, LI0_DIAGSRV_READ_DATA_BY_IDENTIFIER_ORDER))
{

diag_clear_flag(LI0, LI0_DIAGSRV_READ_DATA_BY_IDENTIFIER_ORDER);
/* implement what you want to do when receive this message

length will return real length of this message
req_data will contain SID and data of this message */

/* send back response data */
ld_send_message(LI0,17,nad, res_data);

}
}

Modules

• Node configuration

This group contains APIs that used for node configuration purpose.

• Node identification

This group contains API that used for node identification purpose.

Functions

• void diag_read_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, const l_u8 ∗const data)

This function reads data by identifier, Diagnostic Class II service (0x22).

• void diag_write_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const
data)

Write Data by Identifier for a specified node - Diagnostic Class II service (0x2E)

• void diag_session_control (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x10:
Session control.

• void diag_fault_memory_read (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

260 CONTENTS

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x19:
Fault memory read.

• void diag_fault_memory_clear (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x14:
Fault memory clear.

• void diag_IO_control (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x2F:
Input/Output control service.

• l_u8 diag_get_flag (l_ifc_handle iii, l_u8 flag_order)

This function will return flag of diagnostic service, if LIN slave node receive master request of the diagnostic service.

• void diag_clear_flag (l_ifc_handle iii, l_u8 flag_order)

This function will clear flag of diagnostic service,.

14.18.2 Function Documentation

14.18.2.1 void diag_clear_flag (l_ifc_handle iii, l_u8 flag_order)

This function will clear flag of diagnostic service,.

Parameters

in iii LIN interface handle
in flag_order Order of service flag

Returns

void

Definition at line 1031 of file lin_diagnostic_service.c.

14.18.2.2 void diag_fault_memory_clear (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x14:
Fault memory clear.

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

Definition at line 765 of file lin_diagnostic_service.c.

14.18.2.3 void diag_fault_memory_read (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x19:
Fault memory read.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.18 Diagnostic services 261

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

Definition at line 718 of file lin_diagnostic_service.c.

14.18.2.4 l_u8 diag_get_flag (l_ifc_handle iii, l_u8 flag_order)

This function will return flag of diagnostic service, if LIN slave node receive master request of the diagnostic service.

Parameters

in iii LIN interface handle
in flag_order Order of service flag

Returns

1 if LIN Slave node receives master request of the diagnostic service, and the flag has not been cleared by
diag_clear_flag
0 default value
0xFF if service is not supported

Definition at line 1000 of file lin_diagnostic_service.c.

14.18.2.5 void diag_IO_control (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x2F:
Input/Output control service.

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

Definition at line 811 of file lin_diagnostic_service.c.

14.18.2.6 void diag_read_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, const l_u8 ∗const data)

This function reads data by identifier, Diagnostic Class II service (0x22).

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in data Buffer for the data to be transmitted

Returns

void

This function is for Master node only.

Definition at line 571 of file lin_diagnostic_service.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

262 CONTENTS

14.18.2.7 void diag_session_control (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x10:
Session control.

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

Definition at line 671 of file lin_diagnostic_service.c.

14.18.2.8 void diag_write_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

Write Data by Identifier for a specified node - Diagnostic Class II service (0x2E)

Parameters

in iii Lin interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

This function is for Master node only.

Definition at line 611 of file lin_diagnostic_service.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.19 Direct Memory Access (DMA) 263

14.19 Direct Memory Access (DMA)

14.19.1 Detailed Description

The S32 SDK provides Peripheral Driver for the Enhanced Direct Memory Access (eDMA) module.
The direct memory access engine features are used for performing complex data transfers with minimal interven-
tion from the host processor. These sections describe the S32 SDK software modules API that can be used for
initializing, configuring and triggering DMA transfers.

Modules

• EDMA Driver

This module covers the functionality of the Enhanced Direct Memory Access (eDMA) peripheral driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

264 CONTENTS

14.20 Driver and cluster management

14.20.1 Detailed Description

API perform the initialization of the LIN core.

Functions

• l_bool l_sys_init (void)

This function performs the initialization of the LIN core; is the first call a user must use in the LIN core before using
any other API functions. The implementation of this function can be replaced by user if needed.

14.20.2 Function Documentation

14.20.2.1 l_bool l_sys_init (void)

This function performs the initialization of the LIN core; is the first call a user must use in the LIN core before using
any other API functions. The implementation of this function can be replaced by user if needed.

Returns

Operation status = Zero, which is equivalent to 'Initialization was successful'.

Definition at line 60 of file lin_common_api.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 265

14.21 EDMA Driver

14.21.1 Detailed Description

This module covers the functionality of the Enhanced Direct Memory Access (eDMA) peripheral driver.

The eDMA driver implements direct memory access functionality with multiple features: (single block/multi
block/loop/scatter-gather transfers); the main usage of this module is to offload the bus read/write accesses from
the core to the eDMA engine.

Features

• Memory-to-memory, peripheral-to-memory, memory-to-peripheral transfers

• Simple single-block transfers with minimum configuration

• Multi-block transfers with minimum configuration (based on subsequent requests)

• Loop transfers for complex use-cases (e.g. double buffering)

• Scatter/gather

• Dynamic channel allocation

Functionality

Initialization

In order to use the eDMA driver, the module must be first initialized, using EDMA_DRV_Init() function. Once
initialized, it cannot be initialized again until it is de-initialized, using EDMA_DRV_Deinit(). The initialization function
does the following operations:

• resets eDMA and DMAMUX modules

• clears the eDMA driver state structure

• sets the arbitration mode and halt settings

• enables error and channel interrupts

Upon module initialization, the application must initialize the channel(s) to be used, using EDMA_DRV_Channel←↩

Init() function. This operation means enabling a eDMA channel number (or dynamically allocating one), selecting a
source trigger (DMA request multiplexed via DMAMUX) and setting the channel priority. Additionally, a user callback
can be installed for each channel, which will be called when the corresponding interrupt is triggered.

Transfer Configuration

After initialization, the transfer control descriptor for the selected channel must be configured before use. Depending
on the application use-case, on of the three transfer configuration methods should be called.

Single-block transfer

For the simplest use-case where a contiguous chunk of data must be transferred, the most suitable function is
EDMA_DRV_ConfigSingleBlockTransfer(). This takes the source/destination addresses as parameters, as well as
transfer type/size and data buffer size, and configures the channel TCD to read/write the data in a single request.
The looping and scatter/gather features are not used in this scenario. The driver computes the appropriate offsets
for source/destination addresses and set the other TCD fields.

Multi-block transfer

This type of transfer can be seen as a sequence of single-block transfers, as described above, which are triggered
by subsequent requests. This configuration is suitable for contiguous chunks of data which need to be transferred
in multiple steps (e.g. writing one/several bytes from a memory buffer to a peripheral data register each time the

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

266 CONTENTS

module is free - DMA-based communication). In order to configure this kind of transfer, EDMA_DRV_ConfigMulti←↩

BlockTransfer function should be used; aside from the EDMA_DRV_ConfigSingleBlockTransfer parameters, this
function also takes two additional parameters: the number of transfer loops (expected number of requests to finish
the data) and a boolean variable configuring whether requests should be disabled for the current channel upon
transfer completion.

Loop transfer

The eDMA IP supports complex addressing modes. One of the methods to configure complex transfers in multiple
requests is using the minor/major loop support. The EDMA_DRV_ConfigLoopTransfer() function sets up the transfer
control descriptor for subsequent requests to trigger multiple transfers. The addresses are adjusted after each
minor/major loop, according to user setup. This method takes a transfer configuration structure as parameter, with
settings for all the fields that control addressing mode (source/destination offsets, minor loop offset, channel linking,
minor/major loop count, address last adjustments). It is the responsibility of the application to correctly initialize the
configuration structure passed to this function, according to the addressed use-case.

Scatter/gather

The eDMA driver also supports scatter/gather feature, which allows various transfer scenarios. When scatter/gather
is enabled, a new TCD structure is automatically loaded in the current channel's TCD registers when a transfer is
complete, allowing the application to define multiple different subsequent transfers. The EDMA_DRV_Config←↩

ScatterGatherTransfer() function sets up a list of TCD structures based on the parameters received and configures
the eDMA channel for the first transfer; upon completion, the second TCD from the list will be loaded and the chan-
nel will be ready to start the new transfer when a new request is received.
The application must allocate memory for the TCD list passed to this function (with an extra 32-bytes buffer, as the
TCD structures need to be 32 bytes aligned); nevertheless, the driver will take care of initializing the array of de-
scriptors, based on the other parameters passed. The function also received two lists of scatter/gather configuration
structures (for source and destination, respectively), which define the address, length and type for each transfer.
Besides these, the other parameters received are the transfer size, the number of bytes to be transferred on each
request and the number of TCD structures to be used. This method will initialize all the descriptors according to
user input and link them together; the linkage is done by writing the address of the next descriptor in the appropriate
field of each one, similar to a linked-list data structure. The first descriptor is also copied to the TCD registers of
the selected channel; if no errors are returned, after calling this function the channel is configured for the transfer
defined by the first descriptor.

Channel Control

The eDMA driver provides functions that allow the user to start, stop, allocate and release an eDMA channel.
The EDMA_DRV_StartChannel() enables the DMA requests for a channel; this function should be called when the
channel is already initialized, as the first request received after the function call will trigger the transfer based on the
current values of the channel's TCD registers.
The EDMA_DRV_StopChannel() function disables requests for the selected channel; this function should be called
whenever the application needs to ignore DMA requests for a channel. It is automatically called when the channel
is released.
The EDMA_DRV_RequestChannel() function selects a channel to be used by application and updates the driver
state structure accordingly. Two types of channel allocation are available:

• static: the user passes the channel number as parameter; if the channel is already allocated, the function
returns an error;

• dynamic: the driver allocates the first available channel and returns its number (or an error if no channel is
availabe).

The EDMA_DRV_ReleaseChannel() function frees the hw and sw resources allocated for that channel; it clears the
channel state structure, updates the driver state and disables requests for that channel.

Important Notes

• Before using the eDMA driver the clock for eDMA and DMAMUX modules must be configured

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 267

• The driver enables the interrupts for the eDMA module, but any interrupt priority must be done by the appli-
cation

• The driver assumes there is only one eDMA instance implemented in the SoC

• When using the modulo feature, application is responsible with ensuring that the source/destination address
is properly aligned on a modulo-size boudary.

Data Structures

• struct edma_user_config_t

The user configuration structure for the eDMA driver. More...

• struct edma_chn_state_t

Data structure for the eDMA channel state. Implements : edma_chn_state_t_Class. More...

• struct edma_channel_config_t

The user configuration structure for the an eDMA driver channel. More...

• struct edma_scatter_gather_list_t

Data structure for configuring a discrete memory transfer. Implements : edma_scatter_gather_list_t_Class. More...

• struct edma_state_t

Runtime state structure for the eDMA driver. More...

• struct edma_loop_transfer_config_t

eDMA loop transfer configuration. More...

• struct edma_transfer_config_t

eDMA transfer size configuration. More...

Macros

• #define STCD_SIZE(number) (((number) ∗ 32U) - 1U)

Macro for the memory size needed for the software TCD.

• #define STCD_ADDR(address) (((uint32_t)address + 31UL) & ∼0x1FUL)

• #define EDMA_ERR_LSB_MASK 1U

Macro for accessing the least significant bit of the ERR register.

Typedefs

• typedef void(∗ edma_callback_t) (void ∗parameter, edma_chn_status_t status)

Definition for the eDMA channel callback function.

Enumerations

• enum edma_channel_interrupt_t { EDMA_CHN_ERR_INT = 0U, EDMA_CHN_HALF_MAJOR_LOOP_INT,
EDMA_CHN_MAJOR_LOOP_INT }

eDMA channel interrupts. Implements : edma_channel_interrupt_t_Class

• enum edma_arbitration_algorithm_t { EDMA_ARBITRATION_FIXED_PRIORITY = 0U, EDMA_ARBITRAT←↩

ION_ROUND_ROBIN }

eDMA channel arbitration algorithm used for selection among channels. Implements : edma_arbitration_algorithm←↩

_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

268 CONTENTS

• enum edma_channel_priority_t {
EDMA_CHN_PRIORITY_0 = 0U, EDMA_CHN_PRIORITY_1 = 1U, EDMA_CHN_PRIORITY_2 = 2U, EDM←↩

A_CHN_PRIORITY_3 = 3U,
EDMA_CHN_PRIORITY_4 = 4U, EDMA_CHN_PRIORITY_5 = 5U, EDMA_CHN_PRIORITY_6 = 6U, EDM←↩

A_CHN_PRIORITY_7 = 7U,
EDMA_CHN_PRIORITY_8 = 8U, EDMA_CHN_PRIORITY_9 = 9U, EDMA_CHN_PRIORITY_10 = 10U, E←↩

DMA_CHN_PRIORITY_11 = 11U,
EDMA_CHN_PRIORITY_12 = 12U, EDMA_CHN_PRIORITY_13 = 13U, EDMA_CHN_PRIORITY_14 = 14U,
EDMA_CHN_PRIORITY_15 = 15U,
EDMA_CHN_DEFAULT_PRIORITY = 255U }

eDMA channel priority setting Implements : edma_channel_priority_t_Class

• enum edma_modulo_t {
EDMA_MODULO_OFF = 0U, EDMA_MODULO_2B, EDMA_MODULO_4B, EDMA_MODULO_8B,
EDMA_MODULO_16B, EDMA_MODULO_32B, EDMA_MODULO_64B, EDMA_MODULO_128B,
EDMA_MODULO_256B, EDMA_MODULO_512B, EDMA_MODULO_1KB, EDMA_MODULO_2KB,
EDMA_MODULO_4KB, EDMA_MODULO_8KB, EDMA_MODULO_16KB, EDMA_MODULO_32KB,
EDMA_MODULO_64KB, EDMA_MODULO_128KB, EDMA_MODULO_256KB, EDMA_MODULO_512KB,
EDMA_MODULO_1MB, EDMA_MODULO_2MB, EDMA_MODULO_4MB, EDMA_MODULO_8MB,
EDMA_MODULO_16MB, EDMA_MODULO_32MB, EDMA_MODULO_64MB, EDMA_MODULO_128MB,
EDMA_MODULO_256MB, EDMA_MODULO_512MB, EDMA_MODULO_1GB, EDMA_MODULO_2GB }

eDMA modulo configuration Implements : edma_modulo_t_Class

• enum edma_transfer_size_t {
EDMA_TRANSFER_SIZE_1B = 0x0U, EDMA_TRANSFER_SIZE_2B = 0x1U, EDMA_TRANSFER_SIZE_←↩

4B = 0x2U, EDMA_TRANSFER_SIZE_16B = 0x4U,
EDMA_TRANSFER_SIZE_32B = 0x5U }

eDMA transfer configuration Implements : edma_transfer_size_t_Class

• enum edma_chn_status_t { EDMA_CHN_NORMAL = 0U, EDMA_CHN_ERROR }

Channel status for eDMA channel.

• enum edma_transfer_type_t { EDMA_TRANSFER_PERIPH2MEM = 0U, EDMA_TRANSFER_MEM2PERI←↩

PH, EDMA_TRANSFER_MEM2MEM, EDMA_TRANSFER_PERIPH2PERIPH }

A type for the DMA transfer. Implements : edma_transfer_type_t_Class.

eDMA peripheral driver module level functions

• status_t EDMA_DRV_Init (edma_state_t ∗edmaState, const edma_user_config_t ∗userConfig, edma_chn←↩

_state_t ∗const chnStateArray[], const edma_channel_config_t ∗const chnConfigArray[], uint8_t chnCount)

Initializes the eDMA module.

• status_t EDMA_DRV_Deinit (void)

De-initializes the eDMA module.

eDMA peripheral driver channel management functions

• status_t EDMA_DRV_ChannelInit (edma_chn_state_t ∗edmaChannelState, const edma_channel_config_t
∗edmaChannelConfig)

Initializes an eDMA channel.

• status_t EDMA_DRV_ReleaseChannel (uint8_t channel)

Releases an eDMA channel.

eDMA peripheral driver transfer setup functions

• void EDMA_DRV_PushConfigToReg (uint8_t channel, const edma_transfer_config_t ∗tcd)

Copies the channel configuration to the TCD registers.

• void EDMA_DRV_PushConfigToSTCD (const edma_transfer_config_t ∗config, edma_software_tcd_t ∗stcd)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 269

Copies the channel configuration to the software TCD structure.

• status_t EDMA_DRV_ConfigSingleBlockTransfer (uint8_t channel, edma_transfer_type_t type, uint32_t src←↩

Addr, uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t dataBufferSize)

Configures a simple single block data transfer with DMA.

• status_t EDMA_DRV_ConfigMultiBlockTransfer (uint8_t channel, edma_transfer_type_t type, uint32_t src←↩

Addr, uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t blockSize, uint32_t blockCount, bool
disableReqOnCompletion)

Configures a multiple block data transfer with DMA.

• status_t EDMA_DRV_ConfigLoopTransfer (uint8_t channel, const edma_transfer_config_t ∗transferConfig)

Configures the DMA transfer in loop mode.

• status_t EDMA_DRV_ConfigScatterGatherTransfer (uint8_t channel, edma_software_tcd_t ∗stcd, edma_←↩

transfer_size_t transferSize, uint32_t bytesOnEachRequest, const edma_scatter_gather_list_t ∗srcList, const
edma_scatter_gather_list_t ∗destList, uint8_t tcdCount)

Configures the DMA transfer in a scatter-gather mode.

• void EDMA_DRV_CancelTransfer (bool error)

Cancel the running transfer.

eDMA Peripheral driver channel operation functions

• status_t EDMA_DRV_StartChannel (uint8_t channel)

Starts an eDMA channel.

• status_t EDMA_DRV_StopChannel (uint8_t channel)

Stops the eDMA channel.

• status_t EDMA_DRV_SetChannelRequest (uint8_t channel, uint8_t req)

Configures the DMA request for the eDMA channel.

• void EDMA_DRV_ClearTCD (uint8_t channel)

Clears all registers to 0 for the channel's TCD.

• void EDMA_DRV_SetSrcAddr (uint8_t channel, uint32_t address)

Configures the source address for the eDMA channel.

• void EDMA_DRV_SetSrcOffset (uint8_t channel, int16_t offset)

Configures the source address signed offset for the eDMA channel.

• void EDMA_DRV_SetSrcReadChunkSize (uint8_t channel, edma_transfer_size_t size)

Configures the source data chunk size (transferred in a read sequence).

• void EDMA_DRV_SetSrcLastAddrAdjustment (uint8_t channel, int32_t adjust)

Configures the source address last adjustment.

• void EDMA_DRV_SetDestAddr (uint8_t channel, uint32_t address)

Configures the destination address for the eDMA channel.

• void EDMA_DRV_SetDestOffset (uint8_t channel, int16_t offset)

Configures the destination address signed offset for the eDMA channel.

• void EDMA_DRV_SetDestWriteChunkSize (uint8_t channel, edma_transfer_size_t size)

Configures the destination data chunk size (transferred in a write sequence).

• void EDMA_DRV_SetDestLastAddrAdjustment (uint8_t channel, int32_t adjust)

Configures the destination address last adjustment.

• void EDMA_DRV_SetMinorLoopBlockSize (uint8_t channel, uint32_t nbytes)

Configures the number of bytes to be transferred in each service request of the channel.

• void EDMA_DRV_SetMajorLoopIterationCount (uint8_t channel, uint32_t majorLoopCount)

Configures the number of major loop iterations.

• uint32_t EDMA_DRV_GetRemainingMajorIterationsCount (uint8_t channel)

Returns the remaining major loop iteration count.

• void EDMA_DRV_SetScatterGatherLink (uint8_t channel, uint32_t nextTCDAddr)

Configures the memory address of the next TCD, in scatter/gather mode.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

270 CONTENTS

• void EDMA_DRV_DisableRequestsOnTransferComplete (uint8_t channel, bool disable)

Disables/Enables the DMA request after the major loop completes for the TCD.

• void EDMA_DRV_ConfigureInterrupt (uint8_t channel, edma_channel_interrupt_t intSrc, bool enable)

Disables/Enables the channel interrupt requests.

• void EDMA_DRV_TriggerSwRequest (uint8_t channel)

Triggers a sw request for the current channel.

eDMA Peripheral callback and interrupt functions

• status_t EDMA_DRV_InstallCallback (uint8_t channel, edma_callback_t callback, void ∗parameter)

Registers the callback function and the parameter for eDMA channel.

eDMA Peripheral driver miscellaneous functions

• edma_chn_status_t EDMA_DRV_GetChannelStatus (uint8_t channel)

Gets the eDMA channel status.

14.21.2 Data Structure Documentation

14.21.2.1 struct edma_user_config_t

The user configuration structure for the eDMA driver.

Use an instance of this structure with the EDMA_DRV_Init() function. This allows the user to configure settings of
the EDMA peripheral with a single function call. Implements : edma_user_config_t_Class

Definition at line 175 of file edma_driver.h.

Data Fields

• edma_arbitration_algorithm_t chnArbitration
• bool notHaltOnError

Field Documentation

14.21.2.1.1 edma_arbitration_algorithm_t chnArbitration

eDMA channel arbitration.

Definition at line 176 of file edma_driver.h.

14.21.2.1.2 bool notHaltOnError

Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.

Definition at line 182 of file edma_driver.h.

14.21.2.2 struct edma_chn_state_t

Data structure for the eDMA channel state. Implements : edma_chn_state_t_Class.

Definition at line 209 of file edma_driver.h.

Data Fields

• uint8_t channel
• edma_callback_t callback
• void ∗ parameter
• volatile edma_chn_status_t status

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 271

Field Documentation

14.21.2.2.1 edma_callback_t callback

Callback function pointer for the eDMA channel. It will be called at the eDMA channel complete and eDMA channel
error.

Definition at line 211 of file edma_driver.h.

14.21.2.2.2 uint8_t channel

Virtual channel indicator.

Definition at line 210 of file edma_driver.h.

14.21.2.2.3 void∗ parameter

Parameter for the callback function pointer.

Definition at line 214 of file edma_driver.h.

14.21.2.2.4 volatile edma_chn_status_t status

eDMA channel status.

Definition at line 215 of file edma_driver.h.

14.21.2.3 struct edma_channel_config_t

The user configuration structure for the an eDMA driver channel.

Use an instance of this structure with the EDMA_DRV_ChannelInit() function. This allows the user to configure
settings of the EDMA channel with a single function call. Implements : edma_channel_config_t_Class

Definition at line 225 of file edma_driver.h.

Data Fields

• edma_channel_priority_t priority

• uint8_t channel

• dma_request_source_t source

• edma_callback_t callback

• void ∗ callbackParam

Field Documentation

14.21.2.3.1 edma_callback_t callback

Callback that will be registered for this channel

Definition at line 230 of file edma_driver.h.

14.21.2.3.2 void∗ callbackParam

Parameter passed to the channel callback

Definition at line 231 of file edma_driver.h.

14.21.2.3.3 uint8_t channel

eDMA channel number - use EDMA_ANY_CHANNEL for dynamic allocation

Definition at line 228 of file edma_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

272 CONTENTS

14.21.2.3.4 edma_channel_priority_t priority

eDMA channel priority - only used when channel arbitration mode is 'Fixed priority'.

Definition at line 226 of file edma_driver.h.

14.21.2.3.5 dma_request_source_t source

Selects the source of the DMA request for this channel

Definition at line 229 of file edma_driver.h.

14.21.2.4 struct edma_scatter_gather_list_t

Data structure for configuring a discrete memory transfer. Implements : edma_scatter_gather_list_t_Class.

Definition at line 247 of file edma_driver.h.

Data Fields

• uint32_t address
• uint32_t length
• edma_transfer_type_t type

Field Documentation

14.21.2.4.1 uint32_t address

Address of buffer.

Definition at line 248 of file edma_driver.h.

14.21.2.4.2 uint32_t length

Length of buffer.

Definition at line 249 of file edma_driver.h.

14.21.2.4.3 edma_transfer_type_t type

Type of the DMA transfer

Definition at line 250 of file edma_driver.h.

14.21.2.5 struct edma_state_t

Runtime state structure for the eDMA driver.

This structure holds data that is used by the eDMA peripheral driver to manage multi eDMA channels. The user
passes the memory for this run-time state structure and the eDMA driver populates the members. Implements :
edma_state_t_Class

Definition at line 262 of file edma_driver.h.

Data Fields

• edma_chn_state_t ∗volatile chn [FEATURE_EDMA_MODULE_CHANNELS]

Field Documentation

14.21.2.5.1 edma_chn_state_t∗ volatile chn[FEATURE_EDMA_MODULE_CHANNELS]

Pointer array storing channel state.

Definition at line 263 of file edma_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 273

14.21.2.6 struct edma_loop_transfer_config_t

eDMA loop transfer configuration.

This structure configures the basic minor/major loop attributes. Implements : edma_loop_transfer_config_t_Class

Definition at line 272 of file edma_driver.h.

Data Fields

• uint32_t majorLoopIterationCount

• bool srcOffsetEnable

• bool dstOffsetEnable

• int32_t minorLoopOffset

• bool minorLoopChnLinkEnable

• uint8_t minorLoopChnLinkNumber

• bool majorLoopChnLinkEnable

• uint8_t majorLoopChnLinkNumber

Field Documentation

14.21.2.6.1 bool dstOffsetEnable

Selects whether the minor loop offset is applied to the destination address upon minor loop completion.

Definition at line 276 of file edma_driver.h.

14.21.2.6.2 bool majorLoopChnLinkEnable

Enables channel-to-channel linking on major loop complete.

Definition at line 283 of file edma_driver.h.

14.21.2.6.3 uint8_t majorLoopChnLinkNumber

The number of the next channel to be started by DMA engine when major loop completes.

Definition at line 284 of file edma_driver.h.

14.21.2.6.4 uint32_t majorLoopIterationCount

Number of major loop iterations.

Definition at line 273 of file edma_driver.h.

14.21.2.6.5 bool minorLoopChnLinkEnable

Enables channel-to-channel linking on minor loop complete.

Definition at line 280 of file edma_driver.h.

14.21.2.6.6 uint8_t minorLoopChnLinkNumber

The number of the next channel to be started by DMA engine when minor loop completes.

Definition at line 281 of file edma_driver.h.

14.21.2.6.7 int32_t minorLoopOffset

Sign-extended offset applied to the source or destination address to form the next-state value after the minor loop
completes.

Definition at line 278 of file edma_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

274 CONTENTS

14.21.2.6.8 bool srcOffsetEnable

Selects whether the minor loop offset is applied to the source address upon minor loop completion.

Definition at line 274 of file edma_driver.h.

14.21.2.7 struct edma_transfer_config_t

eDMA transfer size configuration.

This structure configures the basic source/destination transfer attribute. Implements : edma_transfer_config_t_←↩

Class

Definition at line 294 of file edma_driver.h.

Data Fields

• uint32_t srcAddr
• uint32_t destAddr
• edma_transfer_size_t srcTransferSize
• edma_transfer_size_t destTransferSize
• int16_t srcOffset
• int16_t destOffset
• int32_t srcLastAddrAdjust
• int32_t destLastAddrAdjust
• edma_modulo_t srcModulo
• edma_modulo_t destModulo
• uint32_t minorByteTransferCount
• bool scatterGatherEnable
• uint32_t scatterGatherNextDescAddr
• bool interruptEnable
• edma_loop_transfer_config_t ∗ loopTransferConfig

Field Documentation

14.21.2.7.1 uint32_t destAddr

Memory address pointing to the destination data.

Definition at line 296 of file edma_driver.h.

14.21.2.7.2 int32_t destLastAddrAdjust

Last destination address adjustment. Note here it is only valid when scatter/gather feature is not enabled.

Definition at line 306 of file edma_driver.h.

14.21.2.7.3 edma_modulo_t destModulo

Destination address modulo.

Definition at line 309 of file edma_driver.h.

14.21.2.7.4 int16_t destOffset

Sign-extended offset applied to the current destination address to form the next-state value as each source
read/write is completed.

Definition at line 302 of file edma_driver.h.

14.21.2.7.5 edma_transfer_size_t destTransferSize

Destination data transfer size.

Definition at line 298 of file edma_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 275

14.21.2.7.6 bool interruptEnable

Enable the interrupt request when the major loop count completes

Definition at line 317 of file edma_driver.h.

14.21.2.7.7 edma_loop_transfer_config_t∗ loopTransferConfig

Pointer to loop transfer configuration structure (defines minor/major loop attributes) Note: this field is only used
when minor loop mapping is enabled from DMA configuration.

Definition at line 319 of file edma_driver.h.

14.21.2.7.8 uint32_t minorByteTransferCount

Number of bytes to be transferred in each service request of the channel.

Definition at line 310 of file edma_driver.h.

14.21.2.7.9 bool scatterGatherEnable

Enable scatter gather feature.

Definition at line 312 of file edma_driver.h.

14.21.2.7.10 uint32_t scatterGatherNextDescAddr

The address of the next descriptor to be used, when scatter/gather feature is enabled. Note: this value is not used
when scatter/gather feature is disabled.

Definition at line 313 of file edma_driver.h.

14.21.2.7.11 uint32_t srcAddr

Memory address pointing to the source data.

Definition at line 295 of file edma_driver.h.

14.21.2.7.12 int32_t srcLastAddrAdjust

Last source address adjustment.

Definition at line 305 of file edma_driver.h.

14.21.2.7.13 edma_modulo_t srcModulo

Source address modulo.

Definition at line 308 of file edma_driver.h.

14.21.2.7.14 int16_t srcOffset

Sign-extended offset applied to the current source address to form the next-state value as each source read/write
is completed.

Definition at line 299 of file edma_driver.h.

14.21.2.7.15 edma_transfer_size_t srcTransferSize

Source data transfer size.

Definition at line 297 of file edma_driver.h.

14.21.3 Macro Definition Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

276 CONTENTS

14.21.3.1 #define EDMA_ERR_LSB_MASK 1U

Macro for accessing the least significant bit of the ERR register.

The erroneous channels are retrieved from ERR register by subsequently right shifting all the ERR bits + "AND"-ing
the result with this mask.

Definition at line 67 of file edma_driver.h.

14.21.3.2 #define STCD_ADDR(address) (((uint32_t)address + 31UL) &∼0x1FUL)

Definition at line 59 of file edma_driver.h.

14.21.3.3 #define STCD_SIZE(number) (((number) ∗ 32U) - 1U)

Macro for the memory size needed for the software TCD.

Software TCD is aligned to 32 bytes. We don't need a software TCD structure for the first descriptor, since the con-
figuration is pushed directly to registers. To make sure the software TCD can meet the eDMA module requirement
regarding alignment, allocate memory for the remaining descriptors with extra 31 bytes.

Definition at line 58 of file edma_driver.h.

14.21.4 Typedef Documentation

14.21.4.1 typedef void(∗ edma_callback_t) (void ∗parameter, edma_chn_status_t status)

Definition for the eDMA channel callback function.

Prototype for the callback function registered in the eDMA driver. Implements : edma_callback_t_Class

Definition at line 204 of file edma_driver.h.

14.21.5 Enumeration Type Documentation

14.21.5.1 enum edma_arbitration_algorithm_t

eDMA channel arbitration algorithm used for selection among channels. Implements : edma_arbitration_algorithm←↩

_t_Class

Enumerator

EDMA_ARBITRATION_FIXED_PRIORITY Fixed Priority

EDMA_ARBITRATION_ROUND_ROBIN Round-Robin arbitration

Definition at line 81 of file edma_driver.h.

14.21.5.2 enum edma_channel_interrupt_t

eDMA channel interrupts. Implements : edma_channel_interrupt_t_Class

Enumerator

EDMA_CHN_ERR_INT Error interrupt

EDMA_CHN_HALF_MAJOR_LOOP_INT Half major loop interrupt.

EDMA_CHN_MAJOR_LOOP_INT Complete major loop interrupt.

Definition at line 72 of file edma_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 277

14.21.5.3 enum edma_channel_priority_t

eDMA channel priority setting Implements : edma_channel_priority_t_Class

Enumerator

EDMA_CHN_PRIORITY_0

EDMA_CHN_PRIORITY_1

EDMA_CHN_PRIORITY_2

EDMA_CHN_PRIORITY_3

EDMA_CHN_PRIORITY_4

EDMA_CHN_PRIORITY_5

EDMA_CHN_PRIORITY_6

EDMA_CHN_PRIORITY_7

EDMA_CHN_PRIORITY_8

EDMA_CHN_PRIORITY_9

EDMA_CHN_PRIORITY_10

EDMA_CHN_PRIORITY_11

EDMA_CHN_PRIORITY_12

EDMA_CHN_PRIORITY_13

EDMA_CHN_PRIORITY_14

EDMA_CHN_PRIORITY_15

EDMA_CHN_DEFAULT_PRIORITY

Definition at line 89 of file edma_driver.h.

14.21.5.4 enum edma_chn_status_t

Channel status for eDMA channel.

A structure describing the eDMA channel status. The user can get the status by callback parameter or by calling
EDMA_DRV_getStatus() function. Implements : edma_chn_status_t_Class

Enumerator

EDMA_CHN_NORMAL eDMA channel normal state.

EDMA_CHN_ERROR An error occurred in the eDMA channel.

Definition at line 193 of file edma_driver.h.

14.21.5.5 enum edma_modulo_t

eDMA modulo configuration Implements : edma_modulo_t_Class

Enumerator

EDMA_MODULO_OFF

EDMA_MODULO_2B

EDMA_MODULO_4B

EDMA_MODULO_8B

EDMA_MODULO_16B

EDMA_MODULO_32B

EDMA_MODULO_64B

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

278 CONTENTS

EDMA_MODULO_128B

EDMA_MODULO_256B

EDMA_MODULO_512B

EDMA_MODULO_1KB

EDMA_MODULO_2KB

EDMA_MODULO_4KB

EDMA_MODULO_8KB

EDMA_MODULO_16KB

EDMA_MODULO_32KB

EDMA_MODULO_64KB

EDMA_MODULO_128KB

EDMA_MODULO_256KB

EDMA_MODULO_512KB

EDMA_MODULO_1MB

EDMA_MODULO_2MB

EDMA_MODULO_4MB

EDMA_MODULO_8MB

EDMA_MODULO_16MB

EDMA_MODULO_32MB

EDMA_MODULO_64MB

EDMA_MODULO_128MB

EDMA_MODULO_256MB

EDMA_MODULO_512MB

EDMA_MODULO_1GB

EDMA_MODULO_2GB

Definition at line 122 of file edma_driver.h.

14.21.5.6 enum edma_transfer_size_t

eDMA transfer configuration Implements : edma_transfer_size_t_Class

Enumerator

EDMA_TRANSFER_SIZE_1B

EDMA_TRANSFER_SIZE_2B

EDMA_TRANSFER_SIZE_4B

EDMA_TRANSFER_SIZE_16B

EDMA_TRANSFER_SIZE_32B

Definition at line 160 of file edma_driver.h.

14.21.5.7 enum edma_transfer_type_t

A type for the DMA transfer. Implements : edma_transfer_type_t_Class.

Enumerator

EDMA_TRANSFER_PERIPH2MEM Transfer from peripheral to memory

EDMA_TRANSFER_MEM2PERIPH Transfer from memory to peripheral

EDMA_TRANSFER_MEM2MEM Transfer from memory to memory

EDMA_TRANSFER_PERIPH2PERIPH Transfer from peripheral to peripheral

Definition at line 237 of file edma_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 279

14.21.6 Function Documentation

14.21.6.1 void EDMA_DRV_CancelTransfer (bool error)

Cancel the running transfer.

This function cancels the current transfer, optionally signalling an error.

Parameters

bool error If true, an error will be logged for the current transfer.

Definition at line 1254 of file edma_driver.c.

14.21.6.2 status_t EDMA_DRV_ChannelInit (edma_chn_state_t ∗ edmaChannelState, const edma_channel_config_t ∗
edmaChannelConfig)

Initializes an eDMA channel.

This function initializes the run-time state structure for a eDMA channel, based on user configuration. It will request
the channel, set up the channel priority and install the callback.

Parameters

edmaChannel←↩

State
Pointer to the eDMA channel state structure. The user passes the memory for this run-time
state structure and the eDMA peripheral driver populates the members. This run-time state
structure keeps track of the eDMA channel status. The memory must be kept valid before
calling the EDMA_DRV_ReleaseChannel.

edmaChannel←↩

Config
User configuration structure for eDMA channel. The user populates the members of this
structure and passes the pointer of this structure into the function.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 254 of file edma_driver.c.

14.21.6.3 void EDMA_DRV_ClearTCD (uint8_t channel)

Clears all registers to 0 for the channel's TCD.

Parameters

channel eDMA channel number.

Definition at line 888 of file edma_driver.c.

14.21.6.4 status_t EDMA_DRV_ConfigLoopTransfer (uint8_t channel, const edma_transfer_config_t ∗ transferConfig)

Configures the DMA transfer in loop mode.

This function configures the DMA transfer in a loop chain. The user passes a block of memory into this function
that configures the loop transfer properties (minor/major loop count, address offsets, channel linking). The DMA
driver copies the configuration to TCD registers, only when the loop properties are set up correctly and minor loop
mapping is enabled for the eDMA module.

Parameters

chn Pointer to the channel state structure.
transferConfig Pointer to the transfer configuration strucutre; this structure defines fields for setting up the

basic transfer and also a pointer to a memory strucure that defines the loop chain properties
(minor/major).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

280 CONTENTS

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 619 of file edma_driver.c.

14.21.6.5 status_t EDMA_DRV_ConfigMultiBlockTransfer (uint8_t channel, edma_transfer_type_t type, uint32_t
srcAddr, uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t blockSize, uint32_t blockCount, bool
disableReqOnCompletion)

Configures a multiple block data transfer with DMA.

This function configures the descriptor for a multi-block transfer. The function considers contiguous memory blocks,
thus it configures the TCD source/destination offset fields to cover the data buffer without gaps, according to
"transferSize" parameter (the offset is equal to the number of bytes transferred in a source read/destination write).
The buffer is divided in multiple block, each block being transferred upon a single DMA request.

NOTE: For transfers to/from peripherals, make sure the transfer size is equal to the data buffer size of the peripheral
used, otherwise only truncated chunks of data may be transferred (e.g. for a communication IP with an 8-bit data
register the transfer size should be 1B, whereas for a 32-bit data register, the transfer size should be 4B). The
rationale of this constraint is that, on the peripheral side, the address offset is set to zero, allowing to read/write data
from/to the peripheral in a single source read/destination write operation.

Parameters

chn Pointer to the channel state structure.
type Transfer type (M->M, P->M, M->P, P->P).

srcAddr A source register address or a source memory address.
destAddr A destination register address or a destination memory address.

transferSize The number of bytes to be transferred on every DMA write/read. Source/Dest share the same
write/read size.

blockSize The total number of bytes inside a block.
blockCount The total number of data blocks (one block is transferred upon a DMA request).

disableReqOn←↩

Completion
This parameter specifies whether the DMA channel should be disabled when the transfer is
complete (further requests will remain untreated).

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 589 of file edma_driver.c.

14.21.6.6 status_t EDMA_DRV_ConfigScatterGatherTransfer (uint8_t channel, edma_software_tcd_t ∗ stcd,
edma_transfer_size_t transferSize, uint32_t bytesOnEachRequest, const edma_scatter_gather_list_t ∗
srcList, const edma_scatter_gather_list_t ∗ destList, uint8_t tcdCount)

Configures the DMA transfer in a scatter-gather mode.

This function configures the descriptors into a single-ended chain. The user passes blocks of memory into this
function. The interrupt is triggered only when the last memory block is completed. The memory block information
is passed with the edma_scatter_gather_list_t data structure, which can tell the memory address and length. The
DMA driver configures the descriptor for each memory block, transfers the descriptor from the first one to the last
one, and stops.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 281

Parameters

chn Pointer to the channel state structure.
stcd Array of empty software TCD structures. The user must prepare this memory block. We

don't need a software TCD structure for the first descriptor, since the configuration is pushed
directly to registers.The "stcd" buffer must align with 32 bytes; if not, an error occurs in the e←↩

DMA driver. Thus, the required memory size for "stcd" is equal to tcdCount ∗ size_of(edma←↩

_software_tcd_t) - 1; the driver will take care of the memory alignment if the provided memory
buffer is big enough. For proper allocation of the "stcd" buffer it is recommended to use ST←↩

CD_SIZE macro.
transferSize The number of bytes to be transferred on every DMA write/read.

bytesOnEach←↩

Request
Bytes to be transferred in each DMA request.

srcList Data structure storing the address, length and type of transfer (M->M, M->P, P->M, P->P)
for the bytes to be transferred for source memory blocks. If the source memory is peripheral,
the length is not used.

destList Data structure storing the address, length and type of transfer (M->M, M->P, P->M, P->P)
for the bytes to be transferred for destination memory blocks. In the memory-to-memory
transfer mode, the user must ensure that the length of the destination scatter gather list is
equal to the source scatter gather list. If the destination memory is a peripheral register, the
length is not used.

tcdCount The number of TCD memory blocks contained in the scatter gather list.

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 656 of file edma_driver.c.

14.21.6.7 status_t EDMA_DRV_ConfigSingleBlockTransfer (uint8_t channel, edma_transfer_type_t type, uint32_t srcAddr,
uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t dataBufferSize)

Configures a simple single block data transfer with DMA.

This function configures the descriptor for a single block transfer. The function considers contiguous memory
blocks, thus it configures the TCD source/destination offset fields to cover the data buffer without gaps, accord-
ing to "transferSize" parameter (the offset is equal to the number of bytes transferred in a source read/destination
write).

NOTE: For memory-to-peripheral or peripheral-to-memory transfers, make sure the transfer size is equal to the
data buffer size of the peripheral used, otherwise only truncated chunks of data may be transferred (e.g. for a
communication IP with an 8-bit data register the transfer size should be 1B, whereas for a 32-bit data register, the
transfer size should be 4B). The rationale of this constraint is that, on the peripheral side, the address offset is set
to zero, allowing to read/write data from/to the peripheral in a single source read/destination write operation.

Parameters

chn Pointer to the channel state structure.
type Transfer type (M->M, P->M, M->P, P->P).

srcAddr A source register address or a source memory address.
destAddr A destination register address or a destination memory address.

transferSize The number of bytes to be transferred on every DMA write/read. Source/Dest share the same
write/read size.

dataBufferSize The total number of bytes to be transferred.

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 495 of file edma_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

282 CONTENTS

14.21.6.8 void EDMA_DRV_ConfigureInterrupt (uint8_t channel, edma_channel_interrupt_t intSrc, bool enable)

Disables/Enables the channel interrupt requests.

This function enables/disables error, half major loop and complete major loop interrupts for the current channel.

Parameters

channel eDMA channel number.
interrupt Interrupt event (error/half major loop/complete major loop).

enable Enable (true)/Disable (false) interrupts for the current channel.

Definition at line 1214 of file edma_driver.c.

14.21.6.9 status_t EDMA_DRV_Deinit (void)

De-initializes the eDMA module.

This function resets the eDMA module to reset state and disables the interrupt to the core.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 207 of file edma_driver.c.

14.21.6.10 void EDMA_DRV_DisableRequestsOnTransferComplete (uint8_t channel, bool disable)

Disables/Enables the DMA request after the major loop completes for the TCD.

If disabled, the eDMA hardware automatically clears the corresponding DMA request when the current major itera-
tion count reaches zero.

Parameters

channel eDMA channel number.
disable Disable (true)/Enable (false) DMA request after TCD complete.

Definition at line 1191 of file edma_driver.c.

14.21.6.11 edma_chn_status_t EDMA_DRV_GetChannelStatus (uint8_t channel)

Gets the eDMA channel status.

Parameters

chn Channel number.

Returns

Channel status.

Definition at line 1440 of file edma_driver.c.

14.21.6.12 uint32_t EDMA_DRV_GetRemainingMajorIterationsCount (uint8_t channel)

Returns the remaining major loop iteration count.

Gets the number minor loops yet to be triggered (major loop iterations).

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 283

channel eDMA channel number.

Returns

number of major loop iterations yet to be triggered

Definition at line 1141 of file edma_driver.c.

14.21.6.13 status_t EDMA_DRV_Init (edma_state_t ∗ edmaState, const edma_user_config_t ∗ userConfig,
edma_chn_state_t ∗const chnStateArray[], const edma_channel_config_t ∗const chnConfigArray[],
uint8_t chnCount)

Initializes the eDMA module.

This function initializes the run-time state structure to provide the eDMA channel allocation release, protect, and
track the state for channels. This function also resets the eDMA modules, initializes the module to user-defined
settings and default settings.

Parameters

edmaState The pointer to the eDMA peripheral driver state structure. The user passes the memory for
this run-time state structure and the eDMA peripheral driver populates the members. This
run-time state structure keeps track of the eDMA channels status. The memory must be kept
valid before calling the EDMA_DRV_DeInit.

userConfig User configuration structure for eDMA peripheral drivers. The user populates the members
of this structure and passes the pointer of this structure into the function.

chnStateArray Array of pointers to run-time state structures for eDMA channels; will populate the state struc-
tures inside the eDMA driver state structure.

chnConfigArray Array of pointers to channel initialization structures.
chnCount The number of eDMA channels to be initialized.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 99 of file edma_driver.c.

14.21.6.14 status_t EDMA_DRV_InstallCallback (uint8_t channel, edma_callback_t callback, void ∗ parameter)

Registers the callback function and the parameter for eDMA channel.

This function registers the callback function and the parameter into the eDMA channel state structure. The callback
function is called when the channel is complete or a channel error occurs. The eDMA driver passes the channel
status to this callback function to indicate whether it is caused by the channel complete event or the channel error
event.

To un-register the callback function, set the callback function to "NULL" and call this function.

Parameters

chn The pointer to the channel state structure.
callback The pointer to the callback function.

parameter The pointer to the callback function's parameter.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 293 of file edma_driver.c.

14.21.6.15 void EDMA_DRV_PushConfigToReg (uint8_t channel, const edma_transfer_config_t ∗ tcd)

Copies the channel configuration to the TCD registers.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

284 CONTENTS

Parameters

chn Pointer to the channel state structure.
config Pointer to the channel configuration structure.

Definition at line 1340 of file edma_driver.c.

14.21.6.16 void EDMA_DRV_PushConfigToSTCD (const edma_transfer_config_t ∗ config, edma_software_tcd_t ∗ stcd)

Copies the channel configuration to the software TCD structure.

This function copies the properties from the channel configuration to the software TCD structure; the address of the
software TCD can be used to enable scatter/gather operation (pointer to the next TCD).

Parameters

chn Pointer to the channel state structure.
config Pointer to the channel configuration structure.

stcd Pointer to the software TCD structure.

Definition at line 1302 of file edma_driver.c.

14.21.6.17 status_t EDMA_DRV_ReleaseChannel (uint8_t channel)

Releases an eDMA channel.

This function stops the eDMA channel and disables the interrupt of this channel. The channel state structure can
be released after this function is called.

Parameters

chn The pointer to the channel state structure.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 367 of file edma_driver.c.

14.21.6.18 status_t EDMA_DRV_SetChannelRequest (uint8_t channel, uint8_t req)

Configures the DMA request for the eDMA channel.

Selects which DMA source is routed to a DMA channel. The DMA sources are defined in the file <MCU>_←↩

Features.h

Parameters

channel eDMA channel number.
req DMA request source.

Returns

STATUS_SUCCESS.

Definition at line 863 of file edma_driver.c.

14.21.6.19 void EDMA_DRV_SetDestAddr (uint8_t channel, uint32_t address)

Configures the destination address for the eDMA channel.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 285

Parameters

channel eDMA channel number.
address The pointer to the destination memory address.

Definition at line 1026 of file edma_driver.c.

14.21.6.20 void EDMA_DRV_SetDestLastAddrAdjustment (uint8_t channel, int32_t adjust)

Configures the destination address last adjustment.

Adjustment value added to the destination address at the completion of the major iteration count. This value can
be applied to restore the destination address to the initial value, or adjust the address to reference the next data
structure.

Parameters

channel eDMA channel number.
adjust Adjustment value.

Definition at line 1003 of file edma_driver.c.

14.21.6.21 void EDMA_DRV_SetDestOffset (uint8_t channel, int16_t offset)

Configures the destination address signed offset for the eDMA channel.

Sign-extended offset applied to the current destination address to form the next-state value as each destination
write is complete.

Parameters

channel eDMA channel number.
offset signed-offset

Definition at line 1049 of file edma_driver.c.

14.21.6.22 void EDMA_DRV_SetDestWriteChunkSize (uint8_t channel, edma_transfer_size_t size)

Configures the destination data chunk size (transferred in a write sequence).

Destination data write transfer size (1/2/4/16/32 bytes).

Parameters

channel eDMA channel number.
size Destination transfer size.

Definition at line 1072 of file edma_driver.c.

14.21.6.23 void EDMA_DRV_SetMajorLoopIterationCount (uint8_t channel, uint32_t majorLoopCount)

Configures the number of major loop iterations.

Sets the number of major loop iterations; each major loop iteration will be served upon a request for the current
channel, transferring the data block configured for the minor loop (NBYTES).

Parameters

channel eDMA channel number.
majorLoopCount Number of major loop iterations.

Definition at line 1118 of file edma_driver.c.

14.21.6.24 void EDMA_DRV_SetMinorLoopBlockSize (uint8_t channel, uint32_t nbytes)

Configures the number of bytes to be transferred in each service request of the channel.

Sets the number of bytes to be transferred each time a request is received (one major loop iteration). This number

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

286 CONTENTS

needs to be a multiple of the source/destination transfer size, as the data block will be transferred within multiple
read/write sequences (minor loops).

Parameters

channel eDMA channel number.
nbytes Number of bytes to be transferred in each service request of the channel

Definition at line 1095 of file edma_driver.c.

14.21.6.25 void EDMA_DRV_SetScatterGatherLink (uint8_t channel, uint32_t nextTCDAddr)

Configures the memory address of the next TCD, in scatter/gather mode.

This function configures the address of the next TCD to be loaded form memory, when scatter/gather feature is
enabled. This address points to the beginning of a 0-modulo-32 byte region containing the next transfer TCD to be
loaded into this channel. The channel reload is performed as the major iteration count completes. The scatter/gather
address must be 0-modulo-32-byte. Otherwise, a configuration error is reported.

Parameters

channel eDMA channel number.
nextTCDAddr The address of the next TCD to be linked to this TCD.

Definition at line 1168 of file edma_driver.c.

14.21.6.26 void EDMA_DRV_SetSrcAddr (uint8_t channel, uint32_t address)

Configures the source address for the eDMA channel.

Parameters

channel eDMA channel number.
address The pointer to the source memory address.

Definition at line 911 of file edma_driver.c.

14.21.6.27 void EDMA_DRV_SetSrcLastAddrAdjustment (uint8_t channel, int32_t adjust)

Configures the source address last adjustment.

Adjustment value added to the source address at the completion of the major iteration count. This value can be
applied to restore the source address to the initial value, or adjust the address to reference the next data structure.

Parameters

channel eDMA channel number.
adjust Adjustment value.

Definition at line 980 of file edma_driver.c.

14.21.6.28 void EDMA_DRV_SetSrcOffset (uint8_t channel, int16_t offset)

Configures the source address signed offset for the eDMA channel.

Sign-extended offset applied to the current source address to form the next-state value as each source read is
complete.

Parameters

channel eDMA channel number.
offset Signed-offset for source address.

Definition at line 934 of file edma_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.21 EDMA Driver 287

14.21.6.29 void EDMA_DRV_SetSrcReadChunkSize (uint8_t channel, edma_transfer_size_t size)

Configures the source data chunk size (transferred in a read sequence).

Source data read transfer size (1/2/4/16/32 bytes).

Parameters

channel eDMA channel number.
size Source transfer size.

Definition at line 957 of file edma_driver.c.

14.21.6.30 status_t EDMA_DRV_StartChannel (uint8_t channel)

Starts an eDMA channel.

This function enables the eDMA channel DMA request.

Parameters

chn Pointer to the channel state structure.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 813 of file edma_driver.c.

14.21.6.31 status_t EDMA_DRV_StopChannel (uint8_t channel)

Stops the eDMA channel.

This function disables the eDMA channel DMA request.

Parameters

chn Pointer to the channel state structure.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 838 of file edma_driver.c.

14.21.6.32 void EDMA_DRV_TriggerSwRequest (uint8_t channel)

Triggers a sw request for the current channel.

This function starts a transfer using the current channel (sw request).

Parameters

channel eDMA channel number.

Definition at line 1279 of file edma_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

288 CONTENTS

14.22 EIM Driver

14.22.1 Detailed Description

Error Injection Module Peripheral Driver.
EIM PD provides a set of high-level APIs/services to configure the Error Injection Module (EIM) module.

Basic Operations of EIM

1. To initialize EIM, call EIM_DRV_Init() with an user channel configuration array. In the following code, EIM is
initialized with default settings (after reset) for check-bit mask and data mask and both channels is enabled.

#define INST_EIM1 (0U)

/* Configuration structure array */
eim_user_channel_config_t userChannelConfigArr[] =
{

/* Configuration channel 0 */
{

.channel = 0x0U,

.checkBitMask = 0x00U,

.dataMask = 0x00U,

.enable = true
},
/* Configuration channel 1 */
{

.channel = 0x1U,

.checkBitMask = 0x00U,

.dataMask = 0x00U,

.enable = true
}

};

/* Initialize the EIM instance 0 with configured channel number of 2 and userChannelConfigArr */
EIM_DRV_Init(INST_EIM1, 2U, userChannelConfigArr);

2. To get the default configuration (data mask, check-bit mask and enable status) of a channel in EIM, just call
EIM_DRV_GetDefaultConfig(). Make sure that the operation is not execute in target RAM where EIM inject
the error

eim_user_channel_config_t channelConfig;

/* Get default configuration of EIM channel 1*/
EIM_DRV_GetDefaultConfig(1U, &channelConfig);

3. To de-initialize EIM, just call the EIM_DRV_Deinit() function. This function sets all registers to reset values
and disables EIM.

/* De-initializes the EIM module */
EIM_DRV_Deinit(INST_EIM1);

Data Structures

• struct eim_user_channel_config_t

EIM channel configuration structure. More...

Macros

• #define EIM_CHECKBITMASK_DEFAULT (0x01U)

The value default of EIM check-bit mask.

• #define EIM_DATAMASK_DEFAULT (0x00U)

The value default of EIM data mask.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.22 EIM Driver 289

EIM Driver API

• void EIM_DRV_Init (uint32_t instance, uint8_t channelCnt, const eim_user_channel_config_t ∗channel←↩

ConfigArr)

Initializes the EIM module.

• void EIM_DRV_Deinit (uint32_t instance)

De-initializes the EIM module.

• void EIM_DRV_ConfigChannel (uint32_t instance, const eim_user_channel_config_t ∗userChannelConfig)

Configures the EIM channel.

• void EIM_DRV_GetChannelConfig (uint32_t instance, uint8_t channel, eim_user_channel_config_←↩

t ∗channelConfig)

Gets the EIM channel configuration.

• void EIM_DRV_GetDefaultConfig (uint8_t channel, eim_user_channel_config_t ∗channelConfig)

Gets the EIM channel configuration default.

14.22.2 Data Structure Documentation

14.22.2.1 struct eim_user_channel_config_t

EIM channel configuration structure.

This structure holds the configuration settings for the EIM channel Implements : eim_user_channel_config_t_Class

Definition at line 58 of file eim_driver.h.

Data Fields

• uint8_t channel

• uint8_t checkBitMask

• uint32_t dataMask

• bool enable

Field Documentation

14.22.2.1.1 uint8_t channel

EIM channel number

Definition at line 60 of file eim_driver.h.

14.22.2.1.2 uint8_t checkBitMask

Specifies whether the corresponding bit of the check-bit bus from the target RAM should be inverted or remain
unmodified

Definition at line 61 of file eim_driver.h.

14.22.2.1.3 uint32_t dataMask

Specifies whether the corresponding bit of the read data bus from the target RAM should be inverted or remain
unmodified

Definition at line 63 of file eim_driver.h.

14.22.2.1.4 bool enable

true : EIM channel operation is enabled false : EIM channel operation is disabled

Definition at line 65 of file eim_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

290 CONTENTS

14.22.3 Macro Definition Documentation

14.22.3.1 #define EIM_CHECKBITMASK_DEFAULT (0x01U)

The value default of EIM check-bit mask.

Definition at line 48 of file eim_driver.h.

14.22.3.2 #define EIM_DATAMASK_DEFAULT (0x00U)

The value default of EIM data mask.

Definition at line 50 of file eim_driver.h.

14.22.4 Function Documentation

14.22.4.1 void EIM_DRV_ConfigChannel (uint32_t instance, const eim_user_channel_config_t ∗ userChannelConfig)

Configures the EIM channel.

This function configures check-bit mask, data mask and operation status(enable/disable) for EIM channel. The EIM
channel configuration structure shall be passed as arguments.

This is an example demonstrating how to define a EIM channel configuration structure:

1 eim_user_channel_config_t eimTestInit = {
2 .channel = 0x1U,
3 .checkBitMask = 0x25U,
4 .dataMask = 0x11101100U,
5 .enable = true
6 };

Parameters

in instance EIM module instance number
in userChannel←↩

Config
Pointer to EIM channel configuration structure

Definition at line 118 of file eim_driver.c.

14.22.4.2 void EIM_DRV_Deinit (uint32_t instance)

De-initializes the EIM module.

This function sets all registers to reset value and disables EIM module. In order to use the EIM module again,
EIM_DRV_Init must be called.

Parameters

in instance EIM module instance number

Definition at line 95 of file eim_driver.c.

14.22.4.3 void EIM_DRV_GetChannelConfig (uint32_t instance, uint8_t channel, eim_user_channel_config_t ∗
channelConfig)

Gets the EIM channel configuration.

This function gets check bit mask, data mask and operation status of EIM channel.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.22 EIM Driver 291

in instance EIM module instance number
in channel EIM channel number
out channelConfig Pointer to EIM channel configuration structure

Definition at line 144 of file eim_driver.c.

14.22.4.4 void EIM_DRV_GetDefaultConfig (uint8_t channel, eim_user_channel_config_t ∗ channelConfig)

Gets the EIM channel configuration default.

This function gets check bit mask, data mask and operation status default of EIM channel.

Parameters

in channel EIM channel number
out channelConfig Pointer to EIM channel configuration structure default

Definition at line 171 of file eim_driver.c.

14.22.4.5 void EIM_DRV_Init (uint32_t instance, uint8_t channelCnt, const eim_user_channel_config_t ∗
channelConfigArr)

Initializes the EIM module.

This function configures for EIM channels. The EIM channel configuration structure array and number of configured
channels shall be passed as arguments. This function should be called before calling any other EIM driver function.

This is an example demonstrating how to define a EIM channel configuration structure array:

1 eim_user_channel_config_t channelConfigArr[] =
2 {
3 {
4 .channel = 0x0U,
5 .checkBitMask = 0x12U,
6 .dataMask = 0x01234567U,
7 .enable = true
8 },
9 {
10 .channel = 0x1U,
11 .checkBitMask = 0x22U,
12 .dataMask = 0x01234444U,
13 .enable = false
14 }
15 };

Parameters

in instance EIM module instance number.
in channelCnt Number of configured channels
in channelConfig←↩

Arr
EIM channel configuration structure array

Definition at line 65 of file eim_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

292 CONTENTS

14.23 ENET Driver

14.23.1 Detailed Description

How to use the ENET driver in your application

In order to use the ENET driver in your application, the ENET_DRV_Init() function should be called prior to using
the rest of the API. The parameters of this function specify:

• the ENET instance to be initialized

• a structure which will hold the internal state of the driver

• a structure specifying the configuration of the ENET module

• a structure specifying the buffers configuration (Rx and Tx rings)

• the MAC address to be configured for the module

The configuration of the module is specified through the enet_config_t structure and contains:

• MII-related configurations (mode, speed, duplex)

• acceleation options for the receive and transmit path

• the maximum frame length

• the MAC interrupt sources which should be enabled

• other special configurations of the receive and transmit path

• a callback function to be invoked on events

The buffers configuration is specified through the enet_buffer_config_t structure and contains:

• the size of the Rx and Tx rings

• pointers to the beginning of the Rx and Tx buffer descriptors rings (should be 64-bit aligned)

• pointer to the beginning of the memory area where the received data shall be saved (should be 64-bit aligned)

In order to de-initialize the driver, the ENET_DRV_Deinit() function shall be used. This function will disable the
ENET interrupts and the module, so calling other ENET driver functions after de-initializing the driver will have
undefined behavior. In order to use the driver again, ENET_DRV_Init() should be called.

Examples:

Initializing the module

#define INST_ETHERNET1 (0U)

#define ENET_RXBD_NUM0 (1U)

#define ENET_TXBD_NUM0 (1U)

enet_state_t ethernet1_State;

enet_config_t ethernet1_InitConfig0 =
{

.interrupt = ENET_RX_FRAME_INTERRUPT,

.maxFrameLen = 1518U,

.miiMode = ENET_MII_MODE,

.miiSpeed = ENET_MII_SPEED_100M,

.miiDuplex = ENET_MII_FULL_DUPLEX,

.rxAccelerConfig = 0,

.txAccelerConfig = ENET_TX_ACCEL_INSERT_IP_CHECKSUM |
ENET_TX_ACCEL_INSERT_PROTO_CHECKSUM,

.rxConfig = 0,

.txConfig = ENET_TX_CONFIG_ENABLE_MAC_ADDR_INSERTION,

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 293

.callback = rx_callback
};

ALIGNED(FEATURE_ENET_BUFFDESCR_ALIGNMENT) enet_buffer_descriptor_t ethernet1_rxBuffDescrip0[ENET_RXBD_NUM0]
;

ALIGNED(FEATURE_ENET_BUFFDESCR_ALIGNMENT) enet_buffer_descriptor_t ethernet1_txBuffDescrip0[ENET_TXBD_NUM0]
;

ALIGNED(FEATURE_ENET_BUFF_ALIGNMENT) uint8_t ethernet1_rxDataBuff0[ENET_RXBD_NUM0 *
ENET_BUFF_ALIGN(1518U)];

enet_buffer_config_t ethernet1_buffConfig0 =
{

ENET_RXBD_NUM0,
ENET_TXBD_NUM0,
ðernet1_rxBuffDescrip0[0],
ðernet1_txBuffDescrip0[0],
ðernet1_rxDataBuff0[0]

};

uint8_t g_macAddr[6] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66};

ENET_DRV_Init(INST_ETHERNET1, ðernet1_State, ðernet1_InitConfig0, ðernet1_buffConfig0
, g_macAddr);

/* ... */

ENET_DRV_Deinit(INST_ETHERNET1);

Sending a frame

enet_buffer_t buff;
uint8_t data[8] = {0, 1, 2, 3, 4, 5, 6, 7};

buff.data = data;
buff.length = 8;

ENET_DRV_SendFrame(INST_ETHERNET1, &buff);

Receiving a frame - polling method

enet_buffer_t buff;
status_t status;

for (;;)
{

status = ENET_DRV_ReadFrame(INST_ETHERNET1, buff);
if (status == STATUS_SUCCESS)
{

/* Process buff */

/* buff is no longer needed, provide it to the driver in order to be
used by the reception mechanism */
ENET_DRV_ProvideRxBuff(&buff);

}
}

Receiving a frame - interrupt method

void rx_callback(uint8_t instance, enet_event_t event)
{

if (event == ENET_RX_EVENT)
{

enet_buffer_t buff;

status = ENET_DRV_ReadFrame(INST_ETHERNET1, buff);
if (status == STATUS_SUCCESS)
{

/* Process buff */

/* buff is no longer needed, provide it to the driver in order to be
used by the reception mechanism */
ENET_DRV_ProvideRxBuff(&buff);

}
}

}

int main(void)
{

/* ... */

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

294 CONTENTS

/* The ethernet1_InitConfig0 shall enable the receive interrupts and shall specify the callback - see
the

configuration example above */
ENET_DRV_Init(INST_ETHERNET1, ðernet1_State, ðernet1_InitConfig0, &

ethernet1_buffConfig0, g_macAddr);

/* ... */
}

Data Structures

• struct enet_buffer_t

Send/Receive buffer information for the user Implements : enet_buffer_t_Class. More...

• struct enet_buffer_config_t

Defines the ENET buffer descriptors ring configuration structure Implements : enet_buffer_config_t_Class. More...

• struct enet_config_t

Defines the ENET module configuration structure Implements : enet_config_t_Class. More...

• struct enet_state_t

Internal driver state structure Implements : enet_state_t_Class. More...

Macros

• #define ENET_FRAME_MAX_FRAMELEN 1518U

Defines the maximum Ethernet frame size.

• #define ENET_MIN_BUFFERSIZE 64U

ENET minimum buffer size.

• #define ENET_BUFF_ALIGN(x) (((uint32_t)(x) + (FEATURE_ENET_BUFF_ALIGNMENT - 1)) & ∼(FEAT←↩

URE_ENET_BUFF_ALIGNMENT - 1))

Definitions used for aligning the data buffers.

• #define ENET_BUFF_IS_ALIGNED(x) (((uint32_t)(x) & ∼(FEATURE_ENET_BUFF_ALIGNMENT - 1)) != 0)

• #define ENET_BUFFDESCR_ALIGN(x) (((uint32_t)(x) + (FEATURE_ENET_BUFFDESCR_ALIGNMENT -
1)) & ∼(FEATURE_ENET_BUFFDESCR_ALIGNMENT - 1))

Definitions used for aligning the buffer descriptors.

• #define ENET_BUFFDESCR_IS_ALIGNED(x) (((uint32_t)(x) & ∼(FEATURE_ENET_BUFFDESCR_ALIG←↩

NMENT - 1)) != 0)

Typedefs

• typedef void(∗ enet_callback_t) (uint8_t instance, enet_event_t event)

Callback function invoked when one of the events in "enet_event_t" is encountered Implements : enet_callback_t_←↩

Class.

Enumerations

• enum enet_mii_mode_t { ENET_MII_MODE = 0U, ENET_RMII_MODE }

Media Independent Interface mode selection Implements : enet_mii_mode_t_Class.

• enum enet_mii_speed_t { ENET_MII_SPEED_10M = 0U, ENET_MII_SPEED_100M }

Media Independent Interface speed selection Implements : enet_mii_speed_t_Class.

• enum enet_mii_duplex_t { ENET_MII_HALF_DUPLEX = 0U, ENET_MII_FULL_DUPLEX }

Media Independent Interface full-/half-duplex selection Implements : enet_mii_duplex_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 295

• enum enet_rx_special_config_t {
ENET_RX_CONFIG_ENABLE_PAYLOAD_LEN_CHECK = 0x0001U, ENET_RX_CONFIG_STRIP_CRC_←↩

FIELD = 0x0002U, ENET_RX_CONFIG_FORWARD_PAUSE_FRAMES = 0x0004U, ENET_RX_CONFIG←↩

_REMOVE_PADDING = 0x0008U,
ENET_RX_CONFIG_ENABLE_FLOW_CONTROL = 0x0010U, ENET_RX_CONFIG_REJECT_BROADC←↩

AST_FRAMES = 0x0020U, ENET_RX_CONFIG_ENABLE_PROMISCUOUS_MODE = 0x0040U, ENET_←↩

RX_CONFIG_ENABLE_MII_LOOPBACK = 0x0080U }

Special receive control configurations Implements : enet_rx_special_config_t_Class.

• enum enet_tx_special_config_t { ENET_TX_CONFIG_DISABLE_CRC_APPEND = 0x0001U, ENET_TX_←↩

CONFIG_ENABLE_MAC_ADDR_INSERTION = 0x0002U }

Special transmit control configurations Implements : enet_tx_special_config_t_Class.

• enum enet_interrupt_enable_t {
ENET_BABR_INTERRUPT = ENET_EIR_BABR_MASK, ENET_BABT_INTERRUPT = ENET_EIR_BABT←↩

_MASK, ENET_GRACE_STOP_INTERRUPT = ENET_EIR_GRA_MASK, ENET_TX_FRAME_INTERRU←↩

PT = ENET_EIR_TXF_MASK,
ENET_TX_BUFFER_INTERRUPT = ENET_EIR_TXB_MASK, ENET_RX_FRAME_INTERRUPT = ENET←↩

_EIR_RXF_MASK, ENET_RX_BUFFER_INTERRUPT = ENET_EIR_RXB_MASK, ENET_MII_INTERRUPT
= ENET_EIR_MII_MASK,
ENET_EBERR_INTERRUPT = ENET_EIR_EBERR_MASK, ENET_LATE_COLLISION_INTERRUPT = E←↩

NET_EIR_LC_MASK, ENET_RETRY_LIMIT_INTERRUPT = ENET_EIR_RL_MASK, ENET_UNDERRUN←↩

_INTERRUPT = ENET_EIR_UN_MASK,
ENET_PAYLOAD_RX_INTERRUPT = ENET_EIR_PLR_MASK, ENET_WAKEUP_INTERRUPT = ENET_←↩

EIR_WAKEUP_MASK, ENET_TS_AVAIL_INTERRUPT = ENET_EIR_TS_AVAIL_MASK, ENET_TS_TIM←↩

ER_INTERRUPT = ENET_EIR_TS_TIMER_MASK }

Interrupt sources Implements : enet_interrupt_enable_t_Class.

• enum enet_tx_accelerator_t { ENET_TX_ACCEL_ENABLE_SHIFT16 = ENET_TACC_SHIFT16_MASK, E←↩

NET_TX_ACCEL_INSERT_IP_CHECKSUM = ENET_TACC_IPCHK_MASK, ENET_TX_ACCEL_INSER←↩

T_PROTO_CHECKSUM = ENET_TACC_PROCHK_MASK }

Transmit accelerator configurations Implements : enet_tx_accelerator_t_Class.

• enum enet_rx_accelerator_t {
ENET_RX_ACCEL_REMOVE_PAD = ENET_RACC_PADREM_MASK, ENET_RX_ACCEL_ENABLE_IP←↩

_CHECK = ENET_RACC_IPDIS_MASK, ENET_RX_ACCEL_ENABLE_PROTO_CHECK = ENET_RACC←↩

_PRODIS_MASK, ENET_RX_ACCEL_ENABLE_MAC_CHECK = ENET_RACC_LINEDIS_MASK,
ENET_RX_ACCEL_ENABLE_SHIFT16 = ENET_RACC_SHIFT16_MASK }

Receive accelerator configurations Implements : enet_rx_accelerator_t_Class.

• enum enet_event_t { ENET_RX_EVENT, ENET_TX_EVENT, ENET_ERR_EVENT, ENET_WAKE_UP_E←↩

VENT }

Send/Receive internal buffer descriptor Implements : enet_buffer_descriptor_t_Class.

• enum enet_counter_t {
ENET_CTR_RMON_T_DROP = 0U, ENET_CTR_RMON_T_PACKETS, ENET_CTR_RMON_T_BC_PK←↩

T, ENET_CTR_RMON_T_MC_PKT,
ENET_CTR_RMON_T_CRC_ALIGN, ENET_CTR_RMON_T_UNDERSIZE, ENET_CTR_RMON_T_OVE←↩

RSIZE, ENET_CTR_RMON_T_FRAG,
ENET_CTR_RMON_T_JAB, ENET_CTR_RMON_T_COL, ENET_CTR_RMON_T_P64, ENET_CTR_RM←↩

ON_T_P65TO127,
ENET_CTR_RMON_T_P128TO255, ENET_CTR_RMON_T_P256TO511, ENET_CTR_RMON_T_P512T←↩

O1023, ENET_CTR_RMON_T_P1024TO2047,
ENET_CTR_RMON_T_P_GTE2048, ENET_CTR_RMON_T_OCTETS, ENET_CTR_IEEE_T_DROP, EN←↩

ET_CTR_IEEE_T_FRAME_OK,
ENET_CTR_IEEE_T_1COL, ENET_CTR_IEEE_T_MCOL, ENET_CTR_IEEE_T_DEF, ENET_CTR_IEEE←↩

_T_LCOL,
ENET_CTR_IEEE_T_EXCOL, ENET_CTR_IEEE_T_MACERR, ENET_CTR_IEEE_T_CSERR, ENET_CT←↩

R_IEEE_T_SQE,
ENET_CTR_IEEE_T_FDXFC, ENET_CTR_IEEE_T_OCTETS_OK = 29U, ENET_CTR_RMON_R_PACK←↩

ETS = 33U, ENET_CTR_RMON_R_BC_PKT,
ENET_CTR_RMON_R_MC_PKT, ENET_CTR_RMON_R_CRC_ALIGN, ENET_CTR_RMON_R_UNDER←↩

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

296 CONTENTS

SIZE, ENET_CTR_RMON_R_OVERSIZE,
ENET_CTR_RMON_R_FRAG, ENET_CTR_RMON_R_JAB, ENET_CTR_RMON_R_RESVD_0, ENET_C←↩

TR_RMON_R_P64,
ENET_CTR_RMON_R_P65TO127, ENET_CTR_RMON_R_P128TO255, ENET_CTR_RMON_R_P256T←↩

O511, ENET_CTR_RMON_R_P512TO1023,
ENET_CTR_RMON_R_P1024TO2047, ENET_CTR_RMON_R_P_GTE2048, ENET_CTR_RMON_R_OC←↩

TETS, ENET_CTR_IEEE_R_DROP,
ENET_CTR_IEEE_R_FRAME_OK, ENET_CTR_IEEE_R_CRC, ENET_CTR_IEEE_R_ALIGN, ENET_CT←↩

R_IEEE_R_MACERR,
ENET_CTR_IEEE_R_FDXFC, ENET_CTR_IEEE_R_OCTETS_OK }

Statistics counters enumeration Implements : enet_counter_t_Class.

Initialization and De-initialization

• void ENET_DRV_GetDefaultConfig (enet_config_t ∗config)

Gets the default configuration structure.

• void ENET_DRV_Init (uint8_t instance, enet_state_t ∗state, const enet_config_t ∗config, const enet_buffer←↩

_config_t ∗bufferConfig, uint8_t ∗macAddr)

Initializes the ENET module.

• void ENET_DRV_Deinit (uint8_t instance)

Deinitializes the ENET module.

Transmission and reception operations

• status_t ENET_DRV_ReadFrame (uint8_t instance, enet_buffer_t ∗buff)

Reads a received Ethernet frame.

• void ENET_DRV_ProvideRxBuff (uint8_t instance, enet_buffer_t ∗buff)

Provides a receive buffer to be used by the driver for reception.

• status_t ENET_DRV_SendFrame (uint8_t instance, enet_buffer_t ∗buff)

Sends an Ethernet frame.

• status_t ENET_DRV_GetTransmitStatus (uint8_t instance, enet_buffer_t ∗buff)

Checks if the transmission of a buffer is complete.

MDIO configuration and operation

• void ENET_DRV_EnableMDIO (uint8_t instance, bool miiPreambleDisabled)

Enables the MDIO interface.

• status_t ENET_DRV_MDIORead (uint8_t instance, uint8_t phyAddr, uint8_t phyReg, uint16_t ∗data, uint32←↩

_t timeoutMs)

Reads the selected register of the PHY.

• status_t ENET_DRV_MDIOWrite (uint8_t instance, uint8_t phyAddr, uint8_t phyReg, uint16_t data, uint32_t
timeoutMs)

Writes the selected register of the PHY.

MAC Address configuration

• void ENET_DRV_SetMacAddr (uint8_t instance, uint8_t ∗macAddr)

Configures the physical address of the MAC.

• void ENET_DRV_GetMacAddr (uint8_t instance, uint8_t ∗macAddr)

Gets the physical address of the MAC.

• void ENET_DRV_SetUnicastForward (uint8_t instance, uint8_t ∗macAddr, bool enable)

Enables/Disables forwarding of unicast traffic having a specific MAC address as destination.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 297

• void ENET_DRV_SetMulticastForward (uint8_t instance, uint8_t ∗macAddr, bool enable)

Enables/Disables forwarding of multicast traffic having a specific MAC address as destination.

• void ENET_DRV_SetMulticastForwardAll (uint8_t instance, bool enable)

Enables/Disables forwarding of the multicast traffic, irrespective of the destination MAC address.

Other basic operations

• void ENET_DRV_SetSleepMode (uint8_t instance, bool enable)

Sets the MAC in sleep mode or normal mode.

• void ENET_DRV_ConfigCounters (uint8_t instance, bool enable)

Enables/Disables the MIB counters.

• uint32_t ENET_DRV_GetCounter (uint8_t instance, enet_counter_t counter)

Gets statistics from the specified counter.

14.23.2 Data Structure Documentation

14.23.2.1 struct enet_buffer_t

Send/Receive buffer information for the user Implements : enet_buffer_t_Class.

Definition at line 177 of file enet_driver.h.

Data Fields

• uint8_t ∗ data
• uint16_t length

Field Documentation

14.23.2.1.1 uint8_t∗ data

Definition at line 179 of file enet_driver.h.

14.23.2.1.2 uint16_t length

Definition at line 180 of file enet_driver.h.

14.23.2.2 struct enet_buffer_config_t

Defines the ENET buffer descriptors ring configuration structure Implements : enet_buffer_config_t_Class.

Definition at line 227 of file enet_driver.h.

Data Fields

• uint16_t rxRingSize
• uint16_t txRingSize
• enet_buffer_descriptor_t ∗ rxRingAligned
• enet_buffer_descriptor_t ∗ txRingAligned
• uint8_t ∗ rxBufferAligned

Field Documentation

14.23.2.2.1 uint8_t∗ rxBufferAligned

Receive data buffers start address.

Definition at line 233 of file enet_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

298 CONTENTS

14.23.2.2.2 enet_buffer_descriptor_t∗ rxRingAligned

Aligned receive buffer descriptor ring start address.

Definition at line 231 of file enet_driver.h.

14.23.2.2.3 uint16_t rxRingSize

Receive buffer descriptors number.

Definition at line 229 of file enet_driver.h.

14.23.2.2.4 enet_buffer_descriptor_t∗ txRingAligned

Aligned transmit buffer descriptor ring start address.

Definition at line 232 of file enet_driver.h.

14.23.2.2.5 uint16_t txRingSize

Transmit buffer descriptors number.

Definition at line 230 of file enet_driver.h.

14.23.2.3 struct enet_config_t

Defines the ENET module configuration structure Implements : enet_config_t_Class.

Definition at line 240 of file enet_driver.h.

Data Fields

• uint8_t rxAccelerConfig
• uint8_t txAccelerConfig
• uint16_t maxFrameLen
• uint32_t interrupt
• enet_mii_mode_t miiMode
• enet_mii_speed_t miiSpeed
• enet_mii_duplex_t miiDuplex
• uint32_t rxConfig
• uint32_t txConfig
• enet_callback_t callback

Field Documentation

14.23.2.3.1 enet_callback_t callback

Definition at line 256 of file enet_driver.h.

14.23.2.3.2 uint32_t interrupt

MAC interrupt source. A logical OR of "enet_interrupt_enable_t".

Definition at line 247 of file enet_driver.h.

14.23.2.3.3 uint16_t maxFrameLen

Maximum frame length.

Definition at line 246 of file enet_driver.h.

14.23.2.3.4 enet_mii_duplex_t miiDuplex

MII duplex.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 299

Definition at line 251 of file enet_driver.h.

14.23.2.3.5 enet_mii_mode_t miiMode

MII mode.

Definition at line 249 of file enet_driver.h.

14.23.2.3.6 enet_mii_speed_t miiSpeed

MII Speed.

Definition at line 250 of file enet_driver.h.

14.23.2.3.7 uint8_t rxAccelerConfig

Receive accelerator, A logical OR of "enet_rx_accelerator_t".

Definition at line 243 of file enet_driver.h.

14.23.2.3.8 uint32_t rxConfig

MAC receive special configuration. A logical OR of "enet_rx_special_config_t".

Definition at line 253 of file enet_driver.h.

14.23.2.3.9 uint8_t txAccelerConfig

Transmit accelerator, A logical OR of "enet_tx_accelerator_t".

Definition at line 244 of file enet_driver.h.

14.23.2.3.10 uint32_t txConfig

MAC transmit special configuration. A logical OR of "enet_tx_special_config_t".

Definition at line 254 of file enet_driver.h.

14.23.2.4 struct enet_state_t

Internal driver state structure Implements : enet_state_t_Class.

Definition at line 263 of file enet_driver.h.

Data Fields

• enet_buffer_descriptor_t ∗ rxBdBase
• enet_buffer_descriptor_t ∗ rxBdCurrent
• enet_buffer_descriptor_t ∗ rxBdAlloc
• enet_buffer_descriptor_t ∗ txBdBase
• enet_buffer_descriptor_t ∗ txBdCurrent
• enet_callback_t callback

Field Documentation

14.23.2.4.1 enet_callback_t callback

Callback function.

Definition at line 270 of file enet_driver.h.

14.23.2.4.2 enet_buffer_descriptor_t∗ rxBdAlloc

Pointer used for enqueuing Rx buffers provided using ENET_DRV_ProvideRxBuff.

Definition at line 267 of file enet_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

300 CONTENTS

14.23.2.4.3 enet_buffer_descriptor_t∗ rxBdBase

Receive buffer descriptor base address pointer.

Definition at line 265 of file enet_driver.h.

14.23.2.4.4 enet_buffer_descriptor_t∗ rxBdCurrent

The current available receive buffer descriptor pointer.

Definition at line 266 of file enet_driver.h.

14.23.2.4.5 enet_buffer_descriptor_t∗ txBdBase

Transmit buffer descriptor base address pointer.

Definition at line 268 of file enet_driver.h.

14.23.2.4.6 enet_buffer_descriptor_t∗ txBdCurrent

The current available transmit buffer descriptor pointer.

Definition at line 269 of file enet_driver.h.

14.23.3 Macro Definition Documentation

14.23.3.1 #define ENET_BUFF_ALIGN(x) (((uint32_t)(x) + (FEATURE_ENET_BUFF_ALIGNMENT - 1)) &
∼(FEATURE_ENET_BUFF_ALIGNMENT - 1))

Definitions used for aligning the data buffers.

Definition at line 45 of file enet_driver.h.

14.23.3.2 #define ENET_BUFF_IS_ALIGNED(x) (((uint32_t)(x) &∼(FEATURE_ENET_BUFF_ALIGNMENT - 1)) != 0)

Definition at line 46 of file enet_driver.h.

14.23.3.3 #define ENET_BUFFDESCR_ALIGN(x) (((uint32_t)(x) + (FEATURE_ENET_BUFFDESCR_ALIGNMENT - 1)) &
∼(FEATURE_ENET_BUFFDESCR_ALIGNMENT - 1))

Definitions used for aligning the buffer descriptors.

Definition at line 49 of file enet_driver.h.

14.23.3.4 #define ENET_BUFFDESCR_IS_ALIGNED(x) (((uint32_t)(x) &∼(FEATURE_ENET_BUFFDESCR_ALIGNMENT - 1)) !=
0)

Definition at line 50 of file enet_driver.h.

14.23.3.5 #define ENET_FRAME_MAX_FRAMELEN 1518U

Defines the maximum Ethernet frame size.

Definition at line 40 of file enet_driver.h.

14.23.3.6 #define ENET_MIN_BUFFERSIZE 64U

ENET minimum buffer size.

Definition at line 42 of file enet_driver.h.

14.23.4 Typedef Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 301

14.23.4.1 typedef void(∗ enet_callback_t) (uint8_t instance, enet_event_t event)

Callback function invoked when one of the events in "enet_event_t" is encountered Implements : enet_callback_t←↩

_Class.

Definition at line 221 of file enet_driver.h.

14.23.5 Enumeration Type Documentation

14.23.5.1 enum enet_counter_t

Statistics counters enumeration Implements : enet_counter_t_Class.

Enumerator

ENET_CTR_RMON_T_DROP

ENET_CTR_RMON_T_PACKETS

ENET_CTR_RMON_T_BC_PKT

ENET_CTR_RMON_T_MC_PKT

ENET_CTR_RMON_T_CRC_ALIGN

ENET_CTR_RMON_T_UNDERSIZE

ENET_CTR_RMON_T_OVERSIZE

ENET_CTR_RMON_T_FRAG

ENET_CTR_RMON_T_JAB

ENET_CTR_RMON_T_COL

ENET_CTR_RMON_T_P64

ENET_CTR_RMON_T_P65TO127

ENET_CTR_RMON_T_P128TO255

ENET_CTR_RMON_T_P256TO511

ENET_CTR_RMON_T_P512TO1023

ENET_CTR_RMON_T_P1024TO2047

ENET_CTR_RMON_T_P_GTE2048

ENET_CTR_RMON_T_OCTETS

ENET_CTR_IEEE_T_DROP

ENET_CTR_IEEE_T_FRAME_OK

ENET_CTR_IEEE_T_1COL

ENET_CTR_IEEE_T_MCOL

ENET_CTR_IEEE_T_DEF

ENET_CTR_IEEE_T_LCOL

ENET_CTR_IEEE_T_EXCOL

ENET_CTR_IEEE_T_MACERR

ENET_CTR_IEEE_T_CSERR

ENET_CTR_IEEE_T_SQE

ENET_CTR_IEEE_T_FDXFC

ENET_CTR_IEEE_T_OCTETS_OK

ENET_CTR_RMON_R_PACKETS

ENET_CTR_RMON_R_BC_PKT

ENET_CTR_RMON_R_MC_PKT

ENET_CTR_RMON_R_CRC_ALIGN

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

302 CONTENTS

ENET_CTR_RMON_R_UNDERSIZE

ENET_CTR_RMON_R_OVERSIZE

ENET_CTR_RMON_R_FRAG

ENET_CTR_RMON_R_JAB

ENET_CTR_RMON_R_RESVD_0

ENET_CTR_RMON_R_P64

ENET_CTR_RMON_R_P65TO127

ENET_CTR_RMON_R_P128TO255

ENET_CTR_RMON_R_P256TO511

ENET_CTR_RMON_R_P512TO1023

ENET_CTR_RMON_R_P1024TO2047

ENET_CTR_RMON_R_P_GTE2048

ENET_CTR_RMON_R_OCTETS

ENET_CTR_IEEE_R_DROP

ENET_CTR_IEEE_R_FRAME_OK

ENET_CTR_IEEE_R_CRC

ENET_CTR_IEEE_R_ALIGN

ENET_CTR_IEEE_R_MACERR

ENET_CTR_IEEE_R_FDXFC

ENET_CTR_IEEE_R_OCTETS_OK

Definition at line 277 of file enet_driver.h.

14.23.5.2 enum enet_event_t

Send/Receive internal buffer descriptor Implements : enet_buffer_descriptor_t_Class.

Event specifier for the callback function Implements : enet_event_t_Class

Enumerator

ENET_RX_EVENT

ENET_TX_EVENT

ENET_ERR_EVENT

ENET_WAKE_UP_EVENT

Definition at line 209 of file enet_driver.h.

14.23.5.3 enum enet_interrupt_enable_t

Interrupt sources Implements : enet_interrupt_enable_t_Class.

Enumerator

ENET_BABR_INTERRUPT

ENET_BABT_INTERRUPT

ENET_GRACE_STOP_INTERRUPT

ENET_TX_FRAME_INTERRUPT

ENET_TX_BUFFER_INTERRUPT

ENET_RX_FRAME_INTERRUPT

ENET_RX_BUFFER_INTERRUPT

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 303

ENET_MII_INTERRUPT

ENET_EBERR_INTERRUPT

ENET_LATE_COLLISION_INTERRUPT

ENET_RETRY_LIMIT_INTERRUPT

ENET_UNDERRUN_INTERRUPT

ENET_PAYLOAD_RX_INTERRUPT

ENET_WAKEUP_INTERRUPT

ENET_TS_AVAIL_INTERRUPT

ENET_TS_TIMER_INTERRUPT

Definition at line 112 of file enet_driver.h.

14.23.5.4 enum enet_mii_duplex_t

Media Independent Interface full-/half-duplex selection Implements : enet_mii_duplex_t_Class.

Enumerator

ENET_MII_HALF_DUPLEX Half-duplex mode.

ENET_MII_FULL_DUPLEX Full-duplex mode.

Definition at line 76 of file enet_driver.h.

14.23.5.5 enum enet_mii_mode_t

Media Independent Interface mode selection Implements : enet_mii_mode_t_Class.

Enumerator

ENET_MII_MODE MII mode for data interface.

ENET_RMII_MODE RMII mode for data interface.

Definition at line 56 of file enet_driver.h.

14.23.5.6 enum enet_mii_speed_t

Media Independent Interface speed selection Implements : enet_mii_speed_t_Class.

Enumerator

ENET_MII_SPEED_10M Speed 10 Mbps.

ENET_MII_SPEED_100M Speed 100 Mbps.

Definition at line 66 of file enet_driver.h.

14.23.5.7 enum enet_rx_accelerator_t

Receive accelerator configurations Implements : enet_rx_accelerator_t_Class.

Enumerator

ENET_RX_ACCEL_REMOVE_PAD

ENET_RX_ACCEL_ENABLE_IP_CHECK

ENET_RX_ACCEL_ENABLE_PROTO_CHECK

ENET_RX_ACCEL_ENABLE_MAC_CHECK

ENET_RX_ACCEL_ENABLE_SHIFT16

Definition at line 164 of file enet_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

304 CONTENTS

14.23.5.8 enum enet_rx_special_config_t

Special receive control configurations Implements : enet_rx_special_config_t_Class.

Enumerator

ENET_RX_CONFIG_ENABLE_PAYLOAD_LEN_CHECK

ENET_RX_CONFIG_STRIP_CRC_FIELD

ENET_RX_CONFIG_FORWARD_PAUSE_FRAMES

ENET_RX_CONFIG_REMOVE_PADDING

ENET_RX_CONFIG_ENABLE_FLOW_CONTROL

ENET_RX_CONFIG_REJECT_BROADCAST_FRAMES

ENET_RX_CONFIG_ENABLE_PROMISCUOUS_MODE

ENET_RX_CONFIG_ENABLE_MII_LOOPBACK

Definition at line 86 of file enet_driver.h.

14.23.5.9 enum enet_tx_accelerator_t

Transmit accelerator configurations Implements : enet_tx_accelerator_t_Class.

Enumerator

ENET_TX_ACCEL_ENABLE_SHIFT16

ENET_TX_ACCEL_INSERT_IP_CHECKSUM

ENET_TX_ACCEL_INSERT_PROTO_CHECKSUM

Definition at line 153 of file enet_driver.h.

14.23.5.10 enum enet_tx_special_config_t

Special transmit control configurations Implements : enet_tx_special_config_t_Class.

Enumerator

ENET_TX_CONFIG_DISABLE_CRC_APPEND

ENET_TX_CONFIG_ENABLE_MAC_ADDR_INSERTION

Definition at line 102 of file enet_driver.h.

14.23.6 Function Documentation

14.23.6.1 void ENET_DRV_ConfigCounters (uint8_t instance, bool enable)

Enables/Disables the MIB counters.

Note: When enabling the counters, their values are reset.

Parameters

in instance Instance number
in enable Enable/Disable MIB counters

Definition at line 737 of file enet_driver.c.

14.23.6.2 void ENET_DRV_Deinit (uint8_t instance)

Deinitializes the ENET module.

This function disables the interrupts and then disables the ENET module.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 305

Parameters

in instance Instance number

Definition at line 225 of file enet_driver.c.

14.23.6.3 void ENET_DRV_EnableMDIO (uint8_t instance, bool miiPreambleDisabled)

Enables the MDIO interface.

Parameters

in instance Instance number
in miiPreamble←↩

Disabled
Enables/disables prepending a preamble to the MII management frame.

Definition at line 444 of file enet_driver.c.

14.23.6.4 uint32_t ENET_DRV_GetCounter (uint8_t instance, enet_counter_t counter)

Gets statistics from the specified counter.

Parameters

in instance Instance number
in counter The counter to be read

Returns

The value of the requested counter

Definition at line 768 of file enet_driver.c.

14.23.6.5 void ENET_DRV_GetDefaultConfig (enet_config_t ∗ config)

Gets the default configuration structure.

This function gets the default configuration structure, with the following settings:

• no interrupt enabled

• maximum receive frame length equal to the maximum Ethernet frame length

• no special receive/transmit control configuration

• no acceleration function enabled

• RMII mode, full-duplex, 100Mbps for MAC and PHY data interface

• no callback installed

Parameters

out config The configuration structure

Definition at line 113 of file enet_driver.c.

14.23.6.6 void ENET_DRV_GetMacAddr (uint8_t instance, uint8_t ∗ macAddr)

Gets the physical address of the MAC.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

306 CONTENTS

Parameters

in instance Instance number
out macAddr The physical address of the MAC

Definition at line 589 of file enet_driver.c.

14.23.6.7 status_t ENET_DRV_GetTransmitStatus (uint8_t instance, enet_buffer_t ∗ buff)

Checks if the transmission of a buffer is complete.

This function checks if the transmission of the given buffer is complete.

Parameters

in instance Instance number
in buff The transmit buffer for which the status shall be checked

Returns

STATUS_BUSY if the frame is still enqueued for transmission, STATUS_SUCCESS otherwise.

Definition at line 358 of file enet_driver.c.

14.23.6.8 void ENET_DRV_Init (uint8_t instance, enet_state_t ∗ state, const enet_config_t ∗ config, const
enet_buffer_config_t ∗ bufferConfig, uint8_t ∗ macAddr)

Initializes the ENET module.

This function initializes and enables the ENET module, configuring receive and transmit control settings, the receive
and transmit descriptors rings, and the MAC physical address.

Parameters

in instance Instance number
in state Pointer to the state structure which will be used for holding the internal state of

the driver.
in config The module configuration structure
in bufferConfig The buffer descriptors configuration structure
in macAddr The physical address of the MAC

Definition at line 147 of file enet_driver.c.

14.23.6.9 status_t ENET_DRV_MDIORead (uint8_t instance, uint8_t phyAddr, uint8_t phyReg, uint16_t ∗ data, uint32_t
timeoutMs)

Reads the selected register of the PHY.

Parameters

in instance Instance number
in phyAddr PHY device address
in phyReg PHY register address
out data Data read from the PHY
in timeoutMs Timeout for the read operation (in milliseconds)

Definition at line 515 of file enet_driver.c.

14.23.6.10 status_t ENET_DRV_MDIOWrite (uint8_t instance, uint8_t phyAddr, uint8_t phyReg, uint16_t data, uint32_t
timeoutMs)

Writes the selected register of the PHY.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 307

Parameters

in instance Instance number
in phyAddr PHY device address
in phyReg PHY register address
in data Data to be written in the specified register of the PHY
in timeoutMs Timeout for the write operation (in milliseconds)

Definition at line 473 of file enet_driver.c.

14.23.6.11 void ENET_DRV_ProvideRxBuff (uint8_t instance, enet_buffer_t ∗ buff)

Provides a receive buffer to be used by the driver for reception.

This function provides a buffer which can further be used by the reception mechanism in order to store the received
data.

Note: The application can either provide a buffer previously obtained in a ENET_DRV_ReadFrame call (when it is no
longer needed after being fully processed), or allocate a new buffer, pointing to a memory area having the required
alignment (see FEATURE_ENET_BUFF_ALIGNMENT). The former approach is recommended as it has a simpler
usage model and re-uses the same initial memory range for the entire driver lifetime operation. The later approach
could provide more flexibility, but since it involves constant memory free/alloc operations it is only recommended
with an efficient pool-based memory allocator.

Important: The driver does not ensure synchronization between different threads trying to provide a buffer at the
same time. This synchronization shall be implemented by the application.

Important: The application is responsible for providing one Rx buffer for every frame it receives, otherwise the
reception ring can fill-up, affecting further reception.

Usage example:

stat = ENET_DRV_ReadFrame(INST_ETHERNET1, &rxBuff);

if (stat == STATUS_SUCCESS) { process_buffer(&rxBuff); ENET_DRV_ProvideRxBuff(INST_ETHERNET1, &rx←↩

Buff); }

Parameters

in instance Instance number
in buff The buffer to be added to the reception ring

Definition at line 400 of file enet_driver.c.

14.23.6.12 status_t ENET_DRV_ReadFrame (uint8_t instance, enet_buffer_t ∗ buff)

Reads a received Ethernet frame.

This function reads the first received Ethernet frame in the Rx queue. The buffer received as parameter will be
updated by the driver and the .data field will point to a memory area containing the frame data.

Note: Once the application finished processing the buffer, it could be reused by the driver for further receptions by
invoking ENET_DRV_ProvideRxBuff.

Important: The driver does not ensure synchronization between different threads trying to read a frame at the same
time. This synchronization shall be implemented by the application.

Parameters

in instance Instance number
out buff The buffer containing the frame

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

308 CONTENTS

Returns

STATUS_SUCCESS if a frame was successfully read, STATUS_ENET_RX_QUEUE_EMPTY if there is no
available frame in the queue.

Definition at line 261 of file enet_driver.c.

14.23.6.13 status_t ENET_DRV_SendFrame (uint8_t instance, enet_buffer_t ∗ buff)

Sends an Ethernet frame.

This function sends an Ethernet frame, contained in the buffer received as parameter.

Note: Since the transmission of the frame is not complete when this function returns, the application must not
change/alter/re-use the provided buffer until after a call to ENET_DRV_GetTransmitStatus for the same buffer re-
turns STATUS_SUCCESS.

Important: The driver does not ensure synchronization between different threads trying to send a frame at the same
time. This synchronization shall be implemented by the application.

Parameters

in instance Instance number
in buff The buffer containing the frame

Returns

STATUS_SUCCESS if the frame was successfully enqueued for transmission, STATUS_ENET_TX_QUE←↩

UE_FULL if there is no available space for the frame in the queue.

Definition at line 306 of file enet_driver.c.

14.23.6.14 void ENET_DRV_SetMacAddr (uint8_t instance, uint8_t ∗ macAddr)

Configures the physical address of the MAC.

Parameters

in instance Instance number
in macAddr The MAC address to be configured

Definition at line 558 of file enet_driver.c.

14.23.6.15 void ENET_DRV_SetMulticastForward (uint8_t instance, uint8_t ∗ macAddr, bool enable)

Enables/Disables forwarding of multicast traffic having a specific MAC address as destination.

Parameters

in instance Instance number
in macAddr The physical address
in enable If true, the application will receive all the multicast traffic having as destination

address the provided MAC address; if false, stop forwarding this kind of traffic

Definition at line 652 of file enet_driver.c.

14.23.6.16 void ENET_DRV_SetMulticastForwardAll (uint8_t instance, bool enable)

Enables/Disables forwarding of the multicast traffic, irrespective of the destination MAC address.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.23 ENET Driver 309

Parameters

in instance Instance number
in enable If true, the application will receive all the multicast traffic; if false, stop forward-

ing this kind of traffic

Definition at line 683 of file enet_driver.c.

14.23.6.17 void ENET_DRV_SetSleepMode (uint8_t instance, bool enable)

Sets the MAC in sleep mode or normal mode.

Parameters

in instance Instance number
in enable If true, set MAC in sleep mode; if false, set MAC in normal mode

Definition at line 711 of file enet_driver.c.

14.23.6.18 void ENET_DRV_SetUnicastForward (uint8_t instance, uint8_t ∗ macAddr, bool enable)

Enables/Disables forwarding of unicast traffic having a specific MAC address as destination.

Parameters

in instance Instance number
in macAddr The physical address
in enable If true, the application will receive all the unicast traffic having as destination

address the provided MAC address; if false, stop forwarding this kind of traffic

Definition at line 621 of file enet_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

310 CONTENTS

14.24 ERM Driver

14.24.1 Detailed Description

Error Reporting Module Peripheral Driver.

This section describes the programming interface of the ERM driver.

Data Structures

• struct erm_interrupt_config_t

ERM interrupt notification configuration structure Implements : erm_interrupt_config_t_Class. More...
• struct erm_user_config_t

ERM user configuration structure Implements : erm_user_config_t_Class. More...

Enumerations

• enum erm_ecc_event_t { ERM_EVENT_NONE = 0U, ERM_EVENT_SINGLE_BIT = 1U, ERM_EVENT_N←↩

ON_CORRECTABLE = 2U }

ERM types of ECC events Implements : erm_ecc_event_t_Class.

ERM DRIVER API

• void ERM_DRV_Init (uint32_t instance, uint8_t channelCnt, const erm_user_config_t ∗userConfigArr)

Initializes the ERM module.
• void ERM_DRV_Deinit (uint32_t instance)

Sets the default configuration.
• void ERM_DRV_SetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t interruptCfg)

Sets interrupt notification.
• void ERM_DRV_GetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t ∗const

interruptPtr)

Gets interrupt notification.
• void ERM_DRV_ClearEvent (uint32_t instance, uint8_t channel, erm_ecc_event_t eccEvent)

Clears error event and the corresponding interrupt notification.
• erm_ecc_event_t ERM_DRV_GetErrorDetail (uint32_t instance, uint8_t channel, uint32_t ∗addressPtr)

Gets the address of the last ECC event in Memory n and ECC event.

14.24.2 Data Structure Documentation

14.24.2.1 struct erm_interrupt_config_t

ERM interrupt notification configuration structure Implements : erm_interrupt_config_t_Class.

Definition at line 56 of file erm_driver.h.

Data Fields

• bool enableSingleCorrection
• bool enableNonCorrectable

Field Documentation

14.24.2.1.1 bool enableNonCorrectable

Enable Non-Correctable Interrupt Notification

Definition at line 59 of file erm_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.24 ERM Driver 311

14.24.2.1.2 bool enableSingleCorrection

Enable Single Correction Interrupt Notification

Definition at line 58 of file erm_driver.h.

14.24.2.2 struct erm_user_config_t

ERM user configuration structure Implements : erm_user_config_t_Class.

Definition at line 66 of file erm_driver.h.

Data Fields

• uint8_t channel
• const erm_interrupt_config_t ∗ interruptCfg

Field Documentation

14.24.2.2.1 uint8_t channel

The channel assignments

Definition at line 68 of file erm_driver.h.

14.24.2.2.2 const erm_interrupt_config_t∗ interruptCfg

Interrupt configuration

Definition at line 69 of file erm_driver.h.

14.24.3 Enumeration Type Documentation

14.24.3.1 enum erm_ecc_event_t

ERM types of ECC events Implements : erm_ecc_event_t_Class.

Enumerator

ERM_EVENT_NONE None events

ERM_EVENT_SINGLE_BIT Single-bit correction ECC events

ERM_EVENT_NON_CORRECTABLE Non-correctable ECC events

Definition at line 45 of file erm_driver.h.

14.24.4 Function Documentation

14.24.4.1 void ERM_DRV_ClearEvent (uint32_t instance, uint8_t channel, erm_ecc_event_t eccEvent)

Clears error event and the corresponding interrupt notification.

This function clears the record of an event. If the corresponding interrupt is enabled, the interrupt notification will be
cleared

Parameters

in instance The ERM instance number

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

312 CONTENTS

in channel The configured memory channel
in eccEvent The types of ECC events

Definition at line 145 of file erm_driver.c.

14.24.4.2 void ERM_DRV_Deinit (uint32_t instance)

Sets the default configuration.

This function sets the default configuration

Parameters

in instance The ERM instance number

Definition at line 85 of file erm_driver.c.

14.24.4.3 erm_ecc_event_t ERM_DRV_GetErrorDetail (uint32_t instance, uint8_t channel, uint32_t ∗ addressPtr)

Gets the address of the last ECC event in Memory n and ECC event.

This function gets the address of the last ECC event in Memory n and the types of the event

Parameters

in instance The ERM instance number
in channel The examined memory channel
out addressPtr The pointer to address of the last ECC event in Memory n with ECC event

Returns

The last occurred ECC event

Definition at line 177 of file erm_driver.c.

14.24.4.4 void ERM_DRV_GetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t ∗const
interruptPtr)

Gets interrupt notification.

This function gets the current interrupt configuration of the available events (which interrupts are enabled/disabled)

Parameters

in instance The ERM instance number
in channel The examined memory channel
out interruptPtr The pointer to the ERM interrupt configuration structure

Definition at line 123 of file erm_driver.c.

14.24.4.5 void ERM_DRV_Init (uint32_t instance, uint8_t channelCnt, const erm_user_config_t ∗ userConfigArr)

Initializes the ERM module.

This function initializes ERM driver based on user configuration input, channelCnt takes values between 1 and the
maximum channel count supported by the hardware

Parameters

in instance The ERM instance number
in channelCnt The number of channels

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.24 ERM Driver 313

in userConfigArr The pointer to the array of ERM user configure structure

Definition at line 57 of file erm_driver.c.

14.24.4.6 void ERM_DRV_SetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t interruptCfg)

Sets interrupt notification.

This function sets interrupt notification based on interrupt notification configuration input

Parameters

in instance The ERM instance number
in channel The configured memory channel
in interruptCfg The ERM interrupt configuration structure

Definition at line 102 of file erm_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

314 CONTENTS

14.25 EWM Driver

14.25.1 Detailed Description

External Watchdog Monitor Peripheral Driver.

Hardware background

Features:

• Independent LPO clock source

• Programmable time-out period specified in terms of number of EWM LPO clock cycles.

• Windowed refresh option

– Provides robust check that program flow is faster than expected.

– Programmable window.

– Refresh outside window leads to assertion of EWM_out.

• Robust refresh mechanism

– Write values of 0xB4 and 0x2C to EWM Refresh Register within 15 (EWM_service_time) peripheral
bus clock cycles.

• One output port, EWM_out, when asserted is used to reset or place the external circuit into safe mode

• One Input port, EWM_in, allows an external circuit to control the EWM_out signal.

The EWM can be initialized only once as all the configuration registers are write once per reset

Clocking and pin configuration

The EWM Driver does not handle clock setup (from PCC) or any kind of pin configuration (done by PORT module).
This is handled by the Clock Manager and PORT module, respectively. The driver assumes that correct clock
configurations have been made, so it is the user's responsibility to set up clocking and pin configurations correctly.

Interrupts

The EWM module can generate interrupts, if enabled on EWM_DRV_Init() but they are not handled by the driver.
The EWM shares the interrupt vector with the Watchdog Timer. The following code snippet is an example of how
enable the interrupt and assign a handler:

/* EWM and watchdog interrupt service routine */
void EWM_Watchdog_ISR()
{

/* Do something(e.g perform a clean reset) */
...

}
int main()
{

/* Init clocks, pins, other modules */
...
/* Install interrupt handler for EWM and Watchdog */
INT_SYS_InstallHandler(WDOG_EWM_IRQn, &EWM_Watchdog_ISR, (
isr_t *)0);
/* Enable the interrupt */
INT_SYS_EnableIRQ(WDOG_EWM_IRQn);

/* Init EWM */
...
/* Infinite loop*/
while(1)
{

/* Do something until the counter needs to be refreshed */
...
/* Refresh the counter */
EWM_DRV_Refresh(EWM_INSTANCE);

}
}

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.25 EWM Driver 315

Using the EWM driver in your application

/* Declare the EWM instance you want to use */
#define EWM_INSTANCE 0UL

int main()
{

/* Declare the EWM configuration structure */
ewm_init_config_t ewmConfig;
/* Variable where to store the init status */
status_t ewmStatus;
/* Init clocks, pins, other modules */
...

/* Get the default configuration values */
EWM_DRV_GetDefaultConfig(&ewmConfig);
/* Init the module instance */
ewmStatus = EWM_DRV_Init(EWM_INSTANCE, &ewmConfig);

/* Infinite loop*/
while(1)
{

/* Do something until the counter needs to be refreshed */
...
/* Refresh the counter */
EWM_DRV_Refresh(EWM_INSTANCE);

}
}

Data Structures

• struct ewm_init_config_t

Enumerations

• enum ewm_in_assert_logic_t { EWM_IN_ASSERT_DISABLED = 0x00U, EWM_IN_ASSERT_ON_LOGIC←↩

_ZERO = 0x01U, EWM_IN_ASSERT_ON_LOGIC_ONE = 0x02U }

EWM Driver API

• status_t EWM_DRV_Init (uint32_t instance, const ewm_init_config_t ∗config)

Init EWM. This method initializes EWM instance to the configuration from the passed structure. The user must make
sure that the clock is enabled. This is the only method needed to be called to start the module.

• void EWM_DRV_GetDefaultConfig (ewm_init_config_t ∗config)

Init configuration structure to default values.

• void EWM_DRV_Refresh (uint32_t instance)

Refresh EWM. This method needs to be called within the window period specified by the Compare Low and Compare
High registers.

• ewm_in_assert_logic_t EWM_DRV_GetInputPinAssertLogic (uint32_t instance)

Get the Input pin assert logic.

14.25.2 Data Structure Documentation

14.25.2.1 struct ewm_init_config_t

Definition at line 57 of file ewm_driver.h.

Data Fields

• ewm_in_assert_logic_t assertLogic
• bool interruptEnable
• uint8_t prescaler
• uint8_t compareLow
• uint8_t compareHigh

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

316 CONTENTS

Field Documentation

14.25.2.1.1 ewm_in_assert_logic_t assertLogic

Assert logic for EWM input pin

Definition at line 59 of file ewm_driver.h.

14.25.2.1.2 uint8_t compareHigh

Compare high value

Definition at line 63 of file ewm_driver.h.

14.25.2.1.3 uint8_t compareLow

Compare low value

Definition at line 62 of file ewm_driver.h.

14.25.2.1.4 bool interruptEnable

Enable EWM interrupt

Definition at line 60 of file ewm_driver.h.

14.25.2.1.5 uint8_t prescaler

EWM clock prescaler

Definition at line 61 of file ewm_driver.h.

14.25.3 Enumeration Type Documentation

14.25.3.1 enum ewm_in_assert_logic_t

Enumerator

EWM_IN_ASSERT_DISABLED Input pin disabled

EWM_IN_ASSERT_ON_LOGIC_ZERO Input pin asserts EWM when on logic 0

EWM_IN_ASSERT_ON_LOGIC_ONE Input pin asserts EWM when on logic 1

Definition at line 43 of file ewm_driver.h.

14.25.4 Function Documentation

14.25.4.1 void EWM_DRV_GetDefaultConfig (ewm_init_config_t ∗ config)

Init configuration structure to default values.

Parameters

out config Pointer to the configuration structure to initialize

Returns

None

Definition at line 131 of file ewm_driver.c.

14.25.4.2 ewm_in_assert_logic_t EWM_DRV_GetInputPinAssertLogic (uint32_t instance)

Get the Input pin assert logic.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.25 EWM Driver 317

Parameters

in instance EWM instance number

Returns

The input pin assert logic:

• EWM_IN_ASSERT_DISABLED - EWM in disabled

• EWM_IN_ASSERT_ON_LOGIC_ZERO - EWM is asserted when EWM_in is logic 0

• EWM_IN_ASSERT_ON_LOGIC_ONE - EWM is asserted when EWM_in is logic 1

Definition at line 175 of file ewm_driver.c.

14.25.4.3 status_t EWM_DRV_Init (uint32_t instance, const ewm_init_config_t ∗ config)

Init EWM. This method initializes EWM instance to the configuration from the passed structure. The user must make
sure that the clock is enabled. This is the only method needed to be called to start the module.

Example configuration structure:

1 ewm_init_config_t ewmUserCfg = {
2 .assertLogic = EWM_IN_ASSERT_ON_LOGIC_ZERO,
3 .interruptEnable = true,
4 .prescaler = 128,
5 .compareLow = 0,
6 .compareHigh = 254
7 };

This configuration will enable the peripheral, with input pin configured to assert on logic low, interrupt enabled,
prescaler 128 and maximum refresh window.

The EWM can be initialized only once per CPU reset as the registers are write once.

Parameters

in instance EWM instance number
in config Pointer to the module configuration structure.

Returns

status_t Will return the status of the operation:

• STATUS_SUCCESS if the operation is successful

• STATUS_ERROR if the windows values are not correct or if the instance is already enabled

Definition at line 63 of file ewm_driver.c.

14.25.4.4 void EWM_DRV_Refresh (uint32_t instance)

Refresh EWM. This method needs to be called within the window period specified by the Compare Low and Com-
pare High registers.

Parameters

in instance EWM instance number

Returns

None

Definition at line 153 of file ewm_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

318 CONTENTS

14.26 Error Injection Module (EIM)

14.26.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Error Injection Module (EIM) of S32 MCU.

The Error Injection Module is mainly used for diagnostic purposes. It provides a method for diagnostic coverage of
the peripheral memories.
The Error Injection Module (EIM) provides support for inducing single-bit and multi-bit inversions on read data when
accessing peripheral RAMs. Injecting faults on memory accesses can be used to exercise the SEC-DED ECC
function of the related system.

Important Note:

1. Make sure that STACK memory is located in RAM different than where EIM will inject a non-correctable error.

2. For single bit error generation, flip only one bit out of DATA_MASK or CHKBIT_MASK bit-fields in EIM control
registers.

3. For Double bit error generation, flip only two bits out of DATA_MASK or CHKBIT_MASK bit-fields in EIM
control registers.

4. If more than 2 bits are flipped that there is no guarantee in design that what type of error get generated.

Modules

• EIM Driver

Error Injection Module Peripheral Driver.
EIM PD provides a set of high-level APIs/services to configure the Error Injection Module (EIM) module.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.27 Error Reporting Module (ERM) 319

14.27 Error Reporting Module (ERM)

14.27.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Error Reporting Module (ERM) module of S32 SDK devices.

The Error Reporting Module (ERM) provides information and optional interrupt notification on memory errors events
associated with ECC (Error Correction Code).
The ERM includes these features:
Capture address information on single-bit correction and non-correctable ECC events.
Optional interrupt notification on captured ECC events.
Support for ECC event capturing for memory sources, with individual reporting fields and interrupt configuration per
memory channel.

14.27.2 ERM Driver Initialization

In order to be able to use the error reporting in your application, the first thing to do is initializing it with user
configuration input. This is done by calling the ERM_DRV_Init function. Note that: channelCnt takes values
between 1 and the maximum channel count supported by the hardware.

14.27.3 ERM Driver Operation

After ERM initialization, the ERM_DRV_SetInterruptConfig() shall be used to set interrupt notification based on
interrupt notification configuration.
The ERM_DRV_GetInterruptConfig() shall be used to get the current interrupt configuration of the available events
(which interrupts are enabled/disabled).

The ERM_DRV_GetErrorDetail() shall be used to get the address of the last ECC event in Memory n and ECC
event.

The ERM_DRV_ClearEvent() shall be used to clear both the record of an event and the corresponding interrupt
notification.

This is example code to configure the ERM driver:

/* Device instance number */
#define INST_ERM1 (0U)

/* The number of configured channel(s) */
#define ERM_NUM_OF_CFG_CHANNEL (2U)

/* Interrupt configuration 0 */
const erm_interrupt_config_t erm1_Interrupt1 =
{

.enableSingleCorrection = false,

.enableNonCorrectable = true,
};

/* Interrupt configuration 1 */
const erm_interrupt_config_t erm1_Interrupt3 =
{

.enableSingleCorrection = true,

.enableNonCorrectable = true,
};

/* User configuration */
const erm_user_config_t erm1_InitConfig[] =
{

/* Channel 0U */
{

.channel = 0U,

.interruptCfg = &erm1_Interrupt1,
},

/* Channel 1U */
{

.channel = 1U,

.interruptCfg = &erm1_Interrupt3,

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

320 CONTENTS

}
};

int main()
{

/* Initializes the ERM module */
ERM_DRV_Init(INST_ERM1, ERM_NUM_OF_CFG_CHANNEL, erm1_InitConfig);
...
/* De-Initializes the ERM module */
ERM_DRV_Deinit(INST_ERM1);
...
return 0;

}

/* Interrupt handler */
/* Interrupt handler for single bit */
void ERM_single_fault_IRQHandler()
{

/* Clears the event for channel 1 */
ERM_DRV_ClearEvent(INST_ERM1, 1U, ERM_EVENT_SINGLE_BIT);
...

}

/* Interrupt handler for non correctable */
void ERM_double_fault_IRQHandler()
{

/* Clears the event for channel 0 */
ERM_DRV_ClearEvent(INST_ERM1, 0U,

ERM_EVENT_NON_CORRECTABLE);
/* Clears the event for channel 1 */
ERM_DRV_ClearEvent(INST_ERM1, 1U,

ERM_EVENT_NON_CORRECTABLE);
...

}

Modules

• ERM Driver

Error Reporting Module Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.28 Ethernet MAC (ENET) 321

14.28 Ethernet MAC (ENET)

14.28.1 Detailed Description

The S32 SDK provides a peripheral driver for the Ethernet MAC (ENET) module of S32 SDK devices.

The core implements a dual-speed 10/100-Mbit/s Ethernet MAC compliant with the IEEE802.3-2002 standard. The
MAC layer provides compatibility with half- or fullduplex 10/100-Mbit/s Ethernet LANs.

The MAC operation is fully programmable and can be used in Network Interface Card (NIC), bridging, or switching
applications. The core implements the remote network monitoring (RMON) counters according to IETF RFC 2819.

The core also implements a hardware acceleration block to optimize the performance of network controllers provid-
ing TCP/IP, UDP, and ICMP protocol services. The acceleration block performs critical functions in hardware, which
are typically implemented with large software overhead.

The core implements programmable embedded FIFOs that can provide buffering on the receive path for lossless
flow control.

Advanced power management features are available with magic packet detection and programmable power-down
modes.

A unified DMA (uDMA), internal to the ENET module, optimizes data transfer between the ENET core and the SoC,
and supports an enhanced buffer descriptor programming model to support IEEE 1588 functionality.

The programmable Ethernet MAC with IEEE 1588 integrates a standard IEEE 802.3 Ethernet MAC with a time-
stamping module. The IEEE 1588 standard provides accurate clock synchronization for distributed control nodes
for industrial automation applications.

Hardware background

Features of the ENET module include:

• Implements the full 802.3 specification with preamble/SFD generation, frame padding generation, CRC gen-
eration and checking

• Supports zero-length preamble

• Dynamically configurable to support 10/100-Mbit/s operation

• Supports 10/100 Mbit/s full-duplex and configurable half-duplex operation

• Compliant with the AMD magic packet detection with interrupt for node remote power management

• Seamless interface to commercial ethernet PHY devices via one of the following:

– 4-bit Media Independent Interface (MII) operating at 2.5/25 MHz.

– 4-bit non-standard MII-Lite (MII without the CRS and COL signals) operating at 2.5/25 MHz.

– 2-bit Reduced MII (RMII) operating at 50 MHz.

• Simple 64-Bit FIFO user-application interface

• CRC-32 checking at full speed with optional forwarding of the frame check sequence (FCS) field to the client

• CRC-32 generation and append on transmit or forwarding of user application provided FCS selectable on a
per-frame basis

• In full-duplex mode:

– Implements automated pause frame (802.3 x31A) generation and termination, providing flow control
without user application intervention

– Pause quanta used to form pause frames — dynamically programmable

– Pause frame generation additionally controllable by user application offering flexible traffic flow control

– Optional forwarding of received pause frames to the user application

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

322 CONTENTS

– Implements standard flow-control mechanism

• In half-duplex mode: provides full collision support, including jamming, backoff, and automatic retransmission

• Supports VLAN-tagged frames according to IEEE 802.1Q

• Programmable MAC address: Insertion on transmit; discards frames with mismatching destination address
on receive (except broadcast and pause frames)

• Programmable promiscuous mode support to omit MAC destination address checking on receive

• Multicast and unicast address filtering on receive based on 64-entry hash table, reducing higher layer pro-
cessing load

• Programmable frame maximum length providing support for any standard or proprietary frame length

• Statistics indicators for frame traffic and errors (alignment, CRC, length) and pause frames providing for I←↩

EEE 802.3 basic and mandatory management information database (MIB) package and remote network
monitoring (RFC 2819)

• Simple handshake user application FIFO interface with fully programmable depth and threshold levels

• Provides separate status word for each received frame on the user interface providing information such as
frame length, frame type, VLAN tag, and error information

• Multiple internal loopback options

• MDIO master interface for PHY device configuration and management

• Supports legacy FEC buffer descriptors

IP protocol performance optimization features:

• Operates on TCP/IP and UDP/IP and ICMP/IP protocol data or IP header only

• Enables wire-speed processing

• Supports IPv4 and IPv6

• Transparent passing of frames of other types and protocols

• Supports VLAN tagged frames according to IEEE 802.1q with transparent forwarding of VLAN tag and control
field

• Automatic IP-header and payload (protocol specific) checksum calculation and verification on receive

• Automatic IP-header and payload (protocol specific) checksum generation and automatic insertion on transmit
configurable on a per-frame basis

• Supports IP and TCP, UDP, ICMP data for checksum generation and checking

• Supports full header options for IPv4 and TCP protocol headers

• Provides IPv6 support to datagrams with base header only — datagrams with extension headers are passed
transparently unmodifed/unchecked

• Provides statistics information for received IP and protocol errors

• Configurable automatic discard of erroneous frames

• Configurable automatic host-to-network (RX) and network-to-host (TX) byte order conversion for IP and T←↩

CP/UDP/ICMP headers within the frame

• Configurable padding remove for short IP datagrams on receive

• Configurable Ethernet payload alignment to allow for 32-bit word-aligned header and payload processing

• Programmable store-and-forward operation with clock and rate decoupling FIFOs

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.28 Ethernet MAC (ENET) 323

Platform-dependent features (not be available on some platforms, see chip-specific ENET information for details):

• Interrupt coalescing reduces the number of interrupts generated by the MAC, reducing CPU loading

• Traffic-shaping bandwidth distribution supports credit-based and round-robin-based policies. Either policy
can be combined with time-based shaping.

• AVB (Audio Video Bridging, IEEE 802.1Qav) features:

– Credit-based bandwidth distribution policy can be combined with time-basedshaping

– AVB endpoint talker and listener support

– Support for arbitration between different priority traffic (for example, AVB class A, AVB class B, and
non-AVB)

• Receive frame parser enables flexible Ethernet frame pattern matching in order to finally accept or reject a
frame.

Unsupported features

The driver implementation does not support for the moment the following features:

• Enhanced buffer descriptors and features related to IEEE 1588

• Programming of the FIFO threshold levels

• Interrupt coalescing

• AVB-related features

• Programming of the receive frame parser

Modules

• ENET Driver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

324 CONTENTS

14.29 External Watchdog Monitor (EWM)

14.29.1 Detailed Description

The S32 SDK provides the Peripheral Drivers for the External Watchdog Monitor (EWM) module of S32K devices.

For safety, a redundant watchdog system, External Watchdog Monitor (EWM), is designed to monitor external
circuits, as well as the MCU software flow. This provides a back-up mechanism to the internal watchdog that resets
the MCU's CPU and peripherals.

The EWM differs from the internal watchdog in that it does not reset the MCU's CPU and peripherals. The EWM if
allowed to time-out, provides an independent EWM_out pin that when asserted resets or places an external circuit
into a safe mode. The CPU resets the EWM counter that is logically ANDed with an external digital input pin. This
pin allows an external circuit to influence the reset_out signal.

Modules

• EWM Driver

External Watchdog Monitor Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 325

14.30 FTM Common Driver

14.30.1 Detailed Description

FlexTimer Peripheral Common Driver.

Data Structures

• struct ftm_state_t

FlexTimer state structure of the driver. More...

• struct ftm_pwm_sync_t

FlexTimer Registers sync parameters Please don't use software and hardware trigger simultaneously Implements :
ftm_pwm_sync_t_Class. More...

• struct ftm_user_config_t

Configuration structure that the user needs to set. More...

Typedefs

• typedef void(∗ ftm_channel_event_callback_t) (void ∗userData)

Channel event callback function.

Enumerations

• enum ftm_config_mode_t {
FTM_MODE_NOT_INITIALIZED = 0x00U, FTM_MODE_INPUT_CAPTURE = 0x01U, FTM_MODE_OUT←↩

PUT_COMPARE = 0x02U, FTM_MODE_EDGE_ALIGNED_PWM = 0x03U,
FTM_MODE_CEN_ALIGNED_PWM = 0x04U, FTM_MODE_QUADRATURE_DECODER = 0x05U, FTM_←↩

MODE_UP_TIMER = 0x06U, FTM_MODE_UP_DOWN_TIMER = 0x07U }

FlexTimer operation mode.

• enum ftm_quad_decode_mode_t { FTM_QUAD_PHASE_ENCODE = 0x00U, FTM_QUAD_COUNT_AND←↩

_DIR = 0x01U }

FlexTimer quadrature decode modes, phase encode or count and direction mode.

• enum ftm_quad_phase_polarity_t { FTM_QUAD_PHASE_NORMAL = 0x00U, FTM_QUAD_PHASE_INVE←↩

RT = 0x01U }

FlexTimer quadrature phase polarities, normal or inverted polarity.

Functions

• static void FTM_DRV_SetClockFilterPs (FTM_Type ∗const ftmBase, uint8_t filterPrescale)

Sets the filter Pre-scaler divider.

• static uint8_t FTM_DRV_GetClockFilterPs (const FTM_Type ∗ftmBase)

Reads the FTM filter clock divider.

• static uint8_t FTM_DRV_GetClockSource (const FTM_Type ∗ftmBase)

Reads the FTM clock source.

• static uint8_t FTM_DRV_GetClockPs (const FTM_Type ∗ftmBase)

Reads the FTM clock divider.

• static bool FTM_DRV_IsOverflowIntEnabled (const FTM_Type ∗ftmBase)

Reads the bit that controls enabling the FTM timer overflow interrupt.

• static bool FTM_DRV_HasTimerOverflowed (const FTM_Type ∗ftmBase)

Returns the FTM peripheral timer overflow interrupt flag.

• static bool FTM_DRV_GetCpwms (const FTM_Type ∗ftmBase)

Gets the FTM count direction bit.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

326 CONTENTS

• static void FTM_DRV_SetReIntEnabledCmd (FTM_Type ∗const ftmBase, bool enable)

Set the FTM reload interrupt enable.

• static bool FTM_DRV_GetReloadFlag (const FTM_Type ∗ftmBase)

Get the state whether the FTM counter reached a reload point.

• static void FTM_DRV_ClearReloadFlag (FTM_Type ∗const ftmBase)

Clears the reload flag bit.

• static uint16_t FTM_DRV_GetCounter (const FTM_Type ∗ftmBase)

Returns the FTM peripheral current counter value.

• static uint16_t FTM_DRV_GetMod (const FTM_Type ∗ftmBase)

Returns the FTM peripheral counter modulo value.

• static uint16_t FTM_DRV_GetCounterInitVal (const FTM_Type ∗ftmBase)

Returns the FTM peripheral counter initial value.

• static void FTM_DRV_ClearChSC (FTM_Type ∗const ftmBase, uint8_t channel)

Clears the content of Channel (n) Status And Control.

• static uint8_t FTM_DRV_GetChnMode (const FTM_Type ∗ftmBase, uint8_t channel)

Gets the FTM peripheral timer channel mode.

• static uint8_t FTM_DRV_GetChnEdgeLevel (const FTM_Type ∗ftmBase, uint8_t channel)

Gets the FTM peripheral timer channel edge level.

• static void FTM_DRV_SetChnIcrstCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Configure the feature of FTM counter reset by the selected input capture event.

• static bool FTM_DRV_IsChnIcrst (const FTM_Type ∗ftmBase, uint8_t channel)

Returns whether the FTM FTM counter is reset.

• static void FTM_DRV_SetChnDmaCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Enables or disables the FTM peripheral timer channel DMA.

• static bool FTM_DRV_IsChnDma (const FTM_Type ∗ftmBase, uint8_t channel)

Returns whether the FTM peripheral timer channel DMA is enabled.

• static bool FTM_DRV_IsChnIntEnabled (const FTM_Type ∗ftmBase, uint8_t channel)

Get FTM channel(n) interrupt enabled or not.

• static bool FTM_DRV_HasChnEventOccurred (const FTM_Type ∗ftmBase, uint8_t channel)

Returns whether any event for the FTM peripheral timer channel has occurred.

• static void FTM_DRV_SetTrigModeControlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Enables or disables the trigger generation on FTM channel outputs.

• static bool FTM_DRV_GetTriggerControled (const FTM_Type ∗ftmBase, uint8_t channel)

Returns whether the trigger mode is enabled.

• static bool FTM_DRV_GetChInputState (const FTM_Type ∗ftmBase, uint8_t channel)

Get the state of channel input.

• static bool FTM_DRV_GetChOutputValue (const FTM_Type ∗ftmBase, uint8_t channel)

Get the value of channel output.

• static uint16_t FTM_DRV_GetChnCountVal (const FTM_Type ∗ftmBase, uint8_t channel)

Gets the FTM peripheral timer channel counter value.

• static bool FTM_DRV_GetChnEventStatus (const FTM_Type ∗ftmBase, uint8_t channel)

Gets the FTM peripheral timer channel event status.

• static uint32_t FTM_DRV_GetEventStatus (const FTM_Type ∗ftmBase)

Gets the FTM peripheral timer status info for all channels.

• static void FTM_DRV_ClearChnEventStatus (FTM_Type ∗const ftmBase, uint8_t channel)

Clears the FTM peripheral timer all channel event status.

• static void FTM_DRV_SetChnOutputMask (FTM_Type ∗const ftmBase, uint8_t channel, bool mask)

Sets the FTM peripheral timer channel output mask.

• static void FTM_DRV_SetChnOutputInitStateCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool state)

Sets the FTM peripheral timer channel output initial state 0 or 1.

• static void FTM_DRV_DisableFaultInt (FTM_Type ∗const ftmBase)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 327

Disables the FTM peripheral timer fault interrupt.

• static bool FTM_DRV_IsFaultIntEnabled (const FTM_Type ∗ftmBase)

Return true/false whether the Fault interrupt was enabled or not.

• static void FTM_DRV_ClearFaultsIsr (FTM_Type ∗const ftmBase)

Clears all fault interrupt flags that are active.

• static void FTM_DRV_SetCaptureTestCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM peripheral timer capture test mode.

• static bool FTM_DRV_IsFtmEnable (const FTM_Type ∗ftmBase)

Get status of the FTMEN bit in the FTM_MODE register.

• static void FTM_DRV_SetInitChnOutputCmd (FTM_Type ∗const ftmBase, bool enable)

Initializes the channels output.

• static void FTM_DRV_SetCountReinitSyncCmd (FTM_Type ∗const ftmBase, bool enable)

Determines if the FTM counter is re-initialized when the selected trigger for synchronization is detected.

• static bool FTM_DRV_GetDualEdgeCaptureBit (const FTM_Type ∗ftmBase, uint8_t chnlPairNum)

Enables the FTM peripheral timer dual edge capture mode.

• static bool FTM_DRV_GetDualChnCombineCmd (const FTM_Type ∗ftmBase, uint8_t chnlPairNum)

Verify if an channels pair is used in combine mode or not.

• static bool FTM_DRV_IsChnTriggerGenerated (const FTM_Type ∗ftmBase)

Checks whether any channel trigger event has occurred.

• static void FTM_DRV_ClearChnTriggerFlag (FTM_Type ∗const ftmBase)

Clear the channel trigger flag.

• static bool FTM_DRV_GetDetectedFaultInput (const FTM_Type ∗ftmBase)

Gets the FTM detected fault input.

• static bool FTM_DRV_IsWriteProtectionEnabled (const FTM_Type ∗ftmBase)

Checks whether the write protection is enabled.

• static bool FTM_DRV_IsFaultInputEnabled (const FTM_Type ∗ftmBase)

Checks whether the logic OR of the fault inputs is enabled.

• static bool FTM_DRV_IsFaultFlagDetected (const FTM_Type ∗ftmBase, uint8_t channel)

Checks whether a fault condition is detected at the fault input.

• static void FTM_DRV_ClearFaultFlagDetected (FTM_Type ∗const ftmBase, uint8_t channel)

Clear a fault condition is detected at the fault input.

• static void FTM_DRV_SetQuadPhaseBFilterCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the phase B input filter.

• static void FTM_DRV_SetQuadPhaseAPolarity (FTM_Type ∗const ftmBase, ftm_quad_phase_polarity_←↩

t mode)

Selects polarity for the quadrature decode phase A input.

• static void FTM_DRV_SetQuadPhaseBPolarity (FTM_Type ∗const ftmBase, ftm_quad_phase_polarity_←↩

t mode)

Selects polarity for the quadrature decode phase B input.

• static void FTM_DRV_SetQuadMode (FTM_Type ∗const ftmBase, ftm_quad_decode_mode_t quadMode)

Sets the encoding mode used in quadrature decoding mode.

• static bool FTM_DRV_GetQuadDir (const FTM_Type ∗ftmBase)

Gets the FTM counter direction in quadrature mode.

• static bool FTM_DRV_GetQuadTimerOverflowDir (const FTM_Type ∗ftmBase)

Gets the Timer overflow direction in quadrature mode.

• static void FTM_DRV_SetDualChnInvertCmd (FTM_Type ∗const ftmBase, uint8_t chnlPairNum, bool enable)

Enables or disables the channel invert for a channel pair.

• static void FTM_DRV_SetChnSoftwareCtrlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Enables or disables the channel software output control.

• static void FTM_DRV_SetChnSoftwareCtrlVal (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Sets the channel software output control value.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

328 CONTENTS

• static void FTM_DRV_SetGlobalLoadCmd (FTM_Type ∗const ftmBase)

Set the global load mechanism.
• static void FTM_DRV_SetLoadCmd (FTM_Type ∗const ftmBase, bool enable)

Enable the global load.
• static void FTM_DRV_SetHalfCycleCmd (FTM_Type ∗const ftmBase, bool enable)

Enable the half cycle reload.
• static void FTM_DRV_SetPwmLoadCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the loading of MOD, CNTIN and CV with values of their write buffer.
• static void FTM_DRV_SetPwmLoadChnSelCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Includes or excludes the channel in the matching process.
• static void FTM_DRV_SetInitTrigOnReloadCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM initialization trigger on Reload Point.
• static void FTM_DRV_SetGlobalTimeBaseOutputCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM global time base signal generation to other FTM's.
• static void FTM_DRV_SetGlobalTimeBaseCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM timer global time base.
• static void FTM_DRV_SetLoadFreq (FTM_Type ∗const ftmBase, uint8_t val)

Sets the FTM timer TOF Frequency.
• static void FTM_DRV_SetExtPairDeadtimeValue (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_←↩

t value)

Sets the FTM extended dead-time value for the channel pair.
• static void FTM_DRV_SetPairDeadtimePrescale (FTM_Type ∗const ftmBase, uint8_t channelPair, ftm_←↩

deadtime_ps_t divider)

Sets the FTM dead time divider for the channel pair.
• static void FTM_DRV_SetPairDeadtimeCount (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_t count)

Sets the FTM dead-time value for the channel pair.
• status_t FTM_DRV_Init (uint32_t instance, const ftm_user_config_t ∗info, ftm_state_t ∗state)

Initializes the FTM driver.
• status_t FTM_DRV_Deinit (uint32_t instance)

Shuts down the FTM driver.
• status_t FTM_DRV_MaskOutputChannels (uint32_t instance, uint32_t channelsMask, bool softwareTrigger)

This function will mask the output of the channels and at match events will be ignored by the masked channels.
• status_t FTM_DRV_SetInitialCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the initial counter value. The counter will get this value after an overflow event.
• status_t FTM_DRV_SetHalfCycleReloadPoint (uint32_t instance, uint16_t reloadPoint, bool softwareTrigger)

This function configure the value of the counter which will generates an reload point.
• status_t FTM_DRV_SetSoftOutChnValue (uint32_t instance, uint8_t channelsValues, bool softwareTrigger)

This function will force the output value of a channel to a specific value. Before using this function it's mandatory to
mask the match events using FTM_DRV_MaskOutputChannels and to enable software output control using FTM_←↩

DRV_SetSoftwareOutputChannelControl.
• status_t FTM_DRV_SetSoftwareOutputChannelControl (uint32_t instance, uint8_t channelsMask, bool

softwareTrigger)

This function will configure which output channel can be software controlled.
• status_t FTM_DRV_SetInvertingControl (uint32_t instance, uint8_t channelsPairMask, bool softwareTrigger)

This function will configure if the second channel of a pair will be inverted or not.
• status_t FTM_DRV_SetModuloCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the maximum counter value.
• status_t FTM_DRV_SetSync (uint32_t instance, const ftm_pwm_sync_t ∗param)

This function configures sync mechanism for some FTM registers (MOD, CNINT, HCR, CnV, OUTMASK, INVCTRL,
SWOCTRL).

• uint32_t FTM_DRV_GetFrequency (uint32_t instance)

Retrieves the frequency of the clock source feeding the FTM counter.
• uint16_t FTM_DRV_ConvertFreqToPeriodTicks (uint32_t instance, uint32_t freqencyHz)

This function is used to covert the given frequency to period in ticks.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 329

Variables

• FTM_Type ∗const g_ftmBase [FTM_INSTANCE_COUNT]

Table of base addresses for FTM instances.
• const IRQn_Type g_ftmIrqId [FTM_INSTANCE_COUNT][FEATURE_FTM_CHANNEL_COUNT]

Interrupt vectors for the FTM peripheral.
• const IRQn_Type g_ftmFaultIrqId [FTM_INSTANCE_COUNT]
• const IRQn_Type g_ftmOverflowIrqId [FTM_INSTANCE_COUNT]
• const IRQn_Type g_ftmReloadIrqId [FTM_INSTANCE_COUNT]
• ftm_state_t ∗ ftmStatePtr [FTM_INSTANCE_COUNT]

Pointer to runtime state structure.

14.30.2 Data Structure Documentation

14.30.2.1 struct ftm_state_t

FlexTimer state structure of the driver.

Implements : ftm_state_t_Class

Definition at line 121 of file ftm_common.h.

Data Fields

• ftm_clock_source_t ftmClockSource
• ftm_config_mode_t ftmMode
• uint16_t ftmPeriod
• uint32_t ftmSourceClockFrequency
• uint16_t measurementResults [FEATURE_FTM_CHANNEL_COUNT]
• void ∗ channelsCallbacksParams [FEATURE_FTM_CHANNEL_COUNT]
• ftm_channel_event_callback_t channelsCallbacks [FEATURE_FTM_CHANNEL_COUNT]

Field Documentation

14.30.2.1.1 ftm_channel_event_callback_t channelsCallbacks[FEATURE_FTM_CHANNEL_COUNT]

Vector of callbacks for channels events

Definition at line 129 of file ftm_common.h.

14.30.2.1.2 void∗ channelsCallbacksParams[FEATURE_FTM_CHANNEL_COUNT]

Vector of callbacks parameters for channels events

Definition at line 128 of file ftm_common.h.

14.30.2.1.3 ftm_clock_source_t ftmClockSource

Clock source used by FTM counter

Definition at line 123 of file ftm_common.h.

14.30.2.1.4 ftm_config_mode_t ftmMode

Mode of operation for FTM

Definition at line 124 of file ftm_common.h.

14.30.2.1.5 uint16_t ftmPeriod

This field is used only in PWM mode to store signal period

Definition at line 125 of file ftm_common.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

330 CONTENTS

14.30.2.1.6 uint32_t ftmSourceClockFrequency

The clock frequency is used for counting

Definition at line 126 of file ftm_common.h.

14.30.2.1.7 uint16_t measurementResults[FEATURE_FTM_CHANNEL_COUNT]

This field is used only in input capture mode to store edges time stamps

Definition at line 127 of file ftm_common.h.

14.30.2.2 struct ftm_pwm_sync_t

FlexTimer Registers sync parameters Please don't use software and hardware trigger simultaneously Implements :
ftm_pwm_sync_t_Class.

Definition at line 137 of file ftm_common.h.

Data Fields

• bool softwareSync
• bool hardwareSync0
• bool hardwareSync1
• bool hardwareSync2
• bool maxLoadingPoint
• bool minLoadingPoint
• ftm_reg_update_t inverterSync
• ftm_reg_update_t outRegSync
• ftm_reg_update_t maskRegSync
• ftm_reg_update_t initCounterSync
• bool autoClearTrigger
• ftm_pwm_sync_mode_t syncPoint

Field Documentation

14.30.2.2.1 bool autoClearTrigger

Available only for hardware trigger

Definition at line 155 of file ftm_common.h.

14.30.2.2.2 bool hardwareSync0

True - enable hardware 0 sync, False - disable hardware 0 sync

Definition at line 141 of file ftm_common.h.

14.30.2.2.3 bool hardwareSync1

True - enable hardware 1 sync, False - disable hardware 1 sync

Definition at line 143 of file ftm_common.h.

14.30.2.2.4 bool hardwareSync2

True - enable hardware 2 sync, False - disable hardware 2 sync

Definition at line 145 of file ftm_common.h.

14.30.2.2.5 ftm_reg_update_t initCounterSync

Configures CNTIN sync

Definition at line 154 of file ftm_common.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 331

14.30.2.2.6 ftm_reg_update_t inverterSync

Configures INVCTRL sync

Definition at line 151 of file ftm_common.h.

14.30.2.2.7 ftm_reg_update_t maskRegSync

Configures OUTMASK sync

Definition at line 153 of file ftm_common.h.

14.30.2.2.8 bool maxLoadingPoint

True - enable maximum loading point, False - disable maximum loading point

Definition at line 147 of file ftm_common.h.

14.30.2.2.9 bool minLoadingPoint

True - enable minimum loading point, False - disable minimum loading point

Definition at line 149 of file ftm_common.h.

14.30.2.2.10 ftm_reg_update_t outRegSync

Configures SWOCTRL sync

Definition at line 152 of file ftm_common.h.

14.30.2.2.11 bool softwareSync

True - enable software sync, False - disable software sync

Definition at line 139 of file ftm_common.h.

14.30.2.2.12 ftm_pwm_sync_mode_t syncPoint

Configure synchronization method (waiting next loading point or immediate)

Definition at line 156 of file ftm_common.h.

14.30.2.3 struct ftm_user_config_t

Configuration structure that the user needs to set.

Implements : ftm_user_config_t_Class

Definition at line 165 of file ftm_common.h.

Data Fields

• ftm_pwm_sync_t syncMethod
• ftm_config_mode_t ftmMode
• ftm_clock_ps_t ftmPrescaler
• ftm_clock_source_t ftmClockSource
• ftm_bdm_mode_t BDMMode
• bool isTofIsrEnabled
• bool enableInitializationTrigger

Field Documentation

14.30.2.3.1 ftm_bdm_mode_t BDMMode

Select FTM behavior in BDM mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

332 CONTENTS

Definition at line 173 of file ftm_common.h.

14.30.2.3.2 bool enableInitializationTrigger

true: enable the generation of initialization trigger false: disable the generation of initialization trigger

Definition at line 176 of file ftm_common.h.

14.30.2.3.3 ftm_clock_source_t ftmClockSource

Select clock source for FTM

Definition at line 172 of file ftm_common.h.

14.30.2.3.4 ftm_config_mode_t ftmMode

Mode of operation for FTM

Definition at line 169 of file ftm_common.h.

14.30.2.3.5 ftm_clock_ps_t ftmPrescaler

Register pre-scaler options available in the ftm_clock_ps_t enumeration

Definition at line 170 of file ftm_common.h.

14.30.2.3.6 bool isTofIsrEnabled

true: enable interrupt, false: write interrupt is disabled

Definition at line 174 of file ftm_common.h.

14.30.2.3.7 ftm_pwm_sync_t syncMethod

Register sync options available in the ftm_sync_method_t enumeration

Definition at line 167 of file ftm_common.h.

14.30.3 Typedef Documentation

14.30.3.1 typedef void(∗ ftm_channel_event_callback_t) (void ∗userData)

Channel event callback function.

Callback functions are called by the FTM driver in Input Capture mode when an event is detected(change in logical
state of a pin or measurement complete)

Definition at line 114 of file ftm_common.h.

14.30.4 Enumeration Type Documentation

14.30.4.1 enum ftm_config_mode_t

FlexTimer operation mode.

Implements : ftm_config_mode_t_Class

Enumerator

FTM_MODE_NOT_INITIALIZED The driver is not initialized

FTM_MODE_INPUT_CAPTURE Input capture

FTM_MODE_OUTPUT_COMPARE Output compare

FTM_MODE_EDGE_ALIGNED_PWM Edge aligned PWM

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 333

FTM_MODE_CEN_ALIGNED_PWM Center aligned PWM

FTM_MODE_QUADRATURE_DECODER Quadrature decoder

FTM_MODE_UP_TIMER Timer with up counter

FTM_MODE_UP_DOWN_TIMER timer with up-down counter

Definition at line 72 of file ftm_common.h.

14.30.4.2 enum ftm_quad_decode_mode_t

FlexTimer quadrature decode modes, phase encode or count and direction mode.

Implements : ftm_quad_decode_mode_t_Class

Enumerator

FTM_QUAD_PHASE_ENCODE Phase encoding mode

FTM_QUAD_COUNT_AND_DIR Counter and direction encoding mode

Definition at line 89 of file ftm_common.h.

14.30.4.3 enum ftm_quad_phase_polarity_t

FlexTimer quadrature phase polarities, normal or inverted polarity.

Implements : ftm_quad_phase_polarity_t_Class

Enumerator

FTM_QUAD_PHASE_NORMAL Phase input signal is not inverted before identifying the rising and falling
edges of this signal

FTM_QUAD_PHASE_INVERT Phase input signal is inverted before identifying the rising and falling edges of
this signal

Definition at line 100 of file ftm_common.h.

14.30.5 Function Documentation

14.30.5.1 static void FTM_DRV_ClearChnEventStatus (FTM_Type ∗const ftmBase, uint8_t channel) [inline],
[static]

Clears the FTM peripheral timer all channel event status.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Implements : FTM_DRV_ClearChnEventStatus_Activity

Definition at line 710 of file ftm_common.h.

14.30.5.2 static void FTM_DRV_ClearChnTriggerFlag (FTM_Type ∗const ftmBase) [inline], [static]

Clear the channel trigger flag.

Parameters

in ftmBase The FTM base address pointer

Implements : FTM_DRV_ClearChnTriggerFlag_Activity

Definition at line 945 of file ftm_common.h.

14.30.5.3 static void FTM_DRV_ClearChSC (FTM_Type ∗const ftmBase, uint8_t channel) [inline], [static]

Clears the content of Channel (n) Status And Control.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

334 CONTENTS

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Implements : FTM_DRV_ClearChSC_Activity

Definition at line 399 of file ftm_common.h.

14.30.5.4 static void FTM_DRV_ClearFaultFlagDetected (FTM_Type ∗const ftmBase, uint8_t channel) [inline],
[static]

Clear a fault condition is detected at the fault input.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel

Implements : FTM_DRV_ClearFaultFlagDetected_Activity

Definition at line 1029 of file ftm_common.h.

14.30.5.5 static void FTM_DRV_ClearFaultsIsr (FTM_Type ∗const ftmBase) [inline], [static]

Clears all fault interrupt flags that are active.

Parameters

in ftmBase The FTM base address pointer

Implements : FTM_DRV_ClearFaultsIsr_Activity

Definition at line 807 of file ftm_common.h.

14.30.5.6 static void FTM_DRV_ClearReloadFlag (FTM_Type ∗const ftmBase) [inline], [static]

Clears the reload flag bit.

Parameters

in ftmBase The FTM base address pointer

Implements : FTM_DRV_ClearReloadFlag_Activity

Definition at line 340 of file ftm_common.h.

14.30.5.7 uint16_t FTM_DRV_ConvertFreqToPeriodTicks (uint32_t instance, uint32_t freqencyHz)

This function is used to covert the given frequency to period in ticks.

Parameters

in instance The FTM peripheral instance number.
in freqencyHz Frequency value in Hz.

Returns

The value in ticks of the frequency

Definition at line 501 of file ftm_common.c.

14.30.5.8 status_t FTM_DRV_Deinit (uint32_t instance)

Shuts down the FTM driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 335

Parameters

in instance The FTM peripheral instance number.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 181 of file ftm_common.c.

14.30.5.9 static void FTM_DRV_DisableFaultInt (FTM_Type ∗const ftmBase) [inline], [static]

Disables the FTM peripheral timer fault interrupt.

Parameters

in ftmBase The FTM base address pointer

Implements : FTM_DRV_DisableFaultInt_Activity

Definition at line 783 of file ftm_common.h.

14.30.5.10 static bool FTM_DRV_GetChInputState (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Get the state of channel input.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of the channel inputs

• true : The channel input is one

• false: The channel input is zero

Implements : FTM_DRV_GetChInputState_Activity

Definition at line 623 of file ftm_common.h.

14.30.5.11 static uint16_t FTM_DRV_GetChnCountVal (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Gets the FTM peripheral timer channel counter value.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

Channel counter value

Implements : FTM_DRV_GetChnCountVal_Activity

Definition at line 660 of file ftm_common.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

336 CONTENTS

14.30.5.12 static uint8_t FTM_DRV_GetChnEdgeLevel (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Gets the FTM peripheral timer channel edge level.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 337

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

The ELSnB:ELSnA mode value, will be 00, 01, 10, 11

Implements : FTM_DRV_GetChnEdgeLevel_Activity

Definition at line 444 of file ftm_common.h.

14.30.5.13 static bool FTM_DRV_GetChnEventStatus (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Gets the FTM peripheral timer channel event status.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

Channel event status

• true : A channel event has occurred

• false : No channel event has occurred

Implements : FTM_DRV_GetChnEventStatus_Activity

Definition at line 680 of file ftm_common.h.

14.30.5.14 static uint8_t FTM_DRV_GetChnMode (const FTM_Type ∗ ftmBase, uint8_t channel) [inline], [static]

Gets the FTM peripheral timer channel mode.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

The MSnB:MSnA mode value, will be 00, 01, 10, 11

Implements : FTM_DRV_GetChnMode_Activity

Definition at line 421 of file ftm_common.h.

14.30.5.15 static bool FTM_DRV_GetChOutputValue (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Get the value of channel output.

Parameters

in ftmBase The FTM base address pointer

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

338 CONTENTS

in channel The FTM peripheral channel number

Returns

Value of the channel outputs

• true : The channel output is one

• false: The channel output is zero

Implements : FTM_DRV_GetChOutputValue_Activity

Definition at line 642 of file ftm_common.h.

14.30.5.16 static uint8_t FTM_DRV_GetClockFilterPs (const FTM_Type ∗ ftmBase) [inline], [static]

Reads the FTM filter clock divider.

Parameters

in ftmBase The FTM base address pointer

Returns

The FTM filter clock pre-scale divider

Implements : FTM_DRV_GetClockFilterPs_Activity

Definition at line 217 of file ftm_common.h.

14.30.5.17 static uint8_t FTM_DRV_GetClockPs (const FTM_Type ∗ ftmBase) [inline], [static]

Reads the FTM clock divider.

Parameters

in ftmBase The FTM base address pointer

Returns

The FTM clock pre-scale divider

Implements : FTM_DRV_GetClockPs_Activity

Definition at line 249 of file ftm_common.h.

14.30.5.18 static uint8_t FTM_DRV_GetClockSource (const FTM_Type ∗ ftmBase) [inline], [static]

Reads the FTM clock source.

Parameters

in ftmBase The FTM base address pointer

Returns

The FTM clock source selection

• 00: No clock

• 01: system clock

• 10: fixed clock

• 11: External clock

Implements : FTM_DRV_GetClockSource_Activity

Definition at line 235 of file ftm_common.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 339

14.30.5.19 static uint16_t FTM_DRV_GetCounter (const FTM_Type ∗ ftmBase) [inline], [static]

Returns the FTM peripheral current counter value.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

340 CONTENTS

Parameters

in ftmBase The FTM base address pointer

Returns

The current FTM timer counter value

Implements : FTM_DRV_GetCounter_Activity

Definition at line 358 of file ftm_common.h.

14.30.5.20 static uint16_t FTM_DRV_GetCounterInitVal (const FTM_Type ∗ ftmBase) [inline], [static]

Returns the FTM peripheral counter initial value.

Parameters

in ftmBase The FTM base address pointer

Returns

FTM timer counter initial value

Implements : FTM_DRV_GetCounterInitVal_Activity

Definition at line 386 of file ftm_common.h.

14.30.5.21 static bool FTM_DRV_GetCpwms (const FTM_Type ∗ ftmBase) [inline], [static]

Gets the FTM count direction bit.

Parameters

in ftmBase The FTM base address pointer

Returns

The Center-Aligned PWM selection

• 1U: Up counting mode

• 0U: Up down counting mode

Implements : FTM_DRV_GetCpwms_Activity

Definition at line 297 of file ftm_common.h.

14.30.5.22 static bool FTM_DRV_GetDetectedFaultInput (const FTM_Type ∗ ftmBase) [inline], [static]

Gets the FTM detected fault input.

This function reads the status for all fault inputs

Parameters

in ftmBase The FTM base address pointer

Returns

The fault byte

• 0 : No fault condition was detected.

• 1 : A fault condition was detected.

Implements : FTM_DRV_GetDetectedFaultInput_Activity

Definition at line 964 of file ftm_common.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 341

14.30.5.23 static bool FTM_DRV_GetDualChnCombineCmd (const FTM_Type ∗ ftmBase, uint8_t chnlPairNum)
[inline], [static]

Verify if an channels pair is used in combine mode or not.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

342 CONTENTS

Parameters

in ftmBase The FTM base address pointer
in chnlPairNum The FTM peripheral channel pair number

Returns

Channel pair output combine mode status

• true : Channels pair are combined

• false: Channels pair are independent

Implements : FTM_DRV_GetDualChnCombineCmd_Activity

Definition at line 915 of file ftm_common.h.

14.30.5.24 static bool FTM_DRV_GetDualEdgeCaptureBit (const FTM_Type ∗ ftmBase, uint8_t chnlPairNum) [inline],
[static]

Enables the FTM peripheral timer dual edge capture mode.

Parameters

in ftmBase The FTM base address pointer
in chnlPairNum The FTM peripheral channel pair number

Returns

Dual edge capture mode status

• true : To enable dual edge capture

• false: To disable

Implements : FTM_DRV_GetDualEdgeCaptureBit_Activity

Definition at line 895 of file ftm_common.h.

14.30.5.25 static uint32_t FTM_DRV_GetEventStatus (const FTM_Type ∗ ftmBase) [inline], [static]

Gets the FTM peripheral timer status info for all channels.

Parameters

in ftmBase The FTM base address pointer

Returns

Channel event status value

Implements : FTM_DRV_GetEventStatus_Activity

Definition at line 697 of file ftm_common.h.

14.30.5.26 uint32_t FTM_DRV_GetFrequency (uint32_t instance)

Retrieves the frequency of the clock source feeding the FTM counter.

Function will return a 0 if no clock source is selected and the FTM counter is disabled

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 343

Parameters

in instance The FTM peripheral instance number.

Returns

The frequency of the clock source running the FTM counter (0 if counter is disabled)

Definition at line 446 of file ftm_common.c.

14.30.5.27 static uint16_t FTM_DRV_GetMod (const FTM_Type ∗ ftmBase) [inline], [static]

Returns the FTM peripheral counter modulo value.

Parameters

in ftmBase The FTM base address pointer

Returns

FTM timer modulo value

Implements : FTM_DRV_GetMod_Activity

Definition at line 372 of file ftm_common.h.

14.30.5.28 static bool FTM_DRV_GetQuadDir (const FTM_Type ∗ ftmBase) [inline], [static]

Gets the FTM counter direction in quadrature mode.

Parameters

in ftmBase The FTM base address pointer

Returns

The counting direction

• 1U: if counting direction is increasing

• 0U: if counting direction is decreasing

Implements : FTM_DRV_GetQuadDir_Activity

Definition at line 1123 of file ftm_common.h.

14.30.5.29 static bool FTM_DRV_GetQuadTimerOverflowDir (const FTM_Type ∗ ftmBase) [inline], [static]

Gets the Timer overflow direction in quadrature mode.

Parameters

in ftmBase The FTM base address pointer

Returns

The timer overflow direction

• 1U: if TOF bit was set on the top of counting

• 0U: if TOF bit was set on the bottom of counting

Implements : FTM_DRV_GetQuadTimerOverflowDir_Activity

Definition at line 1139 of file ftm_common.h.

14.30.5.30 static bool FTM_DRV_GetReloadFlag (const FTM_Type ∗ ftmBase) [inline], [static]

Get the state whether the FTM counter reached a reload point.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

344 CONTENTS

Parameters

in ftmBase The FTM base address pointer

Returns

State of reload point

• true : FTM counter reached a reload point

• false: FTM counter did not reach a reload point

Implements : FTM_DRV_GetReloadFlag_Activity

Definition at line 328 of file ftm_common.h.

14.30.5.31 static bool FTM_DRV_GetTriggerControled (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Returns whether the trigger mode is enabled.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of the channel outputs

• true : Enabled a trigger generation on channel output

• false: PWM outputs without generating a pulse

Implements : FTM_DRV_GetTriggerControled_Activity

Definition at line 604 of file ftm_common.h.

14.30.5.32 static bool FTM_DRV_HasChnEventOccurred (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Returns whether any event for the FTM peripheral timer channel has occurred.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of channel flag

• true : Event occurred

• false: No event occurred.

Implements : FTM_DRV_HasChnEventOccurred_Activity

Definition at line 564 of file ftm_common.h.

14.30.5.33 static bool FTM_DRV_HasTimerOverflowed (const FTM_Type ∗ ftmBase) [inline], [static]

Returns the FTM peripheral timer overflow interrupt flag.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 345

Parameters

in ftmBase The FTM base address pointer

Returns

State of Timer Overflow Flag

• true : FTM counter has overflowed

• false: FTM counter has not overflowed

Implements : FTM_DRV_HasTimerOverflowed_Activity

Definition at line 281 of file ftm_common.h.

14.30.5.34 status_t FTM_DRV_Init (uint32_t instance, const ftm_user_config_t ∗ info, ftm_state_t ∗ state)

Initializes the FTM driver.

Parameters

in instance The FTM peripheral instance number.
in info The FTM user configuration structure, see ftm_user_config_t.
out state The FTM state structure of the driver.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 112 of file ftm_common.c.

14.30.5.35 static bool FTM_DRV_IsChnDma (const FTM_Type ∗ ftmBase, uint8_t channel) [inline], [static]

Returns whether the FTM peripheral timer channel DMA is enabled.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of the FTM peripheral timer channel DMA

• true : Enabled DMA transfers

• false: Disabled DMA transfers

Implements : FTM_DRV_IsChnDma_Activity

Definition at line 529 of file ftm_common.h.

14.30.5.36 static bool FTM_DRV_IsChnIcrst (const FTM_Type ∗ ftmBase, uint8_t channel) [inline], [static]

Returns whether the FTM FTM counter is reset.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

346 CONTENTS

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of the FTM peripheral timer channel ICRST

• true : Enabled the FTM counter reset

• false: Disabled the FTM counter reset

Implements : FTM_DRV_IsChnIcrst_Activity

Definition at line 489 of file ftm_common.h.

14.30.5.37 static bool FTM_DRV_IsChnIntEnabled (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Get FTM channel(n) interrupt enabled or not.

Parameters

in ftmBase FTM module base address
in channel The FTM peripheral channel number

Implements : FTM_DRV_IsChnIntEnabled_Activity

Definition at line 544 of file ftm_common.h.

14.30.5.38 static bool FTM_DRV_IsChnTriggerGenerated (const FTM_Type ∗ ftmBase) [inline], [static]

Checks whether any channel trigger event has occurred.

Parameters

in ftmBase The FTM base address pointer

Returns

Channel trigger status

• true : If there is a channel trigger event

• false: If not.

Implements : FTM_DRV_IsChnTriggerGenerated_Activity

Definition at line 933 of file ftm_common.h.

14.30.5.39 static bool FTM_DRV_IsFaultFlagDetected (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Checks whether a fault condition is detected at the fault input.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel

Returns

the fault condition status

• true : A fault condition was detected at the fault input

• false: No fault condition was detected at the fault input

Implements : FTM_DRV_IsFaultFlagDetected_Activity

Definition at line 1013 of file ftm_common.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 347

14.30.5.40 static bool FTM_DRV_IsFaultInputEnabled (const FTM_Type ∗ ftmBase) [inline], [static]

Checks whether the logic OR of the fault inputs is enabled.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

348 CONTENTS

Parameters

in ftmBase The FTM base address pointer

Returns

the enabled fault inputs status

• true : The logic OR of the enabled fault inputs is 1

• false: The logic OR of the enabled fault inputs is 0

Implements : FTM_DRV_IsFaultInputEnabled_Activity

Definition at line 996 of file ftm_common.h.

14.30.5.41 static bool FTM_DRV_IsFaultIntEnabled (const FTM_Type ∗ ftmBase) [inline], [static]

Return true/false whether the Fault interrupt was enabled or not.

Parameters

in ftmBase The FTM base address pointer

Implements : FTM_DRV_IsFaultIntEnabled_Activity

Definition at line 795 of file ftm_common.h.

14.30.5.42 static bool FTM_DRV_IsFtmEnable (const FTM_Type ∗ ftmBase) [inline], [static]

Get status of the FTMEN bit in the FTM_MODE register.

Parameters

in ftmBase The FTM base address pointer

Returns

the FTM Enable status

• true : TPM compatibility. Free running counter and synchronization compatible with TPM

• false: Free running counter and synchronization are different from TPM behaviour

Implements : FTM_DRV_IsFtmEnable_Activity

Definition at line 845 of file ftm_common.h.

14.30.5.43 static bool FTM_DRV_IsOverflowIntEnabled (const FTM_Type ∗ ftmBase) [inline], [static]

Reads the bit that controls enabling the FTM timer overflow interrupt.

Parameters

in ftmBase The FTM base address pointer

Returns

State of Timer Overflow Interrupt

• true : Overflow interrupt is enabled

• false: Overflow interrupt is disabled

Implements : FTM_DRV_IsOverflowIntEnabled_Activity

Definition at line 265 of file ftm_common.h.

14.30.5.44 static bool FTM_DRV_IsWriteProtectionEnabled (const FTM_Type ∗ ftmBase) [inline], [static]

Checks whether the write protection is enabled.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 349

Parameters

in ftmBase The FTM base address pointer

Returns

Write-protection status

• true : If enabled

• false: If not

Implements : FTM_DRV_IsWriteProtectionEnabled_Activity

Definition at line 980 of file ftm_common.h.

14.30.5.45 status_t FTM_DRV_MaskOutputChannels (uint32_t instance, uint32_t channelsMask, bool softwareTrigger)

This function will mask the output of the channels and at match events will be ignored by the masked channels.

Parameters

in instance The FTM peripheral instance number.
in channelsMask The mask which will select which channels will ignore match events.
in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 201 of file ftm_common.c.

14.30.5.46 static void FTM_DRV_SetCaptureTestCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enables or disables the FTM peripheral timer capture test mode.

Parameters

in ftmBase The FTM base address pointer
in enable Capture Test Mode Enable

• true : Capture test mode is enabled

• false: Capture test mode is disabled

Implements : FTM_DRV_SetCaptureTestCmd_Activity

Definition at line 829 of file ftm_common.h.

14.30.5.47 static void FTM_DRV_SetChnDmaCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable) [inline],
[static]

Enables or disables the FTM peripheral timer channel DMA.

Parameters

in ftmBase The FTM base address pointer

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

350 CONTENTS

in channel The FTM peripheral channel number
in enable Enable DMA transfers for the channel

• true : Enabled DMA transfers

• false: Disabled DMA transfers

Implements : FTM_DRV_SetChnDmaCmd_Activity

Definition at line 508 of file ftm_common.h.

14.30.5.48 static void FTM_DRV_SetChnIcrstCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable) [inline],
[static]

Configure the feature of FTM counter reset by the selected input capture event.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in enable Enable the FTM counter reset

• true : FTM counter is reset

• false: FTM counter is not reset

Implements : FTM_DRV_SetChnIcrstCmd_Activity

Definition at line 468 of file ftm_common.h.

14.30.5.49 static void FTM_DRV_SetChnOutputInitStateCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool state)
[inline], [static]

Sets the FTM peripheral timer channel output initial state 0 or 1.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in state Initial state for channels output

• true : The initialization value is 1

• false: The initialization value is 0

Implements : FTM_DRV_SetChnOutputInitStateCmd_Activity

Definition at line 760 of file ftm_common.h.

14.30.5.50 static void FTM_DRV_SetChnOutputMask (FTM_Type ∗const ftmBase, uint8_t channel, bool mask)
[inline], [static]

Sets the FTM peripheral timer channel output mask.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in mask Value to set Output Mask

• true : Channel output is masked

• false: Channel output is not masked

Implements : FTM_DRV_SetChnOutputMask_Activity

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 351

Definition at line 733 of file ftm_common.h.

14.30.5.51 static void FTM_DRV_SetChnSoftwareCtrlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Enables or disables the channel software output control.

Parameters

in ftmBase The FTM base address pointer
in channel Channel to be enabled or disabled
in enable State of channel software output control

• true : To enable, channel output will be affected by software output con-
trol

• false: To disable, channel output is unaffected

Implements : FTM_DRV_SetChnSoftwareCtrlCmd_Activity

Definition at line 1182 of file ftm_common.h.

14.30.5.52 static void FTM_DRV_SetChnSoftwareCtrlVal (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Sets the channel software output control value.

Parameters

in ftmBase The FTM base address pointer.
in channel Channel to be configured
in enable State of software output control value

• true : to force 1 to the channel output

• false: to force 0 to the channel output

Implements : FTM_DRV_SetChnSoftwareCtrlVal_Activity

Definition at line 1209 of file ftm_common.h.

14.30.5.53 static void FTM_DRV_SetClockFilterPs (FTM_Type ∗const ftmBase, uint8_t filterPrescale) [inline],
[static]

Sets the filter Pre-scaler divider.

Parameters

in ftmBase The FTM base address pointer
in filterPrescale The FTM peripheral clock pre-scale divider

Implements : FTM_DRV_SetClockFilterPs_Activity

Definition at line 202 of file ftm_common.h.

14.30.5.54 static void FTM_DRV_SetCountReinitSyncCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Determines if the FTM counter is re-initialized when the selected trigger for synchronization is detected.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

352 CONTENTS

in ftmBase The FTM base address pointer
in enable FTM counter re-initialization selection

• true : To update FTM counter when triggered

• false: To count normally

Implements : FTM_DRV_SetCountReinitSyncCmd_Activity

Definition at line 877 of file ftm_common.h.

14.30.5.55 static void FTM_DRV_SetDualChnInvertCmd (FTM_Type ∗const ftmBase, uint8_t chnlPairNum, bool enable)
[inline], [static]

Enables or disables the channel invert for a channel pair.

Parameters

in ftmBase The FTM base address pointer
in chnlPairNum The FTM peripheral channel pair number
in enable State of channel invert for a channel pair

• true : To enable channel inverting

• false: To disable channel inversion

Implements : FTM_DRV_SetDualChnInvertCmd_Activity

Definition at line 1155 of file ftm_common.h.

14.30.5.56 static void FTM_DRV_SetExtPairDeadtimeValue (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_t value)
[inline], [static]

Sets the FTM extended dead-time value for the channel pair.

Parameters

in ftmBase The FTM base address pointer
in channelPair The FTM peripheral channel pair (n)
in value The FTM peripheral extend pre-scale divider using the concatenation with the

dead-time value

Implements : FTM_DRV_SetExtPairDeadtimeValue_Activity

Definition at line 1408 of file ftm_common.h.

14.30.5.57 static void FTM_DRV_SetGlobalLoadCmd (FTM_Type ∗const ftmBase) [inline], [static]

Set the global load mechanism.

Parameters

in ftmBase The FTM base address pointer

• true : LDOK bit is set

• false: No action

Implements : FTM_DRV_SetGlobalLoadCmd_Activity

Definition at line 1235 of file ftm_common.h.

14.30.5.58 static void FTM_DRV_SetGlobalTimeBaseCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Enables or disables the FTM timer global time base.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 353

Parameters

in ftmBase The FTM base address pointer
in enable State of global time base

• true : To enable

• false: To disable

Implements : FTM_DRV_SetGlobalTimeBaseCmd_Activity

Definition at line 1379 of file ftm_common.h.

14.30.5.59 static void FTM_DRV_SetGlobalTimeBaseOutputCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Enables or disables the FTM global time base signal generation to other FTM's.

Parameters

in ftmBase The FTM base address pointer
in enable State of global time base signal

• true : To enable

• false: To disable

Implements : FTM_DRV_SetGlobalTimeBaseOutputCmd_Activity

Definition at line 1363 of file ftm_common.h.

14.30.5.60 static void FTM_DRV_SetHalfCycleCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enable the half cycle reload.

Parameters

in ftmBase The FTM base address pointer
in enable State of the half cycle match as a reload opportunity

• true : Half cycle reload is enabled

• false: Half cycle reload is disabled

Implements : FTM_DRV_SetHalfCycleCmd_Activity

Definition at line 1273 of file ftm_common.h.

14.30.5.61 status_t FTM_DRV_SetHalfCycleReloadPoint (uint32_t instance, uint16_t reloadPoint, bool softwareTrigger)

This function configure the value of the counter which will generates an reload point.

Parameters

in instance The FTM peripheral instance number.
in reloadPoint Counter value which generates the reload point.
in softwareTrigger If true a software trigger is generate to update parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 249 of file ftm_common.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

354 CONTENTS

14.30.5.62 static void FTM_DRV_SetInitChnOutputCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Initializes the channels output.

Parameters

in ftmBase The FTM base address pointer
in enable Initialize the channels output

• true : The channels output is initialized according to the state of OUT←↩

INIT reg

• false: No effect

Implements : FTM_DRV_SetInitChnOutputCmd_Activity

Definition at line 860 of file ftm_common.h.

14.30.5.63 status_t FTM_DRV_SetInitialCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the initial counter value. The counter will get this value after an overflow event.

Parameters

in instance The FTM peripheral instance number.
in counterValue Initial counter value.
in softwareTrigger If true a software trigger is generate to update parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 225 of file ftm_common.c.

14.30.5.64 static void FTM_DRV_SetInitTrigOnReloadCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Enables or disables the FTM initialization trigger on Reload Point.

Parameters

in ftmBase The FTM base address pointer
in enable bit controls whether an initialization trigger is generated

• true : Trigger is generated when a reload point is reached

• false: Trigger is generated on counter wrap events

Implements : FTM_DRV_SetInitTrigOnReloadCmd_Activity

Definition at line 1347 of file ftm_common.h.

14.30.5.65 status_t FTM_DRV_SetInvertingControl (uint32_t instance, uint8_t channelsPairMask, bool softwareTrigger)

This function will configure if the second channel of a pair will be inverted or not.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 355

Parameters

in instance The FTM peripheral instance number.
in channelsPair←↩

Mask
The mask which will configure which channel pair will invert the second chan-
nel.

in softwareTrigger If true a software trigger is generate to update registers.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 321 of file ftm_common.c.

14.30.5.66 static void FTM_DRV_SetLoadCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enable the global load.

Parameters

in ftmBase The FTM base address pointer
in enable State of the global load mechanism

• true : Global Load OK enabled

• false: Global Load OK disabled

Implements : FTM_DRV_SetLoadCmd_Activity

Definition at line 1250 of file ftm_common.h.

14.30.5.67 static void FTM_DRV_SetLoadFreq (FTM_Type ∗const ftmBase, uint8_t val) [inline], [static]

Sets the FTM timer TOF Frequency.

Parameters

in ftmBase The FTM base address pointer
in val Value of the TOF bit set frequency

Implements : FTM_DRV_SetLoadFreq_Activity

Definition at line 1393 of file ftm_common.h.

14.30.5.68 status_t FTM_DRV_SetModuloCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the maximum counter value.

Parameters

in instance The FTM peripheral instance number.
in counterValue Maximum counter value
in softwareTrigger If true a software trigger is generate to update parameters

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 344 of file ftm_common.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

356 CONTENTS

14.30.5.69 static void FTM_DRV_SetPairDeadtimeCount (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_t count)
[inline], [static]

Sets the FTM dead-time value for the channel pair.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 357

Parameters

in ftmBase The FTM base address pointer
in channelPair The FTM peripheral channel pair (n)
in count The FTM peripheral selects the dead-time value

• 0U : no counts inserted

• 1U : 1 count is inserted

• 2U : 2 count is inserted

• ... up to a possible 63 counts

Implements : FTM_DRV_SetPairDeadtimeCount_Activity

Definition at line 1486 of file ftm_common.h.

14.30.5.70 static void FTM_DRV_SetPairDeadtimePrescale (FTM_Type ∗const ftmBase, uint8_t channelPair,
ftm_deadtime_ps_t divider) [inline], [static]

Sets the FTM dead time divider for the channel pair.

Parameters

in ftmBase The FTM base address pointer
in channelPair The FTM peripheral channel pair (n)
in divider The FTM peripheral pre-scaler divider

• FTM_DEADTIME_DIVID_BY_1 : Divide by 1

• FTM_DEADTIME_DIVID_BY_4 : Divide by 4

• FTM_DEADTIME_DIVID_BY_16: Divide by 16

Implements : FTM_DRV_SetPairDeadtimePrescale_Activity

Definition at line 1447 of file ftm_common.h.

14.30.5.71 static void FTM_DRV_SetPwmLoadChnSelCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Includes or excludes the channel in the matching process.

Parameters

in ftmBase The FTM base address pointer
in channel Channel to be configured
in enable State of channel

• true : means include the channel in the matching process

• false: means do not include channel in the matching process

Implements : FTM_DRV_SetPwmLoadChnSelCmd_Activity

Definition at line 1320 of file ftm_common.h.

14.30.5.72 static void FTM_DRV_SetPwmLoadCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enables or disables the loading of MOD, CNTIN and CV with values of their write buffer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

358 CONTENTS

Parameters

in ftmBase The FTM base address pointer
in enable State of loading updated values

• true : To enable

• false: To disable

Implements : FTM_DRV_SetPwmLoadCmd_Activity

Definition at line 1296 of file ftm_common.h.

14.30.5.73 static void FTM_DRV_SetQuadMode (FTM_Type ∗const ftmBase, ftm_quad_decode_mode_t quadMode)
[inline], [static]

Sets the encoding mode used in quadrature decoding mode.

Parameters

in ftmBase The FTM base address pointer
in quadMode Quadrature decoder mode selection

• FTM_QUAD_PHASE_ENCODE: Phase A and Phase B encoding mode

• FTM_QUAD_COUNT_AND_DIR: Count and direction encoding mode

Implements : FTM_DRV_SetQuadMode_Activity

Definition at line 1106 of file ftm_common.h.

14.30.5.74 static void FTM_DRV_SetQuadPhaseAPolarity (FTM_Type ∗const ftmBase, ftm_quad_phase_polarity_t mode
) [inline], [static]

Selects polarity for the quadrature decode phase A input.

Parameters

in ftmBase The FTM base address pointer
in mode Phase A input polarity selection

• FTM_QUAD_PHASE_NORMAL: Normal polarity

• FTM_QUAD_PHASE_INVERT: Inverted polarity

Implements : FTM_DRV_SetQuadPhaseAPolarity_Activity

Definition at line 1074 of file ftm_common.h.

14.30.5.75 static void FTM_DRV_SetQuadPhaseBFilterCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Enables or disables the phase B input filter.

Parameters

in ftmBase The FTM base address pointer
in enable State of phase B input filter

• true : Enables the phase input filter

• false: Disables the filter

Implements : FTM_DRV_SetQuadPhaseBFilterCmd_Activity

Definition at line 1051 of file ftm_common.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 359

14.30.5.76 static void FTM_DRV_SetQuadPhaseBPolarity (FTM_Type ∗const ftmBase, ftm_quad_phase_polarity_t mode
) [inline], [static]

Selects polarity for the quadrature decode phase B input.

Parameters

in ftmBase The FTM base address pointer
in mode Phase B input polarity selection

• FTM_QUAD_PHASE_NORMAL: Normal polarity

• FTM_QUAD_PHASE_INVERT: Inverted polarity

Implements : FTM_DRV_SetQuadPhaseBPolarity_Activity

Definition at line 1090 of file ftm_common.h.

14.30.5.77 static void FTM_DRV_SetReIntEnabledCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Set the FTM reload interrupt enable.

Parameters

in ftmBase The FTM base address pointer
in enable - true : Reload interrupt is enabled

• false: Reload interrupt is disabled

Implements : FTM_DRV_SetReIntEnabledCmd_Activity

Definition at line 311 of file ftm_common.h.

14.30.5.78 status_t FTM_DRV_SetSoftOutChnValue (uint32_t instance, uint8_t channelsValues, bool softwareTrigger)

This function will force the output value of a channel to a specific value. Before using this function it's mandatory to
mask the match events using FTM_DRV_MaskOutputChannels and to enable software output control using FTM←↩

_DRV_SetSoftwareOutputChannelControl.

Parameters

in instance The FTM peripheral instance number.
in channelsValues The values which will be software configured for channels.
in softwareTrigger If true a software trigger is generate to update registers

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 275 of file ftm_common.c.

14.30.5.79 status_t FTM_DRV_SetSoftwareOutputChannelControl (uint32_t instance, uint8_t channelsMask, bool
softwareTrigger)

This function will configure which output channel can be software controlled.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

360 CONTENTS

Parameters

in instance The FTM peripheral instance number.
in channelsMask The mask which will configure the channels which can be software controlled.
in softwareTrigger If true a software trigger is generate to update registers

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 298 of file ftm_common.c.

14.30.5.80 status_t FTM_DRV_SetSync (uint32_t instance, const ftm_pwm_sync_t ∗ param)

This function configures sync mechanism for some FTM registers (MOD, CNINT, HCR, CnV, OUTMASK, INVCTRL,
SWOCTRL).

Parameters

in instance The FTM peripheral instance number.
in param The sync configuration structure.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 370 of file ftm_common.c.

14.30.5.81 static void FTM_DRV_SetTrigModeControlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Enables or disables the trigger generation on FTM channel outputs.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in enable Trigger mode control

• false : Enable PWM output without generating a pulse

• true : Disable a trigger generation on channel output

Implements : FTM_DRV_SetTrigModeControlCmd_Activity

Definition at line 583 of file ftm_common.h.

14.30.6 Variable Documentation

14.30.6.1 ftm_state_t∗ ftmStatePtr[FTM_INSTANCE_COUNT]

Pointer to runtime state structure.

Definition at line 83 of file ftm_common.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.30 FTM Common Driver 361

14.30.6.2 FTM_Type∗ const g_ftmBase[FTM_INSTANCE_COUNT]

Table of base addresses for FTM instances.

Definition at line 70 of file ftm_common.c.

14.30.6.3 const IRQn_Type g_ftmFaultIrqId[FTM_INSTANCE_COUNT]

Definition at line 74 of file ftm_common.c.

14.30.6.4 const IRQn_Type g_ftmIrqId[FTM_INSTANCE_COUNT][FEATURE_FTM_CHANNEL_COUNT]

Interrupt vectors for the FTM peripheral.

Definition at line 73 of file ftm_common.c.

14.30.6.5 const IRQn_Type g_ftmOverflowIrqId[FTM_INSTANCE_COUNT]

Definition at line 75 of file ftm_common.c.

14.30.6.6 const IRQn_Type g_ftmReloadIrqId[FTM_INSTANCE_COUNT]

Definition at line 76 of file ftm_common.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

362 CONTENTS

14.31 FTM Input Capture Driver

14.31.1 Detailed Description

FlexTimer Peripheral Input Capture Driver.

Data Structures

• struct ftm_input_ch_param_t

FlexTimer driver Input capture parameters for each channel. More...

• struct ftm_input_param_t

FlexTimer driver input capture parameters. More...

Enumerations

• enum ftm_input_op_mode_t { FTM_EDGE_DETECT = 0U, FTM_SIGNAL_MEASUREMENT = 1U, FTM_←↩

NO_OPERATION = 2U }

FTM status.

• enum ftm_signal_measurement_mode_t {
FTM_NO_MEASUREMENT = 0x00U, FTM_RISING_EDGE_PERIOD_MEASUREMENT = 0x01U, FTM_F←↩

ALLING_EDGE_PERIOD_MEASUREMENT = 0x02U, FTM_PERIOD_ON_MEASUREMENT = 0x03U,
FTM_PERIOD_OFF_MEASUREMENT = 0x04U }

FlexTimer input capture measurement type for dual edge input capture.

• enum ftm_edge_alignment_mode_t { FTM_NO_PIN_CONTROL = 0x00U, FTM_RISING_EDGE = 0x01U,
FTM_FALLING_EDGE = 0x02U, FTM_BOTH_EDGES = 0x03U }

FlexTimer input capture edge mode, rising edge, or falling edge.

Functions

• status_t FTM_DRV_InitInputCapture (uint32_t instance, const ftm_input_param_t ∗param)

Configures Channel Input Capture for either getting time-stamps on edge detection or on signal measurement . When
the edge specified in the captureMode argument occurs on the channel the FTM counter is captured into the CnV
register. The user will have to read the CnV register separately to get this value. The filter function is disabled if the
filterVal argument passed in is 0. The filter function is available only on channels 0,1,2,3.

• status_t FTM_DRV_DeinitInputCapture (uint32_t instance, const ftm_input_param_t ∗param)

Disables input capture mode and clears FTM timer configuration.

• uint16_t FTM_DRV_GetInputCaptureMeasurement (uint32_t instance, uint8_t channel)

This function is used to calculate the measurement and/or time stamps values which are read from the C(n, n+1)V
registers and stored to the static buffers.

• status_t FTM_DRV_StartNewSignalMeasurement (uint32_t instance, uint8_t channel)

Starts new single-shot signal measurement of the given channel.

14.31.2 Data Structure Documentation

14.31.2.1 struct ftm_input_ch_param_t

FlexTimer driver Input capture parameters for each channel.

Implements : ftm_input_ch_param_t_Class

Definition at line 86 of file ftm_ic_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.31 FTM Input Capture Driver 363

Data Fields

• uint8_t hwChannelId
• ftm_input_op_mode_t inputMode
• ftm_edge_alignment_mode_t edgeAlignement
• ftm_signal_measurement_mode_t measurementType
• uint16_t filterValue
• bool filterEn
• bool continuousModeEn
• void ∗ channelsCallbacksParams
• ftm_channel_event_callback_t channelsCallbacks

Field Documentation

14.31.2.1.1 ftm_channel_event_callback_t channelsCallbacks

Vector of callbacks for channels events

Definition at line 96 of file ftm_ic_driver.h.

14.31.2.1.2 void∗ channelsCallbacksParams

Vector of callbacks parameters for channels events

Definition at line 95 of file ftm_ic_driver.h.

14.31.2.1.3 bool continuousModeEn

Continuous measurement state

Definition at line 94 of file ftm_ic_driver.h.

14.31.2.1.4 ftm_edge_alignment_mode_t edgeAlignement

Edge alignment Mode for signal measurement

Definition at line 90 of file ftm_ic_driver.h.

14.31.2.1.5 bool filterEn

Input capture filter state

Definition at line 93 of file ftm_ic_driver.h.

14.31.2.1.6 uint16_t filterValue

Filter Value

Definition at line 92 of file ftm_ic_driver.h.

14.31.2.1.7 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 88 of file ftm_ic_driver.h.

14.31.2.1.8 ftm_input_op_mode_t inputMode

FlexTimer module mode of operation

Definition at line 89 of file ftm_ic_driver.h.

14.31.2.1.9 ftm_signal_measurement_mode_t measurementType

Measurement Mode for signal measurement

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

364 CONTENTS

Definition at line 91 of file ftm_ic_driver.h.

14.31.2.2 struct ftm_input_param_t

FlexTimer driver input capture parameters.

Implements : ftm_input_param_t_Class

Definition at line 104 of file ftm_ic_driver.h.

Data Fields

• uint8_t nNumChannels
• uint16_t nMaxCountValue
• const ftm_input_ch_param_t ∗ inputChConfig

Field Documentation

14.31.2.2.1 const ftm_input_ch_param_t∗ inputChConfig

Input capture channels configuration

Definition at line 108 of file ftm_ic_driver.h.

14.31.2.2.2 uint16_t nMaxCountValue

Maximum counter value. Minimum value is 0 for this mode

Definition at line 107 of file ftm_ic_driver.h.

14.31.2.2.3 uint8_t nNumChannels

Number of input capture channel used

Definition at line 106 of file ftm_ic_driver.h.

14.31.3 Enumeration Type Documentation

14.31.3.1 enum ftm_edge_alignment_mode_t

FlexTimer input capture edge mode, rising edge, or falling edge.

Implements : ftm_edge_alignment_mode_t_Class

Enumerator

FTM_NO_PIN_CONTROL No trigger

FTM_RISING_EDGE Rising edge trigger

FTM_FALLING_EDGE Falling edge trigger

FTM_BOTH_EDGES Rising and falling edge trigger

Definition at line 73 of file ftm_ic_driver.h.

14.31.3.2 enum ftm_input_op_mode_t

FTM status.

Implements : ftm_input_op_mode_t_Class

Enumerator

FTM_EDGE_DETECT FTM edge detect

FTM_SIGNAL_MEASUREMENT FTM signal measurement

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.31 FTM Input Capture Driver 365

FTM_NO_OPERATION FTM no operation

Definition at line 47 of file ftm_ic_driver.h.

14.31.3.3 enum ftm_signal_measurement_mode_t

FlexTimer input capture measurement type for dual edge input capture.

Implements : ftm_signal_measurement_mode_t_Class

Enumerator

FTM_NO_MEASUREMENT No measurement

FTM_RISING_EDGE_PERIOD_MEASUREMENT Period measurement between two consecutive rising
edges

FTM_FALLING_EDGE_PERIOD_MEASUREMENT Period measurement between two consecutive falling
edges

FTM_PERIOD_ON_MEASUREMENT The time measurement taken for the pulse to remain ON or HIGH state

FTM_PERIOD_OFF_MEASUREMENT The time measurement taken for the pulse to remain OFF or LOW
state

Definition at line 59 of file ftm_ic_driver.h.

14.31.4 Function Documentation

14.31.4.1 status_t FTM_DRV_DeinitInputCapture (uint32_t instance, const ftm_input_param_t ∗ param)

Disables input capture mode and clears FTM timer configuration.

Parameters

in instance The FTM peripheral instance number.
in param Configuration of the output compare channel.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 236 of file ftm_ic_driver.c.

14.31.4.2 uint16_t FTM_DRV_GetInputCaptureMeasurement (uint32_t instance, uint8_t channel)

This function is used to calculate the measurement and/or time stamps values which are read from the C(n, n+1)V
registers and stored to the static buffers.

Parameters

in instance The FTM peripheral instance number.
in channel For getting the time stamp of the last edge (in normal input capture) this pa-

rameter represents the channel number. For getting the last measured value
(in dual edge input capture) this parameter is the lowest channel number of
the pair (EX: 0, 2, 4, 6).

Returns

value The measured value

Definition at line 288 of file ftm_ic_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

366 CONTENTS

14.31.4.3 status_t FTM_DRV_InitInputCapture (uint32_t instance, const ftm_input_param_t ∗ param)

Configures Channel Input Capture for either getting time-stamps on edge detection or on signal measurement .
When the edge specified in the captureMode argument occurs on the channel the FTM counter is captured into the
CnV register. The user will have to read the CnV register separately to get this value. The filter function is disabled
if the filterVal argument passed in is 0. The filter function is available only on channels 0,1,2,3.

Parameters

in instance The FTM peripheral instance number.
in param Configuration of the input capture channel.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 91 of file ftm_ic_driver.c.

14.31.4.4 status_t FTM_DRV_StartNewSignalMeasurement (uint32_t instance, uint8_t channel)

Starts new single-shot signal measurement of the given channel.

Parameters

in instance The FTM peripheral instance number.
in channel Configuration of the output compare channel.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 306 of file ftm_ic_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.32 FTM Module Counter Driver 367

14.32 FTM Module Counter Driver

14.32.1 Detailed Description

FlexTimer Peripheral Driver.

Data Structures

• struct ftm_timer_param_t

FlexTimer driver timer mode configuration structure. More...

Functions

• status_t FTM_DRV_InitCounter (uint32_t instance, const ftm_timer_param_t ∗timer)

Initialize the FTM counter.

• status_t FTM_DRV_CounterStart (uint32_t instance)

Starts the FTM counter.

• status_t FTM_DRV_CounterStop (uint32_t instance)

Stops the FTM counter.

• uint32_t FTM_DRV_CounterRead (uint32_t instance)

Reads back the current value of the FTM counter.

14.32.2 Data Structure Documentation

14.32.2.1 struct ftm_timer_param_t

FlexTimer driver timer mode configuration structure.

Implements : ftm_timer_param_t_Class

Definition at line 47 of file ftm_mc_driver.h.

Data Fields

• ftm_config_mode_t mode
• uint16_t initialValue
• uint16_t finalValue

Field Documentation

14.32.2.1.1 uint16_t finalValue

Final counter value

Definition at line 51 of file ftm_mc_driver.h.

14.32.2.1.2 uint16_t initialValue

Initial counter value

Definition at line 50 of file ftm_mc_driver.h.

14.32.2.1.3 ftm_config_mode_t mode

FTM mode

Definition at line 49 of file ftm_mc_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

368 CONTENTS

14.32.3 Function Documentation

14.32.3.1 uint32_t FTM_DRV_CounterRead (uint32_t instance)

Reads back the current value of the FTM counter.

Parameters

in instance The FTM peripheral instance number.

Returns

The current counter value

Definition at line 153 of file ftm_mc_driver.c.

14.32.3.2 status_t FTM_DRV_CounterStart (uint32_t instance)

Starts the FTM counter.

Parameters

in instance The FTM peripheral instance number.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 112 of file ftm_mc_driver.c.

14.32.3.3 status_t FTM_DRV_CounterStop (uint32_t instance)

Stops the FTM counter.

Parameters

in instance The FTM peripheral instance number.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

Definition at line 133 of file ftm_mc_driver.c.

14.32.3.4 status_t FTM_DRV_InitCounter (uint32_t instance, const ftm_timer_param_t ∗ timer)

Initialize the FTM counter.

Starts the FTM counter. This function provides access to the FTM counter settings. The counter can be run in Up
counting and Up-down counting modes. To run the counter in Free running mode, choose Up counting option and
provide 0x0 for the countStartVal and 0xFFFF for countFinalVal. Please call this function only when FTM is used as
timer/counter.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.32 FTM Module Counter Driver 369

in instance The FTM peripheral instance number.
in timer Timer configuration structure.

Returns

operation status

• STATUS_SUCCESS : Initialized successfully.

Definition at line 53 of file ftm_mc_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

370 CONTENTS

14.33 FTM Output Compare Driver

14.33.1 Detailed Description

FlexTimer Peripheral Output Compare Driver.

Data Structures

• struct ftm_output_cmp_ch_param_t

FlexTimer driver PWM parameters. More...

• struct ftm_output_cmp_param_t

FlexTimer driver PWM parameters. More...

Enumerations

• enum ftm_output_compare_mode_t { FTM_DISABLE_OUTPUT = 0x00U, FTM_TOGGLE_ON_MATCH =
0x01U, FTM_CLEAR_ON_MATCH = 0x02U, FTM_SET_ON_MATCH = 0x03U }

FlexTimer Mode configuration for output compare mode.

• enum ftm_output_compare_update_t { FTM_RELATIVE_VALUE = 0x00U, FTM_ABSOLUTE_VALUE =
0x01U }

FlexTimer input capture type of the next output compare value.

Functions

• status_t FTM_DRV_InitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗param)

Configures the FTM to generate timed pulses(Output compare mode).

• status_t FTM_DRV_DeinitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗param)

Disables compare match output control and clears FTM timer configuration.

• status_t FTM_DRV_UpdateOutputCompareChannel (uint32_t instance, uint8_t channel, uint16_t next←↩

ComparematchValue, ftm_output_compare_update_t update, bool softwareTrigger)

Sets the next compare match value based on the current counter value.

14.33.2 Data Structure Documentation

14.33.2.1 struct ftm_output_cmp_ch_param_t

FlexTimer driver PWM parameters.

Implements : ftm_output_cmp_ch_param_t_Class

Definition at line 71 of file ftm_oc_driver.h.

Data Fields

• uint8_t hwChannelId
• ftm_output_compare_mode_t chMode
• uint16_t comparedValue
• bool enableExternalTrigger

Field Documentation

14.33.2.1.1 ftm_output_compare_mode_t chMode

Channel output mode

Definition at line 74 of file ftm_oc_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.33 FTM Output Compare Driver 371

14.33.2.1.2 uint16_t comparedValue

The compared value

Definition at line 75 of file ftm_oc_driver.h.

14.33.2.1.3 bool enableExternalTrigger

true: enable the generation of a trigger is used for on-chip modules false: disable the generation of a trigger

Definition at line 76 of file ftm_oc_driver.h.

14.33.2.1.4 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 73 of file ftm_oc_driver.h.

14.33.2.2 struct ftm_output_cmp_param_t

FlexTimer driver PWM parameters.

Implements : ftm_output_cmp_param_t_Class

Definition at line 85 of file ftm_oc_driver.h.

Data Fields

• uint8_t nNumOutputChannels
• ftm_config_mode_t mode
• uint16_t maxCountValue
• const ftm_output_cmp_ch_param_t ∗ outputChannelConfig

Field Documentation

14.33.2.2.1 uint16_t maxCountValue

Maximum count value in ticks

Definition at line 89 of file ftm_oc_driver.h.

14.33.2.2.2 ftm_config_mode_t mode

FlexTimer PWM operation mode

Definition at line 88 of file ftm_oc_driver.h.

14.33.2.2.3 uint8_t nNumOutputChannels

Number of output compare channels

Definition at line 87 of file ftm_oc_driver.h.

14.33.2.2.4 const ftm_output_cmp_ch_param_t∗ outputChannelConfig

Output compare channels configuration

Definition at line 90 of file ftm_oc_driver.h.

14.33.3 Enumeration Type Documentation

14.33.3.1 enum ftm_output_compare_mode_t

FlexTimer Mode configuration for output compare mode.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

372 CONTENTS

Implements : ftm_output_compare_mode_t_Class

Enumerator

FTM_DISABLE_OUTPUT No action on output pin

FTM_TOGGLE_ON_MATCH Toggle on match

FTM_CLEAR_ON_MATCH Clear on match

FTM_SET_ON_MATCH Set on match

Definition at line 47 of file ftm_oc_driver.h.

14.33.3.2 enum ftm_output_compare_update_t

FlexTimer input capture type of the next output compare value.

Implements : ftm_output_compare_update_t_Class

Enumerator

FTM_RELATIVE_VALUE Next compared value is relative to current value

FTM_ABSOLUTE_VALUE Next compared value is absolute

Definition at line 60 of file ftm_oc_driver.h.

14.33.4 Function Documentation

14.33.4.1 status_t FTM_DRV_DeinitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗ param)

Disables compare match output control and clears FTM timer configuration.

Parameters

in instance The FTM peripheral instance number.
in param Configuration of the output compare channel

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 108 of file ftm_oc_driver.c.

14.33.4.2 status_t FTM_DRV_InitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗ param)

Configures the FTM to generate timed pulses(Output compare mode).

When the FTM counter matches the value of CnV, the channel output is changed based on what is specified in
the compareMode argument. The signal period can be modified using param->MaxCountValue. After this function
max counter value and CnV are equal. FTM_DRV_SetNextComparematchValue function can be used to change
CnV value.

Parameters

in instance The FTM peripheral instance number.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.33 FTM Output Compare Driver 373

in param configuration of the output compare channels

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 45 of file ftm_oc_driver.c.

14.33.4.3 status_t FTM_DRV_UpdateOutputCompareChannel (uint32_t instance, uint8_t channel, uint16_t
nextComparematchValue, ftm_output_compare_update_t update, bool softwareTrigger)

Sets the next compare match value based on the current counter value.

Parameters

in instance The FTM peripheral instance number.
in channel Configuration of the output compare channel
in next←↩

Comparematch←↩

Value

Timer value in ticks until the next compare match event should appear

in update

• FTM_RELATIVE_VALUE : nextComparemantchValue will be added to
current counter value

• FTM_ABSOLUTE_VALUE : nextComparemantchValue will be written in
counter register as it is

in softwareTrigger This parameter will be true if software trigger sync is enabled and the user
want to generate a software trigger (the value from buffer will be moved to reg-
ister immediate or at next loading point depending on the sync configuration).
Otherwise this parameter must be false and the next compared value will be
stored in buffer until a trigger signal will be received.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 150 of file ftm_oc_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

374 CONTENTS

14.34 FTM Pulse Width Modulation Driver

14.34.1 Detailed Description

FlexTimer Peripheral Pulse Width Modulation Driver.

Data Structures

• struct ftm_pwm_ch_fault_param_t

FlexTimer driver PWM Fault channel parameters. More...

• struct ftm_pwm_fault_param_t

FlexTimer driver PWM Fault parameter. More...

• struct ftm_independent_ch_param_t

FlexTimer driver independent PWM parameter. More...

• struct ftm_combined_ch_param_t

FlexTimer driver combined PWM parameter. More...

• struct ftm_pwm_param_t

FlexTimer driver PWM parameters. More...

Macros

• #define FTM_MAX_DUTY_CYCLE (0x8000U)

Maximum value for PWM duty cycle.

• #define FTM_DUTY_TO_TICKS_SHIFT (15U)

Shift value which converts duty to ticks.

Enumerations

• enum ftm_pwm_update_option_t { FTM_PWM_UPDATE_IN_DUTY_CYCLE = 0x00U, FTM_PWM_UPDA←↩

TE_IN_TICKS = 0x01U }

FlexTimer Configure type of PWM update in the duty cycle or in ticks.

Functions

• status_t FTM_DRV_DeinitPwm (uint32_t instance)

Stops all PWM channels .

• status_t FTM_DRV_InitPwm (uint32_t instance, const ftm_pwm_param_t ∗param)

Configures the duty cycle and frequency and starts outputting the PWM on all channels configured in param.

• status_t FTM_DRV_UpdatePwmChannel (uint32_t instance, uint8_t channel, ftm_pwm_update_option_←↩

t typeOfUpdate, uint16_t firstEdge, uint16_t secondEdge, bool softwareTrigger)

This function updates the waveform output in PWM mode (duty cycle and phase).

• status_t FTM_DRV_FastUpdatePwmChannels (uint32_t instance, uint8_t numberOfChannels, const uint8_t
∗channels, const uint16_t ∗duty, bool softwareTrigger)

This function will update the duty cycle of PWM output for multiple channels.

• status_t FTM_DRV_UpdatePwmPeriod (uint32_t instance, ftm_pwm_update_option_t typeOfUpdate,
uint32_t newValue, bool softwareTrigger)

This function will update the new period in the frequency or in the counter value into mode register which modify the
period of PWM signal on the channel output.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.34 FTM Pulse Width Modulation Driver 375

14.34.2 Data Structure Documentation

14.34.2.1 struct ftm_pwm_ch_fault_param_t

FlexTimer driver PWM Fault channel parameters.

Implements : ftm_pwm_ch_fault_param_t_Class

Definition at line 63 of file ftm_pwm_driver.h.

Data Fields

• bool faultChannelEnabled
• bool faultFilterEnabled
• ftm_polarity_t ftmFaultPinPolarity

Field Documentation

14.34.2.1.1 bool faultChannelEnabled

Fault channel state

Definition at line 65 of file ftm_pwm_driver.h.

14.34.2.1.2 bool faultFilterEnabled

Fault channel filter state

Definition at line 66 of file ftm_pwm_driver.h.

14.34.2.1.3 ftm_polarity_t ftmFaultPinPolarity

Channel output state on fault

Definition at line 67 of file ftm_pwm_driver.h.

14.34.2.2 struct ftm_pwm_fault_param_t

FlexTimer driver PWM Fault parameter.

Implements : ftm_pwm_fault_param_t_Class

Definition at line 75 of file ftm_pwm_driver.h.

Data Fields

• bool pwmOutputStateOnFault
• bool pwmFaultInterrupt
• uint8_t faultFilterValue
• ftm_fault_mode_t faultMode
• ftm_pwm_ch_fault_param_t ftmFaultChannelParam [FTM_FEATURE_FAULT_CHANNELS]

Field Documentation

14.34.2.2.1 uint8_t faultFilterValue

Fault filter value

Definition at line 79 of file ftm_pwm_driver.h.

14.34.2.2.2 ftm_fault_mode_t faultMode

Fault mode

Definition at line 80 of file ftm_pwm_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

376 CONTENTS

14.34.2.2.3 ftm_pwm_ch_fault_param_t ftmFaultChannelParam[FTM_FEATURE_FAULT_CHANNELS]

Fault channels configuration

Definition at line 81 of file ftm_pwm_driver.h.

14.34.2.2.4 bool pwmFaultInterrupt

PWM fault interrupt state

Definition at line 78 of file ftm_pwm_driver.h.

14.34.2.2.5 bool pwmOutputStateOnFault

Output pin state on fault

Definition at line 77 of file ftm_pwm_driver.h.

14.34.2.3 struct ftm_independent_ch_param_t

FlexTimer driver independent PWM parameter.

Implements : ftm_independent_ch_param_t_Class

Definition at line 89 of file ftm_pwm_driver.h.

Data Fields

• uint8_t hwChannelId

• ftm_polarity_t polarity

• uint16_t uDutyCyclePercent

• bool enableExternalTrigger

Field Documentation

14.34.2.3.1 bool enableExternalTrigger

true: enable the generation of a trigger is used for on-chip modules false: disable the generation of a trigger

Definition at line 95 of file ftm_pwm_driver.h.

14.34.2.3.2 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 91 of file ftm_pwm_driver.h.

14.34.2.3.3 ftm_polarity_t polarity

PWM output polarity

Definition at line 92 of file ftm_pwm_driver.h.

14.34.2.3.4 uint16_t uDutyCyclePercent

PWM pulse width, value should be between 0 (0%) to FTM_MAX_DUTY_CYCLE (100%)

Definition at line 93 of file ftm_pwm_driver.h.

14.34.2.4 struct ftm_combined_ch_param_t

FlexTimer driver combined PWM parameter.

Implements : ftm_combined_ch_param_t_Class

Definition at line 104 of file ftm_pwm_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.34 FTM Pulse Width Modulation Driver 377

Data Fields

• uint8_t hwChannelId
• uint16_t firstEdge
• uint16_t secondEdge
• bool deadTime
• bool enableModifiedCombine
• ftm_polarity_t mainChannelPolarity
• bool enableSecondChannelOutput
• ftm_second_channel_polarity_t secondChannelPolarity
• bool enableExternalTrigger
• bool enableExternalTriggerOnNextChn

Field Documentation

14.34.2.4.1 bool deadTime

Enable/disable dead time for channel

Definition at line 111 of file ftm_pwm_driver.h.

14.34.2.4.2 bool enableExternalTrigger

The generation of the channel (n) trigger true: enable the generation of a trigger on the channel (n) false: disable
the generation of a trigger on the channel (n)

Definition at line 117 of file ftm_pwm_driver.h.

14.34.2.4.3 bool enableExternalTriggerOnNextChn

The generation of the channel (n+1) trigger true: enable the generation of a trigger on the channel (n+1) false:
disable the generation of a trigger on the channel (n+1)

Definition at line 120 of file ftm_pwm_driver.h.

14.34.2.4.4 bool enableModifiedCombine

Enable/disable the modified combine mode for channels (n) and (n+1)

Definition at line 112 of file ftm_pwm_driver.h.

14.34.2.4.5 bool enableSecondChannelOutput

Select if channel (n+1) output is enabled/disabled

Definition at line 115 of file ftm_pwm_driver.h.

14.34.2.4.6 uint16_t firstEdge

First edge time. This time is relative to signal period. The value for this parameter is between 0 and FTM_MAX_←↩

DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE = 100% from period)

Definition at line 107 of file ftm_pwm_driver.h.

14.34.2.4.7 uint8_t hwChannelId

Physical hardware channel ID for channel (n)

Definition at line 106 of file ftm_pwm_driver.h.

14.34.2.4.8 ftm_polarity_t mainChannelPolarity

Main channel polarity. For FTM_POLARITY_HIGH first output value is 0 and for FTM_POLAIRTY first output value
is 1

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

378 CONTENTS

Definition at line 113 of file ftm_pwm_driver.h.

14.34.2.4.9 ftm_second_channel_polarity_t secondChannelPolarity

Select channel (n+1) polarity relative to channel (n)

Definition at line 116 of file ftm_pwm_driver.h.

14.34.2.4.10 uint16_t secondEdge

Second edge time. This time is relative to signal period. The value for this parameter is between 0 and FTM_MA←↩

X_DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE = 100% from period)

Definition at line 109 of file ftm_pwm_driver.h.

14.34.2.5 struct ftm_pwm_param_t

FlexTimer driver PWM parameters.

Implements : ftm_pwm_param_t_Class

Definition at line 130 of file ftm_pwm_driver.h.

Data Fields

• uint8_t nNumIndependentPwmChannels
• uint8_t nNumCombinedPwmChannels
• ftm_config_mode_t mode
• uint8_t deadTimeValue
• ftm_deadtime_ps_t deadTimePrescaler
• uint32_t uFrequencyHZ
• const ftm_independent_ch_param_t ∗ pwmIndependentChannelConfig
• const ftm_combined_ch_param_t ∗ pwmCombinedChannelConfig
• const ftm_pwm_fault_param_t ∗ faultConfig

Field Documentation

14.34.2.5.1 ftm_deadtime_ps_t deadTimePrescaler

Dead time pre-scaler value[ticks]

Definition at line 136 of file ftm_pwm_driver.h.

14.34.2.5.2 uint8_t deadTimeValue

Dead time value in [ticks]

Definition at line 135 of file ftm_pwm_driver.h.

14.34.2.5.3 const ftm_pwm_fault_param_t∗ faultConfig

Configuration for PWM fault

Definition at line 140 of file ftm_pwm_driver.h.

14.34.2.5.4 ftm_config_mode_t mode

FTM mode

Definition at line 134 of file ftm_pwm_driver.h.

14.34.2.5.5 uint8_t nNumCombinedPwmChannels

Number of combined PWM channels

Definition at line 133 of file ftm_pwm_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.34 FTM Pulse Width Modulation Driver 379

14.34.2.5.6 uint8_t nNumIndependentPwmChannels

Number of independent PWM channels

Definition at line 132 of file ftm_pwm_driver.h.

14.34.2.5.7 const ftm_combined_ch_param_t∗ pwmCombinedChannelConfig

Configuration for combined PWM channels

Definition at line 139 of file ftm_pwm_driver.h.

14.34.2.5.8 const ftm_independent_ch_param_t∗ pwmIndependentChannelConfig

Configuration for independent PWM channels

Definition at line 138 of file ftm_pwm_driver.h.

14.34.2.5.9 uint32_t uFrequencyHZ

PWM period in Hz

Definition at line 137 of file ftm_pwm_driver.h.

14.34.3 Macro Definition Documentation

14.34.3.1 #define FTM_DUTY_TO_TICKS_SHIFT (15U)

Shift value which converts duty to ticks.

Definition at line 44 of file ftm_pwm_driver.h.

14.34.3.2 #define FTM_MAX_DUTY_CYCLE (0x8000U)

Maximum value for PWM duty cycle.

Definition at line 42 of file ftm_pwm_driver.h.

14.34.4 Enumeration Type Documentation

14.34.4.1 enum ftm_pwm_update_option_t

FlexTimer Configure type of PWM update in the duty cycle or in ticks.

Implements : ftm_pwm_update_option_t_Class

Enumerator

FTM_PWM_UPDATE_IN_DUTY_CYCLE The type of PWM update in the duty cycle/pulse or also use in
frequency update

FTM_PWM_UPDATE_IN_TICKS The type of PWM update in ticks

Definition at line 51 of file ftm_pwm_driver.h.

14.34.5 Function Documentation

14.34.5.1 status_t FTM_DRV_DeinitPwm (uint32_t instance)

Stops all PWM channels .

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

380 CONTENTS

Parameters

in instance The FTM peripheral instance number.

Returns

counter the current counter value

Definition at line 241 of file ftm_pwm_driver.c.

14.34.5.2 status_t FTM_DRV_FastUpdatePwmChannels (uint32_t instance, uint8_t numberOfChannels, const uint8_t ∗
channels, const uint16_t ∗ duty, bool softwareTrigger)

This function will update the duty cycle of PWM output for multiple channels.

Parameters

in instance The FTM peripheral instance number.
in numberOf←↩

Channels
The number of channels which should be updated.

in channels The list of channels which should be updated.
in duty The list of duty cycles for selected channels.
in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 503 of file ftm_pwm_driver.c.

14.34.5.3 status_t FTM_DRV_InitPwm (uint32_t instance, const ftm_pwm_param_t ∗ param)

Configures the duty cycle and frequency and starts outputting the PWM on all channels configured in param.

Parameters

in instance The FTM peripheral instance number.
in param FTM driver PWM parameter to configure PWM options.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 43 of file ftm_pwm_driver.c.

14.34.5.4 status_t FTM_DRV_UpdatePwmChannel (uint32_t instance, uint8_t channel, ftm_pwm_update_option_t
typeOfUpdate, uint16_t firstEdge, uint16_t secondEdge, bool softwareTrigger)

This function updates the waveform output in PWM mode (duty cycle and phase).

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.34 FTM Pulse Width Modulation Driver 381

in instance The FTM peripheral instance number.
in channel The channel number. In combined mode, the code finds the channel.
in typeOfUpdate The type of PWM update in the duty cycle/pulse or in ticks.
in firstEdge Duty cycle or first edge time for PWM mode. Can take value between 0 - F←↩

TM_MAX_DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE
= 100% from period) Or value in ticks for the first of the PWM mode in which
can have value between 0 and ftmPeriod is stored in the state structure.

in secondEdge Second edge time - only for combined mode. Can take value between 0 - F←↩

TM_MAX_DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE
= 100% from period). Or value in ticks for the second of the PWM mode in
which can have value between 0 and ftmPeriod is stored in the state structure.

in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 305 of file ftm_pwm_driver.c.

14.34.5.5 status_t FTM_DRV_UpdatePwmPeriod (uint32_t instance, ftm_pwm_update_option_t typeOfUpdate, uint32_t
newValue, bool softwareTrigger)

This function will update the new period in the frequency or in the counter value into mode register which modify the
period of PWM signal on the channel output.

Parameters

in instance The FTM peripheral instance number.
in typeOfUpdate The type of PWM update is a period in Hz or in ticks.

• For FTM_PWM_UPDATE_IN_DUTY_CYCLE which reuse in FTM_D←↩

RV_UpdatePwmChannel function will update in Hz.

• For FTM_PWM_UPDATE_IN_TICKS will update in ticks.

in newValue The frequency or the counter value which will select with modified value for
PWM signal. If the type of update in the duty cycle, the newValue parameter
must be value between 1U and maximum is the frequency of the FTM counter.
If the type of update in ticks, the newValue parameter must be value between
1U and 0xFFFFU.

in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 437 of file ftm_pwm_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

382 CONTENTS

14.35 FTM Quadrature Decoder Driver

14.35.1 Detailed Description

FlexTimer Peripheral Driver.

Data Structures

• struct ftm_phase_params_t

FlexTimer quadrature decoder channel parameters. More...

• struct ftm_quad_decode_config_t

FTM quadrature configure structure. More...

• struct ftm_quad_decoder_state_t

FTM quadrature state(counter value and flags) More...

Functions

• status_t FTM_DRV_QuadDecodeStart (uint32_t instance, const ftm_quad_decode_config_t ∗config)

Configures the quadrature mode and starts measurement.

• status_t FTM_DRV_QuadDecodeStop (uint32_t instance)

De-activates the quadrature decode mode.

• ftm_quad_decoder_state_t FTM_DRV_QuadGetState (uint32_t instance)

Return the current quadrature decoder state (counter value, overflow flag and overflow direction)

14.35.2 Data Structure Documentation

14.35.2.1 struct ftm_phase_params_t

FlexTimer quadrature decoder channel parameters.

Implements : ftm_phase_params_t_Class

Definition at line 47 of file ftm_qd_driver.h.

Data Fields

• bool phaseInputFilter
• uint8_t phaseFilterVal
• ftm_quad_phase_polarity_t phasePolarity

Field Documentation

14.35.2.1.1 uint8_t phaseFilterVal

Filter value (if input filter is enabled)

Definition at line 51 of file ftm_qd_driver.h.

14.35.2.1.2 bool phaseInputFilter

True: disable phase filter, False: enable phase filter

Definition at line 49 of file ftm_qd_driver.h.

14.35.2.1.3 ftm_quad_phase_polarity_t phasePolarity

Phase polarity

Definition at line 52 of file ftm_qd_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.35 FTM Quadrature Decoder Driver 383

14.35.2.2 struct ftm_quad_decode_config_t

FTM quadrature configure structure.

Implements : ftm_quad_decode_config_t_Class

Definition at line 60 of file ftm_qd_driver.h.

Data Fields

• ftm_quad_decode_mode_t mode
• uint16_t initialVal
• uint16_t maxVal
• ftm_phase_params_t phaseAConfig
• ftm_phase_params_t phaseBConfig

Field Documentation

14.35.2.2.1 uint16_t initialVal

Initial counter value

Definition at line 63 of file ftm_qd_driver.h.

14.35.2.2.2 uint16_t maxVal

Maximum counter value

Definition at line 64 of file ftm_qd_driver.h.

14.35.2.2.3 ftm_quad_decode_mode_t mode

FTM_QUAD_PHASE_ENCODE or FTM_QUAD_COUNT_AND_DIR

Definition at line 62 of file ftm_qd_driver.h.

14.35.2.2.4 ftm_phase_params_t phaseAConfig

Configuration for the input phase a

Definition at line 65 of file ftm_qd_driver.h.

14.35.2.2.5 ftm_phase_params_t phaseBConfig

Configuration for the input phase b

Definition at line 66 of file ftm_qd_driver.h.

14.35.2.3 struct ftm_quad_decoder_state_t

FTM quadrature state(counter value and flags)

Implements : ftm_quad_decoder_state_t_Class

Definition at line 74 of file ftm_qd_driver.h.

Data Fields

• uint16_t counter
• bool overflowFlag
• bool overflowDirection
• bool counterDirection

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

384 CONTENTS

14.35.2.3.1 uint16_t counter

Counter value

Definition at line 76 of file ftm_qd_driver.h.

14.35.2.3.2 bool counterDirection

False FTM counter is decreasing, True FTM counter is increasing

Definition at line 81 of file ftm_qd_driver.h.

14.35.2.3.3 bool overflowDirection

False if overflow occurred at minimum value, True if overflow occurred at maximum value

Definition at line 79 of file ftm_qd_driver.h.

14.35.2.3.4 bool overflowFlag

True if overflow occurred, False if overflow doesn't occurred

Definition at line 77 of file ftm_qd_driver.h.

14.35.3 Function Documentation

14.35.3.1 status_t FTM_DRV_QuadDecodeStart (uint32_t instance, const ftm_quad_decode_config_t ∗ config)

Configures the quadrature mode and starts measurement.

Parameters

in instance Instance number of the FTM module.
in config Configuration structure(quadrature decode mode, polarity for both phases, ini-

tial and maximum value for the counter, filter configuration).

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 50 of file ftm_qd_driver.c.

14.35.3.2 status_t FTM_DRV_QuadDecodeStop (uint32_t instance)

De-activates the quadrature decode mode.

Parameters

in instance Instance number of the FTM module.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 109 of file ftm_qd_driver.c.

14.35.3.3 ftm_quad_decoder_state_t FTM_DRV_QuadGetState (uint32_t instance)

Return the current quadrature decoder state (counter value, overflow flag and overflow direction)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.35 FTM Quadrature Decoder Driver 385

Parameters

in instance Instance number of the FTM module.

Returns

The current state of quadrature decoder

Definition at line 130 of file ftm_qd_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

386 CONTENTS

14.36 Flash Memory (Flash)

14.36.1 Detailed Description

Flash Memory Module provides the general flash APIs.

Flash memory is ideal for single-supply applications, permitting in-the-field erase and reprogramming operations
without the need for any external high voltage power sources. The flash module includes a memory controller
that executes commands to modify flash memory contents. An erased bit reads '1' and a programmed bit reads
'0'. The programming operation is unidirectional; it can only move bits from the '1' state (erased) to the '0' state
(programmed). Only the erase operation restores bits from '0' to '1'; bits cannot be programmed from a '0' to a '1'.

C90TFS Flash Driver

The C90TFS flash module includes the following accessible memory regions.

1. Program flash memory for vector space and code store.

2. FlexNVM for data store, additional code store and also non-volatile storage for the EEPROM filing system
representing data written to the FlexRAM requiring highest endurance.

3. FlexRAM for high-endurance EEPROM data store or traditional RAM.

Some platforms may be designed to have only program flash memory or all of them.

The S32 SDK provides the C90TFS Flash driver of S32K platforms. The driver includes general APIs to handle
specific operations on C90TFS Flash module. The user can use those APIs directly in the application.

EEPROM feature

For platforms with FlexNVM, the flash module provides a built-in hardware emulation scheme to emulate the char-
acteristics of an EEPROM by effectively providing a high-endurance, byte write-able NVM. The EEPROM system is
shown in the following figure.

Figure 1. EEPROM Architecture

To handle with various customer's requirements, the FlexRAM and FlexNVM blocks can be split into partitions:

1. EEPROM partition(EEESIZE) — The amount of FlexRAM used for EEPROM can be set from 0 Bytes (no
EEPROM) to the maximum FlexRAM size. The remainder of the FlexRAM not used for EEPROM is not
accessible while the FlexRAM is configured for EEPROM.The EEPROM partition grows upward from the
bottom of the FlexRAM address space.

2. Data flash partition(DEPART) — The amount of FlexNVM memory used for data flash can be programmed
from 0 bytes (all of the FlexNVM block is available for EEPROM backup) to the maximum size of the FlexNVM
block.

3. FlexNVM EEPROM partition — The amount of FlexNVM memory used for EEPROM backup, which is equal
to the FlexNVM block size minus the data flash memory partition size. The EEPROM backup size must be at
least 16 times the EEPROM partition size in FlexRAM.

The partition information (EEESIZE, DEPART) is programmed using the #FLASH_DRV_DEFlashPartition API.

The function of FlexRAM can be changed from EEPROM usage to traditional RAM for accelerate programming in
#FLASH_DRV_ProgramSection API and vice versa by #FLASH_DRV_SetFlexRamFunction API.

This is example code of EEE usage sequence:

/* Provide information about the flash blocks. */
const flash_user_config_t flashUserConfig =
{

0x00000000u, /* Base address of Program Flash block */
FEATURE_FLS_PF_BLOCK_SIZE, /* Size of Program Flash block */

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.36 Flash Memory (Flash) 387

FEATURE_FLS_DF_START_ADDRESS, /* Base address of Data Flash block */
FEATURE_FLS_FLEX_RAM_START_ADDRESS, /* Base address of FlexRAM block */
NULL_CALLBACK /* Pointer to callback function */

};

/* Declare a FLASH configuration structure which is initialized by FlashInit, and will be used by all
flash APIs */

flash_ssd_config_t flashSSDConfig;

/* Always initialize the driver before calling other functions */
ret = FLASH_DRV_Init(&flashUserConfig, &flashSSDConfig);
if (ret != STATUS_SUCCESS)
{

return ret;
}

#if ((FEATURE_FLS_HAS_FLEX_NVM == 1u) & (FEATURE_FLS_HAS_FLEX_RAM == 1u))
/* Configure FlexRAM as EEPROM if it is currently used as traditional RAM */
if (flashSSDConfig.EEESize == 0u)
{

/* Configure FlexRAM as EEPROM and FlexNVM as EEPROM backup region,
DEFlashPartition will be failed if the IFR region isn’t blank.
Refer to the device document for valid EEPROM Data Size Code
and FlexNVM Partition Code. For example on S32K144:
- EEEDataSizeCode = 0x02u: EEPROM size = 4 Kbytes
- DEPartitionCode = 0x08u: EEPROM backup size = 64 Kbytes */

ret = FLASH_DRV_DEFlashPartition(&flashSSDConfig, 0x02u, 0x08u, 0x0, false, true);
if (ret != STATUS_SUCCESS)
{

return ret;
}
else
{

/* Re-initialize the driver to update the new EEPROM configuration */
ret = FLASH_DRV_Init(&flashUserConfig, &flashSSDConfig);
if (ret != STATUS_SUCCESS)
{

return ret;
}

/* Make FlexRAM available for EEPROM */
ret = FLASH_DRV_SetFlexRamFunction(&flashSSDConfig, EEE_ENABLE, 0x0u, NULL);
if (ret != STATUS_SUCCESS)
{

return ret;
}

}
}
else /* FLexRAM is already configured as EEPROM */
{

/* Make FlexRAM available for EEPROM, make sure that FlexNVM and FlexRAM
are already partitioned successfully before */

ret = FLASH_DRV_SetFlexRamFunction(&flashSSDConfig, EEE_ENABLE, 0x0u, NULL);
if (ret != STATUS_SUCCESS)
{

return ret;
}

}
#endif

Important Note

1. If using callback in the application, any code reachable from this function must not be placed in a Flash block
targeted for a program/erase operation to avoid the RWW error. Functions can be placed in RAM section by
using the START/END_FUNCTION_DEFINITION/DECLARATION_RAMSECTION macros.

2. To suspend the sector erase operation for a simple method, invoke the FLASH_DRV_EraseSuspend function
within callback of FLASH_DRV_EraseSector. In this case, the FLASH_DRV_EraseSuspend must not be
placed in the same block in which the Flash erase sector command is going on.

3. #FLASH_DRV_CommandSequence, FLASH_DRV_EraseSuspend and FLASH_DRV_EraseResume
should be executed from RAM or different Flash blocks which are targeted for writing to avoid the RWW error.
FLASH_DRV_EraseSuspend and FLASH_DRV_EraseResume functions should be called in pairs.

4. To guarantee the correct execution of this driver, the Flash cache in the Flash memory controller module
should be disabled before invoking any API.

5. Partitioning FlexNVM and FlexRAM for EEPROM usage shall be executed only once in the lifetime of the
device.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

388 CONTENTS

6. After successfully partitioning FlexNVM and FlexRAM for EEPROM usage, user needs to call FLASH_DR←↩

V_Init to update memory information in global structure.

Modules

• Flash Memory (Flash)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 389

14.37 Flash Memory (Flash)

14.37.1 Detailed Description

This section describes the programming interface of the Flash Peripheral Driver.

Data Structures

• struct flash_user_config_t

Flash User Configuration Structure. More...
• struct flash_ssd_config_t

Flash SSD Configuration Structure. More...
• struct flash_eeprom_status_t

EEPROM status structure. More...

Macros

• #define CLEAR_FTFx_FSTAT_ERROR_BITS FTFx_FSTAT = (uint8_t)(FTFx_FSTAT_FPVIOL_MASK | F←↩

TFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_RDCOLERR_MASK)
• #define FTFx_WORD_SIZE 0x0002U
• #define FTFx_LONGWORD_SIZE 0x0004U
• #define FTFx_PHRASE_SIZE 0x0008U
• #define FTFx_DPHRASE_SIZE 0x0010U
• #define FTFx_RSRC_CODE_REG FTFx_FCCOB8
• #define FTFx_VERIFY_BLOCK 0x00U
• #define FTFx_VERIFY_SECTION 0x01U
• #define FTFx_PROGRAM_CHECK 0x02U
• #define FTFx_READ_RESOURCE 0x03U
• #define FTFx_PROGRAM_LONGWORD 0x06U
• #define FTFx_PROGRAM_PHRASE 0x07U
• #define FTFx_ERASE_BLOCK 0x08U
• #define FTFx_ERASE_SECTOR 0x09U
• #define FTFx_PROGRAM_SECTION 0x0BU
• #define FTFx_VERIFY_ALL_BLOCK 0x40U
• #define FTFx_READ_ONCE 0x41U
• #define FTFx_PROGRAM_ONCE 0x43U
• #define FTFx_ERASE_ALL_BLOCK 0x44U
• #define FTFx_SECURITY_BY_PASS 0x45U
• #define FTFx_PFLASH_SWAP 0x46U
• #define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U
• #define FTFx_PROGRAM_PARTITION 0x80U
• #define FTFx_SET_EERAM 0x81U
• #define RESUME_WAIT_CNT 0x20U

Resume wait count used in FLASH_DRV_EraseResume function.
• #define SUSPEND_WAIT_CNT 0x40U

Suspend wait count used in FLASH_DRV_EraseSuspend function.
• #define DFLASH_IFR_READRESOURCE_ADDRESS 0x8000FCU
• #define GET_BIT_0_7(value) ((uint8_t)(((uint32_t)(value)) & 0xFFU))
• #define GET_BIT_8_15(value) ((uint8_t)((((uint32_t)(value)) >> 8) & 0xFFU))
• #define GET_BIT_16_23(value) ((uint8_t)((((uint32_t)(value)) >> 16) & 0xFFU))
• #define GET_BIT_24_31(value) ((uint8_t)(((uint32_t)(value)) >> 24))
• #define FLASH_SECURITY_STATE_KEYEN 0x80U
• #define FLASH_SECURITY_STATE_UNSECURED 0x02U
• #define CSE_KEY_SIZE_CODE_MAX 0x03U
• #define FLASH_CALLBACK_CS 0x0AU

Callback period count for FlashCheckSum.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

390 CONTENTS

Typedefs

• typedef void(∗ flash_callback_t) (void)

Call back function pointer data type.

Enumerations

• enum flash_flexRam_function_control_code_t {
EEE_ENABLE = 0x00U, EEE_QUICK_WRITE = 0x55U, EEE_STATUS_QUERY = 0x77U, EEE_COMPL←↩

ETE_INTERRUPT_QUICK_WRITE = 0xAAU,
EEE_DISABLE = 0xFFU }

FlexRAM Function control Code.

Variables

• uint32_t PFlashBase
• uint32_t PFlashSize
• uint32_t DFlashBase
• uint32_t EERAMBase
• flash_callback_t CallBack
• uint32_t PFlashBase
• uint32_t PFlashSize
• uint32_t DFlashBase
• uint32_t DFlashSize
• uint32_t EERAMBase
• uint32_t EEESize
• flash_callback_t CallBack
• uint8_t brownOutCode
• uint16_t numOfRecordReqMaintain
• uint16_t sectorEraseCount

PFlash swap control codes

• #define FTFx_SWAP_SET_INDICATOR_ADDR 0x01U

Initialize Swap System control code.
• #define FTFx_SWAP_SET_IN_PREPARE 0x02U

Set Swap in Update State.
• #define FTFx_SWAP_SET_IN_COMPLETE 0x04U

Set Swap in Complete State.
• #define FTFx_SWAP_REPORT_STATUS 0x08U

Report Swap Status.

PFlash swap states

• #define FTFx_SWAP_UNINIT 0x00U

Uninitialized swap mode.
• #define FTFx_SWAP_READY 0x01U

Ready swap mode.
• #define FTFx_SWAP_UPDATE 0x02U

Update swap mode.
• #define FTFx_SWAP_UPDATE_ERASED 0x03U

Update-Erased swap mode.
• #define FTFx_SWAP_COMPLETE 0x04U

Complete swap mode.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 391

Flash security status

• #define FLASH_NOT_SECURE 0x01U

Flash currently not in secure state.

• #define FLASH_SECURE_BACKDOOR_ENABLED 0x02U

Flash is secured and backdoor key access enabled.

• #define FLASH_SECURE_BACKDOOR_DISABLED 0x04U

Flash is secured and backdoor key access disabled.

Null Callback function definition

• #define NULL_CALLBACK ((flash_callback_t)0xFFFFFFFFU)

Null callback.

Flash driver APIs

• status_t FLASH_DRV_Init (const flash_user_config_t ∗const pUserConf, flash_ssd_config_t ∗const pSSD←↩

Config)

Initializes Flash.

• void FLASH_DRV_GetPFlashProtection (uint32_t ∗protectStatus)

P-Flash get protection.

• status_t FLASH_DRV_SetPFlashProtection (uint32_t protectStatus)

P-Flash set protection.

• void FLASH_DRV_GetSecurityState (uint8_t ∗securityState)

Flash get security state.

• status_t FLASH_DRV_SecurityBypass (const flash_ssd_config_t ∗pSSDConfig, const uint8_t ∗keyBuffer)

Flash security bypass.

• status_t FLASH_DRV_EraseAllBlock (const flash_ssd_config_t ∗pSSDConfig)

Flash erase all blocks.

• status_t FLASH_DRV_VerifyAllBlock (const flash_ssd_config_t ∗pSSDConfig, uint8_t marginLevel)

Flash verify all blocks.

• status_t FLASH_DRV_EraseSector (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size)

Flash erase sector.

• status_t FLASH_DRV_VerifySection (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint16_t number,
uint8_t marginLevel)

Flash verify section.

• void FLASH_DRV_EraseSuspend (void)

Flash erase suspend.

• void FLASH_DRV_EraseResume (void)

Flash erase resume.

• status_t FLASH_DRV_ReadOnce (const flash_ssd_config_t ∗pSSDConfig, uint8_t recordIndex, uint8_t ∗p←↩

DataArray)

Flash read once.

• status_t FLASH_DRV_ProgramOnce (const flash_ssd_config_t ∗pSSDConfig, uint8_t recordIndex, const
uint8_t ∗pDataArray)

Flash program once.

• status_t FLASH_DRV_Program (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size, const
uint8_t ∗pData)

Flash program.

• status_t FLASH_DRV_ProgramCheck (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size,
const uint8_t ∗pExpectedData, uint32_t ∗pFailAddr, uint8_t marginLevel)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

392 CONTENTS

Flash program check.

• status_t FLASH_DRV_CheckSum (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size,
uint32_t ∗pSum)

Calculates check sum.

14.37.2 Data Structure Documentation

14.37.2.1 struct flash_user_config_t

Flash User Configuration Structure.

Implements : flash_user_config_t_Class

Definition at line 554 of file flash_driver.h.

Data Fields

• uint32_t PFlashBase
• uint32_t PFlashSize
• uint32_t DFlashBase
• uint32_t EERAMBase
• flash_callback_t CallBack

14.37.2.2 struct flash_ssd_config_t

Flash SSD Configuration Structure.

The structure includes the static parameters for C90TFS/FTFx which are device-dependent. The fields including
PFlashBlockBase, PFlashBlockSize, DFlashBlockBase, EERAMBlockBase, and CallBack are passed via flash_←↩

user_config_t. The rest of parameters such as DFlashBlockSize, and EEEBlockSize will be initialized in FLASH_←↩

DRV_Init() automatically.

Implements : flash_ssd_config_t_Class

Definition at line 578 of file flash_driver.h.

Data Fields

• uint32_t PFlashBase
• uint32_t PFlashSize
• uint32_t DFlashBase
• uint32_t DFlashSize
• uint32_t EERAMBase
• uint32_t EEESize
• flash_callback_t CallBack

14.37.2.3 struct flash_eeprom_status_t

EEPROM status structure.

Implements : flash_eeprom_status_t_Class

Definition at line 600 of file flash_driver.h.

Data Fields

• uint8_t brownOutCode
• uint16_t numOfRecordReqMaintain
• uint16_t sectorEraseCount

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 393

14.37.3 Macro Definition Documentation

14.37.3.1 #define CLEAR_FTFx_FSTAT_ERROR_BITS FTFx_FSTAT = (uint8_t)(FTFx_FSTAT_FPVIOL_MASK |
FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_RDCOLERR_MASK)

Definition at line 377 of file flash_driver.h.

14.37.3.2 #define CSE_KEY_SIZE_CODE_MAX 0x03U

Definition at line 469 of file flash_driver.h.

14.37.3.3 #define DFLASH_IFR_READRESOURCE_ADDRESS 0x8000FCU

Definition at line 456 of file flash_driver.h.

14.37.3.4 #define FLASH_CALLBACK_CS 0x0AU

Callback period count for FlashCheckSum.

This value is only relevant for FlashCheckSum operation, where a high rate of calling back can impair performance.
The rest of the flash operations invoke the callback as often as possible while waiting for the flash controller to finish
the requested operation.

Definition at line 512 of file flash_driver.h.

14.37.3.5 #define FLASH_NOT_SECURE 0x01U

Flash currently not in secure state.

Definition at line 495 of file flash_driver.h.

14.37.3.6 #define FLASH_SECURE_BACKDOOR_DISABLED 0x04U

Flash is secured and backdoor key access disabled.

Definition at line 499 of file flash_driver.h.

14.37.3.7 #define FLASH_SECURE_BACKDOOR_ENABLED 0x02U

Flash is secured and backdoor key access enabled.

Definition at line 497 of file flash_driver.h.

14.37.3.8 #define FLASH_SECURITY_STATE_KEYEN 0x80U

Definition at line 465 of file flash_driver.h.

14.37.3.9 #define FLASH_SECURITY_STATE_UNSECURED 0x02U

Definition at line 466 of file flash_driver.h.

14.37.3.10 #define FTFx_DPHRASE_SIZE 0x0010U

Definition at line 386 of file flash_driver.h.

14.37.3.11 #define FTFx_ERASE_ALL_BLOCK 0x44U

Definition at line 410 of file flash_driver.h.

14.37.3.12 #define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U

Definition at line 413 of file flash_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

394 CONTENTS

14.37.3.13 #define FTFx_ERASE_BLOCK 0x08U

Definition at line 404 of file flash_driver.h.

14.37.3.14 #define FTFx_ERASE_SECTOR 0x09U

Definition at line 405 of file flash_driver.h.

14.37.3.15 #define FTFx_LONGWORD_SIZE 0x0004U

Definition at line 382 of file flash_driver.h.

14.37.3.16 #define FTFx_PFLASH_SWAP 0x46U

Definition at line 412 of file flash_driver.h.

14.37.3.17 #define FTFx_PHRASE_SIZE 0x0008U

Definition at line 384 of file flash_driver.h.

14.37.3.18 #define FTFx_PROGRAM_CHECK 0x02U

Definition at line 400 of file flash_driver.h.

14.37.3.19 #define FTFx_PROGRAM_LONGWORD 0x06U

Definition at line 402 of file flash_driver.h.

14.37.3.20 #define FTFx_PROGRAM_ONCE 0x43U

Definition at line 409 of file flash_driver.h.

14.37.3.21 #define FTFx_PROGRAM_PARTITION 0x80U

Definition at line 414 of file flash_driver.h.

14.37.3.22 #define FTFx_PROGRAM_PHRASE 0x07U

Definition at line 403 of file flash_driver.h.

14.37.3.23 #define FTFx_PROGRAM_SECTION 0x0BU

Definition at line 406 of file flash_driver.h.

14.37.3.24 #define FTFx_READ_ONCE 0x41U

Definition at line 408 of file flash_driver.h.

14.37.3.25 #define FTFx_READ_RESOURCE 0x03U

Definition at line 401 of file flash_driver.h.

14.37.3.26 #define FTFx_RSRC_CODE_REG FTFx_FCCOB8

Definition at line 392 of file flash_driver.h.

14.37.3.27 #define FTFx_SECURITY_BY_PASS 0x45U

Definition at line 411 of file flash_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 395

14.37.3.28 #define FTFx_SET_EERAM 0x81U

Definition at line 415 of file flash_driver.h.

14.37.3.29 #define FTFx_SWAP_COMPLETE 0x04U

Complete swap mode.

Definition at line 445 of file flash_driver.h.

14.37.3.30 #define FTFx_SWAP_READY 0x01U

Ready swap mode.

Definition at line 439 of file flash_driver.h.

14.37.3.31 #define FTFx_SWAP_REPORT_STATUS 0x08U

Report Swap Status.

Definition at line 429 of file flash_driver.h.

14.37.3.32 #define FTFx_SWAP_SET_IN_COMPLETE 0x04U

Set Swap in Complete State.

Definition at line 427 of file flash_driver.h.

14.37.3.33 #define FTFx_SWAP_SET_IN_PREPARE 0x02U

Set Swap in Update State.

Definition at line 425 of file flash_driver.h.

14.37.3.34 #define FTFx_SWAP_SET_INDICATOR_ADDR 0x01U

Initialize Swap System control code.

Definition at line 423 of file flash_driver.h.

14.37.3.35 #define FTFx_SWAP_UNINIT 0x00U

Uninitialized swap mode.

Definition at line 437 of file flash_driver.h.

14.37.3.36 #define FTFx_SWAP_UPDATE 0x02U

Update swap mode.

Definition at line 441 of file flash_driver.h.

14.37.3.37 #define FTFx_SWAP_UPDATE_ERASED 0x03U

Update-Erased swap mode.

Definition at line 443 of file flash_driver.h.

14.37.3.38 #define FTFx_VERIFY_ALL_BLOCK 0x40U

Definition at line 407 of file flash_driver.h.

14.37.3.39 #define FTFx_VERIFY_BLOCK 0x00U

Definition at line 398 of file flash_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

396 CONTENTS

14.37.3.40 #define FTFx_VERIFY_SECTION 0x01U

Definition at line 399 of file flash_driver.h.

14.37.3.41 #define FTFx_WORD_SIZE 0x0002U

Definition at line 380 of file flash_driver.h.

14.37.3.42 #define GET_BIT_0_7(value) ((uint8_t)(((uint32_t)(value)) & 0xFFU))

Definition at line 459 of file flash_driver.h.

14.37.3.43 #define GET_BIT_16_23(value) ((uint8_t)((((uint32_t)(value)) >> 16) & 0xFFU))

Definition at line 461 of file flash_driver.h.

14.37.3.44 #define GET_BIT_24_31(value) ((uint8_t)(((uint32_t)(value)) >> 24))

Definition at line 462 of file flash_driver.h.

14.37.3.45 #define GET_BIT_8_15(value) ((uint8_t)((((uint32_t)(value)) >> 8) & 0xFFU))

Definition at line 460 of file flash_driver.h.

14.37.3.46 #define NULL_CALLBACK ((flash_callback_t)0xFFFFFFFFU)

Null callback.

Definition at line 523 of file flash_driver.h.

14.37.3.47 #define RESUME_WAIT_CNT 0x20U

Resume wait count used in FLASH_DRV_EraseResume function.

Definition at line 449 of file flash_driver.h.

14.37.3.48 #define SUSPEND_WAIT_CNT 0x40U

Suspend wait count used in FLASH_DRV_EraseSuspend function.

Definition at line 451 of file flash_driver.h.

14.37.4 Typedef Documentation

14.37.4.1 typedef void(∗ flash_callback_t) (void)

Call back function pointer data type.

If using callback in the application, any code reachable from this function must not be placed in a Flash block
targeted for a program/erase operation. Functions can be placed in RAM section by using the START/END_FUN←↩

CTION_DEFINITION/DECLARATION_RAMSECTION macros.

Definition at line 540 of file flash_driver.h.

14.37.5 Enumeration Type Documentation

14.37.5.1 enum flash_flexRam_function_control_code_t

FlexRAM Function control Code.

Implements : flash_flexRAM_function_control_code_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 397

Enumerator

EEE_ENABLE Make FlexRAM available for emulated EEPROM

EEE_QUICK_WRITE Make FlexRAM available for EEPROM quick writes

EEE_STATUS_QUERY EEPROM quick write status query

EEE_COMPLETE_INTERRUPT_QUICK_WRITE Complete interrupted EEPROM quick write process

EEE_DISABLE Make FlexRAM available as RAM

Definition at line 481 of file flash_driver.h.

14.37.6 Function Documentation

14.37.6.1 status_t FLASH_DRV_CheckSum (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size,
uint32_t ∗ pSum)

Calculates check sum.

This API performs 32 bit sum of each byte data over a specified Flash memory range without carry which provides
rapid method for checking data integrity. The callback time period of this API is determined via FLASH_CALLBA←↩

CK_CS macro in flash_driver.h which is used as a counter value for the CallBack() function calling in this API. This
value can be changed as per the user requirement. User can change this value to obtain the maximum permissible
callback time period. This API always returns STATUS_SUCCESS if size provided by user is zero regardless of the
input validation.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address of the Flash range to be summed.
in size Size in byte of the Flash range to be summed.
in pSum To return the sum value.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

14.37.6.2 status_t FLASH_DRV_EraseAllBlock (const flash_ssd_config_t ∗ pSSDConfig)

Flash erase all blocks.

This API erases all Flash memory, initializes the FlexRAM, verifies all memory contents, and then releases the MCU
security.

Parameters

in pSSDConfig The SSD configuration structure pointer.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

398 CONTENTS

14.37.6.3 void FLASH_DRV_EraseResume (void)

Flash erase resume.

This API is used to resume a previous suspended operation of Flash erase sector command This function must be
located in RAM memory or different Flash blocks which are targeted for writing to avoid RWW error.

14.37.6.4 status_t FLASH_DRV_EraseSector (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size)

Flash erase sector.

This API erases one or more sectors in P-Flash or D-Flash memory. This API always returns FTFx_OK if size
provided by the user is zero regardless of the input validation.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Address in the first sector to be erased.
in size Size to be erased in bytes. It is used to determine number of sectors to be

erased.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_UNSUPPORTED: Operation was unsupported.

• STATUS_BUSY: Operation was busy.

14.37.6.5 void FLASH_DRV_EraseSuspend (void)

Flash erase suspend.

This API is used to suspend a current operation of Flash erase sector command. This function must be located in
RAM memory or different Flash blocks which are targeted for writing to avoid the RWW error.

14.37.6.6 void FLASH_DRV_GetPFlashProtection (uint32_t ∗ protectStatus)

P-Flash get protection.

This API retrieves the current P-Flash protection status. Considering the time consumption for getting protection
is very low and even can be ignored. It is not necessary to utilize the Callback function to support the time-critical
events.

Parameters

out protectStatus To return the current value of the P-Flash Protection. Each bit is correspond-
ing to protection of 1/32 of the total P-Flash. The least significant bit is cor-
responding to the lowest address area of P-Flash. The most significant bit is
corresponding to the highest address area of P-Flash and so on. There are
two possible cases as below:

• 0: this area is protected.

• 1: this area is unprotected.

14.37.6.7 void FLASH_DRV_GetSecurityState (uint8_t ∗ securityState)

Flash get security state.

This API retrieves the current Flash security status, including the security enabling state and the back door key
enabling state.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 399

Parameters

out securityState To return the current security status code.

• FLASH_NOT_SECURE (0x01U): Flash currently not in secure state

• FLASH_SECURE_BACKDOOR_ENABLED (0x02U): Flash is secured
and back door key access enabled

• FLASH_SECURE_BACKDOOR_DISABLED (0x04U): Flash is secured
and back door key access disabled.

14.37.6.8 status_t FLASH_DRV_Init (const flash_user_config_t ∗const pUserConf, flash_ssd_config_t ∗const
pSSDConfig)

Initializes Flash.

This API initializes Flash module by clearing status error bit and reporting the memory configuration via SS←↩

D configuration structure.

Parameters

in pUserConf The user configuration structure pointer.
in pSSDConfig The SSD configuration structure pointer.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

14.37.6.9 status_t FLASH_DRV_Program (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size, const
uint8_t ∗ pData)

Flash program.

This API is used to program 4 consecutive bytes (for program long word command) and 8 consecutive bytes (for
program phrase command) on P-Flash or D-Flash block. This API always returns FTFx_OK if size provided by user
is zero regardless of the input validation

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address for the intended program operation.
in size Size in byte to be programmed
in pData Pointer of source address from which data has to be taken for program opera-

tion.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_UNSUPPORTED: Operation was unsupported.

• STATUS_BUSY: Operation was busy.

14.37.6.10 status_t FLASH_DRV_ProgramCheck (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size,
const uint8_t ∗ pExpectedData, uint32_t ∗ pFailAddr, uint8_t marginLevel)

Flash program check.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

400 CONTENTS

This API tests a previously programmed P-Flash or D-Flash long word to see if it reads correctly at the specified
margin level. This API always returns FTFx_OK if size provided by user is zero regardless of the input validation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 401

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address for the intended program check operation.
in size Size in byte to check accuracy of program operation
in pExpectedData The pointer to the expected data.
in pFailAddr Returned the first aligned failing address.
in marginLevel Read margin choice as follows:

• marginLevel = 0x1U: read at User margin 1/0 level.

• marginLevel = 0x2U: read at Factory margin 1/0 level.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

14.37.6.11 status_t FLASH_DRV_ProgramOnce (const flash_ssd_config_t ∗ pSSDConfig, uint8_t recordIndex, const
uint8_t ∗ pDataArray)

Flash program once.

This API is used to program to a reserved 64 byte field located in the P-Flash IFR via given number of record. See
the corresponding reference manual to get correct value of this number.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in recordIndex The record index will be read. It can be from 0x0U to 0x7U or from 0x0U to

0xF according to specific derivative.
in pDataArray Pointer to the array from which data will be taken for program once command.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

14.37.6.12 status_t FLASH_DRV_ReadOnce (const flash_ssd_config_t ∗ pSSDConfig, uint8_t recordIndex, uint8_t ∗
pDataArray)

Flash read once.

This API is used to read out a reserved 64 byte field located in the P-Flash IFR via given number of record. See the
corresponding reference manual to get the correct value of this number.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in recordIndex The record index will be read. It can be from 0x0U to 0x7U or from 0x0U to

0xF according to specific derivative.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

402 CONTENTS

in pDataArray Pointer to the array to return the data read by the read once command.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

14.37.6.13 status_t FLASH_DRV_SecurityBypass (const flash_ssd_config_t ∗ pSSDConfig, const uint8_t ∗ keyBuffer)

Flash security bypass.

This API un-secures the device by comparing the user's provided back door key with the ones in the Flash Config-
uration Field. If they are matched, the security is released. Otherwise, an error code is returned.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in keyBuffer Point to the user buffer containing the back door key.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

14.37.6.14 status_t FLASH_DRV_SetPFlashProtection (uint32_t protectStatus)

P-Flash set protection.

This API sets the P-Flash protection to the intended protection status. Setting P-Flash protection status is subject
to a protection, transition restriction. If there is a setting violation, it returns an error code and the current protection
status will not be changed.

Parameters

in protectStatus The expected protect status user wants to set to P-Flash protection register.
Each bit is corresponding to protection of 1/32 of the total P-Flash. The least
significant bit is corresponding to the lowest address area of P-Flash. The
most significant bit is corresponding to the highest address area of P- Flash,
and so on. There are two possible cases as shown below:

• 0: this area is protected.

• 1: this area is unprotected.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

14.37.6.15 status_t FLASH_DRV_VerifyAllBlock (const flash_ssd_config_t ∗ pSSDConfig, uint8_t marginLevel)

Flash verify all blocks.

This function checks to see if the P-Flash and/or D-Flash, EEPROM backup area, and D-Flash IFR have been
erased to the specified read margin level, if applicable, and releases security if the readout passes.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 403

Parameters

in pSSDConfig The SSD configuration structure pointer.
in marginLevel Read Margin Choice as follows:

• marginLevel = 0x0U: use the Normal read level

• marginLevel = 0x1U: use the User read

• marginLevel = 0x2U: use the Factory read

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

14.37.6.16 status_t FLASH_DRV_VerifySection (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint16_t number,
uint8_t marginLevel)

Flash verify section.

This API checks if a section of the P-Flash or the D-Flash memory is erased to the specified read margin level.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address for the intended verify operation.
in number Number of alignment unit to be verified. Refer to corresponding reference

manual to get correct information of alignment constrain.
in marginLevel Read Margin Choice as follows:

• marginLevel = 0x0U: use Normal read level

• marginLevel = 0x1U: use the User read

• marginLevel = 0x2U: use the Factory read

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

14.37.7 Variable Documentation

14.37.7.1 uint8_t brownOutCode

Brown-out detection code

Definition at line 602 of file flash_driver.h.

14.37.7.2 flash_callback_t CallBack

Call back function to service the time critical events. Any code reachable from this function must not be placed in a
Flash block targeted for a program/erase operation

Definition at line 562 of file flash_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

404 CONTENTS

14.37.7.3 flash_callback_t CallBack

Call back function to service the time critical events. Any code reachable from this function must not be placed in a
Flash block targeted for a program/erase operation

Definition at line 591 of file flash_driver.h.

14.37.7.4 uint32_t DFlashBase

For FlexNVM device, this is the base address of D-Flash memory (FlexNVM memory); For non-FlexNVM device,
this field is unused

Definition at line 558 of file flash_driver.h.

14.37.7.5 uint32_t DFlashBase

For FlexNVM device, this is the base address of D-Flash memory (FlexNVM memory); For non-FlexNVM device,
this field is unused

Definition at line 582 of file flash_driver.h.

14.37.7.6 uint32_t DFlashSize

For FlexNVM device, this is the size in byte of area which is used as D-Flash from FlexNVM memory; For non-←↩

FlexNVM device, this field is unused

Definition at line 584 of file flash_driver.h.

14.37.7.7 uint32_t EEESize

For FlexNVM device, this is the size in byte of EEPROM area which was partitioned from FlexRAM; For non-Flex←↩

NVM device, this field is unused

Definition at line 589 of file flash_driver.h.

14.37.7.8 uint32_t EERAMBase

The base address of FlexRAM (for FlexNVM device) or acceleration RAM memory (for non-FlexNVM device)

Definition at line 560 of file flash_driver.h.

14.37.7.9 uint32_t EERAMBase

The base address of FlexRAM (for FlexNVM device) or acceleration RAM memory (for non-FlexNVM device)

Definition at line 587 of file flash_driver.h.

14.37.7.10 uint16_t numOfRecordReqMaintain

Number of EEPROM quick write records requiring maintenance

Definition at line 603 of file flash_driver.h.

14.37.7.11 uint32_t PFlashBase

The base address of P-Flash memory

Definition at line 556 of file flash_driver.h.

14.37.7.12 uint32_t PFlashBase

The base address of P-Flash memory

Definition at line 580 of file flash_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.37 Flash Memory (Flash) 405

14.37.7.13 uint32_t PFlashSize

The size in byte of P-Flash memory

Definition at line 557 of file flash_driver.h.

14.37.7.14 uint32_t PFlashSize

The size in byte of P-Flash memory

Definition at line 581 of file flash_driver.h.

14.37.7.15 uint16_t sectorEraseCount

EEPROM sector erase count

Definition at line 604 of file flash_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

406 CONTENTS

14.38 Flash_mx25l6433f_drv

14.38.1 Detailed Description

Data Structures

• struct flash_mx25l6433f_user_config_t

Driver configuration structure. More...

• struct flash_mx25l6433f_state_t

Driver internal context structure. More...

• struct flash_mx25l6433f_secure_lock_t

Flash protection settings Implements : flash_mx25l6433f_secure_lock_t_Class. More...

Enumerations

• enum flash_mx25l6433f_prot_dir_t { FLASH_MX25L6433F_PROT_DIR_TOP = 0x00U, FLASH_MX25←↩

L6433F_PROT_DIR_BOTTOM = 0x01U }

Flash protection direction Implements : flash_mx25l6433f_prot_dir_t_Class.

• enum flash_mx25l6433f_drv_strength_t { FLASH_MX25L6433F_DRV_STRENGTH_HIGH = 0x00U, FLA←↩

SH_MX25L6433F_DRV_STRENGTH_LOW = 0x01U }

Flash device drive strength Implements : flash_mx25l6433f_drv_strength_t_Class.

• enum flash_mx25l6433f_prot_size_t {
FLASH_MX25L6433F_PROT_SIZE_0 = 0x00U, FLASH_MX25L6433F_PROT_SIZE_64K = 0x01U, FLAS←↩

H_MX25L6433F_PROT_SIZE_128K = 0x02U, FLASH_MX25L6433F_PROT_SIZE_256K = 0x03U,
FLASH_MX25L6433F_PROT_SIZE_512K = 0x04U, FLASH_MX25L6433F_PROT_SIZE_1M = 0x05U, FL←↩

ASH_MX25L6433F_PROT_SIZE_2M = 0x06U, FLASH_MX25L6433F_PROT_SIZE_4M = 0x07U,
FLASH_MX25L6433F_PROT_SIZE_8M = 0x08U }

Size of flash protected area Implements : flash_mx25l6433f_prot_size_t_Class.

FLASH_MX25L6433F Driver

• status_t FLASH_MX25L6433F_DRV_Init (uint32_t instance, const flash_mx25l6433f_user_config_t ∗user←↩

ConfigPtr, flash_mx25l6433f_state_t ∗state)

Initializes the serial flash memory driver.

• status_t FLASH_MX25L6433F_DRV_Deinit (uint32_t instance)

De-initialize the MX25L6433F flash driver.

• status_t FLASH_MX25L6433F_DRV_SetProtection (uint32_t instance, flash_mx25l6433f_prot_dir_t direc-
tion, flash_mx25l6433f_prot_size_t size)

Configure protected area of the device.

• status_t FLASH_MX25L6433F_DRV_GetProtection (uint32_t instance, flash_mx25l6433f_prot_dir_←↩

t ∗direction, flash_mx25l6433f_prot_size_t ∗size)

Get protected area of the device.

• status_t FLASH_MX25L6433F_DRV_SetSecureLock (uint32_t instance)

Locks the customer sector of the secured OTP area.

• status_t FLASH_MX25L6433F_DRV_GetSecureLock (uint32_t instance, flash_mx25l6433f_secure_lock_←↩

t ∗lock)

Get lock status of the secured OTP area.

• status_t FLASH_MX25L6433F_DRV_Read (uint32_t instance, uint32_t address, uint8_t ∗data, uint32_t size)

Read data from serial flash.

• status_t FLASH_MX25L6433F_DRV_Erase4K (uint32_t instance, uint32_t address)

Erase a 4k sector in the serial flash.

• status_t FLASH_MX25L6433F_DRV_Erase32K (uint32_t instance, uint32_t address)

Erase a 32k block in the serial flash.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.38 Flash_mx25l6433f_drv 407

• status_t FLASH_MX25L6433F_DRV_Erase64K (uint32_t instance, uint32_t address)

Erase a 64k block in the serial flash.

• status_t FLASH_MX25L6433F_DRV_EraseAll (uint32_t instance)

Erases the entire serial flash.

• status_t FLASH_MX25L6433F_DRV_EraseVerify (uint32_t instance, uint32_t address, uint32_t size)

Checks whether or not an area in the serial flash is erased.

• status_t FLASH_MX25L6433F_DRV_Program (uint32_t instance, uint32_t address, uint8_t ∗data, uint32_t
size)

Writes data in serial flash.

• status_t FLASH_MX25L6433F_DRV_ProgramVerify (uint32_t instance, uint32_t address, const uint8_←↩

t ∗data, uint32_t size)

Verifies the correctness of the programmed data.

• status_t FLASH_MX25L6433F_DRV_GetStatus (uint32_t instance)

Get the status of the last operation.

• status_t FLASH_MX25L6433F_DRV_Reset (uint32_t instance)

Reset the serial flash device.

• status_t FLASH_MX25L6433F_DRV_EnterOTP (uint32_t instance)

Enters OTP mode.

• status_t FLASH_MX25L6433F_DRV_ExitOTP (uint32_t instance)

Exits OTP mode.

• status_t FLASH_MX25L6433F_DRV_EnterDPD (uint32_t instance)

Enters Deep Power Down mode.

• status_t FLASH_MX25L6433F_DRV_ExitDPD (uint32_t instance)

Exits Deep Power Down mode.

14.38.2 Data Structure Documentation

14.38.2.1 struct flash_mx25l6433f_user_config_t

Driver configuration structure.

This structure is used to provide configuration parameters for the mx25l6433f flash driver at initialization time.
Implements : flash_mx25l6433f_user_config_t_Class

Definition at line 85 of file flash_mx25l6433f_driver.h.

Data Fields

• bool dmaSupport

• flash_mx25l6433f_drv_strength_t outputDriverStrength

Field Documentation

14.38.2.1.1 bool dmaSupport

Enables DMA support in the driver

Definition at line 87 of file flash_mx25l6433f_driver.h.

14.38.2.1.2 flash_mx25l6433f_drv_strength_t outputDriverStrength

Output driver level of the device

Definition at line 88 of file flash_mx25l6433f_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

408 CONTENTS

14.38.2.2 struct flash_mx25l6433f_state_t

Driver internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the FLAS←↩

H_MX25L6433F_DRV_Init() function, then it cannot be freed until the driver is de-initialized using FLASH_MX25←↩

L6433F_DRV_Deinit(). The application should make no assumptions about the content of this structure.

Definition at line 100 of file flash_mx25l6433f_driver.h.

14.38.2.3 struct flash_mx25l6433f_secure_lock_t

Flash protection settings Implements : flash_mx25l6433f_secure_lock_t_Class.

Definition at line 114 of file flash_mx25l6433f_driver.h.

Data Fields

• bool userAreaLock
• bool factoryAreaLock

Field Documentation

14.38.2.3.1 bool factoryAreaLock

Factory secured area (2nd 4KB region) is locked.

Definition at line 117 of file flash_mx25l6433f_driver.h.

14.38.2.3.2 bool userAreaLock

User secured area (1st 4KB region) is locked.

Definition at line 116 of file flash_mx25l6433f_driver.h.

14.38.3 Enumeration Type Documentation

14.38.3.1 enum flash_mx25l6433f_drv_strength_t

Flash device drive strength Implements : flash_mx25l6433f_drv_strength_t_Class.

Enumerator

FLASH_MX25L6433F_DRV_STRENGTH_HIGH Full driver strength.

FLASH_MX25L6433F_DRV_STRENGTH_LOW Low (1/4) driver strength.

Definition at line 50 of file flash_mx25l6433f_driver.h.

14.38.3.2 enum flash_mx25l6433f_prot_dir_t

Flash protection direction Implements : flash_mx25l6433f_prot_dir_t_Class.

Enumerator

FLASH_MX25L6433F_PROT_DIR_TOP Top flash area protected.

FLASH_MX25L6433F_PROT_DIR_BOTTOM Bottom flash area protected.

Definition at line 40 of file flash_mx25l6433f_driver.h.

14.38.3.3 enum flash_mx25l6433f_prot_size_t

Size of flash protected area Implements : flash_mx25l6433f_prot_size_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.38 Flash_mx25l6433f_drv 409

Enumerator

FLASH_MX25L6433F_PROT_SIZE_0 Entire flash unprotected.

FLASH_MX25L6433F_PROT_SIZE_64K 64k flash area protected.

FLASH_MX25L6433F_PROT_SIZE_128K 128k flash area protected.

FLASH_MX25L6433F_PROT_SIZE_256K 256k flash area protected.

FLASH_MX25L6433F_PROT_SIZE_512K 512k flash area protected.

FLASH_MX25L6433F_PROT_SIZE_1M 1M flash area protected.

FLASH_MX25L6433F_PROT_SIZE_2M 2M flash area protected.

FLASH_MX25L6433F_PROT_SIZE_4M 4M flash area protected.

FLASH_MX25L6433F_PROT_SIZE_8M Entire flash area protected.

Definition at line 60 of file flash_mx25l6433f_driver.h.

14.38.4 Function Documentation

14.38.4.1 status_t FLASH_MX25L6433F_DRV_Deinit (uint32_t instance)

De-initialize the MX25L6433F flash driver.

This function de-initializes the MX25L6433F flash driver. The driver can't be used again until reinitialized. The
context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 561 of file flash_mx25l6433f_driver.c.

14.38.4.2 status_t FLASH_MX25L6433F_DRV_EnterDPD (uint32_t instance)

Enters Deep Power Down mode.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 1044 of file flash_mx25l6433f_driver.c.

14.38.4.3 status_t FLASH_MX25L6433F_DRV_EnterOTP (uint32_t instance)

Enters OTP mode.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 1002 of file flash_mx25l6433f_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

410 CONTENTS

14.38.4.4 status_t FLASH_MX25L6433F_DRV_Erase32K (uint32_t instance, uint32_t address)

Erase a 32k block in the serial flash.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.38 Flash_mx25l6433f_drv 411

Parameters

instance QuadSPI peripheral instance number
address Address of block to be erased

Returns

Error or success status returned by API

Definition at line 768 of file flash_mx25l6433f_driver.c.

14.38.4.5 status_t FLASH_MX25L6433F_DRV_Erase4K (uint32_t instance, uint32_t address)

Erase a 4k sector in the serial flash.

Parameters

instance QuadSPI peripheral instance number
address Address of sector to be erased

Returns

Error or success status returned by API

Definition at line 741 of file flash_mx25l6433f_driver.c.

14.38.4.6 status_t FLASH_MX25L6433F_DRV_Erase64K (uint32_t instance, uint32_t address)

Erase a 64k block in the serial flash.

Parameters

instance QuadSPI peripheral instance number
address Address of block to be erased

Returns

Error or success status returned by API

Definition at line 795 of file flash_mx25l6433f_driver.c.

14.38.4.7 status_t FLASH_MX25L6433F_DRV_EraseAll (uint32_t instance)

Erases the entire serial flash.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 822 of file flash_mx25l6433f_driver.c.

14.38.4.8 status_t FLASH_MX25L6433F_DRV_EraseVerify (uint32_t instance, uint32_t address, uint32_t size)

Checks whether or not an area in the serial flash is erased.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

412 CONTENTS

Parameters

instance QuadSPI peripheral instance number
address Start address of area to be verified

size Size of area to be verified

Returns

Error or success status returned by API

Definition at line 849 of file flash_mx25l6433f_driver.c.

14.38.4.9 status_t FLASH_MX25L6433F_DRV_ExitDPD (uint32_t instance)

Exits Deep Power Down mode.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 1065 of file flash_mx25l6433f_driver.c.

14.38.4.10 status_t FLASH_MX25L6433F_DRV_ExitOTP (uint32_t instance)

Exits OTP mode.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 1023 of file flash_mx25l6433f_driver.c.

14.38.4.11 status_t FLASH_MX25L6433F_DRV_GetProtection (uint32_t instance, flash_mx25l6433f_prot_dir_t ∗
direction, flash_mx25l6433f_prot_size_t ∗ size)

Get protected area of the device.

Parameters

instance QuadSPI peripheral instance number
direction Location of protected area (top or bottom)

size Size of protected area

Returns

Error or success status returned by API

Definition at line 614 of file flash_mx25l6433f_driver.c.

14.38.4.12 status_t FLASH_MX25L6433F_DRV_GetSecureLock (uint32_t instance, flash_mx25l6433f_secure_lock_t ∗
lock)

Get lock status of the secured OTP area.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.38 Flash_mx25l6433f_drv 413

Parameters

instance QuadSPI peripheral instance number
lock Lock status of the secured OTP area

Returns

Error or success status returned by API

Definition at line 682 of file flash_mx25l6433f_driver.c.

14.38.4.13 status_t FLASH_MX25L6433F_DRV_GetStatus (uint32_t instance)

Get the status of the last operation.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 937 of file flash_mx25l6433f_driver.c.

14.38.4.14 status_t FLASH_MX25L6433F_DRV_Init (uint32_t instance, const flash_mx25l6433f_user_config_t ∗
userConfigPtr, flash_mx25l6433f_state_t ∗ state)

Initializes the serial flash memory driver.

This function initializes the MX25L6433F flash driver and prepares it for operation.

Parameters

instance QuadSPI peripheral instance number
userConfigPtr Pointer to the MX25L6433F flash driver user configuration structure. The function reads

configuration data from this structure and initializes the driver accordingly. The application
may free this structure after the function returns.

master Pointer to the MX25L6433F flash driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLASH_M←↩

X25L6433F_DRV_Deinit().

Returns

Error or success status returned by API

Definition at line 522 of file flash_mx25l6433f_driver.c.

14.38.4.15 status_t FLASH_MX25L6433F_DRV_Program (uint32_t instance, uint32_t address, uint8_t ∗ data, uint32_t size)

Writes data in serial flash.

Parameters

instance QuadSPI peripheral instance number
address Start address of area to be programmed

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

414 CONTENTS

data Data to be programmed in flash
size Size of data buffer

Returns

Error or success status returned by API

Definition at line 872 of file flash_mx25l6433f_driver.c.

14.38.4.16 status_t FLASH_MX25L6433F_DRV_ProgramVerify (uint32_t instance, uint32_t address, const uint8_t ∗ data,
uint32_t size)

Verifies the correctness of the programmed data.

Parameters

instance QuadSPI peripheral instance number
address Start address of area to be verified

data Data to be verified
size Size of data buffer

Returns

Error or success status returned by API

Definition at line 911 of file flash_mx25l6433f_driver.c.

14.38.4.17 status_t FLASH_MX25L6433F_DRV_Read (uint32_t instance, uint32_t address, uint8_t ∗ data, uint32_t size)

Read data from serial flash.

Parameters

instance QuadSPI peripheral instance number
address Start address for read operation

data Buffer where to store read data
size Size of data buffer

Returns

Error or success status returned by API

Definition at line 709 of file flash_mx25l6433f_driver.c.

14.38.4.18 status_t FLASH_MX25L6433F_DRV_Reset (uint32_t instance)

Reset the serial flash device.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 977 of file flash_mx25l6433f_driver.c.

14.38.4.19 status_t FLASH_MX25L6433F_DRV_SetProtection (uint32_t instance, flash_mx25l6433f_prot_dir_t direction,
flash_mx25l6433f_prot_size_t size)

Configure protected area of the device.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.38 Flash_mx25l6433f_drv 415

This function configures the size and location (top or bottom) of protected area. Note that due to device limitations,
once the protected area is set to BOTTOM it cannot be changed back (the setting is "one time program")

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

416 CONTENTS

Parameters

instance QuadSPI peripheral instance number
direction Location of protected area (top or bottom)

size Size of protected area

Returns

Error or success status returned by API

Definition at line 578 of file flash_mx25l6433f_driver.c.

14.38.4.20 status_t FLASH_MX25L6433F_DRV_SetSecureLock (uint32_t instance)

Locks the customer sector of the secured OTP area.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 656 of file flash_mx25l6433f_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 417

14.39 FlexCAN Driver

14.39.1 Detailed Description

How to use the FlexCAN driver in your application

In order to be able to use the FlexCAN in your application, the first thing to do is initializing it with the desired
configuration. This is done by calling the FLEXCAN_DRV_Init function. One of the arguments passed to this
function is the configuration which will be used for the FlexCAN module, specified by the flexcan_user_config_t
structure.

The flexcan_user_config_t structure allows you to configure the following:

• the number of message buffers needed;

• the number of Rx FIFO ID filters needed;

• enable/disable the Rx FIFO feature;

• the operation mode, which can be one of the following:

– normal mode;

– listen-only mode;

– loopback mode;

– freeze mode;

– disable mode;

• the payload size of the message buffers:

– 8 bytes;

– 16 bytes (only available with the FD feature enabled);

– 32 bytes (only available with the FD feature enabled);

– 64 bytes (only available with the FD feature enabled);

• enable/disable the Flexible Data-rate feature;

• the clock source of the CAN Protocol Engine (PE);

• the bitrate used for standard frames or for the arbitration phase of FD frames;

• the bitrate used for the data phase of FD frames;

• the Rx transfer type, which can be one of the following:

– using interrupts;

– using DMA;

• the DMA channel number to be used for DMA transfers;

The bitrate is represented by a flexcan_time_segment_t structure, with the following fields:

• propagation segment;

• phase segment 1;

• phase segment 2;

• clock prescaler division factor;

• resync jump width.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

418 CONTENTS

Details about these fields can be found in the reference manual.

In order to use a mailbox for transmission/reception, it should be initialized using either FLEXCAN_DRV_Config←↩

RxMb, FLEXCAN_DRV_ConfigRxFifo or FLEXCAN_DRV_ConfigTxMb.

After having the mailbox configured, you can start sending/receiving using it by calling one of the following
functions:

• FLEXCAN_DRV_Send;

• FLEXCAN_DRV_SendBlocking;

• FLEXCAN_DRV_Receive;

• FLEXCAN_DRV_ReceiveBlocking;

• FLEXCAN_DRV_RxFifo;

• FLEXCAN_DRV_RxFifoBlocking.

A default FlexCAN configuration can be accesed by calling the FLEXCAN_DRV_GetDefaultConfig function. This
function takes as argument a flexcan_user_config_t structure and fills it according to the following settings:

• 16 message buffers

• flexible data rate disabled

• Rx FIFO disabled

• normal operation mode

• 8 byte payload size

• Protocol Engine clock = Oscillator clock

• bitrate of 500 Kbit/s (computed for PE clock = 8 MHz with sample point = 87.5)

Important Notes

• The FlexCAN driver does not handle clock setup or any kind of pin configuration. This is handled by the Clock
Manager and PinSettings modules, respectively. The driver assumes that correct clock configurations have
been made, so it is the user's responsibility to set up clocking and pin configurations correctly.

• For some platforms, the clock source of the CAN Protocol Engine (PE) is not configurable from the FlexCAN
module. If this feature is not supported, the pe_clock field from the FlexCAN configuration structure is not
present.

• DMA module has to be initialized prior to FlexCAN Rx FIFO usage in DMA mode; also, the DMA channel
needs to be allocated by the application (the driver only takes care of configuring the DMA channel received
in the configuration structure).

Example:

#define INST_CANCOM1 (0U)
#define RX_MAILBOX (1U)
#define MSG_ID (2U)

flexcan_state_t canCom1_State;

const flexcan_user_config_t canCom1_InitConfig0 = {
.fd_enable = true,
.pe_clock = FLEXCAN_CLK_SOURCE_SOSCDIV2,
.max_num_mb = 16,
.num_id_filters = FLEXCAN_RX_FIFO_ID_FILTERS_8,
.is_rx_fifo_needed = false,
.flexcanMode = FLEXCAN_NORMAL_MODE,
.payload = FLEXCAN_PAYLOAD_SIZE_8,
.bitrate = {

.propSeg = 7,

.phaseSeg1 = 4,

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 419

.phaseSeg2 = 1,

.preDivider = 0,

.rJumpwidth = 1
},
.bitrate_cbt = {

.propSeg = 11,

.phaseSeg1 = 1,

.phaseSeg2 = 1,

.preDivider = 0,

.rJumpwidth = 1
},
.transfer_type = FLEXCAN_RXFIFO_USING_INTERRUPTS,
.rxFifoDMAChannel = 0U

};

/* Initialize FlexCAN driver */
FLEXCAN_DRV_Init(INST_CANCOM1, &canCom1_State, &canCom1_InitConfig0);

/* Set information about the data to be received */
flexcan_data_info_t dataInfo =
{

.data_length = 1U,

.msg_id_type = FLEXCAN_MSG_ID_STD,

.enable_brs = true,

.fd_enable = true,

.fd_padding = 0U
};

/* Configure Rx message buffer with index 1 to receive frames with ID 2 */
FLEXCAN_DRV_ConfigRxMb(INST_CANCOM1, RX_MAILBOX, &dataInfo, MSG_ID);

/* Receive a frame in the recvBuff variable */
flexcan_msgbuff_t recvBuff;

FLEXCAN_DRV_Receive(INST_CANCOM1, RX_MAILBOX, &recvBuff);
/* Wait for the message to be received */
while (FLEXCAN_DRV_GetTransferStatus(INST_CANCOM1, RX_MAILBOX) == STATUS_BUSY)

;

/* De-initialize driver */
FLEXCAN_DRV_Deinit(INST_CANCOM1);

Data Structures

• struct flexcan_msgbuff_t

FlexCAN message buffer structure Implements : flexcan_msgbuff_t_Class. More...

• struct flexcan_mb_handle_t

Information needed for internal handling of a given MB. Implements : flexcan_mb_handle_t_Class. More...

• struct FlexCANState

Internal driver state information. More...

• struct flexcan_data_info_t

FlexCAN data info from user Implements : flexcan_data_info_t_Class. More...

• struct flexcan_id_table_t

FlexCAN Rx FIFO ID filter table structure Implements : flexcan_id_table_t_Class. More...

• struct flexcan_time_segment_t

FlexCAN bitrate related structures Implements : flexcan_time_segment_t_Class. More...

• struct flexcan_user_config_t

FlexCAN configuration. More...

Typedefs

• typedef struct FlexCANState flexcan_state_t

Internal driver state information.

• typedef void(∗ flexcan_callback_t) (uint8_t instance, flexcan_event_type_t eventType, flexcan_state_←↩

t ∗flexcanState)

FlexCAN Driver callback function type Implements : flexcan_callback_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

420 CONTENTS

Enumerations

• enum flexcan_rxfifo_transfer_type_t { FLEXCAN_RXFIFO_USING_INTERRUPTS, FLEXCAN_RXFIFO_U←↩

SING_DMA }

The type of the RxFIFO transfer (interrupts/DMA). Implements : flexcan_rxfifo_transfer_type_t_Class.

• enum flexcan_event_type_t { FLEXCAN_EVENT_RX_COMPLETE, FLEXCAN_EVENT_RXFIFO_COMPL←↩

ETE, FLEXCAN_EVENT_TX_COMPLETE }

The type of the event which occurred when the callback was invoked. Implements : flexcan_event_type_t_Class.

• enum flexcan_mb_state_t { FLEXCAN_MB_IDLE, FLEXCAN_MB_RX_BUSY, FLEXCAN_MB_TX_BUSY }

The state of a given MB (idle/Rx busy/Tx busy). Implements : flexcan_mb_state_t_Class.

• enum flexcan_msgbuff_id_type_t { FLEXCAN_MSG_ID_STD, FLEXCAN_MSG_ID_EXT }

FlexCAN Message Buffer ID type Implements : flexcan_msgbuff_id_type_t_Class.

• enum flexcan_rx_fifo_id_filter_num_t {
FLEXCAN_RX_FIFO_ID_FILTERS_8 = 0x0, FLEXCAN_RX_FIFO_ID_FILTERS_16 = 0x1, FLEXCAN_R←↩

X_FIFO_ID_FILTERS_24 = 0x2, FLEXCAN_RX_FIFO_ID_FILTERS_32 = 0x3,
FLEXCAN_RX_FIFO_ID_FILTERS_40 = 0x4, FLEXCAN_RX_FIFO_ID_FILTERS_48 = 0x5, FLEXCAN_←↩

RX_FIFO_ID_FILTERS_56 = 0x6, FLEXCAN_RX_FIFO_ID_FILTERS_64 = 0x7,
FLEXCAN_RX_FIFO_ID_FILTERS_72 = 0x8, FLEXCAN_RX_FIFO_ID_FILTERS_80 = 0x9, FLEXCAN_←↩

RX_FIFO_ID_FILTERS_88 = 0xA, FLEXCAN_RX_FIFO_ID_FILTERS_96 = 0xB,
FLEXCAN_RX_FIFO_ID_FILTERS_104 = 0xC, FLEXCAN_RX_FIFO_ID_FILTERS_112 = 0xD, FLEXCA←↩

N_RX_FIFO_ID_FILTERS_120 = 0xE, FLEXCAN_RX_FIFO_ID_FILTERS_128 = 0xF }

FlexCAN Rx FIFO filters number Implements : flexcan_rx_fifo_id_filter_num_t_Class.

• enum flexcan_rx_mask_type_t { FLEXCAN_RX_MASK_GLOBAL, FLEXCAN_RX_MASK_INDIVIDUAL }

FlexCAN Rx mask type. Implements : flexcan_rx_mask_type_t_Class.

• enum flexcan_rx_fifo_id_element_format_t { FLEXCAN_RX_FIFO_ID_FORMAT_A, FLEXCAN_RX_FIFO←↩

_ID_FORMAT_B, FLEXCAN_RX_FIFO_ID_FORMAT_C, FLEXCAN_RX_FIFO_ID_FORMAT_D }

ID formats for Rx FIFO Implements : flexcan_rx_fifo_id_element_format_t_Class.

• enum flexcan_operation_modes_t {
FLEXCAN_NORMAL_MODE, FLEXCAN_LISTEN_ONLY_MODE, FLEXCAN_LOOPBACK_MODE, FLEX←↩

CAN_FREEZE_MODE,
FLEXCAN_DISABLE_MODE }

FlexCAN operation modes Implements : flexcan_operation_modes_t_Class.

• enum flexcan_fd_payload_size_t { FLEXCAN_PAYLOAD_SIZE_8 = 0, FLEXCAN_PAYLOAD_SIZE_16, F←↩

LEXCAN_PAYLOAD_SIZE_32, FLEXCAN_PAYLOAD_SIZE_64 }

FlexCAN payload sizes Implements : flexcan_fd_payload_size_t_Class.

Bit rate

• void FLEXCAN_DRV_SetBitrate (uint8_t instance, const flexcan_time_segment_t ∗bitrate)

Sets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

• void FLEXCAN_DRV_SetBitrateCbt (uint8_t instance, const flexcan_time_segment_t ∗bitrate)

Sets the FlexCAN bit rate for the data phase of FD frames (BRS enabled).

• void FLEXCAN_DRV_GetBitrate (uint8_t instance, flexcan_time_segment_t ∗bitrate)

Gets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

• void FLEXCAN_DRV_GetBitrateFD (uint8_t instance, flexcan_time_segment_t ∗bitrate)

Gets the FlexCAN bit rate for the data phase of FD frames (BRS enabled).

Rx MB and Rx FIFO masks

• void FLEXCAN_DRV_SetRxMaskType (uint8_t instance, flexcan_rx_mask_type_t type)

Sets the Rx masking type.

• void FLEXCAN_DRV_SetRxFifoGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 421

Sets the FlexCAN Rx FIFO global mask (standard or extended).

• void FLEXCAN_DRV_SetRxMbGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Sets the FlexCAN Rx MB global mask (standard or extended).

• void FLEXCAN_DRV_SetRxMb14Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 14 mask (standard or extended).

• void FLEXCAN_DRV_SetRxMb15Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 15 mask (standard or extended).

• status_t FLEXCAN_DRV_SetRxIndividualMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint8←↩

_t mb_idx, uint32_t mask)

Sets the FlexCAN Rx individual mask (standard or extended).

Initialization and Shutdown

• void FLEXCAN_DRV_GetDefaultConfig (flexcan_user_config_t ∗config)

Gets the default configuration structure.

• status_t FLEXCAN_DRV_Init (uint8_t instance, flexcan_state_t ∗state, const flexcan_user_config_t ∗data)

Initializes the FlexCAN peripheral.

• status_t FLEXCAN_DRV_Deinit (uint8_t instance)

Shuts down a FlexCAN instance.

• void FLEXCAN_DRV_SetTDCOffset (uint8_t instance, bool enable, uint8_t offset)

Enables/Disables the Transceiver Delay Compensation feature and sets the Transceiver Delay Compensation Offset
(offset value to be added to the measured transceiver's loop delay in order to define the position of the delayed
comparison point when bit rate switching is active).

• uint8_t FLEXCAN_DRV_GetTDCValue (uint8_t instance)

Gets the value of the Transceiver Delay Compensation.

• bool FLEXCAN_DRV_GetTDCFail (uint8_t instance)

Gets the value of the TDC Fail flag.

• void FLEXCAN_DRV_ClearTDCFail (uint8_t instance)

Clears the TDC Fail flag.

Send configuration

• status_t FLEXCAN_DRV_ConfigTxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗tx_info,
uint32_t msg_id)

FlexCAN transmit message buffer field configuration.

• status_t FLEXCAN_DRV_SendBlocking (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗tx_info,
uint32_t msg_id, const uint8_t ∗mb_data, uint32_t timeout_ms)

Sends a CAN frame using the specified message buffer, in a blocking manner.

• status_t FLEXCAN_DRV_Send (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗tx_info,
uint32_t msg_id, const uint8_t ∗mb_data)

Sends a CAN frame using the specified message buffer.

Receive configuration

• status_t FLEXCAN_DRV_ConfigRxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗rx_info,
uint32_t msg_id)

FlexCAN receive message buffer field configuration.

• void FLEXCAN_DRV_ConfigRxFifo (uint8_t instance, flexcan_rx_fifo_id_element_format_t id_format, const
flexcan_id_table_t ∗id_filter_table)

FlexCAN Rx FIFO field configuration.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

422 CONTENTS

• status_t FLEXCAN_DRV_ReceiveBlocking (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗data,
uint32_t timeout_ms)

Receives a CAN frame using the specified message buffer, in a blocking manner.

• status_t FLEXCAN_DRV_Receive (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗data)

Receives a CAN frame using the specified message buffer.

• status_t FLEXCAN_DRV_RxFifoBlocking (uint8_t instance, flexcan_msgbuff_t ∗data, uint32_t timeout_ms)

Receives a CAN frame using the message FIFO, in a blocking manner.

• status_t FLEXCAN_DRV_RxFifo (uint8_t instance, flexcan_msgbuff_t ∗data)

Receives a CAN frame using the message FIFO.

Transfer status

• status_t FLEXCAN_DRV_AbortTransfer (uint8_t instance, uint8_t mb_idx)

Ends a non-blocking FlexCAN transfer early.

• status_t FLEXCAN_DRV_GetTransferStatus (uint8_t instance, uint8_t mb_idx)

Returns whether the previous FlexCAN transfer has finished.

IRQ handler callback

• void FLEXCAN_DRV_InstallEventCallback (uint8_t instance, flexcan_callback_t callback, void ∗callback←↩

Param)

Installs a callback function for the IRQ handler.

14.39.2 Data Structure Documentation

14.39.2.1 struct flexcan_msgbuff_t

FlexCAN message buffer structure Implements : flexcan_msgbuff_t_Class.

Definition at line 81 of file flexcan_driver.h.

Data Fields

• uint32_t cs
• uint32_t msgId
• uint8_t data [64]
• uint8_t dataLen

Field Documentation

14.39.2.1.1 uint32_t cs

Code and Status

Definition at line 82 of file flexcan_driver.h.

14.39.2.1.2 uint8_t data[64]

Data bytes of the FlexCAN message

Definition at line 84 of file flexcan_driver.h.

14.39.2.1.3 uint8_t dataLen

Length of data in bytes

Definition at line 85 of file flexcan_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 423

14.39.2.1.4 uint32_t msgId

Message Buffer ID

Definition at line 83 of file flexcan_driver.h.

14.39.2.2 struct flexcan_mb_handle_t

Information needed for internal handling of a given MB. Implements : flexcan_mb_handle_t_Class.

Definition at line 91 of file flexcan_driver.h.

Data Fields

• flexcan_msgbuff_t ∗ mb_message
• semaphore_t mbSema
• flexcan_mb_state_t state
• bool isBlocking
• bool isRemote

Field Documentation

14.39.2.2.1 bool isBlocking

True if the transfer is blocking

Definition at line 95 of file flexcan_driver.h.

14.39.2.2.2 bool isRemote

True if the frame is a remote frame

Definition at line 96 of file flexcan_driver.h.

14.39.2.2.3 flexcan_msgbuff_t∗ mb_message

The FlexCAN MB structure

Definition at line 92 of file flexcan_driver.h.

14.39.2.2.4 semaphore_t mbSema

Semaphore used for signaling completion of a blocking transfer

Definition at line 93 of file flexcan_driver.h.

14.39.2.2.5 flexcan_mb_state_t state

The state of the current MB (idle/Rx busy/Tx busy)

Definition at line 94 of file flexcan_driver.h.

14.39.2.3 struct FlexCANState

Internal driver state information.

Note

The contents of this structure are internal to the driver and should not be modified by users. Also, contents of
the structure are subject to change in future releases. Implements : flexcan_state_t_Class

Definition at line 107 of file flexcan_driver.h.

Data Fields

• volatile flexcan_mb_handle_t mbs [FEATURE_CAN_MAX_MB_NUM]

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

424 CONTENTS

• void(∗ callback)(uint8_t instance, flexcan_event_type_t eventType, struct FlexCANState ∗state)
• void ∗ callbackParam
• flexcan_rxfifo_transfer_type_t transferType

Field Documentation

14.39.2.3.1 void(∗ callback) (uint8_t instance, flexcan_event_type_t eventType, struct FlexCANState ∗state)

IRQ handler callback function.

Definition at line 109 of file flexcan_driver.h.

14.39.2.3.2 void∗ callbackParam

Parameter used to pass user data when invoking the callback function.

Definition at line 111 of file flexcan_driver.h.

14.39.2.3.3 volatile flexcan_mb_handle_t mbs[FEATURE_CAN_MAX_MB_NUM]

Array containing information related to each MB

Definition at line 108 of file flexcan_driver.h.

14.39.2.3.4 flexcan_rxfifo_transfer_type_t transferType

Type of RxFIFO transfer.

Definition at line 115 of file flexcan_driver.h.

14.39.2.4 struct flexcan_data_info_t

FlexCAN data info from user Implements : flexcan_data_info_t_Class.

Definition at line 121 of file flexcan_driver.h.

Data Fields

• flexcan_msgbuff_id_type_t msg_id_type
• uint32_t data_length
• bool fd_enable
• uint8_t fd_padding
• bool enable_brs
• bool is_remote

Field Documentation

14.39.2.4.1 uint32_t data_length

Length of Data in Bytes

Definition at line 123 of file flexcan_driver.h.

14.39.2.4.2 bool enable_brs

Enable bit rate switch inside a CAN FD format frame

Definition at line 127 of file flexcan_driver.h.

14.39.2.4.3 bool fd_enable

Enable or disable FD

Definition at line 124 of file flexcan_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 425

14.39.2.4.4 uint8_t fd_padding

Set a value for padding. It will be used when the data length code (DLC) specifies a bigger payload size than
data_length to fill the MB

Definition at line 125 of file flexcan_driver.h.

14.39.2.4.5 bool is_remote

Specifies if the frame is standard or remote

Definition at line 128 of file flexcan_driver.h.

14.39.2.4.6 flexcan_msgbuff_id_type_t msg_id_type

Type of message ID (standard or extended)

Definition at line 122 of file flexcan_driver.h.

14.39.2.5 struct flexcan_id_table_t

FlexCAN Rx FIFO ID filter table structure Implements : flexcan_id_table_t_Class.

Definition at line 175 of file flexcan_driver.h.

Data Fields

• bool isRemoteFrame

• bool isExtendedFrame

• uint32_t ∗ idFilter

Field Documentation

14.39.2.5.1 uint32_t∗ idFilter

Rx FIFO ID filter elements

Definition at line 178 of file flexcan_driver.h.

14.39.2.5.2 bool isExtendedFrame

Extended frame

Definition at line 177 of file flexcan_driver.h.

14.39.2.5.3 bool isRemoteFrame

Remote frame

Definition at line 176 of file flexcan_driver.h.

14.39.2.6 struct flexcan_time_segment_t

FlexCAN bitrate related structures Implements : flexcan_time_segment_t_Class.

Definition at line 205 of file flexcan_driver.h.

Data Fields

• uint32_t propSeg

• uint32_t phaseSeg1

• uint32_t phaseSeg2

• uint32_t preDivider

• uint32_t rJumpwidth

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

426 CONTENTS

Field Documentation

14.39.2.6.1 uint32_t phaseSeg1

Phase segment 1

Definition at line 207 of file flexcan_driver.h.

14.39.2.6.2 uint32_t phaseSeg2

Phase segment 2

Definition at line 208 of file flexcan_driver.h.

14.39.2.6.3 uint32_t preDivider

Clock prescaler division factor

Definition at line 209 of file flexcan_driver.h.

14.39.2.6.4 uint32_t propSeg

Propagation segment

Definition at line 206 of file flexcan_driver.h.

14.39.2.6.5 uint32_t rJumpwidth

Resync jump width

Definition at line 210 of file flexcan_driver.h.

14.39.2.7 struct flexcan_user_config_t

FlexCAN configuration.

Definition at line 217 of file flexcan_driver.h.

Data Fields

• uint32_t max_num_mb
• flexcan_rx_fifo_id_filter_num_t num_id_filters
• bool is_rx_fifo_needed
• flexcan_operation_modes_t flexcanMode
• flexcan_fd_payload_size_t payload
• bool fd_enable
• flexcan_time_segment_t bitrate
• flexcan_time_segment_t bitrate_cbt
• flexcan_rxfifo_transfer_type_t transfer_type
• uint8_t rxFifoDMAChannel

Field Documentation

14.39.2.7.1 flexcan_time_segment_t bitrate

The bitrate used for standard frames or for the arbitration phase of FD frames.

Definition at line 231 of file flexcan_driver.h.

14.39.2.7.2 flexcan_time_segment_t bitrate_cbt

The bitrate used for the data phase of FD frames.

Definition at line 232 of file flexcan_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 427

14.39.2.7.3 bool fd_enable

Enable/Disable the Flexible Data Rate feature.

Definition at line 227 of file flexcan_driver.h.

14.39.2.7.4 flexcan_operation_modes_t flexcanMode

User configurable FlexCAN operation modes.

Definition at line 224 of file flexcan_driver.h.

14.39.2.7.5 bool is_rx_fifo_needed

1 if needed; 0 if not. This controls whether the Rx FIFO feature is enabled or not.

Definition at line 222 of file flexcan_driver.h.

14.39.2.7.6 uint32_t max_num_mb

The maximum number of Message Buffers

Definition at line 218 of file flexcan_driver.h.

14.39.2.7.7 flexcan_rx_fifo_id_filter_num_t num_id_filters

The number of RX FIFO ID filters needed

Definition at line 220 of file flexcan_driver.h.

14.39.2.7.8 flexcan_fd_payload_size_t payload

The payload size of the mailboxes specified in bytes.

Definition at line 226 of file flexcan_driver.h.

14.39.2.7.9 uint8_t rxFifoDMAChannel

Specifies the DMA channel number to be used for DMA transfers.

Definition at line 234 of file flexcan_driver.h.

14.39.2.7.10 flexcan_rxfifo_transfer_type_t transfer_type

Specifies if the Rx FIFO uses interrupts or DMA.

Definition at line 233 of file flexcan_driver.h.

14.39.3 Typedef Documentation

14.39.3.1 typedef void(∗ flexcan_callback_t) (uint8_t instance, flexcan_event_type_t eventType, flexcan_state_t
∗flexcanState)

FlexCAN Driver callback function type Implements : flexcan_callback_t_Class.

Definition at line 293 of file flexcan_driver.h.

14.39.3.2 typedef struct FlexCANState flexcan_state_t

Internal driver state information.

Note

The contents of this structure are internal to the driver and should not be modified by users. Also, contents of
the structure are subject to change in future releases. Implements : flexcan_state_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

428 CONTENTS

14.39.4 Enumeration Type Documentation

14.39.4.1 enum flexcan_event_type_t

The type of the event which occurred when the callback was invoked. Implements : flexcan_event_type_t_Class.

Enumerator

FLEXCAN_EVENT_RX_COMPLETE A frame was received in the configured Rx MB.

FLEXCAN_EVENT_RXFIFO_COMPLETE A frame was received in the RxFIFO.

FLEXCAN_EVENT_TX_COMPLETE A frame was sent from the configured Tx MB.

Definition at line 50 of file flexcan_driver.h.

14.39.4.2 enum flexcan_fd_payload_size_t

FlexCAN payload sizes Implements : flexcan_fd_payload_size_t_Class.

Enumerator

FLEXCAN_PAYLOAD_SIZE_8 FlexCAN message buffer payload size in bytes

FLEXCAN_PAYLOAD_SIZE_16 FlexCAN message buffer payload size in bytes

FLEXCAN_PAYLOAD_SIZE_32 FlexCAN message buffer payload size in bytes

FLEXCAN_PAYLOAD_SIZE_64 FlexCAN message buffer payload size in bytes

Definition at line 195 of file flexcan_driver.h.

14.39.4.3 enum flexcan_mb_state_t

The state of a given MB (idle/Rx busy/Tx busy). Implements : flexcan_mb_state_t_Class.

Enumerator

FLEXCAN_MB_IDLE The MB is not used by any transfer.

FLEXCAN_MB_RX_BUSY The MB is used for a reception.

FLEXCAN_MB_TX_BUSY The MB is used for a transmission.

Definition at line 64 of file flexcan_driver.h.

14.39.4.4 enum flexcan_msgbuff_id_type_t

FlexCAN Message Buffer ID type Implements : flexcan_msgbuff_id_type_t_Class.

Enumerator

FLEXCAN_MSG_ID_STD Standard ID

FLEXCAN_MSG_ID_EXT Extended ID

Definition at line 73 of file flexcan_driver.h.

14.39.4.5 enum flexcan_operation_modes_t

FlexCAN operation modes Implements : flexcan_operation_modes_t_Class.

Enumerator

FLEXCAN_NORMAL_MODE Normal mode or user mode

FLEXCAN_LISTEN_ONLY_MODE Listen-only mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 429

FLEXCAN_LOOPBACK_MODE Loop-back mode

FLEXCAN_FREEZE_MODE Freeze mode

FLEXCAN_DISABLE_MODE Module disable mode

Definition at line 184 of file flexcan_driver.h.

14.39.4.6 enum flexcan_rx_fifo_id_element_format_t

ID formats for Rx FIFO Implements : flexcan_rx_fifo_id_element_format_t_Class.

Enumerator

FLEXCAN_RX_FIFO_ID_FORMAT_A One full ID (standard and extended) per ID Filter Table element.

FLEXCAN_RX_FIFO_ID_FORMAT_B Two full standard IDs or two partial 14-bit (standard and extended) IDs
per ID Filter Table element.

FLEXCAN_RX_FIFO_ID_FORMAT_C Four partial 8-bit Standard IDs per ID Filter Table element.

FLEXCAN_RX_FIFO_ID_FORMAT_D All frames rejected.

Definition at line 164 of file flexcan_driver.h.

14.39.4.7 enum flexcan_rx_fifo_id_filter_num_t

FlexCAN Rx FIFO filters number Implements : flexcan_rx_fifo_id_filter_num_t_Class.

Enumerator

FLEXCAN_RX_FIFO_ID_FILTERS_8 8 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_16 16 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_24 24 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_32 32 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_40 40 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_48 48 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_56 56 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_64 64 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_72 72 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_80 80 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_88 88 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_96 96 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_104 104 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_112 112 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_120 120 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_128 128 Rx FIFO Filters.

Definition at line 134 of file flexcan_driver.h.

14.39.4.8 enum flexcan_rx_mask_type_t

FlexCAN Rx mask type. Implements : flexcan_rx_mask_type_t_Class.

Enumerator

FLEXCAN_RX_MASK_GLOBAL Rx global mask

FLEXCAN_RX_MASK_INDIVIDUAL Rx individual mask

Definition at line 156 of file flexcan_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

430 CONTENTS

14.39.4.9 enum flexcan_rxfifo_transfer_type_t

The type of the RxFIFO transfer (interrupts/DMA). Implements : flexcan_rxfifo_transfer_type_t_Class.

Enumerator

FLEXCAN_RXFIFO_USING_INTERRUPTS Use interrupts for RxFIFO.

FLEXCAN_RXFIFO_USING_DMA Use DMA for RxFIFO.

Definition at line 42 of file flexcan_driver.h.

14.39.5 Function Documentation

14.39.5.1 status_t FLEXCAN_DRV_AbortTransfer (uint8_t instance, uint8_t mb_idx)

Ends a non-blocking FlexCAN transfer early.

Parameters

instance A FlexCAN instance number
mb_idx The index of the message buffer

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_NO_TRANSFER_IN_PROGRESS if no transfer was
running

Definition at line 1266 of file flexcan_driver.c.

14.39.5.2 void FLEXCAN_DRV_ClearTDCFail (uint8_t instance)

Clears the TDC Fail flag.

Parameters

base The FlexCAN base address

Definition at line 1055 of file flexcan_driver.c.

14.39.5.3 void FLEXCAN_DRV_ConfigRxFifo (uint8_t instance, flexcan_rx_fifo_id_element_format_t id_format, const
flexcan_id_table_t ∗ id_filter_table)

FlexCAN Rx FIFO field configuration.

Parameters

instance A FlexCAN instance number
id_format The format of the Rx FIFO ID Filter Table Elements

id_filter_table The ID filter table elements which contain RTR bit, IDE bit, and Rx message ID

Definition at line 789 of file flexcan_driver.c.

14.39.5.4 status_t FLEXCAN_DRV_ConfigRxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ rx_info,
uint32_t msg_id)

FlexCAN receive message buffer field configuration.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 431

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
rx_info Data info
msg_id ID of the message to transmit

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of a message
buffer is invalid;

Definition at line 743 of file flexcan_driver.c.

14.39.5.5 status_t FLEXCAN_DRV_ConfigTxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ tx_info,
uint32_t msg_id)

FlexCAN transmit message buffer field configuration.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
tx_info Data info

msg_id ID of the message to transmit

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of the message
buffer is invalid

Definition at line 616 of file flexcan_driver.c.

14.39.5.6 status_t FLEXCAN_DRV_Deinit (uint8_t instance)

Shuts down a FlexCAN instance.

Parameters

instance A FlexCAN instance number

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if failed

Definition at line 953 of file flexcan_driver.c.

14.39.5.7 void FLEXCAN_DRV_GetBitrate (uint8_t instance, flexcan_time_segment_t ∗ bitrate)

Gets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

Parameters

instance A FlexCAN instance number
bitrate A pointer to a variable for returning the FlexCAN bit rate settings

Definition at line 197 of file flexcan_driver.c.

14.39.5.8 void FLEXCAN_DRV_GetBitrateFD (uint8_t instance, flexcan_time_segment_t ∗ bitrate)

Gets the FlexCAN bit rate for the data phase of FD frames (BRS enabled).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

432 CONTENTS

Parameters

instance A FlexCAN instance number
bitrate A pointer to a variable for returning the FlexCAN bit rate settings

Definition at line 221 of file flexcan_driver.c.

14.39.5.9 void FLEXCAN_DRV_GetDefaultConfig (flexcan_user_config_t ∗ config)

Gets the default configuration structure.

This function gets the default configuration structure, with the following settings:

• 16 message buffers

• flexible data rate disabled

• Rx FIFO disabled

• normal operation mode

• 8 byte payload size

• Protocol Engine clock = Oscillator clock

• bitrate of 500 Kbit/s (computed for PE clock = 8 MHz with sample point = 87.5)

Parameters

out config The configuration structure

Definition at line 1702 of file flexcan_driver.c.

14.39.5.10 bool FLEXCAN_DRV_GetTDCFail (uint8_t instance)

Gets the value of the TDC Fail flag.

Parameters

base The FlexCAN base address

Returns

If true, indicates that the TDC mechanism is out of range, unable to compensate the transceiver's loop delay
and successfully compare the delayed received bits to the transmitted ones.

Definition at line 1039 of file flexcan_driver.c.

14.39.5.11 uint8_t FLEXCAN_DRV_GetTDCValue (uint8_t instance)

Gets the value of the Transceiver Delay Compensation.

Parameters

base The FlexCAN base address

Returns

The value of the transceiver loop delay measured from the transmitted EDL to R0 transition edge to the
respective received one added to the TDCOFF value specified by FLEXCAN_HAL_SetTDCOffset.

Definition at line 1023 of file flexcan_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 433

14.39.5.12 status_t FLEXCAN_DRV_GetTransferStatus (uint8_t instance, uint8_t mb_idx)

Returns whether the previous FlexCAN transfer has finished.

When performing an async transfer, call this function to ascertain the state of the current transfer: in progress (or
busy) or complete (success).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

434 CONTENTS

Parameters

instance The FlexCAN instance number.
mb_idx The index of the message buffer.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy;

Definition at line 1237 of file flexcan_driver.c.

14.39.5.13 status_t FLEXCAN_DRV_Init (uint8_t instance, flexcan_state_t ∗ state, const flexcan_user_config_t ∗ data
)

Initializes the FlexCAN peripheral.

This function initializes

Parameters

instance A FlexCAN instance number
state Pointer to the FlexCAN driver state structure.
data The FlexCAN platform data

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of a message
buffer is invalid; STATUS_ERROR if other error occurred

Definition at line 458 of file flexcan_driver.c.

14.39.5.14 void FLEXCAN_DRV_InstallEventCallback (uint8_t instance, flexcan_callback_t callback, void ∗ callbackParam
)

Installs a callback function for the IRQ handler.

Parameters

instance The FlexCAN instance number.
callback The callback function.

callbackParam User parameter passed to the callback function through the state parameter.

Definition at line 1581 of file flexcan_driver.c.

14.39.5.15 status_t FLEXCAN_DRV_Receive (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗ data)

Receives a CAN frame using the specified message buffer.

This function receives a CAN frame using a configured message buffer. The function returns immediately. If a
callback is installed, it will be invoked after the frame was received and read into the specified buffer.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer

data The FlexCAN receive message buffer data.

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of a message
buffer is invalid; STATUS_BUSY if a resource is busy

Definition at line 864 of file flexcan_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 435

14.39.5.16 status_t FLEXCAN_DRV_ReceiveBlocking (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗ data,
uint32_t timeout_ms)

Receives a CAN frame using the specified message buffer, in a blocking manner.

This function receives a CAN frame using a configured message buffer. The function blocks until either a frame was
received, or the specified timeout expired.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer

data The FlexCAN receive message buffer data.
timeout_ms A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of a message
buffer is invalid; STATUS_BUSY if a resource is busy; STATUS_TIMEOUT if the timeout is reached

Definition at line 815 of file flexcan_driver.c.

14.39.5.17 status_t FLEXCAN_DRV_RxFifo (uint8_t instance, flexcan_msgbuff_t ∗ data)

Receives a CAN frame using the message FIFO.

This function receives a CAN frame using the Rx FIFO. The function returns immediately. If a callback is installed,
it will be invoked after the frame was received and read into the specified buffer.

Parameters

instance A FlexCAN instance number
data The FlexCAN receive message buffer data.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_ERROR if other error
occurred

Definition at line 932 of file flexcan_driver.c.

14.39.5.18 status_t FLEXCAN_DRV_RxFifoBlocking (uint8_t instance, flexcan_msgbuff_t ∗ data, uint32_t timeout_ms)

Receives a CAN frame using the message FIFO, in a blocking manner.

This function receives a CAN frame using the Rx FIFO. The function blocks until either a frame was received, or the
specified timeout expired.

Parameters

instance A FlexCAN instance number
data The FlexCAN receive message buffer data.

timeout_ms A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_TIMEOUT if the timeout
is reached; STATUS_ERROR if other error occurred

Definition at line 887 of file flexcan_driver.c.

14.39.5.19 status_t FLEXCAN_DRV_Send (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ tx_info, uint32_t
msg_id, const uint8_t ∗ mb_data)

Sends a CAN frame using the specified message buffer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

436 CONTENTS

This function sends a CAN frame using a configured message buffer. The function returns immediately. If a callback
is installed, it will be invoked after the frame was sent.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
tx_info Data info

msg_id ID of the message to transmit
mb_data Bytes of the FlexCAN message.

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of a message
buffer is invalid; STATUS_BUSY if a resource is busy

Definition at line 704 of file flexcan_driver.c.

14.39.5.20 status_t FLEXCAN_DRV_SendBlocking (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ tx_info,
uint32_t msg_id, const uint8_t ∗ mb_data, uint32_t timeout_ms)

Sends a CAN frame using the specified message buffer, in a blocking manner.

This function sends a CAN frame using a configured message buffer. The function blocks until either the frame was
sent, or the specified timeout expired.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
tx_info Data info

msg_id ID of the message to transmit
mb_data Bytes of the FlexCAN message

timeout_ms A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of a message
buffer is invalid; STATUS_BUSY if a resource is busy; STATUS_TIMEOUT if the timeout is reached

Definition at line 651 of file flexcan_driver.c.

14.39.5.21 void FLEXCAN_DRV_SetBitrate (uint8_t instance, const flexcan_time_segment_t ∗ bitrate)

Sets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

Parameters

instance A FlexCAN instance number
bitrate A pointer to the FlexCAN bit rate settings.

Definition at line 139 of file flexcan_driver.c.

14.39.5.22 void FLEXCAN_DRV_SetBitrateCbt (uint8_t instance, const flexcan_time_segment_t ∗ bitrate)

Sets the FlexCAN bit rate for the data phase of FD frames (BRS enabled).

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.39 FlexCAN Driver 437

instance A FlexCAN instance number
bitrate A pointer to the FlexCAN bit rate settings.

Definition at line 173 of file flexcan_driver.c.

14.39.5.23 void FLEXCAN_DRV_SetRxFifoGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Sets the FlexCAN Rx FIFO global mask (standard or extended).

Parameters

instance A FlexCAN instance number
id_type Standard ID or extended ID

mask Mask value

Definition at line 266 of file flexcan_driver.c.

14.39.5.24 status_t FLEXCAN_DRV_SetRxIndividualMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint8_t
mb_idx, uint32_t mask)

Sets the FlexCAN Rx individual mask (standard or extended).

Parameters

instance A FlexCAN instance number
id_type A standard ID or an extended ID
mb_idx Index of the message buffer

mask Mask value

Returns

STATUS_SUCCESS if successful; STATUS_FLEXCAN_MB_OUT_OF_RANGE if the index of the message
buffer is invalid

Definition at line 410 of file flexcan_driver.c.

14.39.5.25 void FLEXCAN_DRV_SetRxMaskType (uint8_t instance, flexcan_rx_mask_type_t type)

Sets the Rx masking type.

Parameters

instance A FlexCAN instance number
type The FlexCAN RX mask type

Definition at line 245 of file flexcan_driver.c.

14.39.5.26 void FLEXCAN_DRV_SetRxMb14Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 14 mask (standard or extended).

Parameters

instance A FlexCAN instance number
id_type Standard ID or extended ID

mask Mask value

Definition at line 338 of file flexcan_driver.c.

14.39.5.27 void FLEXCAN_DRV_SetRxMb15Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 15 mask (standard or extended).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

438 CONTENTS

Parameters

instance A FlexCAN instance number
id_type Standard ID or extended ID

mask Mask value

Definition at line 374 of file flexcan_driver.c.

14.39.5.28 void FLEXCAN_DRV_SetRxMbGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Sets the FlexCAN Rx MB global mask (standard or extended).

Parameters

instance A FlexCAN instance number
id_type Standard ID or extended ID

mask Mask value

Definition at line 302 of file flexcan_driver.c.

14.39.5.29 void FLEXCAN_DRV_SetTDCOffset (uint8_t instance, bool enable, uint8_t offset)

Enables/Disables the Transceiver Delay Compensation feature and sets the Transceiver Delay Compensation Offset
(offset value to be added to the measured transceiver's loop delay in order to define the position of the delayed
comparison point when bit rate switching is active).

Parameters

instance A FlexCAN instance number
enable Enable/Disable Transceiver Delay Compensation
offset Transceiver Delay Compensation Offset

Definition at line 1002 of file flexcan_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.40 FlexIO Common Driver 439

14.40 FlexIO Common Driver

14.40.1 Detailed Description

Common services for FlexIO drivers.

The Flexio Common driver layer contains services used by all Flexio drivers. The need for this layer derives from the
requirement to allow multiple Flexio drivers to run in parallel on the same device, to the extent that enough hardware
resources (shifters and timers) are available.

Functionality

The Flexio Common driver layer provides functions for device initialization and reset. Before using any Flexio driver
the device must first be initialized using function FLEXIO_DRV_InitDevice(). Then any number of Flexio drivers can
be initialized on the same device, to the extent that enough hardware resources (shifters and timers) are available.
Driver initialization functions will return STATUS_ERROR if not enough resources are available for a new driver.

Important Notes

Calling any Flexio common function will destroy any driver that is active on that device. Normally these functions
should be called only when there are no active driver instances on the device.

Typedefs

• typedef void(∗ flexio_callback_t) (void ∗driverState, flexio_event_t event, void ∗userData)

flexio callback function

Enumerations

• enum flexio_driver_type_t { FLEXIO_DRIVER_TYPE_INTERRUPTS = 0U, FLEXIO_DRIVER_TYPE_POL←↩

LING = 1U, FLEXIO_DRIVER_TYPE_DMA = 2U }

Driver type: interrupts/polling/DMA Implements : flexio_driver_type_t_Class.
• enum flexio_event_t { FLEXIO_EVENT_RX_FULL = 0x00U, FLEXIO_EVENT_TX_EMPTY = 0x01U, FLE←↩

XIO_EVENT_END_TRANSFER = 0x02U }

flexio events Implements : flexio_event_t_Class

FLEXIO_I2C Driver

• status_t FLEXIO_DRV_InitDevice (uint32_t instance, flexio_device_state_t ∗deviceState)

Initializes the FlexIO device.
• status_t FLEXIO_DRV_DeinitDevice (uint32_t instance)

De-initializes the FlexIO device.
• status_t FLEXIO_DRV_Reset (uint32_t instance)

Resets the FlexIO device.

14.40.2 Typedef Documentation

14.40.2.1 typedef void(∗ flexio_callback_t) (void ∗driverState, flexio_event_t event, void ∗userData)

flexio callback function

Callback functions are called by flexio drivers when relevant events must be reported. See type flexio_event_t for
a list of events. The callback can then react to the event, for example providing the buffers for transmission or
reception, or waking a task to use the received data. Note that callback functions are called from interrupts, so the
callback execution time should be as small as possible.

Definition at line 81 of file flexio.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

440 CONTENTS

14.40.3 Enumeration Type Documentation

14.40.3.1 enum flexio_driver_type_t

Driver type: interrupts/polling/DMA Implements : flexio_driver_type_t_Class.

Enumerator

FLEXIO_DRIVER_TYPE_INTERRUPTS Driver uses interrupts for data transfers

FLEXIO_DRIVER_TYPE_POLLING Driver is based on polling

FLEXIO_DRIVER_TYPE_DMA Driver uses DMA for data transfers

Definition at line 49 of file flexio.h.

14.40.3.2 enum flexio_event_t

flexio events Implements : flexio_event_t_Class

Enumerator

FLEXIO_EVENT_RX_FULL Rx buffer is full

FLEXIO_EVENT_TX_EMPTY Tx buffer is empty

FLEXIO_EVENT_END_TRANSFER The current transfer is ending

Definition at line 59 of file flexio.h.

14.40.4 Function Documentation

14.40.4.1 status_t FLEXIO_DRV_DeinitDevice (uint32_t instance)

De-initializes the FlexIO device.

This function de-initializes the FlexIO device.

Parameters

instance FLEXIO peripheral instance number

Returns

Error or success status returned by API

Definition at line 128 of file flexio_common.c.

14.40.4.2 status_t FLEXIO_DRV_InitDevice (uint32_t instance, flexio_device_state_t ∗ deviceState)

Initializes the FlexIO device.

This function resets the FlexIO device, enables interrupts in interrupt manager and enables the device.

Parameters

instance FLEXIO peripheral instance number
deviceState Pointer to the FLEXIO device context structure. The driver uses this memory area for its

internal logic. The application must make no assumptions about the content of this structure,
and must not free this memory until the device is de-initialized using FLEXIO_DRV_Deinit←↩

Device().

Returns

Error or success status returned by API

Definition at line 89 of file flexio_common.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.40 FlexIO Common Driver 441

14.40.4.3 status_t FLEXIO_DRV_Reset (uint32_t instance)

Resets the FlexIO device.

This function resets the FlexIO device.

Parameters

instance FLEXIO peripheral instance number

Returns

Error or success status returned by API

Definition at line 153 of file flexio_common.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

442 CONTENTS

14.41 FlexIO I2C Driver

14.41.1 Detailed Description

I2C communication over FlexIO module (FLEXIO_I2C)

The FLEXIO_I2C Driver allows communication on an I2C bus using the FlexIO module in the S32144K processor.

Features

• Master operation only

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• 7-bit addressing

• Clock stretching

• Configurable baud rate

Functionality

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then the
FLEXIO_I2C Driver must be initialized using functions FLEXIO_I2C_DRV_MasterInit(). It is possible to use more
driver instances on the same FlexIO device, as long as sufficient resources are available. Different driver instances
on the same FlexIO device can function independently of each other. When it is no longer needed, the driver can
be de-initialized, using FLEXIO_I2C_DRV_MasterDeinit(). This will release the hardware resources, allowing other
driver instances to be initialized.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from any I2C slave. Slave address and baud
rate are provided at initialization time through the master configuration structure, but they can be changed at runtime
by using FLEXIO_I2C_DRV_MasterSetBaudRate() or FLEXIO_I2C_DRV_MasterSetSlaveAddr(). Note that due to
module limitation not any baud rate can be achieved. The driver will set a baud rate as close as possible to the
requested baud rate, but there may still be substantial differences, for example if requesting a high baud rate while
using a low-frequency FlexIO clock. The application should call FLEXIO_I2C_DRV_MasterGetBaudRate() after
FLEXIO_I2C_DRV_MasterSetBaudRate() to check what baud rate was actually set.

To send or receive data to/from the currently configured slave address, use functions FLEXIO_I2C_DRV_Master←↩

SendData() or FLEXIO_I2C_DRV_MasterReceiveData() (or their blocking counterparts). Parameter sendStop
can be used to chain multiple transfers with repeated START condition between them, for example when sending
a command and then immediately receiving a response. The application should ensure that any send or receive
transfer with sendStop set to false is followed by another transfer. The last transfer from a chain should always
have sendStop set to true. This driver does not support continuous send/receive using a user callback function.
The callback function is only used to signal the end of a transfer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO_I2←↩

C_DRV_MasterGetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is
completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_I2C_DRV_Master←↩

GetStatus() ensures the progress of the transfer by checking and handling transmit and receive events reported
by the FlexIO module. The application should ensure that this function is called often enough (at least once per
transferred byte) to avoid Tx underflows or Rx overflows. In DMA mode the DMA channels that will be used by the
driver are received through the configuration structure. The channels must be initialized by the application before
the flexio_i2c driver is initialized. The flexio_i2c driver will only set the DMA request source.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.41 FlexIO I2C Driver 443

Important Notes

• Before using the FLEXIO_I2C Driver the FlexIO clock must be configured. Refer to Clock Manager for clock
configuration.

• Before using the FLEXIO_I2C Driver the pins must be routed to the FlexIO module. Refer to PINS Driver
for pin routing configuration. Note that any of the available FlexIO pins can be used for SDA and SCL
(configurable at initialization time).

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• Aborting a transfer with the function FLEXIO_I2C_DRV_MasterTransferAbort() can't generally be done safely
due to device limitation; there is no way to know the exact stage of the transfer, and if we disable the module
during the ACK bit (transmit) or during a 0 data bit (receive) the slave will hold the SDA line low forever and
block the I2C bus. Therefore this function should only be used in extreme circumstances, and the application
must have a way to reset the I2C slave. NACK reception is the only exception, as there is no slave to hold the
line low, so in this case the driver will automatically abort the transfer.

• The module can handle clock stretching done by the slave, but will not do clock stretching when the application
does not provide data fast enough, so Tx underflows and Rx overflows are possible. This can be an issue
especially in polling mode if the function FLEXIO_I2C_DRV_MasterGetStatus() is not called often enough.

• Due to device limitations it is not always possible to tell the difference between NACK reception and receiver
overflow. When in doubt, the driver will treat these events as overflow and continue the transfer, in order to
avoid the risk of blocking the i2c bus.

• Due to device limitations there is a maximum limit of 13 bytes (FLEXIO_I2C_MAX_SIZE) on the size of any
transfer.

• The driver does not support multi-master mode. It does not detect arbitration loss condition.

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs two shifters and two timers for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs two DMA channels for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

Data Structures

• struct flexio_i2c_master_user_config_t

Master configuration structure. More...

• struct flexio_i2c_master_state_t

Master internal context structure. More...

Macros

• #define FLEXIO_I2C_MAX_SIZE (((uint32_t)((0xFFU - 1U) / 18U)) - 1U)

Maximum size of a transfer. The restriction is that the total number of SCL edges must not exceed 8 bits, such that it
can be programmed in the upper part of the timer compare register. There are 2 SCL edges per bit, 9 bits per byte
(including ACK). The extra 1 is for the STOP condition.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

444 CONTENTS

FLEXIO_I2C Driver

• status_t FLEXIO_I2C_DRV_MasterInit (uint32_t instance, const flexio_i2c_master_user_config_t ∗user←↩

ConfigPtr, flexio_i2c_master_state_t ∗master)

Initialize the FLEXIO_I2C master mode driver.

• status_t FLEXIO_I2C_DRV_MasterDeinit (flexio_i2c_master_state_t ∗master)

De-initialize the FLEXIO_I2C master mode driver.

• status_t FLEXIO_I2C_DRV_MasterSetBaudRate (flexio_i2c_master_state_t ∗master, uint32_t baudRate)

Set the baud rate for any subsequent I2C communication.

• status_t FLEXIO_I2C_DRV_MasterGetBaudRate (flexio_i2c_master_state_t ∗master, uint32_t ∗baudRate)

Get the currently configured baud rate.

• status_t FLEXIO_I2C_DRV_MasterSetSlaveAddr (flexio_i2c_master_state_t ∗master, const uint16_t ad-
dress)

Set the slave address for any subsequent I2C communication.

• status_t FLEXIO_I2C_DRV_MasterSendData (flexio_i2c_master_state_t ∗master, const uint8_t ∗txBuff,
uint32_t txSize, bool sendStop)

Perform a non-blocking send transaction on the I2C bus.

• status_t FLEXIO_I2C_DRV_MasterSendDataBlocking (flexio_i2c_master_state_t ∗master, const uint8_←↩

t ∗txBuff, uint32_t txSize, bool sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

• status_t FLEXIO_I2C_DRV_MasterReceiveData (flexio_i2c_master_state_t ∗master, uint8_t ∗rxBuff,
uint32_t rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.

• status_t FLEXIO_I2C_DRV_MasterReceiveDataBlocking (flexio_i2c_master_state_t ∗master, uint8_t ∗rx←↩

Buff, uint32_t rxSize, bool sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

• status_t FLEXIO_I2C_DRV_MasterTransferAbort (flexio_i2c_master_state_t ∗master)

Aborts a non-blocking I2C master transaction.

• status_t FLEXIO_I2C_DRV_MasterGetStatus (flexio_i2c_master_state_t ∗master, uint32_t ∗bytes←↩

Remaining)

Get the status of the current non-blocking I2C master transaction.

14.41.2 Data Structure Documentation

14.41.2.1 struct flexio_i2c_master_user_config_t

Master configuration structure.

This structure is used to provide configuration parameters for the flexio_i2c master at initialization time. Implements
: flexio_i2c_master_user_config_t_Class

Definition at line 92 of file flexio_i2c_driver.h.

Data Fields

• uint16_t slaveAddress
• flexio_driver_type_t driverType
• uint32_t baudRate
• uint8_t sdaPin
• uint8_t sclPin
• flexio_callback_t callback
• void ∗ callbackParam
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.41 FlexIO I2C Driver 445

Field Documentation

14.41.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 96 of file flexio_i2c_driver.h.

14.41.2.1.2 flexio_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 99 of file flexio_i2c_driver.h.

14.41.2.1.3 void∗ callbackParam

Parameter for the callback function

Definition at line 103 of file flexio_i2c_driver.h.

14.41.2.1.4 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 95 of file flexio_i2c_driver.h.

14.41.2.1.5 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 104 of file flexio_i2c_driver.h.

14.41.2.1.6 uint8_t sclPin

Flexio pin to use as I2C SCL pin

Definition at line 98 of file flexio_i2c_driver.h.

14.41.2.1.7 uint8_t sdaPin

Flexio pin to use as I2C SDA pin

Definition at line 97 of file flexio_i2c_driver.h.

14.41.2.1.8 uint16_t slaveAddress

Slave address, 7-bit

Definition at line 94 of file flexio_i2c_driver.h.

14.41.2.1.9 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 105 of file flexio_i2c_driver.h.

14.41.2.2 struct flexio_i2c_master_state_t

Master internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the FLEXI←↩

O_I2C_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO_I2C_DR←↩

V_MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 117 of file flexio_i2c_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

446 CONTENTS

14.41.3 Macro Definition Documentation

14.41.3.1 #define FLEXIO_I2C_MAX_SIZE (((uint32_t)((0xFFU - 1U) / 18U)) - 1U)

Maximum size of a transfer. The restriction is that the total number of SCL edges must not exceed 8 bits, such that
it can be programmed in the upper part of the timer compare register. There are 2 SCL edges per bit, 9 bits per
byte (including ACK). The extra 1 is for the STOP condition.

Definition at line 67 of file flexio_i2c_driver.h.

14.41.4 Function Documentation

14.41.4.1 status_t FLEXIO_I2C_DRV_MasterDeinit (flexio_i2c_master_state_t ∗ master)

De-initialize the FLEXIO_I2C master mode driver.

This function de-initializes the FLEXIO_I2C driver in master mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Returns

Error or success status returned by API

Definition at line 1205 of file flexio_i2c_driver.c.

14.41.4.2 status_t FLEXIO_I2C_DRV_MasterGetBaudRate (flexio_i2c_master_state_t ∗ master, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured I2C baud rate.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1269 of file flexio_i2c_driver.c.

14.41.4.3 status_t FLEXIO_I2C_DRV_MasterGetStatus (flexio_i2c_master_state_t ∗ master, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking I2C master transaction.

This function returns the current status of a non-blocking I2C master transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.41 FlexIO I2C Driver 447

bytesRemaining The remaining number of bytes to be transferred

Returns

Error or success status returned by API

Definition at line 1468 of file flexio_i2c_driver.c.

14.41.4.4 status_t FLEXIO_I2C_DRV_MasterInit (uint32_t instance, const flexio_i2c_master_user_config_t ∗
userConfigPtr, flexio_i2c_master_state_t ∗ master)

Initialize the FLEXIO_I2C master mode driver.

This function initializes the FLEXIO_I2C driver in master mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_I2C master user configuration structure. The function reads configu-

ration data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

master Pointer to the FLEXIO_I2C master driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_I2←↩

C_DRV_MasterDeinit().

Returns

Error or success status returned by API

Definition at line 1114 of file flexio_i2c_driver.c.

14.41.4.5 status_t FLEXIO_I2C_DRV_MasterReceiveData (flexio_i2c_master_state_t ∗ master, uint8_t ∗ rxBuff, uint32_t
rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.

This function starts the reception of a block of data from the currently configured slave address and returns im-
mediately. The rest of the transmission is handled by the interrupt service routine (if the driver is initialized in
interrupt mode) or by the FLEXIO_I2C_DRV_MasterGetStatus function (if the driver is initialized in polling mode).
Use FLEXIO_I2C_DRV_MasterGetStatus() to check the progress of the reception.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception

Returns

Error or success status returned by API

Definition at line 1384 of file flexio_i2c_driver.c.

14.41.4.6 status_t FLEXIO_I2C_DRV_MasterReceiveDataBlocking (flexio_i2c_master_state_t ∗ master, uint8_t ∗ rxBuff,
uint32_t rxSize, bool sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

This function receives a block of data from the currently configured slave address, and only returns when the
transmission is complete.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

448 CONTENTS

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1404 of file flexio_i2c_driver.c.

14.41.4.7 status_t FLEXIO_I2C_DRV_MasterSendData (flexio_i2c_master_state_t ∗ master, const uint8_t ∗ txBuff,
uint32_t txSize, bool sendStop)

Perform a non-blocking send transaction on the I2C bus.

This function starts the transmission of a block of data to the currently configured slave address and returns im-
mediately. The rest of the transmission is handled by the interrupt service routine (if the driver is initialized in
interrupt mode) or by the FLEXIO_I2C_DRV_MasterGetStatus function (if the driver is initialized in polling mode).
Use FLEXIO_I2C_DRV_MasterGetStatus() to check the progress of the transmission.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission

Returns

Error or success status returned by API

Definition at line 1326 of file flexio_i2c_driver.c.

14.41.4.8 status_t FLEXIO_I2C_DRV_MasterSendDataBlocking (flexio_i2c_master_state_t ∗ master, const uint8_t ∗
txBuff, uint32_t txSize, bool sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

This function sends a block of data to the currently configured slave address, and only returns when the transmission
is complete.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1346 of file flexio_i2c_driver.c.

14.41.4.9 status_t FLEXIO_I2C_DRV_MasterSetBaudRate (flexio_i2c_master_state_t ∗ master, uint32_t baudRate)

Set the baud rate for any subsequent I2C communication.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.41 FlexIO I2C Driver 449

This function sets the baud rate (SCL frequency) for the I2C master. Note that due to module limitation not any
baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there
may still be substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO
clock. The application should call FLEXIO_I2C_DRV_MasterGetBaudRate() after FLEXIO_I2C_DRV_MasterSet←↩

BaudRate() to check what baud rate was actually set.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
baudRate the desired baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1228 of file flexio_i2c_driver.c.

14.41.4.10 status_t FLEXIO_I2C_DRV_MasterSetSlaveAddr (flexio_i2c_master_state_t ∗ master, const uint16_t address)

Set the slave address for any subsequent I2C communication.

This function sets the slave address which will be used for any future transfer.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
address slave address, 7-bit

Returns

Error or success status returned by API

Definition at line 1307 of file flexio_i2c_driver.c.

14.41.4.11 status_t FLEXIO_I2C_DRV_MasterTransferAbort (flexio_i2c_master_state_t ∗ master)

Aborts a non-blocking I2C master transaction.

This function aborts a non-blocking I2C transfer.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Returns

Error or success status returned by API

Definition at line 1442 of file flexio_i2c_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

450 CONTENTS

14.42 FlexIO I2S Driver

14.42.1 Detailed Description

I2S communication over FlexIO module (FLEXIO_I2S)

The FLEXIO_I2S Driver allows communication on an I2S bus using the FlexIO module in the S32144K processor.

Features

• Master or slave operation

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate and bit count

Functionality

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then
the FLEXIO_I2S Driver must be initialized, using functions FLEXIO_I2S_DRV_MasterInit() or FLEXIO_I2S_DRV←↩

_SlaveInit(). It is possible to use more driver instances on the same FlexIO device, as long as sufficient resources
are available. Different driver instances on the same FlexIO device can function independently of each other. When
it is no longer needed, the driver can be de-initialized, using FLEXIO_I2S_DRV_MasterDeinit() or FLEXIO_I2S_←↩

DRV_SlaveDeinit(). This will release the hardware resources, allowing other driver instances to be initialized.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from any I2S slave. The number of bits per
word and the baud rate are provided at initialization time through the master configuration structure, but they can
be changed at runtime by using FLEXIO_I2S_DRV_MasterSetConfig(). Note that due to module limitation not any
baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there
may still be substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO
clock. The application should call FLEXIO_I2S_DRV_MasterGetBaudRate() to check what baud rate was actually
set.

To send or receive data to/from the currently configured slave address, use functions FLEXIO_I2S_DRV_Master←↩

SendData() or FLEXIO_I2S_DRV_MasterReceiveData() (or their blocking counterparts). The driver is not full-
duplex, only one direction (send or receive) can be used at one time. It is possible to configure both Rx and
Tx pin to use the same Flexio pin.

Continuous send/receive can be realized by registering a user callback function. When the driver completes the
transmission or reception of the current buffer, it will invoke the user callback with an appropriate event. The callback
function can the use FLEXIO_I2S_DRV_MasterSetTxBuffer() or FLEXIO_I2S_DRV_MasterSetRxBuffer() to provide
a new buffer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO_I2←↩

S_DRV_MasterGetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is
completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_I2S_DRV_Master←↩

GetStatus() ensures the progress of the transfer by checking and handling transmit and receive events reported
by the FlexIO module. The application should ensure that this function is called often enough (at least once per
transferred byte) to avoid Tx underflows or Rx overflows. In DMA mode the DMA channels that will be used by the
driver are received through the configuration structure. The channels must be initialized by the application before
the flexio_i2s driver is initialized. The flexio_i2s driver will only set the DMA request source.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.42 FlexIO I2S Driver 451

Slave Mode

Slave Mode is very similar to master mode, the main difference being that the FLEXIO_I2S_DRV_SlaveInit() function
initializes the FlexIO module to use the clock signal received from the master instead of generating it. Consequently,
there is no baud rate setting in slave mode. Other than that, the slave mode offers a similar interface to the
master mode. FLEXIO_I2S_DRV_MasterSendData() or FLEXIO_I2S_DRV_MasterReceiveData() (or their blocking
counterparts) can be used to initiate transfers, and FLEXIO_I2S_DRV_SlaveGetStatus() is used to check the status
of the transfer and advance the transfer in polling mode. All other specifications from the Master Mode description
apply for Slave Mode too.

Important Notes

• Before using the FLEXIO_I2S Driver the FlexIO clock must be configured. Refer to Clock Manager for clock
configuration.

• Before using the FLEXIO_I2S Driver the pins must be routed to the FlexIO module. Refer to PINS Driver for
pin routing configuration. Note that any of the available FlexIO pins can be used for any of the TX, RX, SCK
and WS signals (configurable at initialization time). If more than one driver instance is used on the same
Flexio module, it is the responsibility of the application to ensure there are no conflicts between pins.

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs two shifters and two timers for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs two DMA channels for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

Data Structures

• struct flexio_i2s_master_user_config_t

Master configuration structure. More...

• struct flexio_i2s_slave_user_config_t

Slave configuration structure. More...

• struct flexio_i2s_master_state_t

Master internal context structure. More...

Typedefs

• typedef flexio_i2s_master_state_t flexio_i2s_slave_state_t

Slave internal context structure.

FLEXIO_I2S Driver

• status_t FLEXIO_I2S_DRV_MasterInit (uint32_t instance, const flexio_i2s_master_user_config_t ∗user←↩

ConfigPtr, flexio_i2s_master_state_t ∗master)

Initialize the FLEXIO_I2S master mode driver.

• status_t FLEXIO_I2S_DRV_MasterDeinit (flexio_i2s_master_state_t ∗master)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

452 CONTENTS

De-initialize the FLEXIO_I2S master mode driver.

• status_t FLEXIO_I2S_DRV_MasterSetConfig (flexio_i2s_master_state_t ∗master, uint32_t baudRate,
uint8_t bitsWidth)

Set the baud rate and bit width for any subsequent I2S communication.

• status_t FLEXIO_I2S_DRV_MasterGetBaudRate (flexio_i2s_master_state_t ∗master, uint32_t ∗baudRate)

Get the currently configured baud rate.

• status_t FLEXIO_I2S_DRV_MasterSendData (flexio_i2s_master_state_t ∗master, const uint8_t ∗txBuff,
uint32_t txSize)

Perform a non-blocking send transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterSendDataBlocking (flexio_i2s_master_state_t ∗master, const uint8_←↩

t ∗txBuff, uint32_t txSize, uint32_t timeout)

Perform a blocking send transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterReceiveData (flexio_i2s_master_state_t ∗master, uint8_t ∗rxBuff,
uint32_t rxSize)

Perform a non-blocking receive transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterReceiveDataBlocking (flexio_i2s_master_state_t ∗master, uint8_t ∗rx←↩

Buff, uint32_t rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterTransferAbort (flexio_i2s_master_state_t ∗master)

Aborts a non-blocking I2S master transaction.

• status_t FLEXIO_I2S_DRV_MasterGetStatus (flexio_i2s_master_state_t ∗master, uint32_t ∗bytes←↩

Remaining)

Get the status of the current non-blocking I2S master transaction.

• status_t FLEXIO_I2S_DRV_MasterSetRxBuffer (flexio_i2s_master_state_t ∗master, uint8_t ∗rxBuff, uint32←↩

_t rxSize)

Provide a buffer for receiving data.

• status_t FLEXIO_I2S_DRV_MasterSetTxBuffer (flexio_i2s_master_state_t ∗master, const uint8_t ∗txBuff,
uint32_t txSize)

Provide a buffer for transmitting data.

• status_t FLEXIO_I2S_DRV_SlaveInit (uint32_t instance, const flexio_i2s_slave_user_config_t ∗userConfig←↩

Ptr, flexio_i2s_slave_state_t ∗slave)

Initialize the FLEXIO_I2S slave mode driver.

• static status_t FLEXIO_I2S_DRV_SlaveDeinit (flexio_i2s_slave_state_t ∗slave)

De-initialize the FLEXIO_I2S slave mode driver.

• status_t FLEXIO_I2S_DRV_SlaveSetConfig (flexio_i2s_slave_state_t ∗slave, uint8_t bitsWidth)

Set the bit width for any subsequent I2S communication.

• static status_t FLEXIO_I2S_DRV_SlaveSendData (flexio_i2s_slave_state_t ∗slave, const uint8_t ∗txBuff,
uint32_t txSize)

Perform a non-blocking send transaction on the I2S bus.

• static status_t FLEXIO_I2S_DRV_SlaveSendDataBlocking (flexio_i2s_slave_state_t ∗slave, const uint8_←↩

t ∗txBuff, uint32_t txSize, uint32_t timeout)

Perform a blocking send transaction on the I2S bus.

• static status_t FLEXIO_I2S_DRV_SlaveReceiveData (flexio_i2s_slave_state_t ∗slave, uint8_t ∗rxBuff,
uint32_t rxSize)

Perform a non-blocking receive transaction on the I2S bus.

• static status_t FLEXIO_I2S_DRV_SlaveReceiveDataBlocking (flexio_i2s_slave_state_t ∗slave, uint8_t ∗rx←↩

Buff, uint32_t rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2S bus.

• static status_t FLEXIO_I2S_DRV_SlaveTransferAbort (flexio_i2s_slave_state_t ∗slave)

Aborts a non-blocking I2S slave transaction.

• static status_t FLEXIO_I2S_DRV_SlaveGetStatus (flexio_i2s_slave_state_t ∗slave, uint32_t ∗bytes←↩

Remaining)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.42 FlexIO I2S Driver 453

Get the status of the current non-blocking I2S slave transaction.

• static status_t FLEXIO_I2S_DRV_SlaveSetRxBuffer (flexio_i2s_slave_state_t ∗slave, uint8_t ∗rxBuff,
uint32_t rxSize)

Provide a buffer for receiving data.

• static status_t FLEXIO_I2S_DRV_SlaveSetTxBuffer (flexio_i2s_slave_state_t ∗slave, const uint8_t ∗txBuff,
uint32_t txSize)

Provide a buffer for transmitting data.

14.42.2 Data Structure Documentation

14.42.2.1 struct flexio_i2s_master_user_config_t

Master configuration structure.

This structure is used to provide configuration parameters for the flexio_i2s master at initialization time. Implements
: flexio_i2s_master_user_config_t_Class

Definition at line 69 of file flexio_i2s_driver.h.

Data Fields

• flexio_driver_type_t driverType

• uint32_t baudRate

• uint8_t bitsWidth

• uint8_t txPin

• uint8_t rxPin

• uint8_t sckPin

• uint8_t wsPin

• flexio_callback_t callback

• void ∗ callbackParam

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

Field Documentation

14.42.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 72 of file flexio_i2s_driver.h.

14.42.2.1.2 uint8_t bitsWidth

Number of bits in a word - multiple of 8

Definition at line 73 of file flexio_i2s_driver.h.

14.42.2.1.3 flexio_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 78 of file flexio_i2s_driver.h.

14.42.2.1.4 void∗ callbackParam

Parameter for the callback function

Definition at line 82 of file flexio_i2s_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

454 CONTENTS

14.42.2.1.5 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 71 of file flexio_i2s_driver.h.

14.42.2.1.6 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 83 of file flexio_i2s_driver.h.

14.42.2.1.7 uint8_t rxPin

Flexio pin to use for receive

Definition at line 75 of file flexio_i2s_driver.h.

14.42.2.1.8 uint8_t sckPin

Flexio pin to use for serial clock

Definition at line 76 of file flexio_i2s_driver.h.

14.42.2.1.9 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 84 of file flexio_i2s_driver.h.

14.42.2.1.10 uint8_t txPin

Flexio pin to use for transmit

Definition at line 74 of file flexio_i2s_driver.h.

14.42.2.1.11 uint8_t wsPin

Flexio pin to use for word select

Definition at line 77 of file flexio_i2s_driver.h.

14.42.2.2 struct flexio_i2s_slave_user_config_t

Slave configuration structure.

This structure is used to provide configuration parameters for the flexio_i2s slave at initialization time. Implements :
flexio_i2s_slave_user_config_t_Class

Definition at line 94 of file flexio_i2s_driver.h.

Data Fields

• flexio_driver_type_t driverType

• uint8_t bitsWidth

• uint8_t txPin

• uint8_t rxPin

• uint8_t sckPin

• uint8_t wsPin

• flexio_callback_t callback

• void ∗ callbackParam

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.42 FlexIO I2S Driver 455

Field Documentation

14.42.2.2.1 uint8_t bitsWidth

Number of bits in a word - multiple of 8

Definition at line 97 of file flexio_i2s_driver.h.

14.42.2.2.2 flexio_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 102 of file flexio_i2s_driver.h.

14.42.2.2.3 void∗ callbackParam

Parameter for the callback function

Definition at line 106 of file flexio_i2s_driver.h.

14.42.2.2.4 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 96 of file flexio_i2s_driver.h.

14.42.2.2.5 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 107 of file flexio_i2s_driver.h.

14.42.2.2.6 uint8_t rxPin

Flexio pin to use for receive

Definition at line 99 of file flexio_i2s_driver.h.

14.42.2.2.7 uint8_t sckPin

Flexio pin to use for serial clock

Definition at line 100 of file flexio_i2s_driver.h.

14.42.2.2.8 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 108 of file flexio_i2s_driver.h.

14.42.2.2.9 uint8_t txPin

Flexio pin to use for transmit

Definition at line 98 of file flexio_i2s_driver.h.

14.42.2.2.10 uint8_t wsPin

Flexio pin to use for word select

Definition at line 101 of file flexio_i2s_driver.h.

14.42.2.3 struct flexio_i2s_master_state_t

Master internal context structure.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

456 CONTENTS

This structure is used by the driver for its internal logic. It must be provided by the application through the FLEXI←↩

O_I2S_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO_I2S_DR←↩

V_MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 120 of file flexio_i2s_driver.h.

14.42.3 Typedef Documentation

14.42.3.1 typedef flexio_i2s_master_state_t flexio_i2s_slave_state_t

Slave internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the FLEXI←↩

O_I2S_DRV_SlaveInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO_I2S_DRV←↩

_SlaveDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 152 of file flexio_i2s_driver.h.

14.42.4 Function Documentation

14.42.4.1 status_t FLEXIO_I2S_DRV_MasterDeinit (flexio_i2s_master_state_t ∗ master)

De-initialize the FLEXIO_I2S master mode driver.

This function de-initializes the FLEXIO_I2S driver in master mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.

Returns

Error or success status returned by API

Definition at line 1032 of file flexio_i2s_driver.c.

14.42.4.2 status_t FLEXIO_I2S_DRV_MasterGetBaudRate (flexio_i2s_master_state_t ∗ master, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured I2S baud rate.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1105 of file flexio_i2s_driver.c.

14.42.4.3 status_t FLEXIO_I2S_DRV_MasterGetStatus (flexio_i2s_master_state_t ∗ master, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking I2S master transaction.

This function returns the current status of a non-blocking I2S master transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.42 FlexIO I2S Driver 457

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API

Definition at line 1358 of file flexio_i2s_driver.c.

14.42.4.4 status_t FLEXIO_I2S_DRV_MasterInit (uint32_t instance, const flexio_i2s_master_user_config_t ∗
userConfigPtr, flexio_i2s_master_state_t ∗ master)

Initialize the FLEXIO_I2S master mode driver.

This function initializes the FLEXIO_I2S driver in master mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_I2S master user configuration structure. The function reads configu-

ration data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

master Pointer to the FLEXIO_I2S master driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_I2S←↩

_DRV_MasterDeinit().

Returns

Error or success status returned by API

Definition at line 941 of file flexio_i2s_driver.c.

14.42.4.5 status_t FLEXIO_I2S_DRV_MasterReceiveData (flexio_i2s_master_state_t ∗ master, uint8_t ∗ rxBuff, uint32_t
rxSize)

Perform a non-blocking receive transaction on the I2S bus.

This function starts the reception of a block of data and returns immediately. The rest of the reception is handled by
the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV_MasterGet←↩

Status function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_MasterGetStatus() to check the
progress of the reception.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1241 of file flexio_i2s_driver.c.

14.42.4.6 status_t FLEXIO_I2S_DRV_MasterReceiveDataBlocking (flexio_i2s_master_state_t ∗ master, uint8_t ∗ rxBuff,
uint32_t rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2S bus.

This function receives a block of data and only returns when the reception is complete.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

458 CONTENTS

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1307 of file flexio_i2s_driver.c.

14.42.4.7 status_t FLEXIO_I2S_DRV_MasterSendData (flexio_i2s_master_state_t ∗ master, const uint8_t ∗ txBuff,
uint32_t txSize)

Perform a non-blocking send transaction on the I2S bus.

This function starts the transmission of a block of data and returns immediately. The rest of the transmission is
handled by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV_←↩

MasterGetStatus function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_MasterGetStatus() to
check the progress of the transmission.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1144 of file flexio_i2s_driver.c.

14.42.4.8 status_t FLEXIO_I2S_DRV_MasterSendDataBlocking (flexio_i2s_master_state_t ∗ master, const uint8_t ∗
txBuff, uint32_t txSize, uint32_t timeout)

Perform a blocking send transaction on the I2S bus.

This function sends a block of data, and only returns when the transmission is complete.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1208 of file flexio_i2s_driver.c.

14.42.4.9 status_t FLEXIO_I2S_DRV_MasterSetConfig (flexio_i2s_master_state_t ∗ master, uint32_t baudRate, uint8_t
bitsWidth)

Set the baud rate and bit width for any subsequent I2S communication.

This function sets the baud rate (SCK frequency) and bit width for the I2S master. Note that due to module limitation
not any baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate,

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.42 FlexIO I2S Driver 459

but there may still be substantial differences, for example if requesting a high baud rate while using a low-frequency
FlexIO clock. The application should call FLEXIO_I2S_DRV_MasterGetBaudRate() after FLEXIO_I2S_DRV_←↩

MasterSetConfig() to check what baud rate was actually set.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

460 CONTENTS

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
baudRate the desired baud rate in hertz
bitsWidth number of bits per word

Returns

Error or success status returned by API

Definition at line 1055 of file flexio_i2s_driver.c.

14.42.4.10 status_t FLEXIO_I2S_DRV_MasterSetRxBuffer (flexio_i2s_master_state_t ∗ master, uint8_t ∗ rxBuff, uint32_t
rxSize)

Provide a buffer for receiving data.

This function can be used to provide a new buffer for receiving data to the driver. It can be called from the user
callback when event STATUS_I2S_RX_OVERRUN is reported. This way the reception will continue without inter-
ruption.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1393 of file flexio_i2s_driver.c.

14.42.4.11 status_t FLEXIO_I2S_DRV_MasterSetTxBuffer (flexio_i2s_master_state_t ∗ master, const uint8_t ∗ txBuff,
uint32_t txSize)

Provide a buffer for transmitting data.

This function can be used to provide a new buffer for transmitting data to the driver. It can be called from the user
callback when event STATUS_I2S_TX_UNDERRUN is reported. This way the transmission will continue without
interruption.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
txBuff pointer to the buffer containing transmit data
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1415 of file flexio_i2s_driver.c.

14.42.4.12 status_t FLEXIO_I2S_DRV_MasterTransferAbort (flexio_i2s_master_state_t ∗ master)

Aborts a non-blocking I2S master transaction.

This function aborts a non-blocking I2S transfer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.42 FlexIO I2S Driver 461

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.

Returns

Error or success status returned by API

Definition at line 1340 of file flexio_i2s_driver.c.

14.42.4.13 static status_t FLEXIO_I2S_DRV_SlaveDeinit (flexio_i2s_slave_state_t ∗ slave) [inline], [static]

De-initialize the FLEXIO_I2S slave mode driver.

This function de-initializes the FLEXIO_I2S driver in slave mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveDeinit_Activity

Definition at line 402 of file flexio_i2s_driver.h.

14.42.4.14 static status_t FLEXIO_I2S_DRV_SlaveGetStatus (flexio_i2s_slave_state_t ∗ slave, uint32_t ∗ bytesRemaining
) [inline], [static]

Get the status of the current non-blocking I2S slave transaction.

This function returns the current status of a non-blocking I2S slave transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveGetStatus_Activity

Definition at line 541 of file flexio_i2s_driver.h.

14.42.4.15 status_t FLEXIO_I2S_DRV_SlaveInit (uint32_t instance, const flexio_i2s_slave_user_config_t ∗
userConfigPtr, flexio_i2s_slave_state_t ∗ slave)

Initialize the FLEXIO_I2S slave mode driver.

This function initializes the FLEXIO_I2S driver in slave mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_I2S slave user configuration structure. The function reads configura-

tion data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

slave Pointer to the FLEXIO_I2S slave driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_I2S←↩

_DRV_SlaveDeinit().

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

462 CONTENTS

Returns

Error or success status returned by API

Definition at line 1439 of file flexio_i2s_driver.c.

14.42.4.16 static status_t FLEXIO_I2S_DRV_SlaveReceiveData (flexio_i2s_slave_state_t ∗ slave, uint8_t ∗ rxBuff,
uint32_t rxSize) [inline], [static]

Perform a non-blocking receive transaction on the I2S bus.

This function starts the reception of a block of data and returns immediately. The rest of the reception is handled
by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV_SlaveGet←↩

Status function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_SlaveGetStatus() to check the
progress of the reception.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveReceiveData_Activity

Definition at line 482 of file flexio_i2s_driver.h.

14.42.4.17 static status_t FLEXIO_I2S_DRV_SlaveReceiveDataBlocking (flexio_i2s_slave_state_t ∗ slave, uint8_t ∗
rxBuff, uint32_t rxSize, uint32_t timeout) [inline], [static]

Perform a blocking receive transaction on the I2S bus.

This function receives a block of data and only returns when the reception is complete.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveReceiveDataBlocking_Activity

Definition at line 502 of file flexio_i2s_driver.h.

14.42.4.18 static status_t FLEXIO_I2S_DRV_SlaveSendData (flexio_i2s_slave_state_t ∗ slave, const uint8_t ∗ txBuff,
uint32_t txSize) [inline], [static]

Perform a non-blocking send transaction on the I2S bus.

This function starts the transmission of a block of data and returns immediately. The rest of the transmission is
handled by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV←↩

_SlaveGetStatus function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_SlaveGetStatus() to
check the progress of the transmission.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.42 FlexIO I2S Driver 463

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSendData_Activity

Definition at line 436 of file flexio_i2s_driver.h.

14.42.4.19 static status_t FLEXIO_I2S_DRV_SlaveSendDataBlocking (flexio_i2s_slave_state_t ∗ slave, const uint8_t ∗
txBuff, uint32_t txSize, uint32_t timeout) [inline], [static]

Perform a blocking send transaction on the I2S bus.

This function sends a block of data, and only returns when the transmission is complete.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSendDataBlocking_Activity

Definition at line 458 of file flexio_i2s_driver.h.

14.42.4.20 status_t FLEXIO_I2S_DRV_SlaveSetConfig (flexio_i2s_slave_state_t ∗ slave, uint8_t bitsWidth)

Set the bit width for any subsequent I2S communication.

This function sets the bit width for the I2S slave.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
bitsWidth number of bits per word

Returns

Error or success status returned by API

Definition at line 1521 of file flexio_i2s_driver.c.

14.42.4.21 static status_t FLEXIO_I2S_DRV_SlaveSetRxBuffer (flexio_i2s_slave_state_t ∗ slave, uint8_t ∗ rxBuff,
uint32_t rxSize) [inline], [static]

Provide a buffer for receiving data.

This function can be used to provide a driver with a new buffer for receiving data. It can be called from the user
callback when event STATUS_I2S_RX_OVERRUN is reported. This way the reception will continue without inter-
ruption.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

464 CONTENTS

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSetRxBuffer_Activity

Definition at line 560 of file flexio_i2s_driver.h.

14.42.4.22 static status_t FLEXIO_I2S_DRV_SlaveSetTxBuffer (flexio_i2s_slave_state_t ∗ slave, const uint8_t ∗ txBuff,
uint32_t txSize) [inline], [static]

Provide a buffer for transmitting data.

This function can be used to provide a driver with a new buffer for transmitting data. It can be called from the user
callback when event STATUS_I2S_TX_UNDERRUN is reported. This way the transmission will continue without
interruption.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the buffer containing transmit data
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSetTxBuffer_Activity

Definition at line 581 of file flexio_i2s_driver.h.

14.42.4.23 static status_t FLEXIO_I2S_DRV_SlaveTransferAbort (flexio_i2s_slave_state_t ∗ slave) [inline],
[static]

Aborts a non-blocking I2S slave transaction.

This function aborts a non-blocking I2S transfer.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveTransferAbort_Activity

Definition at line 520 of file flexio_i2s_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.43 FlexIO SPI Driver 465

14.43 FlexIO SPI Driver

14.43.1 Detailed Description

SPI communication over FlexIO module (FLEXIO_SPI)

The FLEXIO_SPI Driver allows communication on an SPI bus using the FlexIO module in the S32144K processor.

Features

• Master or slave operation

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transfer functions

• Configurable baud rate

• Configurable clock polarity and phase

• Configurable bit order and data size

Functionality

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then the
FLEXIO_SPI Driver must be initialized, using functions FLEXIO_SPI_DRV_MasterInit() or FLEXIO_SPI_DRV_←↩

SlaveInit(). It is possible to use more driver instances on the same FlexIO device, as long as sufficient resources
are available. Different driver instances on the same FlexIO device can function independently of each other. When
it is no longer needed, the driver can be de-initialized, using FLEXIO_SPI_DRV_MasterDeinit() or FLEXIO_S←↩

PI_DRV_SlaveDeinit(). This will release the hardware resources, allowing other driver instances to be initialized
other.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from an SPI slave. Baud rate is provided at
initialization time through the master configuration structure, but can be changed at runtime by using FLEXIO_SP←↩

I_DRV_MasterSetBaudRate() function. Note that due to module limitation not any baud rate can be achieved. The
driver will set a baud rate as close as possible to the requested baud rate, but there may still be substantial differ-
ences, for example if requesting a high baud rate while using a low-frequency FlexIO clock. The application should
call FLEXIO_SPI_DRV_MasterGetBaudRate() after FLEXIO_SPI_DRV_MasterSetBaudRate() to check what baud
rate was actually set.

To send or receive data, use function FLEXIO_SPI_DRV_MasterTransfer(). The transmit and receive buffers, to-
gether with parameters for the transfer are provided through the flexio_spi_transfer_t structure. If only transmit
or receive is desired, any one of the Rx/Tx buffers can be set to NULL. This driver does not support continuous
send/receive using a user callback function. The callback function is only used to signal the end of a transfer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO_S←↩

PI_DRV_MasterGetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is
completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_SPI_DRV_Master←↩

GetStatus() ensures the progress of the transfer by checking and handling transmit and receive events reported
by the FlexIO module. The application should ensure that this function is called often enough (at least once per
transferred byte)to avoid Tx underflows or Rx overflows. In DMA mode the DMA channels that will be used by the
driver are received through the configuration structure. The channels must be initialized by the application before
the flexio_spi driver is initialized. The flexio_spi driver will only set the DMA request source.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

466 CONTENTS

Slave Mode

Slave Mode is very similar to master mode, the main difference being that the FLEXIO_SPI_DRV_SlaveInit() func-
tion initializes the FlexIO module to use the clock signal received from the master instead of generating it. Con-
sequently, there is no SetBaudRate function in slave mode. Other than that, the slave mode offers a similar
interface to the master mode. FLEXIO_SPI_DRV_MasterTransfer() can be used to initiate transfers, and FLEXIO←↩

_SPI_DRV_SlaveGetStatus() is used to check the status of the transfer and advance the transfer in polling mode.
All other specifications from the Master Mode description apply for Slave Mode too

Important Notes

• Before using the FLEXIO_SPI Driver the protocol clock of the module must be configured. Refer to Clock
Manager for clock configuration.

• Before using the FLEXIO_SPI Driver the pins must be routed to the FlexIO module. Refer to PINS Driver for
pin routing configuration. Note that any of the available FlexIO pins can be used for MOSI, MISO, SCK and
SS (configurable at initialization time).

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• The driver does not support back-to-back transmission mode for CPHA = 1

• The driver does not support configurable polarity for SS signal (only active-low is supported)

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs two shifters and two timers for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs two DMA channels for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

Data Structures

• struct flexio_spi_master_user_config_t

Master configuration structure. More...

• struct flexio_spi_slave_user_config_t

Slave configuration structure. More...

• struct flexio_spi_master_state_t

Master internal context structure. More...

Typedefs

• typedef flexio_spi_master_state_t flexio_spi_slave_state_t

Slave internal context structure.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.43 FlexIO SPI Driver 467

Enumerations

• enum flexio_spi_transfer_bit_order_t { FLEXIO_SPI_TRANSFER_MSB_FIRST = 0U, FLEXIO_SPI_TRAN←↩

SFER_LSB_FIRST = 1U }

Order in which the data bits are transferred Implements : flexio_spi_transfer_bit_order_t_Class.

• enum flexio_spi_transfer_size_t { FLEXIO_SPI_TRANSFER_1BYTE = 1U, FLEXIO_SPI_TRANSFER_2B←↩

YTE = 2U, FLEXIO_SPI_TRANSFER_4BYTE = 4U }

Size of transferred data in bytes Implements : flexio_spi_transfer_size_t_Class.

FLEXIO_SPI Driver

• status_t FLEXIO_SPI_DRV_MasterInit (uint32_t instance, const flexio_spi_master_user_config_t ∗user←↩

ConfigPtr, flexio_spi_master_state_t ∗master)

Initialize the FLEXIO_SPI master mode driver.

• status_t FLEXIO_SPI_DRV_MasterDeinit (flexio_spi_master_state_t ∗master)

De-initialize the FLEXIO_SPI master mode driver.

• status_t FLEXIO_SPI_DRV_MasterSetBaudRate (flexio_spi_master_state_t ∗master, uint32_t baudRate)

Set the baud rate for any subsequent SPI communication.

• status_t FLEXIO_SPI_DRV_MasterGetBaudRate (flexio_spi_master_state_t ∗master, uint32_t ∗baudRate)

Get the currently configured baud rate.

• status_t FLEXIO_SPI_DRV_MasterTransfer (flexio_spi_master_state_t ∗master, const uint8_t ∗txData,
uint8_t ∗rxData, uint32_t dataSize)

Perform a non-blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_MasterTransferBlocking (flexio_spi_master_state_t ∗master, const uint8_t ∗tx←↩

Data, uint8_t ∗rxData, uint32_t dataSize, uint32_t timeout)

Perform a blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_MasterTransferAbort (flexio_spi_master_state_t ∗master)

Aborts a non-blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_MasterGetStatus (flexio_spi_master_state_t ∗master, uint32_t ∗bytes←↩

Remaining)

Get the status of the current non-blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_SlaveInit (uint32_t instance, const flexio_spi_slave_user_config_t ∗userConfig←↩

Ptr, flexio_spi_slave_state_t ∗slave)

Initialize the FLEXIO_SPI slave mode driver.

• static status_t FLEXIO_SPI_DRV_SlaveDeinit (flexio_spi_slave_state_t ∗slave)

De-initialize the FLEXIO_SPI slave mode driver.

• static status_t FLEXIO_SPI_DRV_SlaveTransfer (flexio_spi_slave_state_t ∗slave, const uint8_t ∗txData,
uint8_t ∗rxData, uint32_t dataSize)

Perform a non-blocking SPI slave transaction.

• static status_t FLEXIO_SPI_DRV_SlaveTransferBlocking (flexio_spi_slave_state_t ∗slave, const uint8_t ∗tx←↩

Data, uint8_t ∗rxData, uint32_t dataSize, uint32_t timeout)

Perform a blocking SPI slave transaction.

• static status_t FLEXIO_SPI_DRV_SlaveTransferAbort (flexio_spi_slave_state_t ∗slave)

Aborts a non-blocking SPI slave transaction.

• static status_t FLEXIO_SPI_DRV_SlaveGetStatus (flexio_spi_slave_state_t ∗slave, uint32_t ∗bytes←↩

Remaining)

Get the status of the current non-blocking SPI slave transaction.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

468 CONTENTS

14.43.2 Data Structure Documentation

14.43.2.1 struct flexio_spi_master_user_config_t

Master configuration structure.

This structure is used to provide configuration parameters for the flexio_spi master at initialization time. Implements
: flexio_spi_master_user_config_t_Class

Definition at line 70 of file flexio_spi_driver.h.

Data Fields

• uint32_t baudRate

• flexio_driver_type_t driverType

• flexio_spi_transfer_bit_order_t bitOrder

• flexio_spi_transfer_size_t transferSize

• uint8_t clockPolarity

• uint8_t clockPhase

• uint8_t mosiPin

• uint8_t misoPin

• uint8_t sckPin

• uint8_t ssPin

• spi_callback_t callback

• void ∗ callbackParam

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

Field Documentation

14.43.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 72 of file flexio_spi_driver.h.

14.43.2.1.2 flexio_spi_transfer_bit_order_t bitOrder

Bit order: LSB-first / MSB-first

Definition at line 74 of file flexio_spi_driver.h.

14.43.2.1.3 spi_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 82 of file flexio_spi_driver.h.

14.43.2.1.4 void∗ callbackParam

Parameter for the callback function

Definition at line 86 of file flexio_spi_driver.h.

14.43.2.1.5 uint8_t clockPhase

Clock Phase (CPHA) 0 = sample on leading clock edge; 1 = sample on trailing clock edge

Definition at line 77 of file flexio_spi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.43 FlexIO SPI Driver 469

14.43.2.1.6 uint8_t clockPolarity

Clock Polarity (CPOL) 0 = active-high clock; 1 = active-low clock

Definition at line 76 of file flexio_spi_driver.h.

14.43.2.1.7 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 73 of file flexio_spi_driver.h.

14.43.2.1.8 uint8_t misoPin

Flexio pin to use as MISO pin

Definition at line 79 of file flexio_spi_driver.h.

14.43.2.1.9 uint8_t mosiPin

Flexio pin to use as MOSI pin

Definition at line 78 of file flexio_spi_driver.h.

14.43.2.1.10 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 87 of file flexio_spi_driver.h.

14.43.2.1.11 uint8_t sckPin

Flexio pin to use as SCK pin

Definition at line 80 of file flexio_spi_driver.h.

14.43.2.1.12 uint8_t ssPin

Flexio pin to use as SS pin

Definition at line 81 of file flexio_spi_driver.h.

14.43.2.1.13 flexio_spi_transfer_size_t transferSize

Transfer size in bytes: 1/2/4

Definition at line 75 of file flexio_spi_driver.h.

14.43.2.1.14 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 88 of file flexio_spi_driver.h.

14.43.2.2 struct flexio_spi_slave_user_config_t

Slave configuration structure.

This structure is used to provide configuration parameters for the flexio_spi slave at initialization time. Implements :
flexio_spi_slave_user_config_t_Class

Definition at line 97 of file flexio_spi_driver.h.

Data Fields

• flexio_driver_type_t driverType

• flexio_spi_transfer_bit_order_t bitOrder

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

470 CONTENTS

• flexio_spi_transfer_size_t transferSize

• uint8_t clockPolarity

• uint8_t clockPhase

• uint8_t mosiPin

• uint8_t misoPin

• uint8_t sckPin

• uint8_t ssPin

• spi_callback_t callback

• void ∗ callbackParam

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

Field Documentation

14.43.2.2.1 flexio_spi_transfer_bit_order_t bitOrder

Bit order: LSB-first / MSB-first

Definition at line 100 of file flexio_spi_driver.h.

14.43.2.2.2 spi_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 108 of file flexio_spi_driver.h.

14.43.2.2.3 void∗ callbackParam

Parameter for the callback function

Definition at line 112 of file flexio_spi_driver.h.

14.43.2.2.4 uint8_t clockPhase

Clock Phase (CPHA) 0 = sample on leading clock edge; 1 = sample on trailing clock edge

Definition at line 103 of file flexio_spi_driver.h.

14.43.2.2.5 uint8_t clockPolarity

Clock Polarity (CPOL) 0 = active-low clock; 1 = active-high clock

Definition at line 102 of file flexio_spi_driver.h.

14.43.2.2.6 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 99 of file flexio_spi_driver.h.

14.43.2.2.7 uint8_t misoPin

Flexio pin to use as MISO pin

Definition at line 105 of file flexio_spi_driver.h.

14.43.2.2.8 uint8_t mosiPin

Flexio pin to use as MOSI pin

Definition at line 104 of file flexio_spi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.43 FlexIO SPI Driver 471

14.43.2.2.9 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 113 of file flexio_spi_driver.h.

14.43.2.2.10 uint8_t sckPin

Flexio pin to use as SCK pin

Definition at line 106 of file flexio_spi_driver.h.

14.43.2.2.11 uint8_t ssPin

Flexio pin to use as SS pin

Definition at line 107 of file flexio_spi_driver.h.

14.43.2.2.12 flexio_spi_transfer_size_t transferSize

Transfer size in bytes: 1/2/4

Definition at line 101 of file flexio_spi_driver.h.

14.43.2.2.13 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 114 of file flexio_spi_driver.h.

14.43.2.3 struct flexio_spi_master_state_t

Master internal context structure.

This structure is used by the master-mode driver for its internal logic. It must be provided by the application through
the FLEXIO_SPI_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using FLEXI←↩

O_SPI_DRV_MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 126 of file flexio_spi_driver.h.

14.43.3 Typedef Documentation

14.43.3.1 typedef flexio_spi_master_state_t flexio_spi_slave_state_t

Slave internal context structure.

This structure is used by the slave-mode driver for its internal logic. It must be provided by the application through
the FLEXIO_SPI_DRV_SlaveInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO←↩

_SPI_DRV_SlaveDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 158 of file flexio_spi_driver.h.

14.43.4 Enumeration Type Documentation

14.43.4.1 enum flexio_spi_transfer_bit_order_t

Order in which the data bits are transferred Implements : flexio_spi_transfer_bit_order_t_Class.

Enumerator

FLEXIO_SPI_TRANSFER_MSB_FIRST Transmit data starting with most significant bit

FLEXIO_SPI_TRANSFER_LSB_FIRST Transmit data starting with least significant bit

Definition at line 42 of file flexio_spi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

472 CONTENTS

14.43.4.2 enum flexio_spi_transfer_size_t

Size of transferred data in bytes Implements : flexio_spi_transfer_size_t_Class.

Enumerator

FLEXIO_SPI_TRANSFER_1BYTE Data size is 1-byte

FLEXIO_SPI_TRANSFER_2BYTE Data size is 2-bytes

FLEXIO_SPI_TRANSFER_4BYTE Data size is 4-bytes

Definition at line 51 of file flexio_spi_driver.h.

14.43.5 Function Documentation

14.43.5.1 status_t FLEXIO_SPI_DRV_MasterDeinit (flexio_spi_master_state_t ∗ master)

De-initialize the FLEXIO_SPI master mode driver.

This function de-initializes the FLEXIO_SPI driver in master mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.

Returns

Error or success status returned by API

Definition at line 985 of file flexio_spi_driver.c.

14.43.5.2 status_t FLEXIO_SPI_DRV_MasterGetBaudRate (flexio_spi_master_state_t ∗ master, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured SPI baud rate.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1051 of file flexio_spi_driver.c.

14.43.5.3 status_t FLEXIO_SPI_DRV_MasterGetStatus (flexio_spi_master_state_t ∗ master, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking SPI master transaction.

This function returns the current status of a non-blocking SPI master transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.43 FlexIO SPI Driver 473

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API

Definition at line 1204 of file flexio_spi_driver.c.

14.43.5.4 status_t FLEXIO_SPI_DRV_MasterInit (uint32_t instance, const flexio_spi_master_user_config_t ∗
userConfigPtr, flexio_spi_master_state_t ∗ master)

Initialize the FLEXIO_SPI master mode driver.

This function initializes the FLEXIO_SPI driver in master mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_SPI master user configuration structure. The function reads configu-

ration data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

master Pointer to the FLEXIO_SPI master driver context structure. The driver uses this memory
area for its internal logic. The application must make no assumptions about the content of
this structure, and must not free this memory until the driver is de-initialized using FLEXIO←↩

_SPI_DRV_MasterDeinit().

Returns

Error or success status returned by API

Definition at line 896 of file flexio_spi_driver.c.

14.43.5.5 status_t FLEXIO_SPI_DRV_MasterSetBaudRate (flexio_spi_master_state_t ∗ master, uint32_t baudRate)

Set the baud rate for any subsequent SPI communication.

This function sets the baud rate for the SPI master. Note that due to module limitation not any baud rate can be
achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there may still be
substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO clock. The
application should call FLEXIO_SPI_DRV_MasterGetBaudRate() after FLEXIO_SPI_DRV_MasterSetBaudRate()
to check what baud rate was actually set.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
baudRate the desired baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1009 of file flexio_spi_driver.c.

14.43.5.6 status_t FLEXIO_SPI_DRV_MasterTransfer (flexio_spi_master_state_t ∗ master, const uint8_t ∗ txData, uint8_t
∗ rxData, uint32_t dataSize)

Perform a non-blocking SPI master transaction.

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is non-blocking, the function

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

474 CONTENTS

only initiates the transfer and then returns, leaving the transfer to complete asynchronously). FLEXIO_SPI_DRV←↩

_MasterGetStatus() can be called to check the status of the transfer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.43 FlexIO SPI Driver 475

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1091 of file flexio_spi_driver.c.

14.43.5.7 status_t FLEXIO_SPI_DRV_MasterTransferAbort (flexio_spi_master_state_t ∗ master)

Aborts a non-blocking SPI master transaction.

This function aborts a non-blocking SPI transfer.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.

Returns

Error or success status returned by API

Definition at line 1186 of file flexio_spi_driver.c.

14.43.5.8 status_t FLEXIO_SPI_DRV_MasterTransferBlocking (flexio_spi_master_state_t ∗ master, const uint8_t ∗
txData, uint8_t ∗ rxData, uint32_t dataSize, uint32_t timeout)

Perform a blocking SPI master transaction.

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is blocking, the function only
returns when the transfer is complete.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1153 of file flexio_spi_driver.c.

14.43.5.9 static status_t FLEXIO_SPI_DRV_SlaveDeinit (flexio_spi_slave_state_t ∗ slave) [inline], [static]

De-initialize the FLEXIO_SPI slave mode driver.

This function de-initializes the FLEXIO_SPI driver in slave mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

476 CONTENTS

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveDeinit_Activity

Definition at line 341 of file flexio_spi_driver.h.

14.43.5.10 static status_t FLEXIO_SPI_DRV_SlaveGetStatus (flexio_spi_slave_state_t ∗ slave, uint32_t ∗ bytesRemaining
) [inline], [static]

Get the status of the current non-blocking SPI slave transaction.

This function returns the current status of a non-blocking SPI slave transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveGetStatus_Activity

Definition at line 428 of file flexio_spi_driver.h.

14.43.5.11 status_t FLEXIO_SPI_DRV_SlaveInit (uint32_t instance, const flexio_spi_slave_user_config_t ∗
userConfigPtr, flexio_spi_slave_state_t ∗ slave)

Initialize the FLEXIO_SPI slave mode driver.

This function initializes the FLEXIO_SPI driver in slave mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_SPI slave user configuration structure. The function reads configura-

tion data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

slave Pointer to the FLEXIO_SPI slave driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_SP←↩

I_DRV_SlaveDeinit().

Returns

Error or success status returned by API

Definition at line 1231 of file flexio_spi_driver.c.

14.43.5.12 static status_t FLEXIO_SPI_DRV_SlaveTransfer (flexio_spi_slave_state_t ∗ slave, const uint8_t ∗ txData,
uint8_t ∗ rxData, uint32_t dataSize) [inline], [static]

Perform a non-blocking SPI slave transaction.

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is non-blocking, the function
only initiates the transfer and then returns, leaving the transfer to complete asynchronously). FLEXIO_SPI_DRV←↩

_SlaveGetStatus() can be called to check the status of the transfer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.43 FlexIO SPI Driver 477

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveTransfer_Activity

Definition at line 363 of file flexio_spi_driver.h.

14.43.5.13 static status_t FLEXIO_SPI_DRV_SlaveTransferAbort (flexio_spi_slave_state_t ∗ slave) [inline],
[static]

Aborts a non-blocking SPI slave transaction.

This function aborts a non-blocking SPI transfer.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveTransferAbort_Activity

Definition at line 407 of file flexio_spi_driver.h.

14.43.5.14 static status_t FLEXIO_SPI_DRV_SlaveTransferBlocking (flexio_spi_slave_state_t ∗ slave, const uint8_t ∗
txData, uint8_t ∗ rxData, uint32_t dataSize, uint32_t timeout) [inline], [static]

Perform a blocking SPI slave transaction.

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is blocking, the function only
returns when the transfer is complete.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveTransferBlocking_Activity

Definition at line 388 of file flexio_spi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

478 CONTENTS

14.44 FlexIO UART Driver

14.44.1 Detailed Description

UART communication over FlexIO module (FLEXIO_UART)

The FLEXIO_UART Driver allows UART communication using the FlexIO module in the S32144K processor.

Features

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate and number of bits

• Single stop bit only

• Parity bit not supported

Functionality

Initialization

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then
the FLEXIO_UART Driver must be initialized, using function FLEXIO_UART_DRV_Init(). It is possible to use more
driver instances on the same FlexIO device, as long as sufficient resources are available. Different driver instances
on the same FlexIO device can function independently of each other. When it is no longer needed, the driver can be
de-initialized, using FLEXIO_UART_DRV_Deinit(). This will release the hardware resources, allowing other driver
instances to be initialized.

Choosing transmit/receive mode

To initialize the UART driver in transmit / receive mode the direction field of the configuration structure must
be set to FLEXIO_UART_DIRECTION_TX / FLEXIO_UART_DIRECTION_RX when calling FLEXIO_UAR←↩

T_DRV_Init(). Once configured for one direction the driver must be used only for the chosen direction until it is
de-initialized. One driver instance can only work in one direction at a time, but more driver instances can be created
on the same device, up to the number of shifters present on the device (for example on S32K144 up to 4 driver
instances can run in parallel on one device).

Setting the baud rate and bit count

The baud rate and bit count are provided at initialization time through the master configuration structure, but they
can be changed at runtime by using function FLEXIO_UART_DRV_SetConfig(). Note that due to module limitation
not any baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud
rate, but there may still be substantial differences, for example if requesting a high baud rate while using a low-
frequency FlexIO clock. The application should call FLEXIO_UART_DRV_GetBaudRate() to check what baud rate
was actually set.

Transmitting / Receiving

To send or receive data to/from the currently configured slave address, use functions FLEXIO_UART_DRV_Send←↩

Data() or FLEXIO_UART_DRV_ReceiveData() (or their blocking counterparts). Continuous send/receive can be
realized by registering a user callback function. When the driver completes the transmission or reception of the
current buffer, it will invoke the user callback with an appropriate event. The callback function can the use FLEXI←↩

O_UART_DRV_SetTxBuffer() orFLEXIO_UART_DRV_SetRxBuffer() to provide a new buffer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO←↩

_UART_DRV_GetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.44 FlexIO UART Driver 479

completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_UART_DRV_Get←↩

Status() ensures the progress of the transfer by checking and handling transmit and receive events reported by the
FlexIO module. The application should ensure that this function is called often enough (at least once per transferred
byte) to avoid Tx underflows or Rx overflows. In DMA mode the DMA channel that will be used by the driver is
received through the configuration structure. The channel must be initialized by the application before the flexio_←↩

uart driver is initialized. The flexio_uart driver will only set the DMA request source.

Important Notes

• Before using the FLEXIO_UART Driver the FlexIO clock must be configured. Refer to Clock Manager for
clock configuration.

• Before using the FLEXIO_UART Driver the pins must be routed to the FlexIO module. Refer to PINS Driver
for pin routing configuration. Note that any of the available FlexIO pins can be used for the UART TX / RX
line (configurable at initialization time). If more than one driver instance is used on the same Flexio module,
it is the responsibility of the application to ensure there are no conflicts between pins.

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs one shifter and one timer for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs one DMA channel for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

Data Structures

• struct flexio_uart_user_config_t

Driver configuration structure. More...

• struct flexio_uart_state_t

Driver internal context structure. More...

Enumerations

• enum flexio_uart_driver_direction_t { FLEXIO_UART_DIRECTION_TX = 0x01U, FLEXIO_UART_DIRECT←↩

ION_RX = 0x00U }

flexio_uart driver direction (tx or rx)

FLEXIO_UART Driver

• status_t FLEXIO_UART_DRV_Init (uint32_t instance, const flexio_uart_user_config_t ∗userConfigPtr,
flexio_uart_state_t ∗state)

Initialize the FLEXIO_UART driver.

• status_t FLEXIO_UART_DRV_Deinit (flexio_uart_state_t ∗state)

De-initialize the FLEXIO_UART driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

480 CONTENTS

• status_t FLEXIO_UART_DRV_SetConfig (flexio_uart_state_t ∗state, uint32_t baudRate, uint8_t bitCount)

Set the baud rate and bit width for any subsequent UART communication.

• status_t FLEXIO_UART_DRV_GetBaudRate (flexio_uart_state_t ∗state, uint32_t ∗baudRate)

Get the currently configured baud rate.

• status_t FLEXIO_UART_DRV_SendDataBlocking (flexio_uart_state_t ∗state, const uint8_t ∗txBuff, uint32←↩

_t txSize, uint32_t timeout)

Perform a blocking UART transmission.

• status_t FLEXIO_UART_DRV_SendData (flexio_uart_state_t ∗state, const uint8_t ∗txBuff, uint32_t txSize)

Perform a non-blocking UART transmission.

• status_t FLEXIO_UART_DRV_ReceiveDataBlocking (flexio_uart_state_t ∗state, uint8_t ∗rxBuff, uint32_←↩

t rxSize, uint32_t timeout)

Perform a blocking UART reception.

• status_t FLEXIO_UART_DRV_ReceiveData (flexio_uart_state_t ∗state, uint8_t ∗rxBuff, uint32_t rxSize)

Perform a non-blocking UART reception.

• status_t FLEXIO_UART_DRV_GetStatus (flexio_uart_state_t ∗state, uint32_t ∗bytesRemaining)

Get the status of the current non-blocking UART transfer.

• status_t FLEXIO_UART_DRV_TransferAbort (flexio_uart_state_t ∗state)

Aborts a non-blocking UART transfer.

• status_t FLEXIO_UART_DRV_SetRxBuffer (flexio_uart_state_t ∗state, uint8_t ∗rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

• status_t FLEXIO_UART_DRV_SetTxBuffer (flexio_uart_state_t ∗state, const uint8_t ∗txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

14.44.2 Data Structure Documentation

14.44.2.1 struct flexio_uart_user_config_t

Driver configuration structure.

This structure is used to provide configuration parameters for the flexio_uart driver at initialization time. Implements
: flexio_uart_user_config_t_Class

Definition at line 63 of file flexio_uart_driver.h.

Data Fields

• flexio_driver_type_t driverType
• uint32_t baudRate
• uint8_t bitCount
• flexio_uart_driver_direction_t direction
• uint8_t dataPin
• uart_callback_t callback
• void ∗ callbackParam
• uint8_t dmaChannel

Field Documentation

14.44.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 66 of file flexio_uart_driver.h.

14.44.2.1.2 uint8_t bitCount

Number of bits per word

Definition at line 67 of file flexio_uart_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.44 FlexIO UART Driver 481

14.44.2.1.3 uart_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 70 of file flexio_uart_driver.h.

14.44.2.1.4 void∗ callbackParam

Parameter for the callback function

Definition at line 74 of file flexio_uart_driver.h.

14.44.2.1.5 uint8_t dataPin

Flexio pin to use as Tx or Rx pin

Definition at line 69 of file flexio_uart_driver.h.

14.44.2.1.6 flexio_uart_driver_direction_t direction

Driver direction: Tx or Rx

Definition at line 68 of file flexio_uart_driver.h.

14.44.2.1.7 uint8_t dmaChannel

DMA channel number. Only used in DMA mode

Definition at line 75 of file flexio_uart_driver.h.

14.44.2.1.8 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 65 of file flexio_uart_driver.h.

14.44.2.2 struct flexio_uart_state_t

Driver internal context structure.

This structure is used by the flexio_uart driver for its internal logic. It must be provided by the application through
the FLEXIO_UART_DRV_Init() function, then it cannot be freed until the driver is de-initialized using FLEXIO_U←↩

ART_DRV_DeInit(). The application should make no assumptions about the content of this structure.

Definition at line 87 of file flexio_uart_driver.h.

14.44.3 Enumeration Type Documentation

14.44.3.1 enum flexio_uart_driver_direction_t

flexio_uart driver direction (tx or rx)

This structure describes the direction configuration options for the flexio_uart driver. Implements : flexio_uart_←↩

driver_direction_t_Class

Enumerator

FLEXIO_UART_DIRECTION_TX Tx UART driver

FLEXIO_UART_DIRECTION_RX Rx UART driver

Definition at line 45 of file flexio_uart_driver.h.

14.44.4 Function Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

482 CONTENTS

14.44.4.1 status_t FLEXIO_UART_DRV_Deinit (flexio_uart_state_t ∗ state)

De-initialize the FLEXIO_UART driver.

This function de-initializes the FLEXIO_UART driver. The driver can't be used again until reinitialized. The context
structure is no longer needed by the driver and can be freed after calling this function.

Parameters

state Pointer to the FLEXIO_UART driver context structure.

Returns

Error or success status returned by API

Definition at line 1046 of file flexio_uart_driver.c.

14.44.4.2 status_t FLEXIO_UART_DRV_GetBaudRate (flexio_uart_state_t ∗ state, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured UART baud rate.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1125 of file flexio_uart_driver.c.

14.44.4.3 status_t FLEXIO_UART_DRV_GetStatus (flexio_uart_state_t ∗ state, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking UART transfer.

This function returns the current status of a non-blocking UART transfer. A return code of STATUS_BUSY means
the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last transfer.
When the driver is initialized in polling mode this function also advances the transfer by checking and handling the
transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API

Definition at line 1362 of file flexio_uart_driver.c.

14.44.4.4 status_t FLEXIO_UART_DRV_Init (uint32_t instance, const flexio_uart_user_config_t ∗ userConfigPtr,
flexio_uart_state_t ∗ state)

Initialize the FLEXIO_UART driver.

This function initializes the FLEXIO_UART driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.44 FlexIO UART Driver 483

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_UART user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application may free this
structure after the function returns.

state Pointer to the FLEXIO_UART driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_UA←↩

RT_DRV_Deinit().

Returns

Error or success status returned by API

Definition at line 941 of file flexio_uart_driver.c.

14.44.4.5 status_t FLEXIO_UART_DRV_ReceiveData (flexio_uart_state_t ∗ state, uint8_t ∗ rxBuff, uint32_t rxSize)

Perform a non-blocking UART reception.

This function receives a block of data and returns immediately. The rest of the transmission is handled by the
interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_UART_DRV_GetReceive←↩

Status() function (if the driver is initialized in polling mode).

Parameters

state Pointer to the FLEXIO_UART driver context structure.
rxBuff pointer to the receive buffer
rxSize length in bytes of the data to be received

Returns

Error or success status returned by API

Definition at line 1255 of file flexio_uart_driver.c.

14.44.4.6 status_t FLEXIO_UART_DRV_ReceiveDataBlocking (flexio_uart_state_t ∗ state, uint8_t ∗ rxBuff, uint32_t rxSize,
uint32_t timeout)

Perform a blocking UART reception.

This function receives a block of data and only returns when the transmission is complete.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
rxBuff pointer to the receive buffer
rxSize length in bytes of the data to be received

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1311 of file flexio_uart_driver.c.

14.44.4.7 status_t FLEXIO_UART_DRV_SendData (flexio_uart_state_t ∗ state, const uint8_t ∗ txBuff, uint32_t txSize)

Perform a non-blocking UART transmission.

This function sends a block of data and returns immediately. The rest of the transmission is handled by the interrupt
service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_UART_DRV_GetTransmitStatus()
function (if the driver is initialized in polling mode).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

484 CONTENTS

Parameters

state Pointer to the FLEXIO_UART driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1164 of file flexio_uart_driver.c.

14.44.4.8 status_t FLEXIO_UART_DRV_SendDataBlocking (flexio_uart_state_t ∗ state, const uint8_t ∗ txBuff, uint32_t
txSize, uint32_t timeout)

Perform a blocking UART transmission.

This function sends a block of data and only returns when the transmission is complete.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1222 of file flexio_uart_driver.c.

14.44.4.9 status_t FLEXIO_UART_DRV_SetConfig (flexio_uart_state_t ∗ state, uint32_t baudRate, uint8_t bitCount)

Set the baud rate and bit width for any subsequent UART communication.

This function sets the baud rate and bit width for the UART driver. Note that due to module limitation not any baud
rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there may
still be substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO clock.
The application should call FLEXIO_UART_DRV_GetBaudRate() after FLEXIO_UART_DRV_SetConfig() to check
what baud rate was actually set.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
baudRate the desired baud rate in hertz

bitCount number of bits per word

Returns

Error or success status returned by API

Definition at line 1070 of file flexio_uart_driver.c.

14.44.4.10 status_t FLEXIO_UART_DRV_SetRxBuffer (flexio_uart_state_t ∗ state, uint8_t ∗ rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

This function can be used to provide a new buffer for receiving data to the driver. It can be called from the user
callback when event STATUS_UART_RX_OVERRUN is reported. This way the reception will continue without
interruption.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.44 FlexIO UART Driver 485

Parameters

state Pointer to the FLEXIO_UART driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1395 of file flexio_uart_driver.c.

14.44.4.11 status_t FLEXIO_UART_DRV_SetTxBuffer (flexio_uart_state_t ∗ state, const uint8_t ∗ txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

This function can be used to provide a new buffer for transmitting data to the driver. It can be called from the user
callback when event STATUS_UART_TX_UNDERRUN is reported. This way the transmission will continue without
interruption.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
txBuff pointer to the buffer containing transmit data
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1417 of file flexio_uart_driver.c.

14.44.4.12 status_t FLEXIO_UART_DRV_TransferAbort (flexio_uart_state_t ∗ state)

Aborts a non-blocking UART transfer.

This function aborts a non-blocking UART transfer.

Parameters

state Pointer to the FLEXIO_UART driver context structure.

Returns

Error or success status returned by API

Definition at line 1344 of file flexio_uart_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

486 CONTENTS

14.45 FlexTimer (FTM)

14.45.1 Detailed Description

FlexTimer Peripheral Driver.

Hardware background

The FTM of the S32K144 is based on a 16 bits counter and supports: input capture, output compare, PWM and
some instances include quadrature decoder. The main features are:

•FTM source clock is selectable (Source clock can be the system clock, the fixed frequency clock, or an external
clock)

•Prescaler: 1, 2, 4, 8, 16, 32, 64, 128

•16 bit counter (up and up-down counting)

•Each channel can be configured for input capture, output compare, or edge-aligned PWM mode.

•Input Capture mode (single edge, dual edge)

•Output Compare mode (set, cleared or toggle on match)

•All channels can be configured for center-aligned PWM mode.

•Each pair of channels can be combined to generate a PWM signal with independent control of both edges of PWM
signal and with dead-time insertion.

•Up to 4 fault inputs for global fault control

•Dual edge capture for pulse and period width measurement

•Quadrature decoder with input filters, relative position counting, and interrupt on position count or capture of posi-
tion count on external event.

How to use FTM driver in your application

For all operation modes (without Quadrature Decoder mode) the user need to configure ftm_user_config_t. This
structure will be used for initialization (FTM_DRV_Init). The next functions used are specific for each operation
mode.

Output compare mode

For this mode the user needs to configure maximum counter value, number of channels used and output mode
for each channel (toggle/clear/set on match). This information is stored in ftm_output_cmp_param_t data type and
are used in FTM_OC_DRV_InitOutputCompare. Next step is to set a value for comparison with FTM_OC_DRV_←↩

UpdateOutputCompareChannel.

Example:

/* The state structure of instance in the output compare mode */
ftm_state_t stateOutputCompare;
#define FTM_OUTPUT_COMPARE_INSTANCE 2UL
/* Channels configuration structure for PWM output compare */
ftm_output_cmp_ch_param_t PWM_OutputCompareChannelConfig[2] =
{

{
0, /* Channel id */
FTM_TOGGLE_ON_MATCH, /* Output mode */
10000U, /* Compared value */
false, /* External Trigger */

},
{

1, /* Channel id */
FTM_TOGGLE_ON_MATCH, /* Output mode */
20000U, /* Compared value */
false, /* External Trigger */

}
};

/* Output compare configuration for PWM */
ftm_output_cmp_param_t PWM_OutputCompareConfig =

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.45 FlexTimer (FTM) 487

{
2, /* Number of channels */
FTM_MODE_OUTPUT_COMPARE, /* FTM mode */
40000U, /* Maximum count value */
PWM_OutputCompareChannelConfig /* Channels configuration */

};
/* Timer mode configuration for PWM */
/* Global configuration of PWM */
ftm_user_config_t PWM_InitConfig =
{

{
true, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
true, /* Maximum loading point state */
true, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* select synchronization method */

},
FTM_MODE_OUTPUT_COMPARE, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_OUTPUT_COMPARE_INSTANCE, &PWM_InitConfig, &stateOutputCompare);
FTM_OC_DRV_InitOutputCompare(FTM_OUTPUT_COMPARE_INSTANCE, &PWM_OutputCompareConfig);
/* If you want to change compared value */
FTM_OC_DRV_UpdateOutputCompareChannel(FTM_OUTPUT_COMPARE_INSTANCE, 0UL, 15000U);

PWM mode

For this mode the user needs to configure parameters such: number of PWM channels, frequency, dead time, fault
channels and duty cycle, alignment (edge or center). All this information is included in ftm_pwm_param_t data type.

FTM_PWM_DRV_UpdatePwmChannel can be used to update duty cycles at run time. If the type of update in the
duty cycle when the duty cycle can have value between 0x0 (0%) and 0x8000 (100%). If the type of update in ticks
when the firstEdge and secondEdge variables can have value between 0 and ftmPeriod which is stored in the state
structure.

Example:

/* The state structure of instance in the PWM mode */
ftm_state_t statePwm;
#define FTM_PWM_INSTANCE 1UL
/* Fault configuration structure */
ftm_pwm_fault_param_t PWM_FaultConfig =
{

false,
true,
5U, /* Fault filter value */
FTM_FAULT_CONTROL_MAN_EVEN,
{

{
true, /* Fault channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_HIGH, /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

}
}

};
/* Independent channels configuration structure for PWM */

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

488 CONTENTS

ftm_independent_ch_param_t PWM_IndependentChannelsConfig[1] =
{

{
0U, /* hwChannelId */
FTM_POLARITY_HIGH, /* edgeMode */
10922, /* uDutyCyclePercent (0-0x8000) */
false, /* External Trigger */

}
};

/* PWM configuration for PWM */
ftm_pwm_param_t PWM_PwmConfig =
{

1U, /* Number of independent PWM channels */
0U, /* Number of combined PWM channels */
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
0U, /* DeadTime Value */
FTM_DEADTIME_DIVID_BY_4, /* DeadTime clock divider */
7481U, /* PWM frequency */
PWM_IndependentChannelsConfig, /* Independent PWM channels configuration structure */
NULL, /* Combined PWM channels configuration structure */
&PWM_FaultConfig /* PWM fault configuration structure */

};
/* Timer mode configuration for PWM */
/* Global configuration of PWM */
ftm_user_config_t PWM_InitConfig =
{

{
true, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
true, /* Maximum loading point state */
true, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_PWM_INSTANCE, &PWM_InitConfig, &statePwm);
FTM_PWM_DRV_InitPwm(FTM_PWM_INSTANCE, &PWM_PwmConfig);
/* It’s recommended to use softwareTrigger = true */
/* SECOND_EDGE value is used only when PWM is used in combined mode */
FTM_PWM_DRV_UpdatePwmChannel(FTM_PWM_INSTANCE, OUL, FTM_PWM_UPDATE_IN_DUTY_CYCLE

, 0x800, 0x2000, true);

PWM in Modified Combine mode

For this mode the user needs to configure parameters such: number of PWM channels, frequency, dead time, fault
channels and duty cycle, alignment (edge or center). All this information is included in ftm_pwm_param_t data
type. The Modified Combine PWM mode is intended to support the generation of PWM signals where the period
is not modified while the signal is being generated, but the duty cycle will be varied. FTM_PWM_DRV_Update←↩

PwmChannel can be used to update duty cycles at run time. If the type of update in the duty cycle when the duty
cycle can have value between 0x0 (0%) and 0x8000 (100%). If the type of update in ticks when the firstEdge and
secondEdge variables can have value between 0 and ftmPeriod which is stored in the state structure.In this mode,
an even channel (n) and adjacent odd channel (n+1) are combined to generate a PWM signal in the channel (n)
output. Thus, the channel (n) match edge is fixed and the channel (n+1) match edge can be varied.

Example:

/* The state structure of instance in the PWM mode */
ftm_state_t statePwm;
#define FTM_PWM_INSTANCE 0UL
/* Fault configuration structure */
ftm_pwm_fault_param_t PWM_FaultConfig =
{

false,
true,
5U, /* Fault filter value */
FTM_FAULT_CONTROL_MAN_EVEN,
{

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.45 FlexTimer (FTM) 489

{
true, /* Fault channel state (Enabled/Disabled)*/
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_HIGH, /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

}
}

};
/* Combine channels configuration structure for PWM */
ftm_combined_ch_param_t flexTimer1_CombinedChannelsConfig[1] =
{

{
0U, /* Hardware channel for channel (n) */
512U, /* First edge time */
16384U, /* Second edge time */
false, /* Dead time enabled/disabled */
true, /* The modified combine mode enabled/disabled */
FTM_POLARITY_HIGH, /* Channel polarity */
true, /* Output enabled/disabled for channel (n+1) */
FTM_MAIN_DUPLICATED, /* Polarity for channel (n+1) */
false, /* External Trigger on the channel (n) */
false, /* External Trigger on the channel (n+1) */

}
};
/* PWM configuration for PWM */
ftm_pwm_param_t PWM_PwmConfig =
{

0U, /* Number of independent PWM channels */
1U, /* Number of combined PWM channels */
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
0U, /* DeadTime Value */
FTM_DEADTIME_DIVID_BY_4, /* DeadTime clock divider */
7481U, /* PWM frequency */
NULL, /* Independent PWM channels configuration structure */
flexTimer1_CombinedChannelsConfig, /* Combined PWM channels configuration structure */
&PWM_FaultConfig /* PWM fault configuration structure */

};
/* Timer mode configuration for PWM */
/* Global configuration of PWM */
ftm_user_config_t PWM_InitConfig =
{

{
true, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
true, /* Maximum loading point state */
true, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_PWM_INSTANCE, &PWM_InitConfig, &statePwm);
FTM_PWM_DRV_InitPwm(FTM_PWM_INSTANCE, &PWM_PwmConfig);
/* It’s recommended to use softwareTrigger = true */
/* SECOND_EDGE value is used only when PWM is used in combined mode */
FTM_PWM_DRV_UpdatePwmChannel(FTM_PWM_INSTANCE, OUL, FTM_PWM_UPDATE_IN_DUTY_CYCLE

, 0x0, 0x2000, true);

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

490 CONTENTS

Single edge input capture mode

For this mode the user needs to configure parameters such: maximum counter value, number of channels, input
capture operation mode (for single edge input are used edge detect mode) and edge alignment. All this information
is included in ftm_input_param_t.

Example:

/* The state structure of instance in the input capture mode */
ftm_state_t stateInputCapture;
#define FTM_IC_INSTANCE 0UL
/* Channels configuration structure for inputCapture input capture */
ftm_input_ch_param_t inputCapture_InputCaptureChannelConfig[1] =
{

{
0U, /* Channel id */
FTM_EDGE_DETECT, /* Input capture operation Mode */
FTM_RISING_EDGE, /* Edge alignment Mode */
FTM_NO_MEASUREMENT, /* Signal measurement operation type */
0U, /* Filter value */
false, /* Filter disabled */
true /* Continuous mode measurement */
NULL, /* Vector of callbacks parameters for channels events */
NULL /* Vector of callbacks for channels events */
}

};
/* Input capture configuration for inputCapture */
ftm_input_param_t inputCapture_InputCaptureConfig =
{

1U, /* Number of channels */
65535U, /* Maximum count value */
inputCapture_InputCaptureChannelConfig /* Channels configuration */

};
/* Timer mode configuration for inputCapture */
/* Global configuration of inputCapture */
ftm_user_config_t inputCapture_InitConfig =
{

{
false, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
false, /* Maximum loading point state */
false, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_INPUT_CAPTURE, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_00, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_IC_INSTANCE, &inputCapture_InitConfig, &stateInputCapture);
FTM_IC_DRV_InitInputCapture(FTM_IC_INSTANCE, &inputCapture_InputCaptureConfig);
counter = FTM_IC_DRV_GetInputCaptureMeasurement(FTM_IC_INSTANCE, 0UL);

FTM_IC_DRV_GetInputCaptureMeasurement is now used in interrupt mode and this function is used to save time
stamps in internal buffers.

Counter mode

For this mode the user needs to configure parameters like: counter mode (up-counting or up-down counting),
maximum counter value, initial counter value. All this information is included in ftm_timer_param_t.

Example:

/* The state structure of instance in the input capture mode */
ftm_state_t stateTimer;
#define FTM_TIMER_INSTANCE 3UL
/* Timer mode configuration for Timer */
ftm_timer_param_t Timer_TimerConfig =
{

FTM_MODE_UP_TIMER, /* Counter mode */
0U, /* Initial counter value */

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.45 FlexTimer (FTM) 491

0x8000U /* Final counter value */
};

/* Global configuration of Timer*/
ftm_user_config_t Timer_InitConfig =
{

{
false, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
false, /* Maximum loading point state */
false, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_UP_TIMER, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_2, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_TIMER_INSTANCE,&Timer_InitConfig, &stateTimer);
FTM_MC_DRV_InitCounter(FTM_TIMER_INSTANCE, &Timer_TimerConfig);
FTM_MC_DRV_CounterStart(FTM_TIMER_INSTANCE);

Quadrature decoder mode

For this mode the user needs to configure parameters like: maximum counter value, initial counter value, mode
(Count and Direction Encoding mode, Count and Direction Encoding mode), and for both input phases polarity and
filtering. All this information is included in ftm_quad_decode_config_t. In this mode the counter is clocked by the
phase A and phase B. The current state of the decoder can be obtained using FTM_MC_DRV_QuadGetState.

Hardware limitation:

In count and direction mode if initial value of the PHASE_A is HIGH the counter will be incremented.

Example:

/* The state structure of instance in the quadrature mode */
ftm_state_t stateQuad;
#define FTM_QUADRATURE_INSTANCE 0UL
ftm_quad_decoder_state_t quadra_state;
ftm_quad_decode_config_t quadrature_decoder_configuration =
{

FTM_QUAD_COUNT_AND_DIR, /* Quadrature decoder mode */
0U, /* Initial counter value */
32500U, /* Maximum counter value */
{

false, /* Filter state */
0U, /* Filter value */
FTM_QUAD_PHASE_NORMAL /* Phase polarity */

},
{

false, /* Filter state */
0U, /* Filter value */
FTM_QUAD_PHASE_NORMAL /* Phase polarity */

}
};
/* Timer mode configuration for Quadrature */
/* Global configuration of Quadrature */
ftm_user_config_t Quadrature_InitConfig =
{

{
false, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
false, /* Maximum loading point state */
false, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

492 CONTENTS

},
FTM_MODE_QUADRATURE_DECODER, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_2, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_QUADRATURE_INSTANCE, &Quadrature_InitConfig, &stateQuad);
FTM_MC_DRV_QuadDecodeStart(FTM_QUADRATURE_INSTANCE, &quadrature_decoder_configuration);
quadra_state = FTM_MC_DRV_QuadGetState(FTM_QUADRATURE_INSTANCE);

Modules

• FTM Common Driver

FlexTimer Peripheral Common Driver.

• FTM Input Capture Driver

FlexTimer Peripheral Input Capture Driver.

• FTM Module Counter Driver

FlexTimer Peripheral Driver.

• FTM Output Compare Driver

FlexTimer Peripheral Output Compare Driver.

• FTM Pulse Width Modulation Driver

FlexTimer Peripheral Pulse Width Modulation Driver.

• FTM Quadrature Decoder Driver

FlexTimer Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.46 Flexible I/O (FlexIO) 493

14.46 Flexible I/O (FlexIO)

14.46.1 Detailed Description

The FlexIO is a highly configurable module providing a wide range of functionality including:

• Emulation of a variety of serial communication protocols, such as SPI, I2C, I2S or UART, while requiring low
CPU overhead and being more efficient that having multiple dedicated peripherals for each protocol.

• Flexible 16-bit timers with support for a variety of trigger, reset, enable and disable conditions

• PWM/Waveform generation

Several drivers are provided for this device, implementing a variety of communication protocols. There is also a
common layer on which all the drivers are based, allowing more driver instances, either of the same type or different
types, to function in parallel on the same FlexIO device. Each driver instance needs a certain number of Flex←↩

IO resources (shifters and timers) and as long as there are enough free resources new driver instances can be
initialized. The table below shows the driver types and the number of resources needed by each one:

Drivers Timers Shifters Pins
SPI 2 2 4
I2C 2 2 2
I2S 2 2 4

UART 1 1 1

The number of timers and shifters available on a specific device can be found in the reference manual.

Modules

• FlexIO Common Driver

Common services for FlexIO drivers.

• FlexIO I2C Driver

I2C communication over FlexIO module (FLEXIO_I2C)

• FlexIO I2S Driver

I2S communication over FlexIO module (FLEXIO_I2S)

• FlexIO SPI Driver

SPI communication over FlexIO module (FLEXIO_SPI)

• FlexIO UART Driver

UART communication over FlexIO module (FLEXIO_UART)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

494 CONTENTS

14.47 FreeRTOS

FreeRTOS is a Real Time Operating System (RTOS) design to run on microcontrollers which have size constraints
and dedicated end applications.

FreeRTOS provides:

• core real time scheduling functionality

• inter-task communication

• timing and synchronisation primitives

Additonal functionality can be included with add-on components.

More information about FreeRTOS can be found on the FreeRTOS website: www.freertos.org

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

http://www.freertos.org/

14.48 Initialization 495

14.48 Initialization

14.48.1 Detailed Description

Initialize transport layer (queues, status, ...).

Functions

• void ld_init (l_ifc_handle iii)

Initialize or reinitialize the raw and cooked layers.

14.48.2 Function Documentation

14.48.2.1 void ld_init (l_ifc_handle iii)

Initialize or reinitialize the raw and cooked layers.

Parameters

in iii Interface name

Returns

void

Initialize or reinitialize the raw and cooked layers on the interface iii. All the transport layer buffers will be initialized.

Definition at line 52 of file lin_commontl_api.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

496 CONTENTS

14.49 Interface management

14.49.1 Detailed Description

This group contains APIs that help users manage interface(s) in LIN node.

Functions

• l_bool l_ifc_init (l_ifc_handle iii)

Initialize the controller specified by name, i.e. sets up internal functions such as the baud rate. The default schedule
set by the l_ifc_init call will be the L_NULL_SCHEDULE where no frames will be sent and received. This is the first
call a user must perform, before using any other interface related LIN API functions. The function returns zero if the
initialization was successful and non-zero if failed.

• void l_ifc_goto_sleep (l_ifc_handle iii)

Request slave nodes on the cluster connected to the interface to enter bus sleep mode by issuing one go to sleep
command. This API is available only for Master nodes.

• void l_ifc_wake_up (l_ifc_handle iii)

Transmit the wake up signal.

• l_u16 l_ifc_read_status (l_ifc_handle iii)

This function will return the status of the previous communication.

14.49.2 Function Documentation

14.49.2.1 void l_ifc_goto_sleep (l_ifc_handle iii)

Request slave nodes on the cluster connected to the interface to enter bus sleep mode by issuing one go to sleep
command. This API is available only for Master nodes.

Note

After sending go to sleep command successfully, the master node sets go to sleep flag to 1 and goes to
sleep mode. At the end of Go to sleep schedule table, at the end of frame slot of go to sleep command, in
l_sch_tick() the master node actually switches its active schedule table to Null to stop all communication. To
start LIN communication, the master node shall call l_ifc_wake_up() to wake up LIN cluster and l_sch_set() to
activate normal schedule table.

Parameters

in iii Interface name

Returns

void

Definition at line 382 of file lin_common_api.c.

14.49.2.2 l_bool l_ifc_init (l_ifc_handle iii)

Initialize the controller specified by name, i.e. sets up internal functions such as the baud rate. The default schedule
set by the l_ifc_init call will be the L_NULL_SCHEDULE where no frames will be sent and received. This is the first
call a user must perform, before using any other interface related LIN API functions. The function returns zero if the
initialization was successful and non-zero if failed.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.49 Interface management 497

Parameters

in iii Interface name

Returns

Operation status

• Zero: Initialization was successful.

• Non-zero: Initialization failed.

Definition at line 411 of file lin_common_api.c.

14.49.2.3 l_u16 l_ifc_read_status (l_ifc_handle iii)

This function will return the status of the previous communication.

Parameters

in iii Interface name

Returns

l_u16

Definition at line 475 of file lin_common_api.c.

14.49.2.4 void l_ifc_wake_up (l_ifc_handle iii)

Transmit the wake up signal.

Parameters

in iii Interface name

Returns

void

Definition at line 461 of file lin_common_api.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

498 CONTENTS

14.50 Interrupt Manager (Interrupt)

14.50.1 Detailed Description

The S32 SDK Interrupt Manager provides a set of API/services to configure the Interrupt Controller (NVIC).

The Nested-Vectored Interrupt Controller (NVIC) module implements a relocatable vector table supporting many
external interrupts, a single non-maskable interrupt (NMI), and priority levels. The NVIC contains the address of
the function to execute for a particular handler. The address is fetched via the instruction port allowing parallel
register stacking and look-up. The first sixteen entries are allocated to internal sources with the others mapping to
MCU-defined interrupts.

Overview

The Interrupt Manager provides a set of APIs so that the application can enable or disable an interrupt for a specific
device and also set priority, and other features. Additionally, it provides a way to update the vector table for a specific
device interrupt handler.

Interrupt Names

Each chip has its own set of supported interrupt names defined in the chip-specific header file (see IRQn_Type).

This is an example to enable/disable an interrupt for the ADC0_IRQn:

#include "interrupt_manager.h"

INT_SYS_EnableIRQ(ADC0_IRQn);

INT_SYS_DisableIRQ(ADC0_IRQn);

Typedefs

• typedef void(∗ isr_t) (void)

Interrupt handler type.

Functions

• void DefaultISR (void)

Default ISR.

Interrupt manager APIs

• void INT_SYS_InstallHandler (IRQn_Type irqNumber, const isr_t newHandler, isr_t ∗const oldHandler)

Installs an interrupt handler routine for a given IRQ number.
• void INT_SYS_EnableIRQ (IRQn_Type irqNumber)

Enables an interrupt for a given IRQ number.
• void INT_SYS_DisableIRQ (IRQn_Type irqNumber)

Disables an interrupt for a given IRQ number.
• void INT_SYS_EnableIRQGlobal (void)

Enables system interrupt.
• void INT_SYS_DisableIRQGlobal (void)

Disable system interrupt.
• void INT_SYS_SetPriority (IRQn_Type irqNumber, uint8_t priority)

Set Interrupt Priority.
• uint8_t INT_SYS_GetPriority (IRQn_Type irqNumber)

Get Interrupt Priority.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.50 Interrupt Manager (Interrupt) 499

14.50.2 Typedef Documentation

14.50.2.1 typedef void(∗ isr_t) (void)

Interrupt handler type.

Definition at line 66 of file interrupt_manager.h.

14.50.3 Function Documentation

14.50.3.1 void DefaultISR (void)

Default ISR.

14.50.3.2 void INT_SYS_DisableIRQ (IRQn_Type irqNumber)

Disables an interrupt for a given IRQ number.

This function disables the individual interrupt for a specified IRQ number.

Parameters

irqNumber IRQ number

Definition at line 168 of file interrupt_manager.c.

14.50.3.3 void INT_SYS_DisableIRQGlobal (void)

Disable system interrupt.

This function disables the global interrupt by calling the core API.

Definition at line 218 of file interrupt_manager.c.

14.50.3.4 void INT_SYS_EnableIRQ (IRQn_Type irqNumber)

Enables an interrupt for a given IRQ number.

This function enables the individual interrupt for a specified IRQ number.

Parameters

irqNumber IRQ number

Definition at line 141 of file interrupt_manager.c.

14.50.3.5 void INT_SYS_EnableIRQGlobal (void)

Enables system interrupt.

This function enables the global interrupt by calling the core API.

Definition at line 195 of file interrupt_manager.c.

14.50.3.6 uint8_t INT_SYS_GetPriority (IRQn_Type irqNumber)

Get Interrupt Priority.

The function gets the priority of an interrupt.

Parameters

irqNumber Interrupt number.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

500 CONTENTS

Returns

priority Priority of the interrupt.

Definition at line 269 of file interrupt_manager.c.

14.50.3.7 void INT_SYS_InstallHandler (IRQn_Type irqNumber, const isr_t newHandler, isr_t ∗const oldHandler)

Installs an interrupt handler routine for a given IRQ number.

This function lets the application register/replace the interrupt handler for a specified IRQ number. See a chip-
specific reference manual for details and the startup_<SoC>.s file for each chip family to find out the default
interrupt handler for each device.

Note

This method is applicable only if interrupt vector is copied in RAM.

Parameters

irqNumber IRQ number
newHandler New interrupt handler routine address pointer
oldHandler Pointer to a location to store current interrupt handler

Definition at line 98 of file interrupt_manager.c.

14.50.3.8 void INT_SYS_SetPriority (IRQn_Type irqNumber, uint8_t priority)

Set Interrupt Priority.

The function sets the priority of an interrupt.

Parameters

irqNumber Interrupt number.
priority Priority to set.

Definition at line 236 of file interrupt_manager.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.51 Interrupt vector numbers for S32K144 501

14.51 Interrupt vector numbers for S32K144

This module covers interrupt number allocation.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

502 CONTENTS

14.52 J2602 Specific API

J2602 protocol is LIN 2.0 based. It contains LIN 2.0's modules to support Signal management, network manage-
ment, scheduler and J2602 status management. The goal of J2602 is to improve the interoperability and inter-
changeability of LIN devices within a network by resolving those LIN2.0 requirements that are ambiguous, conflict-
ing, or optional. Moreover, J2602 provides additional requirements that are not present in LIN2.0. For example:
fault tolerant, operation, network topology, etc. Different to LIN2.1 protocol, J2602 does not support sporadic and
event trigger frames in communication.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.53 J2602 Transport Layer specific API 503

14.53 J2602 Transport Layer specific API

14.53.1 Detailed Description

Contains Transport Layer APIs that only used for J2602 protocol.

Modules

• Node configuration

This group contains APIs that used for node configuration purpose.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

504 CONTENTS

14.54 LIN 2.1 Specific API

14.54.1 Detailed Description

LIN 2.1 is extended from in LIN 2.0 specification through diagnostic services and few functions were removed as
obsolete.

1. LIN 2.1 is compatible with LIN 2.0:

• A LIN 2.1 master node may handle a LIN 2.0 slave node if the master node also contains all functionality
of a LIN 2.0 master node, e.g. obsolete functions like Assign frame Id.

• A LIN 2.1 slave node can be used in a cluster with a LIN 2.0 master node if the LIN 2.1 slave node is
pre-configured, i.e. the LIN 2.1 slave node has a valid configuration after reset.

2. Changes between LIN 2.0 and LIN 2.1:

• LIN2.1 enhance the capacity of LIN2.0 on event-triggered frame collision handling and diagnostic ser-
vices supported. Besides, several features are added to fulfill powerful capacity of LIN network such as
configuration service, assign frame ID range configuration, etc.

Functions

• void lin_collision_resolve (l_ifc_handle iii, l_u8 pid)

Switch to collision resolve table.

• void lin_update_word_status_lin21 (l_ifc_handle iii, lin_lld_event_id_t event_id)

Update node status flags.

• void lin_update_err_signal (l_ifc_handle iii, l_u8 frm_id)

Update error signal.

• void lin_make_res_evnt_frame (l_ifc_handle iii, l_u8 pid)

This function packs signals associated with event trigger frame into buffer.

• void lin_update_rx_evnt_frame (l_ifc_handle iii, l_u8 pid)

The function updates the receive flags associated with signals/frames in case receive an event trigger frame.

14.54.2 Function Documentation

14.54.2.1 void lin_collision_resolve (l_ifc_handle iii, l_u8 pid)

Switch to collision resolve table.

Parameters

in iii Interface name
in pid PID to process

Returns

void

Definition at line 35 of file lin_lin21_proto.c.

14.54.2.2 void lin_make_res_evnt_frame (l_ifc_handle iii, l_u8 pid)

This function packs signals associated with event trigger frame into buffer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.54 LIN 2.1 Specific API 505

Parameters

in iii Interface name
in pid PID to process

Returns

void

Definition at line 223 of file lin_lin21_proto.c.

14.54.2.3 void lin_update_err_signal (l_ifc_handle iii, l_u8 frm_id)

Update error signal.

Parameters

in iii Interface name
in frm_id Frame index

Returns

void

Definition at line 150 of file lin_lin21_proto.c.

14.54.2.4 void lin_update_rx_evnt_frame (l_ifc_handle iii, l_u8 pid)

The function updates the receive flags associated with signals/frames in case receive an event trigger frame.

Parameters

in iii Interface name
in pid PID to process

Returns

void

Definition at line 186 of file lin_lin21_proto.c.

14.54.2.5 void lin_update_word_status_lin21 (l_ifc_handle iii, lin_lld_event_id_t event_id)

Update node status flags.

Parameters

in iii Interface name
in event_id Event id

Returns

void

Definition at line 70 of file lin_lin21_proto.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

506 CONTENTS

14.55 LIN Core API

14.55.1 Detailed Description

The LIN core API handles initialization, processing and a signal based interaction between the application and the
LIN core. Refer to chapter 7, LIN 2.2A specification.

• Core API layer consists of API functions as defined by the LIN2.1/J2602 specifications.

• Enabling the user to utilize the LIN2.1/J2602 communication within the user application.

• Both the static and dynamic modes for calling the API functions are supported.

• The core API layer interacts with the low level layer and can be called by such upper layers as LIN2.1 TL API,
LIN TL J2602 or application for diagnostic implementation.

Modules

• Common Core API.
• J2602 Specific API
• LIN 2.1 Specific API

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 507

14.56 LIN Driver

14.56.1 Detailed Description

This section describes the programming interface of the Peripheral driver for LIN.

14.56.2 LIN Driver Overview

The LIN (Local Interconnect Network) Driver is an use-case driven High Level Peripheral Driver. The driver is built
on HAL drivers and provides users important key features. NXP provides LIN Stack as a middleware software
package that is developed on LIN driver. Users also can create their own LIN applications and LIN stack that are
compatible with LIN Specification.
In this release package, LIN Driver is built on LPUART interface.

14.56.3 LIN Driver Device structures

The driver uses instantiations of the lin_state_t to maintain the current state of a particular LIN Hardware instance
module driver.
The user is required to provide memory for the driver state structures during the initialization. The driver itself does
not statically allocate memory.

14.56.4 LIN Driver Initialization

1. To initialize the LIN driver, call the LIN_DRV_Init() function and pass the instance number of the relevant LIN
hardware interface instance which is LPUART instance in this release.
For example: to use LPUART0 pass value 0 to the initialization function.

2. Pass a user configuration structure lin_user_config_t as shown here:

/* LIN Driver configuration structure */
typedef struct {

uint32_t baudRate;
bool nodeFunction;
bool autobaudEnable;
lin_timer_get_time_interval_t timerGetTimeIntervalCallback;

} lin_user_config_t;

3. For LIN, typically the user configures the lin_user_config_t instantiation with a baudrate from 1000bps to
20000bps.
-E.g. 19200 bps linUserConfig.baudRate = 19200U.

4. Node function can be MASTER or SLAVE.
-E.g. linUserConfig.nodeFunction = MASTER

5. If users do not want to use Autobaud feature, then just configure linUserConfig.autobaudEnable = FALSE.

6. Users shall assign measurement callback function pointer that is timerGetTimeIntervalCallback. This function
must return time period between two consecutive calls in nano seconds with accuracy at least 0.1 microsec-
ond and if this function is called for the first time, it will start the timer to measure time. When an event
(such as detecting a falling edge of a dominant signal while node is in sleep mode) occurs, LIN driver will
call timerGetTimeIntervalCallback to start time measurement. Then on rising edge of that signal, LIN driver
will call timerGetTimeIntervalCallback function to get time interval of that dominant signal in nano seconds.
If Autobaud feature is enabled, LIN driver uses timerGetTimeIntervalCallback to measure two bit time length
between two consecutive falling edges of the sync byte in order to evaluate Master's baudrate. Users can
implement this function in their applications. -E.g. linUserConfig.timerGetTimeIntervalCallback = timerGet←↩

TimeIntervalCallback0; This is a code example to set up a FTM0 for LIN Driver:

/* Global variables */
uint16_t timerCounterValue[2] = {0u};
uint16_t timerOverflowInterruptCount = 0u;

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

508 CONTENTS

/* Callback function to get time interval in nano seconds */
uint32_t timerGetTimeIntervalCallback0(uint32_t *ns)
{

timerCounterValue[1] = (uint16_t)(ftmBase->CNT);

*ns = ((uint32_t)(timerCounterValue[1] + timerOverflowInterruptCount*65536u - timerCounterValue[0]))*10
00 / TIMER_1US;

timerOverflowInterruptCount = 0U;
timerCounterValue[0] = timerCounterValue[1];
return 0U;

}

7. This is a code example to set up a user LIN Driver configuration instantiation:

/* Device instance number as LPUART instance*/
#define LI0 (0U)

lin_state_t linState;
lin_user_config_t linUserConfig;
/* Set baudrate 19200 bps */
linUserConfig.baudRate = 19200U;
/* Node is MASTER */
linUserConfig.nodeFunction = MASTER;
/* Disable autobaud feature */
linUserConfig.autobaudEnable = FALSE;
/* Callback function to get time interval in nano seconds */
linUserConfig.timerGetTimeIntervalCallback = (lin_timer_get_time_t)

timerGetTimeIntervalCallback0;

/* Initialize LIN Hardware interface */
LIN_DRV_Init(LI0, (lin_user_config_t *) &linUserConfig, (

lin_state_t *) &linState);

8. The users are required to initialize a timer for LIN.
E.g. a Flex Timer (FTM). FTM instance should be initialized in Output Compare mode with an interrupt(E.g.
FTM0_Ch0_Ch1_IRQHandler) period of about 500 us. Users can choose a different interrupt period that
is appropriate to their applications. In timer interrupt handler, users shall call LIN_DRV_TimeoutService to
handle linCurrentState->timeoutCounter while sending or receiving data.

14.56.5 LIN Data Transfers

The driver implements transmit and receive functions to transfer buffers of data by blocking and non-blocking modes.

The blocking transmit and receive functions include LIN_DRV_SendFrameDataBlocking() and the LIN_DRV_←↩

ReceiveFrameDataBlocking() functions.

The non-blocking (async) transmit and receive functions include the LIN_DRV_SendFrameData() and the LIN_D←↩

RV_ReceiveFrameData() functions.

Master nodes can transmit frame headers in non-blocking mode using LIN_DRV_MasterSendHeader().

In all these cases, the functions are interrupt-driven.

14.56.6 Autobaud feature

AUTOBAUD is an extensive feature in LIN Driver which allows a slave node to automatically detect baudrate of LIN
bus and adapt its original baudrate to bus value. Auto Baud is applied when the baudrate of the incoming data is
unknown. Currently autobaud feature is supported to detect LIN bus baudrates 2400, 4800, 9600, 14400, 19200
bps.

1. If autobaud feature is enabled, at LIN driver initialization slave's baudrate is set to 19200bps. The application
should use a timer interrupt in input capture mode of both rising and falling edges(E.g FTM), call LIN_DR←↩

V_AutoBaudCapture(uint32_t instance) function to calculate and set Slave's baudrate like Master's baudrate.
When receiving a frame header, the slave detect LIN bus's baudrate based on the synchronization byte and
adapts its baudrate accordingly. On changing baudrate, the slave set current event ID to LIN_BAUDRATE_←↩

ADJUSTED and call the callback function. In that callback function users might change the frame data count
timeout. Users can look at CallbackHandler() in lin.c of lin middleware for a reference.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 509

Note: Lin driver should be initiated before initiating a timer interrupt(E.g FTM).

2. Baudrate evaluation process is executed until autobaud successfully. During run-time if LIN bus's baudrate
is changed suddenly to a value other than the slave's current baudrate, users shall reset MCU to execute
baudrate evaluation process.

Data Structures

• struct lin_user_config_t

LIN hardware configuration structure Implements : lin_user_config_t_Class. More...

• struct lin_state_t

Runtime state of the LIN driver. More...

Macros

• #define SLAVE 0U
• #define MASTER 1U
• #define MAKE_PARITY 0U
• #define CHECK_PARITY 1U

Typedefs

• typedef uint32_t(∗ lin_timer_get_time_interval_t) (uint32_t ∗nanoSeconds)

Callback function to get time interval in nanoseconds Implements : lin_timer_get_time_interval_t_Class.

• typedef void(∗ lin_callback_t) (uint32_t instance, void ∗linState)

LIN Driver callback function type Implements : lin_callback_t_Class.

Enumerations

• enum lin_event_id_t {
LIN_NO_EVENT = 0x00U, LIN_WAKEUP_SIGNAL = 0x01U, LIN_BAUDRATE_ADJUSTED = 0x02U, LIN←↩

_RECV_BREAK_FIELD_OK = 0x03U,
LIN_SYNC_OK = 0x04U, LIN_SYNC_ERROR = 0x05U, LIN_PID_OK = 0x06U, LIN_PID_ERROR = 0x07U,
LIN_FRAME_ERROR = 0x08U, LIN_READBACK_ERROR = 0x09U, LIN_CHECKSUM_ERROR = 0x0AU,
LIN_TX_COMPLETED = 0x0BU,
LIN_RX_COMPLETED = 0x0CU }

Defines types for an enumerating event related to an Identifier. Implements : lin_event_id_t_Class.

• enum lin_node_state_t {
LIN_NODE_STATE_UNINIT = 0x00U, LIN_NODE_STATE_SLEEP_MODE = 0x01U, LIN_NODE_STATE←↩

_IDLE = 0x02U, LIN_NODE_STATE_SEND_BREAK_FIELD = 0x03U,
LIN_NODE_STATE_RECV_SYNC = 0x04U, LIN_NODE_STATE_SEND_PID = 0x05U, LIN_NODE_STA←↩

TE_RECV_PID = 0x06U, LIN_NODE_STATE_RECV_DATA = 0x07U,
LIN_NODE_STATE_RECV_DATA_COMPLETED = 0x08U, LIN_NODE_STATE_SEND_DATA = 0x09U, L←↩

IN_NODE_STATE_SEND_DATA_COMPLETED = 0x0AU }

Define type for an enumerating LIN Node state. Implements : lin_node_state_t_Class.

LIN DRIVER

• status_t LIN_DRV_Init (uint32_t instance, lin_user_config_t ∗linUserConfig, lin_state_t ∗linCurrentState)

Initializes an instance LIN Hardware Interface for LIN Network.

• status_t LIN_DRV_Deinit (uint32_t instance)

Shuts down the LIN Hardware Interface by disabling interrupts and transmitter/receiver.

• lin_callback_t LIN_DRV_InstallCallback (uint32_t instance, lin_callback_t function)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

510 CONTENTS

Installs callback function that is used for LIN_DRV_IRQHandler.

• status_t LIN_DRV_SendFrameDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint8_t txSize, uint32←↩

_t timeoutMSec)

Sends Frame data out through the LIN Hardware Interface using blocking method. This function will calculate the
checksum byte and send it with the frame data. Blocking means that the function does not return until the transmission
is complete. This function checks if txSize is in range from 1 to 8. If not, it will return STATUS_ERROR. This function
also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the isBusBusy is
false, if not it will return LIN_BUS_BUSY. The function does not return until the transmission is complete. If the
transmission is successful, it will return STATUS_SUCCESS. If not, it will return STATUS_TIMEOUT.

• status_t LIN_DRV_SendFrameData (uint32_t instance, const uint8_t ∗txBuff, uint8_t txSize)

Sends frame data out through the LIN Hardware Interface using non-blocking method. This enables an a-sync method
for transmitting data. Non-blocking means that the function returns immediately. The application has to get the
transmit status to know when the transmit is complete. This function will calculate the checksum byte and send it with
the frame data. The function will return immediately after calling this function. If txSize is equal to 0 or greater than
8 or node's current state is in SLEEP mode then the function will return STATUS_ERROR. If isBusBusy is currently
true then the function will return LIN_BUS_BUSY.

• status_t LIN_DRV_GetTransmitStatus (uint32_t instance, uint8_t ∗bytesRemaining)

Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users can
use this function to get status of that transmission. The bytesRemaining shows number of bytes that still needed to
transmit.

• status_t LIN_DRV_ReceiveFrameDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint8_t rxSize, uint32_t
timeoutMSec)

Receives frame data through the LIN Hardware Interface using blocking method. This function receives data from
LPUART module using blocking method, the function does not return until the receive is complete. The interrupt
handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will receive the
frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff might be
wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR. This function
also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the isBusBusy is
false, if not it will return LIN_BUS_BUSY.

• status_t LIN_DRV_ReceiveFrameData (uint32_t instance, uint8_t ∗rxBuff, uint8_t rxSize)

Receives frame data through the LIN Hardware Interface using non-blocking method. This function will check the
checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function
returns immediately. The application has to get the receive status to know when the reception is complete. The
interrupt handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will
receive the frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff
might be wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR.
This function also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the
isBusBusy is false, if not it will return LIN_BUS_BUSY.

• status_t LIN_DRV_AbortTransferData (uint32_t instance)

Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users
can call this function to terminate immediately the transferring.

• status_t LIN_DRV_GetReceiveStatus (uint32_t instance, uint8_t ∗bytesRemaining)

Get status of an on-going non-blocking reception. This function returns whether the data reception is complete. When
performing non-blocking transmit, the user can call this function to ascertain the state of the current receive progress:
in progress (STATUS_BUSY) or timeout (STATUS_TIMEOUT) or complete (STATUS_SUCCESS). In addition, if the
reception is still in progress, the user can obtain the number of bytes that still needed to receive.

• status_t LIN_DRV_GoToSleepMode (uint32_t instance)

Puts current LIN node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_M←↩

ODE.

• status_t LIN_DRV_GotoIdleState (uint32_t instance)

Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.

• status_t LIN_DRV_SendWakeupSignal (uint32_t instance)

Sends a wakeup signal through the LIN Hardware Interface.

• lin_node_state_t LIN_DRV_GetCurrentNodeState (uint32_t instance)

Get the current LIN node state.

• void LIN_DRV_TimeoutService (uint32_t instance)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 511

Callback function for Timer Interrupt Handler Users may use (optional, not required) LIN_DRV_TimeoutService to
check if timeout has occurred during non-blocking frame data transmission and reception. User may initialize a timer
(for example FTM) in Output Compare Mode with period of 500 micro seconds (recommended). In timer IRQ handler,
call this function.

• void LIN_DRV_SetTimeoutCounter (uint32_t instance, uint32_t timeoutValue)

Set Value for Timeout Counter that is used in LIN_DRV_TimeoutService.

• status_t LIN_DRV_MasterSendHeader (uint32_t instance, uint8_t id)

Sends frame header out through the LIN Hardware Interface using a non-blocking method. This function sends LIN
Break field, sync field then the ID with correct parity. This function checks if the interface is Master, if not, it will return
STATUS_ERROR.This function checks if id is in range from 0 to 0x3F, if not it will return STATUS_ERROR.

• status_t LIN_DRV_EnableIRQ (uint32_t instance)

Enables LIN hardware interrupts.

• status_t LIN_DRV_DisableIRQ (uint32_t instance)

Disables LIN hardware interrupts.

• void LIN_DRV_IRQHandler (uint32_t instance)

Interrupt handler for LIN Hardware Interface.

• uint8_t LIN_DRV_ProcessParity (uint8_t PID, uint8_t typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID. This is
not a public API as it is called by other API functions.

• uint8_t LIN_DRV_MakeChecksumByte (const uint8_t ∗buffer, uint8_t sizeBuffer, uint8_t PID)

Makes the checksum byte for a frame.

• status_t LIN_DRV_AutoBaudCapture (uint32_t instance)

Captures time interval to capture baudrate automatically when enable autobaud feature. This function should only be
used in Slave. The timer should be in input capture mode of both rising and falling edges. The timer input capture pin
should be externally connected to RXD pin.

14.56.7 Data Structure Documentation

14.56.7.1 struct lin_user_config_t

LIN hardware configuration structure Implements : lin_user_config_t_Class.

Definition at line 66 of file lin_driver.h.

Data Fields

• uint32_t baudRate

• bool nodeFunction

• bool autobaudEnable

• lin_timer_get_time_interval_t timerGetTimeIntervalCallback

Field Documentation

14.56.7.1.1 bool autobaudEnable

Enable Autobaud feature

Definition at line 69 of file lin_driver.h.

14.56.7.1.2 uint32_t baudRate

baudrate of LIN Hardware Interface to configure

Definition at line 67 of file lin_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

512 CONTENTS

14.56.7.1.3 bool nodeFunction

Node function as Master or Slave

Definition at line 68 of file lin_driver.h.

14.56.7.1.4 lin_timer_get_time_interval_t timerGetTimeIntervalCallback

Callback function to get time interval in nanoseconds

Definition at line 70 of file lin_driver.h.

14.56.7.2 struct lin_state_t

Runtime state of the LIN driver.

Note that the caller provides memory for the driver state structures during initialization because the driver does not
statically allocate memory. Implements : lin_state_t_Class

Definition at line 124 of file lin_driver.h.

Data Fields

• const uint8_t ∗ txBuff
• uint8_t ∗ rxBuff
• uint8_t cntByte
• volatile uint8_t txSize
• volatile uint8_t rxSize
• uint8_t checkSum
• volatile bool isTxBusy
• volatile bool isRxBusy
• volatile bool isBusBusy
• volatile bool isTxBlocking
• volatile bool isRxBlocking
• lin_callback_t Callback
• uint8_t currentId
• uint8_t currentPid
• volatile lin_event_id_t currentEventId
• volatile lin_node_state_t currentNodeState
• volatile uint32_t timeoutCounter
• volatile bool timeoutCounterFlag
• volatile bool baudrateEvalEnable
• volatile uint8_t fallingEdgeInterruptCount
• uint32_t linSourceClockFreq
• semaphore_t txCompleted
• semaphore_t rxCompleted

Field Documentation

14.56.7.2.1 volatile bool baudrateEvalEnable

Baudrate Evaluation Process Enable

Definition at line 143 of file lin_driver.h.

14.56.7.2.2 lin_callback_t Callback

Callback function to invoke after receiving a byte or transmitting a byte.

Definition at line 136 of file lin_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 513

14.56.7.2.3 uint8_t checkSum

Checksum byte.

Definition at line 130 of file lin_driver.h.

14.56.7.2.4 uint8_t cntByte

To count number of bytes already transmitted or received.

Definition at line 127 of file lin_driver.h.

14.56.7.2.5 volatile lin_event_id_t currentEventId

Current ID Event

Definition at line 139 of file lin_driver.h.

14.56.7.2.6 uint8_t currentId

Current ID

Definition at line 137 of file lin_driver.h.

14.56.7.2.7 volatile lin_node_state_t currentNodeState

Current Node state

Definition at line 140 of file lin_driver.h.

14.56.7.2.8 uint8_t currentPid

Current PID

Definition at line 138 of file lin_driver.h.

14.56.7.2.9 volatile uint8_t fallingEdgeInterruptCount

Falling Edge count of a sync byte

Definition at line 144 of file lin_driver.h.

14.56.7.2.10 volatile bool isBusBusy

True if there are data, frame headers being transferred on bus

Definition at line 133 of file lin_driver.h.

14.56.7.2.11 volatile bool isRxBlocking

True if receive is blocking transaction.

Definition at line 135 of file lin_driver.h.

14.56.7.2.12 volatile bool isRxBusy

True if the LIN interface is receiving frame data.

Definition at line 132 of file lin_driver.h.

14.56.7.2.13 volatile bool isTxBlocking

True if transmit is blocking transaction.

Definition at line 134 of file lin_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

514 CONTENTS

14.56.7.2.14 volatile bool isTxBusy

True if the LIN interface is transmitting frame data.

Definition at line 131 of file lin_driver.h.

14.56.7.2.15 uint32_t linSourceClockFreq

Frequency of the source clock for LIN

Definition at line 145 of file lin_driver.h.

14.56.7.2.16 uint8_t∗ rxBuff

The buffer of received data.

Definition at line 126 of file lin_driver.h.

14.56.7.2.17 semaphore_t rxCompleted

Used to wait for LIN interface ISR to complete reception

Definition at line 147 of file lin_driver.h.

14.56.7.2.18 volatile uint8_t rxSize

The remaining number of bytes to be received.

Definition at line 129 of file lin_driver.h.

14.56.7.2.19 volatile uint32_t timeoutCounter

Value of the timeout counter

Definition at line 141 of file lin_driver.h.

14.56.7.2.20 volatile bool timeoutCounterFlag

Timeout counter flag

Definition at line 142 of file lin_driver.h.

14.56.7.2.21 const uint8_t∗ txBuff

The buffer of data being sent.

Definition at line 125 of file lin_driver.h.

14.56.7.2.22 semaphore_t txCompleted

Used to wait for LIN interface ISR to complete transmission.

Definition at line 146 of file lin_driver.h.

14.56.7.2.23 volatile uint8_t txSize

The remaining number of bytes to be transmitted.

Definition at line 128 of file lin_driver.h.

14.56.8 Macro Definition Documentation

14.56.8.1 #define CHECK_PARITY 1U

Definition at line 53 of file lin_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 515

14.56.8.2 #define MAKE_PARITY 0U

Definition at line 52 of file lin_driver.h.

14.56.8.3 #define MASTER 1U

Definition at line 51 of file lin_driver.h.

14.56.8.4 #define SLAVE 0U

Definition at line 50 of file lin_driver.h.

14.56.9 Typedef Documentation

14.56.9.1 typedef void(∗ lin_callback_t) (uint32_t instance, void ∗linState)

LIN Driver callback function type Implements : lin_callback_t_Class.

Definition at line 115 of file lin_driver.h.

14.56.9.2 typedef uint32_t(∗ lin_timer_get_time_interval_t) (uint32_t ∗nanoSeconds)

Callback function to get time interval in nanoseconds Implements : lin_timer_get_time_interval_t_Class.

Definition at line 60 of file lin_driver.h.

14.56.10 Enumeration Type Documentation

14.56.10.1 enum lin_event_id_t

Defines types for an enumerating event related to an Identifier. Implements : lin_event_id_t_Class.

Enumerator

LIN_NO_EVENT No event yet

LIN_WAKEUP_SIGNAL Received a wakeup signal

LIN_BAUDRATE_ADJUSTED Indicate that baudrate was adjusted to Master's baudrate

LIN_RECV_BREAK_FIELD_OK Indicate that correct Break Field was received

LIN_SYNC_OK Sync byte is correct

LIN_SYNC_ERROR Sync byte is incorrect

LIN_PID_OK PID correct

LIN_PID_ERROR PID incorrect

LIN_FRAME_ERROR Framing Error

LIN_READBACK_ERROR Readback data is incorrect

LIN_CHECKSUM_ERROR Checksum byte is incorrect

LIN_TX_COMPLETED Sending data completed

LIN_RX_COMPLETED Receiving data completed

Definition at line 77 of file lin_driver.h.

14.56.10.2 enum lin_node_state_t

Define type for an enumerating LIN Node state. Implements : lin_node_state_t_Class.

Enumerator

LIN_NODE_STATE_UNINIT Uninitialized state

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

516 CONTENTS

LIN_NODE_STATE_SLEEP_MODE Sleep mode state

LIN_NODE_STATE_IDLE Idle state

LIN_NODE_STATE_SEND_BREAK_FIELD Send break field state

LIN_NODE_STATE_RECV_SYNC Receive the synchronization byte state

LIN_NODE_STATE_SEND_PID Send PID state

LIN_NODE_STATE_RECV_PID Receive PID state

LIN_NODE_STATE_RECV_DATA Receive data state

LIN_NODE_STATE_RECV_DATA_COMPLETED Receive data completed state

LIN_NODE_STATE_SEND_DATA Send data state

LIN_NODE_STATE_SEND_DATA_COMPLETED Send data completed state

Definition at line 97 of file lin_driver.h.

14.56.11 Function Documentation

14.56.11.1 status_t LIN_DRV_AbortTransferData (uint32_t instance)

Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users
can call this function to terminate immediately the transferring.

Parameters

instance LIN Hardware Interface instance number

Returns

An error code or status_t

Definition at line 257 of file lin_driver.c.

14.56.11.2 status_t LIN_DRV_AutoBaudCapture (uint32_t instance)

Captures time interval to capture baudrate automatically when enable autobaud feature. This function should only
be used in Slave. The timer should be in input capture mode of both rising and falling edges. The timer input capture
pin should be externally connected to RXD pin.

Parameters

instance LIN Hardware Interface instance number

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_BUSY: Operation is running.

• STATUS_ERROR: Operation failed due to break char incorrect, wakeup signal incorrect or calculate
baudrate failed.

Definition at line 484 of file lin_driver.c.

14.56.11.3 status_t LIN_DRV_Deinit (uint32_t instance)

Shuts down the LIN Hardware Interface by disabling interrupts and transmitter/receiver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 517

Parameters

instance LIN Hardware Interface instance number

Returns

An error code or status_t

Definition at line 83 of file lin_driver.c.

14.56.11.4 status_t LIN_DRV_DisableIRQ (uint32_t instance)

Disables LIN hardware interrupts.

Parameters

instance LIN Hardware Interface instance number

Returns

An error code or status_t

Definition at line 446 of file lin_driver.c.

14.56.11.5 status_t LIN_DRV_EnableIRQ (uint32_t instance)

Enables LIN hardware interrupts.

Parameters

instance LIN Hardware Interface instance number

Returns

An error code or status_t

Definition at line 428 of file lin_driver.c.

14.56.11.6 lin_node_state_t LIN_DRV_GetCurrentNodeState (uint32_t instance)

Get the current LIN node state.

Parameters

instance LIN Hardware Interface instance number

Returns

current LIN node state

Definition at line 354 of file lin_driver.c.

14.56.11.7 status_t LIN_DRV_GetReceiveStatus (uint32_t instance, uint8_t ∗ bytesRemaining)

Get status of an on-going non-blocking reception. This function returns whether the data reception is complete.
When performing non-blocking transmit, the user can call this function to ascertain the state of the current receive
progress: in progress (STATUS_BUSY) or timeout (STATUS_TIMEOUT) or complete (STATUS_SUCCESS). In
addition, if the reception is still in progress, the user can obtain the number of bytes that still needed to receive.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

518 CONTENTS

Parameters

instance LIN Hardware Interface instance number
bytesRemaining Number of bytes still needed to receive

Returns

status_t STATUS_BUSY, STATUS_TIMEOUT or STATUS_SUCCESS

Definition at line 280 of file lin_driver.c.

14.56.11.8 status_t LIN_DRV_GetTransmitStatus (uint32_t instance, uint8_t ∗ bytesRemaining)

Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users
can use this function to get status of that transmission. The bytesRemaining shows number of bytes that still needed
to transmit.

Parameters

instance LIN Hardware Interface instance number
bytesRemaining Number of bytes still needed to transmit

Returns

status_t STATUS_BUSY if the transmission is still in progress. STATUS_TIMEOUT if timeout occurred and
transmission was not completed. STATUS_SUCCESS if the transmission was successful.

Definition at line 178 of file lin_driver.c.

14.56.11.9 status_t LIN_DRV_GotoIdleState (uint32_t instance)

Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.

Parameters

instance LIN Hardware Interface instance number

Returns

An error code or status_t

Definition at line 318 of file lin_driver.c.

14.56.11.10 status_t LIN_DRV_GoToSleepMode (uint32_t instance)

Puts current LIN node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_←↩

MODE.

Parameters

instance LIN Hardware Interface instance number

Returns

An error code or status_t

Definition at line 300 of file lin_driver.c.

14.56.11.11 status_t LIN_DRV_Init (uint32_t instance, lin_user_config_t ∗ linUserConfig, lin_state_t ∗ linCurrentState)

Initializes an instance LIN Hardware Interface for LIN Network.

The caller provides memory for the driver state structures during initialization. The user must select the LIN Hard-
ware Interface clock source in the application to initialize the LIN Hardware Interface.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 519

Parameters

instance LIN Hardware Interface instance number
linUserConfig user configuration structure of type lin_user_config_t

linCurrentState pointer to the LIN Hardware Interface driver state structure

Returns

An error code or status_t

Definition at line 62 of file lin_driver.c.

14.56.11.12 lin_callback_t LIN_DRV_InstallCallback (uint32_t instance, lin_callback_t function)

Installs callback function that is used for LIN_DRV_IRQHandler.

Note

After a callback is installed, it bypasses part of the LIN Hardware Interface IRQHandler logic. Therefore, the
callback needs to handle the indexes of txBuff and txSize.

Parameters

instance LIN Hardware Interface instance number.
function the LIN receive callback function.

Returns

Former LIN callback function pointer.

Definition at line 102 of file lin_driver.c.

14.56.11.13 void LIN_DRV_IRQHandler (uint32_t instance)

Interrupt handler for LIN Hardware Interface.

Parameters

instance LIN Hardware Interface instance number

Returns

void

Definition at line 466 of file lin_driver.c.

14.56.11.14 uint8_t LIN_DRV_MakeChecksumByte (const uint8_t ∗ buffer, uint8_t sizeBuffer, uint8_t PID)

Makes the checksum byte for a frame.

Parameters

buffer Pointer to Tx buffer
sizeBuffer Number of bytes that are contained in the buffer.

PID Protected Identifier byte.

Returns

the checksum byte.

Definition at line 102 of file lin_common.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

520 CONTENTS

14.56.11.15 status_t LIN_DRV_MasterSendHeader (uint32_t instance, uint8_t id)

Sends frame header out through the LIN Hardware Interface using a non-blocking method. This function sends LIN
Break field, sync field then the ID with correct parity. This function checks if the interface is Master, if not, it will
return STATUS_ERROR.This function checks if id is in range from 0 to 0x3F, if not it will return STATUS_ERROR.

Parameters

instance LIN Hardware Interface instance number
id Frame Identifier

Returns

An error code or status_t

Definition at line 409 of file lin_driver.c.

14.56.11.16 uint8_t LIN_DRV_ProcessParity (uint8_t PID, uint8_t typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID. This is
not a public API as it is called by other API functions.

Parameters

PID PID byte in case of checking parity bits or ID byte in case of making parity bits.
typeAction 1 for Checking parity bits, 0 for making parity bits

Returns

0xFF if parity bits are incorrect, ID in case of checking parity bits and they are correct. Function returns PID in
case of making parity bits.

Definition at line 58 of file lin_common.c.

14.56.11.17 status_t LIN_DRV_ReceiveFrameData (uint32_t instance, uint8_t ∗ rxBuff, uint8_t rxSize)

Receives frame data through the LIN Hardware Interface using non-blocking method. This function will check the
checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function
returns immediately. The application has to get the receive status to know when the reception is complete. The
interrupt handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will
receive the frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff
might be wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR.
This function also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the
isBusBusy is false, if not it will return LIN_BUS_BUSY.

Note

If users use LIN_DRV_TimeoutService in a timer interrupt handler, then before using this function, users have
to set timeout counter to an appropriate value by using LIN_DRV_SetTimeoutCounter(instance, timeout←↩

Value). The timeout value should be big enough to complete the reception. Timeout in real time is (timeout←↩

Value) ∗ (time period that LIN_DRV_TimeoutService is called). For example, if LIN_DRV_TimeoutService is
called in an timer interrupt with period of 500 micro seconds, then timeout in real time is timeoutValue ∗ 500
micro seconds.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 521

instance LIN Hardware Interface instance number
rxBuff buffer containing 8-bit received data
rxSize the number of bytes to receive

Returns

An error code or status_t

Definition at line 235 of file lin_driver.c.

14.56.11.18 status_t LIN_DRV_ReceiveFrameDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint8_t rxSize, uint32_t
timeoutMSec)

Receives frame data through the LIN Hardware Interface using blocking method. This function receives data from
LPUART module using blocking method, the function does not return until the receive is complete. The interrupt
handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will receive the
frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff might be
wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR. This function
also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the isBusBusy is
false, if not it will return LIN_BUS_BUSY.

Parameters

instance LIN Hardware Interface instance number
rxBuff buffer containing 8-bit received data
rxSize the number of bytes to receive

timeoutMSec timeout value in milliseconds

Returns

An error code or status_t

Definition at line 205 of file lin_driver.c.

14.56.11.19 status_t LIN_DRV_SendFrameData (uint32_t instance, const uint8_t ∗ txBuff, uint8_t txSize)

Sends frame data out through the LIN Hardware Interface using non-blocking method. This enables an a-sync
method for transmitting data. Non-blocking means that the function returns immediately. The application has to get
the transmit status to know when the transmit is complete. This function will calculate the checksum byte and send
it with the frame data. The function will return immediately after calling this function. If txSize is equal to 0 or greater
than 8 or node's current state is in SLEEP mode then the function will return STATUS_ERROR. If isBusBusy is
currently true then the function will return LIN_BUS_BUSY.

Note

If users use LIN_DRV_TimeoutService in a timer interrupt handler, then before using this function, users have
to set timeout counter to an appropriate value by using LIN_DRV_SetTimeoutCounter(instance, timeout←↩

Value). The timeout value should be big enough to complete the transmission. Timeout in real time is
(timeoutValue) ∗ (time period that LIN_DRV_TimeoutService is called). For example, if LIN_DRV_Timeout←↩

Service is called in an timer interrupt with period of 500 micro seconds, then timeout in real time is timeout←↩

Value ∗ 500 micro seconds.

Parameters

instance LIN Hardware Interface instance number

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

522 CONTENTS

txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

Returns

An error code or status_t STATUS_BUSY if the bus is currently busy, transmission cannot be started. STA←↩

TUS_SUCCESS if the transmission was completed.

Definition at line 153 of file lin_driver.c.

14.56.11.20 status_t LIN_DRV_SendFrameDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint8_t txSize, uint32_t
timeoutMSec)

Sends Frame data out through the LIN Hardware Interface using blocking method. This function will calculate
the checksum byte and send it with the frame data. Blocking means that the function does not return until the
transmission is complete. This function checks if txSize is in range from 1 to 8. If not, it will return STATUS_ER←↩

ROR. This function also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks
if the isBusBusy is false, if not it will return LIN_BUS_BUSY. The function does not return until the transmission is
complete. If the transmission is successful, it will return STATUS_SUCCESS. If not, it will return STATUS_TIME←↩

OUT.

Parameters

instance LIN Hardware Interface instance number
txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

timeoutMSec timeout value in milliseconds

Returns

An error code or status_t STATUS_BUSY if the bus is currently busy, transmission cannot be started. ST←↩

ATUS_TIMEOUT if timeout occurred and transmission was not completed. STATUS_SUCCESS if the trans-
mission was completed.

Definition at line 128 of file lin_driver.c.

14.56.11.21 status_t LIN_DRV_SendWakeupSignal (uint32_t instance)

Sends a wakeup signal through the LIN Hardware Interface.

Parameters

instance LIN Hardware Interface instance number

Returns

An error code or status_t

Definition at line 336 of file lin_driver.c.

14.56.11.22 void LIN_DRV_SetTimeoutCounter (uint32_t instance, uint32_t timeoutValue)

Set Value for Timeout Counter that is used in LIN_DRV_TimeoutService.

Parameters

instance LIN Hardware Interface instance number

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.56 LIN Driver 523

timeoutValue Timeout Value to be set

Returns

void

Definition at line 389 of file lin_driver.c.

14.56.11.23 void LIN_DRV_TimeoutService (uint32_t instance)

Callback function for Timer Interrupt Handler Users may use (optional, not required) LIN_DRV_TimeoutService to
check if timeout has occurred during non-blocking frame data transmission and reception. User may initialize a
timer (for example FTM) in Output Compare Mode with period of 500 micro seconds (recommended). In timer IRQ
handler, call this function.

Parameters

instance LIN Hardware Interface instance number

Returns

void

Definition at line 374 of file lin_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

524 CONTENTS

14.57 LIN Stack

14.57.1 Detailed Description

This section covers the functionality of the LIN Stack middleware layer in S32 SDK.

Introduction

LIN Stack Package Components

LIN Stack is a Middleware package that supports the LIN 2.1 and above, LIN2.1 and J2602 speci-
fications. In LIN Stack, LIN 2.1 covers all LIN 2.1, LIN 2.2 and LIN 2.2A specifications, as the changes
following LIN 2.1 are only spelling corrections and clarifications.

• 1. LIN Stack:

The layered architecture of the LIN Stack is shown on Figure 1. Such architecture aims maximum
reusability of common code base for LIN2.1 and J2602 specifications for S32 Freescale automotive
MCU portfolio.

The core API layer of LIN2.1/ J2602 handles initialization, processing and signal based interaction
between applications and LIN Core.

The LIN2.1 TL (Transport Layer) provides methods for diagnostic services.

The low level layer offers methods for handling signal transmission between user applications and hard-
ware such as interface initialization and deinitialization, frame header sending, response receiving, etc.
The low level layer is builded on top of LIN Driver which is builded on top of LPUART HAL layer in
the current release.

Figure 1. LIN Stack Architecture diagram

2. Node Configuration Tool:

To generate configuration files, users can use the Node Configuration Tool that is LIN Stack PE←↩

X component which allows to parse existed LDF files and reflect their contents to LIN Stack component
GUI, to create new LDF files, to configure LIN cluster definitions and Node definitions. Using LIN Stack
PEX component, users can easily generate the node configuration files (lin_cfg.h and lin_cfg.c) that are
needed for LIN Stack to work properly.

Figure 2. Shows the diagram of configuration data flow.

Figure 2. Configuration data

The LDF files describe complete LIN cluster definition including Master/slave mode definition, signals,
frames, schedules, timing, etc.

Modules

• Diagnostic services

Diagnostic services defines methods to implement diagnostic data transfer between a master node connected with a
diagnostic tester and the slave nodes.

• LIN Core API

The LIN core API handles initialization, processing and a signal based interaction between the application and the
LIN core. Refer to chapter 7, LIN 2.2A specification.

• Low level API

Low level layer consists of functions that call LIN driver API.

• Transport layer API

Transport layer stands between the application layer and the core API layer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

group___l_i_n21__core__api__group.html
group___j2602__core__api__group.html
group___l_i_n21__core__api__group.html
group___j2602__core__api__group.html
group___l_i_n21__core__api__group.html
group___j2602__core__api__group.html
group___l_i_n21__core__api__group.html
group__lin__driver.html

14.58 LPI2C Driver 525

14.58 LPI2C Driver

14.58.1 Detailed Description

Low Power Inter-Integrated Circuit (LPI2C) Peripheral Driver.

Low Power Inter-Integrated Circuit Driver.

The LPI2C driver allows communication on an I2C bus using the LPI2C module in the S32144K processor.

Features

• Interrupt based

• Master or slave operation

• Provides blocking and non-blocking transmit and receive functions

• 7-bit or 10-bit addressing

• Configurable baud rate

• Provides support for all operating modes supported by the hardware

– Standard-mode (Sm): bidirectional data transfers up to 100 kbit/s

– Fast-mode (Fm): bidirectional data transfers up to 400 kbit/s

Functionality

In order to use the LPI2C driver it must be first initialized in either master of slave mode, using functions LPI2←↩

C_DRV_MasterInit() or LPI2C_DRV_SlaveInit(). Once initialized, it cannot be initialized again for the same LPI2C
module instance until it is de-initialized, using LPI2C_DRV_MasterDeinit() or LPI2C_DRV_SlaveDeinit(). Different
LPI2C module instances can function independently of each other.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from any I2C slave. Slave address and baud
rate are provided at initialization time through the master configuration structure, but they can be changed at run-
time by using LPI2C_DRV_MasterSetBaudRate() or LPI2C_DRV_MasterSetSlaveAddr(). Note that due to module
limitation not any baud rate can be achieved. The driver will set a baud rate as close as possible to the requested
baud rate, but there may still be substantial differences, for example if requesting a high baud rate while using a
low-frequency protocol clock for the LPI2C module. The application should call LPI2C_DRV_MasterGetBaudRate()
after LPI2C_DRV_MasterSetBaudRate() to check what baud rate was actually set.

To send or receive data to/from the currently configured slave address, use functions LPI2C_DRV_MasterSend←↩

Data() or LPI2C_DRV_MasterReceiveData() (or their blocking counterparts). Parameter sendStop can be used
to chain multiple transfers with repeated START condition between them, for example when sending a command
and then immediately receiving a response. The application should ensure that any send or receive transfer with
sendStop set to false is followed by another transfer, otherwise the LPI2C master will hold the SCL line low
indefinitely and block the I2C bus. The last transfer from a chain should always have sendStop set to true.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application can check the status of the
current transfer by calling LPI2C_DRV_MasterGetTransferStatus(). If the transfer is completed, the functions will
return either STATUS_SUCCESS or an error code, depending on the outcome of the last transfer.

The driver supports any operating mode supported by the module. The operating mode is set together with the baud
rate, by LPI2C_DRV_MasterSetBaudRate(). For High-Speed mode a second baud rate is required, for high-speed
communication. Note that due to module limitation (common prescaler setting for normal and fast baud rate) there
is a limit on the maximum difference between the two baud rates. LPI2C_DRV_MasterGetBaudRate() can be used
to check the baud rate setting for both modes.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

526 CONTENTS

Slave Mode

Slave Mode provides functions for transmitting or receiving data to/from any I2C master. There are two slave
operating modes, selected by the field slaveListening in the slave configuration structure:

• Slave always listening: the slave interrupt is enabled at initialization time and the slave always listens to
the line for a master addressing it. Any events are reported to the application through the callback function
provided at initialization time. The callback can use LPI2C_DRV_SlaveSetRxBuffer() or LPI2C_DRV_Slave←↩

SetTxBuffer() to provide the appropriate buffers for transmit or receive, as needed.

• On-demand operation: the slave is commanded to transmit or receive data through the call of LPI2C_←↩

DRV_SlaveSendData() and LPI2C_DRV_SlaveReceiveData() (or their blocking counterparts). The actual
moment of the transfer depends on the I2C master. The use of callbacks optional in this case, for example
to treat events like LPI2C_SLAVE_EVENT_TX_EMPTY or LPI2C_SLAVE_EVENT_RX_FULL. Outside the
commanded receive / transmit operations the LPI2C interrupts are disabled and the module will not react to
master transfer requests.

Important Notes

• Before using the LPI2C driver in master mode the protocol clock of the module must be configured. Refer to
SCG HAL and PCC HAL for clock configuration.

• Before using the LPI2C driver the pins must be routed to the LPI2C module. Refer to PORT HAL for pin
routing configuration.

• The driver enables the interrupts for the corresponding LPI2C module, but any interrupt priority setting must
be done by the application.

• Fast+, high-speed and ultra-fast mode aren't supported.

• Aborting a master reception is not currently supported due to hardware behavior (the module will continue a
started reception even if the FIFO is reset).

• In listening mode, the init function must be called before the master starts the transfer. In non-listening mode,
the init function and the appropriate send/receive function must be called before the master starts the transfer.

Data Structures

• struct lpi2c_master_user_config_t

Master configuration structure. More...

• struct lpi2c_slave_user_config_t

Slave configuration structure. More...

• struct lpi2c_baud_rate_params_t

Baud rate structure. More...

• struct lpi2c_master_state_t

Master internal context structure. More...

• struct lpi2c_slave_state_t

Slave internal context structure. More...

Typedefs

• typedef void(∗ lpi2c_master_callback_t) (uint32_t instance, lpi2c_master_event_t masterEvent, void ∗user←↩

Data)

Defines the example structure.

• typedef void(∗ lpi2c_slave_callback_t) (uint32_t instance, lpi2c_slave_event_t slaveEvent, void ∗userData)

LPI2C slave callback function.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.58 LPI2C Driver 527

Enumerations

• enum lpi2c_mode_t { LPI2C_STANDARD_MODE = 0x0U, LPI2C_FAST_MODE = 0x1U }

I2C operating modes Implements : lpi2c_mode_t_Class.

• enum lpi2c_master_event_t {
LPI2C_MASTER_EVENT_TX = 0x0U, LPI2C_MASTER_EVENT_RX = 0x1U, LPI2C_MASTER_EVENT_←↩

FIFO_ERROR = 0x2U, LPI2C_MASTER_EVENT_ARBITRATION_LOST = 0x3U,
LPI2C_MASTER_EVENT_NACK = 0x4U }

LPI2C master events Implements : lpi2c_master_event_t_Class.

• enum lpi2c_slave_event_t {
LPI2C_SLAVE_EVENT_TX_REQ = 0x02U, LPI2C_SLAVE_EVENT_RX_REQ = 0x04U, LPI2C_SLAVE_E←↩

VENT_TX_EMPTY = 0x10U, LPI2C_SLAVE_EVENT_RX_FULL = 0x20U,
LPI2C_SLAVE_EVENT_STOP = 0x80U }

LPI2C slave events Implements : lpi2c_slave_event_t_Class.

• enum lpi2c_transfer_type_t { LPI2C_USING_DMA = 0, LPI2C_USING_INTERRUPTS = 1 }

Type of LPI2C transfer (based on interrupts or DMA). Implements : lpi2c_transfer_type_t_Class.

LPI2C Driver

• status_t LPI2C_DRV_MasterInit (uint32_t instance, const lpi2c_master_user_config_t ∗userConfigPtr,
lpi2c_master_state_t ∗master)

Initialize the LPI2C master mode driver.

• status_t LPI2C_DRV_MasterDeinit (uint32_t instance)

De-initialize the LPI2C master mode driver.

• void LPI2C_DRV_MasterGetBaudRate (uint32_t instance, lpi2c_baud_rate_params_t ∗baudRate)

Get the currently configured baud rate.

• void LPI2C_DRV_MasterSetBaudRate (uint32_t instance, const lpi2c_mode_t operatingMode, const lpi2c←↩

_baud_rate_params_t baudRate)

Set the baud rate for any subsequent I2C communication.

• void LPI2C_DRV_MasterSetSlaveAddr (uint32_t instance, const uint16_t address, const bool is10bitAddr)

Set the slave address for any subsequent I2C communication.

• status_t LPI2C_DRV_MasterSendData (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize, bool send←↩

Stop)

Perform a non-blocking send transaction on the I2C bus.

• status_t LPI2C_DRV_MasterSendDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize, bool
sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

• status_t LPI2C_DRV_MasterAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.

• status_t LPI2C_DRV_MasterReceiveData (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.

• status_t LPI2C_DRV_MasterReceiveDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, bool
sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

• status_t LPI2C_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Return the current status of the I2C master transfer.

• void LPI2C_DRV_MasterIRQHandler (uint32_t instance)

Handle master operation when I2C interrupt occurs.

• status_t LPI2C_DRV_SlaveInit (uint32_t instance, const lpi2c_slave_user_config_t ∗userConfigPtr, lpi2c_←↩

slave_state_t ∗slave)

Initialize the I2C slave mode driver.

• status_t LPI2C_DRV_SlaveDeinit (uint32_t instance)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

528 CONTENTS

De-initialize the I2C slave mode driver.

• status_t LPI2C_DRV_SlaveSetTxBuffer (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

• status_t LPI2C_DRV_SlaveSetRxBuffer (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

• status_t LPI2C_DRV_SlaveSendData (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Perform a non-blocking send transaction on the I2C bus.

• status_t LPI2C_DRV_SlaveSendDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize,
uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

• status_t LPI2C_DRV_SlaveReceiveData (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Perform a non-blocking receive transaction on the I2C bus.

• status_t LPI2C_DRV_SlaveReceiveDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, uint32←↩

_t timeout)

Perform a blocking receive transaction on the I2C bus.

• status_t LPI2C_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Return the current status of the I2C slave transfer.

• status_t LPI2C_DRV_SlaveAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.

• void LPI2C_DRV_SlaveIRQHandler (uint32_t instance)

Handle slave operation when I2C interrupt occurs.

14.58.2 Data Structure Documentation

14.58.2.1 struct lpi2c_master_user_config_t

Master configuration structure.

This structure is used to provide configuration parameters for the LPI2C master at initialization time. Implements :
lpi2c_master_user_config_t_Class

Definition at line 155 of file lpi2c_driver.h.

Data Fields

• uint16_t slaveAddress
• bool is10bitAddr
• lpi2c_mode_t operatingMode
• uint32_t baudRate
• lpi2c_transfer_type_t transferType
• uint8_t dmaChannel
• lpi2c_master_callback_t masterCallback
• void ∗ callbackParam

Field Documentation

14.58.2.1.1 uint32_t baudRate

The baud rate in hertz to use with current slave device

Definition at line 160 of file lpi2c_driver.h.

14.58.2.1.2 void∗ callbackParam

Parameter for the master callback function

Definition at line 171 of file lpi2c_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.58 LPI2C Driver 529

14.58.2.1.3 uint8_t dmaChannel

Channel number for DMA channel. If DMA mode isn't used this field will be ignored.

Definition at line 166 of file lpi2c_driver.h.

14.58.2.1.4 bool is10bitAddr

Selects 7-bit or 10-bit slave address

Definition at line 158 of file lpi2c_driver.h.

14.58.2.1.5 lpi2c_master_callback_t masterCallback

Master callback function. Note that this function will be called from the interrupt service routine at the end of a
transfer, so its execution time should be as small as possible. It can be NULL if you want to check manually the
status of the transfer.

Definition at line 167 of file lpi2c_driver.h.

14.58.2.1.6 lpi2c_mode_t operatingMode

I2C Operating mode

Definition at line 159 of file lpi2c_driver.h.

14.58.2.1.7 uint16_t slaveAddress

Slave address, 7-bit or 10-bit

Definition at line 157 of file lpi2c_driver.h.

14.58.2.1.8 lpi2c_transfer_type_t transferType

Type of LPI2C transfer

Definition at line 165 of file lpi2c_driver.h.

14.58.2.2 struct lpi2c_slave_user_config_t

Slave configuration structure.

This structure is used to provide configuration parameters for the LPI2C slave at initialization time. Implements :
lpi2c_slave_user_config_t_Class

Definition at line 180 of file lpi2c_driver.h.

Data Fields

• uint16_t slaveAddress
• bool is10bitAddr
• lpi2c_mode_t operatingMode
• bool slaveListening
• lpi2c_transfer_type_t transferType
• uint8_t dmaChannel
• lpi2c_slave_callback_t slaveCallback
• void ∗ callbackParam

Field Documentation

14.58.2.2.1 void∗ callbackParam

Parameter for the slave callback function

Definition at line 193 of file lpi2c_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

530 CONTENTS

14.58.2.2.2 uint8_t dmaChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 187 of file lpi2c_driver.h.

14.58.2.2.3 bool is10bitAddr

Selects 7-bit or 10-bit slave address

Definition at line 183 of file lpi2c_driver.h.

14.58.2.2.4 lpi2c_mode_t operatingMode

I2C Operating mode

Definition at line 184 of file lpi2c_driver.h.

14.58.2.2.5 uint16_t slaveAddress

Slave address, 7-bit or 10-bit

Definition at line 182 of file lpi2c_driver.h.

14.58.2.2.6 lpi2c_slave_callback_t slaveCallback

Slave callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if the slave is not in listening mode (slaveListening = false)

Definition at line 188 of file lpi2c_driver.h.

14.58.2.2.7 bool slaveListening

Slave mode (always listening or on demand only)

Definition at line 185 of file lpi2c_driver.h.

14.58.2.2.8 lpi2c_transfer_type_t transferType

Type of LPI2C transfer

Definition at line 186 of file lpi2c_driver.h.

14.58.2.3 struct lpi2c_baud_rate_params_t

Baud rate structure.

This structure is used for setting or getting the baud rate. Implements : lpi2c_baud_rate_params_t_Class

Definition at line 202 of file lpi2c_driver.h.

Data Fields

• uint32_t baudRate

Field Documentation

14.58.2.3.1 uint32_t baudRate

Definition at line 204 of file lpi2c_driver.h.

14.58.2.4 struct lpi2c_master_state_t

Master internal context structure.

This structure is used by the master-mode driver for its internal logic. It must be provided by the application through
the LPI2C_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using LPI2C_DRV_←↩

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.58 LPI2C Driver 531

MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 244 of file lpi2c_driver.h.

14.58.2.5 struct lpi2c_slave_state_t

Slave internal context structure.

This structure is used by the slave-mode driver for its internal logic. It must be provided by the application through
the LPI2C_DRV_SlaveInit() function, then it cannot be freed until the driver is de-initialized using LPI2C_DRV_←↩

SlaveDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 279 of file lpi2c_driver.h.

14.58.3 Typedef Documentation

14.58.3.1 typedef void(∗ lpi2c_master_callback_t) (uint32_t instance, lpi2c_master_event_t masterEvent, void ∗userData)

Defines the example structure.

This structure is used as an example.

LPI2C master callback function

Callback functions are called by the LPI2C master at the end of a transfer on the I2C bus. After a transfer is
completed the function is called and you can make further computation or in case of error you can tread that error.

Definition at line 138 of file lpi2c_driver.h.

14.58.3.2 typedef void(∗ lpi2c_slave_callback_t) (uint32_t instance, lpi2c_slave_event_t slaveEvent, void ∗userData)

LPI2C slave callback function.

Callback functions are called by the LPI2C slave when relevant events are detected on the I2C bus. See type
lpi2c_slave_event_t for a list of events. The callback can then react to the event, for example providing the buffers
for transmission or reception.

Definition at line 147 of file lpi2c_driver.h.

14.58.4 Enumeration Type Documentation

14.58.4.1 enum lpi2c_master_event_t

LPI2C master events Implements : lpi2c_master_event_t_Class.

Enumerator

LPI2C_MASTER_EVENT_TX The I2C master has ended transmitting the data

LPI2C_MASTER_EVENT_RX The I2C master has ended receiving the data

LPI2C_MASTER_EVENT_FIFO_ERROR The I2C master has received a FIFO error

LPI2C_MASTER_EVENT_ARBITRATION_LOST The I2C master is experiencing the loss of arbitration

LPI2C_MASTER_EVENT_NACK The I2C master has received a NACK

Definition at line 91 of file lpi2c_driver.h.

14.58.4.2 enum lpi2c_mode_t

I2C operating modes Implements : lpi2c_mode_t_Class.

Enumerator

LPI2C_STANDARD_MODE Standard-mode (Sm), bidirectional data transfers up to 100 kbit/s

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

532 CONTENTS

LPI2C_FAST_MODE Fast-mode (Fm), bidirectional data transfers up to 400 kbit/s

Definition at line 73 of file lpi2c_driver.h.

14.58.4.3 enum lpi2c_slave_event_t

LPI2C slave events Implements : lpi2c_slave_event_t_Class.

Enumerator

LPI2C_SLAVE_EVENT_TX_REQ The I2C slave received a request to transmit data

LPI2C_SLAVE_EVENT_RX_REQ The I2C slave received a request to receive data

LPI2C_SLAVE_EVENT_TX_EMPTY The I2C slave transmit buffer empty

LPI2C_SLAVE_EVENT_RX_FULL The I2C slave receive buffer full

LPI2C_SLAVE_EVENT_STOP The I2C slave STOP signal detected

Definition at line 103 of file lpi2c_driver.h.

14.58.4.4 enum lpi2c_transfer_type_t

Type of LPI2C transfer (based on interrupts or DMA). Implements : lpi2c_transfer_type_t_Class.

Enumerator

LPI2C_USING_DMA The driver will use DMA to perform I2C transfer

LPI2C_USING_INTERRUPTS The driver will use interrupts to perform I2C transfer

Definition at line 115 of file lpi2c_driver.h.

14.58.5 Function Documentation

14.58.5.1 status_t LPI2C_DRV_MasterAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 1477 of file lpi2c_driver.c.

14.58.5.2 status_t LPI2C_DRV_MasterDeinit (uint32_t instance)

De-initialize the LPI2C master mode driver.

This function de-initializes the LPI2C driver in master mode. The driver can't be used again until reinitialized. The
context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 1098 of file lpi2c_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.58 LPI2C Driver 533

14.58.5.3 void LPI2C_DRV_MasterGetBaudRate (uint32_t instance, lpi2c_baud_rate_params_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured baud rate.

Parameters

instance LPI2C peripheral instance number
baudRate structure that contains the current baud rate in hertz and the baud rate in hertz for High-speed

mode (unused in other modes, can be NULL)

Definition at line 1131 of file lpi2c_driver.c.

14.58.5.4 status_t LPI2C_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Return the current status of the I2C master transfer.

This function can be called during a non-blocking transmission to check the status of the transfer.

Parameters

instance LPI2C peripheral instance number
bytesRemaining the number of remaining bytes in the active I2C transfer

Returns

Error or success status returned by API

Definition at line 1646 of file lpi2c_driver.c.

14.58.5.5 status_t LPI2C_DRV_MasterInit (uint32_t instance, const lpi2c_master_user_config_t ∗ userConfigPtr,
lpi2c_master_state_t ∗ master)

Initialize the LPI2C master mode driver.

This function initializes the LPI2C driver in master mode.

Parameters

instance LPI2C peripheral instance number
userConfigPtr Pointer to the LPI2C master user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application may free this
structure after the function returns.

master Pointer to the LPI2C master driver context structure. The driver uses this memory area for its
internal logic. The application must make no assumptions about the content of this structure,
and must not free this memory until the driver is de-initialized using LPI2C_DRV_Master←↩

Deinit().

Returns

Error or success status returned by API

Definition at line 1016 of file lpi2c_driver.c.

14.58.5.6 void LPI2C_DRV_MasterIRQHandler (uint32_t instance)

Handle master operation when I2C interrupt occurs.

This is the interrupt service routine for the LPI2C master mode driver. It handles the rest of the transfer started by
one of the send/receive functions.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

534 CONTENTS

Parameters

instance LPI2C peripheral instance number

Definition at line 1688 of file lpi2c_driver.c.

14.58.5.7 status_t LPI2C_DRV_MasterReceiveData (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.

This function starts the reception of a block of data from the currently configured slave address and returns imme-
diately. The rest of the reception is handled by the interrupt service routine. Use LPI2C_DRV_MasterGetReceive←↩

Status() to check the progress of the reception.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception

Returns

Error or success status returned by API

Definition at line 1512 of file lpi2c_driver.c.

14.58.5.8 status_t LPI2C_DRV_MasterReceiveDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, bool
sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

This function receives a block of data from the currently configured slave address, and only returns when the
transmission is complete.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1605 of file lpi2c_driver.c.

14.58.5.9 status_t LPI2C_DRV_MasterSendData (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, bool sendStop)

Perform a non-blocking send transaction on the I2C bus.

This function starts the transmission of a block of data to the currently configured slave address and returns imme-
diately. The rest of the transmission is handled by the interrupt service routine. Use LPI2C_DRV_MasterGetSend←↩

Status() to check the progress of the transmission.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.58 LPI2C Driver 535

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission

Returns

Error or success status returned by API

Definition at line 1362 of file lpi2c_driver.c.

14.58.5.10 status_t LPI2C_DRV_MasterSendDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, bool
sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

This function sends a block of data to the currently configured slave address, and only returns when the transmission
is complete.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1440 of file lpi2c_driver.c.

14.58.5.11 void LPI2C_DRV_MasterSetBaudRate (uint32_t instance, const lpi2c_mode_t operatingMode, const
lpi2c_baud_rate_params_t baudRate)

Set the baud rate for any subsequent I2C communication.

This function sets the baud rate (SCL frequency) for the I2C master. It can also change the operating mode. If the
operating mode is High-Speed, a second baud rate must be provided for high-speed communication. Note that due
to module limitation not any baud rate can be achieved. The driver will set a baud rate as close as possible to the
requested baud rate, but there may still be substantial differences, for example if requesting a high baud rate while
using a low-frequency protocol clock for the LPI2C module. The application should call LPI2C_DRV_MasterGet←↩

BaudRate() after LPI2C_DRV_MasterSetBaudRate() to check what baud rate was actually set.

Parameters

instance LPI2C peripheral instance number
operatingMode I2C operating mode

baudRate structure that contains the baud rate in hertz to use by current slave device and also the baud
rate in hertz for High-speed mode (unused in other modes)

Definition at line 1183 of file lpi2c_driver.c.

14.58.5.12 void LPI2C_DRV_MasterSetSlaveAddr (uint32_t instance, const uint16_t address, const bool is10bitAddr)

Set the slave address for any subsequent I2C communication.

This function sets the slave address which will be used for any future transfer initiated by the LPI2C master.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

536 CONTENTS

Parameters

instance LPI2C peripheral instance number
address slave address, 7-bit or 10-bit

is10bitAddr specifies if provided address is 10-bit

Definition at line 1341 of file lpi2c_driver.c.

14.58.5.13 status_t LPI2C_DRV_SlaveAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 2282 of file lpi2c_driver.c.

14.58.5.14 status_t LPI2C_DRV_SlaveDeinit (uint32_t instance)

De-initialize the I2C slave mode driver.

This function de-initializes the LPI2C driver in slave mode. The driver can't be used again until reinitialized. The
context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 1923 of file lpi2c_driver.c.

14.58.5.15 status_t LPI2C_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Return the current status of the I2C slave transfer.

This function can be called during a non-blocking transmission to check the status of the transfer.

Parameters

instance LPI2C peripheral instance number
bytesRemaining the number of remaining bytes in the active I2C transfer

Returns

Error or success status returned by API

Definition at line 2243 of file lpi2c_driver.c.

14.58.5.16 status_t LPI2C_DRV_SlaveInit (uint32_t instance, const lpi2c_slave_user_config_t ∗ userConfigPtr,
lpi2c_slave_state_t ∗ slave)

Initialize the I2C slave mode driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.58 LPI2C Driver 537

Parameters

instance LPI2C peripheral instance number
userConfigPtr Pointer to the LPI2C slave user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application may free this
structure after the function returns.

slave Pointer to the LPI2C slave driver context structure. The driver uses this memory area for its
internal logic. The application must make no assumptions about the content of this structure,
and must not free this memory until the driver is de-initialized using LPI2C_DRV_Slave←↩

Deinit().

Returns

Error or success status returned by API

Definition at line 1804 of file lpi2c_driver.c.

14.58.5.17 void LPI2C_DRV_SlaveIRQHandler (uint32_t instance)

Handle slave operation when I2C interrupt occurs.

This is the interrupt service routine for the LPI2C slave mode driver. It handles any transfer initiated by an I2C
master and notifies the application via the provided callback when relevant events occur.

Parameters

instance LPI2C peripheral instance number

Definition at line 2311 of file lpi2c_driver.c.

14.58.5.18 status_t LPI2C_DRV_SlaveReceiveData (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Perform a non-blocking receive transaction on the I2C bus.

Performs a non-blocking receive transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It starts the reception and returns immediately. The rest of the reception is handled by the
interrupt service routine. Use LPI2C_DRV_SlaveGetReceiveStatus() to check the progress of the reception.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 2134 of file lpi2c_driver.c.

14.58.5.19 status_t LPI2C_DRV_SlaveReceiveDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, uint32_t
timeout)

Perform a blocking receive transaction on the I2C bus.

Performs a blocking receive transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It sets up the reception and then waits for the transfer to complete before returning.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

538 CONTENTS

Returns

Error or success status returned by API

Definition at line 2204 of file lpi2c_driver.c.

14.58.5.20 status_t LPI2C_DRV_SlaveSendData (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Perform a non-blocking send transaction on the I2C bus.

Performs a non-blocking send transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It starts the transmission and returns immediately. The rest of the transmission is handled by
the interrupt service routine. Use LPI2C_DRV_SlaveGetTransmitStatus() to check the progress of the transmission.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 2016 of file lpi2c_driver.c.

14.58.5.21 status_t LPI2C_DRV_SlaveSendDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, uint32_t
timeout)

Perform a blocking send transaction on the I2C bus.

Performs a blocking send transaction on the I2C bus when the slave is not in listening mode (initialized with slave←↩

Listening = false). It sets up the transmission and then waits for the transfer to complete before returning.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 2099 of file lpi2c_driver.c.

14.58.5.22 status_t LPI2C_DRV_SlaveSetRxBuffer (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

This function provides a buffer in which the LPI2C slave-mode driver can store received data. It can be called for
example from the user callback provided at initialization time, when the driver reports events LPI2C_SLAVE_EV←↩

ENT_RX_REQ or LPI2C_SLAVE_EVENT_RX_FULL.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the data to be transferred
rxSize length in bytes of the data to be transferred

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.58 LPI2C Driver 539

Returns

Error or success status returned by API

Definition at line 1989 of file lpi2c_driver.c.

14.58.5.23 status_t LPI2C_DRV_SlaveSetTxBuffer (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

This function provides a buffer from which the LPI2C slave-mode driver can transmit data. It can be called for
example from the user callback provided at initialization time, when the driver reports events LPI2C_SLAVE_EV←↩

ENT_TX_REQ or LPI2C_SLAVE_EVENT_TX_EMPTY.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1962 of file lpi2c_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

540 CONTENTS

14.59 LPIT Driver

14.59.1 Detailed Description

Low Power Interrupt Timer Peripheral Driver.

Hardware background

Each LPIT timer channel can be configured to run in one of 4 modes:
32-bit Periodic Counter: In this mode the counter will load and then decrement down to zero. It will then set the
timer interrupt flag and assert the output pre-trigger.
Dual 16-bit Periodic Counter: In this mode, the counter will load and then the lower 16-bits will decrement down to
zero, which will assert the output pre-trigger. The upper 16-bits will then decrement down to zero, which will negate
the output pre-trigger and set the timer interrupt flag.
32-bit Trigger Accumulator: In this mode, the counter will load on the first trigger rising edge and then decrement
down to zero on each trigger rising edge. It will then set the timer interrupt flag and assert the output pre-trigger.
32-bit Trigger Input Capture: In this mode, the counter will load with 0xFFFF_FFFF and then decrement down
to zero. If a trigger rising edge is detected, it will store the inverse of the current counter value in the load value
register, set the timer interrupt flag and assert the output pre-trigger.
In these modes, the timer channel operation is further controlled by Trigger Control bits (TSOT, TSOI, TROT) which
control the load, reload, start and restart of the timer channels.

Driver consideration

The Driver uses structures for configuration. Each structure contains members that are specific to its respective
functionality. There are lpit_user_config_t and lpit_user_channel_config_t.

Interrupt handling

Each LPIT timer channel has a corresponding interrupt handler. The LPIT Driver does not define interrupt handler
internally. These interrupt handler methods can be defined by the user application. There are two ways to add an
LPIT interrupt handler:

1. Using the weak symbols defined by start-up code. if the methods LPITx_Handler(void) (x denotes
instance number) are not defined, the linker use a default ISR. An error will be generated if methods with the
same name are defined multiple times. This method works regardless of the placement of the interrupt vector
table (Flash or RAM).

2. Using the Interrupt Manager's INT_SYS_InstallHandler() method. This can be used to dynamically
change the ISR at run-time. This method works only if the interrupt vector table is located in RAM.

Clocking configuration

The LPIT Driver does not handle clock setup (from PCC) configuration. This is handled by the Clock Manager. The
driver assumes that clock configurations have been made, so it is the user's responsibility to set up clocking and pin
configurations correctly.

Basic operations

1. Pre-Initialization information of LPIT module

• Before using the LPIT driver, the protocol clock of the module must be configured by the application
using PCC module.

• Configures Trigger MUX Control (TRGMUX) if want to use external trigger for LPIT module.

• Configures different peripherals if want to use them in LPIT interrupt routine.

• Provides configuration data structure to LPIT initialization API.

2. To initialize the LPIT module, just call the LPIT_DRV_Init() function with the user configuration data structure.
This function configures LPIT module operation when MCU enters DEBUG and DOZE (Low power mode)
modes and enables LPIT module. This function must be called firstly.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.59 LPIT Driver 541

In the following code, LPIT module is initialized to continue to run when MCU enters both Debug and DOZE
modes.

#define BOARD_LPIT_INSTANCE 0U
/* LPIT module configuration stucture */
lpit_user_config_t lpitconfig =
{

.enableRunInDebug = true,

.enableRunInDoze = true
};
/* Initializes the LPIT module. */
LPIT_DRV_Init(BOARD_LPIT_INSTANCE, &lpitconfig);

3. After calling the LPIT_DRV_Init() function, call LPIT_DRV_InitChannel() function with user channel configu-
ration structure to initialize timer channel.
This function configures timer channel chaining, timer channel mode, timer channel period, interrupt gener-
ation, trigger source, trigger select, reload on trigger, stop on interrupt and start on trigger. In the following
code, timer channel is initialized with the channel chaining is disabled, interrupt generation is enabled,
operation mode is 32 bit periodic counter mode, trigger source is external, reload on trigger is disabled, stop
on interrupt is disabled, start on trigger is disabled and timer period is 1 second. Note that:

• Trigger select is not effective if trigger source is external.

• Timer channel period must be suitable for operation mode.

• The timer channel 0 can not be chained.

/* Channel 0 configuration structure */
lpit_user_channel_config_t chnlconfig =
{

.timerMode = LPIT_PERIODIC_COUNTER,

.periodUnits = LPIT_PERIOD_UNITS_MICROSECONDS,

.period = 1000000U,

.triggerSource = LPIT_TRIGGER_SOURCE_INTERNAL,

.triggerSelect = 1U,

.enableReloadOnTrigger = false,

.enableStopOnInterrupt = false,

.enableStartOnTrigger = false,

.chainChannel = false,

.isInterruptEnabled = true
};
/* Initializes the channel 0 */
LPIT_DRV_InitChannel(BOARD_LPIT_INSTANCE, 0, &chnlconfig);

4. To reconfigure timer channel period , just call LPIT_DRV_SetTimerPeriodByUs() or LPIT_DRV_SetTimer←↩

PeriodByCount() with corresponding new period. In the following code, the timer channel period is reconfig-
ured with new period in count unit.

/* Reconfigures timer channel period with new period of 10000 count*/
LPIT_DRV_SetTimerPeriodByCount(BOARD_LPIT_INSTANCE, 0, 10000);

5. To start timer channel counting, just call LPIT_DRV_StartTimerChannels() with timer channels starting mask.
In the following code, the timer channel 0 is started with the mask of 0x1U.

/* Starts channel 0 counting*/
LPIT_DRV_StartTimerChannels(BOARD_LPIT_INSTANCE, 0x1U);

6. To stop timer channel counting, just call LPIT_DRV_StopTimerChannels() with timer channels stopping mask.
In the following code, the timer channel 0 is stopped with the mask of 0x1U.

/* Stops channel 0 counting*/
LPIT_DRV_StopTimerChannels(BOARD_LPIT_INSTANCE, 0x1U);

7. To disable LPIT module, just call LPIT_DRV_Deinit().

/* Disables LPIT module*/
LPIT_DRV_Deinit(BOARD_LPIT_INSTANCE);

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

542 CONTENTS

Data Structures

• struct lpit_module_information_t

Hardware information of LPIT module Implements : lpit_module_information_t_Class. More...

• struct lpit_user_config_t

LPIT configuration structure. More...

• struct lpit_user_channel_config_t

Structure to configure the channel timer. More...

Macros

• #define MAX_PERIOD_COUNT (0xFFFFFFFFU)

Max period in count of all operation mode except for dual 16 bit periodic counter mode.

• #define MAX_PERIOD_COUNT_IN_DUAL_16BIT_MODE (0x1FFFEU)

Max period in count of dual 16 bit periodic counter mode.

• #define MAX_PERIOD_COUNT_16_BIT (0xFFFFU)

Max count of 16 bit.

Enumerations

• enum lpit_timer_modes_t { LPIT_PERIODIC_COUNTER = 0x00U, LPIT_DUAL_PERIODIC_COUNTER =
0x01U, LPIT_TRIGGER_ACCUMULATOR = 0x02U, LPIT_INPUT_CAPTURE = 0x03U }

Mode options available for the LPIT timer Implements : lpit_timer_modes_t_Class.

• enum lpit_trigger_source_t { LPIT_TRIGGER_SOURCE_EXTERNAL = 0x00U, LPIT_TRIGGER_SOURC←↩

E_INTERNAL = 0x01U }

Trigger source options.

• enum lpit_period_units_t { LPIT_PERIOD_UNITS_COUNTS = 0x00U, LPIT_PERIOD_UNITS_MICROSE←↩

CONDS = 0x01U }

Unit options for LPIT period.

Initialization and De-initialization

• void LPIT_DRV_Init (uint32_t instance, const lpit_user_config_t ∗userConfig)

Initializes the LPIT module.

• void LPIT_DRV_Deinit (uint32_t instance)

De-Initializes the LPIT module.

• status_t LPIT_DRV_InitChannel (uint32_t instance, uint32_t channel, const lpit_user_channel_config_←↩

t ∗userChannelConfig)

Initializes the LPIT channel.

Timer Start and Stop

• void LPIT_DRV_StartTimerChannels (uint32_t instance, uint32_t mask)

Starts the timer channel counting.

• void LPIT_DRV_StopTimerChannels (uint32_t instance, uint32_t mask)

Stops the timer channel counting.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.59 LPIT Driver 543

Timer Period

• status_t LPIT_DRV_SetTimerPeriodByUs (uint32_t instance, uint32_t channel, uint32_t periodUs)

Sets the timer channel period in microseconds.

• status_t LPIT_DRV_SetTimerPeriodInDual16ModeByUs (uint32_t instance, uint32_t channel, uint16_←↩

t periodHigh, uint16_t periodLow)

Sets the timer channel period in microseconds.

• uint64_t LPIT_DRV_GetTimerPeriodByUs (uint32_t instance, uint32_t channel)

Gets the timer channel period in microseconds.

• uint64_t LPIT_DRV_GetCurrentTimerUs (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in microseconds.

• void LPIT_DRV_SetTimerPeriodByCount (uint32_t instance, uint32_t channel, uint32_t count)

Sets the timer channel period in count unit.

• void LPIT_DRV_SetTimerPeriodInDual16ModeByCount (uint32_t instance, uint32_t channel, uint16_←↩

t periodHigh, uint16_t periodLow)

Sets the timer channel period in count unit.

• uint32_t LPIT_DRV_GetTimerPeriodByCount (uint32_t instance, uint32_t channel)

Gets the current timer channel period in count unit.

• uint32_t LPIT_DRV_GetCurrentTimerCount (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in count.

Interrupt

• uint32_t LPIT_DRV_GetInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Gets the current interrupt flag of timer channels.

• void LPIT_DRV_ClearInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Clears the interrupt flag of timer channels.

14.59.2 Data Structure Documentation

14.59.2.1 struct lpit_module_information_t

Hardware information of LPIT module Implements : lpit_module_information_t_Class.

Definition at line 66 of file lpit_driver.h.

Data Fields

• uint32_t majorVersionNumber
• uint32_t minorVersionNumber
• uint32_t featureNumber
• uint32_t numberOfExternalTriggerInputs
• uint32_t numberOfTimerChannels

Field Documentation

14.59.2.1.1 uint32_t featureNumber

The feature set number

Definition at line 70 of file lpit_driver.h.

14.59.2.1.2 uint32_t majorVersionNumber

The major version number for the LPIT module specification

Definition at line 68 of file lpit_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

544 CONTENTS

14.59.2.1.3 uint32_t minorVersionNumber

The minor version number for the LPIT module specification

Definition at line 69 of file lpit_driver.h.

14.59.2.1.4 uint32_t numberOfExternalTriggerInputs

Number of external triggers implemented

Definition at line 71 of file lpit_driver.h.

14.59.2.1.5 uint32_t numberOfTimerChannels

Number of timer channels implemented

Definition at line 72 of file lpit_driver.h.

14.59.2.2 struct lpit_user_config_t

LPIT configuration structure.

This structure holds the configuration settings for the LPIT peripheral to enable or disable LPIT module in DEBUG
and DOZE mode Implements : lpit_user_config_t_Class

Definition at line 119 of file lpit_driver.h.

Data Fields

• bool enableRunInDebug
• bool enableRunInDoze

Field Documentation

14.59.2.2.1 bool enableRunInDebug

True: Timer channels continue to run in debug mode False: Timer channels stop in debug mode

Definition at line 121 of file lpit_driver.h.

14.59.2.2.2 bool enableRunInDoze

True: Timer channels continue to run in doze mode False: Timer channels stop in doze mode

Definition at line 123 of file lpit_driver.h.

14.59.2.3 struct lpit_user_channel_config_t

Structure to configure the channel timer.

This structure holds the configuration settings for the LPIT timer channel Implements : lpit_user_channel_config←↩

_t_Class

Definition at line 132 of file lpit_driver.h.

Data Fields

• lpit_timer_modes_t timerMode
• lpit_period_units_t periodUnits
• uint32_t period
• lpit_trigger_source_t triggerSource
• uint32_t triggerSelect
• bool enableReloadOnTrigger
• bool enableStopOnInterrupt
• bool enableStartOnTrigger

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.59 LPIT Driver 545

• bool chainChannel
• bool isInterruptEnabled

Field Documentation

14.59.2.3.1 bool chainChannel

Channel chaining enable

Definition at line 148 of file lpit_driver.h.

14.59.2.3.2 bool enableReloadOnTrigger

True: Timer channel will reload on selected trigger False: Timer channel will not reload on selected trigger

Definition at line 140 of file lpit_driver.h.

14.59.2.3.3 bool enableStartOnTrigger

True: Timer channel starts to decrement when rising edge on selected trigger is detected. False: Timer starts to
decrement immediately based on restart condition

Definition at line 144 of file lpit_driver.h.

14.59.2.3.4 bool enableStopOnInterrupt

True: Timer will stop after timeout False: Timer channel does not stop after timeout

Definition at line 142 of file lpit_driver.h.

14.59.2.3.5 bool isInterruptEnabled

Timer channel interrupt generation enable

Definition at line 149 of file lpit_driver.h.

14.59.2.3.6 uint32_t period

Period of timer channel

Definition at line 136 of file lpit_driver.h.

14.59.2.3.7 lpit_period_units_t periodUnits

Timer period value units

Definition at line 135 of file lpit_driver.h.

14.59.2.3.8 lpit_timer_modes_t timerMode

Operation mode of timer channel

Definition at line 134 of file lpit_driver.h.

14.59.2.3.9 uint32_t triggerSelect

Selects one trigger from the internal trigger sources this field makes sense if trigger source is internal

Definition at line 138 of file lpit_driver.h.

14.59.2.3.10 lpit_trigger_source_t triggerSource

Selects between internal and external trigger sources

Definition at line 137 of file lpit_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

546 CONTENTS

14.59.3 Macro Definition Documentation

14.59.3.1 #define MAX_PERIOD_COUNT (0xFFFFFFFFU)

Max period in count of all operation mode except for dual 16 bit periodic counter mode.

Definition at line 56 of file lpit_driver.h.

14.59.3.2 #define MAX_PERIOD_COUNT_16_BIT (0xFFFFU)

Max count of 16 bit.

Definition at line 60 of file lpit_driver.h.

14.59.3.3 #define MAX_PERIOD_COUNT_IN_DUAL_16BIT_MODE (0x1FFFEU)

Max period in count of dual 16 bit periodic counter mode.

Definition at line 58 of file lpit_driver.h.

14.59.4 Enumeration Type Documentation

14.59.4.1 enum lpit_period_units_t

Unit options for LPIT period.

This is used to determine unit of timer period Implements : lpit_period_units_t_Class

Enumerator

LPIT_PERIOD_UNITS_COUNTS Period value unit is count

LPIT_PERIOD_UNITS_MICROSECONDS Period value unit is microsecond

Definition at line 106 of file lpit_driver.h.

14.59.4.2 enum lpit_timer_modes_t

Mode options available for the LPIT timer Implements : lpit_timer_modes_t_Class.

Enumerator

LPIT_PERIODIC_COUNTER 32-bit Periodic Counter

LPIT_DUAL_PERIODIC_COUNTER Dual 16-bit Periodic Counter

LPIT_TRIGGER_ACCUMULATOR 32-bit Trigger Accumulator

LPIT_INPUT_CAPTURE 32-bit Trigger Input Capture

Definition at line 79 of file lpit_driver.h.

14.59.4.3 enum lpit_trigger_source_t

Trigger source options.

This is used for both internal and external trigger sources. The actual trigger options available is SoC specific, user
should refer to the reference manual. Implements : lpit_trigger_source_t_Class

Enumerator

LPIT_TRIGGER_SOURCE_EXTERNAL Use external trigger

LPIT_TRIGGER_SOURCE_INTERNAL Use internal trigger

Definition at line 94 of file lpit_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.59 LPIT Driver 547

14.59.5 Function Documentation

14.59.5.1 void LPIT_DRV_ClearInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Clears the interrupt flag of timer channels.

This function clears the interrupt flag of timer channels after their interrupt event occurred.

Parameters

in instance LPIT module instance number
in mask The interrupt flag clearing mask that decides which channels will be cleared

interrupt flag

• For example:

– with mask = 0x01u then the interrupt flag of channel 0 only will be
cleared

– with mask = 0x02u then the interrupt flag of channel 1 only will be
cleared

– with mask = 0x03u then the interrupt flags of channel 0 and chan-
nel 1 will be cleared

Definition at line 646 of file lpit_driver.c.

14.59.5.2 void LPIT_DRV_Deinit (uint32_t instance)

De-Initializes the LPIT module.

This function disables LPIT module. In order to use the LPIT module again, LPIT_DRV_Init must be called.

Parameters

in instance LPIT module instance number

Definition at line 125 of file lpit_driver.c.

14.59.5.3 uint32_t LPIT_DRV_GetCurrentTimerCount (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in count.

This function returns the real-time timer channel counting value, the value in a range from 0 to timer channel period.
Need to make sure the running time does not exceed the timer channel period.

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Current timer channel counting value in count

Definition at line 592 of file lpit_driver.c.

14.59.5.4 uint64_t LPIT_DRV_GetCurrentTimerUs (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in microseconds.

This function returns an absolute time stamp in microseconds. One common use of this function is to measure the
running time of a part of code. Call this function at both the beginning and end of code. The time difference between
these two time stamps is the running time. The return counting value here makes sense if the operation mode of
timer channel is 32 bit periodic counter or dual 16 bit periodic counter or 32-bit trigger input capture. Need to make
sure the running time will not exceed the timer channel period.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

548 CONTENTS

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Current timer channel counting value in microseconds

Definition at line 457 of file lpit_driver.c.

14.59.5.5 uint32_t LPIT_DRV_GetInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Gets the current interrupt flag of timer channels.

This function gets the current interrupt flag of timer channels. In compare modes, the flag sets to 1 at the end of the
timer period. In capture modes, the flag sets to 1 when the trigger asserts.

Parameters

in instance LPIT module instance number.
in mask The interrupt flag getting mask that decides which channels will be got interrupt

flag.

• For example:

– with mask = 0x01u then the interrupt flag of channel 0 only will be
got

– with mask = 0x02u then the interrupt flag of channel 1 only will be
got

– with mask = 0x03u then the interrupt flags of channel 0 and chan-
nel 1 will be got

Returns

Current the interrupt flag of timer channels

Definition at line 625 of file lpit_driver.c.

14.59.5.6 uint32_t LPIT_DRV_GetTimerPeriodByCount (uint32_t instance, uint32_t channel)

Gets the current timer channel period in count unit.

This function returns current period of timer channel given as argument.

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Timer channel period in count unit

Definition at line 558 of file lpit_driver.c.

14.59.5.7 uint64_t LPIT_DRV_GetTimerPeriodByUs (uint32_t instance, uint32_t channel)

Gets the timer channel period in microseconds.

This function gets the timer channel period in microseconds. The returned period here makes sense if the operation
mode of timer channel is 32 bit periodic counter or dual 16 bit periodic counter.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.59 LPIT Driver 549

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Timer channel period in microseconds

Definition at line 398 of file lpit_driver.c.

14.59.5.8 void LPIT_DRV_Init (uint32_t instance, const lpit_user_config_t ∗ userConfig)

Initializes the LPIT module.

This function resets LPIT module, enables the LPIT module, configures LPIT module operation in Debug and DOZE
mode. The LPIT configuration structure shall be passed as arguments. This configuration structure affects all timer
channels. This function should be called before calling any other LPIT driver function.

This is an example demonstrating how to define a LPIT configuration structure:

1 lpit_user_config_t lpitInit =
2 {
3 .enableRunInDebug = false,
4 .enableRunInDoze = true
5 };

Parameters

in instance LPIT module instance number.
in userConfig Pointer to LPIT configuration structure.

Definition at line 90 of file lpit_driver.c.

14.59.5.9 status_t LPIT_DRV_InitChannel (uint32_t instance, uint32_t channel, const lpit_user_channel_config_t ∗
userChannelConfig)

Initializes the LPIT channel.

This function initializes the LPIT timers by using a channel, this function configures timer channel chaining, timer
channel mode, timer channel period, interrupt generation, trigger source, trigger select, reload on trigger, stop
on interrupt and start on trigger. The timer channel number and its configuration structure shall be passed as
arguments. Timer channels do not start counting by default after calling this function. The function LPIT_DRV_←↩

StartTimerChannels must be called to start the timer channel counting. In order to re-configures the period, call the
LPIT_DRV_SetTimerPeriodByUs or LPIT_DRV_SetTimerPeriodByCount.

This is an example demonstrating how to define a LPIT channel configuration structure:

1 lpit_user_channel_config_t lpitTestInit =
2 {
3 .timerMode = LPIT_PERIODIC_COUNTER,
4 .periodUnits = LPTT_PERIOD_UNITS_MICROSECONDS,
5 .period = 1000000U,
6 .triggerSource = LPIT_TRIGGER_SOURCE_INTERNAL,
7 .triggerSelect = 1U,
8 .enableReloadOnTrigger = false,
9 .enableStopOnInterrupt = false,
10 .enableStartOnTrigger = false,
11 .chainChannel = false,
12 .isInterruptEnabled = true
13 };

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

550 CONTENTS

Parameters

in instance LPIT module instance number
in channel Timer channel number
in userChannel←↩

Config
Pointer to LPIT channel configuration structure

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: The channel 0 is chained.

• STATUS_ERROR: The input period is invalid.

Definition at line 152 of file lpit_driver.c.

14.59.5.10 void LPIT_DRV_SetTimerPeriodByCount (uint32_t instance, uint32_t channel, uint32_t count)

Sets the timer channel period in count unit.

This function sets the timer channel period in count unit. The counter period of a running timer channel can be
modified by first setting a new load value, the value will be loaded after the timer channel expires. To abort the
current cycle and start a timer channel period with the new value, the timer channel must be disabled and enabled
again.

Parameters

in instance LPIT module instance number
in channel Timer channel number
in count Timer channel period in count unit

Definition at line 504 of file lpit_driver.c.

14.59.5.11 status_t LPIT_DRV_SetTimerPeriodByUs (uint32_t instance, uint32_t channel, uint32_t periodUs)

Sets the timer channel period in microseconds.

This function sets the timer channel period in microseconds when timer channel mode is 32 bit periodic or dual 16
bit counter mode. The period range depends on the frequency of the LPIT functional clock and operation mode of
timer channel. If the required period is out of range, use the suitable mode if applicable. This function is only valid
for one single channel.

Parameters

in instance LPIT module instance number
in channel Timer channel number
in periodUs Timer channel period in microseconds

Returns

Operation status

• STATUS_SUCCESS: Input period of timer channel is valid.

• STATUS_ERROR: Input period of timer channel is invalid.

Definition at line 274 of file lpit_driver.c.

14.59.5.12 void LPIT_DRV_SetTimerPeriodInDual16ModeByCount (uint32_t instance, uint32_t channel, uint16_t periodHigh,
uint16_t periodLow)

Sets the timer channel period in count unit.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.59 LPIT Driver 551

This function sets the timer channel period in count unit when timer channel mode is dual 16 periodic counter mode.
The counter period of a running timer channel can be modified by first setting a new load value, the value will be
loaded after the timer channel expires. To abort the current cycle and start a timer channel period with the new
value, the timer channel must be disabled and enabled again.

Parameters

in instance LPIT module instance number
in channel Timer channel number
in periodHigh Period of higher 16 bit in count unit
in periodLow Period of lower 16 bit in count unit

Definition at line 532 of file lpit_driver.c.

14.59.5.13 status_t LPIT_DRV_SetTimerPeriodInDual16ModeByUs (uint32_t instance, uint32_t channel, uint16_t periodHigh,
uint16_t periodLow)

Sets the timer channel period in microseconds.

This function sets the timer channel period in microseconds when timer channel mode is dual 16 bit periodic counter
mode. The period range depends on the frequency of the LPIT functional clock and operation mode of timer channel.
If the required period is out of range, use the suitable mode if applicable. This function is only valid for one single
channel.

Parameters

in instance LPIT module instance number
in channel Timer channel number
in periodHigh Period of higher 16 bit in microseconds
in periodLow Period of lower 16 bit in microseconds

Returns

Operation status

• STATUS_SUCCESS: Input period of timer channel is valid.

• STATUS_ERROR: Input period of timer channel is invalid.

Definition at line 345 of file lpit_driver.c.

14.59.5.14 void LPIT_DRV_StartTimerChannels (uint32_t instance, uint32_t mask)

Starts the timer channel counting.

This function allows starting timer channels simultaneously . After calling this function, timer channels are going
operate depend on mode and control bits which controls timer channel start, reload and restart.

Parameters

in instance LPIT module instance number
in mask Timer channels starting mask that decides which channels will be started

• For example:

– with mask = 0x01U then channel 0 will be started

– with mask = 0x02U then channel 1 will be started

– with mask = 0x03U then channel 0 and channel 1 will be started

Definition at line 224 of file lpit_driver.c.

14.59.5.15 void LPIT_DRV_StopTimerChannels (uint32_t instance, uint32_t mask)

Stops the timer channel counting.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

552 CONTENTS

This function allows stop timer channels simultaneously from counting. Timer channels reload their periods respec-
tively after the next time they call the LPIT_DRV_StartTimerChannels. Note that: In 32-bit Trigger Accumulator
mode, the counter will load on the first trigger rising edge.

Parameters

in instance LPIT module instance number
in mask Timer channels stopping mask that decides which channels will be stopped

• For example:

– with mask = 0x01U then channel 0 will be stopped

– with mask = 0x02U then channel 1 will be stopped

– with mask = 0x03U then channel 0 and channel 1 will be stopped

Definition at line 248 of file lpit_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 553

14.60 LPSPI Driver

14.60.1 Detailed Description

Low Power Serial Peripheral Interface Peripheral Driver.

Data Structures

• struct lpspi_master_config_t

Data structure containing information about a device on the SPI bus. More...

• struct lpspi_state_t

Runtime state structure for the LPSPI master driver. More...

• struct lpspi_slave_config_t

User configuration structure for the SPI slave driver. Implements : lpspi_slave_config_t_Class. More...

Enumerations

• enum lpspi_which_pcs_t { LPSPI_PCS0 = 0U, LPSPI_PCS1 = 1U, LPSPI_PCS2 = 2U, LPSPI_PCS3 = 3U }

LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure). Implements : lpspi_which_pcs_t_Class.

• enum lpspi_signal_polarity_t { LPSPI_ACTIVE_HIGH = 1U, LPSPI_ACTIVE_LOW = 0U }

LPSPI Signal (PCS and Host Request) Polarity configuration. Implements : lpspi_signal_polarity_t_Class.

• enum lpspi_clock_phase_t { LPSPI_CLOCK_PHASE_1ST_EDGE = 0U, LPSPI_CLOCK_PHASE_2ND_E←↩

DGE = 1U }

LPSPI clock phase configuration. Implements : lpspi_clock_phase_t_Class.

• enum lpspi_sck_polarity_t { LPSPI_SCK_ACTIVE_HIGH = 0U, LPSPI_SCK_ACTIVE_LOW = 1U }

LPSPI Clock Signal (SCK) Polarity configuration. Implements : lpspi_sck_polarity_t_Class.

• enum lpspi_transfer_type { LPSPI_USING_DMA = 0, LPSPI_USING_INTERRUPTS }

Type of LPSPI transfer (based on interrupts or DMA). Implements : lpspi_transfer_type_Class.

• enum transfer_status_t { LPSPI_TRANSFER_OK = 0U, LPSPI_TRANSMIT_FAIL, LPSPI_RECEIVE_FAIL }

Type of error reported by LPSPI.

Functions

• void LPSPI_DRV_IRQHandler (uint32_t instance)

The function LPSPI_DRV_IRQHandler passes IRQ control to either the master or slave driver.

• void LPSPI_DRV_FillupTxBuffer (uint32_t instance)

The function LPSPI_DRV_FillupTxBuffer writes data in TX hardware buffer depending on driver state and number of
bytes remained to send.

• void LPSPI_DRV_ReadRXBuffer (uint32_t instance)

The function LPSPI_DRV_ReadRXBuffer reads data from RX hardware buffer and writes this data in RX software
buffer.

• void LPSPI_DRV_DisableTEIEInterrupts (uint32_t instance)

Disable the TEIE interrupts at the end of a transfer. Disable the interrupts and clear the status for transmit/receive
errors.

• void LPSPI0_IRQHandler (void)

This function is the implementation of LPSPI0 handler named in startup code.

• void LPSPI1_IRQHandler (void)

This function is the implementation of LPSPI1 handler named in startup code.

• void LPSPI2_IRQHandler (void)

This function is the implementation of LPSPI2 handler named in startup code.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

554 CONTENTS

Variables

• LPSPI_Type ∗ g_lpspiBase [LPSPI_INSTANCE_COUNT]

Table of base pointers for SPI instances.

• IRQn_Type g_lpspiIrqId [LPSPI_INSTANCE_COUNT]

Table to save LPSPI IRQ enumeration numbers defined in the CMSIS header file.

• lpspi_state_t ∗ g_lpspiStatePtr [LPSPI_INSTANCE_COUNT]

Initialization and shutdown

• status_t LPSPI_DRV_MasterInit (uint32_t instance, lpspi_state_t ∗lpspiState, const lpspi_master_config_t
∗spiConfig)

Initializes a LPSPI instance for interrupt driven master mode operation.

• status_t LPSPI_DRV_MasterDeinit (uint32_t instance)

Shuts down a LPSPI instance.

• status_t LPSPI_DRV_MasterSetDelay (uint32_t instance, uint32_t delayBetwenTransfers, uint32_t delayS←↩

CKtoPCS, uint32_t delayPCStoSCK)

Configures the LPSPI master mode bus timing delay options.

Bus configuration

• status_t LPSPI_DRV_MasterConfigureBus (uint32_t instance, const lpspi_master_config_t ∗spiConfig,
uint32_t ∗calculatedBaudRate)

Configures the LPSPI port physical parameters to access a device on the bus when the LSPI instance is configured
for interrupt operation.

Blocking transfers

• status_t LPSPI_DRV_MasterTransferBlocking (uint32_t instance, const uint8_t ∗sendBuffer, uint8_←↩

t ∗receiveBuffer, uint16_t transferByteCount, uint32_t timeout)

Performs an interrupt driven blocking SPI master mode transfer.

Non-blocking transfers

• status_t LPSPI_DRV_MasterTransfer (uint32_t instance, const uint8_t ∗sendBuffer, uint8_t ∗receiveBuffer,
uint16_t transferByteCount)

Performs an interrupt driven non-blocking SPI master mode transfer.

• status_t LPSPI_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemained)

Returns whether the previous interrupt driven transfer is completed.

• status_t LPSPI_DRV_MasterAbortTransfer (uint32_t instance)

Terminates an interrupt driven asynchronous transfer early.

• void LPSPI_DRV_MasterIRQHandler (uint32_t instance)

Interrupt handler for LPSPI master mode. This handler uses the buffers stored in the lpspi_master_state_t structs to
transfer data.

Initialization and shutdown

• status_t LPSPI_DRV_SlaveInit (uint32_t instance, lpspi_state_t ∗lpspiState, const lpspi_slave_config_←↩

t ∗slaveConfig)

Initializes a LPSPI instance for a slave mode operation, using interrupt mechanism.

• status_t LPSPI_DRV_SlaveDeinit (uint32_t instance)

Shuts down an LPSPI instance interrupt mechanism.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 555

Blocking transfers

• status_t LPSPI_DRV_SlaveTransferBlocking (uint32_t instance, const uint8_t ∗sendBuffer, uint8_t ∗receive←↩

Buffer, uint16_t transferByteCount, uint32_t timeout)

Transfers data on LPSPI bus using interrupt and a blocking call.

Non-blocking transfers

• void LPSPI_DRV_SlaveIRQHandler (uint32_t instance)

Interrupt handler for LPSPI slave mode. This handler uses the buffers stored in the lpspi_master_state_t structs to
transfer data.

• status_t LPSPI_DRV_SlaveTransfer (uint32_t instance, const uint8_t ∗sendBuffer, uint8_t ∗receiveBuffer,
uint16_t transferByteCount)

Starts the transfer data on LPSPI bus using an interrupt and a non-blocking call.

• status_t LPSPI_DRV_SlaveAbortTransfer (uint32_t instance)

Aborts the transfer that started by a non-blocking call transfer function.

• status_t LPSPI_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemained)

Returns whether the previous transfer is finished.

14.60.2 Data Structure Documentation

14.60.2.1 struct lpspi_master_config_t

Data structure containing information about a device on the SPI bus.

The user must populate these members to set up the LPSPI master and properly communicate with the SPI device.
Implements : lpspi_master_config_t_Class

Definition at line 52 of file lpspi_master_driver.h.

Data Fields

• uint32_t bitsPerSec

• lpspi_which_pcs_t whichPcs

• lpspi_signal_polarity_t pcsPolarity

• bool isPcsContinuous

• uint16_t bitcount

• uint32_t lpspiSrcClk

• lpspi_clock_phase_t clkPhase

• lpspi_sck_polarity_t clkPolarity

• bool lsbFirst

• lpspi_transfer_type transferType

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

• spi_callback_t callback

• void ∗ callbackParam

Field Documentation

14.60.2.1.1 uint16_t bitcount

Number of bits/frame, minimum is 8-bits

Definition at line 58 of file lpspi_master_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

556 CONTENTS

14.60.2.1.2 uint32_t bitsPerSec

Baud rate in bits per second

Definition at line 54 of file lpspi_master_driver.h.

14.60.2.1.3 spi_callback_t callback

Select the callback to transfer complete

Definition at line 66 of file lpspi_master_driver.h.

14.60.2.1.4 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 67 of file lpspi_master_driver.h.

14.60.2.1.5 lpspi_clock_phase_t clkPhase

Selects which phase of clock to capture data

Definition at line 60 of file lpspi_master_driver.h.

14.60.2.1.6 lpspi_sck_polarity_t clkPolarity

Selects clock polarity

Definition at line 61 of file lpspi_master_driver.h.

14.60.2.1.7 bool isPcsContinuous

Keeps PCS asserted until transfer complete

Definition at line 57 of file lpspi_master_driver.h.

14.60.2.1.8 uint32_t lpspiSrcClk

Module source clock

Definition at line 59 of file lpspi_master_driver.h.

14.60.2.1.9 bool lsbFirst

Option to transmit LSB first

Definition at line 62 of file lpspi_master_driver.h.

14.60.2.1.10 lpspi_signal_polarity_t pcsPolarity

PCS polarity

Definition at line 56 of file lpspi_master_driver.h.

14.60.2.1.11 uint8_t rxDMAChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 64 of file lpspi_master_driver.h.

14.60.2.1.12 lpspi_transfer_type transferType

Type of LPSPI transfer

Definition at line 63 of file lpspi_master_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 557

14.60.2.1.13 uint8_t txDMAChannel

Channel number for DMA tx channel. If DMA mode isn't used this field will be ignored.

Definition at line 65 of file lpspi_master_driver.h.

14.60.2.1.14 lpspi_which_pcs_t whichPcs

Selects which PCS to use

Definition at line 55 of file lpspi_master_driver.h.

14.60.2.2 struct lpspi_state_t

Runtime state structure for the LPSPI master driver.

This structure holds data that is used by the LPSPI peripheral driver to communicate between the transfer function
and the interrupt handler. The interrupt handler also uses this information to keep track of its progress. The
user must pass the memory for this run-time state structure. The LPSPI master driver populates the members.
Implements : lpspi_state_t_Class

Definition at line 127 of file lpspi_shared_function.h.

Data Fields

• uint16_t bitsPerFrame
• uint16_t bytesPerFrame
• bool isPcsContinuous
• bool isBlocking
• uint32_t lpspiSrcClk
• volatile bool isTransferInProgress
• const uint8_t ∗ txBuff
• uint8_t ∗ rxBuff
• volatile uint16_t txCount
• volatile uint16_t rxCount
• volatile uint16_t txFrameCnt
• volatile uint16_t rxFrameCnt
• volatile bool lsb
• uint8_t fifoSize
• uint8_t rxDMAChannel
• uint8_t txDMAChannel
• lpspi_transfer_type transferType
• semaphore_t lpspiSemaphore
• transfer_status_t status
• spi_callback_t callback
• void ∗ callbackParam

Field Documentation

14.60.2.2.1 uint16_t bitsPerFrame

Number of bits per frame: 8- to 4096-bits; needed for TCR programming

Definition at line 129 of file lpspi_shared_function.h.

14.60.2.2.2 uint16_t bytesPerFrame

Number of bytes per frame: 1- to 512-bytes

Definition at line 131 of file lpspi_shared_function.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

558 CONTENTS

14.60.2.2.3 spi_callback_t callback

Select the callback to transfer complete

Definition at line 150 of file lpspi_shared_function.h.

14.60.2.2.4 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 151 of file lpspi_shared_function.h.

14.60.2.2.5 uint8_t fifoSize

RX/TX fifo size

Definition at line 144 of file lpspi_shared_function.h.

14.60.2.2.6 bool isBlocking

Save the transfer type

Definition at line 134 of file lpspi_shared_function.h.

14.60.2.2.7 bool isPcsContinuous

Option to keep chip select asserted until transfer complete; needed for TCR programming

Definition at line 132 of file lpspi_shared_function.h.

14.60.2.2.8 volatile bool isTransferInProgress

True if there is an active transfer

Definition at line 136 of file lpspi_shared_function.h.

14.60.2.2.9 semaphore_t lpspiSemaphore

The semaphore used for blocking transfers

Definition at line 148 of file lpspi_shared_function.h.

14.60.2.2.10 uint32_t lpspiSrcClk

Module source clock

Definition at line 135 of file lpspi_shared_function.h.

14.60.2.2.11 volatile bool lsb

True if first bit is LSB and false if first bit is MSB

Definition at line 143 of file lpspi_shared_function.h.

14.60.2.2.12 uint8_t∗ rxBuff

The buffer into which received bytes are placed

Definition at line 138 of file lpspi_shared_function.h.

14.60.2.2.13 volatile uint16_t rxCount

Number of bytes remaining to receive

Definition at line 140 of file lpspi_shared_function.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 559

14.60.2.2.14 uint8_t rxDMAChannel

Channel number for DMA rx channel

Definition at line 145 of file lpspi_shared_function.h.

14.60.2.2.15 volatile uint16_t rxFrameCnt

Number of bytes from current frame which were already received

Definition at line 142 of file lpspi_shared_function.h.

14.60.2.2.16 transfer_status_t status

The status of the current

Definition at line 149 of file lpspi_shared_function.h.

14.60.2.2.17 lpspi_transfer_type transferType

Type of LPSPI transfer

Definition at line 147 of file lpspi_shared_function.h.

14.60.2.2.18 const uint8_t∗ txBuff

The buffer from which transmitted bytes are taken

Definition at line 137 of file lpspi_shared_function.h.

14.60.2.2.19 volatile uint16_t txCount

Number of bytes remaining to send

Definition at line 139 of file lpspi_shared_function.h.

14.60.2.2.20 uint8_t txDMAChannel

Channel number for DMA tx channel

Definition at line 146 of file lpspi_shared_function.h.

14.60.2.2.21 volatile uint16_t txFrameCnt

Number of bytes from current frame which were already sent

Definition at line 141 of file lpspi_shared_function.h.

14.60.2.3 struct lpspi_slave_config_t

User configuration structure for the SPI slave driver. Implements : lpspi_slave_config_t_Class.

Definition at line 50 of file lpspi_slave_driver.h.

Data Fields

• lpspi_signal_polarity_t pcsPolarity
• uint16_t bitcount
• lpspi_clock_phase_t clkPhase
• lpspi_which_pcs_t whichPcs
• lpspi_sck_polarity_t clkPolarity
• bool lsbFirst
• lpspi_transfer_type transferType
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

560 CONTENTS

• spi_callback_t callback

• void ∗ callbackParam

Field Documentation

14.60.2.3.1 uint16_t bitcount

Number of bits/frame, minimum is 8-bits

Definition at line 53 of file lpspi_slave_driver.h.

14.60.2.3.2 spi_callback_t callback

Select the callback to transfer complete

Definition at line 61 of file lpspi_slave_driver.h.

14.60.2.3.3 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 62 of file lpspi_slave_driver.h.

14.60.2.3.4 lpspi_clock_phase_t clkPhase

Selects which phase of clock to capture data

Definition at line 54 of file lpspi_slave_driver.h.

14.60.2.3.5 lpspi_sck_polarity_t clkPolarity

Selects clock polarity

Definition at line 56 of file lpspi_slave_driver.h.

14.60.2.3.6 bool lsbFirst

Option to transmit LSB first

Definition at line 57 of file lpspi_slave_driver.h.

14.60.2.3.7 lpspi_signal_polarity_t pcsPolarity

PCS polarity

Definition at line 52 of file lpspi_slave_driver.h.

14.60.2.3.8 uint8_t rxDMAChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 59 of file lpspi_slave_driver.h.

14.60.2.3.9 lpspi_transfer_type transferType

Type of LPSPI transfer

Definition at line 58 of file lpspi_slave_driver.h.

14.60.2.3.10 uint8_t txDMAChannel

Channel number for DMA tx channel. If DMA mode isn't used this field will be ignored.

Definition at line 60 of file lpspi_slave_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 561

14.60.2.3.11 lpspi_which_pcs_t whichPcs

Definition at line 55 of file lpspi_slave_driver.h.

14.60.3 Enumeration Type Documentation

14.60.3.1 enum lpspi_clock_phase_t

LPSPI clock phase configuration. Implements : lpspi_clock_phase_t_Class.

Enumerator

LPSPI_CLOCK_PHASE_1ST_EDGE Data captured on SCK 1st edge, changed on 2nd.

LPSPI_CLOCK_PHASE_2ND_EDGE Data changed on SCK 1st edge, captured on 2nd.

Definition at line 83 of file lpspi_shared_function.h.

14.60.3.2 enum lpspi_sck_polarity_t

LPSPI Clock Signal (SCK) Polarity configuration. Implements : lpspi_sck_polarity_t_Class.

Enumerator

LPSPI_SCK_ACTIVE_HIGH Signal is Active High (idles low).

LPSPI_SCK_ACTIVE_LOW Signal is Active Low (idles high).

Definition at line 92 of file lpspi_shared_function.h.

14.60.3.3 enum lpspi_signal_polarity_t

LPSPI Signal (PCS and Host Request) Polarity configuration. Implements : lpspi_signal_polarity_t_Class.

Enumerator

LPSPI_ACTIVE_HIGH Signal is Active High (idles low).

LPSPI_ACTIVE_LOW Signal is Active Low (idles high).

Definition at line 74 of file lpspi_shared_function.h.

14.60.3.4 enum lpspi_transfer_type

Type of LPSPI transfer (based on interrupts or DMA). Implements : lpspi_transfer_type_Class.

Enumerator

LPSPI_USING_DMA The driver will use DMA to perform SPI transfer

LPSPI_USING_INTERRUPTS The driver will use interrupts to perform SPI transfer

Definition at line 102 of file lpspi_shared_function.h.

14.60.3.5 enum lpspi_which_pcs_t

LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure). Implements : lpspi_which_pcs_t_←↩

Class.

Enumerator

LPSPI_PCS0 PCS[0]

LPSPI_PCS1 PCS[1]

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

562 CONTENTS

LPSPI_PCS2 PCS[2]

LPSPI_PCS3 PCS[3]

Definition at line 63 of file lpspi_shared_function.h.

14.60.3.6 enum transfer_status_t

Type of error reported by LPSPI.

Enumerator

LPSPI_TRANSFER_OK Transfer OK

LPSPI_TRANSMIT_FAIL Error during transmission

LPSPI_RECEIVE_FAIL Error during reception

Definition at line 110 of file lpspi_shared_function.h.

14.60.4 Function Documentation

14.60.4.1 void LPSPI0_IRQHandler (void)

This function is the implementation of LPSPI0 handler named in startup code.

It passes the instance to the shared LPSPI IRQ handler.

Definition at line 109 of file lpspi_irq.c.

14.60.4.2 void LPSPI1_IRQHandler (void)

This function is the implementation of LPSPI1 handler named in startup code.

It passes the instance to the shared LPSPI IRQ handler.

Definition at line 119 of file lpspi_irq.c.

14.60.4.3 void LPSPI2_IRQHandler (void)

This function is the implementation of LPSPI2 handler named in startup code.

It passes the instance to the shared LPSPI IRQ handler.

Definition at line 129 of file lpspi_irq.c.

14.60.4.4 void LPSPI_DRV_DisableTEIEInterrupts (uint32_t instance)

Disable the TEIE interrupts at the end of a transfer. Disable the interrupts and clear the status for transmit/receive
errors.

Definition at line 261 of file lpspi_shared_function.c.

14.60.4.5 void LPSPI_DRV_FillupTxBuffer (uint32_t instance)

The function LPSPI_DRV_FillupTxBuffer writes data in TX hardware buffer depending on driver state and number
of bytes remained to send.

The function LPSPI_DRV_FillupTxBuffer writes data in TX hardware buffer depending on driver state and number
of bytes remained to send.

Definition at line 122 of file lpspi_shared_function.c.

14.60.4.6 void LPSPI_DRV_IRQHandler (uint32_t instance)

The function LPSPI_DRV_IRQHandler passes IRQ control to either the master or slave driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 563

The address of the IRQ handlers are checked to make sure they are non-zero before they are called. If the IRQ
handler's address is zero, it means that driver was not present in the link (because the IRQ handlers are marked
as weak). This would actually be a program error, because it means the master/slave config for the IRQ was set
incorrectly.

Definition at line 99 of file lpspi_shared_function.c.

14.60.4.7 status_t LPSPI_DRV_MasterAbortTransfer (uint32_t instance)

Terminates an interrupt driven asynchronous transfer early.

During an a-sync (non-blocking) transfer, the user has the option to terminate the transfer early if the transfer is still
in progress.

Parameters

instance The instance number of the LPSPI peripheral.

Returns

STATUS_SUCCESS The transfer was successful, or LPSPI_STATUS_NO_TRANSFER_IN_PROGRESS No
transfer is currently in progress.

Definition at line 560 of file lpspi_master_driver.c.

14.60.4.8 status_t LPSPI_DRV_MasterConfigureBus (uint32_t instance, const lpspi_master_config_t ∗ spiConfig,
uint32_t ∗ calculatedBaudRate)

Configures the LPSPI port physical parameters to access a device on the bus when the LSPI instance is configured
for interrupt operation.

In this function, the term "spiConfig" is used to indicate the SPI device for which the LPSPI master is communicating.
This is an optional function as the spiConfig parameters are normally configured in the initialization function or the
transfer functions, where these various functions would call the configure bus function. This is an example to set
up the lpspi_master_config_t structure to call the LPSPI_DRV_MasterConfigureBus function by passing in these
parameters:

1 lpspi_master_config_t spiConfig1; You can also declare spiConfig2, spiConfig3, etc
2 spiConfig1.bitsPerSec = 500000;
3 spiConfig1.whichPcs = LPSPI_PCS0;
4 spiConfig1.pcsPolarity = LPSPI_ACTIVE_LOW;
5 spiConfig1.isPcsContinuous = false;
6 spiConfig1.bitCount = 16;
7 spiConfig1.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE;
8 spiConfig1.clkPolarity = LPSPI_ACTIVE_HIGH;
9 spiConfig1.lsbFirst= false;
10 spiConfig.transferType = LPSPI_USING_INTERRUPTS;

Parameters

instance The instance number of the LPSPI peripheral.
spiConfig Pointer to the spiConfig structure. This structure contains the settings for the SPI bus configu-

ration. The SPI device parameters are the desired baud rate (in bits-per-sec), bits-per-frame,
chip select attributes, clock attributes, and data shift direction.

calculated←↩

BaudRate
The calculated baud rate passed back to the user to determine if the calculated baud rate is
close enough to meet the needs. The baud rate never exceeds the desired baud rate.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_ERROR if driver is error and
needs to clean error.

Definition at line 311 of file lpspi_master_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

564 CONTENTS

14.60.4.9 status_t LPSPI_DRV_MasterDeinit (uint32_t instance)

Shuts down a LPSPI instance.

This function resets the LPSPI peripheral, gates its clock, and disables the interrupt to the core. It first checks to
see if a transfer is in progress and if so returns an error status.

Parameters

instance The instance number of the LPSPI peripheral.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_BUSY The transfer is still in
progress. STATUS_ERROR if driver is error and needs to clean error.

Definition at line 191 of file lpspi_master_driver.c.

14.60.4.10 status_t LPSPI_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemained)

Returns whether the previous interrupt driven transfer is completed.

When performing an a-sync (non-blocking) transfer, the user can call this function to ascertain the state of the
current transfer: in progress (or busy) or complete (success). In addition, if the transfer is still in progress, the user
can get the number of words that have been transferred up to now.

Parameters

instance The instance number of the LPSPI peripheral.
bytesRemained Pointer to a value that is filled in with the number of bytes that must be received.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_BUSY The transfer is still in
progress. framesTransferred is filled with the number of words that have been transferred so far.

Definition at line 532 of file lpspi_master_driver.c.

14.60.4.11 status_t LPSPI_DRV_MasterInit (uint32_t instance, lpspi_state_t ∗ lpspiState, const lpspi_master_config_t
∗ spiConfig)

Initializes a LPSPI instance for interrupt driven master mode operation.

This function uses an interrupt-driven method for transferring data. In this function, the term "spiConfig" is used
to indicate the SPI device for which the LPSPI master is communicating. This function initializes the run-time
state structure to track the ongoing transfers, un-gates the clock to the LPSPI module, resets the LPSPI module,
configures the IRQ state structure, enables the module-level interrupt to the core, and enables the LPSPI module.
This is an example to set up the lpspi_master_state_t and call the LPSPI_DRV_MasterInit function by passing in
these parameters:

1 lpspi_master_state_t lpspiMasterState; <- the user allocates memory for this structure
2 lpspi_master_config_t spiConfig; Can declare more configs for use in transfer functions
3 spiConfig.bitsPerSec = 500000;
4 spiConfig.whichPcs = LPSPI_PCS0;
5 spiConfig.pcsPolarity = LPSPI_ACTIVE_LOW;
6 spiConfig.isPcsContinuous = false;
7 spiConfig.bitCount = 16;
8 spiConfig.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE;
9 spiConfig.clkPolarity = LPSPI_ACTIVE_HIGH;
10 spiConfig.lsbFirst= false;
11 spiConfig.transferType = LPSPI_USING_INTERRUPTS;
12 LPSPI_DRV_MasterInit(masterInstance, &lpspiMasterState, &spiConfig);

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 565

Parameters

instance The instance number of the LPSPI peripheral.
lpspiState The pointer to the LPSPI master driver state structure. The user passes the memory for this

run-time state structure. The LPSPI master driver populates the members. This run-time
state structure keeps track of the transfer in progress.

spiConfig The data structure containing information about a device on the SPI bus

Returns

An error code or STATUS_SUCCESS.

Definition at line 140 of file lpspi_master_driver.c.

14.60.4.12 void LPSPI_DRV_MasterIRQHandler (uint32_t instance)

Interrupt handler for LPSPI master mode. This handler uses the buffers stored in the lpspi_master_state_t structs
to transfer data.

Parameters

instance The instance number of the LPSPI peripheral.

Interrupt handler for LPSPI master mode. This handler uses the buffers stored in the lpspi_master_state_t structs
to transfer data.

Definition at line 795 of file lpspi_master_driver.c.

14.60.4.13 status_t LPSPI_DRV_MasterSetDelay (uint32_t instance, uint32_t delayBetwenTransfers, uint32_t delaySCKtoPCS,
uint32_t delayPCStoSCK)

Configures the LPSPI master mode bus timing delay options.

This function involves the LPSPI module's delay options to "fine tune" some of the signal timings and match the
timing needs of a slower peripheral device. This is an optional function that can be called after the LPSPI module
has been initialized for master mode. The timings are adjusted in terms of cycles of the baud rate clock. The bus
timing delays that can be adjusted are listed below:

SCK to PCS Delay: Adjustable delay option between the last edge of SCK to the de-assertion of the PCS signal.

PCS to SCK Delay: Adjustable delay option between the assertion of the PCS signal to the first SCK edge.

Delay between Transfers: Adjustable delay option between the de-assertion of the PCS signal for a frame to the
assertion of the PCS signal for the next frame.

Parameters

instance The instance number of the LPSPI peripheral.
delayBetwen←↩

Transfers
Minimum delay between 2 transfers in microseconds

delaySCKtoP←↩

CS
Minimum delay between SCK and PCS

delayPCStoS←↩

CK
Minimum delay between PCS and SCK

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_ERROR if driver is error and
needs to clean error.

Definition at line 237 of file lpspi_master_driver.c.

14.60.4.14 status_t LPSPI_DRV_MasterTransfer (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗ receiveBuffer,
uint16_t transferByteCount)

Performs an interrupt driven non-blocking SPI master mode transfer.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

566 CONTENTS

This function simultaneously sends and receives data on the SPI bus, as SPI is naturally a full-duplex bus. The
function returns immediately after initiating the transfer. The user needs to check whether the transfer is complete
using the LPSPI_DRV_MasterGetTransferStatus function. This function allows the user to optionally pass in a SPI
configuration structure which allows the user to change the SPI bus attributes in conjunction with initiating a SPI
transfer. The difference between passing in the SPI configuration structure here as opposed to the configure bus
function is that the configure bus function returns the calculated baud rate where this function does not. The user
can also call the configure bus function prior to the transfer in which case the user would simply pass in a NULL to
the transfer function's device structure parameter.

Parameters

instance The instance number of the LPSPI peripheral.
spiConfig Pointer to the SPI configuration structure. This structure contains the settings for the SPI

bus configuration in this transfer. You may pass NULL for this parameter, in which case the
current bus configuration is used unmodified. The device can be configured separately by
calling the LPSPI_DRV_MasterConfigureBus function.

sendBuffer The pointer to the data buffer of the data to send. You may pass NULL for this parameter and
bytes with a value of 0 (zero) is sent.

receiveBuffer Pointer to the buffer where the received bytes are stored. If you pass NULL for this parameter,
the received bytes are ignored.

transferByte←↩

Count
The number of bytes to send and receive.

Returns

STATUS_SUCCESS The transfer was successful, or STATUS_BUSY Cannot perform transfer because a
transfer is already in progress

Definition at line 495 of file lpspi_master_driver.c.

14.60.4.15 status_t LPSPI_DRV_MasterTransferBlocking (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗
receiveBuffer, uint16_t transferByteCount, uint32_t timeout)

Performs an interrupt driven blocking SPI master mode transfer.

This function simultaneously sends and receives data on the SPI bus, as SPI is naturally a full-duplex bus. The
function does not return until the transfer is complete. This function allows the user to optionally pass in a SPI
configuration structure which allows the user to change the SPI bus attributes in conjunction with initiating a SPI
transfer. The difference between passing in the SPI configuration structure here as opposed to the configure bus
function is that the configure bus function returns the calculated baud rate where this function does not. The user
can also call the configure bus function prior to the transfer in which case the user would simply pass in a NULL to
the transfer function's device structure parameter.

Parameters

instance The instance number of the LPSPI peripheral.
sendBuffer The pointer to the data buffer of the data to send. You may pass NULL for this parameter and

bytes with a value of 0 (zero) is sent.
receiveBuffer Pointer to the buffer where the received bytes are stored. If you pass NULL for this parameter,

the received bytes are ignored.
transferByte←↩

Count
The number of bytes to send and receive.

timeout A timeout for the transfer in milliseconds. If the transfer takes longer than this amount of time,
the transfer is aborted and a STATUS_TIMEOUT error returned.

Returns

STATUS_SUCCESS The transfer was successful, or STATUS_BUSY Cannot perform transfer because a
transfer is already in progress, or STATUS_TIMEOUT The transfer timed out and was aborted.

Definition at line 417 of file lpspi_master_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 567

14.60.4.16 void LPSPI_DRV_ReadRXBuffer (uint32_t instance)

The function LPSPI_DRV_ReadRXBuffer reads data from RX hardware buffer and writes this data in RX software
buffer.

The function LPSPI_DRV_ReadRXBuffer reads data from RX hardware buffer and writes this data in RX software
buffer.

Definition at line 200 of file lpspi_shared_function.c.

14.60.4.17 status_t LPSPI_DRV_SlaveAbortTransfer (uint32_t instance)

Aborts the transfer that started by a non-blocking call transfer function.

This function stops the transfer which was started by the calling the SPI_DRV_SlaveTransfer() function.

Parameters

instance The instance number of SPI peripheral

Returns

STATUS_SUCCESS if everything is OK.

Definition at line 432 of file lpspi_slave_driver.c.

14.60.4.18 status_t LPSPI_DRV_SlaveDeinit (uint32_t instance)

Shuts down an LPSPI instance interrupt mechanism.

Disables the LPSPI module, gates its clock, and changes the LPSPI slave driver state to NonInit for the LPSPI slave
module which is initialized with interrupt mechanism. After de-initialization, the user can re-initialize the LPSPI slave
module with other mechanisms.

Parameters

instance The instance number of the LPSPI peripheral.

Returns

STATUS_SUCCESS if driver starts to send/receive data successfully. STATUS_ERROR if driver is error and
needs to clean error. STATUS_BUSY if a transfer is in progress

Definition at line 175 of file lpspi_slave_driver.c.

14.60.4.19 status_t LPSPI_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemained)

Returns whether the previous transfer is finished.

When performing an a-sync transfer, the user can call this function to ascertain the state of the current transfer: in
progress (or busy) or complete (success). In addition, if the transfer is still in progress, the user can get the number
of words that have been transferred up to now.

Parameters

instance The instance number of the LPSPI peripheral.
bytesRemained Pointer to value that is filled in with the number of frames that have been sent in the active

transfer. A frame is defined as the number of bits per frame.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_BUSY The transfer is still in
progress. STATUS_ERROR if driver is error and needs to clean error.

Definition at line 468 of file lpspi_slave_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

568 CONTENTS

14.60.4.20 status_t LPSPI_DRV_SlaveInit (uint32_t instance, lpspi_state_t ∗ lpspiState, const lpspi_slave_config_t ∗
slaveConfig)

Initializes a LPSPI instance for a slave mode operation, using interrupt mechanism.

This function un-gates the clock to the LPSPI module, initializes the LPSPI for slave mode. After it is initialized, the
LPSPI module is configured in slave mode and the user can start transmitting and receiving data by calling send,
receive, and transfer functions. This function indicates LPSPI slave uses an interrupt mechanism.

Parameters

instance The instance number of the LPSPI peripheral.
lpspiState The pointer to the LPSPI slave driver state structure.

slaveConfig The configuration structure lpspi_slave_user_config_t which configures the data bus format.

Returns

An error code or STATUS_SUCCESS.

Definition at line 103 of file lpspi_slave_driver.c.

14.60.4.21 void LPSPI_DRV_SlaveIRQHandler (uint32_t instance)

Interrupt handler for LPSPI slave mode. This handler uses the buffers stored in the lpspi_master_state_t structs to
transfer data.

Parameters

instance The instance number of the LPSPI peripheral.

Definition at line 371 of file lpspi_slave_driver.c.

14.60.4.22 status_t LPSPI_DRV_SlaveTransfer (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗ receiveBuffer,
uint16_t transferByteCount)

Starts the transfer data on LPSPI bus using an interrupt and a non-blocking call.

Parameters

instance The instance number of LPSPI peripheral
sendBuffer The pointer to data that user wants to transmit.

receiveBuffer The pointer to data that user wants to store received data.
transferByte←↩

Count
The number of bytes to send and receive.

Returns

STATUS_SUCCESS if driver starts to send/receive data successfully. STATUS_ERROR if driver is error and
needs to clean error. STATUS_BUSY if a transfer is in progress

Definition at line 241 of file lpspi_slave_driver.c.

14.60.4.23 status_t LPSPI_DRV_SlaveTransferBlocking (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗ receiveBuffer,
uint16_t transferByteCount, uint32_t timeout)

Transfers data on LPSPI bus using interrupt and a blocking call.

This function checks the driver status and mechanism, and transmits/receives data through the LPSPI bus. If the
sendBuffer is NULL, the transmit process is ignored. If the receiveBuffer is NULL, the receive process is ignored. If
both the receiveBuffer and the sendBuffer are available, the transmit and the receive progress is processed. If only
the receiveBuffer is available, the receive is processed. Otherwise, the transmit is processed. This function only
returns when the processes are completed. This function uses an interrupt mechanism.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.60 LPSPI Driver 569

Parameters

instance The instance number of LPSPI peripheral
sendBuffer The pointer to data that user wants to transmit.

receiveBuffer The pointer to data that user wants to store received data.
transferByte←↩

Count
The number of bytes to send and receive.

timeout The maximum number of milliseconds that function waits before timed out reached.

Returns

STATUS_SUCCESS if driver starts to send/receive data successfully. STATUS_ERROR if driver is error and
needs to clean error. STATUS_BUSY if a transfer is in progress STATUS_TIMEOUT if time out reached while
transferring is in progress.

Definition at line 203 of file lpspi_slave_driver.c.

14.60.5 Variable Documentation

14.60.5.1 LPSPI_Type∗ g_lpspiBase[LPSPI_INSTANCE_COUNT]

Table of base pointers for SPI instances.

Definition at line 77 of file lpspi_shared_function.c.

14.60.5.2 IRQn_Type g_lpspiIrqId[LPSPI_INSTANCE_COUNT]

Table to save LPSPI IRQ enumeration numbers defined in the CMSIS header file.

Definition at line 80 of file lpspi_shared_function.c.

14.60.5.3 lpspi_state_t∗ g_lpspiStatePtr[LPSPI_INSTANCE_COUNT]

Definition at line 83 of file lpspi_shared_function.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

570 CONTENTS

14.61 LPTMR Driver

14.61.1 Detailed Description

Low Power Timer Peripheral Driver.

The LPTMR is a configurable general-purpose 16-bit counter that has two operational modes: Timer and Pulse-←↩

Counter.

Depending on the configured operational mode, the counter in the LPTMR can be incremented using a clock input
(Timer mode) or an event counter (external events like button presses or internal events from different trigger
souces).

Timer Mode

In Timer mode, the LPTMR increments the internal counter from a selectable clock source. An optional 16-bit
prescaler can be configured.

Pulse-Counter Mode

In Pulse-Counter Mode, the LPTMR counter increments from a selectable trigger source, input pin, which can be
an external event (like a button press) or internal events (like triggers from TRGMUX).

An optional 16-bit glitch-fiter can be configured to reject events that have a duration below a set period.

Initialization prerequisites

Before configuring the LPTMR, the peripheral clock must be enabled from the PCC module.

The peripheral clock must not be confused with the counter clock, which is selectable within the LPTMR.

Driver configuration

The LPTMR driver allows configuring the LPTMR for Pulse-Counter Mode or Timer Mode via the general configu-
ration structure.

Configurable options:

• work mode (timer or pulse-counter)

• enable interrupts and DMA requests

• free running mode (overflow mode of the counter)

• compare value (interrupt generation on counter value)

• compare value measurement units (counter ticks or microseconds)

• input clock selection

• prescaler/glitch filter configuration

• enable bypass prescaler

• pin select (for pulse-counter mode)

• input pin and polarity (for pulse-counter mode)

/* LPTMR initialization of config structure */
lptmr_config_t config = {
.workMode = LPTMR_WORKMODE_TIMER,
.dmaRequest = false,
.interruptEnable = false,
.freeRun = false,
.compareValue = 1000U,
.counterUnits = LPTMR_COUNTER_UNITS_TICKS,
.clockSelect = LPTMR_CLOCKSOURCE_SIRCDIV2,
.prescaler = LPTMR_PRESCALE_2,
.bypassPrescaler = false,

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.61 LPTMR Driver 571

.pinSelect = LPTMR_PINSELECT_TRGMUX,

.pinPolarity = LPTMR_PINPOLARITY_RISING,
};

/* Enable peripheral clock for LPTMR */
PCC_HAL_SetClockSourceSel(PCC, PCC_LPTMR0_CLOCK, CLK_SRC_FIRC);
PCC_HAL_SetClockMode(PCC, PCC_LPTMR0_CLOCK, true);

/* Initialize the LPTMR and start the counter in a separate operation */
status = LPTMR_DRV_Init(0, &config, false);
LPTMR_DRV_StartCounter(0);

API

Some of the features exposed by the API are targeted specifically for Timer Mode or Pulse-Counter Mode. For
example, configuring the Compare Value in microseconds makes sense only for Timer Mode, so therefor it is
restricted for use in Pulse-Counter mode.

For any invalid configuration the functions will either return an error code or trigger DEV_ASSERT (if enabled). For
more details, please refer to each function description.

Data Structures

• struct lptmr_config_t

Defines the configuration structure for LPTMR. More...

Enumerations

• enum lptmr_pinselect_t { LPTMR_PINSELECT_TRGMUX = 0x00u, LPTMR_PINSELECT_ALT1 = 0x01u,
LPTMR_PINSELECT_ALT2 = 0x02u, LPTMR_PINSELECT_ALT3 = 0x03u }

Pulse Counter Input selection Implements : lptmr_pinselect_t_Class.

• enum lptmr_pinpolarity_t { LPTMR_PINPOLARITY_RISING = 0u, LPTMR_PINPOLARITY_FALLING = 1u }

Pulse Counter input polarity Implements : lptmr_pinpolarity_t_Class.

• enum lptmr_workmode_t { LPTMR_WORKMODE_TIMER = 0u, LPTMR_WORKMODE_PULSECOUNTER
= 1u }

Work Mode Implements : lptmr_workmode_t_Class.

• enum lptmr_prescaler_t {
LPTMR_PRESCALE_2 = 0x00u, LPTMR_PRESCALE_4_GLITCHFILTER_2 = 0x01u, LPTMR_PRESCA←↩

LE_8_GLITCHFILTER_4 = 0x02u, LPTMR_PRESCALE_16_GLITCHFILTER_8 = 0x03u,
LPTMR_PRESCALE_32_GLITCHFILTER_16 = 0x04u, LPTMR_PRESCALE_64_GLITCHFILTER_32 =
0x05u, LPTMR_PRESCALE_128_GLITCHFILTER_64 = 0x06u, LPTMR_PRESCALE_256_GLITCHFILT←↩

ER_128 = 0x07u,
LPTMR_PRESCALE_512_GLITCHFILTER_256 = 0x08u, LPTMR_PRESCALE_1024_GLITCHFILTER_512
= 0x09u, LPTMR_PRESCALE_2048_GLITCHFILTER_1024 = 0x0Au, LPTMR_PRESCALE_4096_GLITC←↩

HFILTER_2048 = 0x0Bu,
LPTMR_PRESCALE_8192_GLITCHFILTER_4096 = 0x0Cu, LPTMR_PRESCALE_16384_GLITCHFILTE←↩

R_8192 = 0x0Du, LPTMR_PRESCALE_32768_GLITCHFILTER_16384 = 0x0Eu, LPTMR_PRESCALE_←↩

65536_GLITCHFILTER_32768 = 0x0Fu }

Prescaler Selection Implements : lptmr_prescaler_t_Class.

• enum lptmr_clocksource_t { LPTMR_CLOCKSOURCE_SIRCDIV2 = 0x00u, LPTMR_CLOCKSOURCE_1←↩

KHZ_LPO = 0x01u, LPTMR_CLOCKSOURCE_RTC = 0x02u, LPTMR_CLOCKSOURCE_PCC = 0x03u }

Clock Source selection Implements : lptmr_clocksource_t_Class.

• enum lptmr_counter_units_t { LPTMR_COUNTER_UNITS_TICKS = 0x00U, LPTMR_COUNTER_UNITS_←↩

MICROSECONDS = 0x01U }

Defines the LPTMR counter units available for configuring or reading the timer compare value.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

572 CONTENTS

LPTMR Driver Functions

• void LPTMR_DRV_InitConfigStruct (lptmr_config_t ∗const config)

Initialize a configuration structure with default values.

• void LPTMR_DRV_Init (const uint32_t instance, const lptmr_config_t ∗const config, const bool startCounter)

Initialize a LPTMR instance with values from an input configuration structure.

• void LPTMR_DRV_SetConfig (const uint32_t instance, const lptmr_config_t ∗const config)

Configure a LPTMR instance.

• void LPTMR_DRV_GetConfig (const uint32_t instance, lptmr_config_t ∗const config)

Get the current configuration of a LPTMR instance.

• void LPTMR_DRV_Deinit (const uint32_t instance)

De-initialize a LPTMR instance.

• status_t LPTMR_DRV_SetCompareValueByCount (const uint32_t instance, const uint16_t compareValue←↩

ByCount)

Set the compare value in counter tick units, for a LPTMR instance.

• void LPTMR_DRV_GetCompareValueByCount (const uint32_t instance, uint16_t ∗const compareValueBy←↩

Count)

Get the compare value in counter tick units, of a LPTMR instance.

• status_t LPTMR_DRV_SetCompareValueByUs (const uint32_t instance, const uint32_t compareValueUs)

Set the compare value for Timer Mode in microseconds, for a LPTMR instance.

• void LPTMR_DRV_GetCompareValueByUs (const uint32_t instance, uint32_t ∗const compareValueUs)

Get the compare value in microseconds, of a LPTMR instance.

• bool LPTMR_DRV_GetCompareFlag (const uint32_t instance)

Get the current state of the Compare Flag of a LPTMR instance.

• void LPTMR_DRV_ClearCompareFlag (const uint32_t instance)

Clear the Compare Flag of a LPTMR instance.

• bool LPTMR_DRV_IsRunning (const uint32_t instance)

Get the run state of a LPTMR instance.

• void LPTMR_DRV_SetInterrupt (const uint32_t instance, const bool enableInterrupt)

Enable/disable the LPTMR interrupt.

• uint16_t LPTMR_DRV_GetCounterValueByCount (const uint32_t instance)

Get the current counter value in counter tick units.

• void LPTMR_DRV_StartCounter (const uint32_t instance)

Enable the LPTMR / Start the counter.

• void LPTMR_DRV_StopCounter (const uint32_t instance)

Disable the LPTMR / Stop the counter.

• void LPTMR_DRV_SetPinConfiguration (const uint32_t instance, const lptmr_pinselect_t pinSelect, const
lptmr_pinpolarity_t pinPolarity)

Set the Input Pin configuration for Pulse Counter mode.

14.61.2 Data Structure Documentation

14.61.2.1 struct lptmr_config_t

Defines the configuration structure for LPTMR.

Implements : lptmr_config_t_Class

Definition at line 111 of file lptmr_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.61 LPTMR Driver 573

Data Fields

• bool dmaRequest

• bool interruptEnable

• bool freeRun

• lptmr_workmode_t workMode

• lptmr_clocksource_t clockSelect

• lptmr_prescaler_t prescaler

• bool bypassPrescaler

• uint32_t compareValue

• lptmr_counter_units_t counterUnits

• lptmr_pinselect_t pinSelect

• lptmr_pinpolarity_t pinPolarity

Field Documentation

14.61.2.1.1 bool bypassPrescaler

Enable/Disable prescaler bypass

Definition at line 121 of file lptmr_driver.h.

14.61.2.1.2 lptmr_clocksource_t clockSelect

Clock selection for Timer/Glitch filter

Definition at line 119 of file lptmr_driver.h.

14.61.2.1.3 uint32_t compareValue

Compare value

Definition at line 122 of file lptmr_driver.h.

14.61.2.1.4 lptmr_counter_units_t counterUnits

Compare value units

Definition at line 123 of file lptmr_driver.h.

14.61.2.1.5 bool dmaRequest

Enable/Disable DMA requests

Definition at line 114 of file lptmr_driver.h.

14.61.2.1.6 bool freeRun

Enable/Disable Free Running Mode

Definition at line 116 of file lptmr_driver.h.

14.61.2.1.7 bool interruptEnable

Enable/Disable Interrupt

Definition at line 115 of file lptmr_driver.h.

14.61.2.1.8 lptmr_pinpolarity_t pinPolarity

Pin Polarity for Pulse-Counter

Definition at line 126 of file lptmr_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

574 CONTENTS

14.61.2.1.9 lptmr_pinselect_t pinSelect

Pin selection for Pulse-Counter

Definition at line 125 of file lptmr_driver.h.

14.61.2.1.10 lptmr_prescaler_t prescaler

Prescaler Selection

Definition at line 120 of file lptmr_driver.h.

14.61.2.1.11 lptmr_workmode_t workMode

Time/Pulse Counter Mode

Definition at line 117 of file lptmr_driver.h.

14.61.3 Enumeration Type Documentation

14.61.3.1 enum lptmr_clocksource_t

Clock Source selection Implements : lptmr_clocksource_t_Class.

Enumerator

LPTMR_CLOCKSOURCE_SIRCDIV2 SIRC clock

LPTMR_CLOCKSOURCE_1KHZ_LPO 1kHz LPO clock

LPTMR_CLOCKSOURCE_RTC RTC clock

LPTMR_CLOCKSOURCE_PCC PCC configured clock

Definition at line 88 of file lptmr_driver.h.

14.61.3.2 enum lptmr_counter_units_t

Defines the LPTMR counter units available for configuring or reading the timer compare value.

Implements : lptmr_counter_units_t_Class

Enumerator

LPTMR_COUNTER_UNITS_TICKS

LPTMR_COUNTER_UNITS_MICROSECONDS

Definition at line 100 of file lptmr_driver.h.

14.61.3.3 enum lptmr_pinpolarity_t

Pulse Counter input polarity Implements : lptmr_pinpolarity_t_Class.

Enumerator

LPTMR_PINPOLARITY_RISING Count pulse on rising edge

LPTMR_PINPOLARITY_FALLING Count pulse on falling edge

Definition at line 50 of file lptmr_driver.h.

14.61.3.4 enum lptmr_pinselect_t

Pulse Counter Input selection Implements : lptmr_pinselect_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.61 LPTMR Driver 575

Enumerator

LPTMR_PINSELECT_TRGMUX Count pulses from TRGMUX trigger

LPTMR_PINSELECT_ALT1 Count pulses from pin alternative 1

LPTMR_PINSELECT_ALT2 Count pulses from pin alternative 2

LPTMR_PINSELECT_ALT3 Count pulses from pin alternative 3

Definition at line 40 of file lptmr_driver.h.

14.61.3.5 enum lptmr_prescaler_t

Prescaler Selection Implements : lptmr_prescaler_t_Class.

Enumerator

LPTMR_PRESCALE_2 Timer mode: prescaler 2, Glitch filter mode: invalid

LPTMR_PRESCALE_4_GLITCHFILTER_2 Timer mode: prescaler 4, Glitch filter mode: 2 clocks

LPTMR_PRESCALE_8_GLITCHFILTER_4 Timer mode: prescaler 8, Glitch filter mode: 4 clocks

LPTMR_PRESCALE_16_GLITCHFILTER_8 Timer mode: prescaler 16, Glitch filter mode: 8 clocks

LPTMR_PRESCALE_32_GLITCHFILTER_16 Timer mode: prescaler 32, Glitch filter mode: 16 clocks

LPTMR_PRESCALE_64_GLITCHFILTER_32 Timer mode: prescaler 64, Glitch filter mode: 32 clocks

LPTMR_PRESCALE_128_GLITCHFILTER_64 Timer mode: prescaler 128, Glitch filter mode: 64 clocks

LPTMR_PRESCALE_256_GLITCHFILTER_128 Timer mode: prescaler 256, Glitch filter mode: 128 clocks

LPTMR_PRESCALE_512_GLITCHFILTER_256 Timer mode: prescaler 512, Glitch filter mode: 256 clocks

LPTMR_PRESCALE_1024_GLITCHFILTER_512 Timer mode: prescaler 1024, Glitch filter mode: 512 clocks

LPTMR_PRESCALE_2048_GLITCHFILTER_1024 Timer mode: prescaler 2048, Glitch filter mode: 1024
clocks

LPTMR_PRESCALE_4096_GLITCHFILTER_2048 Timer mode: prescaler 4096, Glitch filter mode: 2048
clocks

LPTMR_PRESCALE_8192_GLITCHFILTER_4096 Timer mode: prescaler 8192, Glitch filter mode: 4096
clocks

LPTMR_PRESCALE_16384_GLITCHFILTER_8192 Timer mode: prescaler 16384, Glitch filter mode: 8192
clocks

LPTMR_PRESCALE_32768_GLITCHFILTER_16384 Timer mode: prescaler 32768, Glitch filter mode←↩

: 16384 clocks

LPTMR_PRESCALE_65536_GLITCHFILTER_32768 Timer mode: prescaler 65536, Glitch filter mode←↩

: 32768 clocks

Definition at line 66 of file lptmr_driver.h.

14.61.3.6 enum lptmr_workmode_t

Work Mode Implements : lptmr_workmode_t_Class.

Enumerator

LPTMR_WORKMODE_TIMER Timer

LPTMR_WORKMODE_PULSECOUNTER Pulse counter

Definition at line 58 of file lptmr_driver.h.

14.61.4 Function Documentation

14.61.4.1 void LPTMR_DRV_ClearCompareFlag (const uint32_t instance)

Clear the Compare Flag of a LPTMR instance.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

576 CONTENTS

Parameters

in instance - LPTMR instance number

14.61.4.2 void LPTMR_DRV_Deinit (const uint32_t instance)

De-initialize a LPTMR instance.

Parameters

in instance - LPTMR instance number

14.61.4.3 bool LPTMR_DRV_GetCompareFlag (const uint32_t instance)

Get the current state of the Compare Flag of a LPTMR instance.

Parameters

in instance - LPTMR instance number

Returns

The state of the Compare Flag

14.61.4.4 void LPTMR_DRV_GetCompareValueByCount (const uint32_t instance, uint16_t ∗const compareValueByCount)

Get the compare value in counter tick units, of a LPTMR instance.

Parameters

in instance - LPTMR instance number
out compareValue←↩

ByCount
- Pointer to current compare value, in counter ticks

14.61.4.5 void LPTMR_DRV_GetCompareValueByUs (const uint32_t instance, uint32_t ∗const compareValueUs)

Get the compare value in microseconds, of a LPTMR instance.

Parameters

in instance - LPTMR instance number
out compareValue←↩

Us
- Pointer to current compare value, in microseconds

14.61.4.6 void LPTMR_DRV_GetConfig (const uint32_t instance, lptmr_config_t ∗const config)

Get the current configuration of a LPTMR instance.

Parameters

in instance - LPTMR instance number
out config - Pointer to the output configuration structure

14.61.4.7 uint16_t LPTMR_DRV_GetCounterValueByCount (const uint32_t instance)

Get the current counter value in counter tick units.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.61 LPTMR Driver 577

Parameters

in instance - LPTMR instance number

Returns

The current counter value

14.61.4.8 void LPTMR_DRV_Init (const uint32_t instance, const lptmr_config_t ∗const config, const bool startCounter)

Initialize a LPTMR instance with values from an input configuration structure.

When (counterUnits == LPTMR_COUNTER_UNITS_MICROSECONDS) the function will automatically configure
the timer for the input compareValue in microseconds. The input params for 'prescaler' and 'bypassPrescaler' will
be ignored - their values will be adapted by the function, to best fit the input compareValue (in microseconds) for the
operating clock frequency.

LPTMR_COUNTER_UNITS_MICROSECONDS may only be used for LPTMR_WORKMODE_TIMER mode. Oth-
erwise the function shall not convert 'compareValue' in ticks and this is likely to cause erroneous behavior.

When (counterUnits == LPTMR_COUNTER_UNITS_TICKS) the function will use the 'prescaler' and 'bypass←↩

Prescaler' provided in the input config structure.

Parameters

in instance - LPTMR instance number
in config - Pointer to the input configuration structure
in startCounter - Flag for starting the counter immediately after configuration

14.61.4.9 void LPTMR_DRV_InitConfigStruct (lptmr_config_t ∗const config)

Initialize a configuration structure with default values.

Parameters

out config - Pointer to the configuration structure to be initialized

14.61.4.10 bool LPTMR_DRV_IsRunning (const uint32_t instance)

Get the run state of a LPTMR instance.

Parameters

in instance - LPTMR instance number

Returns

The run state of the LPTMR instance:

• true: Timer/Counter started

• false: Timer/Counter stopped

14.61.4.11 status_t LPTMR_DRV_SetCompareValueByCount (const uint32_t instance, const uint16_t compareValueByCount)

Set the compare value in counter tick units, for a LPTMR instance.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

578 CONTENTS

in instance - LPTMR instance number
in compareValue←↩

ByCount
- The compare value in counter ticks, to be written

Returns

One of the possible status codes:

• STATUS_SUCCESS: completed successfully

• STATUS_ERROR: cannot reconfigure compare value (TCF not set)

• STATUS_TIMEOUT: compare value greater then current counter value

14.61.4.12 status_t LPTMR_DRV_SetCompareValueByUs (const uint32_t instance, const uint32_t compareValueUs)

Set the compare value for Timer Mode in microseconds, for a LPTMR instance.

Parameters

in instance - LPTMR peripheral instance number
in compareValue←↩

Us
- Compare value in microseconds

Returns

One of the possible status codes:

• STATUS_SUCCESS: completed successfully

• STATUS_ERROR: cannot reconfigure compare value

• STATUS_TIMEOUT: compare value greater then current counter value

14.61.4.13 void LPTMR_DRV_SetConfig (const uint32_t instance, const lptmr_config_t ∗const config)

Configure a LPTMR instance.

When (counterUnits == LPTMR_COUNTER_UNITS_MICROSECONDS) the function will automatically configure
the timer for the input compareValue in microseconds. The input params for 'prescaler' and 'bypassPrescaler' will
be ignored - their values will be adapted by the function, to best fit the input compareValue (in microseconds) for the
operating clock frequency.

LPTMR_COUNTER_UNITS_MICROSECONDS may only be used for LPTMR_WORKMODE_TIMER mode. Oth-
erwise the function shall not convert 'compareValue' in ticks and this is likely to cause erroneous behavior.

When (counterUnits == LPTMR_COUNTER_UNITS_TICKS) the function will use the 'prescaler' and 'bypass←↩

Prescaler' provided in the input config structure.

Parameters

in instance - LPTMR instance number
in config - Pointer to the input configuration structure

14.61.4.14 void LPTMR_DRV_SetInterrupt (const uint32_t instance, const bool enableInterrupt)

Enable/disable the LPTMR interrupt.

Parameters

in instance - LPTMR instance number

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.61 LPTMR Driver 579

in enableInterrupt - The new state of the LPTMR interrupt enable flag.

14.61.4.15 void LPTMR_DRV_SetPinConfiguration (const uint32_t instance, const lptmr_pinselect_t pinSelect, const
lptmr_pinpolarity_t pinPolarity)

Set the Input Pin configuration for Pulse Counter mode.

Parameters

in instance - LPTMR instance number
in pinSelect - LPTMR pin selection
in pinPolarity - Polarity on which to increment counter (rising/falling edge)

14.61.4.16 void LPTMR_DRV_StartCounter (const uint32_t instance)

Enable the LPTMR / Start the counter.

Parameters

in instance - LPTMR instance number

14.61.4.17 void LPTMR_DRV_StopCounter (const uint32_t instance)

Disable the LPTMR / Stop the counter.

Parameters

in instance - LPTMR instance number

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

580 CONTENTS

14.62 LPUART Driver

14.62.1 Detailed Description

This module covers the functionality of the Low Power Universal Asynchronous Receiver-Transmitter (LPUART)
peripheral driver.

The LPUART driver implements serial communication using the LPUART module in the S32144K processor.

Features

• Interrupt based and polling communication

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate

• 8/9/10 bits per char

Functionality

In order to use the LPUART driver it must be first initialized, using LPUART_DRV_Init() function. Once initialized, it
cannot be initialized again for the same LPUART module instance until it is de-initialized, using LPUART_DRV_←↩

Deinit(). The initialization function does the following operations:

• sets the baud rate

• sets parity/bit count/stop bits count

• initializes the state structure for the current instance

• enables receiver/transmitter for the current instance Different LPUART module instances can function inde-
pendently of each other.

Interrupt-based communication

After initialization, a serial communication can be triggered by calling LPUART_DRV_SendData function; this will
save the reference of the data buffer received as parameter in the internal tx buffer pointer, then copy the first byte
to the data register. The hw tranceiver then automatically shifts the data and triggers a 'Transmit buffer empty'
interrupt when all bits are shifted. The drivers interrupt handler takes care of transmitting the next byte in the buffer,
by increasing the data pointer and decreasing the data size. The same sequence of operations is executed until all
bytes in the tx buffer have been transmitted.

Similarly, data reception is triggered by calling LPUART_DRV_ReceiveData function, passing the rx buffer as pa-
rameter. When the tranceiver copies the received bits in the data register, the 'Receive buffer full' interrupt is
triggered; the driver irq handler clears the flag by reading the received byte, saves it in the rx buffer, then increments
the data pointer and decrements the data size. This is repeated untill all bytes are received.

The workflow applies to send/receive operations using blocking method (triggered by LPUART_DRV_SendData←↩

Blocking and LPUART_DRV_ReceiveDataBlocking), with the single difference that the send/receive function will
not return until the send/receive operation is complete (all bytes are successfully transferred or a timeout occured).
The timeout for the blocking method is passed as parameter by the user.

If a user callback is installed for rx/tx, the callback has to take care of data handling and aborting the transfer when
complete; the driver irq handler does not manipulate the buffers in this case. A target usecase here would be
receiving an indefinite number of bytes; the user rx callback will be called by the driver each time a character is
received and the application needs to call LPUART_DRV_AbortReceivingData in order to stop the reception.

DMA-based communication

In DMA operation, both blocking and non-blocking transmission methods confiure a DMA channel to copy data from
the buffer to the data register (for tx), or viceversa (for rx). The driver assumes the DMA channel is already allocated
and the proper requests are routed to it via DMAMUX. After configuring the DMA channel, the driver enables DMA

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.62 LPUART Driver 581

requests for rx/tx, then the DMA engine takes care of moving data to/from the data buffer. In this scenario, the
callback is only called when the full transmission is done, that is when the DMA channel finishes the number of
loops configured in the transfer descriptor.

Important Notes

• Before using the LPUART driver the module clock must be configured

• The driver enables the interrupts for the corresponding LPUART module, but any interrupt priority must be
done by the application

• The board specific configurations must be done prior to driver calls; the driver has no influence on the func-
tionality of the rx/tx pins - they must be configured by application

• DMA module has to be initialized prior to LPUART usage in DMA mode; also, DMA channels need to be
allocated for LPUART usage by the application (the driver only takes care of configuring the DMA channels
received in the configuration structure)

• for 9/10 bits characters, the application must provide the appropriate buffers; the size of the tx/rx buffers in
this scenario needs to be an even number, as the transferred characters will be split in two bytes (bit 8 for
9-bits chars and bits 8 & 9 for 10-bits chars will be stored in the subsequent byte). 9/10 bits chars are only
supported in interrupt-based and polling communications

Data Structures

• struct lpuart_state_t

Runtime state of the LPUART driver. More...

• struct lpuart_user_config_t

LPUART configuration structure. More...

Enumerations

• enum lpuart_transfer_type_t { LPUART_USING_DMA = 0, LPUART_USING_INTERRUPTS }

Type of LPUART transfer (based on interrupts or DMA).

• enum lpuart_bit_count_per_char_t { LPUART_8_BITS_PER_CHAR = 0x0U, LPUART_9_BITS_PER_CHAR
= 0x1U, LPUART_10_BITS_PER_CHAR = 0x2U }

LPUART number of bits in a character.

• enum lpuart_parity_mode_t { LPUART_PARITY_DISABLED = 0x0U, LPUART_PARITY_EVEN = 0x2U, L←↩

PUART_PARITY_ODD = 0x3U }

LPUART parity mode.

• enum lpuart_stop_bit_count_t { LPUART_ONE_STOP_BIT = 0x0U, LPUART_TWO_STOP_BIT = 0x1U }

LPUART number of stop bits.

LPUART Driver

• status_t LPUART_DRV_Init (uint32_t instance, lpuart_state_t ∗lpuartStatePtr, const lpuart_user_config_←↩

t ∗lpuartUserConfig)

Initializes an LPUART operation instance.

• status_t LPUART_DRV_Deinit (uint32_t instance)

Shuts down the LPUART by disabling interrupts and transmitter/receiver.

• uart_callback_t LPUART_DRV_InstallRxCallback (uint32_t instance, uart_callback_t function, void
∗callbackParam)

Installs callback function for the LPUART receive.

• uart_callback_t LPUART_DRV_InstallTxCallback (uint32_t instance, uart_callback_t function, void
∗callbackParam)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

582 CONTENTS

Installs callback function for the LPUART transmit.

• status_t LPUART_DRV_SendDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize, uint32←↩

_t timeout)

Sends data out through the LPUART module using a blocking method.

• void LPUART_DRV_SendDataPolling (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Send out multiple bytes of data using polling method.

• status_t LPUART_DRV_SendData (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Sends data out through the LPUART module using a non-blocking method. This enables an a-sync method for
transmitting data. When used with a non-blocking receive, the LPUART can perform a full duplex operation. Non-
blocking means that the function returns immediately. The application has to get the transmit status to know when the
transmit is complete.

• status_t LPUART_DRV_GetTransmitStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Returns whether the previous transmit is complete.

• status_t LPUART_DRV_AbortSendingData (uint32_t instance)

Terminates a non-blocking transmission early.

• status_t LPUART_DRV_ReceiveDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, uint32_t
timeout)

Gets data from the LPUART module by using a blocking method. Blocking means that the function does not return
until the receive is complete.

• status_t LPUART_DRV_ReceiveDataPolling (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Receive multiple bytes of data using polling method.

• status_t LPUART_DRV_ReceiveData (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Gets data from the LPUART module by using a non-blocking method. This enables an a-sync method for receiving
data. When used with a non-blocking transmission, the LPUART can perform a full duplex operation. Non-blocking
means that the function returns immediately. The application has to get the receive status to know when the receive
is complete.

• status_t LPUART_DRV_GetReceiveStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Returns whether the previous receive is complete.

• status_t LPUART_DRV_AbortReceivingData (uint32_t instance)

Terminates a non-blocking receive early.

• status_t LPUART_DRV_SetBaudRate (uint32_t instance, uint32_t desiredBaudRate)

Configures the LPUART baud rate.

• void LPUART_DRV_GetBaudRate (uint32_t instance, uint32_t ∗configuredBaudRate)

Returns the LPUART baud rate.

14.62.2 Data Structure Documentation

14.62.2.1 struct lpuart_state_t

Runtime state of the LPUART driver.

Note that the caller provides memory for the driver state structures during initialization because the driver does not
statically allocate memory.

Implements : lpuart_state_t_Class

Definition at line 92 of file lpuart_driver.h.

Data Fields

• const uint8_t ∗ txBuff
• uint8_t ∗ rxBuff
• volatile uint32_t txSize
• volatile uint32_t rxSize
• volatile bool isTxBusy
• volatile bool isRxBusy

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.62 LPUART Driver 583

• volatile bool isTxBlocking
• volatile bool isRxBlocking
• lpuart_bit_count_per_char_t bitCountPerChar
• uart_callback_t rxCallback
• void ∗ rxCallbackParam
• uart_callback_t txCallback
• void ∗ txCallbackParam
• lpuart_transfer_type_t transferType
• semaphore_t rxComplete
• semaphore_t txComplete
• volatile status_t transmitStatus
• volatile status_t receiveStatus

Field Documentation

14.62.2.1.1 lpuart_bit_count_per_char_t bitCountPerChar

number of bits in a char (8/9/10)

Definition at line 102 of file lpuart_driver.h.

14.62.2.1.2 volatile bool isRxBlocking

True if receive is blocking transaction.

Definition at line 101 of file lpuart_driver.h.

14.62.2.1.3 volatile bool isRxBusy

True if there is an active receive.

Definition at line 99 of file lpuart_driver.h.

14.62.2.1.4 volatile bool isTxBlocking

True if transmit is blocking transaction.

Definition at line 100 of file lpuart_driver.h.

14.62.2.1.5 volatile bool isTxBusy

True if there is an active transmit.

Definition at line 98 of file lpuart_driver.h.

14.62.2.1.6 volatile status_t receiveStatus

Status of last driver receive operation

Definition at line 123 of file lpuart_driver.h.

14.62.2.1.7 uint8_t∗ rxBuff

The buffer of received data.

Definition at line 95 of file lpuart_driver.h.

14.62.2.1.8 uart_callback_t rxCallback

Callback to invoke for data receive Note: when the transmission is interrupt based, the callback is being called upon
receiving a byte; when DMA transmission is used, the bytes are copied to the rx buffer by the DMA engine and the
callback is called when all the bytes have been transferred.

Definition at line 103 of file lpuart_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

584 CONTENTS

14.62.2.1.9 void∗ rxCallbackParam

Receive callback parameter pointer.

Definition at line 108 of file lpuart_driver.h.

14.62.2.1.10 semaphore_t rxComplete

Synchronization object for blocking Rx timeout condition

Definition at line 120 of file lpuart_driver.h.

14.62.2.1.11 volatile uint32_t rxSize

The remaining number of bytes to be received.

Definition at line 97 of file lpuart_driver.h.

14.62.2.1.12 lpuart_transfer_type_t transferType

Type of LPUART transfer (interrupt/dma based)

Definition at line 115 of file lpuart_driver.h.

14.62.2.1.13 volatile status_t transmitStatus

Status of last driver transmit operation

Definition at line 122 of file lpuart_driver.h.

14.62.2.1.14 const uint8_t∗ txBuff

The buffer of data being sent.

Definition at line 94 of file lpuart_driver.h.

14.62.2.1.15 uart_callback_t txCallback

Callback to invoke for data send Note: when the transmission is interrupt based, the callback is being called upon
sending a byte; when DMA transmission is used, the bytes are copied to the tx buffer by the DMA engine and the
callback is called when all the bytes have been transferred.

Definition at line 109 of file lpuart_driver.h.

14.62.2.1.16 void∗ txCallbackParam

Transmit callback parameter pointer.

Definition at line 114 of file lpuart_driver.h.

14.62.2.1.17 semaphore_t txComplete

Synchronization object for blocking Tx timeout condition

Definition at line 121 of file lpuart_driver.h.

14.62.2.1.18 volatile uint32_t txSize

The remaining number of bytes to be transmitted.

Definition at line 96 of file lpuart_driver.h.

14.62.2.2 struct lpuart_user_config_t

LPUART configuration structure.

Implements : lpuart_user_config_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.62 LPUART Driver 585

Definition at line 130 of file lpuart_driver.h.

Data Fields

• uint32_t baudRate
• lpuart_parity_mode_t parityMode
• lpuart_stop_bit_count_t stopBitCount
• lpuart_bit_count_per_char_t bitCountPerChar
• lpuart_transfer_type_t transferType
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Field Documentation

14.62.2.2.1 uint32_t baudRate

LPUART baud rate

Definition at line 132 of file lpuart_driver.h.

14.62.2.2.2 lpuart_bit_count_per_char_t bitCountPerChar

number of bits in a character (8-default, 9 or 10); for 9/10 bits chars, users must provide appropriate buffers to the
send/receive functions (bits 8/9 in subsequent bytes); for DMA transmission only 8-bit char is supported.

Definition at line 135 of file lpuart_driver.h.

14.62.2.2.3 lpuart_parity_mode_t parityMode

parity mode, disabled (default), even, odd

Definition at line 133 of file lpuart_driver.h.

14.62.2.2.4 uint8_t rxDMAChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 140 of file lpuart_driver.h.

14.62.2.2.5 lpuart_stop_bit_count_t stopBitCount

number of stop bits, 1 stop bit (default) or 2 stop bits

Definition at line 134 of file lpuart_driver.h.

14.62.2.2.6 lpuart_transfer_type_t transferType

Type of LPUART transfer (interrupt/dma based)

Definition at line 139 of file lpuart_driver.h.

14.62.2.2.7 uint8_t txDMAChannel

Channel number for DMA tx channel. If DMA mode isn't used this field will be ignored.

Definition at line 142 of file lpuart_driver.h.

14.62.3 Enumeration Type Documentation

14.62.3.1 enum lpuart_bit_count_per_char_t

LPUART number of bits in a character.

Implements : lpuart_bit_count_per_char_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

586 CONTENTS

Enumerator

LPUART_8_BITS_PER_CHAR 8-bit data characters

LPUART_9_BITS_PER_CHAR 9-bit data characters

LPUART_10_BITS_PER_CHAR 10-bit data characters

Definition at line 56 of file lpuart_driver.h.

14.62.3.2 enum lpuart_parity_mode_t

LPUART parity mode.

Implements : lpuart_parity_mode_t_Class

Enumerator

LPUART_PARITY_DISABLED parity disabled

LPUART_PARITY_EVEN parity enabled, type even, bit setting: PE|PT = 10

LPUART_PARITY_ODD parity enabled, type odd, bit setting: PE|PT = 11

Definition at line 67 of file lpuart_driver.h.

14.62.3.3 enum lpuart_stop_bit_count_t

LPUART number of stop bits.

Implements : lpuart_stop_bit_count_t_Class

Enumerator

LPUART_ONE_STOP_BIT one stop bit

LPUART_TWO_STOP_BIT two stop bits

Definition at line 78 of file lpuart_driver.h.

14.62.3.4 enum lpuart_transfer_type_t

Type of LPUART transfer (based on interrupts or DMA).

Implements : lpuart_transfer_type_t_Class

Enumerator

LPUART_USING_DMA The driver will use DMA to perform UART transfer

LPUART_USING_INTERRUPTS The driver will use interrupts to perform UART transfer

Definition at line 46 of file lpuart_driver.h.

14.62.4 Function Documentation

14.62.4.1 status_t LPUART_DRV_AbortReceivingData (uint32_t instance)

Terminates a non-blocking receive early.

Parameters

instance LPUART instance number

Returns

Whether the receiving was successful or not.

Definition at line 780 of file lpuart_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.62 LPUART Driver 587

14.62.4.2 status_t LPUART_DRV_AbortSendingData (uint32_t instance)

Terminates a non-blocking transmission early.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

588 CONTENTS

Parameters

instance LPUART instance number

Returns

Whether the aborting is successful or not.

Definition at line 530 of file lpuart_driver.c.

14.62.4.3 status_t LPUART_DRV_Deinit (uint32_t instance)

Shuts down the LPUART by disabling interrupts and transmitter/receiver.

Parameters

instance LPUART instance number

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if an error occurred

Definition at line 244 of file lpuart_driver.c.

14.62.4.4 void LPUART_DRV_GetBaudRate (uint32_t instance, uint32_t ∗ configuredBaudRate)

Returns the LPUART baud rate.

This function returns the LPUART configured baud rate.

Parameters

instance LPUART instance number.
out configured←↩

BaudRate
LPUART configured baud rate.

Definition at line 901 of file lpuart_driver.c.

14.62.4.5 status_t LPUART_DRV_GetReceiveStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Returns whether the previous receive is complete.

Parameters

instance LPUART instance number
bytesRemaining pointer to value that is filled with the number of bytes that still need to be received in the active

transfer.

Returns

The receive status.

Return values

STATUS_SUCCESS the receive has completed successfully.
STATUS_BUSY the receive is still in progress. bytesReceived will be filled with the number of

bytes that have been received so far.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.62 LPUART Driver 589

STATUS_UART_ABORT←↩

ED
The receive was aborted.

STATUS_TIMEOUT A timeout was reached.
STATUS_ERROR An error occurred.

Definition at line 737 of file lpuart_driver.c.

14.62.4.6 status_t LPUART_DRV_GetTransmitStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Returns whether the previous transmit is complete.

Parameters

instance LPUART instance number
bytesRemaining Pointer to value that is populated with the number of bytes that have been sent in the active

transfer

Returns

The transmit status.

Return values

STATUS_SUCCESS The transmit has completed successfully.
STATUS_BUSY The transmit is still in progress. bytesTransmitted will be filled with the number of

bytes that have been transmitted so far.
STATUS_UART_ABORT←↩

ED
The transmit was aborted.

STATUS_TIMEOUT A timeout was reached.
STATUS_ERROR An error occurred.

Definition at line 486 of file lpuart_driver.c.

14.62.4.7 status_t LPUART_DRV_Init (uint32_t instance, lpuart_state_t ∗ lpuartStatePtr, const lpuart_user_config_t ∗
lpuartUserConfig)

Initializes an LPUART operation instance.

The caller provides memory for the driver state structures during initialization. The user must select the LPUART
clock source in the application to initialize the LPUART.

Parameters

instance LPUART instance number
lpuartUserConfig user configuration structure of type lpuart_user_config_t

lpuartStatePtr pointer to the LPUART driver state structure

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if an error occurred

Definition at line 158 of file lpuart_driver.c.

14.62.4.8 uart_callback_t LPUART_DRV_InstallRxCallback (uint32_t instance, uart_callback_t function, void ∗ callbackParam
)

Installs callback function for the LPUART receive.

Note

After a callback is installed, it bypasses part of the LPUART IRQHandler logic. Therefore, the callback needs
to handle the indexes of txBuff and txSize.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

590 CONTENTS

Parameters

instance The LPUART instance number.
function The LPUART receive callback function.

rxBuff The receive buffer used inside IRQHandler. This buffer must be kept as long as the callback
is alive.

callbackParam The LPUART receive callback parameter pointer.

Returns

Former LPUART receive callback function pointer.

Definition at line 289 of file lpuart_driver.c.

14.62.4.9 uart_callback_t LPUART_DRV_InstallTxCallback (uint32_t instance, uart_callback_t function, void ∗ callbackParam)

Installs callback function for the LPUART transmit.

Note

After a callback is installed, it bypasses part of the LPUART IRQHandler logic. Therefore, the callback needs
to handle the indexes of txBuff and txSize.

Parameters

instance The LPUART instance number.
function The LPUART transmit callback function.

txBuff The transmit buffer used inside IRQHandler. This buffer must be kept as long as the callback
is alive.

callbackParam The LPUART transmit callback parameter pointer.

Returns

Former LPUART transmit callback function pointer.

Definition at line 312 of file lpuart_driver.c.

14.62.4.10 status_t LPUART_DRV_ReceiveData (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Gets data from the LPUART module by using a non-blocking method. This enables an a-sync method for receiving
data. When used with a non-blocking transmission, the LPUART can perform a full duplex operation. Non-blocking
means that the function returns immediately. The application has to get the receive status to know when the receive
is complete.

Parameters

instance LPUART instance number
rxBuff buffer containing 8-bit read data chars received
rxSize the number of bytes to receive

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_ERROR if an error oc-
curred

Definition at line 694 of file lpuart_driver.c.

14.62.4.11 status_t LPUART_DRV_ReceiveDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, uint32_t timeout
)

Gets data from the LPUART module by using a blocking method. Blocking means that the function does not return
until the receive is complete.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.62 LPUART Driver 591

Parameters

instance LPUART instance number
rxBuff buffer containing 8-bit read data chars received
rxSize the number of bytes to receive

timeout timeout value in milliseconds

Returns

STATUS_SUCCESS if successful; STATUS_TIMEOUT if the timeout was reached; STATUS_BUSY if a re-
source is busy; STATUS_ERROR if an error occurred

Definition at line 567 of file lpuart_driver.c.

14.62.4.12 status_t LPUART_DRV_ReceiveDataPolling (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Receive multiple bytes of data using polling method.

Parameters

instance LPUART instance number.
rxBuff The buffer pointer which saves the data to be received.
rxSize Size of data need to be received in unit of byte.

Returns

STATUS_SUCCESS if the transaction is success or STATUS_UART_RX_OVERRUN if rx overrun.

Definition at line 633 of file lpuart_driver.c.

14.62.4.13 status_t LPUART_DRV_SendData (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Sends data out through the LPUART module using a non-blocking method. This enables an a-sync method for
transmitting data. When used with a non-blocking receive, the LPUART can perform a full duplex operation. Non-
blocking means that the function returns immediately. The application has to get the transmit status to know when
the transmit is complete.

Parameters

instance LPUART instance number
txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_ERROR if an error oc-
curred

Definition at line 442 of file lpuart_driver.c.

14.62.4.14 status_t LPUART_DRV_SendDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, uint32_t
timeout)

Sends data out through the LPUART module using a blocking method.

Blocking means that the function does not return until the transmission is complete.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

592 CONTENTS

Parameters

instance LPUART instance number
txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

timeout timeout value in milliseconds

Returns

STATUS_SUCCESS if successful; STATUS_TIMEOUT if the timeout was reached; STATUS_BUSY if a re-
source is busy; STATUS_ERROR if an error occurred

Definition at line 335 of file lpuart_driver.c.

14.62.4.15 void LPUART_DRV_SendDataPolling (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Send out multiple bytes of data using polling method.

Parameters

instance LPUART instance number.
txBuff The buffer pointer which saves the data to be sent.
txSize Size of data to be sent in unit of byte.

Definition at line 401 of file lpuart_driver.c.

14.62.4.16 status_t LPUART_DRV_SetBaudRate (uint32_t instance, uint32_t desiredBaudRate)

Configures the LPUART baud rate.

This function configures the LPUART baud rate. In some LPUART instances the user must disable the transmit-
ter/receiver before calling this function. Generally, this may be applied to all LPUARTs to ensure safe operation.

Parameters

instance LPUART instance number.
desiredBaud←↩

Rate
LPUART desired baud rate.

Returns

STATUS_SUCCESS

Definition at line 819 of file lpuart_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.63 Local Interconnect Network (LIN) 593

14.63 Local Interconnect Network (LIN)

14.63.1 Detailed Description

The S32 SDK provides both driver and middleware layers for the Local Interconnect Network (LIN) protocol, emu-
lated on top of LPUART serial communication IP.

Modules

• LIN Driver

This section describes the programming interface of the Peripheral driver for LIN.

• LIN Stack

This section covers the functionality of the LIN Stack middleware layer in S32 SDK.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

594 CONTENTS

14.64 Low Power Inter-Integrated Circuit (LPI2C)

14.64.1 Detailed Description

The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as
a master and/or a slave.

Modules

• LPI2C Driver

Low Power Inter-Integrated Circuit (LPI2C) Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.65 Low Power Interrupt Timer (LPIT) 595

14.65 Low Power Interrupt Timer (LPIT)

14.65.1 Detailed Description

The Low Power Periodic Interrupt Timer (LPIT) is a multi-channel timer module generating independent pre-trigger
and trigger outputs. These timer channels can operate individually or can be chained together. The LPIT can
operate in low power modes if configured to do so. The pre-trigger and trigger outputs can be used to trigger other
modules on the device.

The S32 SDK provides Peripheral Drivers for the Low Power Interrupt Timer (LPIT) module of S32K devices.

Modules

• LPIT Driver

Low Power Interrupt Timer Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

596 CONTENTS

14.66 Low Power Serial Peripheral Interface (LPSPI)

14.66.1 Detailed Description

Low Power Serial Peripheral Interface (LPSPI) Peripheral Driver.

The LPSPI driver allows communication on an SPI bus using the LPSPI module in the S32144K processor.

Features

• Interrupt based

• Master or slave operation

• Provides blocking and non-blocking transmit and receive functions

• RX and TX hardware buffers (4 words)

• 4 configurable chip select

• Configurable baud rate

How to integrate LPSPI in your application

In order to use the LPSPI driver it must be first initialized in either master or slave mode, using functions LPSP←↩

I_DRV_MasterInit() or LPSPI_DRV_SlaveInit(). Once initialized, it cannot be initialized again for the same LPSPI
module instance until it is de-initialized, using LPSPI_DRV_MasterDeinit() or LPSPI_DRV_SlaveDeinit(). Different
LPSPI module instances can function independently of each other.

In each mode (master/slave) are available two types of transfers: blocking and non-blocking. The functions which ini-
tiate blocking transfers will configure the time out for transmission. If time expires LPSPI_MasterTransferBlocking/←↩

LPSPI_SlaveTransferBlocking will return error and the transmission will be aborted.

Important Notes

• The driver enables the interrupts for the corresponding LPSPI module, but any interrupt priority setting must
be done by the application.

• The watermarks will be set by the application.

• The driver will configure SCK to PCS delay, PCS to SCK delay, delay between transfers with default values.
If you application needs other values for this parameters LPSPI_DRV_MasterSetDelay function can be uesd.

Example code

const lpspi_master_config_t Send_MasterConfig0 = {
.bitsPerSec = 50000U,
.whichPcs = LPSPI_PCS0,
.pcsPolarity = LPSPI_ACTIVE_HIGH,
.isPcsContinuous = false,
.bitcount = 8U,
.lpspiSrcClk = 8000000U,
.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE,
.clkPolarity = LPSPI_SCK_ACTIVE_HIGH,
.lsbFirst = false,
.transferType = LPSPI_USING_INTERRUPTS,

};
const lpspi_slave_config_t Receive_SlaveConfig0 = {

.pcsPolarity = LPSPI_ACTIVE_HIGH,

.bitcount = 8U,

.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE,

.whichPcs = LPSPI_PCS0,

.clkPolarity = LPSPI_SCK_ACTIVE_HIGH,

.lsbFirst = false,

.transferType = LPSPI_USING_INTERRUPTS,
};
/* Initialize clock and pins */
LPSPI_DRV_MasterInit(0U, &masterState, &Send_MasterConfig0);
/* Set delay between transfer, PCStoSCK and SCKtoPCS to 10 microseconds. */
LPSPI_DRV_MasterSetDelay(0U, 10U, 10U, 10u);
/* Initialize LPSPI1 (Slave)*/

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.66 Low Power Serial Peripheral Interface (LPSPI) 597

LPSPI_DRV_SlaveInit(1U, &slaveState, &Receive_SlaveConfig0);
/* Allocate memory */
masterDataSend = (uint8_t*)calloc(100, sizeof(uint8_t));
masterDataReceive = (uint8_t*)calloc(100, sizeof(uint8_t));
slaveDataSend = (uint8_t*)calloc(100, sizeof(uint8_t));
slaveDataReceive = (uint8_t*)calloc(100, sizeof(uint8_t));
bufferSize = 100U;
testStatus[0] = true;
LPSPI_DRV_SlaveTransfer(0U, slaveDataSend,

slaveDataReceive, bufferSize);
LPSPI_DRV_MasterTransferBlocking(1U, &Send_MasterConfig0, masterDataSend,

masterDataReceive, bufferSize, TIMEOUT);

Modules

• LPSPI Driver

Low Power Serial Peripheral Interface Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

598 CONTENTS

14.67 Low Power Timer (LPTMR)

14.67.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Low Power Timer (LPTMR) module of S32 SDK devices.

The LPTMR is a configurable 16-bit counter that can operate in two functional modes:

• Timer mode with selectable prescaler and clock source (periodic or free-running).

• Pulse-Counter mode, with configurable glitch filter, that can count events (internal or external)

Modules

• LPTMR Driver

Low Power Timer Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.68 Low Power Universal Asynchronous Receiver-Transmitter (LPUART) 599

14.68 Low Power Universal Asynchronous Receiver-Transmitter (LPUART)

14.68.1 Detailed Description

The S32 SDK provides a Peripheral Driver for the Low Power Universal Asynchronous Receiver-Transmitter (LP←↩

UART) module of S32 SDK devices.
The LPUART module is used for serial communication, supporting LIN master and slave operation. These sections
describe the S32 SDK software modules API that can be used for initializing and configuring the module, as well as
initiating serial communications using the interrupt-based method.

Modules

• LPUART Driver

This module covers the functionality of the Low Power Universal Asynchronous Receiver-Transmitter (LPUART) pe-
ripheral driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

600 CONTENTS

14.69 Low level API

14.69.1 Detailed Description

Low level layer consists of functions that call LIN driver API.

This layer contains the implementation of LIN hardware initialization and deinitialization, getting LIN node's current
state, sending wakeup signals, enabling and disabling interrupts, sending frame data from a buffer, receiving frame
data into a buffer, handling timeout and callbacks from LIN driver.

Data Structures

• struct lin_word_status_str_t

status of LIN bus Implements : lin_word_status_str_t_Class More...

• struct lin_serial_number_t

Serial number Implements : lin_serial_number_t_Class. More...

• struct lin_node_attribute_t

Attributes of LIN node Implements : lin_node_attribute_t_Class. More...

• struct lin_associate_frame_t

Informations of associated frame Implements : lin_associate_frame_t_Class. More...

• struct lin_frame_t

Frame description structure Implements : lin_frame_t_Class. More...

• struct lin_schedule_data_t

LIN schedule structure Implements : lin_schedule_data_t_Class. More...

• struct lin_schedule_t

Schedule table description Implements : lin_schedule_t_Class. More...

• struct lin_transport_layer_queue_t

Transport layer queue Implements : lin_transport_layer_queue_t_Class. More...

• struct lin_tl_descriptor_t

Transport layer description Implements : lin_tl_descriptor_t_Class. More...

• struct lin_protocol_user_config_t

Configuration structure Implements : lin_protocol_user_config_t_Class. More...

• struct lin_master_data_t

LIN master configuration structure Implements : lin_master_data_t_Class. More...

• struct lin_protocol_state_t

LIN protocol status structure Implements : lin_protocol_state_t_Class. More...

Macros

• #define SERVICE_ASSIGN_NAD 0xB0U
• #define SERVICE_ASSIGN_FRAME_ID 0xB1U
• #define SERVICE_READ_BY_IDENTIFY 0xB2U
• #define SERVICE_CONDITIONAL_CHANGE_NAD 0xB3U
• #define SERVICE_SAVE_CONFIGURATION 0xB6U
• #define SERVICE_ASSIGN_FRAME_ID_RANGE 0xB7U
• #define SERVICE_READ_DATA_BY_IDENTIFY 0x22U
• #define SERVICE_WRITE_DATA_BY_IDENTIFY 0x2EU
• #define SERVICE_SESSION_CONTROL 0x10U
• #define SERVICE_IO_CONTROL_BY_IDENTIFY 0x2FU
• #define SERVICE_FAULT_MEMORY_READ 0x19U
• #define SERIVCE_FAULT_MEMORY_CLEAR 0x14U
• #define PCI_SAVE_CONFIGURATION 0x01U
• #define PCI_RES_READ_BY_IDENTIFY 0x06U

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 601

• #define PCI_RES_SAVE_CONFIGURATION 0x01U
• #define PCI_RES_ASSIGN_FRAME_ID_RANGE 0x01U
• #define LIN_READ_USR_DEF_MIN 32U
• #define LIN_READ_USR_DEF_MAX 63U
• #define LD_ID_NO_RESPONSE 0x52U
• #define LD_NEGATIVE_RESPONSE 0x53U
• #define LD_POSITIVE_RESPONSE 0x54U
• #define LIN_LLD_OK 0x00U
• #define LIN_LLD_ERROR 0xFFU
• #define LIN_SLAVE 0

Mode of LIN node (master or slave)

• #define LIN_MASTER 1
• #define LIN_TL_CALLBACK_HANDLER(iii, tl_event_id, id) lin_tl_callback_handler((iii), (tl_event_id), (id))
• #define INTERLEAVE_MAX_TIMEOUT (l_u16)(1000000U/TIME_OUT_UNIT_US)
• #define CALLBACK_HANDLER(iii, event_id, id) lin_pid_resp_callback_handler((iii), (event_id), (id))

CALLBACK_HANDLER.

Typedefs

• typedef l_u8 lin_tl_pdu_data_t[8]

PDU data. Implements : lin_tl_pdu_data_t_Class.

• typedef l_u8 lin_tl_queue_t[8]

LIN transport layer queue Implements : lin_tl_queue_t_Class.

Enumerations

• enum lin_lld_event_id_t {
LIN_LLD_PID_OK = 0x00U, LIN_LLD_TX_COMPLETED = 0x01U, LIN_LLD_RX_COMPLETED = 0x02U,
LIN_LLD_PID_ERR = 0x03U,
LIN_LLD_FRAME_ERR = 0x04U, LIN_LLD_CHECKSUM_ERR = 0x05U, LIN_LLD_READBACK_ERR =
0x06U, LIN_LLD_NODATA_TIMEOUT = 0x07U,
LIN_LLD_BUS_ACTIVITY_TIMEOUT = 0x08U }

Event id Implements : lin_lld_event_id_t_Class.

• enum lin_protocol_handle_t { LIN_PROTOCOL_21 = 0x00U, LIN_PROTOCOL_J2602 = 0x01U }

List of protocols Implements : lin_protocol_handle_t_Class.

• enum lin_diagnostic_class_t { LIN_DIAGNOSTIC_CLASS_I = 0x01U, LIN_DIAGNOSTIC_CLASS_II =
0x02U, LIN_DIAGNOSTIC_CLASS_III = 0x03U }

List of diagnostic classes Implements : lin_diagnostic_class_t_Class.

• enum lin_frame_type_t { LIN_FRM_UNCD = 0x00U, LIN_FRM_EVNT = 0x01U, LIN_FRM_SPRDC = 0x10U,
LIN_FRM_DIAG = 0x11U }

Types of frame Implements : lin_frame_type_t_Class.

• enum lin_frame_response_t { LIN_RES_PUB = 0x00U, LIN_RES_SUB = 0x01U }

LIN frame response Implements : lin_frame_response_t_Class.

• enum lin_sch_tbl_type_t {
LIN_SCH_TBL_NULL = 0x00U, LIN_SCH_TBL_NORM = 0x01U, LIN_SCH_TBL_DIAG = 0x02U, LIN_SC←↩

H_TBL_GO_TO_SLEEP = 0x03U,
LIN_SCH_TBL_COLL_RESOLV = 0x04U }

Types of schedule tables Implements : lin_sch_tbl_type_t_Class.

• enum l_diagnostic_mode_t { DIAG_NONE = 0x00U, DIAG_INTERLEAVE_MODE = 0x01U, DIAG_ONLY_←↩

MODE = 0x02U }

Diagnostic mode Implements : l_diagnostic_mode_t_Class.

• enum lin_service_status_t { LD_SERVICE_BUSY = 0x00U, LD_REQUEST_FINISHED = 0x01U, LD_SER←↩

VICE_IDLE = 0x02U, LD_SERVICE_ERROR = 0x03U }

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

602 CONTENTS

Status of the last configuration call for LIN 2.1 Implements : lin_service_status_t_Class.

• enum lin_last_cfg_result_t { LD_SUCCESS = 0x00U, LD_NEGATIVE = 0x01U, LD_NO_RESPONSE =
0x02U, LD_OVERWRITTEN = 0x03U }

Status of the last configuration call completed Implements : lin_last_cfg_result_t_Class.

• enum lin_tl_event_id_t {
TL_MAKE_RES_DATA = 0x00U, TL_SLAVE_GET_ACTION = 0x01U, TL_TX_COMPLETED = 0x02U, TL←↩

_RX_COMPLETED = 0x03U,
TL_ERROR = 0x04U, TL_TIMEOUT_SERVICE = 0x05U, TL_HANDLER_INTERLEAVE_MODE = 0x06U,
TL_RECEIVE_MESSAGE = 0x07U }

Transport layer event IDs Implements : lin_tl_event_id_t_Class.

• enum lin_tl_callback_return_t { TL_ACTION_NONE = 0x00U, TL_ACTION_ID_IGNORE = 0x01U }

Transport layer event IDs Implements : lin_tl_callback_return_t_Class.

• enum ld_queue_status_t {
LD_NO_DATA = 0x00U, LD_DATA_AVAILABLE = 0x01U, LD_RECEIVE_ERROR = 0x02U, LD_QUEUE_←↩

FULL = 0x03U,
LD_QUEUE_AVAILABLE = 0x04U, LD_QUEUE_EMPTY = 0x05U, LD_TRANSMIT_ERROR = 0x06U, LD←↩

_TRANSFER_ERROR = 0x07U }

Status of queue Implements : ld_queue_status_t_Class.

• enum lin_message_status_t {
LD_NO_MSG = 0x00U, LD_IN_PROGRESS = 0x01U, LD_COMPLETED = 0x02U, LD_FAILED = 0x03U,
LD_N_AS_TIMEOUT = 0x04U, LD_N_CR_TIMEOUT = 0x05U, LD_WRONG_SN = 0x06U }

Status of LIN message Implements : lin_message_status_t_Class.

• enum lin_diagnostic_state_t {
LD_DIAG_IDLE = 0x01U, LD_DIAG_TX_PHY = 0x02U, LD_DIAG_TX_FUNCTIONAL = 0x03U, LD_DIAG←↩

_TX_INTERLEAVED = 0x04U,
LD_DIAG_RX_PHY = 0x05U, LD_DIAG_RX_FUNCTIONAL = 0x06U, LD_DIAG_RX_INTERLEAVED =
0x07U }

LIN diagnostic state Implements : lin_diagnostic_state_t_Class.

• enum lin_message_timeout_type_t { LD_NO_CHECK_TIMEOUT = 0x00U, LD_CHECK_N_AS_TIMEOUT =
0x01U, LD_CHECK_N_CR_TIMEOUT = 0x02U }

Types of message timeout Implements : lin_message_timeout_type_t_Class.

• enum diag_interleaved_state_t { DIAG_NOT_START = 0x00U, DIAG_NO_RESPONSE = 0x01U, DIAG_R←↩

ESPONSE = 0x02U }

State of diagnostic interleaved mode Implements : diag_interleaved_state_t_Class.

Functions

• lin_tl_callback_return_t lin_tl_callback_handler (l_ifc_handle iii, lin_tl_event_id_t tl_event_id, l_u8 id)
• l_u8 ld_read_by_id_callout (l_ifc_handle iii, l_u8 id, l_u8 ∗data)
• static l_u16 lin_calc_max_header_timeout_cnt (l_u32 baudRate)

Computes maximum header timeout.

• static l_u16 lin_calc_max_res_timeout_cnt (l_u32 baudRate, l_u8 size)

Computes the maximum response timeout.

• l_u8 lin_process_parity (l_u8 pid, l_u8 typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID.

• void lin_pid_resp_callback_handler (l_ifc_handle iii, const lin_lld_event_id_t event_id, l_u8 id)

Callback handler for low level events.

• l_bool lin_lld_init (l_ifc_handle iii)

This function initializes a LIN hardware instance for operation. This function will initialize the run-time state structure
to keep track of the on-going transfers, initialize the module to user defined settings and default settings, configure the
IRQ state structure and enable the module-level interrupt to the core, and enable the LIN hardware module transmitter
and receiver.

• l_u8 lin_lld_deinit (l_ifc_handle iii)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 603

This function disconnect the node from the cluster and free all hardware used.

• l_u8 lin_lld_int_enable (l_ifc_handle iii)

Enable the interrupt related to the interface.

• l_u8 lin_lld_int_disable (l_ifc_handle iii)

Disable the interrupt related to the interface.

• l_u8 lin_lld_get_state (l_ifc_handle iii)

This function gets current state of an interface.

• l_u8 lin_lld_tx_header (l_ifc_handle iii, l_u8 id)

This function sends frame header for the input PID.

• l_u8 lin_lld_tx_wake_up (l_ifc_handle iii)

This function send a wakeup signal.

• l_u8 lin_lld_ignore_response (l_ifc_handle iii)

This function terminates an on-going data transmission/reception.

• l_u8 lin_lld_set_low_power_mode (l_ifc_handle iii)

Let the low level driver go to low power mode.

• l_u8 lin_lld_set_response (l_ifc_handle iii, l_u8 response_length)

This function sends frame data that is contained in LIN_lld_response_buffer[iii].

• l_u8 lin_lld_rx_response (l_ifc_handle iii, l_u8 response_length)

This function receives frame data into the LIN_lld_response_buffer[iii] buffer.

• void lin_lld_timeout_service (l_ifc_handle iii)

Callback function for Timer Interrupt Handler In timer IRQ handler, call this function. Used to check if frame timeout
has occurred during frame data transmission and reception, to check for N_As and N_Cr timeout for LIN 2.1 and
above. This function also check if there is no LIN bus communication (no headers and no frame data transferring)
for Idle timeout (s), then put LIN node to Sleep mode. Users may initialize a timer (for example FTM)with period
of Timeout unit (default: 500 micro seconds) to call lin_lld_timeout_service(). For an interface iii, Idle timeout (s) =
max_idle_timeout_cnt ∗ Timeout unit (us) frame timeout (us) = frame_timeout_cnt ∗ Timeout unit (us) N_As timeout
(us) = N_As_timeout ∗ Timeout unit (us) N_Cr timeout (us) = N_Cr_timeout ∗ Timeout unit (us)

Variables

• const lin_node_attribute_t g_lin_node_attribute_array [LIN_NUM_OF_SLAVE_IFCS]

• lin_master_data_t g_lin_master_data_array [LIN_NUM_OF_MASTER_IFCS]

• lin_tl_descriptor_t g_lin_tl_descriptor_array [LIN_NUM_OF_IFCS]

• const lin_protocol_user_config_t g_lin_protocol_user_cfg_array [LIN_NUM_OF_IFCS]

• lin_protocol_state_t g_lin_protocol_state_array [LIN_NUM_OF_IFCS]

• l_u8 g_lin_frame_data_buffer [LIN_FRAME_BUF_SIZE]

• l_u8 g_lin_flag_handle_tbl [LIN_FLAG_BUF_SIZE]

• l_bool g_lin_frame_flag_handle_tbl [LIN_NUM_OF_FRMS]

• const l_u32 g_lin_virtual_ifc [LIN_NUM_OF_IFCS]

• const l_ifc_handle g_lin_hardware_ifc [HARDWARE_INSTANCE_COUNT]

• const lin_timer_get_time_interval_t timerGetTimeIntervalCallbackArr [LIN_NUM_OF_IFCS]

14.69.2 Data Structure Documentation

14.69.2.1 struct lin_word_status_str_t

status of LIN bus Implements : lin_word_status_str_t_Class

Definition at line 150 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

604 CONTENTS

Data Fields

• unsigned int error_in_res: 1
• unsigned int successful_transfer: 1
• unsigned int overrun: 1
• unsigned int go_to_sleep_flg: 1
• unsigned int bus_activity: 1
• unsigned int event_trigger_collision_flg: 1
• unsigned int save_config_flg: 1
• unsigned int reserved: 1
• unsigned int last_pid: 8

Field Documentation

14.69.2.1.1 unsigned int bus_activity

Bus activity

Definition at line 156 of file lin.h.

14.69.2.1.2 unsigned int error_in_res

Error in response

Definition at line 152 of file lin.h.

14.69.2.1.3 unsigned int event_trigger_collision_flg

Event trigger collision

Definition at line 157 of file lin.h.

14.69.2.1.4 unsigned int go_to_sleep_flg

Goto sleep

Definition at line 155 of file lin.h.

14.69.2.1.5 unsigned int last_pid

Last PID

Definition at line 160 of file lin.h.

14.69.2.1.6 unsigned int overrun

Overrun

Definition at line 154 of file lin.h.

14.69.2.1.7 unsigned int reserved

Dummy

Definition at line 159 of file lin.h.

14.69.2.1.8 unsigned int save_config_flg

Save configuration

Definition at line 158 of file lin.h.

14.69.2.1.9 unsigned int successful_transfer

Successful transfer

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 605

Definition at line 153 of file lin.h.

14.69.2.2 struct lin_serial_number_t

Serial number Implements : lin_serial_number_t_Class.

Definition at line 177 of file lin.h.

Data Fields

• l_u8 serial_0
• l_u8 serial_1
• l_u8 serial_2
• l_u8 serial_3

Field Documentation

14.69.2.2.1 l_u8 serial_0

Serial 0

Definition at line 179 of file lin.h.

14.69.2.2.2 l_u8 serial_1

Serial 1

Definition at line 180 of file lin.h.

14.69.2.2.3 l_u8 serial_2

Serial 2

Definition at line 181 of file lin.h.

14.69.2.2.4 l_u8 serial_3

Serial 3

Definition at line 182 of file lin.h.

14.69.2.3 struct lin_node_attribute_t

Attributes of LIN node Implements : lin_node_attribute_t_Class.

Definition at line 189 of file lin.h.

Data Fields

• l_u8 ∗ configured_NAD_ptr
• l_u8 initial_NAD
• lin_product_id_t product_id
• lin_serial_number_t serial_number
• l_u8 ∗ resp_err_frm_id_ptr
• l_u8 num_frame_have_esignal
• l_signal_handle response_error
• l_u8 ∗ response_error_byte_offset_ptr
• l_u8 ∗ response_error_bit_offset_ptr
• l_u8 num_of_fault_state_signal
• const l_signal_handle ∗ fault_state_signal_ptr
• l_u16 P2_min
• l_u16 ST_min
• l_u16 N_As_timeout

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

606 CONTENTS

• l_u16 N_Cr_timeout
• l_u8 number_support_sid
• const l_u8 ∗ service_supported_ptr
• l_u8 ∗ service_flags_ptr

Field Documentation

14.69.2.3.1 l_u8∗ configured_NAD_ptr

NAD value used in configuration command

Definition at line 191 of file lin.h.

14.69.2.3.2 const l_signal_handle∗ fault_state_signal_ptr

List of fault state signal

Definition at line 201 of file lin.h.

14.69.2.3.3 l_u8 initial_NAD

Initial NAD

Definition at line 192 of file lin.h.

14.69.2.3.4 l_u16 N_As_timeout

N_As_timeout

Definition at line 204 of file lin.h.

14.69.2.3.5 l_u16 N_Cr_timeout

N_Cr_timeout

Definition at line 205 of file lin.h.

14.69.2.3.6 l_u8 num_frame_have_esignal

Number of frame contain error signal

Definition at line 196 of file lin.h.

14.69.2.3.7 l_u8 num_of_fault_state_signal

Number of Fault state signal

Definition at line 200 of file lin.h.

14.69.2.3.8 l_u8 number_support_sid

Number of supported diagnostic services

Definition at line 206 of file lin.h.

14.69.2.3.9 l_u16 P2_min

P2 min

Definition at line 202 of file lin.h.

14.69.2.3.10 lin_product_id_t product_id

Product ID

Definition at line 193 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 607

14.69.2.3.11 l_u8∗ resp_err_frm_id_ptr

List index of frame contain response error signal

Definition at line 195 of file lin.h.

14.69.2.3.12 l_signal_handle response_error

Signal used to update response error

Definition at line 197 of file lin.h.

14.69.2.3.13 l_u8∗ response_error_bit_offset_ptr

Bit offset of response error signal

Definition at line 199 of file lin.h.

14.69.2.3.14 l_u8∗ response_error_byte_offset_ptr

Byte offset of response error signal

Definition at line 198 of file lin.h.

14.69.2.3.15 lin_serial_number_t serial_number

Serial number

Definition at line 194 of file lin.h.

14.69.2.3.16 l_u8∗ service_flags_ptr

List of associated flags with supported diagnostic services

Definition at line 208 of file lin.h.

14.69.2.3.17 const l_u8∗ service_supported_ptr

List of supported diagnostic service

Definition at line 207 of file lin.h.

14.69.2.3.18 l_u16 ST_min

ST min

Definition at line 203 of file lin.h.

14.69.2.4 struct lin_associate_frame_t

Informations of associated frame Implements : lin_associate_frame_t_Class.

Definition at line 240 of file lin.h.

Data Fields

• l_u8 num_of_associated_uncond_frames
• const l_frame_handle ∗ associated_uncond_frame_ptr
• l_u8 coll_resolv_schd

Field Documentation

14.69.2.4.1 const l_frame_handle∗ associated_uncond_frame_ptr

Associated unconditional frame ID

Definition at line 243 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

608 CONTENTS

14.69.2.4.2 l_u8 coll_resolv_schd

Collision resolver index in the schedule table, used in event trigger frame case MASTER

Definition at line 244 of file lin.h.

14.69.2.4.3 l_u8 num_of_associated_uncond_frames

Number of associated unconditional frame ID

Definition at line 242 of file lin.h.

14.69.2.5 struct lin_frame_t

Frame description structure Implements : lin_frame_t_Class.

Definition at line 251 of file lin.h.

Data Fields

• lin_frame_type_t frm_type
• l_u8 frm_len
• lin_frame_response_t frm_response
• l_u16 frm_offset
• l_u8 flag_offset
• l_u8 flag_size
• const lin_associate_frame_t ∗ frame_data_ptr

Field Documentation

14.69.2.5.1 l_u8 flag_offset

Flag byte offset in flag buffer

Definition at line 257 of file lin.h.

14.69.2.5.2 l_u8 flag_size

Flag size in flag buffer

Definition at line 258 of file lin.h.

14.69.2.5.3 const lin_associate_frame_t∗ frame_data_ptr

List of Signal to which the frame is associated and its offset

Definition at line 259 of file lin.h.

14.69.2.5.4 l_u8 frm_len

Length of the frame

Definition at line 254 of file lin.h.

14.69.2.5.5 l_u16 frm_offset

Frame byte offset in frame buffer

Definition at line 256 of file lin.h.

14.69.2.5.6 lin_frame_response_t frm_response

Action response when received PID

Definition at line 255 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 609

14.69.2.5.7 lin_frame_type_t frm_type

Frame information (unconditional or event triggered..)

Definition at line 253 of file lin.h.

14.69.2.6 struct lin_schedule_data_t

LIN schedule structure Implements : lin_schedule_data_t_Class.

Definition at line 288 of file lin.h.

Data Fields

• l_frame_handle frm_id

• l_u8 delay_integer

• lin_tl_queue_t tl_queue_data

Field Documentation

14.69.2.6.1 l_u8 delay_integer

Actual slot time in INTEGER for one frame

Definition at line 291 of file lin.h.

14.69.2.6.2 l_frame_handle frm_id

Frame ID, in case of unconditional or event triggered frame. For sporadic frame the value will be 0 (zero)

Definition at line 290 of file lin.h.

14.69.2.6.3 lin_tl_queue_t tl_queue_data

Data used in case of diagnostic or configuration frame

Definition at line 292 of file lin.h.

14.69.2.7 struct lin_schedule_t

Schedule table description Implements : lin_schedule_t_Class.

Definition at line 299 of file lin.h.

Data Fields

• l_u8 num_slots

• lin_sch_tbl_type_t sch_tbl_type

• const lin_schedule_data_t ∗ ptr_sch_data_ptr

Field Documentation

14.69.2.7.1 l_u8 num_slots

Number of frame slots in the schedule table

Definition at line 301 of file lin.h.

14.69.2.7.2 const lin_schedule_data_t∗ ptr_sch_data_ptr

Address of the schedule table

Definition at line 303 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

610 CONTENTS

14.69.2.7.3 lin_sch_tbl_type_t sch_tbl_type

Schedule table type

Definition at line 302 of file lin.h.

14.69.2.8 struct lin_transport_layer_queue_t

Transport layer queue Implements : lin_transport_layer_queue_t_Class.

Definition at line 437 of file lin.h.

Data Fields

• l_u16 queue_header

• l_u16 queue_tail

• ld_queue_status_t queue_status

• l_u16 queue_current_size

• l_u16 queue_max_size

• lin_tl_pdu_data_t ∗ tl_pdu_ptr

Field Documentation

14.69.2.8.1 l_u16 queue_current_size

Current size

Definition at line 442 of file lin.h.

14.69.2.8.2 l_u16 queue_header

The first element of queue

Definition at line 439 of file lin.h.

14.69.2.8.3 l_u16 queue_max_size

Maximum size

Definition at line 443 of file lin.h.

14.69.2.8.4 ld_queue_status_t queue_status

Status of queue

Definition at line 441 of file lin.h.

14.69.2.8.5 l_u16 queue_tail

The last element of queue

Definition at line 440 of file lin.h.

14.69.2.8.6 lin_tl_pdu_data_t∗ tl_pdu_ptr

PDU data

Definition at line 444 of file lin.h.

14.69.2.9 struct lin_tl_descriptor_t

Transport layer description Implements : lin_tl_descriptor_t_Class.

Definition at line 464 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 611

Data Fields

• lin_transport_layer_queue_t tl_tx_queue

• lin_transport_layer_queue_t tl_rx_queue

• lin_message_status_t rx_msg_status

• l_u16 rx_msg_size

• lin_message_status_t tx_msg_status

• l_u16 tx_msg_size

• lin_last_cfg_result_t last_cfg_result

• l_u8 last_RSID

• l_u8 ld_error_code

• lin_message_timeout_type_t check_timeout_type

• l_u16 check_timeout

• lin_product_id_t ∗ product_id_ptr

• l_u8 num_of_pdu

• l_u8 frame_counter

• lin_diagnostic_state_t diag_state

• diag_interleaved_state_t diag_interleave_state

• l_u16 interleave_timeout_counter

• l_u8 slave_resp_cnt

• lin_service_status_t service_status

• bool ld_return_data

• bool FF_pdu_received

• l_u8 ∗ receive_message_ptr

• l_u8 ∗ receive_NAD_ptr

• l_u16 ∗ receive_message_length_ptr

Field Documentation

14.69.2.9.1 l_u16 check_timeout

Timeout counter for N_As and N_Cr timeout

Definition at line 484 of file lin.h.

14.69.2.9.2 lin_message_timeout_type_t check_timeout_type

Timeout type

Definition at line 483 of file lin.h.

14.69.2.9.3 diag_interleaved_state_t diag_interleave_state

state of diagnostic interleaved mode

Definition at line 489 of file lin.h.

14.69.2.9.4 lin_diagnostic_state_t diag_state

Diagnostic state

Definition at line 488 of file lin.h.

14.69.2.9.5 bool FF_pdu_received

Status of FF pdu

Definition at line 495 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

612 CONTENTS

14.69.2.9.6 l_u8 frame_counter

Frame counter in received message

Definition at line 487 of file lin.h.

14.69.2.9.7 l_u16 interleave_timeout_counter

Interleaved timeout counter

Definition at line 490 of file lin.h.

14.69.2.9.8 lin_last_cfg_result_t last_cfg_result

Status of the last configuration service

Definition at line 479 of file lin.h.

14.69.2.9.9 l_u8 last_RSID

RSID of the last node configuration service

Definition at line 480 of file lin.h.

14.69.2.9.10 l_u8 ld_error_code

Error code in case of positive response

Definition at line 481 of file lin.h.

14.69.2.9.11 bool ld_return_data

Decide return data of diagnostic frame to pointer of ld_receive_message function

Definition at line 494 of file lin.h.

14.69.2.9.12 l_u8 num_of_pdu

Number of received pdu

Definition at line 486 of file lin.h.

14.69.2.9.13 lin_product_id_t∗ product_id_ptr

To store address of RAM area contain response

Definition at line 485 of file lin.h.

14.69.2.9.14 l_u16∗ receive_message_length_ptr

Pointer to receive_message_length of user

Definition at line 500 of file lin.h.

14.69.2.9.15 l_u8∗ receive_message_ptr

Pointer to receive_message array of user

Definition at line 498 of file lin.h.

14.69.2.9.16 l_u8∗ receive_NAD_ptr

Pointer to receive_NAD of user

Definition at line 499 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 613

14.69.2.9.17 l_u16 rx_msg_size

Size of message in queue

Definition at line 473 of file lin.h.

14.69.2.9.18 lin_message_status_t rx_msg_status

Cooked rx status

Definition at line 472 of file lin.h.

14.69.2.9.19 lin_service_status_t service_status

Status of the last configuration service

Definition at line 492 of file lin.h.

14.69.2.9.20 l_u8 slave_resp_cnt

Slave Response data counter

Definition at line 491 of file lin.h.

14.69.2.9.21 lin_transport_layer_queue_t tl_rx_queue

Pointer to receive queue on TL

Definition at line 468 of file lin.h.

14.69.2.9.22 lin_transport_layer_queue_t tl_tx_queue

Pointer to transmit queue on TL

Definition at line 467 of file lin.h.

14.69.2.9.23 l_u16 tx_msg_size

Size of message in queue

Definition at line 477 of file lin.h.

14.69.2.9.24 lin_message_status_t tx_msg_status

Cooked tx status

Definition at line 476 of file lin.h.

14.69.2.10 struct lin_protocol_user_config_t

Configuration structure Implements : lin_protocol_user_config_t_Class.

Definition at line 510 of file lin.h.

Data Fields

• lin_protocol_handle_t protocol_version
• lin_protocol_handle_t language_version
• lin_diagnostic_class_t diagnostic_class
• bool function
• l_u8 number_of_configurable_frames
• l_u8 frame_start
• const lin_frame_t ∗ frame_tbl_ptr
• const l_u16 ∗ list_identifiers_ROM_ptr
• l_u8 ∗ list_identifiers_RAM_ptr

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

614 CONTENTS

• l_u16 max_idle_timeout_cnt
• l_u8 num_of_schedules
• l_u8 schedule_start
• const lin_schedule_t ∗ schedule_tbl
• l_ifc_slave_handle slave_ifc_handle
• l_ifc_master_handle master_ifc_handle
• lin_user_config_t ∗ lin_user_config_ptr
• lin_tl_pdu_data_t ∗ tl_tx_queue_data_ptr
• lin_tl_pdu_data_t ∗ tl_rx_queue_data_ptr
• l_u16 max_message_length

Field Documentation

14.69.2.10.1 lin_diagnostic_class_t diagnostic_class

Diagnostic class

Definition at line 514 of file lin.h.

14.69.2.10.2 l_u8 frame_start

Start index of frame list

Definition at line 518 of file lin.h.

14.69.2.10.3 const lin_frame_t∗ frame_tbl_ptr

Frame list except diagnostic frames

Definition at line 519 of file lin.h.

14.69.2.10.4 bool function

Function LIN_MASTER or LIN_SLAVE_)

Definition at line 515 of file lin.h.

14.69.2.10.5 lin_protocol_handle_t language_version

Language version

Definition at line 513 of file lin.h.

14.69.2.10.6 lin_user_config_t∗ lin_user_config_ptr

Pointer to LIN driver user configuration structure

Definition at line 529 of file lin.h.

14.69.2.10.7 l_u8∗ list_identifiers_RAM_ptr

Configuration in RAM

Definition at line 522 of file lin.h.

14.69.2.10.8 const l_u16∗ list_identifiers_ROM_ptr

Configuration in ROM

Definition at line 521 of file lin.h.

14.69.2.10.9 l_ifc_master_handle master_ifc_handle

Interface handler of master node

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 615

Definition at line 528 of file lin.h.

14.69.2.10.10 l_u16 max_idle_timeout_cnt

Max Idle timeout counter

Definition at line 523 of file lin.h.

14.69.2.10.11 l_u16 max_message_length

Max message length

Definition at line 533 of file lin.h.

14.69.2.10.12 l_u8 num_of_schedules

Number of schedule table

Definition at line 524 of file lin.h.

14.69.2.10.13 l_u8 number_of_configurable_frames

Number of frame except diagnostic frames

Definition at line 517 of file lin.h.

14.69.2.10.14 lin_protocol_handle_t protocol_version

Protocol version

Definition at line 512 of file lin.h.

14.69.2.10.15 l_u8 schedule_start

Start index of schedule table list

Definition at line 525 of file lin.h.

14.69.2.10.16 const lin_schedule_t∗ schedule_tbl

Schedule table list

Definition at line 526 of file lin.h.

14.69.2.10.17 l_ifc_slave_handle slave_ifc_handle

Interface handler of slave node

Definition at line 527 of file lin.h.

14.69.2.10.18 lin_tl_pdu_data_t∗ tl_rx_queue_data_ptr

Rx queue data

Definition at line 532 of file lin.h.

14.69.2.10.19 lin_tl_pdu_data_t∗ tl_tx_queue_data_ptr

Tx queue data

Definition at line 531 of file lin.h.

14.69.2.11 struct lin_master_data_t

LIN master configuration structure Implements : lin_master_data_t_Class.

Definition at line 541 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

616 CONTENTS

Data Fields

• l_u8 active_schedule_id

• l_u8 previous_schedule_id

• l_u8 ∗ schedule_start_entry_ptr

• l_bool event_trigger_collision_flg

• l_u8 master_data_buffer [8]

• l_u16 frm_offset

• l_u8 frm_size

• l_u8 flag_offset

• l_u8 flag_size

• l_bool send_slave_res_flg

• l_bool send_functional_request_flg

Field Documentation

14.69.2.11.1 l_u8 active_schedule_id

Active schedule table id

Definition at line 543 of file lin.h.

14.69.2.11.2 l_bool event_trigger_collision_flg

Flag trigger collision event

Definition at line 546 of file lin.h.

14.69.2.11.3 l_u8 flag_offset

Flag offset

Definition at line 550 of file lin.h.

14.69.2.11.4 l_u8 flag_size

Flag size

Definition at line 551 of file lin.h.

14.69.2.11.5 l_u16 frm_offset

Frame offset

Definition at line 548 of file lin.h.

14.69.2.11.6 l_u8 frm_size

Size of frame

Definition at line 549 of file lin.h.

14.69.2.11.7 l_u8 master_data_buffer[8]

Master data buffer

Definition at line 547 of file lin.h.

14.69.2.11.8 l_u8 previous_schedule_id

Previous schedule table id

Definition at line 544 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 617

14.69.2.11.9 l_u8∗ schedule_start_entry_ptr

Start entry of each schedule table

Definition at line 545 of file lin.h.

14.69.2.11.10 l_bool send_functional_request_flg

Flag send Functional Request

Definition at line 553 of file lin.h.

14.69.2.11.11 l_bool send_slave_res_flg

Flag to send Slave Response Schedule

Definition at line 552 of file lin.h.

14.69.2.12 struct lin_protocol_state_t

LIN protocol status structure Implements : lin_protocol_state_t_Class.

Definition at line 560 of file lin.h.

Data Fields

• l_u16 baud_rate
• l_u8 ∗ response_buffer_ptr
• l_u8 response_length
• l_u8 successful_transfer
• l_u8 error_in_response
• l_bool go_to_sleep_flg
• l_u8 current_id
• l_u8 last_pid
• l_u8 num_of_processed_frame
• l_u8 overrun_flg
• lin_word_status_str_t word_status
• l_u8 next_transmit_tick
• l_bool save_config_flg
• l_diagnostic_mode_t diagnostic_mode
• l_u16 frame_timeout_cnt
• l_u16 idle_timeout_cnt
• l_bool transmit_error_resp_sig_flg

Field Documentation

14.69.2.12.1 l_u16 baud_rate

Adjusted baud rate

Definition at line 563 of file lin.h.

14.69.2.12.2 l_u8 current_id

Current PID

Definition at line 569 of file lin.h.

14.69.2.12.3 l_diagnostic_mode_t diagnostic_mode

Diagnostic mode

Definition at line 576 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

618 CONTENTS

14.69.2.12.4 l_u8 error_in_response

Error response

Definition at line 567 of file lin.h.

14.69.2.12.5 l_u16 frame_timeout_cnt

Frame timeout counter for monitoring if timeout occurs during data transferring

Definition at line 577 of file lin.h.

14.69.2.12.6 l_bool go_to_sleep_flg

Go to sleep flag

Definition at line 568 of file lin.h.

14.69.2.12.7 l_u16 idle_timeout_cnt

Idle timeout counter

Definition at line 578 of file lin.h.

14.69.2.12.8 l_u8 last_pid

Last PID

Definition at line 570 of file lin.h.

14.69.2.12.9 l_u8 next_transmit_tick

Used to count the next transmit tick

Definition at line 574 of file lin.h.

14.69.2.12.10 l_u8 num_of_processed_frame

Number of processed frames

Definition at line 571 of file lin.h.

14.69.2.12.11 l_u8 overrun_flg

overrun flag

Definition at line 572 of file lin.h.

14.69.2.12.12 l_u8∗ response_buffer_ptr

Response buffer

Definition at line 564 of file lin.h.

14.69.2.12.13 l_u8 response_length

Response length

Definition at line 565 of file lin.h.

14.69.2.12.14 l_bool save_config_flg

Set when save configuration request has been received

Definition at line 575 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 619

14.69.2.12.15 l_u8 successful_transfer

Transfer flag

Definition at line 566 of file lin.h.

14.69.2.12.16 l_bool transmit_error_resp_sig_flg

Flag indicates that the error response signal is going to be sent

Definition at line 579 of file lin.h.

14.69.2.12.17 lin_word_status_str_t word_status

Word status

Definition at line 573 of file lin.h.

14.69.3 Macro Definition Documentation

14.69.3.1 #define CALLBACK_HANDLER(iii, event_id, id) lin_pid_resp_callback_handler((iii), (event_id), (id))

CALLBACK_HANDLER.

Note

call lin_pid_resp_callback_handler() function in MASTER mode

Definition at line 685 of file lin.h.

14.69.3.2 #define INTERLEAVE_MAX_TIMEOUT (l_u16)(1000000U/TIME_OUT_UNIT_US)

Slave node interleaved diagnostic response timeout

Definition at line 447 of file lin.h.

14.69.3.3 #define LD_ID_NO_RESPONSE 0x52U

Positive response

Definition at line 87 of file lin.h.

14.69.3.4 #define LD_NEGATIVE_RESPONSE 0x53U

Negative response

Definition at line 88 of file lin.h.

14.69.3.5 #define LD_POSITIVE_RESPONSE 0x54U

Positive response

Definition at line 89 of file lin.h.

14.69.3.6 #define LIN_LLD_ERROR 0xFFU

Return value is ERROR

Definition at line 93 of file lin.h.

14.69.3.7 #define LIN_LLD_OK 0x00U

Return value is OK

Definition at line 92 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

620 CONTENTS

14.69.3.8 #define LIN_MASTER 1

Master node

Definition at line 168 of file lin.h.

14.69.3.9 #define LIN_READ_USR_DEF_MAX 63U

Max user defined

Definition at line 84 of file lin.h.

14.69.3.10 #define LIN_READ_USR_DEF_MIN 32U

Min user defined

Definition at line 83 of file lin.h.

14.69.3.11 #define LIN_SLAVE 0

Mode of LIN node (master or slave)

Slave node

Definition at line 167 of file lin.h.

14.69.3.12 #define LIN_TL_CALLBACK_HANDLER(iii, tl_event_id, id) lin_tl_callback_handler((iii), (tl_event_id), (id))

Definition at line 374 of file lin.h.

14.69.3.13 #define PCI_RES_ASSIGN_FRAME_ID_RANGE 0x01U

PCI response value assign frame id range

Definition at line 80 of file lin.h.

14.69.3.14 #define PCI_RES_READ_BY_IDENTIFY 0x06U

PCI response value read by identify

Definition at line 78 of file lin.h.

14.69.3.15 #define PCI_RES_SAVE_CONFIGURATION 0x01U

PCI response value save configuration

Definition at line 79 of file lin.h.

14.69.3.16 #define PCI_SAVE_CONFIGURATION 0x01U

PCI value save configuration

Definition at line 75 of file lin.h.

14.69.3.17 #define SERIVCE_FAULT_MEMORY_CLEAR 0x14U

Service fault memory clear

Definition at line 72 of file lin.h.

14.69.3.18 #define SERVICE_ASSIGN_FRAME_ID 0xB1U

Assign frame id service

Definition at line 61 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 621

14.69.3.19 #define SERVICE_ASSIGN_FRAME_ID_RANGE 0xB7U

Assign frame id range service

Definition at line 65 of file lin.h.

14.69.3.20 #define SERVICE_ASSIGN_NAD 0xB0U

Assign NAD service

Definition at line 60 of file lin.h.

14.69.3.21 #define SERVICE_CONDITIONAL_CHANGE_NAD 0xB3U

Conditional change NAD service

Definition at line 63 of file lin.h.

14.69.3.22 #define SERVICE_FAULT_MEMORY_READ 0x19U

Service fault memory read

Definition at line 71 of file lin.h.

14.69.3.23 #define SERVICE_IO_CONTROL_BY_IDENTIFY 0x2FU

Service I/O control

Definition at line 70 of file lin.h.

14.69.3.24 #define SERVICE_READ_BY_IDENTIFY 0xB2U

Read by identify service

Definition at line 62 of file lin.h.

14.69.3.25 #define SERVICE_READ_DATA_BY_IDENTIFY 0x22U

Service read data by identifier

Definition at line 67 of file lin.h.

14.69.3.26 #define SERVICE_SAVE_CONFIGURATION 0xB6U

Save configuration service

Definition at line 64 of file lin.h.

14.69.3.27 #define SERVICE_SESSION_CONTROL 0x10U

Service session control

Definition at line 69 of file lin.h.

14.69.3.28 #define SERVICE_WRITE_DATA_BY_IDENTIFY 0x2EU

Service write data by identifier

Definition at line 68 of file lin.h.

14.69.4 Typedef Documentation

14.69.4.1 typedef l_u8 lin_tl_pdu_data_t[8]

PDU data. Implements : lin_tl_pdu_data_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

622 CONTENTS

Definition at line 99 of file lin.h.

14.69.4.2 typedef l_u8 lin_tl_queue_t[8]

LIN transport layer queue Implements : lin_tl_queue_t_Class.

Definition at line 269 of file lin.h.

14.69.5 Enumeration Type Documentation

14.69.5.1 enum diag_interleaved_state_t

State of diagnostic interleaved mode Implements : diag_interleaved_state_t_Class.

Enumerator

DIAG_NOT_START Not into slave response schedule with interleaved mode

DIAG_NO_RESPONSE Master send 0x3D but slave does not response

DIAG_RESPONSE Response receive

Definition at line 453 of file lin.h.

14.69.5.2 enum l_diagnostic_mode_t

Diagnostic mode Implements : l_diagnostic_mode_t_Class.

Enumerator

DIAG_NONE None

DIAG_INTERLEAVE_MODE Interleave mode

DIAG_ONLY_MODE Diagnostic only mode

Definition at line 313 of file lin.h.

14.69.5.3 enum ld_queue_status_t

Status of queue Implements : ld_queue_status_t_Class.

Enumerator

LD_NO_DATA Rx Queue is empty, has no data

LD_DATA_AVAILABLE Data in queue is available

LD_RECEIVE_ERROR Receive data is error for LIN21 and above

LD_QUEUE_FULL The queue is full

LD_QUEUE_AVAILABLE Queue is available for insert data for LIN21 and above

LD_QUEUE_EMPTY Tx Queue is empty

LD_TRANSMIT_ERROR Error while transmitting for LIN21 and above

LD_TRANSFER_ERROR Error while transmitting/receiving for LIN20 and J2602

Definition at line 380 of file lin.h.

14.69.5.4 enum lin_diagnostic_class_t

List of diagnostic classes Implements : lin_diagnostic_class_t_Class.

Enumerator

LIN_DIAGNOSTIC_CLASS_I LIN Diagnostic Class 1

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 623

LIN_DIAGNOSTIC_CLASS_II LIN Diagnostic Class 2

LIN_DIAGNOSTIC_CLASS_III LIN Diagnostic Class 3

Definition at line 139 of file lin.h.

14.69.5.5 enum lin_diagnostic_state_t

LIN diagnostic state Implements : lin_diagnostic_state_t_Class.

Enumerator

LD_DIAG_IDLE IDLE

LD_DIAG_TX_PHY Diagnostic transmit physical

LD_DIAG_TX_FUNCTIONAL Diagnostic transmit active

LD_DIAG_TX_INTERLEAVED Diagnostic transmit in interleave mode

LD_DIAG_RX_PHY Diagnostic receive in physical

LD_DIAG_RX_FUNCTIONAL Diagnostic receive functional request

LD_DIAG_RX_INTERLEAVED Diagnostic receive in interleave mode

Definition at line 411 of file lin.h.

14.69.5.6 enum lin_frame_response_t

LIN frame response Implements : lin_frame_response_t_Class.

Enumerator

LIN_RES_PUB Publisher response

LIN_RES_SUB Subscriber response

Definition at line 230 of file lin.h.

14.69.5.7 enum lin_frame_type_t

Types of frame Implements : lin_frame_type_t_Class.

Enumerator

LIN_FRM_UNCD Unconditional frame

LIN_FRM_EVNT Event triggered frame

LIN_FRM_SPRDC Sporadic frame

LIN_FRM_DIAG Diagnostic frame

Definition at line 218 of file lin.h.

14.69.5.8 enum lin_last_cfg_result_t

Status of the last configuration call completed Implements : lin_last_cfg_result_t_Class.

Enumerator

LD_SUCCESS The service was successfully carried out

LD_NEGATIVE The service failed, more information can be found by parsing error_code

LD_NO_RESPONSE No response was received on the request

LD_OVERWRITTEN The slave response frame has been overwritten by another operation

Definition at line 336 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

624 CONTENTS

14.69.5.9 enum lin_lld_event_id_t

Event id Implements : lin_lld_event_id_t_Class.

Enumerator

LIN_LLD_PID_OK LIN_LLD_PID_OK

LIN_LLD_TX_COMPLETED LIN_LLD_TX_COMPLETED

LIN_LLD_RX_COMPLETED LIN_LLD_RX_COMPLETED

LIN_LLD_PID_ERR LIN_LLD_PID_ERR

LIN_LLD_FRAME_ERR LIN_LLD_FRAME_ERR

LIN_LLD_CHECKSUM_ERR LIN_LLD_CHECKSUM_ERR

LIN_LLD_READBACK_ERR LIN_LLD_READBACK_ERR

LIN_LLD_NODATA_TIMEOUT No data timeout or received part of data but not completed

LIN_LLD_BUS_ACTIVITY_TIMEOUT LIN_LLD_BUS_ACTIVITY_TIMEOUT

Definition at line 109 of file lin.h.

14.69.5.10 enum lin_message_status_t

Status of LIN message Implements : lin_message_status_t_Class.

Enumerator

LD_NO_MSG No message

LD_IN_PROGRESS In progress

LD_COMPLETED Completed

LD_FAILED Failed

LD_N_AS_TIMEOUT N_As timeout

LD_N_CR_TIMEOUT N_Cr timeout

LD_WRONG_SN Wrong sequence number

Definition at line 396 of file lin.h.

14.69.5.11 enum lin_message_timeout_type_t

Types of message timeout Implements : lin_message_timeout_type_t_Class.

Enumerator

LD_NO_CHECK_TIMEOUT No check timeout

LD_CHECK_N_AS_TIMEOUT check N_As timeout

LD_CHECK_N_CR_TIMEOUT check N_Cr timeout

Definition at line 426 of file lin.h.

14.69.5.12 enum lin_protocol_handle_t

List of protocols Implements : lin_protocol_handle_t_Class.

Enumerator

LIN_PROTOCOL_21 LIN protocol version 2.1

LIN_PROTOCOL_J2602 J2602 protocol

Definition at line 129 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 625

14.69.5.13 enum lin_sch_tbl_type_t

Types of schedule tables Implements : lin_sch_tbl_type_t_Class.

Enumerator

LIN_SCH_TBL_NULL Run nothing

LIN_SCH_TBL_NORM Normal schedule table

LIN_SCH_TBL_DIAG Diagnostic schedule table

LIN_SCH_TBL_GO_TO_SLEEP Goto sleep schedule table

LIN_SCH_TBL_COLL_RESOLV Collision resolving schedule table

Definition at line 275 of file lin.h.

14.69.5.14 enum lin_service_status_t

Status of the last configuration call for LIN 2.1 Implements : lin_service_status_t_Class.

Enumerator

LD_SERVICE_BUSY Service is ongoing

LD_REQUEST_FINISHED The configuration request has been completed

LD_SERVICE_IDLE The configuration request/response combination has been completed

LD_SERVICE_ERROR The configuration request or response experienced an error

Definition at line 324 of file lin.h.

14.69.5.15 enum lin_tl_callback_return_t

Transport layer event IDs Implements : lin_tl_callback_return_t_Class.

Enumerator

TL_ACTION_NONE Default return value of call back function

TL_ACTION_ID_IGNORE Ignore this ID

Definition at line 364 of file lin.h.

14.69.5.16 enum lin_tl_event_id_t

Transport layer event IDs Implements : lin_tl_event_id_t_Class.

Enumerator

TL_MAKE_RES_DATA Make master request data

TL_SLAVE_GET_ACTION Get slave action

TL_TX_COMPLETED Transmit completed

TL_RX_COMPLETED Receive completed

TL_ERROR Transport error

TL_TIMEOUT_SERVICE Transmit timeout

TL_HANDLER_INTERLEAVE_MODE Interleave mode

TL_RECEIVE_MESSAGE Return data for ld_receive_message function

Definition at line 348 of file lin.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

626 CONTENTS

14.69.6 Function Documentation

14.69.6.1 l_u8 ld_read_by_id_callout (l_ifc_handle iii, l_u8 id, l_u8 ∗ data)

14.69.6.2 static l_u16 lin_calc_max_header_timeout_cnt (l_u32 baudRate) [inline], [static]

Computes maximum header timeout.

Theader_Maximum = 1.4 ∗ THeader_Nominal, THeader_Nominal = 34 ∗ TBit, (13 nominal bits of break; 1 nominal
bit of break delimiter; 10 bits for SYNC and 10 bits of PID) TIME_OUT_UNIT_US is in micro second

Parameters

in baudRate LIN network baud rate

Returns

maximum timeout for the selected baud rate

Implements : lin_calc_max_header_timeout_cnt_Activity

Definition at line 627 of file lin.h.

14.69.6.3 static l_u16 lin_calc_max_res_timeout_cnt (l_u32 baudRate, l_u8 size) [inline], [static]

Computes the maximum response timeout.

TResponse_Maximum = 1.4 ∗ TResponse_Nominal, TResponse_Nominal = 10 ∗ (NData+ 1) ∗ TBit

Parameters

in baudRate LIN network baud rate
in size frame size in bytes

Returns

maximum response timeout for the given baud rate and frame size

Implements : lin_calc_max_res_timeout_cnt_Activity

Definition at line 643 of file lin.h.

14.69.6.4 l_u8 lin_lld_deinit (l_ifc_handle iii)

This function disconnect the node from the cluster and free all hardware used.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 157 of file lin.c.

14.69.6.5 l_u8 lin_lld_get_state (l_ifc_handle iii)

This function gets current state of an interface.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 627

Parameters

in iii LIN interface that is being handled

Returns

current LIN node state

Definition at line 180 of file lin.c.

14.69.6.6 l_u8 lin_lld_ignore_response (l_ifc_handle iii)

This function terminates an on-going data transmission/reception.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 310 of file lin.c.

14.69.6.7 l_bool lin_lld_init (l_ifc_handle iii)

This function initializes a LIN hardware instance for operation. This function will initialize the run-time state structure
to keep track of the on-going transfers, initialize the module to user defined settings and default settings, configure
the IRQ state structure and enable the module-level interrupt to the core, and enable the LIN hardware module
transmitter and receiver.

Parameters

in iii LIN interface that is being handled

Returns

zero if the initialization was successful and non-zero if failed

Definition at line 91 of file lin.c.

14.69.6.8 l_u8 lin_lld_int_disable (l_ifc_handle iii)

Disable the interrupt related to the interface.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 287 of file lin.c.

14.69.6.9 l_u8 lin_lld_int_enable (l_ifc_handle iii)

Enable the interrupt related to the interface.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

628 CONTENTS

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 264 of file lin.c.

14.69.6.10 l_u8 lin_lld_rx_response (l_ifc_handle iii, l_u8 response_length)

This function receives frame data into the LIN_lld_response_buffer[iii] buffer.

This function will prepare LIN interface to receive data and then return. Data bytes will be received to the buffer in
the interrupt handler of LIN interface. This function returns zero if preparation of receiving data was successful.

Parameters

in iii LIN interface that is being handled
in response_length Length of response

Returns

Zero for success
Non-zero for error

Definition at line 397 of file lin.c.

14.69.6.11 l_u8 lin_lld_set_low_power_mode (l_ifc_handle iii)

Let the low level driver go to low power mode.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 333 of file lin.c.

14.69.6.12 l_u8 lin_lld_set_response (l_ifc_handle iii, l_u8 response_length)

This function sends frame data that is contained in LIN_lld_response_buffer[iii].

This function will send the first data byte in the buffer and then return. Next data bytes will be sent in the interrupt
handler of LIN interface. This function returns zero if sending of first data byte was successful.

Parameters

in iii LIN interface that is being handled
in response_length Length of response

Returns

Zero for success
Non-zero for error

Definition at line 356 of file lin.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 629

14.69.6.13 void lin_lld_timeout_service (l_ifc_handle iii)

Callback function for Timer Interrupt Handler In timer IRQ handler, call this function. Used to check if frame timeout
has occurred during frame data transmission and reception, to check for N_As and N_Cr timeout for LIN 2.1 and
above. This function also check if there is no LIN bus communication (no headers and no frame data transferring)
for Idle timeout (s), then put LIN node to Sleep mode. Users may initialize a timer (for example FTM)with period
of Timeout unit (default: 500 micro seconds) to call lin_lld_timeout_service(). For an interface iii, Idle timeout (s) =
max_idle_timeout_cnt ∗ Timeout unit (us) frame timeout (us) = frame_timeout_cnt ∗ Timeout unit (us) N_As timeout
(us) = N_As_timeout ∗ Timeout unit (us) N_Cr timeout (us) = N_Cr_timeout ∗ Timeout unit (us)

Parameters

in iii LIN interface that is being handled

Returns

void

Definition at line 433 of file lin.c.

14.69.6.14 l_u8 lin_lld_tx_header (l_ifc_handle iii, l_u8 id)

This function sends frame header for the input PID.

This function only initializes the sending of break field and then return. Then the sync byte and PID will be sent in
the interrupt handler of LIN interface.

Parameters

in iii LIN interface that is being handled
in id ID of the header to be sent

Returns

Zero for success
Non-zero for error

Definition at line 203 of file lin.c.

14.69.6.15 l_u8 lin_lld_tx_wake_up (l_ifc_handle iii)

This function send a wakeup signal.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 236 of file lin.c.

14.69.6.16 void lin_pid_resp_callback_handler (l_ifc_handle iii, const lin_lld_event_id_t event_id, l_u8 id)

Callback handler for low level events.

This callback handler is being called from the LIN driver callback

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

630 CONTENTS

Parameters

in iii LIN interface that is being handled
in event_id Low level event id lin_lld_event_id_t
in id Current protected identifier under processing by driver

Definition at line 69 of file lin_common_proto.c.

14.69.6.17 l_u8 lin_process_parity (l_u8 pid, l_u8 typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID.

Parameters

pid PID byte in case of checking parity bits or ID byte in case of making parity bits.
typeAction TRUE for Checking parity bits, FALSE for making parity bits

Returns

0xFF if parity bits are incorrect, ID in case of checking parity bits and they are correct. Function returns PID in
case of making parity bits.

Definition at line 74 of file lin.c.

14.69.6.18 lin_tl_callback_return_t lin_tl_callback_handler (l_ifc_handle iii, lin_tl_event_id_t tl_event_id, l_u8 id)

Definition at line 86 of file lin_commontl_proto.c.

14.69.7 Variable Documentation

14.69.7.1 l_u8 g_lin_flag_handle_tbl[LIN_FLAG_BUF_SIZE]

14.69.7.2 l_u8 g_lin_frame_data_buffer[LIN_FRAME_BUF_SIZE]

14.69.7.3 l_bool g_lin_frame_flag_handle_tbl[LIN_NUM_OF_FRMS]

14.69.7.4 const l_ifc_handle g_lin_hardware_ifc[HARDWARE_INSTANCE_COUNT]

14.69.7.5 lin_master_data_t g_lin_master_data_array[LIN_NUM_OF_MASTER_IFCS]

Global array for storing the master interfaces configurations

Definition at line 52 of file lin.c.

14.69.7.6 const lin_node_attribute_t g_lin_node_attribute_array[LIN_NUM_OF_SLAVE_IFCS]

14.69.7.7 lin_protocol_state_t g_lin_protocol_state_array[LIN_NUM_OF_IFCS]

Global array for storing the protocol state for each interface

Definition at line 50 of file lin.c.

14.69.7.8 const lin_protocol_user_config_t g_lin_protocol_user_cfg_array[LIN_NUM_OF_IFCS]

14.69.7.9 lin_tl_descriptor_t g_lin_tl_descriptor_array[LIN_NUM_OF_IFCS]

Global array for storing transport configuration for each interface

Definition at line 49 of file lin.c.

14.69.7.10 const l_u32 g_lin_virtual_ifc[LIN_NUM_OF_IFCS]

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.69 Low level API 631

14.69.7.11 const lin_timer_get_time_interval_t timerGetTimeIntervalCallbackArr[LIN_NUM_OF_IFCS]

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

632 CONTENTS

14.70 MPU Driver

14.70.1 Detailed Description

Memory Protection Unit Peripheral Driver.

Pre-Initialization information of MPU module

1. Before using the MPU driver the protocol clock of the module must be configured by the application using
PCC module.

2. Bus fault or Hard fault exception must be configured to handle MPU access violation.

To initialize the MPU module, call the MPU_DRV_Init() function and provide the user configuration data structure.
This function sets the configuration of the MPU module automatically and enables the MPU module.
Note that the configuration for region 0:

• The access right for CORE, DMA,.. can be changed except DEBUGGER master.

• The start address, end address, process identifier and process identifier mask are ignored.

This is example code to configure the MPU driver:

1. Define MPU instance

/* MPU 0 */
#define INST_MPU 0U

2. Configuration
User configuration

/* Region count */
#define REGION_CNT (1U)

/* Master access configuration
FEATURE_MPU_MASTER_COUNT macro has been already defined (number of masters supported by hardware)

*/
mpu_master_access_right_t masterAccRight[FEATURE_MPU_MASTER_COUNT] =
{

/* CORE */
{

.masterNum = FEATURE_MPU_MASTER_CORE, /* Master number */

.accessRight = MPU_SUPERVISOR_RWX_USER_RWX, /* Access right */

.processIdentifierEnable = false, /* Process identifier enable */
},
/* The rest masters should be defined here */
...

}
/* User configuration */
mpu_user_config_t userConfig[REGION_CNT] =
{

/* Region 0 */
{

.startAddr = 0x00000000U, /* Memory region start address */

.endAddr = 0xFFFFFFFFU, /* Memory region end address */

.masterAccRight = masterAccRight, /* Master access right */

.processIdEnable = false, /* Process identifier enable */

.processIdentifier = 0x00U, /* Process identifier */

.processIdMask = 0x00U /* Process identifier mask */
}

}

or get default configuration

/* Defines master access right structure */
mpu_master_access_right_t masterAccRight[FEATURE_MPU_MASTER_COUNT];

/* Gets default region configuration
Access right of all masters are allowed

*/

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.70 MPU Driver 633

mpu_user_config_t regionConfig0 =
MPU_DRV_GetDefaultRegionConfig(masterAccRight);

mpu_user_config_t userConfig[REGION_CNT] =
{

regionConfig0
};

3. Initializes

/* Initializes the MPU instance */
MPU_DRV_Init(INST_MPU, REGION_CNT, userConfig);

4. De-initializes

/* De-initializes the MPU instance */
MPU_DRV_Deinit(INST_MPU);

After MPU initialization:

• The MPU_DRV_SetRegionConfig() can be used to configure the region descriptor.

• The MPU_DRV_SetRegionAddr() can be used to configure the region start and end address.

• The MPU_DRV_SetMasterAccessRights() can be used to configure access permission of master in the re-
gion.

• The MPU_DRV_GetDetailErrorAccessInfo() API is provided to get the error status of a special slave port.
When an error happens in this port, the MPU_DRV_GetDetailErrorAccessInfo() API is provided to get the
detailed error information.

Data Structures

• struct mpu_access_err_info_t

MPU detail error access info Implements : mpu_access_err_info_t_Class. More...

• struct mpu_master_access_right_t

MPU master access rights. Implements : mpu_master_access_right_t_Class. More...

• struct mpu_user_config_t

MPU user region configuration structure. This structure is used when calling the MPU_DRV_Init function. Implements
: mpu_user_config_t_Class. More...

Enumerations

• enum mpu_err_access_type_t { MPU_ERR_TYPE_READ = 0U, MPU_ERR_TYPE_WRITE = 1U }

MPU access error Implements : mpu_err_access_type_t_Class.

• enum mpu_err_attributes_t { MPU_INSTRUCTION_ACCESS_IN_USER_MODE = 0U, MPU_DATA_ACC←↩

ESS_IN_USER_MODE = 1U, MPU_INSTRUCTION_ACCESS_IN_SUPERVISOR_MODE = 2U, MPU_DA←↩

TA_ACCESS_IN_SUPERVISOR_MODE = 3U }

MPU access error attributes Implements : mpu_err_attributes_t_Class.

• enum mpu_access_rights_t {
MPU_SUPERVISOR_RWX_USER_NONE = 0x00U, MPU_SUPERVISOR_RWX_USER_X = 0x01U, MP←↩

U_SUPERVISOR_RWX_USER_W = 0x02U, MPU_SUPERVISOR_RWX_USER_WX = 0x03U,
MPU_SUPERVISOR_RWX_USER_R = 0x04U, MPU_SUPERVISOR_RWX_USER_RX = 0x05U, MPU_S←↩

UPERVISOR_RWX_USER_RW = 0x06U, MPU_SUPERVISOR_RWX_USER_RWX = 0x07U,
MPU_SUPERVISOR_RX_USER_NONE = 0x08U, MPU_SUPERVISOR_RX_USER_X = 0x09U, MPU_S←↩

UPERVISOR_RX_USER_W = 0x0AU, MPU_SUPERVISOR_RX_USER_WX = 0x0BU,
MPU_SUPERVISOR_RX_USER_R = 0x0CU, MPU_SUPERVISOR_RX_USER_RX = 0x0DU, MPU_SUP←↩

ERVISOR_RX_USER_RW = 0x0EU, MPU_SUPERVISOR_RX_USER_RWX = 0x0FU,
MPU_SUPERVISOR_RW_USER_NONE = 0x10U, MPU_SUPERVISOR_RW_USER_X = 0x11U, MPU_S←↩

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

634 CONTENTS

UPERVISOR_RW_USER_W = 0x12U, MPU_SUPERVISOR_RW_USER_WX = 0x13U,
MPU_SUPERVISOR_RW_USER_R = 0x14U, MPU_SUPERVISOR_RW_USER_RX = 0x15U, MPU_SUP←↩

ERVISOR_RW_USER_RW = 0x16U, MPU_SUPERVISOR_RW_USER_RWX = 0x17U,
MPU_SUPERVISOR_USER_NONE = 0x18U, MPU_SUPERVISOR_USER_X = 0x19U, MPU_SUPERVIS←↩

OR_USER_W = 0x1AU, MPU_SUPERVISOR_USER_WX = 0x1BU,
MPU_SUPERVISOR_USER_R = 0x1CU, MPU_SUPERVISOR_USER_RX = 0x1DU, MPU_SUPERVISO←↩

R_USER_RW = 0x1EU, MPU_SUPERVISOR_USER_RWX = 0x1FU,
MPU_NONE = 0x80U, MPU_W = 0xA0U, MPU_R = 0xC0U, MPU_RW = 0xE0U }

MPU access rights.
Code Supervisor User Description
MPU_SUPERVISOR_←↩

RWX_USER_NONE
r w x - - - Allow Read, write,

execute in supervisor
mode; no access in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_X
r w x - - x Allow Read, write,

execute in supervisor
mode; execute in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_W
r w x - w - Allow Read, write,

execute in supervisor
mode; write in user mode

MPU_SUPERVISOR_←↩

RWX_USER_WX
r w x - w x Allow Read, write,

execute in supervisor
mode; write and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_R
r w x r - - Allow Read, write,

execute in supervisor
mode; read in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RX
r w x r - x Allow Read, write,

execute in supervisor
mode; read and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RW
r w x r w - Allow Read, write,

execute in supervisor
mode; read and write in
user mode

MPU_SUPERVISOR_←↩

RWX_USER_RWX
r w x r w x Allow Read, write,

execute in supervisor
mode; read, write and
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_NONE
r - x - - - Allow Read, execute in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RX_USER_X
r - x - - x Allow Read, execute in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_W
r - x - w - Allow Read, execute in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RX_USER_WX
r - x - w x Allow Read, execute in

supervisor mode; write
and execute in user
mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.70 MPU Driver 635

MPU_SUPERVISOR_←↩

RX_USER_R
r - x r - - Allow Read, execute in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RX_USER_RX
r - x r - x Allow Read, execute in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_RW
r - x r w - Allow Read, execute in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RX_USER_RWX
r - x r w x Allow Read, execute in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_NONE
r w - - - - Allow Read, write in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RW_USER_X
r w - - - x Allow Read, write in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RW_USER_W
r w - - w - Allow Read, write in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RW_USER_WX
r w - - w x Allow Read, write in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_R
r w - r - - Allow Read, write in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RW_USER_RX
r w - r - x Allow Read, write in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_RW
r w - r w - Allow Read, write in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RW_USER_RWX
r w - r w x Allow Read, write in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

USER_NONE
- - - - - - No access allowed in

user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_X
- - x - - x Execute operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_W
- w - - w - Write operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_WX
- w x - w x Write and execute

operations are allowed in
user and supervisor
modes

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

636 CONTENTS

MPU_SUPERVISOR_←↩

USER_R
r - - r - - Read operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_RX
r - x r - x Read and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RW
r w - r w - Read and write

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RWX
r w x r w x Read write and execute

operations are allowed in
user and supervisor
modes

MPU Driver API

• status_t MPU_DRV_Init (uint32_t instance, uint8_t regionCnt, const mpu_user_config_t ∗userConfigArr)

The function sets the MPU regions according to user input and then enables the MPU. Please note that access rights
for region 0 will always be configured and regionCnt takes values between 1 and the maximum region count supported
by the hardware. e.g. In S32K144 the number of supported regions is 8. The user must make sure that the clock is
enabled.

• void MPU_DRV_Deinit (uint32_t instance)

De-initializes the MPU region by resetting and disabling MPU module.

• void MPU_DRV_SetRegionAddr (uint32_t instance, uint8_t regionNum, uint32_t startAddr, uint32_t endAddr)

Sets the region start and end address.

• status_t MPU_DRV_SetRegionConfig (uint32_t instance, uint8_t regionNum, const mpu_user_config_←↩

t ∗userConfigPtr)

Sets the region configuration.

• status_t MPU_DRV_SetMasterAccessRights (uint32_t instance, uint8_t regionNum, const mpu_master_←↩

access_right_t ∗accessRightsPtr)

Configures access permission.

• bool MPU_DRV_GetDetailErrorAccessInfo (uint32_t instance, uint8_t slavePortNum, mpu_access_err_info←↩

_t ∗errInfoPtr)

Checks and gets the MPU access error detail information for a slave port.

• mpu_user_config_t MPU_DRV_GetDefaultRegionConfig (mpu_master_access_right_t ∗masterAccRight)

Gets default region configuration.

• void MPU_DRV_EnableRegion (uint32_t instance, uint8_t regionNum, bool enable)

Enables/Disables region descriptor. Please note that region 0 should not be disabled.

14.70.2 Data Structure Documentation

14.70.2.1 struct mpu_access_err_info_t

MPU detail error access info Implements : mpu_access_err_info_t_Class.

Definition at line 66 of file mpu_driver.h.

Data Fields

• uint8_t master
• mpu_err_attributes_t attributes
• mpu_err_access_type_t accessType
• uint16_t accessCtr
• uint32_t addr

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.70 MPU Driver 637

Field Documentation

14.70.2.1.1 uint16_t accessCtr

Access error control

Definition at line 71 of file mpu_driver.h.

14.70.2.1.2 mpu_err_access_type_t accessType

Access error type

Definition at line 70 of file mpu_driver.h.

14.70.2.1.3 uint32_t addr

Access error address

Definition at line 72 of file mpu_driver.h.

14.70.2.1.4 mpu_err_attributes_t attributes

Access error attributes

Definition at line 69 of file mpu_driver.h.

14.70.2.1.5 uint8_t master

Access error master

Definition at line 68 of file mpu_driver.h.

14.70.2.2 struct mpu_master_access_right_t

MPU master access rights. Implements : mpu_master_access_right_t_Class.

Definition at line 176 of file mpu_driver.h.

Data Fields

• uint8_t masterNum

• mpu_access_rights_t accessRight

Field Documentation

14.70.2.2.1 mpu_access_rights_t accessRight

Access right

Definition at line 179 of file mpu_driver.h.

14.70.2.2.2 uint8_t masterNum

Master number

Definition at line 178 of file mpu_driver.h.

14.70.2.3 struct mpu_user_config_t

MPU user region configuration structure. This structure is used when calling the MPU_DRV_Init function. Imple-
ments : mpu_user_config_t_Class.

Definition at line 190 of file mpu_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

638 CONTENTS

Data Fields

• uint32_t startAddr
• uint32_t endAddr
• const mpu_master_access_right_t ∗ masterAccRight

Field Documentation

14.70.2.3.1 uint32_t endAddr

Memory region end address

Definition at line 193 of file mpu_driver.h.

14.70.2.3.2 const mpu_master_access_right_t∗ masterAccRight

Access permission for masters

Definition at line 194 of file mpu_driver.h.

14.70.2.3.3 uint32_t startAddr

Memory region start address

Definition at line 192 of file mpu_driver.h.

14.70.3 Enumeration Type Documentation

14.70.3.1 enum mpu_access_rights_t

MPU access rights.

Code Supervisor User Description
MPU_SUPERVISOR_←↩

RWX_USER_NONE
r w x - - - Allow Read, write,

execute in supervisor
mode; no access in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_X
r w x - - x Allow Read, write,

execute in supervisor
mode; execute in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_W
r w x - w - Allow Read, write,

execute in supervisor
mode; write in user mode

MPU_SUPERVISOR_←↩

RWX_USER_WX
r w x - w x Allow Read, write,

execute in supervisor
mode; write and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_R
r w x r - - Allow Read, write,

execute in supervisor
mode; read in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RX
r w x r - x Allow Read, write,

execute in supervisor
mode; read and execute
in user mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.70 MPU Driver 639

MPU_SUPERVISOR_←↩

RWX_USER_RW
r w x r w - Allow Read, write,

execute in supervisor
mode; read and write in
user mode

MPU_SUPERVISOR_←↩

RWX_USER_RWX
r w x r w x Allow Read, write,

execute in supervisor
mode; read, write and
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_NONE
r - x - - - Allow Read, execute in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RX_USER_X
r - x - - x Allow Read, execute in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_W
r - x - w - Allow Read, execute in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RX_USER_WX
r - x - w x Allow Read, execute in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_R
r - x r - - Allow Read, execute in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RX_USER_RX
r - x r - x Allow Read, execute in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_RW
r - x r w - Allow Read, execute in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RX_USER_RWX
r - x r w x Allow Read, execute in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_NONE
r w - - - - Allow Read, write in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RW_USER_X
r w - - - x Allow Read, write in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RW_USER_W
r w - - w - Allow Read, write in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RW_USER_WX
r w - - w x Allow Read, write in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_R
r w - r - - Allow Read, write in

supervisor mode; read in
user mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

640 CONTENTS

MPU_SUPERVISOR_←↩

RW_USER_RX
r w - r - x Allow Read, write in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_RW
r w - r w - Allow Read, write in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RW_USER_RWX
r w - r w x Allow Read, write in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

USER_NONE
- - - - - - No access allowed in

user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_X
- - x - - x Execute operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_W
- w - - w - Write operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_WX
- w x - w x Write and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_R
r - - r - - Read operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_RX
r - x r - x Read and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RW
r w - r w - Read and write

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RWX
r w x r w x Read write and execute

operations are allowed in
user and supervisor
modes

Code Read/Write permission Description
MPU_NONE - - No Read/Write access permission
MPU_W - w Write access permission
MPU_R r - Read access permission
MPU_RW r w Read/Write access permission

Implements : mpu_access_rights_t_Class

Enumerator

MPU_SUPERVISOR_RWX_USER_NONE 0b00000000U : rwx|—
MPU_SUPERVISOR_RWX_USER_X 0b00000001U : rwx|–x

MPU_SUPERVISOR_RWX_USER_W 0b00000010U : rwx|-w-

MPU_SUPERVISOR_RWX_USER_WX 0b00000011U : rwx|-wx

MPU_SUPERVISOR_RWX_USER_R 0b00000100U : rwx|r–
MPU_SUPERVISOR_RWX_USER_RX 0b00000101U : rwx|r-x
MPU_SUPERVISOR_RWX_USER_RW 0b00000110U : rwx|rw-

MPU_SUPERVISOR_RWX_USER_RWX 0b00000111U : rwx|rwx

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.70 MPU Driver 641

MPU_SUPERVISOR_RX_USER_NONE 0b00001000U : r-x|—
MPU_SUPERVISOR_RX_USER_X 0b00001001U : r-x|–x

MPU_SUPERVISOR_RX_USER_W 0b00001010U : r-x|-w-

MPU_SUPERVISOR_RX_USER_WX 0b00001011U : r-x|-wx

MPU_SUPERVISOR_RX_USER_R 0b00001100U : r-x|r–
MPU_SUPERVISOR_RX_USER_RX 0b00001101U : r-x|r-x
MPU_SUPERVISOR_RX_USER_RW 0b00001110U : r-x|rw-

MPU_SUPERVISOR_RX_USER_RWX 0b00001111U : r-x|rwx

MPU_SUPERVISOR_RW_USER_NONE 0b00010000U : rw-|—
MPU_SUPERVISOR_RW_USER_X 0b00010001U : rw-|–x

MPU_SUPERVISOR_RW_USER_W 0b00010010U : rw-|-w-

MPU_SUPERVISOR_RW_USER_WX 0b00010011U : rw-|-wx

MPU_SUPERVISOR_RW_USER_R 0b00010100U : rw-|r–
MPU_SUPERVISOR_RW_USER_RX 0b00010101U : rw-|r-x
MPU_SUPERVISOR_RW_USER_RW 0b00010110U : rw-|rw-

MPU_SUPERVISOR_RW_USER_RWX 0b00010111U : rw-|rwx

MPU_SUPERVISOR_USER_NONE 0b00011000U : —|—
MPU_SUPERVISOR_USER_X 0b00011001U : –x|–x

MPU_SUPERVISOR_USER_W 0b00011010U : -w-|-w-

MPU_SUPERVISOR_USER_WX 0b00011011U : -wx|-wx

MPU_SUPERVISOR_USER_R 0b00011100U : r–|r–
MPU_SUPERVISOR_USER_RX 0b00011101U : r-x|r-x
MPU_SUPERVISOR_USER_RW 0b00011110U : rw-|rw-

MPU_SUPERVISOR_USER_RWX 0b00011111U : rwx|rwx

MPU_NONE 0b10000000U : –

MPU_W 0b10100000U : w-

MPU_R 0b11000000U : -r

MPU_RW 0b11100000U : wr

Definition at line 124 of file mpu_driver.h.

14.70.3.2 enum mpu_err_access_type_t

MPU access error Implements : mpu_err_access_type_t_Class.

Enumerator

MPU_ERR_TYPE_READ MPU error type: read

MPU_ERR_TYPE_WRITE MPU error type: write

Definition at line 44 of file mpu_driver.h.

14.70.3.3 enum mpu_err_attributes_t

MPU access error attributes Implements : mpu_err_attributes_t_Class.

Enumerator

MPU_INSTRUCTION_ACCESS_IN_USER_MODE Access instruction error in user mode

MPU_DATA_ACCESS_IN_USER_MODE Access data error in user mode

MPU_INSTRUCTION_ACCESS_IN_SUPERVISOR_MODE Access instruction error in supervisor mode

MPU_DATA_ACCESS_IN_SUPERVISOR_MODE Access data error in supervisor mode

Definition at line 54 of file mpu_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

642 CONTENTS

14.70.4 Function Documentation

14.70.4.1 void MPU_DRV_Deinit (uint32_t instance)

De-initializes the MPU region by resetting and disabling MPU module.

Parameters

in instance The MPU peripheral instance number.

Definition at line 105 of file mpu_driver.c.

14.70.4.2 void MPU_DRV_EnableRegion (uint32_t instance, uint8_t regionNum, bool enable)

Enables/Disables region descriptor. Please note that region 0 should not be disabled.

Parameters

in instance The MPU peripheral instance number.
in regionNum The region number.
in enable Valid state

• true : Enable region.

• false : Disable region.

Definition at line 322 of file mpu_driver.c.

14.70.4.3 mpu_user_config_t MPU_DRV_GetDefaultRegionConfig (mpu_master_access_right_t ∗ masterAccRight)

Gets default region configuration.

Parameters

in instance The MPU peripheral instance number.
in masterAccRight The pointer to master configuration structure, see mpu_master_access_←↩

right_t. The length of array should be defined by number of masters supported
by hardware.

Returns

The default region configuration, see mpu_user_config_t.

Definition at line 286 of file mpu_driver.c.

14.70.4.4 bool MPU_DRV_GetDetailErrorAccessInfo (uint32_t instance, uint8_t slavePortNum, mpu_access_err_info_t ∗
errInfoPtr)

Checks and gets the MPU access error detail information for a slave port.

Parameters

in instance The MPU peripheral instance number.
in slavePortNum The slave port number to get Error Detail.
out errInfoPtr The pointer to access error info structure.

Returns

operation status

• true : An error has occurred.

• false : No error has occurred.

Definition at line 254 of file mpu_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.70 MPU Driver 643

14.70.4.5 status_t MPU_DRV_Init (uint32_t instance, uint8_t regionCnt, const mpu_user_config_t ∗ userConfigArr)

The function sets the MPU regions according to user input and then enables the MPU. Please note that access
rights for region 0 will always be configured and regionCnt takes values between 1 and the maximum region count
supported by the hardware. e.g. In S32K144 the number of supported regions is 8. The user must make sure that
the clock is enabled.

Parameters

in instance The MPU peripheral instance number.
in regionCnt The number of configured regions.
in userConfigArr The pointer to the array of MPU user configure structure, see mpu_user_←↩

config_t.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed due to master number is out of range supported by hardware.

Definition at line 63 of file mpu_driver.c.

14.70.4.6 status_t MPU_DRV_SetMasterAccessRights (uint32_t instance, uint8_t regionNum, const
mpu_master_access_right_t ∗ accessRightsPtr)

Configures access permission.

Parameters

in instance The MPU peripheral instance number.
in regionNum The MPU region number.
in accessRightsPtr The pointer to access permission structure.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed due to master number is out of range supported by hardware.

Definition at line 222 of file mpu_driver.c.

14.70.4.7 void MPU_DRV_SetRegionAddr (uint32_t instance, uint8_t regionNum, uint32_t startAddr, uint32_t endAddr)

Sets the region start and end address.

Parameters

in instance The MPU peripheral instance number.
in regionNum The region number.
in startAddr The region start address.
in endAddr The region end address.

Definition at line 137 of file mpu_driver.c.

14.70.4.8 status_t MPU_DRV_SetRegionConfig (uint32_t instance, uint8_t regionNum, const mpu_user_config_t ∗
userConfigPtr)

Sets the region configuration.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

644 CONTENTS

Parameters

in instance The MPU peripheral instance number.
in regionNum The region number.
in userConfigPtr The region configuration structure pointer.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed due to master number is out of range supported by hardware.

Definition at line 162 of file mpu_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.71 Memory Protection Unit (MPU) 645

14.71 Memory Protection Unit (MPU)

14.71.1 Detailed Description

The S32 SDK provides Peripheral Driver for the Memory Protection Unit (MPU) module of S32 SDK devices.

The memory protection unit (MPU) provides hardware access control for all memory references generated in the
device.

Hardware background

The MPU concurrently monitors all system bus transactions and evaluates their appropriateness using pre-
programmed region descriptors that define memory spaces and their access rights. Memory references that have
sufficient access control rights are allowed to complete, while references that are not mapped to any region descrip-
tor or have insufficient rights are terminated with a protection error response.

The MPU implements a two-dimensional hardware array of memory region descriptors and the crossbar slave ports
to continuously monitor the legality of every memory reference generated by each bus master in the system.

The feature set includes:

• 16 program-visible 128-bit region descriptors, accessible by four 32-bit words each

– Each region descriptor defines a modulo-32 byte space, aligned anywhere in memory

* Region sizes can vary from 32 bytes to 4 Gbytes

– Two access control permissions defined in a single descriptor word

* Masters 0–3: read, write, and execute attributes for supervisor and user accesses

* Masters 4–7: read and write attributes

– Hardware-assisted maintenance of the descriptor valid bit minimizes coherency issues

– Alternate programming model view of the access control permissions word

– Priority given to granting permission over denying access for overlapping region descriptors

• Detects access protection errors if a memory reference does not hit in any memory region, or if the reference
is illegal in all hit memory regions. If an access error occurs, the reference is terminated with an error
response, and the MPU inhibits the bus cycle being sent to the targeted slave device.

• Error registers, per slave port, capture the last faulting address, attributes, and other information

• Global MPU enable/disable control bit

Modules

• MPU Driver

Memory Protection Unit Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

646 CONTENTS

14.72 Node configuration

14.72.1 Detailed Description

This group contains APIs that used for node configuration purpose.

With protocol lin2.1 in slave node, some service like (Data dump, Conditional change nad with id from 2 to 255)
are not supported by LinStack but user can implement it in application by use function ld_receive_message and
ld_send_message in transport layer.

With protocol J2602 in slave node, some service like (Data dump, Assign NAD, Conditional change NAD) are
not supported by LinStack but user can implement it in application by choosing these services in supported_sid in
PEX GUI and use function ld_receive_message and ld_send_message in transport layer. When received target
reset master request slave node just update status_byte and send response positive message.

Functions

• l_u8 ld_is_ready (l_ifc_handle iii)

This call returns the status of the last requested configuration service.
• void ld_check_response (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

This call returns the result of the last node configuration service, in the parameters RSID and error_code. A value in
RSID is always returned but not always in the error_code. Default values for RSID and error_code is 0 (zero).

• void ld_assign_frame_id_range (l_ifc_handle iii, l_u8 NAD, l_u8 start_index, const l_u8 ∗const PIDs)

This function assigns the protected identifier of up to four frames.
• void ld_save_configuration (l_ifc_handle iii, l_u8 NAD)

This function to issue a save configuration request to a slave node.
• l_u8 ld_read_configuration (l_ifc_handle iii, l_u8 ∗const data, l_u8 ∗const length)

This function copies current configuration in a reserved area.
• l_u8 ld_set_configuration (l_ifc_handle iii, const l_u8 ∗const data, l_u16 length)

This function configures slave node according to data.
• void ld_assign_NAD (l_ifc_handle iii, l_u8 initial_NAD, l_u16 supplier_id, l_u16 function_id, l_u8 new_NAD)

This call assigns the NAD (node diagnostic address) of all slave nodes that matches the initial_NAD, the supplier ID
and the function ID. Master node only.

• void ld_conditional_change_NAD (l_ifc_handle iii, l_u8 NAD, l_u8 id, l_u8 byte_data, l_u8 mask, l_u8 invert,
l_u8 new_NAD)

This call changes the NAD if the node properties fulfill the test specified by id, byte, mask and invert. Master node
only.

14.72.2 Function Documentation

14.72.2.1 void ld_assign_frame_id_range (l_ifc_handle iii, l_u8 NAD, l_u8 start_index, const l_u8 ∗const PIDs)

This function assigns the protected identifier of up to four frames.

Parameters

in iii lin interface handle
in NAD Node address value of the target node
in start_index specifies which is the first frame to assign a PID
in PIDs list of protected identifier

Returns

void

This API is available for master interfaces only

Definition at line 136 of file lin_diagnostic_service.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.72 Node configuration 647

14.72.2.2 void ld_assign_NAD (l_ifc_handle iii, l_u8 initial_NAD, l_u16 supplier_id, l_u16 function_id, l_u8 new_NAD)

This call assigns the NAD (node diagnostic address) of all slave nodes that matches the initial_NAD, the supplier ID
and the function ID. Master node only.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

648 CONTENTS

Parameters

in iii LIN interface handle
in initial_NAD Initial node address of the target node
in supplier_id Supplier ID of the target node
in function_id Function identifier of the target node
in new_NAD New node address

Returns

void

This call assigns the NAD (node diagnostic address) of all slave nodes that matches the initial_NAD, the supplier ID
and the function ID. The new NAD of the slave node will be new_NAD. This function is used for master node only.

Definition at line 860 of file lin_diagnostic_service.c.

14.72.2.3 void ld_check_response (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

This call returns the result of the last node configuration service, in the parameters RSID and error_code. A value
in RSID is always returned but not always in the error_code. Default values for RSID and error_code is 0 (zero).

For slave interfaces ld_check_response shall do nothing

Parameters

in iii lin interface handle
out RSID buffer for saving the response ID
out error_code buffer for saving the error code

This API is available for master interfaces only

Definition at line 106 of file lin_diagnostic_service.c.

14.72.2.4 void ld_conditional_change_NAD (l_ifc_handle iii, l_u8 NAD, l_u8 id, l_u8 byte_data, l_u8 mask, l_u8 invert, l_u8
new_NAD)

This call changes the NAD if the node properties fulfill the test specified by id, byte, mask and invert. Master node
only.

Parameters

in iii :LIN interface handle
in NAD Current NAD value of the target node
in id Property ID of the target node
in byte Byte location of property value to be read from the target node
in mask Value for masking the read property byte
in invert Value for excluding the read property byte
in new_NAD New NAD value to be assigned when the condition is met

Returns

void

This call changes the NAD if the node properties fulfill the test specified by id, byte, mask and invert.

Definition at line 902 of file lin_diagnostic_service.c.

14.72.2.5 l_u8 ld_is_ready (l_ifc_handle iii)

This call returns the status of the last requested configuration service.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.72 Node configuration 649

Parameters

in iii lin interface handle

Returns

LD_SERVICE_BUSY Service is ongoing.
LD_REQUEST_FINISHED The configuration request has been completed. This is a intermediate status be-
tween the configuration request and configuration response.
LD_SERVICE_IDLE The configuration request/response combination has been completed, i.e. the response
is valid and may be analyzed. Also, this value is returned if no request has yet been called.
LD_SERVICE_ERROR The configuration request or response experienced an error. Error here means error
on the bus, and not a negative configuration response from the slave node.

Definition at line 80 of file lin_diagnostic_service.c.

14.72.2.6 l_u8 ld_read_configuration (l_ifc_handle iii, l_u8 ∗const data, l_u8 ∗const length)

This function copies current configuration in a reserved area.

Parameters

in iii Lin interface handle
out data Data area to save configuration,
out length Length of data area (1 + n, NAD + PIDs)

Returns

LD_READ_OK If the service was successful.
LD_LENGTH_TOO_SHORT If the configuration size is greater than the length. It means that the data area
does not contain a valid configuration.

This function is implemented Slave Only. Set the expected length value to EXP = NN + NF, where : NN = the number
of NAD. NF = the number of configurable frames; Moreover: Not taken PID's diagnostics frame: 3C, 3D

Definition at line 438 of file lin_diagnostic_service.c.

14.72.2.7 void ld_save_configuration (l_ifc_handle iii, l_u8 NAD)

This function to issue a save configuration request to a slave node.

Parameters

in iii Interface name
in NAD Node address of target

Returns

void

This function is available for master nodes only. This function is available for all diagnostic classes and only for
LIN2.1 and above. This function is called to send a save configuration request to a specific slave node with the
given NAD, or to all slave nodes if NAD is set to broadcast This function is implemented for Master Only.

Definition at line 178 of file lin_diagnostic_service.c.

14.72.2.8 l_u8 ld_set_configuration (l_ifc_handle iii, const l_u8 ∗const data, l_u16 length)

This function configures slave node according to data.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

650 CONTENTS

Parameters

in iii Lin interface handle
in data Structure containing the NAD and all the n PIDs for the frames of the specified

NAD,
in length Length of data area (1 + n, NAD + PIDs)

Returns

LD_SET_OK If the service was successful
LD_LENGTH_NOT_CORRECT If the required size of the configuration is not equal to the given length.
LD_DATA_ERROR The set of configuration could not be made.

This function is implemented Slave Only. Set the expected length value to EXP = NN + NF, where : NN = the number
of NAD. NF = the number of configurable frames; Moreover: Not taken PID's diagnostics frame: 3C, 3D

Definition at line 503 of file lin_diagnostic_service.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.73 Node configuration 651

14.73 Node configuration

14.73.1 Detailed Description

This group contains APIs that used for node configuration purpose.

Functions

• l_bool ld_is_ready_j2602 (l_ifc_handle iii)

Verifies a state of node setting (using for J2602 and LIN 2.0).

• l_u8 ld_check_response_j2602 (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

Verifies the state of response (using for J2602 and LIN 2.0) Master node only.

• void ld_assign_frame_id (l_ifc_handle iii, l_u8 NAD, l_u16 supplier_id, l_u16 message_id, l_u8 PID)

This function assigns the protected identifier to a slave node with the address NAD and specified supplier id (using
for J2602 and LIN 2.0). Master node only.

• l_bool ld_assign_NAD_j2602 (l_ifc_handle iii, l_u8 dnn)

This function assigns NAD of a J2602 slave device based on input DNN that is Device Node Number. NAD is (0x60+
DNN).

• l_bool ld_reconfig_msg_ID (l_ifc_handle iii, l_u8 dnn)

This function reconfigures frame identifiers of a J2602 slave node based on input dnn.

14.73.2 Function Documentation

14.73.2.1 void ld_assign_frame_id (l_ifc_handle iii, l_u8 NAD, l_u16 supplier_id, l_u16 message_id, l_u8 PID)

This function assigns the protected identifier to a slave node with the address NAD and specified supplier id (using
for J2602 and LIN 2.0). Master node only.

Parameters

in iii LIN interface handle
in initial_NAD Initial node address of the target node
in supplier_id Supplier ID of the target node
in message_id Message ID of the target node
in PID Protected ID of the target node

Returns

void

Definition at line 1516 of file lin_diagnostic_service.c.

14.73.2.2 l_bool ld_assign_NAD_j2602 (l_ifc_handle iii, l_u8 dnn)

This function assigns NAD of a J2602 slave device based on input DNN that is Device Node Number. NAD is (0x60+
DNN).

Parameters

in iii LIN interface handle
in dnn DNN of the device

Returns

l_bool: 0: successful: New Configured NAD is 0x60 + DNN
l_bool: 1: Unsuccesfull: for either one of the following reasons:

• The protocol of this interface is not J2602

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

652 CONTENTS

• This device is a Master node in this interface

• The input DNN is greater than 0xD that is invalid

Definition at line 1558 of file lin_diagnostic_service.c.

14.73.2.3 l_u8 ld_check_response_j2602 (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

Verifies the state of response (using for J2602 and LIN 2.0) Master node only.

Parameters

in iii LIN interface handle
out RSID buffer for saving the response ID
out error_code buffer for saving the error code

Returns

l_u8 status of the last service

Definition at line 1472 of file lin_diagnostic_service.c.

14.73.2.4 l_bool ld_is_ready_j2602 (l_ifc_handle iii)

Verifies a state of node setting (using for J2602 and LIN 2.0).

Parameters

in iii LIN interface handle

Returns

l_bool

Definition at line 1445 of file lin_diagnostic_service.c.

14.73.2.5 l_bool ld_reconfig_msg_ID (l_ifc_handle iii, l_u8 dnn)

This function reconfigures frame identifiers of a J2602 slave node based on input dnn.

Parameters

in iii LIN interface handle
in dnn DNN of the device

Returns

l_bool: 0: successful: Frame Identifiers were reconfigured based on input DNN according to NAD Message
ID mapping table.
l_bool: 1: Unsuccesfull: for either one of the following reasons:

• The protocol of this interface is not J2602

• This device is a Master node in this interface

• The input DNN is greater than 0xD that is invalid

• The slave has more than 16 configurable frames

• The slave has 9-16 configurable frames, and dnn is 0xC or 0xD

• The slave has 5-8 configurable frames, and dnn is not 0x00, 0x2, 0x4, 0x6, 0x8, 0xA, 0xC.

Definition at line 1587 of file lin_diagnostic_service.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.74 Node identification 653

14.74 Node identification

14.74.1 Detailed Description

This group contains API that used for node identification purpose.

Read by identifier service just support id 0 and 1. User can implement for other id by modify function ld_read_by←↩

_id_callout in generated file lin_cfg.c.

Functions

• void ld_read_by_id (l_ifc_handle iii, l_u8 NAD, l_u16 supplier_id, l_u16 function_id, l_u8 id, lin_product_id_t
∗const data)

The call requests the slave node selected with the NAD to return the property associated with the id parameter.
Master node only.

14.74.2 Function Documentation

14.74.2.1 void ld_read_by_id (l_ifc_handle iii, l_u8 NAD, l_u16 supplier_id, l_u16 function_id, l_u8 id, lin_product_id_t
∗const data)

The call requests the slave node selected with the NAD to return the property associated with the id parameter.
Master node only.

Parameters

in iii LIN interface handle
in NAD Value of the target node
in supplier_id Supplier ID of the target node
in function_id Function ID of the target node
in id ID of the target node
out data Buffer for saving the data read from the node

Returns

void

The call requests the slave node selected with the NAD to return the property associated with the id parameter.

Definition at line 950 of file lin_diagnostic_service.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

654 CONTENTS

14.75 Notification

This group contains APIs that let users know when a signal's value changed.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.76 OS Interface (OSIF) 655

14.76 OS Interface (OSIF)

14.76.1 Detailed Description

OS Interface Layer (OSIF)

This module is for SDK internal use only. It provides an abstract OS interface to SDK drivers (even if no OS is
present) for basic OS operations (mutex and semaphore handling and time delay service).

FreeRTOS

A compile-time symbol, USING_OS_FREERTOS, needs to be defined.

FreeRTOSConfig.h necessities

FreeRTOS configuration file needs to have these options activated:

• INCLUDE_xQueueGetMutexHolder

• INCLUDE_xTaskGetCurrentTaskHandle

Bare-metal

If no OS is present, the corresponding bare-metal version of OSIF needs to be linked.

Mutex operations are dummy operations (always return success) and semaphore is implemented as a simple
counter.

Time delay is implemented using the core Systick timer.

Constraints

To correctly measure time, a hardware timer is required. The Systick is employed for this purpose. As a conse-
quence, the Systick timer is a blocked resource to the user application.

Macros

• #define OSIF_WAIT_FOREVER 0xFFFFFFFFu

Functions

• void OSIF_TimeDelay (const uint32_t delay)

Delays execution for a number of milliseconds.

• uint32_t OSIF_GetMilliseconds (void)

Returns the number of miliseconds elapsed since starting the internal timer or starting the scheduler.

• status_t OSIF_MutexLock (const mutex_t ∗const pMutex, const uint32_t timeout)

Waits for a mutex and locks it.

• status_t OSIF_MutexUnlock (const mutex_t ∗const pMutex)

Unlocks a previously locked mutex.

• status_t OSIF_MutexCreate (mutex_t ∗const pMutex)

Create an unlocked mutex.

• status_t OSIF_MutexDestroy (const mutex_t ∗const pMutex)

Destroys a previously created mutex.

• status_t OSIF_SemaWait (semaphore_t ∗const pSem, const uint32_t timeout)

Decrement a semaphore with timeout.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

656 CONTENTS

• status_t OSIF_SemaPost (semaphore_t ∗const pSem)

Increment a semaphore.

• status_t OSIF_SemaCreate (semaphore_t ∗const pSem, const uint8_t initValue)

Creates a semaphore with a given value.

• status_t OSIF_SemaDestroy (const semaphore_t ∗const pSem)

Destroys a previously created semaphore.

14.76.2 Macro Definition Documentation

14.76.2.1 #define OSIF_WAIT_FOREVER 0xFFFFFFFFu

Definition at line 65 of file osif.h.

14.76.3 Function Documentation

14.76.3.1 uint32_t OSIF_GetMilliseconds (void)

Returns the number of miliseconds elapsed since starting the internal timer or starting the scheduler.

Returns

the number of miliseconds elapsed

Definition at line 225 of file osif_baremetal.c.

14.76.3.2 status_t OSIF_MutexCreate (mutex_t ∗const pMutex)

Create an unlocked mutex.

Parameters

in pMutex reference to the mutex object

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex created

• STATUS_ERROR: mutex could not be created

Definition at line 273 of file osif_baremetal.c.

14.76.3.3 status_t OSIF_MutexDestroy (const mutex_t ∗const pMutex)

Destroys a previously created mutex.

Parameters

in pMutex reference to the mutex object

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex destroyed

Definition at line 287 of file osif_baremetal.c.

14.76.3.4 status_t OSIF_MutexLock (const mutex_t ∗const pMutex, const uint32_t timeout)

Waits for a mutex and locks it.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.76 OS Interface (OSIF) 657

Parameters

in pMutex reference to the mutex object
in timeout time-out value in milliseconds

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex lock operation success

• STATUS_ERROR: mutex already owned by current thread

• STATUS_TIMEOUT: mutex lock operation timed out

Definition at line 243 of file osif_baremetal.c.

14.76.3.5 status_t OSIF_MutexUnlock (const mutex_t ∗const pMutex)

Unlocks a previously locked mutex.

Parameters

in pMutex reference to the mutex object

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex unlock operation success

• STATUS_ERROR: mutex unlock failed

Definition at line 259 of file osif_baremetal.c.

14.76.3.6 status_t OSIF_SemaCreate (semaphore_t ∗const pSem, const uint8_t initValue)

Creates a semaphore with a given value.

Parameters

in pSem reference to the semaphore object
in initValue initial value of the semaphore

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore created

• STATUS_ERROR: semaphore could not be created

Definition at line 379 of file osif_baremetal.c.

14.76.3.7 status_t OSIF_SemaDestroy (const semaphore_t ∗const pSem)

Destroys a previously created semaphore.

Parameters

in pSem reference to the semaphore object

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore destroyed

Definition at line 397 of file osif_baremetal.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

658 CONTENTS

14.76.3.8 status_t OSIF_SemaPost (semaphore_t ∗const pSem)

Increment a semaphore.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.76 OS Interface (OSIF) 659

Parameters

in pSem reference to the semaphore object

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore post operation success

• STATUS_ERROR: semaphore could not be incremented

Definition at line 352 of file osif_baremetal.c.

14.76.3.9 status_t OSIF_SemaWait (semaphore_t ∗const pSem, const uint32_t timeout)

Decrement a semaphore with timeout.

Parameters

in pSem reference to the semaphore object
in timeout time-out value in milliseconds

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore wait operation success

• STATUS_TIMEOUT: semaphore wait timed out

Definition at line 301 of file osif_baremetal.c.

14.76.3.10 void OSIF_TimeDelay (const uint32_t delay)

Delays execution for a number of milliseconds.

Parameters

in delay Time delay in milliseconds.

Definition at line 200 of file osif_baremetal.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

660 CONTENTS

14.77 PDB Driver

14.77.1 Detailed Description

Programmable Delay Block Peripheral Driver.

Overview

This section describes the programming interface of the PDB Peripheral driver. The PDB peripheral driver configures
the PDB (Programmable Delay Block). It handles the triggers for ADC and pulse out to the CMP and the PDB
counter.

PDB Driver model building

There is one main PDB counter for all triggers. When the indicated external trigger input arrives, the PDB counter
launches and is increased by setting clock. The counter trigger milestones for ADC and the PDB counter and wait for
the PDB counter. Once the PDB counter hits each milestone, also called the critical delay value, the corresponding
event is triggered and the trigger signal is sent out to trigger other peripherals. Therefore, the PDB module is a
collector and manager of triggers.

PDB Initialization

The core feature of the PDB module is a programmable timer/counter. Additional features enable and set the
milestone for the corresponding trigger. The user should provide a configuration suitable for the application require-
ments. Call the API of PDB_DRV_Init() function to initialize the PDB timer/counter.

All triggers share the same counter.

The basic timing/counting step is set when initializing the main PDB counter:

The basic timing/counting step = F_BusClkHz / pdb_timer_config_t.clkPreDiv / pdb_timer_config_t.clkPreMultFactor

The F_BusClkHz is the frequency of bus clock in Hertz. The "clkPreDiv" and "clkPreMultFactor" are in the pdb_←↩

timer_config_t structure. All triggering milestones are based on this step.

PDB Call diagram

Three kinds of typical use cases are designed for the PDB module.

• Normal Timer/Counter. Normal Timer/Counter is the basic case. The Timer/Counter starts after the PDB is
initialized and the milestone for the PDB Timer/Counter is set. After it is triggered and when the counter hits
the milestone, the interrupt request occurs if enabled. In continuous mode, when the counter hits the upper
limit, it returns zero and counts again.

• Trigger for ADC module. When the ADC trigger is enabled, a delay value for ADC trigger is set as the
milestone. At least two ADC channel groups are provided. Likewise, there are more than two pre-triggers for
ADC. Each pre-trigger is related to one channel group and can be enabled separately in the PDB module.
When the PDB counter hits the milestone for the ADC pre-trigger, it triggers the ADC's conversion on the
indicated channel group. To maximize the feature, the ADC should be configured to enable the hardware
trigger mode.

• Trigger for pulse out to the CMP module. The pulse-out trigger is attached to the main PDB counter. There
are two milestones for each pulse out channel, a milestone for level high and for level low, which makes a
sample window for the CMP module.

These are the examples to initialize and configure the PDB driver for typical use cases.

Normal Timer/Counter:

#define PDB_INSTANCE 0UL

static volatile uint32_t gPdbIntCounter = 0U;
static volatile uint32_t gPdbInstance = 0U;
static void PDB_ISR_Counter(void);

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.77 PDB Driver 661

void PDB_TEST_NormalTimer(uint32_t instance)
{

pdb_timer_config_t PdbTimerConfig;
PdbTimerConfig.loadValueMode = PDB_LOAD_VAL_IMMEDIATELY;
PdbTimerConfig.seqErrIntEnable = false;
PdbTimerConfig.clkPreDiv = PDB_CLK_PREDIV_BY_8;
PdbTimerConfig.clkPreMultFactor =

PDB_CLK_PREMULT_FACT_AS_40;
PdbTimerConfig.triggerInput = PDB_SOFTWARE_TRIGGER;
PdbTimerConfig.continuousModeEnable = true;
PdbTimerConfig.dmaEnable = false;
PdbTimerConfig.intEnable = true;
PDB_DRV_Init(instance, &PdbTimerConfig);
PDB_DRV_SetTimerModulusValue(instance, 0xFFFU);
PDB_DRV_SetValueForTimerInterrupt(instance, 0xFFU);
PDB_DRV_LoadValuesCmd(instance);
gPdbIntCounter = 0U;
gPdbInstance = instance;
PDB_DRV_SoftTriggerCmd(instance);
while (gPdbIntCounter < 20U) {}
PRINTF("PDB Timer’s delay interrupt generated.\r\n");
PDB_DRV_Deinit(instance);
PRINTF("OK.\r\n");

}

void PDB_IRQHandler()
{

PDB_DRV_ClearTimerIntFlag(PDB_INSTANCE);
if (gPdbIntCounter >= 0xFFFFU)
{

gPdbIntCounter = 0U;
}
else
{

gPdbIntCounter++;
}

}

#if PDB_INSTANCE < 1
void PDB0_IRQHandler(void)
{

PDB_IRQHandler();
}

#elif PDB_INSTANCE < 2
void PDB1_IRQHandler(void)
{

PDB_IRQHandler();
}

#endif

Trigger for ADC module:

void PDB_TEST_AdcPreTrigger(uint32_t instance)
{

pdb_timer_config_t PdbTimerConfig;
pdb_adc_pretrigger_config_t PdbAdcPreTriggerConfig;
PdbTimerConfig.loadValueMode = PDB_LOAD_VAL_IMMEDIATELY;
PdbTimerConfig.seqErrIntEnable = false;
PdbTimerConfig.clkPreDiv = PDB_CLK_PREDIV_BY_8;
PdbTimerConfig.clkPreMultFactor =

PDB_CLK_PREMULT_FACT_AS_40;
PdbTimerConfig.triggerInput = PDB_SOFTWARE_TRIGGER;
PdbTimerConfig.continuousModeEnable = false;
PdbTimerConfig.dmaEnable = false;
PdbTimerConfig.intEnable = false;
PDB_DRV_Init(instance, &PdbTimerConfig);

PdbAdcPreTriggerConfig.adcPreTriggerIdx = 0U;
PdbAdcPreTriggerConfig.preTriggerEnable = true;
PdbAdcPreTriggerConfig.preTriggerOutputEnable = true;
PdbAdcPreTriggerConfig.preTriggerBackToBackEnable = false;
PDB_DRV_ConfigAdcPreTrigger(instance, 0U, &PdbAdcPreTriggerConfig);

PDB_DRV_SetTimerModulusValue(instance, 0xFFFU);
PDB_DRV_SetAdcPreTriggerDelayValue(instance, 0U, 0U, 0xFFU);
PDB_DRV_LoadValuesCmd(instance);
PDB_DRV_SoftTriggerCmd(instance);
while (1U != PDB_DRV_GetAdcPreTriggerFlags(instance, 0U, 1U)) {}
PDB_DRV_ClearAdcPreTriggerFlags(instance, 0U, 1U);
PRINTF("PDB ADC PreTrigger generated.\r\n");
PDB_DRV_Deinit(instance);
PRINTF("OK.\r\n");

}

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

662 CONTENTS

Data Structures

• struct pdb_timer_config_t

Defines the type of structure for basic timer in PDB. More...

• struct pdb_adc_pretrigger_config_t

Defines the type of structure for configuring ADC's pre_trigger. More...

Enumerations

• enum pdb_load_value_mode_t { PDB_LOAD_VAL_IMMEDIATELY = 0U, PDB_LOAD_VAL_AT_MODUL←↩

O_COUNTER = 1U, PDB_LOAD_VAL_AT_NEXT_TRIGGER = 2U, PDB_LOAD_VAL_AT_MODULO_CO←↩

UNTER_OR_NEXT_TRIGGER = 3U }

Defines the type of value load mode for the PDB module.

• enum pdb_clk_prescaler_div_t {
PDB_CLK_PREDIV_BY_1 = 0U, PDB_CLK_PREDIV_BY_2 = 1U, PDB_CLK_PREDIV_BY_4 = 2U, PDB_←↩

CLK_PREDIV_BY_8 = 3U,
PDB_CLK_PREDIV_BY_16 = 4U, PDB_CLK_PREDIV_BY_32 = 5U, PDB_CLK_PREDIV_BY_64 = 6U, P←↩

DB_CLK_PREDIV_BY_128 = 7U }

Defines the type of prescaler divider for the PDB counter clock. Implements : pdb_clk_prescaler_div_t_Class.

• enum pdb_trigger_src_t {
PDB_TRIGGER_0 = 0U, PDB_TRIGGER_1 = 1U, PDB_TRIGGER_2 = 2U, PDB_TRIGGER_3 = 3U,
PDB_TRIGGER_4 = 4U, PDB_TRIGGER_5 = 5U, PDB_TRIGGER_6 = 6U, PDB_TRIGGER_7 = 7U,
PDB_TRIGGER_8 = 8U, PDB_TRIGGER_9 = 9U, PDB_TRIGGER_10 = 10U, PDB_TRIGGER_11 = 11U,
PDB_TRIGGER_12 = 12U, PDB_TRIGGER_13 = 13U, PDB_TRIGGER_14 = 14U, PDB_SOFTWARE_T←↩

RIGGER = 15U }

Defines the type of trigger source mode for the PDB.

• enum pdb_clk_prescaler_mult_factor_t { PDB_CLK_PREMULT_FACT_AS_1 = 0U, PDB_CLK_PREMUL←↩

T_FACT_AS_10 = 1U, PDB_CLK_PREMULT_FACT_AS_20 = 2U, PDB_CLK_PREMULT_FACT_AS_40 =
3U }

Defines the type of the multiplication source mode for PDB.

Functions

• void PDB_DRV_Init (const uint32_t instance, const pdb_timer_config_t ∗userConfigPtr)

Initializes the PDB counter and triggers input.

• void PDB_DRV_Deinit (const uint32_t instance)

De-initializes the PDB module.

• void PDB_DRV_SoftTriggerCmd (const uint32_t instance)

Triggers the PDB with a software trigger.

• uint32_t PDB_DRV_GetTimerValue (const uint32_t instance)

Gets the current counter value in the PDB module.

• bool PDB_DRV_GetTimerIntFlag (const uint32_t instance)

Gets the PDB interrupt flag.

• void PDB_DRV_ClearTimerIntFlag (const uint32_t instance)

Clears the interrupt flag.

• void PDB_DRV_LoadValuesCmd (const uint32_t instance)

Executes the command of loading values.

• void PDB_DRV_SetTimerModulusValue (const uint32_t instance, const uint32_t value)

Sets the value of timer modulus.

• void PDB_DRV_SetValueForTimerInterrupt (const uint32_t instance, const uint32_t value)

Sets the value for the timer interrupt.

• void PDB_DRV_ConfigAdcPreTrigger (const uint32_t instance, const uint32_t chn, const pdb_adc_←↩

pretrigger_config_t ∗configPtr)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.77 PDB Driver 663

Configures the ADC pre_trigger in the PDB module.

• uint32_t PDB_DRV_GetAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_←↩

t preChnMask)

Gets the ADC pre_trigger flag in the PDB module.

• void PDB_DRV_ClearAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_t pre←↩

ChnMask)

Clears the ADC pre_trigger flag in the PDB module.

• uint32_t PDB_DRV_GetAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const
uint32_t preChnMask)

Gets the ADC pre_trigger flag in the PDB module.

• void PDB_DRV_ClearAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const uint32←↩

_t preChnMask)

Clears the ADC pre_trigger flag in the PDB module.

• void PDB_DRV_SetAdcPreTriggerDelayValue (const uint32_t instance, const uint32_t chn, const uint32_t
preChn, const uint32_t value)

Sets the ADC pre_trigger delay value in the PDB module.

• void PDB_DRV_SetCmpPulseOutEnable (const uint32_t instance, const uint32_t pulseChnMask, bool en-
able)

Switches on/off the CMP pulse out in the PDB module.

• void PDB_DRV_SetCmpPulseOutDelayForHigh (const uint32_t instance, const uint32_t pulseChn, const
uint32_t value)

Sets the CMP pulse out delay value for high in the PDB module.

• void PDB_DRV_SetCmpPulseOutDelayForLow (const uint32_t instance, const uint32_t pulseChn, const
uint32_t value)

Sets the CMP pulse out delay value for low in the PDB module.

14.77.2 Data Structure Documentation

14.77.2.1 struct pdb_timer_config_t

Defines the type of structure for basic timer in PDB.

Definition at line 120 of file pdb_driver.h.

Data Fields

• pdb_load_value_mode_t loadValueMode
• bool seqErrIntEnable
• pdb_clk_prescaler_div_t clkPreDiv
• pdb_clk_prescaler_mult_factor_t clkPreMultFactor
• pdb_trigger_src_t triggerInput
• bool continuousModeEnable
• bool dmaEnable
• bool intEnable

Field Documentation

14.77.2.1.1 pdb_clk_prescaler_div_t clkPreDiv

Select the prescaler divider.

Definition at line 124 of file pdb_driver.h.

14.77.2.1.2 pdb_clk_prescaler_mult_factor_t clkPreMultFactor

Select multiplication factor for prescaler.

Definition at line 125 of file pdb_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

664 CONTENTS

14.77.2.1.3 bool continuousModeEnable

Enable the continuous mode.

Definition at line 127 of file pdb_driver.h.

14.77.2.1.4 bool dmaEnable

Enable the dma for timer.

Definition at line 128 of file pdb_driver.h.

14.77.2.1.5 bool intEnable

Enable the interrupt for timer.

Definition at line 129 of file pdb_driver.h.

14.77.2.1.6 pdb_load_value_mode_t loadValueMode

Select the load mode.

Definition at line 122 of file pdb_driver.h.

14.77.2.1.7 bool seqErrIntEnable

Enable PDB Sequence Error Interrupt.

Definition at line 123 of file pdb_driver.h.

14.77.2.1.8 pdb_trigger_src_t triggerInput

Select the trigger input source.

Definition at line 126 of file pdb_driver.h.

14.77.2.2 struct pdb_adc_pretrigger_config_t

Defines the type of structure for configuring ADC's pre_trigger.

Definition at line 137 of file pdb_driver.h.

Data Fields

• uint32_t adcPreTriggerIdx
• bool preTriggerEnable
• bool preTriggerOutputEnable
• bool preTriggerBackToBackEnable

Field Documentation

14.77.2.2.1 uint32_t adcPreTriggerIdx

Setting pre_trigger's index.

Definition at line 139 of file pdb_driver.h.

14.77.2.2.2 bool preTriggerBackToBackEnable

Enable the back to back mode for ADC pre_trigger.

Definition at line 142 of file pdb_driver.h.

14.77.2.2.3 bool preTriggerEnable

Enable the pre_trigger.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.77 PDB Driver 665

Definition at line 140 of file pdb_driver.h.

14.77.2.2.4 bool preTriggerOutputEnable

Enable the pre_trigger output.

Definition at line 141 of file pdb_driver.h.

14.77.3 Enumeration Type Documentation

14.77.3.1 enum pdb_clk_prescaler_div_t

Defines the type of prescaler divider for the PDB counter clock. Implements : pdb_clk_prescaler_div_t_Class.

Enumerator

PDB_CLK_PREDIV_BY_1 Counting divided by multiplication factor selected by MULT.

PDB_CLK_PREDIV_BY_2 Counting divided by multiplication factor selected by 2 times ofMULT.

PDB_CLK_PREDIV_BY_4 Counting divided by multiplication factor selected by 4 times ofMULT.

PDB_CLK_PREDIV_BY_8 Counting divided by multiplication factor selected by 8 times ofMULT.

PDB_CLK_PREDIV_BY_16 Counting divided by multiplication factor selected by 16 times ofMULT.

PDB_CLK_PREDIV_BY_32 Counting divided by multiplication factor selected by 32 times ofMULT.

PDB_CLK_PREDIV_BY_64 Counting divided by multiplication factor selected by 64 times ofMULT.

PDB_CLK_PREDIV_BY_128 Counting divided by multiplication factor selected by 128 times ofMULT.

Definition at line 61 of file pdb_driver.h.

14.77.3.2 enum pdb_clk_prescaler_mult_factor_t

Defines the type of the multiplication source mode for PDB.

Selects the multiplication factor of the prescaler divider for the PDB counter clock. Implements : pdb_clk_←↩

prescaler_mult_factor_t_Class

Enumerator

PDB_CLK_PREMULT_FACT_AS_1 Multiplication factor is 1.

PDB_CLK_PREMULT_FACT_AS_10 Multiplication factor is 10.

PDB_CLK_PREMULT_FACT_AS_20 Multiplication factor is 20.

PDB_CLK_PREMULT_FACT_AS_40 Multiplication factor is 40.

Definition at line 106 of file pdb_driver.h.

14.77.3.3 enum pdb_load_value_mode_t

Defines the type of value load mode for the PDB module.

Some timing related registers, such as the MOD, IDLY, CHnDLYm, INTx and POyDLY, buffer the setting values.
Only the load operation is triggered. The setting value is loaded from a buffer and takes effect. There are four
loading modes to fit different applications. Implements : pdb_load_value_mode_t_Class

Enumerator

PDB_LOAD_VAL_IMMEDIATELY Loaded immediately after load operation.

PDB_LOAD_VAL_AT_MODULO_COUNTER Loaded when counter hits the modulo after load operation.

PDB_LOAD_VAL_AT_NEXT_TRIGGER Loaded when detecting an input trigger after load operation.

PDB_LOAD_VAL_AT_MODULO_COUNTER_OR_NEXT_TRIGGER Loaded when counter hits the modulo
or detecting an input trigger after load operation.

Definition at line 45 of file pdb_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

666 CONTENTS

14.77.3.4 enum pdb_trigger_src_t

Defines the type of trigger source mode for the PDB.

Selects the trigger input source for the PDB. The trigger input source can be internal or external (EXTRG pin), or
the software trigger. Implements : pdb_trigger_src_t_Class

Enumerator

PDB_TRIGGER_0 Select trigger-In 0.

PDB_TRIGGER_1 Select trigger-In 1.

PDB_TRIGGER_2 Select trigger-In 2.

PDB_TRIGGER_3 Select trigger-In 3.

PDB_TRIGGER_4 Select trigger-In 4.

PDB_TRIGGER_5 Select trigger-In 5.

PDB_TRIGGER_6 Select trigger-In 6.

PDB_TRIGGER_7 Select trigger-In 7.

PDB_TRIGGER_8 Select trigger-In 8.

PDB_TRIGGER_9 Select trigger-In 8.

PDB_TRIGGER_10 Select trigger-In 10.

PDB_TRIGGER_11 Select trigger-In 11.

PDB_TRIGGER_12 Select trigger-In 12.

PDB_TRIGGER_13 Select trigger-In 13.

PDB_TRIGGER_14 Select trigger-In 14.

PDB_SOFTWARE_TRIGGER Select software trigger.

Definition at line 80 of file pdb_driver.h.

14.77.4 Function Documentation

14.77.4.1 void PDB_DRV_ClearAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_t preChnMask)

Clears the ADC pre_trigger flag in the PDB module.

This function clears the ADC pre_trigger flags in the PDB module.

Parameters

in instance PDB instance ID.
in chn ADC channel.
in preChnMask ADC pre_trigger channels mask.

Definition at line 274 of file pdb_driver.c.

14.77.4.2 void PDB_DRV_ClearAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const uint32_t
preChnMask)

Clears the ADC pre_trigger flag in the PDB module.

This function clears the ADC pre_trigger sequence error flags in the PDB module.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.77 PDB Driver 667

in instance PDB instance ID.
in chn ADC channel.
in preChnMask ADC pre_trigger channels mask.

Definition at line 310 of file pdb_driver.c.

14.77.4.3 void PDB_DRV_ClearTimerIntFlag (const uint32_t instance)

Clears the interrupt flag.

This function clears the interrupt flag.

Parameters

in instance PDB instance ID.

Definition at line 173 of file pdb_driver.c.

14.77.4.4 void PDB_DRV_ConfigAdcPreTrigger (const uint32_t instance, const uint32_t chn, const
pdb_adc_pretrigger_config_t ∗ configPtr)

Configures the ADC pre_trigger in the PDB module.

This function configures the ADC pre_trigger in the PDB module.

Parameters

in instance PDB instance ID.
in chn ADC channel.
in configPtr Pointer to the user configuration structure. See the "pdb_adc_pretrigger_←↩

config_t".

Definition at line 235 of file pdb_driver.c.

14.77.4.5 void PDB_DRV_Deinit (const uint32_t instance)

De-initializes the PDB module.

This function de-initializes the PDB module. Calling this function shuts down the PDB module and reduces the
power consumption.

Parameters

in instance PDB instance ID.

Definition at line 109 of file pdb_driver.c.

14.77.4.6 uint32_t PDB_DRV_GetAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_t preChnMask
)

Gets the ADC pre_trigger flag in the PDB module.

This function gets the ADC pre_trigger flags in the PDB module.

Parameters

in instance PDB instance ID.
in chn ADC channel.
in preChnMask ADC pre_trigger channels mask.

Returns

Assertion of indicated flag.

Definition at line 256 of file pdb_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

668 CONTENTS

14.77.4.7 uint32_t PDB_DRV_GetAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const uint32_t
preChnMask)

Gets the ADC pre_trigger flag in the PDB module.

This function gets the ADC pre_trigger flags in the PDB module.

Parameters

in instance PDB instance ID.
in chn ADC channel.
in preChnMask ADC pre_trigger channels mask.

Returns

Assertion of indicated flag.

Definition at line 292 of file pdb_driver.c.

14.77.4.8 bool PDB_DRV_GetTimerIntFlag (const uint32_t instance)

Gets the PDB interrupt flag.

This function gets the PDB interrupt flag. It is asserted if the PDB interrupt occurs.

Parameters

in instance PDB instance ID.

Returns

Assertion of indicated event.

Definition at line 158 of file pdb_driver.c.

14.77.4.9 uint32_t PDB_DRV_GetTimerValue (const uint32_t instance)

Gets the current counter value in the PDB module.

This function gets the current counter value.

Parameters

in instance PDB instance ID.

Returns

Current PDB counter value.

Definition at line 142 of file pdb_driver.c.

14.77.4.10 void PDB_DRV_Init (const uint32_t instance, const pdb_timer_config_t ∗ userConfigPtr)

Initializes the PDB counter and triggers input.

This function initializes the PDB counter and triggers the input. It resets PDB registers and enables the PDB clock.
Therefore, it should be called before any other operation. After it is initialized, the PDB can act as a triggered timer,
which enables other features in PDB module.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.77 PDB Driver 669

Parameters

in instance PDB instance ID.
in userConfigPtr Pointer to the user configuration structure. See the "pdb_user_config_t".

Definition at line 63 of file pdb_driver.c.

14.77.4.11 void PDB_DRV_LoadValuesCmd (const uint32_t instance)

Executes the command of loading values.

This function executes the command of loading values.

Parameters

in instance PDB instance ID.

Definition at line 188 of file pdb_driver.c.

14.77.4.12 void PDB_DRV_SetAdcPreTriggerDelayValue (const uint32_t instance, const uint32_t chn, const uint32_t preChn,
const uint32_t value)

Sets the ADC pre_trigger delay value in the PDB module.

This function sets Set the ADC pre_trigger delay value in the PDB module.

Parameters

instance PDB instance ID.
chn ADC channel.

preChn ADC pre_channel.
value Setting value.

Definition at line 328 of file pdb_driver.c.

14.77.4.13 void PDB_DRV_SetCmpPulseOutDelayForHigh (const uint32_t instance, const uint32_t pulseChn, const uint32_t
value)

Sets the CMP pulse out delay value for high in the PDB module.

This function sets the CMP pulse out delay value for high in the PDB module.

Parameters

in instance PDB instance ID.
in pulseChn Pulse channel.
in value Setting value.

Definition at line 364 of file pdb_driver.c.

14.77.4.14 void PDB_DRV_SetCmpPulseOutDelayForLow (const uint32_t instance, const uint32_t pulseChn, const uint32_t
value)

Sets the CMP pulse out delay value for low in the PDB module.

This function sets the CMP pulse out delay value for low in the PDB module.

Parameters

in instance PDB instance ID.
in pulseChn Pulse channel.
in value Setting value.

Definition at line 382 of file pdb_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

670 CONTENTS

14.77.4.15 void PDB_DRV_SetCmpPulseOutEnable (const uint32_t instance, const uint32_t pulseChnMask, bool enable)

Switches on/off the CMP pulse out in the PDB module.

This function switches the CMP pulse on/off in the PDB module.

Parameters

in instance PDB instance ID.
in pulseChnMask Pulse channel mask.
in enable Switcher to assert the feature.

Definition at line 347 of file pdb_driver.c.

14.77.4.16 void PDB_DRV_SetTimerModulusValue (const uint32_t instance, const uint32_t value)

Sets the value of timer modulus.

This function sets the value of timer modulus.

Parameters

in instance PDB instance ID.
in value Setting value.

Definition at line 203 of file pdb_driver.c.

14.77.4.17 void PDB_DRV_SetValueForTimerInterrupt (const uint32_t instance, const uint32_t value)

Sets the value for the timer interrupt.

This function sets the value for the timer interrupt.

Parameters

in instance PDB instance ID.
in value Setting value.

Definition at line 219 of file pdb_driver.c.

14.77.4.18 void PDB_DRV_SoftTriggerCmd (const uint32_t instance)

Triggers the PDB with a software trigger.

This function triggers the PDB with a software trigger. When the PDB is set to use the software trigger as input,
calling this function triggers the PDB.

Parameters

in instance PDB instance ID.

Definition at line 127 of file pdb_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.78 PINS Driver 671

14.78 PINS Driver

14.78.1 Detailed Description

This section describes the programming interface of the PINS driver.

Data Structures

• struct pin_settings_config_t

Defines the converter configuration. More...

Typedefs

• typedef uint8_t pins_level_type_t

Type of a port levels representation. Implements : pins_level_type_t_Class.

Enumerations

• enum port_data_direction_t { GPIO_INPUT_DIRECTION = 0x0U, GPIO_OUTPUT_DIRECTION = 0x1U, G←↩

PIO_UNSPECIFIED_DIRECTION = 0x2U }

Configures the port data direction Implements : port_data_direction_t_Class.

PINS DRIVER API.

• status_t PINS_DRV_Init (uint32_t pinCount, const pin_settings_config_t config[])

Initializes the pins with the given configuration structure.

• void PINS_DRV_WritePin (GPIO_Type ∗const base, pins_channel_type_t pin, pins_level_type_t value)

Write a pin of a port with a given value.

• void PINS_DRV_WritePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write all pins of a port.

• pins_channel_type_t PINS_DRV_GetPinsOutput (const GPIO_Type ∗const base)

Get the current output from a port.

• void PINS_DRV_SetPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins with 'Set' value.

• void PINS_DRV_ClearPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins to 'Clear' value.

• void PINS_DRV_TogglePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Toggle pins value.

• pins_channel_type_t PINS_DRV_ReadPins (const GPIO_Type ∗const base)

Read input pins.

14.78.2 Data Structure Documentation

14.78.2.1 struct pin_settings_config_t

Defines the converter configuration.

This structure is used to configure the pins Implements : pin_settings_config_t_Class

Definition at line 504 of file pins_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

672 CONTENTS

Data Fields

• uint32_t pinPortIdx

• port_mux_t mux

Pin (C55: Out) mux selection.

• GPIO_Type ∗ gpioBase

• port_data_direction_t direction

Field Documentation

14.78.2.1.1 port_data_direction_t direction

Configures the port data direction.

Definition at line 536 of file pins_driver.h.

14.78.2.1.2 GPIO_Type∗ gpioBase

GPIO base pointer.

Definition at line 535 of file pins_driver.h.

14.78.2.1.3 port_mux_t mux

Pin (C55: Out) mux selection.

Definition at line 527 of file pins_driver.h.

14.78.2.1.4 uint32_t pinPortIdx

Port pin number.

Definition at line 511 of file pins_driver.h.

14.78.3 Typedef Documentation

14.78.3.1 typedef uint8_t pins_level_type_t

Type of a port levels representation. Implements : pins_level_type_t_Class.

Definition at line 56 of file pins_driver.h.

14.78.4 Enumeration Type Documentation

14.78.4.1 enum port_data_direction_t

Configures the port data direction Implements : port_data_direction_t_Class.

Enumerator

GPIO_INPUT_DIRECTION General purpose input direction.

GPIO_OUTPUT_DIRECTION General purpose output direction.

GPIO_UNSPECIFIED_DIRECTION General purpose unspecified direction.

Definition at line 62 of file pins_driver.h.

14.78.5 Function Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.78 PINS Driver 673

14.78.5.1 void PINS_DRV_ClearPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins to 'Clear' value.

This function configures output pins listed in parameter pins (bits that are '1') to have a 'cleared' value (LOW). Pins
corresponding to '0' will be unaffected.

Parameters

base GPIO base pointer (PTA, PTB, PTC, etc.)
pins pin mask of bits to be cleared. Each bit represents one pin (LSB is pin 0, MSB is pin 31). For

each bit:

• 0: corresponding pin is unaffected

• 1: corresponding pin is cleared(set to LOW)

Definition at line 312 of file pins_driver.c.

14.78.5.2 pins_channel_type_t PINS_DRV_GetPinsOutput (const GPIO_Type ∗const base)

Get the current output from a port.

This function returns the current output that is written to a port. Only pins that are configured as output will have
meaningful values.

Parameters

base GPIO base pointer (PTA, PTB, PTC, etc.)

Returns

GPIO outputs. Each bit represents one pin (LSB is pin 0, MSB is pin 31). For each bit:

• 0: corresponding pin is set to LOW

• 1: corresponding pin is set to HIGH

Definition at line 283 of file pins_driver.c.

14.78.5.3 status_t PINS_DRV_Init (uint32_t pinCount, const pin_settings_config_t config[])

Initializes the pins with the given configuration structure.

This function configures the pins with the options provided in the provided structure.

Parameters

in pinCount the number of configured pins in structure
in config the configuration structure

Returns

the status of the operation

Definition at line 53 of file pins_driver.c.

14.78.5.4 pins_channel_type_t PINS_DRV_ReadPins (const GPIO_Type ∗const base)

Read input pins.

This function returns the current input values from a port. Only pins configured as input will have meaningful values.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

674 CONTENTS

Parameters

base GPIO base pointer (PTA, PTB, PTC, etc.)

Returns

GPIO inputs. Each bit represents one pin (LSB is pin 0, MSB is pin 31). For each bit:

• 0: corresponding pin is read as LOW

• 1: corresponding pin is read as HIGH

Definition at line 340 of file pins_driver.c.

14.78.5.5 void PINS_DRV_SetPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins with 'Set' value.

This function configures output pins listed in parameter pins (bits that are '1') to have a value of 'set' (HIGH). Pins
corresponding to '0' will be unaffected.

Parameters

base GPIO base pointer (PTA, PTB, PTC, etc.)
pins pin mask of bits to be set. Each bit represents one pin (LSB is pin 0, MSB is pin 31). For

each bit:

• 0: corresponding pin is unaffected

• 1: corresponding pin is set to HIGH

Definition at line 297 of file pins_driver.c.

14.78.5.6 void PINS_DRV_TogglePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Toggle pins value.

This function toggles output pins listed in parameter pins (bits that are '1'). Pins corresponding to '0' will be unaf-
fected.

Parameters

base GPIO base pointer (PTA, PTB, PTC, etc.)
pins pin mask of bits to be toggled. Each bit represents one pin (LSB is pin 0, MSB is pin 31). For

each bit:

• 0: corresponding pin is unaffected

• 1: corresponding pin is toggled

Definition at line 326 of file pins_driver.c.

14.78.5.7 void PINS_DRV_WritePin (GPIO_Type ∗const base, pins_channel_type_t pin, pins_level_type_t value)

Write a pin of a port with a given value.

This function writes the given pin from a port, with the given value ('0' represents LOW, '1' represents HIGH).

Parameters

base GPIO base pointer (PTA, PTB, PTC, etc.)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.78 PINS Driver 675

pin pin number to be written
value pin value to be written

• 0: corresponding pin is set to LOW

• 1: corresponding pin is set to HIGH

Definition at line 254 of file pins_driver.c.

14.78.5.8 void PINS_DRV_WritePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write all pins of a port.

This function writes all pins configured as output with the values given in the parameter pins. '0' represents LOW,
'1' represents HIGH.

Parameters

base GPIO base pointer (PTA, PTB, PTC, etc.)
pins pin mask to be written

• 0: corresponding pin is set to LOW

• 1: corresponding pin is set to HIGH

Definition at line 269 of file pins_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

676 CONTENTS

14.79 Peripheral access layer for S32K144

This module covers all memory mapped register available on SoC.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.80 Pins Driver (PINS) 677

14.80 Pins Driver (PINS)

14.80.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the PINS module of S32K, S32V and MPC57xx devices.

The module provides dedicated pad control to general-purpose pads that can be configured as either inputs or
outputs. The PINS module provides registers that enable user software to read values from GPIO pads configured
as inputs, and write values to GPIO pads configured as outputs:

• When configured as output, you can write to an internal register to control the state driven on the associated
output pad.

• When configured as input, you can detect the state of the associated pad by reading the value from an internal
register.

• When configured as input and output, the pad value can be read back, which can be used as a method of
checking if the written value appeared on the pad.

The PINS supports these features:

• Drive strength

• Open drain/source output enable

• Slew rate control

• Hysteresis control

• Internal pull control and pull selection

• Pin function assignment

• Control of analog path switches

• Safe mode behavior configuration

Modules

• PINS Driver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

678 CONTENTS

14.81 Power Manager

14.81.1 Detailed Description

The S32 SDK Power Manager provides a set of API/services that enables applications to configure and select
among various operational and low power modes.

Driver consideration

The Power Manager driver is developed on top of an appropriate hardware access layer (SMC, MC_ME etc). The
Power Manager provides API to handle the device power modes. It also supports run-time switching between mul-
tiple power modes. Each power mode is described by configuration structures with multiple power-related options.
The Power Manager provides a notification mechanism for registered callbacks and API for static and dynamic
callback registration.

The Driver uses structures for configuration. The actual format of the structure is defined by the underlying device
specific header file. There is a power mode and a callback configuration structure. These structures may be
generated using Processor Expert. The user application can use the default for most settings, changing only what
is necessary.

This driver provides functions for initializing power manager and changing the power mode.

All methods that access the hardware layer will return an error code to signal if the operation succeeded or failed.
The values are defined by the status_t enumeration, and the possible values include: success, switch error, callback
notification errors, wrong clock setup error.

Modules

• Power Manager Driver

This module covers the device-specific clock_manager functionality implemented for S32K1xx SOC.

• Power_s32k1xx

Data Structures

• struct power_manager_notify_struct_t

Power mode user configuration structure. More...

• struct power_manager_callback_user_config_t

callback configuration structure More...

• struct power_manager_state_t

Power manager internal state structure. More...

Typedefs

• typedef void power_manager_callback_data_t

Callback-specific data.

• typedef status_t(∗ power_manager_callback_t) (power_manager_notify_struct_t ∗notify, power_manager_←↩

callback_data_t ∗dataPtr)

Callback prototype.

Enumerations

• enum power_manager_policy_t { POWER_MANAGER_POLICY_AGREEMENT, POWER_MANAGER_P←↩

OLICY_FORCIBLE }

Power manager policies.

• enum power_manager_notify_t { POWER_MANAGER_NOTIFY_RECOVER = 0x00U, POWER_MANAGE←↩

R_NOTIFY_BEFORE = 0x01U, POWER_MANAGER_NOTIFY_AFTER = 0x02U }

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.81 Power Manager 679

The PM notification type. Used to notify registered callbacks. Callback notifications can be invoked in following
situations:

• enum power_manager_callback_type_t { POWER_MANAGER_CALLBACK_BEFORE = 0x01U, POWER←↩

_MANAGER_CALLBACK_AFTER = 0x02U, POWER_MANAGER_CALLBACK_BEFORE_AFTER = 0x03U
}

The callback type indicates when a callback will be invoked.

Functions

• status_t POWER_SYS_Init (power_manager_user_config_t ∗(∗powerConfigsPtr)[], uint8_t configsNumber,
power_manager_callback_user_config_t ∗(∗callbacksPtr)[], uint8_t callbacksNumber)

Power manager initialization for operation.

• status_t POWER_SYS_Deinit (void)

This function deinitializes the Power manager.

• status_t POWER_SYS_SetMode (uint8_t powerModeIndex, power_manager_policy_t policy)

This function configures the power mode.

• status_t POWER_SYS_GetLastMode (uint8_t ∗powerModeIndexPtr)

This function returns the last successfully set power mode.

• status_t POWER_SYS_GetLastModeConfig (power_manager_user_config_t ∗∗powerModePtr)

This function returns the user configuration structure of the last successfully set power mode.

• power_manager_modes_t POWER_SYS_GetCurrentMode (void)

This function returns currently running power mode.

• uint8_t POWER_SYS_GetErrorCallbackIndex (void)

This function returns the last failed notification callback.

• power_manager_callback_user_config_t ∗ POWER_SYS_GetErrorCallback (void)

This function returns the callback configuration structure for the last failed notification.

14.81.2 Data Structure Documentation

14.81.2.1 struct power_manager_notify_struct_t

Power mode user configuration structure.

This structure defines power mode with additional power options. This structure is implementation-defiend. Please
refer to actual definition based on the underlying HAL (SMC, MC_ME etc). Applications may define multiple power
modes and switch between them. A list of all defined power modes is passed to the Power manager during initializa-
tion as an array of references to structures of this type (see POWER_SYS_Init()). Power modes can be switched by
calling POWER_SYS_SetMode(), which takes as argument the index of the reqested power mode in the list passed
during manager initialization. The power mode currently in use can be retrieved by calling POWER_SYS_GetLast←↩

Mode(), which provides the index of the current power mode, or by calling POWER_SYS_GetLastModeConfig(),
which provides a pointer to the configuration structure of the current power mode. The members of the power mode
configuration structure depend on power options available for a specific chip, and includes at least the power mode.
The available power modes are chip-specific. See power_manager_modes_t defined in the underlying HAL for a
list of all supported modes.

Power notification structure passed to registered callback function

Implements power_manager_notify_struct_t_Class

Definition at line 143 of file power_manager.h.

Data Fields

• power_manager_user_config_t ∗ targetPowerConfigPtr
• uint8_t targetPowerConfigIndex
• power_manager_policy_t policy
• power_manager_notify_t notifyType

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

680 CONTENTS

Field Documentation

14.81.2.1.1 power_manager_notify_t notifyType

Power mode notification type.

Definition at line 148 of file power_manager.h.

14.81.2.1.2 power_manager_policy_t policy

Power mode transition policy.

Definition at line 147 of file power_manager.h.

14.81.2.1.3 uint8_t targetPowerConfigIndex

Target power configuration index.

Definition at line 146 of file power_manager.h.

14.81.2.1.4 power_manager_user_config_t∗ targetPowerConfigPtr

Pointer to target power configuration

Definition at line 145 of file power_manager.h.

14.81.2.2 struct power_manager_callback_user_config_t

callback configuration structure

This structure holds configuration of callbacks passed to the Power manager during its initialization. Structures of
this type are expected to be statically allocated. This structure contains following application-defined data: callback
- pointer to the callback function callbackType - specifies when the callback is called callbackData - pointer to the
data passed to the callback Implements power_manager_callback_user_config_t_Class

Definition at line 188 of file power_manager.h.

Data Fields

• power_manager_callback_t callbackFunction

• power_manager_callback_type_t callbackType

• power_manager_callback_data_t ∗ callbackData

Field Documentation

14.81.2.2.1 power_manager_callback_data_t∗ callbackData

Definition at line 192 of file power_manager.h.

14.81.2.2.2 power_manager_callback_t callbackFunction

Definition at line 190 of file power_manager.h.

14.81.2.2.3 power_manager_callback_type_t callbackType

Definition at line 191 of file power_manager.h.

14.81.2.3 struct power_manager_state_t

Power manager internal state structure.

Power manager internal structure. Contains data necessary for Power manager proper functionality. Stores ref-
erences to registered power mode configurations, callbacks, and other internal data. This structure is statically
allocated and initialized by POWER_SYS_Init(). Implements power_manager_state_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.81 Power Manager 681

Definition at line 204 of file power_manager.h.

Data Fields

• power_manager_user_config_t ∗(∗ configs)[]

• uint8_t configsNumber

• power_manager_callback_user_config_t ∗(∗ staticCallbacks)[]

• uint8_t staticCallbacksNumber

• uint8_t errorCallbackIndex

• uint8_t currentConfig

Field Documentation

14.81.2.3.1 power_manager_user_config_t∗(∗ configs)[]

Pointer to power configure table.

Definition at line 206 of file power_manager.h.

14.81.2.3.2 uint8_t configsNumber

Number of power configurations

Definition at line 207 of file power_manager.h.

14.81.2.3.3 uint8_t currentConfig

Index of current configuration.

Definition at line 211 of file power_manager.h.

14.81.2.3.4 uint8_t errorCallbackIndex

Index of callback returns error.

Definition at line 210 of file power_manager.h.

14.81.2.3.5 power_manager_callback_user_config_t∗(∗ staticCallbacks)[]

Pointer to callback table.

Definition at line 208 of file power_manager.h.

14.81.2.3.6 uint8_t staticCallbacksNumber

Max. number of callback configurations

Definition at line 209 of file power_manager.h.

14.81.3 Typedef Documentation

14.81.3.1 typedef void power_manager_callback_data_t

Callback-specific data.

Pointer to data of this type is passed during callback registration. The pointer is part of the power_manager_←↩

callback_user_config_t structure and is passed to the callback during power mode change notifications. Implements
power_manager_callback_data_t_Class

Definition at line 118 of file power_manager.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

682 CONTENTS

14.81.3.2 typedef status_t(∗ power_manager_callback_t) (power_manager_notify_struct_t ∗notify,
power_manager_callback_data_t ∗dataPtr)

Callback prototype.

Declaration of callback. It is common for all registered callbacks. Function pointer of this type is part of power←↩

_manager_callback_user_config_t callback configuration structure. Depending on the callback type, the callback
function is invoked during power mode change (see POWER_SYS_SetMode()) before the mode change, after it, or
in both cases to notify about the change progress (see power_manager_callback_type_t). When called, the type
of the notification is passed as parameter along with a pointer to power mode configuration structure (see power←↩

_manager_notify_struct_t) and any data passed during the callback registration (see power_manager_callback_←↩

data_t). When notified before a mode change, depending on the power mode change policy (see power_manager←↩

_policy_t) the callback may deny the mode change by returning any error code other than STATUS_SUCCESS (see
POWER_SYS_SetMode()).

Parameters

notify Notification structure.
dataPtr Callback data. Pointer to the data passed during callback registration. Intended to pass any

driver or application data such as internal state information.

Returns

An error code or STATUS_SUCCESS. Implements power_manager_callback_t_Class

Definition at line 172 of file power_manager.h.

14.81.4 Enumeration Type Documentation

14.81.4.1 enum power_manager_callback_type_t

The callback type indicates when a callback will be invoked.

Used in the callback configuration structures (power_manager_callback_user_config_t) to specify when the regis-
tered callback will be called during power mode change initiated by POWER_SYS_SetMode().

Implements power_manager_callback_type_t_Class

Enumerator

POWER_MANAGER_CALLBACK_BEFORE Before callback.

POWER_MANAGER_CALLBACK_AFTER After callback.

POWER_MANAGER_CALLBACK_BEFORE_AFTER Before-After callback.

Definition at line 103 of file power_manager.h.

14.81.4.2 enum power_manager_notify_t

The PM notification type. Used to notify registered callbacks. Callback notifications can be invoked in following
situations:

• before a power mode change (Callback return value can affect POWER_SYS_SetMode() execution. Refer to
the POWER_SYS_SetMode() and power_manager_policy_t documentation).

• after a successful change of the power mode.

• after an unsuccessful attempt to switch power mode, in order to recover to a working state. Implements
power_manager_notify_t_Class

Enumerator

POWER_MANAGER_NOTIFY_RECOVER Notify IP to recover to previous work state.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.81 Power Manager 683

POWER_MANAGER_NOTIFY_BEFORE Notify IP that the system will change the power setting.

POWER_MANAGER_NOTIFY_AFTER Notify IP that the system has changed to a new power setting.

Definition at line 87 of file power_manager.h.

14.81.4.3 enum power_manager_policy_t

Power manager policies.

Defines whether the mode switch initiated by the POWER_SYS_SetMode() is agreed upon (depending on the result
of notification callbacks), or forced. For POWER_MANAGER_POLICY_FORCIBLE the power mode is changed
regardless of the callback results, while for POWER_MANAGER_POLICY_AGREEMENT policy any error code
returned by one of the callbacks aborts the mode change. See also POWER_SYS_SetMode() description. Imple-
ments power_manager_policy_t_Class

Enumerator

POWER_MANAGER_POLICY_AGREEMENT Power mode is changed if all of the callbacks return success.

POWER_MANAGER_POLICY_FORCIBLE Power mode is changed regardless of the result of callbacks.

Definition at line 72 of file power_manager.h.

14.81.5 Function Documentation

14.81.5.1 status_t POWER_SYS_Deinit (void)

This function deinitializes the Power manager.

Returns

An error code or STATUS_SUCCESS.

Definition at line 120 of file power_manager.c.

14.81.5.2 power_manager_modes_t POWER_SYS_GetCurrentMode (void)

This function returns currently running power mode.

This function reads hardware settings and returns currently running power mode.

Returns

Currently used run power mode.

Definition at line 202 of file power_manager_S32K1xx.c.

14.81.5.3 power_manager_callback_user_config_t∗ POWER_SYS_GetErrorCallback (void)

This function returns the callback configuration structure for the last failed notification.

This function returns a pointer to configuration structure of the last callback that failed during the power mode switch
when POWER_SYS_SetMode() was called. If the last POWER_SYS_SetMode() call ended successfully, a NULL
value is returned.

Returns

Pointer to the callback configuration which returns error.

Definition at line 218 of file power_manager.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

684 CONTENTS

14.81.5.4 uint8_t POWER_SYS_GetErrorCallbackIndex (void)

This function returns the last failed notification callback.

This function returns the index of the last callback that failed during the power mode switch when POWER_SY←↩

S_SetMode() was called. The returned value represents the index in the array of registered callbacks. If the last
POWER_SYS_SetMode() call ended successfully, a value equal to the number of registered callbacks is returned.

Returns

Callback index of last failed callback or value equal to callbacks count.

Definition at line 206 of file power_manager.c.

14.81.5.5 status_t POWER_SYS_GetLastMode (uint8_t ∗ powerModeIndexPtr)

This function returns the last successfully set power mode.

This function returns index of power mode which was last set using POWER_SYS_SetMode(). If the power mode
was entered even though some of the registered callbacks denied the mode change, or if any of the callbacks
invoked after the entering/restoring run mode failed, then the return code of this function has STATUS_ERROR
value.

Parameters

out powerMode←↩

IndexPtr
Power mode which has been set represented as an index into array of power
mode configurations passed to the POWER_SYS_Init().

Returns

An error code or STATUS_SUCCESS.

Definition at line 143 of file power_manager.c.

14.81.5.6 status_t POWER_SYS_GetLastModeConfig (power_manager_user_config_t ∗∗ powerModePtr)

This function returns the user configuration structure of the last successfully set power mode.

This function returns a pointer to configuration structure which was last set using POWER_SYS_SetMode(). If the
current power mode was entered even though some of the registered callbacks denied the mode change, or if
any of the callbacks invoked after the entering/restoring run mode failed, then the return code of this function has
STATUS_ERROR value.

Parameters

out powerModePtr Pointer to power mode configuration structure of the last set power mode.

Returns

An error code or STATUS_SUCCESS.

Definition at line 175 of file power_manager.c.

14.81.5.7 status_t POWER_SYS_Init (power_manager_user_config_t ∗(∗) powerConfigsPtr[], uint8_t configsNumber,
power_manager_callback_user_config_t ∗(∗) callbacksPtr[], uint8_t callbacksNumber)

Power manager initialization for operation.

This function initializes the Power manager and its run-time state structure. Pointer to an array of Power mode
configuration structures needs to be passed as a parameter along with a parameter specifying its size. At least one
power mode configuration is required. Optionally, pointer to the array of predefined callbacks can be passed with
its corresponding size parameter. For details about callbacks, refer to the power_manager_callback_user_config_t.
As Power manager stores only pointers to arrays of these structures, they need to exist and be valid for the entire
life cycle of Power manager.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.81 Power Manager 685

Parameters

in powerConfigsPtr A pointer to an array of pointers to all power configurations which will be han-
dled by Power manager.

in configsNumber Number of power configurations. Size of powerConfigsPtr array.
in callbacksPtr A pointer to an array of pointers to callback configurations. If there are no

callbacks to register during Power manager initialization, use NULL value.
in callbacks←↩

Number
Number of registered callbacks. Size of callbacksPtr array.

Returns

An error code or STATUS_SUCCESS.

Definition at line 80 of file power_manager.c.

14.81.5.8 status_t POWER_SYS_SetMode (uint8_t powerModeIndex, power_manager_policy_t policy)

This function configures the power mode.

This function switches to one of the defined power modes. Requested mode number is passed as an input param-
eter. This function notifies all registered callback functions before the mode change (using POWER_MANAGE←↩

R_CALLBACK_BEFORE set as callback type parameter), sets specific power options defined in the power mode
configuration and enters the specified mode. In case of run modes (for example, Run, Very low power run, or High
speed run), this function also invokes all registered callbacks after the mode change (using POWER_MANAGER←↩

_CALLBACK_AFTER). In case of sleep or deep sleep modes, if the requested mode is not exited through a reset,
these notifications are sent after the core wakes up. Callbacks are invoked in the following order: All registered
callbacks are notified ordered by index in the callbacks array (see callbacksPtr parameter of POWER_SYS_Init()).
The same order is used for before and after switch notifications. The notifications before the power mode switch
can be used to obtain confirmation about the change from registered callbacks. If any registered callback denies
the power mode change, further execution of this function depends on mode change policy: the mode change
is either forced(POWER_MANAGER_POLICY_FORCIBLE) or aborted(POWER_MANAGER_POLICY_AGREE←↩

MENT). When mode change is forced, the results of the before switch notifications are ignored. If agreement is
requested, in case any callback returns an error code then further before switch notifications are cancelled and
all already notified callbacks are re-invoked with POWER_MANAGER_CALLBACK_AFTER set as callback type
parameter. The index of the callback which returned error code during pre-switch notifications is stored and can
be obtained by using POWER_SYS_GetErrorCallback(). Any error codes during callbacks re-invocation (recover
phase) are ignored. POWER_SYS_SetMode() returns an error code denoting the phase in which a callback failed.
It is possible to enter any mode supported by the processor. Refer to the chip reference manual for the list of
available power modes. If it is necessary to switch into an intermediate power mode prior to entering the requested
mode (for example, when switching from Run into Very low power wait through Very low power run mode), then the
intermediate mode is entered without invoking the callback mechanism.

Parameters

in powerMode←↩

Index
Requested power mode represented as an index into array of user-defined
power mode configurations passed to the POWER_SYS_Init().

in policy Transaction policy

Returns

An error code or STATUS_SUCCESS.

Definition at line 338 of file power_manager.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

686 CONTENTS

14.82 Power Manager Driver

This module covers the device-specific clock_manager functionality implemented for S32K1xx SOC.

Hardware background

System mode controller (SMC) is passing the system into and out of all low-power Stop and Run modes. Controls
the power, clocks and memories of the system to achieve the power consumption and functionality of that mode.

Driver consideration

Power mode entry and sleep-on-exit option are provided at initialization time through the power manager user
configuration structure. The available power mode entries are the following ones: HSRUN, RUN, VLPR, WAIT,
VLPW, VLPS, PSTOP1 and PSTOP2

This is an example of configuration:

power_manager_user_config_t pwrMan1_InitConfig0 = {
.powerMode = POWER_MANAGER_HSRUN,
.sleepOnExitOption = false,
.sleepOnExitValue = false,

};

power_manager_user_config_t *powerConfigsArr[] = {
&pwrMan1_InitConfig0

};

power_manager_callback_user_config_t * powerCallbacksConfigsArr[] = {(
void *)0};

if (STATUS_SUCCESS != POWER_SYS_Init(&powerConfigsArr,1,&powerCallbacksConfigsArr,0)) {
...

}
else {

...
}

if (STATUS_SUCCESS != POWER_SYS_SetMode(0,
POWER_MANAGER_POLICY_AGREEMENT)) {

...
}
else {

...
}

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.83 Power_s32k1xx 687

14.83 Power_s32k1xx

14.83.1 Detailed Description

Data Structures

• struct power_manager_user_config_t

Power mode user configuration structure. More...

• struct smc_power_mode_protection_config_t

Power mode protection configuration Implements smc_power_mode_protection_config_t_Class. More...

• struct smc_power_mode_config_t

Power mode control configuration used for calling the SMC_SYS_SetPowerMode API Implements smc_power_←↩

mode_config_t_Class. More...

• struct smc_version_info_t

SMC module version number Implements smc_version_info_t_Class. More...

• struct rcm_version_info_t

RCM module version number Implements rcm_version_info_t_Class. More...

Enumerations

• enum power_manager_modes_t {
POWER_MANAGER_RUN, POWER_MANAGER_VLPR, POWER_MANAGER_STOP, POWER_MANA←↩

GER_VLPS,
POWER_MANAGER_MAX }

Power modes enumeration.

• enum power_mode_stat_t {
STAT_RUN = 0x01, STAT_STOP = 0x02, STAT_VLPR = 0x04, STAT_VLPW = 0x08,
STAT_VLPS = 0x10, STAT_HSRUN = 0x80, STAT_INVALID = 0xFF }

Power Modes in PMSTAT Implements power_mode_stat_t_Class.

• enum power_modes_protect_t { ALLOW_HSRUN, ALLOW_VLP, ALLOW_MAX }

Power Modes Protection Implements power_modes_protect_t_Class.

• enum smc_run_mode_t { SMC_RUN, SMC_RESERVED_RUN, SMC_VLPR, SMC_HSRUN }

Run mode definition Implements smc_run_mode_t_Class.

• enum smc_stop_mode_t { SMC_STOP = 0U, SMC_RESERVED_STOP1 = 1U, SMC_VLPS = 2U }

Stop mode definition Implements smc_stop_mode_t_Class.

• enum smc_stop_option_t { SMC_STOP_RESERVED = 0x00, SMC_STOP1 = 0x01, SMC_STOP2 = 0x02 }

STOP option Implements smc_stop_option_t_Class.

• enum pmc_int_select_t { PMC_INT_LOW_VOLT_DETECT, PMC_INT_LOW_VOLT_WARN }

Power management control interrupts Implements pmc_int_select_t_Class.

• enum rcm_source_names_t {
RCM_WAKEUP, RCM_LOW_VOLT_DETECT, RCM_LOSS_OF_CLK, RCM_LOSS_OF_LOCK,
RCM_WATCH_DOG, RCM_EXTERNAL_PIN, RCM_POWER_ON, RCM_SJTAG,
RCM_CORE_LOCKUP, RCM_SOFTWARE, RCM_SMDM_AP, RCM_STOP_MODE_ACK_ERR,
RCM_TAMPERR, RCM_CORE1, RCM_SRC_NAME_MAX }

System Reset Source Name definitions Implements rcm_source_names_t_Class.

• enum rcm_filter_run_wait_modes_t { RCM_FILTER_DISABLED, RCM_FILTER_BUS_CLK, RCM_FILTE←↩

R_LPO_CLK, RCM_FILTER_RESERVED }

Reset pin filter select in Run and Wait modes Implements rcm_filter_run_wait_modes_t_Class.

• enum rcm_reset_delay_time_t { RCM_10LPO_CYCLES_DELAY, RCM_34LPO_CYCLES_DELAY, RCM_←↩

130LPO_CYCLES_DELAY, RCM_514LPO_CYCLES_DELAY }

Reset delay time Implements rcm_reset_delay_time_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

688 CONTENTS

Functions

• status_t POWER_SYS_DoInit (void)

This function implementation-specific configuration of power modes.

• status_t POWER_SYS_DoDeinit (void)

This function implementation-specific de-initialization of power manager.

• status_t POWER_SYS_DoSetMode (const power_manager_user_config_t ∗const configPtr)

This function configures the power mode.

14.83.2 Data Structure Documentation

14.83.2.1 struct power_manager_user_config_t

Power mode user configuration structure.

List of power mode configuration structure members depends on power options available for the specific chip.
Complete list contains: mode - S32K power mode. List of available modes is chip-specific. See power_manager←↩

_modes_t list of modes. sleepOnExitOption - Controls whether the sleep-on-exit option value is used(when set to
true) or ignored(when set to false). See sleepOnExitValue. sleepOnExitValue - When set to true, ARM core returns
to sleep (S32K wait modes) or deep sleep state (S32K stop modes) after interrupt service finishes. When set to
false, core stays woken-up. Implements power_manager_user_config_t_Class

Definition at line 98 of file power_manager_S32K1xx.h.

Data Fields

• power_manager_modes_t powerMode
• bool sleepOnExitOption
• bool sleepOnExitValue

Field Documentation

14.83.2.1.1 power_manager_modes_t powerMode

Definition at line 100 of file power_manager_S32K1xx.h.

14.83.2.1.2 bool sleepOnExitOption

Definition at line 101 of file power_manager_S32K1xx.h.

14.83.2.1.3 bool sleepOnExitValue

Definition at line 102 of file power_manager_S32K1xx.h.

14.83.2.2 struct smc_power_mode_protection_config_t

Power mode protection configuration Implements smc_power_mode_protection_config_t_Class.

Definition at line 168 of file power_manager_S32K1xx.h.

Data Fields

• bool vlpProt

Field Documentation

14.83.2.2.1 bool vlpProt

VLP protect

Definition at line 170 of file power_manager_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.83 Power_s32k1xx 689

14.83.2.3 struct smc_power_mode_config_t

Power mode control configuration used for calling the SMC_SYS_SetPowerMode API Implements smc_power_←↩

mode_config_t_Class.

Definition at line 180 of file power_manager_S32K1xx.h.

Data Fields

• power_manager_modes_t powerModeName

Field Documentation

14.83.2.3.1 power_manager_modes_t powerModeName

Power mode(enum), see power_manager_modes_t

Definition at line 182 of file power_manager_S32K1xx.h.

14.83.2.4 struct smc_version_info_t

SMC module version number Implements smc_version_info_t_Class.

Definition at line 197 of file power_manager_S32K1xx.h.

Data Fields

• uint32_t majorNumber
• uint32_t minorNumber
• uint32_t featureNumber

Field Documentation

14.83.2.4.1 uint32_t featureNumber

Feature Specification Number

Definition at line 201 of file power_manager_S32K1xx.h.

14.83.2.4.2 uint32_t majorNumber

Major Version Number

Definition at line 199 of file power_manager_S32K1xx.h.

14.83.2.4.3 uint32_t minorNumber

Minor Version Number

Definition at line 200 of file power_manager_S32K1xx.h.

14.83.2.5 struct rcm_version_info_t

RCM module version number Implements rcm_version_info_t_Class.

Definition at line 266 of file power_manager_S32K1xx.h.

Data Fields

• uint32_t majorNumber
• uint32_t minorNumber
• uint32_t featureNumber

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

690 CONTENTS

14.83.2.5.1 uint32_t featureNumber

Feature Specification Number

Definition at line 270 of file power_manager_S32K1xx.h.

14.83.2.5.2 uint32_t majorNumber

Major Version Number

Definition at line 268 of file power_manager_S32K1xx.h.

14.83.2.5.3 uint32_t minorNumber

Minor Version Number

Definition at line 269 of file power_manager_S32K1xx.h.

14.83.3 Enumeration Type Documentation

14.83.3.1 enum pmc_int_select_t

Power management control interrupts Implements pmc_int_select_t_Class.

Enumerator

PMC_INT_LOW_VOLT_DETECT Low Voltage Detect Interrupt

PMC_INT_LOW_VOLT_WARN Low Voltage Warning Interrupt

Definition at line 208 of file power_manager_S32K1xx.h.

14.83.3.2 enum power_manager_modes_t

Power modes enumeration.

Defines power modes. Used in the power mode configuration structure (power_manager_user_config_t). From
ARM core perspective, Power modes can be generally divided into run modes (High speed run, Run and Very low
power run), sleep (Wait and Very low power wait) and deep sleep modes (all Stop modes). List of power modes
supported by specific chip along with requirements for entering and exiting of these modes can be found in chip
documentation. List of all supported power modes:

• POWER_MANAGER_HSRUN - High speed run mode.

• POWER_MANAGER_RUN - Run mode.

• POWER_MANAGER_VLPR - Very low power run mode.

• POWER_MANAGER_WAIT - Wait mode.

• POWER_MANAGER_VLPW - Very low power wait mode.

• POWER_MANAGER_STOP - Stop mode.

• POWER_MANAGER_VLPS - Very low power stop mode.

• POWER_MANAGER_PSTOP1 - Partial stop 1 mode.

• POWER_MANAGER_PSTOP2 - Partial stop 2 mode. Implements power_manager_modes_t_Class

Enumerator

POWER_MANAGER_RUN Run mode.

POWER_MANAGER_VLPR Very low power run mode.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.83 Power_s32k1xx 691

POWER_MANAGER_STOP Stop mode.

POWER_MANAGER_VLPS Very low power stop mode.

POWER_MANAGER_MAX

Definition at line 60 of file power_manager_S32K1xx.h.

14.83.3.3 enum power_mode_stat_t

Power Modes in PMSTAT Implements power_mode_stat_t_Class.

Enumerator

STAT_RUN 0000_0001 - Current power mode is RUN

STAT_STOP 0000_0010 - Current power mode is STOP

STAT_VLPR 0000_0100 - Current power mode is VLPR

STAT_VLPW 0000_1000 - Current power mode is VLPW

STAT_VLPS 0001_0000 - Current power mode is VLPS

STAT_HSRUN 1000_0000 - Current power mode is HSRUN

STAT_INVALID 1111_1111 - Non-existing power mode

Definition at line 109 of file power_manager_S32K1xx.h.

14.83.3.4 enum power_modes_protect_t

Power Modes Protection Implements power_modes_protect_t_Class.

Enumerator

ALLOW_HSRUN Allow High Speed Run mode

ALLOW_VLP Allow Very-Low-Power Modes

ALLOW_MAX

Definition at line 124 of file power_manager_S32K1xx.h.

14.83.3.5 enum rcm_filter_run_wait_modes_t

Reset pin filter select in Run and Wait modes Implements rcm_filter_run_wait_modes_t_Class.

Enumerator

RCM_FILTER_DISABLED All filtering disabled

RCM_FILTER_BUS_CLK Bus clock filter enabled

RCM_FILTER_LPO_CLK LPO clock filter enabled

RCM_FILTER_RESERVED Reserved setting

Definition at line 241 of file power_manager_S32K1xx.h.

14.83.3.6 enum rcm_reset_delay_time_t

Reset delay time Implements rcm_reset_delay_time_t_Class.

Enumerator

RCM_10LPO_CYCLES_DELAY reset delay time 10 LPO cycles

RCM_34LPO_CYCLES_DELAY reset delay time 34 LPO cycles

RCM_130LPO_CYCLES_DELAY reset delay time 130 LPO cycles

RCM_514LPO_CYCLES_DELAY reset delay time 514 LPO cycles

Definition at line 254 of file power_manager_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

692 CONTENTS

14.83.3.7 enum rcm_source_names_t

System Reset Source Name definitions Implements rcm_source_names_t_Class.

Enumerator

RCM_WAKEUP Wakeup

RCM_LOW_VOLT_DETECT Low voltage detect reset

RCM_LOSS_OF_CLK Loss of clock reset

RCM_LOSS_OF_LOCK Loss of lock reset

RCM_WATCH_DOG Watch dog reset

RCM_EXTERNAL_PIN External pin reset

RCM_POWER_ON Power on reset

RCM_SJTAG JTAG generated reset

RCM_CORE_LOCKUP core lockup reset

RCM_SOFTWARE Software reset

RCM_SMDM_AP MDM-AP system reset

RCM_STOP_MODE_ACK_ERR Stop mode ack error reset

RCM_TAMPERR Tamperr

RCM_CORE1 Core1

RCM_SRC_NAME_MAX

Definition at line 218 of file power_manager_S32K1xx.h.

14.83.3.8 enum smc_run_mode_t

Run mode definition Implements smc_run_mode_t_Class.

Enumerator

SMC_RUN normal RUN mode

SMC_RESERVED_RUN

SMC_VLPR Very-Low-Power RUN mode

SMC_HSRUN High Speed Run mode (HSRUN)

Definition at line 135 of file power_manager_S32K1xx.h.

14.83.3.9 enum smc_stop_mode_t

Stop mode definition Implements smc_stop_mode_t_Class.

Enumerator

SMC_STOP Normal STOP mode

SMC_RESERVED_STOP1 Reserved

SMC_VLPS Very-Low-Power STOP mode

Definition at line 146 of file power_manager_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.83 Power_s32k1xx 693

14.83.3.10 enum smc_stop_option_t

STOP option Implements smc_stop_option_t_Class.

Enumerator

SMC_STOP_RESERVED Reserved stop mode

SMC_STOP1 Stop with both system and bus clocks disabled

SMC_STOP2 Stop with system clock disabled and bus clock enabled

Definition at line 157 of file power_manager_S32K1xx.h.

14.83.4 Function Documentation

14.83.4.1 status_t POWER_SYS_DoDeinit (void)

This function implementation-specific de-initialization of power manager.

This function performs the actual implementation-specific de-initialization.

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed.

Definition at line 162 of file power_manager_S32K1xx.c.

14.83.4.2 status_t POWER_SYS_DoInit (void)

This function implementation-specific configuration of power modes.

This function performs the actual implementation-specific initialization based on the provided power mode configu-
rations.

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed.

Definition at line 141 of file power_manager_S32K1xx.c.

14.83.4.3 status_t POWER_SYS_DoSetMode (const power_manager_user_config_t ∗const configPtr)

This function configures the power mode.

This function performs the actual implementation-specific logic to switch to one of the defined power modes.

Parameters

configPtr Pointer to user configuration structure

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed.

Definition at line 175 of file power_manager_S32K1xx.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

694 CONTENTS

14.84 Programmable Delay Block (PDB)

14.84.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Programmable Delay Block (PDB) module of S32 SDK devices.

The PDB is a configurable counter that can generate events (triggers) that can be used by the ADC to start conver-
sions or routed through TRGMUX to other modules in the S32K144.

Modules

• PDB Driver

Programmable Delay Block Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.85 Qspi_drv 695

14.85 Qspi_drv

14.85.1 Detailed Description

Data Structures

• struct qspi_user_config_t

Driver configuration structure. More...

• struct qspi_ahb_config_t

AHB configuration structure. More...

• struct qspi_state_t

Driver internal context structure. More...

Macros

• #define QSPI_AHB_BUFFERS 4

Number of AHB buffers in the device.

• #define QSPI_LUT_LOCK_KEY 0x5AF05AF0U

Key to lock/unlock LUT.

Typedefs

• typedef void(∗ qspi_callback_t) (uint32_t instance, void ∗param)

QuadSPI callback function type.

Enumerations

• enum qspi_lut_commands_t {
QSPI_LUT_CMD_STOP = 0U, QSPI_LUT_CMD_CMD = 1U, QSPI_LUT_CMD_ADDR = 2U, QSPI_LUT_←↩

CMD_DUMMY = 3U,
QSPI_LUT_CMD_MODE = 4U, QSPI_LUT_CMD_MODE2 = 5U, QSPI_LUT_CMD_MODE4 = 6U, QSPI_←↩

LUT_CMD_READ = 7U,
QSPI_LUT_CMD_WRITE = 8U, QSPI_LUT_CMD_JMP_ON_CS = 9U, QSPI_LUT_CMD_ADDR_DDR =
10U, QSPI_LUT_CMD_MODE_DDR = 11U,
QSPI_LUT_CMD_MODE2_DDR = 12U, QSPI_LUT_CMD_MODE4_DDR = 13U, QSPI_LUT_CMD_READ←↩

_DDR = 14U, QSPI_LUT_CMD_WRITE_DDR = 15U,
QSPI_LUT_CMD_CMD_DDR = 17U, QSPI_LUT_CMD_CADDR = 18U, QSPI_LUT_CMD_CADDR_DDR =
19U }

Lut commands Implements : qspi_lut_commands_t_Class.

• enum qspi_lut_pads_t { QSPI_LUT_PADS_1 = 0U, QSPI_LUT_PADS_2 = 1U, QSPI_LUT_PADS_4 = 2U,
QSPI_LUT_PADS_8 = 3U }

Lut pad options Implements : qspi_lut_pads_t_Class.

• enum qspi_transfer_type_t { QSPI_TRANSFER_TYPE_SYNC = 0U, QSPI_TRANSFER_TYPE_ASYNC_I←↩

NT = 1U, QSPI_TRANSFER_TYPE_ASYNC_DMA = 2U }

Driver type Implements : qspi_transfer_type_t_Class.

• enum qspi_read_mode_t { QSPI_READ_MODE_INTERNAL_SAMPLING = 0U, QSPI_READ_MODE_INT←↩

ERNAL_DQS = 1U, QSPI_READ_MODE_EXTERNAL_DQS = 2U }

Read mode Implements : qspi_read_mode_t_Class.

• enum qspi_endianess_t { QSPI_END_64BIT_BE = 0U, QSPI_END_32BIT_LE = 1U, QSPI_END_32BIT_BE
= 2U, QSPI_END_64BIT_LE = 3U }

Endianess options Implements : qspi_endianess_t_Class.

• enum qspi_clock_src_t { QSPI_CLK_SRC_PLL_DIV1 = 0U, QSPI_CLK_SRC_FIRC_DIV1 = 1U }

Source of QuadSPI internal reference clock Implements : qspi_clock_src_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

696 CONTENTS

• enum qspi_date_rate_t { QSPI_DATE_RATE_SDR = 0U, QSPI_DATE_RATE_DDR = 1U }

Clock phase used for sampling Rx data Implements : qspi_date_rate_t_Class.

• enum qspi_flash_side_t { QSPI_FLASH_SIDE_A = 0U, QSPI_FLASH_SIDE_B = 1U }

External flash connection options (side A/B) Implements : qspi_flash_side_t_Class.

• enum qspi_sample_delay_t { QSPI_SAMPLE_DELAY_1 = 0U, QSPI_SAMPLE_DELAY_2 = 1U }

Delay used for sampling Rx data Implements : qspi_sample_delay_t_Class.

• enum qspi_sample_phase_t { QSPI_SAMPLE_PHASE_NON_INVERTED = 0U, QSPI_SAMPLE_PHASE←↩

_INVERTED = 1U }

Clock phase used for sampling Rx data Implements : qspi_sample_phase_t_Class.

Variables

• QuadSPI_Type ∗const g_qspiBase []

Table of base addresses for QuadSPI instances.

QuadSPI Driver

• status_t QSPI_DRV_Init (uint32_t instance, const qspi_user_config_t ∗userConfigPtr, qspi_state_t ∗state)

Initializes the qspi driver.

• status_t QSPI_DRV_Deinit (uint32_t instance)

De-initialize the qspi driver.

• status_t QSPI_DRV_GetDefaultConfig (qspi_user_config_t ∗userConfigPtr)

Returns default configuration structure for QuadSPI.

• status_t QSPI_DRV_AhbSetup (uint32_t instance, const qspi_ahb_config_t ∗config)

Sets up AHB accesses to the serial flash.

• static void QSPI_DRV_SetLut (uint32_t instance, uint8_t lut, qspi_lut_commands_t instr0, qspi_lut_pads_t
pad0, uint8_t oprnd0, qspi_lut_commands_t instr1, qspi_lut_pads_t pad1, uint8_t oprnd1)

Configures LUT commands.

• static void QSPI_DRV_LockLut (uint32_t instance)

Locks LUT table.

• static void QSPI_DRV_UnlockLut (uint32_t instance)

Unlocks LUT table.

• static void QSPI_DRV_ClearIpSeqPointer (uint32_t instance)

Clears IP sequence pointer.

• static void QSPI_DRV_ClearAHBSeqPointer (uint32_t instance)

Clears AHB sequence pointer.

• static void QSPI_DRV_SetAhbSeqId (uint32_t instance, uint8_t seqID)

Sets sequence ID for AHB operations.

• status_t QSPI_DRV_IpCommand (uint32_t instance, uint8_t lut, uint32_t timeout)

Launches a simple IP command.

• status_t QSPI_DRV_IpRead (uint32_t instance, uint8_t lut, uint32_t addr, uint8_t ∗dataRead, const uint8_t
∗dataCmp, uint32_t size, qspi_transfer_type_t transferType, uint32_t timeout)

Launches an IP read command.

• status_t QSPI_DRV_IpWrite (uint32_t instance, uint8_t lut, uint32_t addr, uint8_t ∗data, uint32_t size, qspi←↩

_transfer_type_t transferType, uint32_t timeout)

Launches an IP write command.

• status_t QSPI_DRV_IpErase (uint32_t instance, uint8_t lut, uint32_t addr)

Launches an IP erase command.

• status_t QSPI_DRV_IpGetStatus (uint32_t instance)

Checks the status of the currently running IP command.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.85 Qspi_drv 697

14.85.2 Data Structure Documentation

14.85.2.1 struct qspi_user_config_t

Driver configuration structure.

This structure is used to provide configuration parameters for the qspi driver at initialization time. Implements :
qspi_user_config_t_Class

Definition at line 175 of file quadspi_driver.h.

Data Fields

• qspi_date_rate_t dataRate
• bool dmaSupport
• uint8_t dmaChannel
• qspi_callback_t callback
• void ∗ callbackParam
• qspi_read_mode_t readMode
• qspi_flash_side_t side
• uint32_t memSize
• uint8_t csHoldTime
• uint8_t csSetupTime
• uint8_t columnAddr
• bool wordAddresable
• qspi_sample_delay_t sampleDelay
• qspi_sample_phase_t clockPhase
• qspi_endianess_t endianess
• qspi_clock_src_t clock_src
• uint8_t io2IdleValue
• uint8_t io3IdleValue

Field Documentation

14.85.2.1.1 qspi_callback_t callback

User callback for reporting asynchronous events

Definition at line 180 of file quadspi_driver.h.

14.85.2.1.2 void∗ callbackParam

Parameter for user callback

Definition at line 181 of file quadspi_driver.h.

14.85.2.1.3 qspi_clock_src_t clock_src

Clock source for QuadSPI device

Definition at line 192 of file quadspi_driver.h.

14.85.2.1.4 qspi_sample_phase_t clockPhase

Clock phase used for sampling Rx data

Definition at line 190 of file quadspi_driver.h.

14.85.2.1.5 uint8_t columnAddr

Width of the column address, 0 if not used

Definition at line 187 of file quadspi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

698 CONTENTS

14.85.2.1.6 uint8_t csHoldTime

CS hold time, expressed in serial clock cycles

Definition at line 185 of file quadspi_driver.h.

14.85.2.1.7 uint8_t csSetupTime

CS setup time, expressed in serial clock cycles

Definition at line 186 of file quadspi_driver.h.

14.85.2.1.8 qspi_date_rate_t dataRate

Single/double data rate

Definition at line 177 of file quadspi_driver.h.

14.85.2.1.9 uint8_t dmaChannel

DMA channel number. Only used if dmaSupport is true

Definition at line 179 of file quadspi_driver.h.

14.85.2.1.10 bool dmaSupport

Enables DMA support in the driver

Definition at line 178 of file quadspi_driver.h.

14.85.2.1.11 qspi_endianess_t endianess

Endianess configuration

Definition at line 191 of file quadspi_driver.h.

14.85.2.1.12 uint8_t io2IdleValue

(0 / 1) Logic level of IO[2] signal when not used

Definition at line 193 of file quadspi_driver.h.

14.85.2.1.13 uint8_t io3IdleValue

(0 / 1) Logic level of IO[3] signal when not used

Definition at line 194 of file quadspi_driver.h.

14.85.2.1.14 uint32_t memSize

Size of serial flash

Definition at line 184 of file quadspi_driver.h.

14.85.2.1.15 qspi_read_mode_t readMode

Read mode for incoming data from serial flash

Definition at line 182 of file quadspi_driver.h.

14.85.2.1.16 qspi_sample_delay_t sampleDelay

Delay used for sampling Rx data

Definition at line 189 of file quadspi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.85 Qspi_drv 699

14.85.2.1.17 qspi_flash_side_t side

Side on which the serial flash is connected

Definition at line 183 of file quadspi_driver.h.

14.85.2.1.18 bool wordAddresable

True if serial flash is word addressable

Definition at line 188 of file quadspi_driver.h.

14.85.2.2 struct qspi_ahb_config_t

AHB configuration structure.

This structure is used to provide configuration parameters for AHB access to the external flash Implements : qspi←↩

_ahb_config_t_Class

Definition at line 204 of file quadspi_driver.h.

Data Fields

• uint8_t masters [QSPI_AHB_BUFFERS]
• uint16_t sizes [QSPI_AHB_BUFFERS]
• bool allMasters
• bool highPriority

Field Documentation

14.85.2.2.1 bool allMasters

Indicates that any master may access the last buffer

Definition at line 208 of file quadspi_driver.h.

14.85.2.2.2 bool highPriority

Indicates that the first buffer has high priority

Definition at line 209 of file quadspi_driver.h.

14.85.2.2.3 uint8_t masters[QSPI_AHB_BUFFERS]

List of AHB masters assigned to each buffer

Definition at line 206 of file quadspi_driver.h.

14.85.2.2.4 uint16_t sizes[QSPI_AHB_BUFFERS]

List of buffer sizes

Definition at line 207 of file quadspi_driver.h.

14.85.2.3 struct qspi_state_t

Driver internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the QSPI_D←↩

RV_Init() function, then it cannot be freed until the driver is de-initialized using QSPI_DRV_Deinit(). The application
should make no assumptions about the content of this structure.

Definition at line 221 of file quadspi_driver.h.

14.85.3 Macro Definition Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

700 CONTENTS

14.85.3.1 #define QSPI_AHB_BUFFERS 4

Number of AHB buffers in the device.

Definition at line 37 of file quadspi_driver.h.

14.85.3.2 #define QSPI_LUT_LOCK_KEY 0x5AF05AF0U

Key to lock/unlock LUT.

Definition at line 41 of file quadspi_driver.h.

14.85.4 Typedef Documentation

14.85.4.1 typedef void(∗ qspi_callback_t) (uint32_t instance, void ∗param)

QuadSPI callback function type.

Definition at line 166 of file quadspi_driver.h.

14.85.5 Enumeration Type Documentation

14.85.5.1 enum qspi_clock_src_t

Source of QuadSPI internal reference clock Implements : qspi_clock_src_t_Class.

Enumerator

QSPI_CLK_SRC_PLL_DIV1 PLL_DIV1 is clock source of QuadSPI internal reference clock

QSPI_CLK_SRC_FIRC_DIV1 FIRC_DIV1 is clock source of QuadSPI internal reference clock

Definition at line 116 of file quadspi_driver.h.

14.85.5.2 enum qspi_date_rate_t

Clock phase used for sampling Rx data Implements : qspi_date_rate_t_Class.

Enumerator

QSPI_DATE_RATE_SDR Single data rate

QSPI_DATE_RATE_DDR Double data rate

Definition at line 125 of file quadspi_driver.h.

14.85.5.3 enum qspi_endianess_t

Endianess options Implements : qspi_endianess_t_Class.

Enumerator

QSPI_END_64BIT_BE 64-bit, Big Endian

QSPI_END_32BIT_LE 32-bit, Little Endian

QSPI_END_32BIT_BE 32-bit, Big Endian

QSPI_END_64BIT_LE 64-bit, Little Endian

Definition at line 105 of file quadspi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.85 Qspi_drv 701

14.85.5.4 enum qspi_flash_side_t

External flash connection options (side A/B) Implements : qspi_flash_side_t_Class.

Enumerator

QSPI_FLASH_SIDE_A Serial flash connected to A-side

QSPI_FLASH_SIDE_B Serial flash connected to B-side

Definition at line 135 of file quadspi_driver.h.

14.85.5.5 enum qspi_lut_commands_t

Lut commands Implements : qspi_lut_commands_t_Class.

Enumerator

QSPI_LUT_CMD_STOP End of sequence

QSPI_LUT_CMD_CMD Command

QSPI_LUT_CMD_ADDR Address

QSPI_LUT_CMD_DUMMY Dummy cycles

QSPI_LUT_CMD_MODE 8-bit mode

QSPI_LUT_CMD_MODE2 2-bit mode

QSPI_LUT_CMD_MODE4 4-bit mode

QSPI_LUT_CMD_READ Read data

QSPI_LUT_CMD_WRITE Write data

QSPI_LUT_CMD_JMP_ON_CS Jump on chip select deassert

QSPI_LUT_CMD_ADDR_DDR Address - DDR mode

QSPI_LUT_CMD_MODE_DDR 8-bit mode - DDR mode

QSPI_LUT_CMD_MODE2_DDR 2-bit mode - DDR mode

QSPI_LUT_CMD_MODE4_DDR 4-bit mode - DDR mode

QSPI_LUT_CMD_READ_DDR Read data - DDR mode

QSPI_LUT_CMD_WRITE_DDR Write data - DDR mode

QSPI_LUT_CMD_CMD_DDR Command - DDR mode

QSPI_LUT_CMD_CADDR Column address

QSPI_LUT_CMD_CADDR_DDR Column address - DDR mode

Definition at line 46 of file quadspi_driver.h.

14.85.5.6 enum qspi_lut_pads_t

Lut pad options Implements : qspi_lut_pads_t_Class.

Enumerator

QSPI_LUT_PADS_1 1 Pad

QSPI_LUT_PADS_2 2 Pads

QSPI_LUT_PADS_4 4 Pads

QSPI_LUT_PADS_8 8 Pads

Definition at line 72 of file quadspi_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

702 CONTENTS

14.85.5.7 enum qspi_read_mode_t

Read mode Implements : qspi_read_mode_t_Class.

Enumerator

QSPI_READ_MODE_INTERNAL_SAMPLING Sample on internal reference clock edge

QSPI_READ_MODE_INTERNAL_DQS Use internally generated strobe signal

QSPI_READ_MODE_EXTERNAL_DQS Use external strobe signal

Definition at line 94 of file quadspi_driver.h.

14.85.5.8 enum qspi_sample_delay_t

Delay used for sampling Rx data Implements : qspi_sample_delay_t_Class.

Enumerator

QSPI_SAMPLE_DELAY_1 One clock cycle delay

QSPI_SAMPLE_DELAY_2 Two clock cycles delay

Definition at line 145 of file quadspi_driver.h.

14.85.5.9 enum qspi_sample_phase_t

Clock phase used for sampling Rx data Implements : qspi_sample_phase_t_Class.

Enumerator

QSPI_SAMPLE_PHASE_NON_INVERTED Sampling at non-inverted clock

QSPI_SAMPLE_PHASE_INVERTED Sampling at inverted clock

Definition at line 154 of file quadspi_driver.h.

14.85.5.10 enum qspi_transfer_type_t

Driver type Implements : qspi_transfer_type_t_Class.

Enumerator

QSPI_TRANSFER_TYPE_SYNC Synchronous transfer using polling

QSPI_TRANSFER_TYPE_ASYNC_INT Interrupt-based asynchronous transfer

QSPI_TRANSFER_TYPE_ASYNC_DMA DMA-based asynchronous transfer

Definition at line 83 of file quadspi_driver.h.

14.85.6 Function Documentation

14.85.6.1 status_t QSPI_DRV_AhbSetup (uint32_t instance, const qspi_ahb_config_t ∗ config)

Sets up AHB accesses to the serial flash.

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.85 Qspi_drv 703

instance QuadSPI peripheral instance number
config AHB configuration structure

Returns

Error or success status returned by API

Definition at line 593 of file quadspi_driver.c.

14.85.6.2 static void QSPI_DRV_ClearAHBSeqPointer (uint32_t instance) [inline], [static]

Clears AHB sequence pointer.

Parameters

instance QuadSPI peripheral instance number Implements : QSPI_DRV_ClearAHBSeqPointer_←↩

Activity

Definition at line 407 of file quadspi_driver.h.

14.85.6.3 static void QSPI_DRV_ClearIpSeqPointer (uint32_t instance) [inline], [static]

Clears IP sequence pointer.

Parameters

instance QuadSPI peripheral instance number Implements : QSPI_DRV_ClearIpSeqPointer_Activity

Definition at line 391 of file quadspi_driver.h.

14.85.6.4 status_t QSPI_DRV_Deinit (uint32_t instance)

De-initialize the qspi driver.

This function de-initializes the qspi driver. The driver can't be used again until reinitialized. The context structure is
no longer needed by the driver and can be freed after calling this function.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 567 of file quadspi_driver.c.

14.85.6.5 status_t QSPI_DRV_GetDefaultConfig (qspi_user_config_t ∗ userConfigPtr)

Returns default configuration structure for QuadSPI.

Parameters

userConfigPtr Pointer to the qspi user configuration structure.

Returns

Always returns STATUS_SUCCESS

Definition at line 874 of file quadspi_driver.c.

14.85.6.6 status_t QSPI_DRV_Init (uint32_t instance, const qspi_user_config_t ∗ userConfigPtr, qspi_state_t ∗ state)

Initializes the qspi driver.

This function initializes the qspi driver and prepares it for operation.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

704 CONTENTS

Parameters

instance QuadSPI peripheral instance number
userConfigPtr Pointer to the qspi user configuration structure. The function reads configuration data from

this structure and initializes the driver accordingly. The application may free this structure
after the function returns.

master Pointer to the qspi context structure. The driver uses this memory area for its internal logic.
The application must make no assumptions about the content of this structure, and must not
free this memory until the driver is de-initialized using QSPI_DRV_Deinit().

Returns

Error or success status returned by API

Definition at line 482 of file quadspi_driver.c.

14.85.6.7 status_t QSPI_DRV_IpCommand (uint32_t instance, uint8_t lut, uint32_t timeout)

Launches a simple IP command.

Parameters

instance QuadSPI peripheral instance number
lut Index of LUT register

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 616 of file quadspi_driver.c.

14.85.6.8 status_t QSPI_DRV_IpErase (uint32_t instance, uint8_t lut, uint32_t addr)

Launches an IP erase command.

Parameters

instance QuadSPI peripheral instance number
lut Index of LUT register

addr Start address of erased sector

Returns

Error or success status returned by API

Definition at line 822 of file quadspi_driver.c.

14.85.6.9 status_t QSPI_DRV_IpGetStatus (uint32_t instance)

Checks the status of the currently running IP command.

Parameters

instance QuadSPI peripheral instance number

Returns

Error or success status returned by API

Definition at line 851 of file quadspi_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.85 Qspi_drv 705

14.85.6.10 status_t QSPI_DRV_IpRead (uint32_t instance, uint8_t lut, uint32_t addr, uint8_t ∗ dataRead, const uint8_t ∗
dataCmp, uint32_t size, qspi_transfer_type_t transferType, uint32_t timeout)

Launches an IP read command.

This function can launch a read command in 3 modes:

• normal read (dataRead != NULL): Data is read from serial flash and placed in the buffer

• verify (dataRead == NULL, dataCmp != NULL): Data is read from serial flash and compared to the reference
buffer

• blank check (dataRead == NULL, dataCmp == NULL): Data is read from serial flash and compared to 0xFF
Only normal read mode can use DMA.

Parameters

instance QuadSPI peripheral instance number
lut Index of LUT register

addr Start address for read operation in serial flash
dataRead Buffer where to store read data
dataCmp Buffer to be compared to read data

size Size of data buffer
transferType Type of transfer

timeout timeout for the transfer in milliseconds; only applies for synchronous transfers

Returns

Error or success status returned by API

Definition at line 651 of file quadspi_driver.c.

14.85.6.11 status_t QSPI_DRV_IpWrite (uint32_t instance, uint8_t lut, uint32_t addr, uint8_t ∗ data, uint32_t size,
qspi_transfer_type_t transferType, uint32_t timeout)

Launches an IP write command.

Parameters

instance QuadSPI peripheral instance number
lut Index of LUT register

addr Start address for write operation in serial flash
data Data to be programmed in flash
size Size of data buffer

transferType Type of transfer
timeout timeout for the transfer in milliseconds; only applies for synchronous transfers

Returns

Error or success status returned by API

Definition at line 744 of file quadspi_driver.c.

14.85.6.12 static void QSPI_DRV_LockLut (uint32_t instance) [inline], [static]

Locks LUT table.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

706 CONTENTS

Parameters

instance QuadSPI peripheral instance number Implements : QSPI_DRV_LockLut_Activity

Definition at line 356 of file quadspi_driver.h.

14.85.6.13 static void QSPI_DRV_SetAhbSeqId (uint32_t instance, uint8_t seqID) [inline], [static]

Sets sequence ID for AHB operations.

Parameters

instance QuadSPI peripheral instance number
seqID Sequence ID in LUT for read operation Implements : QSPI_DRV_SetAhbSeqId_Activity

Definition at line 424 of file quadspi_driver.h.

14.85.6.14 static void QSPI_DRV_SetLut (uint32_t instance, uint8_t lut, qspi_lut_commands_t instr0, qspi_lut_pads_t
pad0, uint8_t oprnd0, qspi_lut_commands_t instr1, qspi_lut_pads_t pad1, uint8_t oprnd1)
[inline], [static]

Configures LUT commands.

This function configures a pair of LUT commands in the specified LUT register. LUT sequences start at index
multiple of 4 and can have up to 8 commands

Parameters

instance QuadSPI peripheral instance number
lut Index of LUT register

instr0 First instruction
pad0 Number of pads to use for first instruction

oprnd0 Operand for first instruction
instr1 Second instruction
pad1 Number of pads to use for second instruction

oprnd1 Operand for second instruction Implements : QSPI_DRV_SetLut_Activity

Definition at line 327 of file quadspi_driver.h.

14.85.6.15 static void QSPI_DRV_UnlockLut (uint32_t instance) [inline], [static]

Unlocks LUT table.

Parameters

instance QuadSPI peripheral instance number Implements : QSPI_DRV_UnlockLut_Activity

Definition at line 374 of file quadspi_driver.h.

14.85.7 Variable Documentation

14.85.7.1 QuadSPI_Type∗ const g_qspiBase[]

Table of base addresses for QuadSPI instances.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.86 Raw API 707

14.86 Raw API

14.86.1 Detailed Description

The raw API is operating on PDU level and it is typically used to gateway PDUs between CAN and LIN.

Usually, a FIFO is used to buffer PDUs in order to handle the different bus speeds.

Functions

• void ld_put_raw (l_ifc_handle iii, const l_u8 ∗const data)

Queue the transmission of 8 bytes of data in one frame.

• void ld_get_raw (l_ifc_handle iii, l_u8 ∗const data)

Copy the oldest received diagnostic frame data to the memory specified by data.

• l_u8 ld_raw_tx_status (l_ifc_handle iii)

Get the status of the raw frame transmission function.

• l_u8 ld_raw_rx_status (l_ifc_handle iii)

Get the status of the raw frame receive function.

14.86.2 Function Documentation

14.86.2.1 void ld_get_raw (l_ifc_handle iii, l_u8 ∗const data)

Copy the oldest received diagnostic frame data to the memory specified by data.

Parameters

in iii Interface name
in data Buffer for the data to be transmitted

Returns

void

Copy the oldest received diagnostic frame data to the memory specified by data. The data returned is received from
master request frame for slave node and the slave response frame for master node.

Definition at line 168 of file lin_commontl_api.c.

14.86.2.2 void ld_put_raw (l_ifc_handle iii, const l_u8 ∗const data)

Queue the transmission of 8 bytes of data in one frame.

Parameters

in iii Interface name
in data Buffer for the data to be transmitted

Returns

void

Queue the transmission of 8 bytes of data in one frame The data is sent in the next suitable frame.

Definition at line 134 of file lin_commontl_api.c.

14.86.2.3 l_u8 ld_raw_rx_status (l_ifc_handle iii)

Get the status of the raw frame receive function.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

708 CONTENTS

Parameters

in iii Interface name

Returns

l_u8

Get the status of the raw frame receive function: LD_NO_DATA The receive queue is empty.(For LIN2.1 and
above only) LD_DATA_AVAILABLE The receive queue contains data that can be read. LD_RECEIVE_ERROR LIN
protocol errors occurred during the transfer; initialize and redo the transfer.(For LIN2.1 and above only). LD_TRA←↩

NSFER_ERROR: (For LIN2.0 and J2602 only) LIN protocol errors occurred during the transfer; initialize and redo
the transfer.

Definition at line 200 of file lin_commontl_api.c.

14.86.2.4 l_u8 ld_raw_tx_status (l_ifc_handle iii)

Get the status of the raw frame transmission function.

Parameters

in iii Interface name

Returns

l_u8

Get the status of the raw frame transmission function: This function is available for < br / > LD_QUEUE_EMPTY
: The transmit queue is empty. In case previous calls to < br / > ld_put_raw, all frames in the queue have been <
br / > transmitted. < br / > LD_QUEUE_AVAILABLE: The transmit queue contains entries, but is not full. < br /
> (For LIN2.1 and above only). LD_QUEUE_FULL : The transmit queue is full and can not accept further < br /
> frames. < br / > LD_TRANSMIT_ERROR : (For LIN2.1 and above only) LIN protocol errors occurred during the
transfer; initialize and redo the transfer. LD_TRANSFER_ERROR: (For LIN2.0 and J2602 only) LIN protocol errors
occurred during the transfer; initialize and redo the transfer.

Definition at line 185 of file lin_commontl_api.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 709

14.87 Real Time Clock Driver

14.87.1 Detailed Description

Real Time Clock Driver Peripheral Driver.

Data Structures

• struct rtc_timedate_t

RTC Time Date structure Implements : rtc_timedate_t_Class. More...

• struct rtc_init_config_t

RTC Initialization structure Implements : rtc_init_config_t_Class. More...

• struct rtc_alarm_config_t

RTC alarm configuration Implements : rtc_alarm_config_t_Class. More...

• struct rtc_interrupt_config_t

RTC interrupt configuration. It is used to configure interrupt other than Time Alarm and Time Seconds interrupt
Implements : rtc_interrupt_config_t_Class. More...

• struct rtc_seconds_int_config_t

RTC Seconds Interrupt Configuration Implements : rtc_seconds_int_config_t_Class. More...

• struct rtc_register_lock_config_t

RTC Register Lock Configuration Implements : rtc_register_lock_config_t_Class. More...

Macros

• #define SECONDS_IN_A_DAY (86400UL)

• #define SECONDS_IN_A_HOUR (3600U)

• #define SECONDS_IN_A_MIN (60U)

• #define MINS_IN_A_HOUR (60U)

• #define HOURS_IN_A_DAY (24U)

• #define DAYS_IN_A_YEAR (365U)

• #define DAYS_IN_A_LEAP_YEAR (366U)

• #define YEAR_RANGE_START (1970U)

• #define YEAR_RANGE_END (2099U)

Enumerations

• enum rtc_second_int_cfg_t {
RTC_INT_1HZ = 0x00U, RTC_INT_2HZ = 0x01U, RTC_INT_4HZ = 0x02U, RTC_INT_8HZ = 0x03U,
RTC_INT_16HZ = 0x04U, RTC_INT_32HZ = 0x05U, RTC_INT_64HZ = 0x06U, RTC_INT_128HZ = 0x07U }

RTC Seconds interrupt configuration Implements : rtc_second_int_cfg_t_Class.

• enum rtc_clk_out_config_t { RTC_CLKOUT_DISABLED = 0x00U, RTC_CLKOUT_SRC_TSIC = 0x01U, R←↩

TC_CLKOUT_SRC_32KHZ = 0x02U }

RTC CLKOUT pin configuration Implements : rtc_clk_out_config_t_Class.

• enum rtc_clk_select_t { RTC_CLK_SRC_OSC_32KHZ = 0x00U, RTC_CLK_SRC_LPO_1KHZ = 0x01U }

RTC clock select Implements : rtc_clk_select_t_Class.

• enum rtc_lock_register_select_t { RTC_LOCK_REG_LOCK = 0x00U, RTC_STATUS_REG_LOCK = 0x01U,
RTC_CTRL_REG_LOCK = 0x02U, RTC_TCL_REG_LOCK = 0x03U }

RTC register lock Implements : rtc_lock_register_select_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

710 CONTENTS

Functions

• status_t RTC_DRV_Init (uint32_t instance, const rtc_init_config_t ∗const rtcUserCfg)

This function initializes the RTC instance with the settings provided by the user via the rtcUserCfg parameter. The
user must ensure that clock is enabled for the RTC instance used. If the Control register is locked then this method
returns STATUS_ERROR. In order to clear the CR Lock the user must perform a power-on reset.

• status_t RTC_DRV_Deinit (uint32_t instance)

This function deinitializes the RTC instance. If the Control register is locked then this method returns STATUS_ER←↩

ROR.

• void RTC_DRV_GetDefaultConfig (rtc_init_config_t ∗const config)

This function will set the default configuration values into the structure passed as a parameter.

• status_t RTC_DRV_StartCounter (uint32_t instance)

Start RTC instance counter. Before calling this function the user should use RTC_DRV_SetTimeDate to configure
the start time.

• status_t RTC_DRV_StopCounter (uint32_t instance)

Disable RTC instance counter.

• status_t RTC_DRV_GetCurrentTimeDate (uint32_t instance, rtc_timedate_t ∗const currentTime)

Get current time and date from RTC instance.

• status_t RTC_DRV_SetTimeDate (uint32_t instance, const rtc_timedate_t ∗const time)

Set time and date for RTC instance. The user must stop the counter before using this function. Otherwise it will return
an error.

• status_t RTC_DRV_ConfigureRegisterLock (uint32_t instance, const rtc_register_lock_config_t ∗const
lockConfig)

This method configures register lock for the corresponding RTC instance. Remember that all the registers are un-
locked only by software reset or power on reset. (Except for CR that is unlocked only by POR).

• void RTC_DRV_GetRegisterLock (uint32_t instance, rtc_register_lock_config_t ∗const lockConfig)

Get which registers are locked for RTC instance.

• status_t RTC_DRV_ConfigureTimeCompensation (uint32_t instance, uint8_t compInterval, int8_t compensa-
tion)

This method configures time compensation. Data is passed by the compInterval and compensation parameters. For
more details regarding coefficient calculation see the Reference Manual.

• void RTC_DRV_GetTimeCompensation (uint32_t instance, uint8_t ∗compInterval, int8_t ∗compensation)

This retrieves the time compensation coefficients and saves them on the variables referenced by the parameters.

• void RTC_DRV_ConfigureFaultInt (uint32_t instance, rtc_interrupt_config_t ∗const intConfig)

This method configures fault interrupts such as:

• void RTC_DRV_ConfigureSecondsInt (uint32_t instance, rtc_seconds_int_config_t ∗const intConfig)

This method configures the Time Seconds Interrupt with the configuration from the intConfig parameter.

• status_t RTC_DRV_ConfigureAlarm (uint32_t instance, rtc_alarm_config_t ∗const alarmConfig)

This method configures the alarm with the configuration from the alarmConfig parameter.

• void RTC_DRV_GetAlarmConfig (uint32_t instance, rtc_alarm_config_t ∗alarmConfig)

Get alarm configuration for RTC instance.

• bool RTC_DRV_IsAlarmPending (uint32_t instance)

Check if alarm is pending.

• void RTC_DRV_ConvertSecondsToTimeDate (const uint32_t ∗seconds, rtc_timedate_t ∗const timeDate)

Convert seconds to rtc_timedate_t structure.

• void RTC_DRV_ConvertTimeDateToSeconds (const rtc_timedate_t ∗const timeDate, uint32_t ∗const sec-
onds)

Convert seconds to rtc_timedate_t structure.

• bool RTC_DRV_IsYearLeap (uint16_t year)

Check if the current year is leap.

• bool RTC_DRV_IsTimeDateCorrectFormat (const rtc_timedate_t ∗const timeDate)

Check if the date time struct is configured properly.

• status_t RTC_DRV_GetNextAlarmTime (uint32_t instance, rtc_timedate_t ∗const alarmTime)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 711

Gets the next alarm time.

• void RTC_DRV_IRQHandler (uint32_t instance)

This method is the API's Interrupt handler for generic and alarm IRQ. It will handle the alarm repetition and calls the
user callbacks if they are not NULL.

• void RTC_DRV_SecondsIRQHandler (uint32_t instance)

This method is the API's Interrupt handler for RTC Second interrupt. This ISR will call the user callback if defined.

14.87.2 Data Structure Documentation

14.87.2.1 struct rtc_timedate_t

RTC Time Date structure Implements : rtc_timedate_t_Class.

Definition at line 99 of file rtc_driver.h.

Data Fields

• uint16_t year

• uint16_t month

• uint16_t day

• uint16_t hour

• uint16_t minutes

• uint8_t seconds

Field Documentation

14.87.2.1.1 uint16_t day

Day

Definition at line 103 of file rtc_driver.h.

14.87.2.1.2 uint16_t hour

Hour

Definition at line 104 of file rtc_driver.h.

14.87.2.1.3 uint16_t minutes

Minutes

Definition at line 105 of file rtc_driver.h.

14.87.2.1.4 uint16_t month

Month

Definition at line 102 of file rtc_driver.h.

14.87.2.1.5 uint8_t seconds

Seconds

Definition at line 106 of file rtc_driver.h.

14.87.2.1.6 uint16_t year

Year

Definition at line 101 of file rtc_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

712 CONTENTS

14.87.2.2 struct rtc_init_config_t

RTC Initialization structure Implements : rtc_init_config_t_Class.

Definition at line 113 of file rtc_driver.h.

Data Fields

• uint8_t compensationInterval
• int8_t compensation
• rtc_clk_select_t clockSelect
• rtc_clk_out_config_t clockOutConfig
• bool updateEnable
• bool nonSupervisorAccessEnable

Field Documentation

14.87.2.2.1 rtc_clk_out_config_t clockOutConfig

RTC Clock Out Source

Definition at line 118 of file rtc_driver.h.

14.87.2.2.2 rtc_clk_select_t clockSelect

RTC Clock Select

Definition at line 117 of file rtc_driver.h.

14.87.2.2.3 int8_t compensation

Compensation Value

Definition at line 116 of file rtc_driver.h.

14.87.2.2.4 uint8_t compensationInterval

Compensation Interval

Definition at line 115 of file rtc_driver.h.

14.87.2.2.5 bool nonSupervisorAccessEnable

Enable writes to the registers in non Supervisor Mode

Definition at line 120 of file rtc_driver.h.

14.87.2.2.6 bool updateEnable

Enable changing the Time Counter Enable bit even if the Status register is locked

Definition at line 119 of file rtc_driver.h.

14.87.2.3 struct rtc_alarm_config_t

RTC alarm configuration Implements : rtc_alarm_config_t_Class.

Definition at line 127 of file rtc_driver.h.

Data Fields

• rtc_timedate_t alarmTime
• uint32_t repetitionInterval
• uint32_t numberOfRepeats
• bool repeatForever

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 713

• bool alarmIntEnable

• void(∗ alarmCallback)(void ∗callbackParam)

• void ∗ callbackParams

Field Documentation

14.87.2.3.1 void(∗ alarmCallback) (void ∗callbackParam)

Pointer to the user callback method.

Definition at line 134 of file rtc_driver.h.

14.87.2.3.2 bool alarmIntEnable

Enable alarm interrupt

Definition at line 133 of file rtc_driver.h.

14.87.2.3.3 rtc_timedate_t alarmTime

Alarm time

Definition at line 129 of file rtc_driver.h.

14.87.2.3.4 void∗ callbackParams

Pointer to the callback parameters.

Definition at line 135 of file rtc_driver.h.

14.87.2.3.5 uint32_t numberOfRepeats

Number of alarm repeats

Definition at line 131 of file rtc_driver.h.

14.87.2.3.6 bool repeatForever

Repeat forever if set, discard number of repeats

Definition at line 132 of file rtc_driver.h.

14.87.2.3.7 uint32_t repetitionInterval

Interval of repetition in sec

Definition at line 130 of file rtc_driver.h.

14.87.2.4 struct rtc_interrupt_config_t

RTC interrupt configuration. It is used to configure interrupt other than Time Alarm and Time Seconds interrupt
Implements : rtc_interrupt_config_t_Class.

Definition at line 143 of file rtc_driver.h.

Data Fields

• bool overflowIntEnable

• bool timeInvalidIntEnable

• void(∗ rtcCallback)(void ∗callbackParam)

• void ∗ callbackParams

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

714 CONTENTS

14.87.2.4.1 void∗ callbackParams

Pointer to the callback parameters.

Definition at line 148 of file rtc_driver.h.

14.87.2.4.2 bool overflowIntEnable

Enable Time Overflow Interrupt

Definition at line 145 of file rtc_driver.h.

14.87.2.4.3 void(∗ rtcCallback) (void ∗callbackParam)

Pointer to the user callback method.

Definition at line 147 of file rtc_driver.h.

14.87.2.4.4 bool timeInvalidIntEnable

Enable Time Invalid Interrupt

Definition at line 146 of file rtc_driver.h.

14.87.2.5 struct rtc_seconds_int_config_t

RTC Seconds Interrupt Configuration Implements : rtc_seconds_int_config_t_Class.

Definition at line 155 of file rtc_driver.h.

Data Fields

• rtc_second_int_cfg_t secondIntConfig
• bool secondIntEnable
• void(∗ rtcSecondsCallback)(void ∗callbackParam)
• void ∗ secondsCallbackParams

Field Documentation

14.87.2.5.1 void(∗ rtcSecondsCallback) (void ∗callbackParam)

Pointer to the user callback method.

Definition at line 159 of file rtc_driver.h.

14.87.2.5.2 rtc_second_int_cfg_t secondIntConfig

Seconds Interrupt frequency

Definition at line 157 of file rtc_driver.h.

14.87.2.5.3 bool secondIntEnable

Seconds Interrupt enable

Definition at line 158 of file rtc_driver.h.

14.87.2.5.4 void∗ secondsCallbackParams

Pointer to the callback parameters.

Definition at line 160 of file rtc_driver.h.

14.87.2.6 struct rtc_register_lock_config_t

RTC Register Lock Configuration Implements : rtc_register_lock_config_t_Class.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 715

Definition at line 167 of file rtc_driver.h.

Data Fields

• bool lockRegisterLock

• bool statusRegisterLock

• bool controlRegisterLock

• bool timeCompensationRegisterLock

Field Documentation

14.87.2.6.1 bool controlRegisterLock

Lock state of the Control Register

Definition at line 171 of file rtc_driver.h.

14.87.2.6.2 bool lockRegisterLock

Lock state of the Lock Register

Definition at line 169 of file rtc_driver.h.

14.87.2.6.3 bool statusRegisterLock

Lock state of the Status Register

Definition at line 170 of file rtc_driver.h.

14.87.2.6.4 bool timeCompensationRegisterLock

Lock state of the Time Compensation Register

Definition at line 172 of file rtc_driver.h.

14.87.3 Macro Definition Documentation

14.87.3.1 #define DAYS_IN_A_LEAP_YEAR (366U)

Definition at line 42 of file rtc_driver.h.

14.87.3.2 #define DAYS_IN_A_YEAR (365U)

Definition at line 41 of file rtc_driver.h.

14.87.3.3 #define HOURS_IN_A_DAY (24U)

Definition at line 40 of file rtc_driver.h.

14.87.3.4 #define MINS_IN_A_HOUR (60U)

Definition at line 39 of file rtc_driver.h.

14.87.3.5 #define SECONDS_IN_A_DAY (86400UL)

Definition at line 36 of file rtc_driver.h.

14.87.3.6 #define SECONDS_IN_A_HOUR (3600U)

Definition at line 37 of file rtc_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

716 CONTENTS

14.87.3.7 #define SECONDS_IN_A_MIN (60U)

Definition at line 38 of file rtc_driver.h.

14.87.3.8 #define YEAR_RANGE_END (2099U)

Definition at line 44 of file rtc_driver.h.

14.87.3.9 #define YEAR_RANGE_START (1970U)

Definition at line 43 of file rtc_driver.h.

14.87.4 Enumeration Type Documentation

14.87.4.1 enum rtc_clk_out_config_t

RTC CLKOUT pin configuration Implements : rtc_clk_out_config_t_Class.

Enumerator

RTC_CLKOUT_DISABLED Clock out pin is disabled

RTC_CLKOUT_SRC_TSIC Output on RTC_CLKOUT as configured on Time seconds interrupt

RTC_CLKOUT_SRC_32KHZ Output on RTC_CLKOUT of the 32KHz clock

Definition at line 66 of file rtc_driver.h.

14.87.4.2 enum rtc_clk_select_t

RTC clock select Implements : rtc_clk_select_t_Class.

Enumerator

RTC_CLK_SRC_OSC_32KHZ RTC Prescaler increments using 32 KHz crystal

RTC_CLK_SRC_LPO_1KHZ RTC Prescaler increments using 1KHz LPO

Definition at line 77 of file rtc_driver.h.

14.87.4.3 enum rtc_lock_register_select_t

RTC register lock Implements : rtc_lock_register_select_t_Class.

Enumerator

RTC_LOCK_REG_LOCK RTC Lock Register lock

RTC_STATUS_REG_LOCK RTC Status Register lock

RTC_CTRL_REG_LOCK RTC Control Register lock

RTC_TCL_REG_LOCK RTC Time Compensation Reg lock

Definition at line 87 of file rtc_driver.h.

14.87.4.4 enum rtc_second_int_cfg_t

RTC Seconds interrupt configuration Implements : rtc_second_int_cfg_t_Class.

Enumerator

RTC_INT_1HZ RTC seconds interrupt occurs at 1 Hz

RTC_INT_2HZ RTC seconds interrupt occurs at 2 Hz

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 717

RTC_INT_4HZ RTC seconds interrupt occurs at 4 Hz

RTC_INT_8HZ RTC seconds interrupt occurs at 8 Hz

RTC_INT_16HZ RTC seconds interrupt occurs at 16 Hz

RTC_INT_32HZ RTC seconds interrupt occurs at 32 Hz

RTC_INT_64HZ RTC seconds interrupt occurs at 64 Hz

RTC_INT_128HZ RTC seconds interrupt occurs at 128 Hz

Definition at line 50 of file rtc_driver.h.

14.87.5 Function Documentation

14.87.5.1 status_t RTC_DRV_ConfigureAlarm (uint32_t instance, rtc_alarm_config_t ∗const alarmConfig)

This method configures the alarm with the configuration from the alarmConfig parameter.

Parameters

in instance The number of the RTC instance used
in alarmConfig Pointer to the structure which holds the alarm configuration

Returns

STATUS_SUCCESS if the configuration is successful or STATUS_ERROR if the alarm time is invalid.

Definition at line 927 of file rtc_driver.c.

14.87.5.2 void RTC_DRV_ConfigureFaultInt (uint32_t instance, rtc_interrupt_config_t ∗const intConfig)

This method configures fault interrupts such as:

• Time Overflow Interrupt

• Time Invalid Interrupt with the user provided configuration struct intConfig.

Parameters

in instance The number of the RTC instance used
in intConfig Pointer to the structure which holds the configuration

Returns

None

Definition at line 870 of file rtc_driver.c.

14.87.5.3 status_t RTC_DRV_ConfigureRegisterLock (uint32_t instance, const rtc_register_lock_config_t ∗const
lockConfig)

This method configures register lock for the corresponding RTC instance. Remember that all the registers are
unlocked only by software reset or power on reset. (Except for CR that is unlocked only by POR).

Parameters

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

718 CONTENTS

in instance The number of the RTC instance used
in lockConfig Pointer to the lock configuration structure

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the Lock Register is locked.

Definition at line 426 of file rtc_driver.c.

14.87.5.4 void RTC_DRV_ConfigureSecondsInt (uint32_t instance, rtc_seconds_int_config_t ∗const intConfig)

This method configures the Time Seconds Interrupt with the configuration from the intConfig parameter.

Parameters

in instance The number of the RTC instance used
in intConfig Pointer to the structure which holds the configuration

Returns

None

Definition at line 897 of file rtc_driver.c.

14.87.5.5 status_t RTC_DRV_ConfigureTimeCompensation (uint32_t instance, uint8_t compInterval, int8_t compensation)

This method configures time compensation. Data is passed by the compInterval and compensation parameters.
For more details regarding coefficient calculation see the Reference Manual.

Parameters

in instance The number of the RTC instance used
in compInterval Compensation interval
in compensation Compensation value

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the TC Register is locked.

Definition at line 501 of file rtc_driver.c.

14.87.5.6 void RTC_DRV_ConvertSecondsToTimeDate (const uint32_t ∗ seconds, rtc_timedate_t ∗const timeDate)

Convert seconds to rtc_timedate_t structure.

Parameters

in seconds Pointer to the seconds
out timeDate Pointer to the structure in which to store the result

Returns

None

Definition at line 551 of file rtc_driver.c.

14.87.5.7 void RTC_DRV_ConvertTimeDateToSeconds (const rtc_timedate_t ∗const timeDate, uint32_t ∗const seconds)

Convert seconds to rtc_timedate_t structure.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 719

Parameters

in timeDate Pointer to the source struct
out seconds Pointer to the variable in which to store the result

Returns

None

Definition at line 645 of file rtc_driver.c.

14.87.5.8 status_t RTC_DRV_Deinit (uint32_t instance)

This function deinitializes the RTC instance. If the Control register is locked then this method returns STATUS_E←↩

RROR.

Parameters

in instance The number of the RTC instance used

Returns

STATUS_SUCCESS if the operation was successful or STATUS_ERROR if Control register is locked.

Definition at line 159 of file rtc_driver.c.

14.87.5.9 void RTC_DRV_GetAlarmConfig (uint32_t instance, rtc_alarm_config_t ∗ alarmConfig)

Get alarm configuration for RTC instance.

Parameters

in instance The number of the RTC instance used
out alarmConfig Pointer to the structure in which to store the alarm configuration

Returns

None

Definition at line 981 of file rtc_driver.c.

14.87.5.10 status_t RTC_DRV_GetCurrentTimeDate (uint32_t instance, rtc_timedate_t ∗const currentTime)

Get current time and date from RTC instance.

Parameters

in instance The number of the RTC instance used
out currentTime Pointer to the variable in which to store the result

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if there was a problem.

Definition at line 328 of file rtc_driver.c.

14.87.5.11 void RTC_DRV_GetDefaultConfig (rtc_init_config_t ∗const config)

This function will set the default configuration values into the structure passed as a parameter.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

720 CONTENTS

Parameters

out config Pointer to the structure in which the configuration will be saved.

Returns

None

Definition at line 195 of file rtc_driver.c.

14.87.5.12 status_t RTC_DRV_GetNextAlarmTime (uint32_t instance, rtc_timedate_t ∗const alarmTime)

Gets the next alarm time.

Parameters

in instance The number of the RTC instance used
out alarmTime Pointer to the variable in which to store the data

Returns

STATUS_SUCCESS if the next alarm time is valid, STATUS_ERROR if there is no new alarm or alarm
configuration specified.

Definition at line 1013 of file rtc_driver.c.

14.87.5.13 void RTC_DRV_GetRegisterLock (uint32_t instance, rtc_register_lock_config_t ∗const lockConfig)

Get which registers are locked for RTC instance.

Parameters

in instance The number of the RTC instance used
out lockConfig Pointer to the lock configuration structure in which to save the data

Returns

None

Definition at line 473 of file rtc_driver.c.

14.87.5.14 void RTC_DRV_GetTimeCompensation (uint32_t instance, uint8_t ∗ compInterval, int8_t ∗ compensation)

This retrieves the time compensation coefficients and saves them on the variables referenced by the parameters.

Parameters

in instance The number of the RTC instance used
out compInterval Pointer to the variable in which to save the compensation interval
out compensation Pointer to the variable in which to save the compensation value

Returns

None

Definition at line 534 of file rtc_driver.c.

14.87.5.15 status_t RTC_DRV_Init (uint32_t instance, const rtc_init_config_t ∗const rtcUserCfg)

This function initializes the RTC instance with the settings provided by the user via the rtcUserCfg parameter. The
user must ensure that clock is enabled for the RTC instance used. If the Control register is locked then this method
returns STATUS_ERROR. In order to clear the CR Lock the user must perform a power-on reset.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 721

Parameters

in instance The number of the RTC instance used
in rtcUserCfg Pointer to the user's configuration structure

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if Control is locked.

Definition at line 100 of file rtc_driver.c.

14.87.5.16 void RTC_DRV_IRQHandler (uint32_t instance)

This method is the API's Interrupt handler for generic and alarm IRQ. It will handle the alarm repetition and calls the
user callbacks if they are not NULL.

Parameters

in instance RTC instance used

Returns

None

Definition at line 773 of file rtc_driver.c.

14.87.5.17 bool RTC_DRV_IsAlarmPending (uint32_t instance)

Check if alarm is pending.

Parameters

in instance The number of the RTC instance used

Returns

True if the alarm has occurred, false if not

Definition at line 996 of file rtc_driver.c.

14.87.5.18 bool RTC_DRV_IsTimeDateCorrectFormat (const rtc_timedate_t ∗const timeDate)

Check if the date time struct is configured properly.

Parameters

in timeDate Structure to check to check

Returns

True if the time date is in the correct format, false if not

Definition at line 695 of file rtc_driver.c.

14.87.5.19 bool RTC_DRV_IsYearLeap (uint16_t year)

Check if the current year is leap.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

722 CONTENTS

Parameters

in year Year to check

Returns

True if the year is leap, false if not

Definition at line 737 of file rtc_driver.c.

14.87.5.20 void RTC_DRV_SecondsIRQHandler (uint32_t instance)

This method is the API's Interrupt handler for RTC Second interrupt. This ISR will call the user callback if defined.

Parameters

in instance RTC instance used

Returns

None

Definition at line 845 of file rtc_driver.c.

14.87.5.21 status_t RTC_DRV_SetTimeDate (uint32_t instance, const rtc_timedate_t ∗const time)

Set time and date for RTC instance. The user must stop the counter before using this function. Otherwise it will
return an error.

Parameters

in instance The number of the RTC instance used
in time Pointer to the variable in which the time is stored

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the time provided was invalid or if
the counter was not stopped.

Definition at line 383 of file rtc_driver.c.

14.87.5.22 status_t RTC_DRV_StartCounter (uint32_t instance)

Start RTC instance counter. Before calling this function the user should use RTC_DRV_SetTimeDate to configure
the start time.

Parameters

in instance The number of the RTC instance used

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the counter cannot be enabled or
is already enabled.

Definition at line 266 of file rtc_driver.c.

14.87.5.23 status_t RTC_DRV_StopCounter (uint32_t instance)

Disable RTC instance counter.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.87 Real Time Clock Driver 723

Parameters

in instance The number of the RTC instance used

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the counter could not be stopped.

Definition at line 297 of file rtc_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

724 CONTENTS

14.88 Real Time Clock Driver (RTC)

14.88.1 Detailed Description

The S32 SDK provides the Peripheral Driver for the Real Time Clock (RTC) module of S32 SDK devices.
.

Hardware background

The Real Time Clock Module is a independent timer that keeps track of the exact date and time with no software
overhead, with low power usage.

Features of the RTC module include:

• 32-bit seconds counter with roll-over protection and 32-bit alarm

• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm

• Option to increment prescaler using the LPO (prescaler increments by 32 every clock edge)

• Register write protection

• Lock register requires POR or software reset to enable write access

• Configurable 1, 2, 4, 8, 16, 32, 64 or 128 Hz square wave output with optional interrupt

• Alarm interrupt configured by the driver automatically refreshes alarm time configured by the user

• User interrupt handlers can be configured for all interrupts

How to use the RTC driver in your application

In order to be able to use the RTC in your application, the first thing to do is initializing it with the desired config-
uration. This is done by calling the RTC_DRV_Init function. One of the arguments passed to this function is the
configuration which will be used for the RTC instance, specified by the rtc_init_config_t structure.

The rtc_init_config_t structure allows you to configure the following:

• RTC clock source (32 KHz clock or 1 KHz LPO clock)

• Clock Out pin configuration (Clock OUT pin source)

• Compensation (Interval and value)

• Update enable - this allows updates to Time Counter Enable bit if the Status Register under limited conditions

• Enable non supervisor writes to the registers

The rtc_seconds_int_config_t structure configures the time seconds interrupt. To setup an interrupt every
seconds you have to configure the structure mentioned with the following parameters:

• Frequency of the interrupt

• Interrupt Handler

• If needed - interrupt handler parameters

An alarm is configured with rtc_alarm_config_t structure, which is described by the following parameters:

• Alarm time in date-time format

• Interval of alarm repeat in seconds

• Number of alarm repeats (use 0 if the alarm is not recursive)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.88 Real Time Clock Driver (RTC) 725

• Repeat forever field (if set, the number of repeats field will be ignored)

• Alarm interrupt enable

• Alarm interrupt handler

• Alarm interrupt handler parameters

Note If the alarm interrupt is not enabled, the user must make the updates of the alarm time manually.

After the RTC_DRV_Init call and, if needed, alarm and other configurations the RTC counter is started by calling
RTC_DRV_Enable, with start time as parameter in rtc_timedate_t format.

To get the current time and date you can call RTC_DRV_GetCurrentTimeDate function, this method will get the
seconds from the Time Seconds Register and will convert into human readable format as rtc_timedate_t.

Example

void rtcAlarmCallback(void)
{

rtc_timedate_t currentTime;
RTC_DRV_GetCurrentTimeDate(0U, ¤tTime);

/* Do something with the time and date */
}

int main()
{

/* rtcTimer1 configuration structure */
const rtc_init_config_t rtcTimer1_Config0 =
{

/* Time compensation interval */
.compensationInterval = 0U,
/* Time compensation value */
.compensation = 0,
/* RTC Clock Source is 32 KHz crystal */
.clockSelect = RTC_CLK_SRC_OSC_32KHZ,
/* RTC Clock Out is 32 KHz clock */
.clockOutConfig = RTC_CLKOUT_SRC_32KHZ,
/* Update of the TCE bit is not allowed */
.updateEnable = false,
/* Non-supervisor mode write accesses are not supported and generate

* a bus error.

*/
.nonSupervisorAccessEnable = false

};

/* RTC Initial Time and Date */
rtc_timedate_t rtcStartTime =
{

/* Year */
.year = 2016U,
/* Month */
.month = 01U,
/* Day */
.day = 01U,
/* Hour */
.hour = 00U,
/* Minutes */
.minutes = 00U,
/* Seconds */
.seconds = 00U

};

/* rtcTimer1 Alarm configuration 0 */
rtc_alarm_config_t alarmConfig0 =
{

/* Alarm Date */
.alarmTime =

{
/* Year */
.year = 2016U,
/* Month */
.month = 01U,
/* Day */
.day = 01U,
/* Hour */
.hour = 00U,
/* Minutes */
.minutes = 00U,
/* Seconds */
.seconds = 03U,

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

726 CONTENTS

},

/* Alarm repeat interval */
.repetitionInterval = 3UL,

/* Number of alarm repeats */
.numberOfRepeats = 0UL,

/* Repeat alarm forever */
.repeatForever = true,

/* Alarm interrupt disabled */
.alarmIntEnable = true,

/* Alarm interrupt handler */
.alarmCallback = (void *)rtcAlarmCallback,

/* Alarm interrupt handler parameters */
.callbackParams = (void *)NULL

};

/* Call the init function */
RTC_DRV_Init(0UL, &rtcInitConfig);

/* Set the time and date */
RTC_DRV_SetTimeDate(0UL, &rtcStartTime);

/* Start RTC counter */
RTC_DRV_StartCounter(0UL);

/* Configure an alarm every 3 seconds */
RTC_DRV_ConfigureAlarm(0UL, &rtcAlarmConfig0);

while(1);
}

Important Notes

• Before using the RTC driver the module clock must be configured

• The driver enables the interrupts for the corresponding RTC module, but any interrupt priority must be done
by the application

• The board specific configurations must be done prior to driver calls; the driver has no influence on the func-
tionality of the clockout pin - they must be configured by application

Modules

• Real Time Clock Driver

Real Time Clock Driver Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.89 S32K144 SoC Header file 727

14.89 S32K144 SoC Header file

14.89.1 Detailed Description

This module covers the S32K144 SoC Header file.

Modules

• Backward Compatibility Symbols for S32K144

This module covers backward compatibility symbols.

• Interrupt vector numbers for S32K144

This module covers interrupt number allocation.

• Peripheral access layer for S32K144

This module covers all memory mapped register available on SoC.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

728 CONTENTS

14.90 S32K144 System Files

This module covers the SoC support file for S32K144.

SystemInit method is called automatically from start-up code to do the minimum setup of the SoC. It disables the
watchdog, enables FPU and the power mode protection if the corresponding feature macro is enabled.

SystemCoreClockUpdate method can be used at any time to update SystemCoreClock. It evaluates the clock
register settings and calculates the current core clock.

SystemSoftwareReset method initiates a system reset.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.91 SAI Driver 729

14.91 SAI Driver

14.91.1 Detailed Description

This module covers the functionality of the Synchronous Audio Interface (SAI) peripheral driver.

The SAI driver implements communication using the SAI module in the S32K148 processor.

Features

• Transmitter with independent bit clock and frame sync, or sync with receiver

• Receiver with independent bit clock and frame sync, or sync with transmitter

• Maximum frame size of 16 words

• Word size of between 8-bits and 32-bits

• Word size configured separately for first word and remaining words in frame

• Mux channels into one dataline, or mux data lines into one memory block

How to integrate SAI in your application

In order to use the SAI driver it must be first initialized in either transmit or receive mode, using functions SAI_DRV←↩

_TxInit() or SAI_DRV_RxInit(). Once initialized, it cannot be initialized again for the same SAI module instance until
it is de-initialized, using SAI_DRV_TxDeinit() or SAI_DRV_RxDeinit(). Different SAI module instances can function
independently of each other.

In each mode (transmit/receive) are available two types of transfers: blocking and non-blocking. The functions which
initiate blocking transfers will configure the time out for transmission. If time expires SAI_DRV_SendBlocking/SAI←↩

_DRV_ReceiveBlocking will return error and the transmission will be aborted.

Important Notes

• If transmitter is initialized with SAI_SYNC_WITH_OTHER option, receiver must be initialized first and must
use SAI_ASYNC mode

• If receiver is initialized with SAI_SYNC_WITH_OTHER option, transmitter must be initialized first and must
use SAI_ASYNC mode

• DMA module has to be initialized prior to usage in DMA mode; also, DMA channels need to be allocated
by the application (the driver only takes care of configuring the DMA channels received in the configuration
structure)

• There is a difference in ChannelEnable field usage between interrupt and dma mode: In interrupt mode, if
mux line is enabled then user must turn on only one bit in ChannelEnable, which will be the data line to output
data. Number of data buffers to be muxed is specified in ChannelCount field. In DMA mode, if mux line is
enabled then user must turn on number of bits equal to number of data buffers to be muxed. The data lines
corresponding to these bits will output the same as each other. Also in DMA mode, if a mux mode is selected,
user must turn on from bit 0, and immediately aboves (for example turning on bit 0 and bit 2 is not a correct
configuration).

Example code

/* sai0 configuration structure */
sai_user_config_t sai0_InitConfig0;

/* Driver state structure */
sai_state_t SAI0TxState;

/* Fill configuration structure with I2S settings */
SAI_DRV_GetDefaultConfig(&sai0_InitConfig0);

/* Provide two data buffer for left and right channel */
uint16_t* sendData[2U] = {LeftData, RightData};

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

730 CONTENTS

/* Initialize transmitter for SAI0 */
SAI_DRV_TxInit(0U, &sai0_InitConfig0, &SAI0TxState);

/* Send blocking, timeout is 10ms */
status_t ret = SAI_DRV_SendBlocking(0U, (uint8_t**) sendData, sendBufferSize, 10U);

Data Structures

• struct sai_xfer_state_t

Transmit or receive state. More...

• struct sai_state_t

Structure for internal use. This structure is used by the driver for its internal logic. It must be provided by the application
through the initialize functions, then it cannot be freed until the driver is de-initialized using Deinit functions. The
application should make no assumptions about the content of this structure. More...

• struct sai_user_config_t

User config structure. More...

Macros

• #define SAI_CHANNEL_0 0x1
• #define SAI_CHANNEL_1 0x2
• #define SAI_CHANNEL_2 0x4
• #define SAI_CHANNEL_3 0x8

Typedefs

• typedef void(∗ sai_transfer_callback_t) (uint8_t channel, sai_report_type_t report, status_t status)

Sai callback function type for nonblock transfer, also called to report events (sai_report_type_t).

Enumerations

• enum sai_report_type_t { SAI_FRAME_START = 0, SAI_RUN_ERROR, SAI_SYNC_ERROR, SAI_TRAN←↩

SFER_COMPLETE }

Report to enable.

• enum sai_transfer_type_t { SAI_INTERRUPT = 0U, SAI_DMA }

Transfer type.

• enum sai_mux_mode_t { SAI_MUX_DISABLED = 0U, SAI_MUX_LINE = 1U, SAI_MUX_MEM = 2U }

Data mux line or mux memory.

• enum sai_sync_mode_t { SAI_ASYNC = 0U, SAI_SYNC_WITH_OTHER = 1U }

SAI run in sync or async mode.

• enum sai_master_clk_source_t { SAI_BUS_CLK = 0U, SAI_EXTERNAL_CLK = 1U, SAI_SOSC_CLK = 2U }

Select master clock.

• enum sai_mask_mode_t { SAI_MASK_TRISTATE = 0U, SAI_MASK_ZERO = 1U }

Data line state for masked word, or if data line is disabled.

SAI Driver

• void SAI_DRV_TxInit (uint32_t instNum, const sai_user_config_t ∗saiUserConfig, sai_state_t ∗StateAlloc)

Initialize the transmitter of driver.

• void SAI_DRV_RxInit (uint32_t instNum, const sai_user_config_t ∗saiUserConfig, sai_state_t ∗StateAlloc)

Initialize the receiver of driver.

• void SAI_DRV_TxDeinit (uint32_t instNum)

De-initialize transmitter.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.91 SAI Driver 731

• void SAI_DRV_RxDeinit (uint32_t instNum)

De-initialize receiver.
• uint32_t SAI_DRV_TxGetBitClockFreq (uint32_t instNum)

Return true bit clock frequency of transmitter.
• uint32_t SAI_DRV_RxGetBitClockFreq (uint32_t instNum)

Return true bit clock frequency of receiver.
• uint32_t SAI_DRV_TxGetBitClockDiv (uint32_t instNum)

Return true bit clock divisor of transmitter.
• uint32_t SAI_DRV_RxGetBitClockDiv (uint32_t instNum)

Return true bit clock divisor of receiver.
• void SAI_DRV_TxSetNextMaskWords (uint32_t instNum, uint16_t Words)

Set masked word index of subsequent frames for transmitter.
• void SAI_DRV_RxSetNextMaskWords (uint32_t instNum, uint16_t Words)

Set masked word index of subsequent frames for receiver.
• status_t SAI_DRV_SendBlocking (uint32_t instNum, const uint8_t ∗data[], uint32_t count, uint32_t timeout)

Send a block of data, return when transfer complete.
• void SAI_DRV_Send (uint32_t instNum, const uint8_t ∗data[], uint32_t count)

Send a block of data, return immidiately.
• status_t SAI_DRV_GetSendingStatus (uint32_t instNum, uint32_t ∗countRemain)

Get status of a non-blocking transfer.
• void SAI_DRV_AbortSending (uint32_t instNum)

Abort an ongoing transfer.
• status_t SAI_DRV_ReceiveBlocking (uint32_t instNum, uint8_t ∗data[], uint32_t count, uint32_t timeout)

Receive a block of data, return when transfer complete.
• void SAI_DRV_Receive (uint32_t instNum, uint8_t ∗data[], uint32_t count)

Receive a block of data, return immidiately.
• status_t SAI_DRV_GetReceivingStatus (uint32_t instNum, uint32_t ∗countRemain)

Get status of a non-blocking transfer.
• void SAI_DRV_AbortReceiving (uint32_t instNum)

Abort an ongoing transfer.
• void SAI_DRV_GetDefaultConfig (sai_user_config_t ∗uc)

Get default config structure for I2S standard. Init config structure for I2S interface: Interrupt mode, internal generated
bit clock 1.4112 MHz, 16 bit word, 2 channel 1 data line (data line 0),.

14.91.2 Data Structure Documentation

14.91.2.1 struct sai_xfer_state_t

Transmit or receive state.

Definition at line 53 of file sai_driver.h.

14.91.2.2 struct sai_state_t

Structure for internal use. This structure is used by the driver for its internal logic. It must be provided by the appli-
cation through the initialize functions, then it cannot be freed until the driver is de-initialized using Deinit functions.
The application should make no assumptions about the content of this structure.

Definition at line 98 of file sai_driver.h.

14.91.2.3 struct sai_user_config_t

User config structure.

Implements : sai_user_config_t_Class

Definition at line 144 of file sai_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

732 CONTENTS

Data Fields

• sai_sync_mode_t SyncMode
• sai_master_clk_source_t MasterClkSrc
• bool BitClkNegPolar
• bool BitClkInternal
• uint16_t BitClkDiv
• uint8_t ChannelEnable
• uint8_t FrameSize
• uint8_t SyncWidth
• sai_mask_mode_t MaskMode
• bool MsbFirst
• bool SyncEarly
• bool SyncNegPolar
• bool SyncInternal
• uint8_t Word0Width
• uint8_t WordNWidth
• uint8_t FirstBitIndex
• uint32_t BitClkFreq
• bool RunErrorReport
• bool SyncErrorReport
• bool FrameStartReport
• sai_mux_mode_t MuxMode
• sai_transfer_type_t TransferType
• uint8_t DmaChannel [SAI_MAX_CHANNEL_COUNT]
• uint8_t ElementSize
• uint8_t ChannelCount
• sai_transfer_callback_t callback

Field Documentation

14.91.2.3.1 uint16_t BitClkDiv

If bit clock is generated internally, it is divided from master clock by this. User need to init this if master clock is
external.

Definition at line 150 of file sai_driver.h.

14.91.2.3.2 uint32_t BitClkFreq

Desired bit clock frequency in hertz, only for internally generated master clock and bit clock.

Definition at line 164 of file sai_driver.h.

14.91.2.3.3 bool BitClkInternal

True if bit clock is generated internally.

Definition at line 149 of file sai_driver.h.

14.91.2.3.4 bool BitClkNegPolar

True if bit clock is negative polar

Definition at line 148 of file sai_driver.h.

14.91.2.3.5 sai_transfer_callback_t callback

User callback function, called when transfer complete or selected events occured.

Definition at line 174 of file sai_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.91 SAI Driver 733

14.91.2.3.6 uint8_t ChannelCount

Number of channels to enable, only used when line mux mode and interrupt mode is selected.

Definition at line 173 of file sai_driver.h.

14.91.2.3.7 uint8_t ChannelEnable

Turn on each bit to enable each channel. 4 bit for 4 channels.

Definition at line 152 of file sai_driver.h.

14.91.2.3.8 uint8_t DmaChannel[SAI_MAX_CHANNEL_COUNT]

DMA channels to be used.

Definition at line 171 of file sai_driver.h.

14.91.2.3.9 uint8_t ElementSize

Size in bytes of each element to transfer.

Definition at line 172 of file sai_driver.h.

14.91.2.3.10 uint8_t FirstBitIndex

Index from LSB of first bit to be transmitted/received, valid range from 0-31.

Definition at line 162 of file sai_driver.h.

14.91.2.3.11 uint8_t FrameSize

Frame size in number of words.

Definition at line 153 of file sai_driver.h.

14.91.2.3.12 bool FrameStartReport

Enable frame start report.

Definition at line 168 of file sai_driver.h.

14.91.2.3.13 sai_mask_mode_t MaskMode

Data line state for mask word or when data line is disabled (apply only for transmitter).

Definition at line 155 of file sai_driver.h.

14.91.2.3.14 sai_master_clk_source_t MasterClkSrc

Select master clock source.

Definition at line 147 of file sai_driver.h.

14.91.2.3.15 bool MsbFirst

True if data is MSB first, false if LSB first.

Definition at line 156 of file sai_driver.h.

14.91.2.3.16 sai_mux_mode_t MuxMode

Enable line mux, memory mux or mux is disabled.

Definition at line 169 of file sai_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

734 CONTENTS

14.91.2.3.17 bool RunErrorReport

Underrun/overrun error report.

Definition at line 166 of file sai_driver.h.

14.91.2.3.18 bool SyncEarly

True if frame sync is one bit clock early.

Definition at line 157 of file sai_driver.h.

14.91.2.3.19 bool SyncErrorReport

Enable sync error report.

Definition at line 167 of file sai_driver.h.

14.91.2.3.20 bool SyncInternal

True if frame sync is generated internally

Definition at line 159 of file sai_driver.h.

14.91.2.3.21 sai_sync_mode_t SyncMode

Sync mode.

Definition at line 146 of file sai_driver.h.

14.91.2.3.22 bool SyncNegPolar

True if frame sync is negative polar.

Definition at line 158 of file sai_driver.h.

14.91.2.3.23 uint8_t SyncWidth

Sync width in number of bit clocks.

Definition at line 154 of file sai_driver.h.

14.91.2.3.24 sai_transfer_type_t TransferType

Transfer using dma or interrupt.

Definition at line 170 of file sai_driver.h.

14.91.2.3.25 uint8_t Word0Width

First word width in number of bit clocks.

Definition at line 160 of file sai_driver.h.

14.91.2.3.26 uint8_t WordNWidth

Other words width in number of bit clocks.

Definition at line 161 of file sai_driver.h.

14.91.3 Macro Definition Documentation

14.91.3.1 #define SAI_CHANNEL_0 0x1

Definition at line 46 of file sai_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.91 SAI Driver 735

14.91.3.2 #define SAI_CHANNEL_1 0x2

Definition at line 47 of file sai_driver.h.

14.91.3.3 #define SAI_CHANNEL_2 0x4

Definition at line 48 of file sai_driver.h.

14.91.3.4 #define SAI_CHANNEL_3 0x8

Definition at line 49 of file sai_driver.h.

14.91.4 Typedef Documentation

14.91.4.1 typedef void(∗ sai_transfer_callback_t) (uint8_t channel, sai_report_type_t report, status_t status)

Sai callback function type for nonblock transfer, also called to report events (sai_report_type_t).

Definition at line 90 of file sai_driver.h.

14.91.5 Enumeration Type Documentation

14.91.5.1 enum sai_mask_mode_t

Data line state for masked word, or if data line is disabled.

Enumerator

SAI_MASK_TRISTATE Line is in high z state

SAI_MASK_ZERO Line is output zero

Definition at line 134 of file sai_driver.h.

14.91.5.2 enum sai_master_clk_source_t

Select master clock.

Enumerator

SAI_BUS_CLK Master clock is module bus clock

SAI_EXTERNAL_CLK Master clock is from external

SAI_SOSC_CLK Master clock is system sosc clock

Definition at line 125 of file sai_driver.h.

14.91.5.3 enum sai_mux_mode_t

Data mux line or mux memory.

Enumerator

SAI_MUX_DISABLED Each data line is a channel, uses a seperate memory block

SAI_MUX_LINE Words on data line is alternated between channels, each channel data is a seperate memory
block

SAI_MUX_MEM Words in memory block is alternated between channels, each channel data is on a seperate
data line.

Definition at line 81 of file sai_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

736 CONTENTS

14.91.5.4 enum sai_report_type_t

Report to enable.

Enumerator

SAI_FRAME_START Indicate a frame start

SAI_RUN_ERROR Overrun/underrun error

SAI_SYNC_ERROR Frame sync error

SAI_TRANSFER_COMPLETE Non blocking transfer completed

Definition at line 63 of file sai_driver.h.

14.91.5.5 enum sai_sync_mode_t

SAI run in sync or async mode.

Enumerator

SAI_ASYNC Independent clock

SAI_SYNC_WITH_OTHER Bit clock and frame sync is taken from transmitter/receiver

Definition at line 117 of file sai_driver.h.

14.91.5.6 enum sai_transfer_type_t

Transfer type.

Enumerator

SAI_INTERRUPT Transfer type is interrupt

SAI_DMA Transfer type is DMA

Definition at line 73 of file sai_driver.h.

14.91.6 Function Documentation

14.91.6.1 void SAI_DRV_AbortReceiving (uint32_t instNum)

Abort an ongoing transfer.

Parameters

in instNum Peripheral instance number

14.91.6.2 void SAI_DRV_AbortSending (uint32_t instNum)

Abort an ongoing transfer.

Parameters

in instNum Peripheral instance number

14.91.6.3 void SAI_DRV_GetDefaultConfig (sai_user_config_t ∗ uc)

Get default config structure for I2S standard. Init config structure for I2S interface: Interrupt mode, internal generated
bit clock 1.4112 MHz, 16 bit word, 2 channel 1 data line (data line 0),.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.91 SAI Driver 737

Parameters

out uc Pointer to config structure to fill in

14.91.6.4 status_t SAI_DRV_GetReceivingStatus (uint32_t instNum, uint32_t ∗ countRemain)

Get status of a non-blocking transfer.

Parameters

in instNum Peripheral instance number
out countRemain Number of elements remain for each channel. This parameter can be NULL

Returns

Status of the transfer, can be success, aborted or busy. Note that aborted status can imply a timed out blocking
transfer, not only user abort.

14.91.6.5 status_t SAI_DRV_GetSendingStatus (uint32_t instNum, uint32_t ∗ countRemain)

Get status of a non-blocking transfer.

Parameters

in instNum Peripheral instance number
out countRemain Number of elements remain for each channel. This parameter can be NULL

Returns

Status of the transfer, can be success, aborted or busy. Note that aborted status can imply a timed out blocking
transfer, not only user abort.

14.91.6.6 void SAI_DRV_Receive (uint32_t instNum, uint8_t ∗ data[], uint32_t count)

Receive a block of data, return immidiately.

When transfer completed, the callback function will be executed. User should use this callback function to immidi-
ately start another transfer to avoid data overrun error.

Parameters

in instNum Peripheral instance number
out data Array of pointer to each data block to transfer, each data block corresponds to

an enabled channels If mux memory is selected, only first data block is used
in count Number of elements to transfer for each channel

14.91.6.7 status_t SAI_DRV_ReceiveBlocking (uint32_t instNum, uint8_t ∗ data[], uint32_t count, uint32_t timeout)

Receive a block of data, return when transfer complete.

Should be called immidiately after a transfer complete to avoid data overrun error.

Parameters

in instNum Peripheral instance number
out data Array of pointer to each data block to transfer, each data block corresponds to

an enabled channels If mux memory is selected, only first data block is used

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

738 CONTENTS

in count Number of elements to transfer for each channel
in timeout Timeout to return when transfer take too long.

Returns

Success, error or timeout status.

14.91.6.8 void SAI_DRV_RxDeinit (uint32_t instNum)

De-initialize receiver.

This function de-initializes driver. The driver can't be used again until reinitialized. The context structure is no longer
needed by the driver and can be freed after calling this function.

Parameters

in instNum Peripheral instance number

14.91.6.9 uint32_t SAI_DRV_RxGetBitClockDiv (uint32_t instNum)

Return true bit clock divisor of receiver.

Only used when bit clock is internal and master clock is external

Parameters

in instNum Peripheral instance number

Returns

Divisor factor

14.91.6.10 uint32_t SAI_DRV_RxGetBitClockFreq (uint32_t instNum)

Return true bit clock frequency of receiver.

Only used when master clock and bit clock is internal

Parameters

in instNum Peripheral instance number

Returns

Frequency in hertz

14.91.6.11 void SAI_DRV_RxInit (uint32_t instNum, const sai_user_config_t ∗ saiUserConfig, sai_state_t ∗ StateAlloc)

Initialize the receiver of driver.

Parameters

in instNum Peripheral instance number
in saiUserConfig Pointer to the user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application
may free this structure after the function returns.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.91 SAI Driver 739

in StateAlloc Pointer to the state structure. The driver uses this memory area for its internal
logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized.

14.91.6.12 void SAI_DRV_RxSetNextMaskWords (uint32_t instNum, uint16_t Words)

Set masked word index of subsequent frames for receiver.

Set masked words of subsequent frames. Each bit is a masked word. Should be called in frame start event callback
or in four bit clock cycles after Rx init.

Parameters

in instNum Peripheral instance number
in WordIndex Word index to mask

14.91.6.13 void SAI_DRV_Send (uint32_t instNum, const uint8_t ∗ data[], uint32_t count)

Send a block of data, return immidiately.

When transfer completed, the callback function will be executed. User should use this callback function to immidi-
ately start an other transfer to avoid data underrun error.

Parameters

in instNum Peripheral instance number
in data Array of pointer to each data block to transfer, each data block corresponds to

an enabled channels If mux memory is selected, only first data block is used
in count Number of elements to transfer for each channel

14.91.6.14 status_t SAI_DRV_SendBlocking (uint32_t instNum, const uint8_t ∗ data[], uint32_t count, uint32_t timeout)

Send a block of data, return when transfer complete.

Should be called immidiately after a transfer complete to avoid data underrun error.

Parameters

in instNum Peripheral instance number
in data Array of pointer to each data block to transfer, each data block corresponds to

an enabled channels If mux memory is selected, only first data block is used
in count Number of elements to transfer for each channel
in timeout Timeout to return when transfer take too long.

Returns

Success, error or timeout status.

14.91.6.15 void SAI_DRV_TxDeinit (uint32_t instNum)

De-initialize transmitter.

This function de-initializes driver. The driver can't be used again until reinitialized. The context structure is no longer
needed by the driver and can be freed after calling this function.

Parameters

in instNum Peripheral instance number

14.91.6.16 uint32_t SAI_DRV_TxGetBitClockDiv (uint32_t instNum)

Return true bit clock divisor of transmitter.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

740 CONTENTS

Only used when bit clock is internal and master clock is external

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.91 SAI Driver 741

Parameters

in instNum Peripheral instance number

Returns

Frequency in hertz

14.91.6.17 uint32_t SAI_DRV_TxGetBitClockFreq (uint32_t instNum)

Return true bit clock frequency of transmitter.

Only used when master clock and bit clock is internal

Parameters

in instNum Peripheral instance number

14.91.6.18 void SAI_DRV_TxInit (uint32_t instNum, const sai_user_config_t ∗ saiUserConfig, sai_state_t ∗ StateAlloc)

Initialize the transmitter of driver.

Parameters

in instNum Peripheral instance number
in saiUserConfig Pointer to the user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application
may free this structure after the function returns.

in StateAlloc Pointer to the state structure. The driver uses this memory area for its internal
logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized.

14.91.6.19 void SAI_DRV_TxSetNextMaskWords (uint32_t instNum, uint16_t Words)

Set masked word index of subsequent frames for transmitter.

Each bit is a masked word. Should be called in frame start event callback or in four bit clock cycles after Tx init.

Parameters

in instNum Peripheral instance number
in WordIndex Word index to mask

Returns

Divisor factor

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

742 CONTENTS

14.92 Schedule management

14.92.1 Detailed Description

This group contains APIs that help users manage schedule tables in master node only.

Functions

• l_u8 l_sch_tick (l_ifc_handle iii)

This function follows a schedule. When a frame becomes due, its transmission is initiated. When the end of the
current schedule is reached, this function starts again at the beginning of the schedule.

• void l_sch_set (l_ifc_handle iii, l_schedule_handle schedule_iii, l_u8 entry)

Set up the next schedule to be followed by the l_sch_tick function for a certain interface. The new schedule will be
activated as soon as the current schedule reaches its next schedule entry point.

14.92.2 Function Documentation

14.92.2.1 void l_sch_set (l_ifc_handle iii, l_schedule_handle schedule_iii, l_u8 entry)

Set up the next schedule to be followed by the l_sch_tick function for a certain interface. The new schedule will be
activated as soon as the current schedule reaches its next schedule entry point.

Parameters

in iii Interface name
in schedule_iii Schedule table for interface
in entry Entry to be set

Returns

void

Definition at line 76 of file lin_common_api.c.

14.92.2.2 l_u8 l_sch_tick (l_ifc_handle iii)

This function follows a schedule. When a frame becomes due, its transmission is initiated. When the end of the
current schedule is reached, this function starts again at the beginning of the schedule.

Parameters

in Interface name

Returns

Operation status

• Zero: if the next call of l_sch_tick will not start transmission of a frame.

• Non-Zero: if the next call of l_sch_tick will start transmission of a frame. The return value will in this
case be the next schedule table entry's number (counted from the beginning of the schedule table) in
the schedule table. The return value will be in range 1 to N if the schedule table has N entries.

Definition at line 234 of file lin_common_api.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.93 Signal interaction 743

14.93 Signal interaction

This group contains APIs that help users interract with signals of LIN node.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

744 CONTENTS

14.94 SoC Header file (SoC Header)

14.94.1 Detailed Description

This module covers SoC Header file.

This section describes the functionality supported by the header file. For usage please see soc_header_usage

Modules

• S32K144 SoC Header file

This module covers the S32K144 SoC Header file.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.95 SoC Support 745

14.95 SoC Support

14.95.1 Detailed Description

This module covers SoC support files.

This section describes the files that are used for supporting various SoCs.

The support files are:

1. Linker files

2. Start-up files

3. SVD file

4. Header files

Linker files

Linker files are used to control the linkage part of the project compilation and contain details regarding the
following:

1. memory areas definition (type and ranges)

2. data and code segments definition and their mapping to the memory areas.

linker configuration files are provided for all supported linkers. Please see Build Tools for details.

Start-up files

Start-up files are used to control the SoC bring-up part and contain:

1. interrupt vector allocation

2. start-up code and routines

Start-up files are provided for all supported compilers. Please see Build Tools for details.

SVD file

SVD file contains details about registers and can be used with an IDE to allow mapping of memory location to the
register definition and information.

Header file

For each SoC there are two header files provided in the SDK:

1. <SoC_name>.h

2. <SoC_name>_features.h

The <SoC_name>.h file contains information related to registers that is used by the SDK drivers and code. The
<SoC_name>_features.h contains information related to the integration of modules in the SoC.

Modules

• S32K144 System Files

This module covers the SoC support file for S32K144.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

746 CONTENTS

14.96 Synchronous Audio Interface (SAI)

14.96.1 Detailed Description

The S32 SDK provides driver for Synchronous Audio Interface
SAI module support many digital audio transmission standards, for example: I2S, AC97. These sections describe
the S32 SDK software modules APIs.

Modules

• SAI Driver

This module covers the functionality of the Synchronous Audio Interface (SAI) peripheral driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.97 System Basis Chip Driver (SBC) - UJA1169 Family 747

14.97 System Basis Chip Driver (SBC) - UJA1169 Family

14.97.1 Detailed Description

System Basis Chip driver is a middleware driver for SBC settings and control.

Hardware background

The UJA1169 is a mini high-speed CAN System Basis Chip (SBC) containing an ISO 11898-2:201x (upcoming
merged ISO 11898-2/5/6) compliant HS-CAN transceiver and an integrated 5 V or 3.3 V 250 mA scalable supply
(V1) for a microcontroller and/or other loads. It also features a watchdog and a Serial Peripheral Interface (SPI).
The UJA1169 can be operated in very low-current Standby and Sleep modes with bus and local wake-up capability.
The UJA1169 comes in six variants. The UJA1169TK, UJA1169TK/F, UJA1169TK/X and UJA1169TK/X/F contain
a 5 V regulator (V1). V1 is a 3.3 V regulator in the UJA1169TK/3 and the UJA1169TK/F/3. The UJA1169TK, UJ←↩

A1169TK/F, UJA1169TK/3 and UJA1169TK/F/3 variants feature a second on-board 5 V regulator (V2) that supplies
the internal CAN transceiver and can also be used to supply additional on-board hardware. The UJA1169TK/X and
UJA1169TK/X/F are equipped with a 5 V supply (VEXT) for off-board components. VEXT is short-circuit proof to
the battery, ground and negative voltages. The integrated CAN transceiver is supplied internally via V1, in parallel
with the microcontroller. The UJA1169xx/F variants support ISO 11898-6:2013 and ISO 11898-2:201x compliant
CAN partial networking with a selective wake-up function incorporating CAN FD-passive. CAN FD-passive is a
feature that allows CAN FD bus traffic to be ignored in Sleep/Standby mode. CAN FD-passive partial networking
is the perfect fit for networks that support both CAN FD and classic CAN communications. It allows normal CA←↩

N controllers that do not need to communicate CAN FD messages to remain in partial networking Sleep/Standby
mode during CAN FD communication without generating bus errors. The UJA1169 implements the standard C←↩

AN physical layer as defined in the current ISO11898 standard (-2:2003, -5:2007, -6:2013). Pending the release
of the upcoming version of ISO11898-2:201x including CAN FD, additional timing parameters defining loop delay
symmetry are included. This implementation enables reliable communication in the CAN FD fast phase at data rates
up to 2 Mbit/s. A dedicated LIMP output pin is provided to flag system failures. A number of configuration settings
are stored in non-volatile memory. This arrangement makes it possible to configure the power-on and limp-home
behavior of the UJA1169 to meet the requirements of different applications.

How to use SBC driver in your application

In order to set up SBC device the user needs to configure sbc_int_config_t structure in which are included following
structures: sbc_regulator_ctr_t, sbc_wtdog_ctr_t, sbc_mode_mc_t, sbc_fail_safe_lhc_t, sbc_sys_evnt_t, sbc_←↩

lock_t, sbc_can_conf_t, sbc_wake_t These nested structures correspond to individual registers. The sbc_int_←↩

config_t structure is passed as a parameter to Init function to initialize SBC device. The rest of the functions are
related to individual registers.

Initialization

The initialization function is responsible for setting up the UJA1169, according to user configuration data which
is passed as parameter. The initialization function takes another parameter which is an instance of SPI used for
communication with UJA1169. The initialization function configures all SBC registers except factories configuration
set up in non volatile memory, (Start up control and SBC configuration register.)

Mode transition

SBC_SetMode performs software transition from one mode to another. The transition is achieved by writing to mode
control register. The event capture registers are cleared before device is moved to sleep mode.

Writing to registers

In order to write to registers, there are several methods dedicated to some specific registers. These methods
(names starting with SBC_Set) take a value or a pointer to structure containing values to be written to particular
registers as a parameter. Besides these methods there is also a method SBC_DataTransfer which is common to
reading and writing to all registers. It takes three parameters. The first one is an address of a register to be written.
Addresses of registers are defined in sbc_register_ t enum. The second argument is pointer to a value which should
be sent to a register. The last argument is used for register reading only and its value is unused in this case. NULL

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

748 CONTENTS

pointer is used when parameter is unused.

Reading from registers

Content of a register is read by method SBC_DataTransfer, which provides both reading and writing to all registers.
This method has three arguments. The first one is an address of a register to be read from, the third one is a pointer
to a variable where the content of a register will be stored. Second argument is used for the register writing only
and it should be NULL in this case. Addresses of registers are defined in enum sbc_register_t. Several methods
to reading specific control and status register are available similarly to the register writing. Their names start with
SBC_Get.

Reading status registers

Content of status register can be read by method SBC_DataTransfer or using appropriate function which starts with
SBC_Get and finishes with Status. Event capture registers must be cleared using SBC_CleanEvents by setting to
1 appropriate status. For clear all events set all statuses to 1 or reading all event capture statuses using SBC_←↩

GetEventsStatus before.

There are several functions which read status and store it to structure. The Table 3 sumarize which function reads
appropriate status register.

Function name Status register
SBC_GetMainStatus Main status, Watchdog status
SBC_GetSupplyStatus V2/VEXT status, V1 status
SBC_GetCanStatus CAN transceiver status, CAN partial networking error,

CAN partial networking status, CAN oscillator status,
CAN-bus silence status, VCAN status, CAN failure
status

SBC_GetWakeStatus WAKE pin status
SBC_GetEventsStatus Global event status, System event status, Supply

event status, Transceiver event status, WAKE pin
event status

SBC_GetAllStatus Read all statuses from this table

Reading and writing non-volatile SBC configuration

The UJA1169 contains Multiple Time Programmable Non-Volatile (MTPNV) memory cells that allow some of the
default device settings to be reconfigured. This non-volatile memory has limited write access. Programming of the
NVM registers is performed in two steps. First, the required values are written. In the second step, reprogramming
is confirmed by writing the correct CRC value to the MTPNV CRC control register. This memory is accessed by
SBC_GetFactoriesSettings and SBC_ChangeFactoriesSettings methods. The only parameter is a pointer to sbc←↩

_factories_conf_t data structure, which should be written to NTPNVM or where should be stored data read out
from the NTPNVM. If the device has been programmed previously, the factory presets may need to be restored
before reprogramming can begin. When the factory presets have been restored successfully, a system reset is
generated automatically and UJA1169 switches back to Forced Normal mode. If SBC_ChangeFactoriesSettings
method returns an error “SBC_UJA_NVN_ERROR” it means device was preconfigured from default settings and it
is not possible to write to non-volatile memory. Restore factory preset values is needed. Factory preset values are
restored if the following conditions apply continuously for at least td(MTPNV) during battery power-up: • pin RSTN
is held LOW • CANH is pulled up to VBAT • CANL is pulled down to GND Now SBC_ChangeFactoriesSettings can
be used for change factory preset values to custom configuration.

Error tracking

If an error during the R/W operations to UJA1169 registers occurs, the driver keeps track of it. If a method returns
status different from SBC_UJA_STAT_SUCCESS the status represents the type of error from sbc_status_t enum.

Example code snippets (for FRDM PK144-Q100 freedom board).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.97 System Basis Chip Driver (SBC) - UJA1169 Family 749

Write to Regulator control registers example

This example source code snippet shows how to configure Regulator control register. Power distribution control
(PDC), V2/VEXT configuration (V2C/ VETXT), V1 reset threshold can be configured by writing to Regulator Control
register. Note (V2 can be set for models: UJA1169TK, UJA1169TK/3, UJA1169TK/F and UJA1169TK/F/3): (VEXT
can be set for models UJA1169TK/X and UJA1169TK/X/F). For more info read function description.

int main(void)
{

...

sbc_status_t status = SBC_UJA_STAT_SUCCESS;
sbc_regulator_ctr_t regulator;
regulator.regulator.pdc = SBC_UJA_REGULATOR_PDC_HV;
regulator.regulator.v2c = SBC_UJA_REGULATOR_V2C_OFF;
regulator.regulator.v1rtc = SBC_UJA_REGULATOR_V1RTC_80;

regulator.supplyEvnt.v2oe = SBC_UJA_SUPPLY_EVNT_V2OE_EN;
regulator.supplyEvnt.v2ue = SBC_UJA_SUPPLY_EVNT_V2UE_EN;
regulator.supplyEvnt.v1ue = SBC_UJA_SUPPLY_EVNT_V1UE_DIS;

status = SBC_SetVreg(®ulator);

if(status != SBC_UJA_STAT_SUCCESS)
{

/* Do something here. */
}

...
}

Read from Regulator control registers example

This example source code snippet shows how to read from Regulator control registers. Reading Regulator con-
trol register gives information about Power distribution control (PDC), V2/VEXT configuration (V2C/ VETXT), V1
reset threshold current configuration. Using this method can be useful for check if the Regulator control register is
configured correctly. For more info read function description.

int main(void)
{

...

sbc_status_t status = SBC_UJA_STAT_SUCCESS;
sbc_regulator_ctr_t regulator;

status = SBC_GetVreg(®ulator);

if(status == SBC_UJA_STAT_SUCCESS)
{

if(regulator.supplyEvnt.v2oe ==
SBC_UJA_SUPPLY_EVNT_V2OE_EN)

{
/* Do something here. */

}
}

...
}

Reading all device status example

This example source code snippet shows how to read all SBC device statuses in one function. Variable allStatuses
contains these registers: Main status register, Watchdog status register, Supply voltage status register, Transceiver
status register, WAKE pin status register, Event capture registers. For more info read function description.

int main(void)
{

...

sbc_status_t status = SBC_UJA_STAT_SUCCESS;
sbc_status_group_t allStatuses;

while(1){

status = SBC_GetAllStatus(&allStatuses);

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

750 CONTENTS

if(status == SBC_UJA_STAT_SUCCESS)
{

if(allStatuses.trans.cbss == SBC_UJA_TRANS_STAT_CBSS_ACT)
{

/* Do something here. */
}

if(allStatuses.supply.v1s == SBC_UJA_SUPPLY_STAT_V1S_VAB)
{

/* Do something here. */
}

...

/* Periodically feed watchdog (anytime in watchdog period in case of timeout watchdog mode). */
SBC_FeedWatchdog();

}
}

}

Reading Transceiver device status example

This example source code snippet shows how to read Transceiver device status from SBC. It contains CA←↩

N transceiver status, CAN partial networking error, CAN partial networking status, CAN oscillator status, CAN-bus
silence status, VCAN status, CAN failure status. For more info read function description. Note similar approach can
be used for reading other status using different SBC_Get∗Status.

int main(void)
{

...

sbc_status_t status = SBC_UJA_STAT_SUCCESS;
sbc_trans_stat_t transStatus;

while(1){

status = SBC_GetCanStatus(&transStatus);

if(status == SBC_UJA_STAT_SUCCESS)
{

if(transStatus.cbss == SBC_UJA_TRANS_STAT_CBSS_ACT)
{

/* Do something here. */
}

...

/* Periodically feed watchdog (anytime in watchdog period in case of timeout watchdog mode). */
SBC_FeedWatchdog();

}
}

}

Change factories settings

This example source code snippet shows how to change factory preset value od non-volatile memmory. Device
must be set to fatory preset. For more info read function description.

int main(void)
{

...

sbc_status_t status = SBC_UJA_STAT_SUCCESS;
sbc_factories_conf_t factories;

status = SBC_GetFactoriesSettings(&factories);

factories.control.fnmc = SBC_UJA_SBC_SDMC_EN;
factories.control.sdmc = SBC_UJA_SBC_SDMC_DIS;
factories.startUp.rlc = SBC_UJA_START_UP_RLC_20_25p0;

if(status == SBC_UJA_STAT_SUCCESS)
{

status = SBC_ChangeFactoriesSettings(&factories);
}

if(status != SBC_UJA_STAT_SUCCESS)

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.97 System Basis Chip Driver (SBC) - UJA1169 Family 751

{
/* Do something here. */

}
}

Modules

• UJA1169 SBC Driver

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

752 CONTENTS

14.98 TRGMUX Driver

14.98.1 Detailed Description

Trigger MUX Control Peripheral Driver.

Overview

This section describes the programing interface of the TRGMUX driver. The TRGMUX driver configures the TR←↩

GMUX (Trigger Mux Control). The Trigger MUX module allows software to configure the trigger inputs for various
peripherals.

TRGMUX Driver model building

TRGMUX can be seen as a collection of muxes, each mux allowing to select one output from a list of input signals
that are common to all muxes. The TRGMUX registers are identical as structure and all bitfields can be read/written
using the TRGMUX driver API.

TRGMUX Initialization

The TRGMUX_DRV_Init() function is used to initialize the TRGMUX IP. The function receives as parameter a pointer
to the trgmux_user_config_t structure. This structure contains a variable number of mappings between a trgmux
trigger source and a trgmux target modules.

TRGMUX API

After initialization, the driver allows the reconfiguration of the source trigger for a given target module using TR←↩

GMUX_DRV_SetTrigSourceForTargetModule(). Also, by using TRGMUX_DRV_SetLockForTargetModule(), a
given target module can be locked, such that it cannot be updated until a reset.

Data Structures

• struct trgmux_inout_mapping_config_t

Configuration structure for pairing source triggers with target modules. More...

• struct trgmux_user_config_t

User configuration structure for the TRGMUX driver. More...

Enumerations

• enum trgmux_trigger_source_t {
TRGMUX_TRIG_SOURCE_DISABLED = 0x0U, TRGMUX_TRIG_SOURCE_VDD = 0x1U, TRGMUX_TRI←↩

G_SOURCE_TRGMUX_IN0 = 0x2U, TRGMUX_TRIG_SOURCE_TRGMUX_IN1 = 0x3U,
TRGMUX_TRIG_SOURCE_TRGMUX_IN2 = 0x4U, TRGMUX_TRIG_SOURCE_TRGMUX_IN3 = 0x5U, T←↩

RGMUX_TRIG_SOURCE_TRGMUX_IN4 = 0x6U, TRGMUX_TRIG_SOURCE_TRGMUX_IN5 = 0x7U,
TRGMUX_TRIG_SOURCE_TRGMUX_IN6 = 0x8U, TRGMUX_TRIG_SOURCE_TRGMUX_IN7 = 0x9U, T←↩

RGMUX_TRIG_SOURCE_TRGMUX_IN8 = 0xAU, TRGMUX_TRIG_SOURCE_TRGMUX_IN9 = 0xBU,
TRGMUX_TRIG_SOURCE_TRGMUX_IN10 = 0xCU, TRGMUX_TRIG_SOURCE_TRGMUX_IN11 = 0xDU,
TRGMUX_TRIG_SOURCE_CMP0_OUT = 0xEU, TRGMUX_TRIG_SOURCE_LPIT_CH0 = 0x11U,
TRGMUX_TRIG_SOURCE_LPIT_CH1 = 0x12U, TRGMUX_TRIG_SOURCE_LPIT_CH2 = 0x13U, TRGM←↩

UX_TRIG_SOURCE_LPIT_CH3 = 0x14U, TRGMUX_TRIG_SOURCE_LPTMR0 = 0x15U,
TRGMUX_TRIG_SOURCE_FTM0_INIT_TRIG = 0x16U, TRGMUX_TRIG_SOURCE_FTM0_EXT_TRIG =
0x17U, TRGMUX_TRIG_SOURCE_FTM1_INIT_TRIG = 0x18U, TRGMUX_TRIG_SOURCE_FTM1_EXT←↩

_TRIG = 0x19U,
TRGMUX_TRIG_SOURCE_FTM2_INIT_TRIG = 0x1AU, TRGMUX_TRIG_SOURCE_FTM2_EXT_TRIG =
0x1BU, TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG = 0x1CU, TRGMUX_TRIG_SOURCE_FTM3_EXT←↩

_TRIG = 0x1DU,
TRGMUX_TRIG_SOURCE_ADC0_SC1A_COCO = 0x1EU, TRGMUX_TRIG_SOURCE_ADC0_SC1B_C←↩

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.98 TRGMUX Driver 753

OCO = 0x1FU, TRGMUX_TRIG_SOURCE_ADC1_SC1A_COCO = 0x20U, TRGMUX_TRIG_SOURCE_A←↩

DC1_SC1B_COCO = 0x21U,
TRGMUX_TRIG_SOURCE_PDB0_CH0_TRIG = 0x22U, TRGMUX_TRIG_SOURCE_PDB0_PULSE_OUT
= 0x24U, TRGMUX_TRIG_SOURCE_PDB1_CH0_TRIG = 0x25U, TRGMUX_TRIG_SOURCE_PDB1_PU←↩

LSE_OUT = 0x27U,
TRGMUX_TRIG_SOURCE_RTC_ALARM = 0x2BU, TRGMUX_TRIG_SOURCE_RTC_SECOND = 0x2CU,
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG0 = 0x2DU, TRGMUX_TRIG_SOURCE_FLEXIO_TRIG1 = 0x2←↩

EU,
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG2 = 0x2FU, TRGMUX_TRIG_SOURCE_FLEXIO_TRIG3 =
0x30U, TRGMUX_TRIG_SOURCE_LPUART0_RX_DATA = 0x31U, TRGMUX_TRIG_SOURCE_LPUA←↩

RT0_TX_DATA = 0x32U,
TRGMUX_TRIG_SOURCE_LPUART0_RX_IDLE = 0x33U, TRGMUX_TRIG_SOURCE_LPUART1_RX_D←↩

ATA = 0x34U, TRGMUX_TRIG_SOURCE_LPUART1_TX_DATA = 0x35U, TRGMUX_TRIG_SOURCE_L←↩

PUART1_RX_IDLE = 0x36U,
TRGMUX_TRIG_SOURCE_LPI2C0_MASTER_TRIG = 0x37U, TRGMUX_TRIG_SOURCE_LPI2C0_SLA←↩

VE_TRIG = 0x38U, TRGMUX_TRIG_SOURCE_LPSPI0_FRAME = 0x3BU, TRGMUX_TRIG_SOURCE_L←↩

PSPI0_RX_DATA = 0x3CU,
TRGMUX_TRIG_SOURCE_LPSPI1_FRAME = 0x3DU, TRGMUX_TRIG_SOURCE_LPSPI1_RX_DATA =
0x3EU, TRGMUX_TRIG_SOURCE_SIM_SW_TRIG = 0x3FU }

Describes all possible inputs (trigger sources) of the TRGMUX IP
Note: entries in this enum are affected by ::FEATURE_TRGMUX_HAS_EXTENDED_NUM_TRIGS, which is device
dependent and controlled from "device_name"_features.h file.

• enum trgmux_target_module_t {
TRGMUX_TARGET_MODULE_DMA_CH0 = 0U, TRGMUX_TARGET_MODULE_DMA_CH1 = 1U, TRG←↩

MUX_TARGET_MODULE_DMA_CH2 = 2U, TRGMUX_TARGET_MODULE_DMA_CH3 = 3U,
TRGMUX_TARGET_MODULE_TRGMUX_OUT0 = 4U, TRGMUX_TARGET_MODULE_TRGMUX_OUT1 =
5U, TRGMUX_TARGET_MODULE_TRGMUX_OUT2 = 6U, TRGMUX_TARGET_MODULE_TRGMUX_O←↩

UT3 = 7U,
TRGMUX_TARGET_MODULE_TRGMUX_OUT4 = 8U, TRGMUX_TARGET_MODULE_TRGMUX_OUT5 =
9U, TRGMUX_TARGET_MODULE_TRGMUX_OUT6 = 10U, TRGMUX_TARGET_MODULE_TRGMUX_←↩

OUT7 = 11U,
TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA0 = 12U, TRGMUX_TARGET_MODULE_ADC0_AD←↩

HWT_TLA1 = 13U, TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA2 = 14U, TRGMUX_TARGET_M←↩

ODULE_ADC0_ADHWT_TLA3 = 15U,
TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA0 = 16U, TRGMUX_TARGET_MODULE_ADC1_AD←↩

HWT_TLA1 = 17U, TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA2 = 18U, TRGMUX_TARGET_M←↩

ODULE_ADC1_ADHWT_TLA3 = 19U,
TRGMUX_TARGET_MODULE_CMP0_SAMPLE_INPUT = 28U, TRGMUX_TARGET_MODULE_FTM0_←↩

HWTRIG0 = 40U, TRGMUX_TARGET_MODULE_FTM0_FAULT0 = 41U, TRGMUX_TARGET_MODULE←↩

_FTM0_FAULT1 = 42U,
TRGMUX_TARGET_MODULE_FTM0_FAULT2 = 43U, TRGMUX_TARGET_MODULE_FTM1_HWTRIG0 =
44U, TRGMUX_TARGET_MODULE_FTM1_FAULT0 = 45U, TRGMUX_TARGET_MODULE_FTM1_FAU←↩

LT1 = 46U,
TRGMUX_TARGET_MODULE_FTM1_FAULT2 = 47U, TRGMUX_TARGET_MODULE_FTM2_HWTRIG0 =
48U, TRGMUX_TARGET_MODULE_FTM2_FAULT0 = 49U, TRGMUX_TARGET_MODULE_FTM2_FAU←↩

LT1 = 50U,
TRGMUX_TARGET_MODULE_FTM2_FAULT2 = 51U, TRGMUX_TARGET_MODULE_FTM3_HWTRIG0 =
52U, TRGMUX_TARGET_MODULE_FTM3_FAULT0 = 53U, TRGMUX_TARGET_MODULE_FTM3_FAU←↩

LT1 = 54U,
TRGMUX_TARGET_MODULE_FTM3_FAULT2 = 55U, TRGMUX_TARGET_MODULE_PDB0_TRG_IN =
56U, TRGMUX_TARGET_MODULE_PDB1_TRG_IN = 60U, TRGMUX_TARGET_MODULE_FLEXIO_TR←↩

G_TIM0 = 68U,
TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM1 = 69U, TRGMUX_TARGET_MODULE_FLEXIO_TR←↩

G_TIM2 = 70U, TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM3 = 71U, TRGMUX_TARGET_MODU←↩

LE_LPIT_TRG_CH0 = 72U,
TRGMUX_TARGET_MODULE_LPIT_TRG_CH1 = 73U, TRGMUX_TARGET_MODULE_LPIT_TRG_CH2 =
74U, TRGMUX_TARGET_MODULE_LPIT_TRG_CH3 = 75U, TRGMUX_TARGET_MODULE_LPUART0←↩

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

754 CONTENTS

_TRG = 76U,
TRGMUX_TARGET_MODULE_LPUART1_TRG = 80U, TRGMUX_TARGET_MODULE_LPI2C0_TRG =
84U, TRGMUX_TARGET_MODULE_LPSPI0_TRG = 92U, TRGMUX_TARGET_MODULE_LPSPI1_TRG =
96U,
TRGMUX_TARGET_MODULE_LPTMR0_ALT0 = 100U }

Describes all possible outputs (target modules) of the TRGMUX IP
Note: entries in this enum are affected by ::FEATURE_TRGMUX_HAS_EXTENDED_NUM_TRIGS, which is device
dependent and controlled from "device_name"_features.h file.

Functions

• status_t TRGMUX_DRV_Init (const uint32_t instance, const trgmux_user_config_t ∗const trgmuxUserConfig)

Initialize a TRGMUX instance for operation.

• status_t TRGMUX_DRV_Deinit (const uint32_t instance)

Reset to default values the source triggers corresponding to all target modules, if none of the target modules is locked.

• status_t TRGMUX_DRV_SetTrigSourceForTargetModule (const uint32_t instance, const trgmux_trigger_←↩

source_t triggerSource, const trgmux_target_module_t targetModule)

Configure a source trigger for a selected target module.

• trgmux_trigger_source_t TRGMUX_DRV_GetTrigSourceForTargetModule (const uint32_t instance, const
trgmux_target_module_t targetModule)

Get the source trigger configured for a target module.

• void TRGMUX_DRV_SetLockForTargetModule (const uint32_t instance, const trgmux_target_module_←↩

t targetModule)

Locks the TRGMUX register of a target module.

• bool TRGMUX_DRV_GetLockForTargetModule (const uint32_t instance, const trgmux_target_module_←↩

t targetModule)

Get the Lock bit status of the TRGMUX register of a target module.

14.98.2 Data Structure Documentation

14.98.2.1 struct trgmux_inout_mapping_config_t

Configuration structure for pairing source triggers with target modules.

Use an instance of this structure to define a TRGMUX link between a trigger source and a target module. This
structure is used by the user configuration structure.

Implements : trgmux_inout_mapping_config_t_Class

Definition at line 217 of file trgmux_driver.h.

Data Fields

• trgmux_trigger_source_t triggerSource

• trgmux_target_module_t targetModule

• bool lockTargetModuleReg

Field Documentation

14.98.2.1.1 bool lockTargetModuleReg

if true, the LOCK bit of the target module register will be set by TRGMUX_DRV_INIT(), after the current mapping is
configured

Definition at line 221 of file trgmux_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.98 TRGMUX Driver 755

14.98.2.1.2 trgmux_target_module_t targetModule

selects one of the TRGMUX target modules

Definition at line 220 of file trgmux_driver.h.

14.98.2.1.3 trgmux_trigger_source_t triggerSource

selects one of the TRGMUX trigger sources

Definition at line 219 of file trgmux_driver.h.

14.98.2.2 struct trgmux_user_config_t

User configuration structure for the TRGMUX driver.

Use an instance of this structure with the TRGMUX_DRV_Init() function. This enables configuration of TRGMUX
with the user defined mappings between inputs (source triggers) and outputs (target modules), via a single function
call.

Implements : trgmux_user_config_t_Class

Definition at line 233 of file trgmux_driver.h.

Data Fields

• uint8_t numInOutMappingConfigs
• const trgmux_inout_mapping_config_t ∗ inOutMappingConfig

Field Documentation

14.98.2.2.1 const trgmux_inout_mapping_config_t∗ inOutMappingConfig

pointer to array of in-out mapping structures

Definition at line 236 of file trgmux_driver.h.

14.98.2.2.2 uint8_t numInOutMappingConfigs

number of in-out mappings defined in TRGMUX configuration

Definition at line 235 of file trgmux_driver.h.

14.98.3 Enumeration Type Documentation

14.98.3.1 enum trgmux_target_module_t

Describes all possible outputs (target modules) of the TRGMUX IP
Note: entries in this enum are affected by ::FEATURE_TRGMUX_HAS_EXTENDED_NUM_TRIGS, which is device
dependent and controlled from "device_name"_features.h file.

Implements : trgmux_target_module_t_Class

Enumerator

TRGMUX_TARGET_MODULE_DMA_CH0

TRGMUX_TARGET_MODULE_DMA_CH1

TRGMUX_TARGET_MODULE_DMA_CH2

TRGMUX_TARGET_MODULE_DMA_CH3

TRGMUX_TARGET_MODULE_TRGMUX_OUT0

TRGMUX_TARGET_MODULE_TRGMUX_OUT1

TRGMUX_TARGET_MODULE_TRGMUX_OUT2

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

756 CONTENTS

TRGMUX_TARGET_MODULE_TRGMUX_OUT3

TRGMUX_TARGET_MODULE_TRGMUX_OUT4

TRGMUX_TARGET_MODULE_TRGMUX_OUT5

TRGMUX_TARGET_MODULE_TRGMUX_OUT6

TRGMUX_TARGET_MODULE_TRGMUX_OUT7

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA0

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA1

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA2

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA3

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA0

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA1

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA2

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA3

TRGMUX_TARGET_MODULE_CMP0_SAMPLE_INPUT

TRGMUX_TARGET_MODULE_FTM0_HWTRIG0

TRGMUX_TARGET_MODULE_FTM0_FAULT0

TRGMUX_TARGET_MODULE_FTM0_FAULT1

TRGMUX_TARGET_MODULE_FTM0_FAULT2

TRGMUX_TARGET_MODULE_FTM1_HWTRIG0

TRGMUX_TARGET_MODULE_FTM1_FAULT0

TRGMUX_TARGET_MODULE_FTM1_FAULT1

TRGMUX_TARGET_MODULE_FTM1_FAULT2

TRGMUX_TARGET_MODULE_FTM2_HWTRIG0

TRGMUX_TARGET_MODULE_FTM2_FAULT0

TRGMUX_TARGET_MODULE_FTM2_FAULT1

TRGMUX_TARGET_MODULE_FTM2_FAULT2

TRGMUX_TARGET_MODULE_FTM3_HWTRIG0

TRGMUX_TARGET_MODULE_FTM3_FAULT0

TRGMUX_TARGET_MODULE_FTM3_FAULT1

TRGMUX_TARGET_MODULE_FTM3_FAULT2

TRGMUX_TARGET_MODULE_PDB0_TRG_IN

TRGMUX_TARGET_MODULE_PDB1_TRG_IN

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM0

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM1

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM2

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM3

TRGMUX_TARGET_MODULE_LPIT_TRG_CH0

TRGMUX_TARGET_MODULE_LPIT_TRG_CH1

TRGMUX_TARGET_MODULE_LPIT_TRG_CH2

TRGMUX_TARGET_MODULE_LPIT_TRG_CH3

TRGMUX_TARGET_MODULE_LPUART0_TRG

TRGMUX_TARGET_MODULE_LPUART1_TRG

TRGMUX_TARGET_MODULE_LPI2C0_TRG

TRGMUX_TARGET_MODULE_LPSPI0_TRG

TRGMUX_TARGET_MODULE_LPSPI1_TRG

TRGMUX_TARGET_MODULE_LPTMR0_ALT0

Definition at line 145 of file trgmux_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.98 TRGMUX Driver 757

14.98.3.2 enum trgmux_trigger_source_t

Describes all possible inputs (trigger sources) of the TRGMUX IP
Note: entries in this enum are affected by ::FEATURE_TRGMUX_HAS_EXTENDED_NUM_TRIGS, which is device
dependent and controlled from "device_name"_features.h file.

Implements : trgmux_trigger_source_t_Class

Enumerator

TRGMUX_TRIG_SOURCE_DISABLED

TRGMUX_TRIG_SOURCE_VDD

TRGMUX_TRIG_SOURCE_TRGMUX_IN0

TRGMUX_TRIG_SOURCE_TRGMUX_IN1

TRGMUX_TRIG_SOURCE_TRGMUX_IN2

TRGMUX_TRIG_SOURCE_TRGMUX_IN3

TRGMUX_TRIG_SOURCE_TRGMUX_IN4

TRGMUX_TRIG_SOURCE_TRGMUX_IN5

TRGMUX_TRIG_SOURCE_TRGMUX_IN6

TRGMUX_TRIG_SOURCE_TRGMUX_IN7

TRGMUX_TRIG_SOURCE_TRGMUX_IN8

TRGMUX_TRIG_SOURCE_TRGMUX_IN9

TRGMUX_TRIG_SOURCE_TRGMUX_IN10

TRGMUX_TRIG_SOURCE_TRGMUX_IN11

TRGMUX_TRIG_SOURCE_CMP0_OUT

TRGMUX_TRIG_SOURCE_LPIT_CH0

TRGMUX_TRIG_SOURCE_LPIT_CH1

TRGMUX_TRIG_SOURCE_LPIT_CH2

TRGMUX_TRIG_SOURCE_LPIT_CH3

TRGMUX_TRIG_SOURCE_LPTMR0

TRGMUX_TRIG_SOURCE_FTM0_INIT_TRIG

TRGMUX_TRIG_SOURCE_FTM0_EXT_TRIG

TRGMUX_TRIG_SOURCE_FTM1_INIT_TRIG

TRGMUX_TRIG_SOURCE_FTM1_EXT_TRIG

TRGMUX_TRIG_SOURCE_FTM2_INIT_TRIG

TRGMUX_TRIG_SOURCE_FTM2_EXT_TRIG

TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG

TRGMUX_TRIG_SOURCE_FTM3_EXT_TRIG

TRGMUX_TRIG_SOURCE_ADC0_SC1A_COCO

TRGMUX_TRIG_SOURCE_ADC0_SC1B_COCO

TRGMUX_TRIG_SOURCE_ADC1_SC1A_COCO

TRGMUX_TRIG_SOURCE_ADC1_SC1B_COCO

TRGMUX_TRIG_SOURCE_PDB0_CH0_TRIG

TRGMUX_TRIG_SOURCE_PDB0_PULSE_OUT

TRGMUX_TRIG_SOURCE_PDB1_CH0_TRIG

TRGMUX_TRIG_SOURCE_PDB1_PULSE_OUT

TRGMUX_TRIG_SOURCE_RTC_ALARM

TRGMUX_TRIG_SOURCE_RTC_SECOND

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

758 CONTENTS

TRGMUX_TRIG_SOURCE_FLEXIO_TRIG0

TRGMUX_TRIG_SOURCE_FLEXIO_TRIG1

TRGMUX_TRIG_SOURCE_FLEXIO_TRIG2

TRGMUX_TRIG_SOURCE_FLEXIO_TRIG3

TRGMUX_TRIG_SOURCE_LPUART0_RX_DATA

TRGMUX_TRIG_SOURCE_LPUART0_TX_DATA

TRGMUX_TRIG_SOURCE_LPUART0_RX_IDLE

TRGMUX_TRIG_SOURCE_LPUART1_RX_DATA

TRGMUX_TRIG_SOURCE_LPUART1_TX_DATA

TRGMUX_TRIG_SOURCE_LPUART1_RX_IDLE

TRGMUX_TRIG_SOURCE_LPI2C0_MASTER_TRIG

TRGMUX_TRIG_SOURCE_LPI2C0_SLAVE_TRIG

TRGMUX_TRIG_SOURCE_LPSPI0_FRAME

TRGMUX_TRIG_SOURCE_LPSPI0_RX_DATA

TRGMUX_TRIG_SOURCE_LPSPI1_FRAME

TRGMUX_TRIG_SOURCE_LPSPI1_RX_DATA

TRGMUX_TRIG_SOURCE_SIM_SW_TRIG

Definition at line 68 of file trgmux_driver.h.

14.98.4 Function Documentation

14.98.4.1 status_t TRGMUX_DRV_Deinit (const uint32_t instance)

Reset to default values the source triggers corresponding to all target modules, if none of the target modules is
locked.

Parameters

in instance The TRGMUX instance number.

Returns

Execution status:
STATUS_SUCCESS
STATUS_ERROR - if at least one of the target module register is locked.

Definition at line 118 of file trgmux_driver.c.

14.98.4.2 bool TRGMUX_DRV_GetLockForTargetModule (const uint32_t instance, const trgmux_target_module_t
targetModule)

Get the Lock bit status of the TRGMUX register of a target module.

This function gets the value of the LK bit from the TRGMUX register corresponding to the selected target module.

Parameters

in instance The TRGMUX instance number.
in targetModule One of the values in the trgmux_target_module_t enumeration

Returns

true - if the selected targetModule register is locked
false - if the selected targetModule register is not locked

Definition at line 207 of file trgmux_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.98 TRGMUX Driver 759

14.98.4.3 trgmux_trigger_source_t TRGMUX_DRV_GetTrigSourceForTargetModule (const uint32_t instance, const
trgmux_target_module_t targetModule)

Get the source trigger configured for a target module.

This function returns the TRGMUX source trigger linked to a selected target module.

Parameters

in instance The TRGMUX instance number.
in targetModule One of the values in the trgmux_target_module_t enumeration.

Returns

Enum value corresponding to the trigger source configured for the selected target module.

Definition at line 172 of file trgmux_driver.c.

14.98.4.4 status_t TRGMUX_DRV_Init (const uint32_t instance, const trgmux_user_config_t ∗const trgmuxUserConfig)

Initialize a TRGMUX instance for operation.

This function first resets the source triggers of all TRGMUX target modules to their default values, then configures
the TRGMUX with all the user defined in-out mappings. If at least one of the target modules is locked, the function
will not change any of the TRGMUX target modules and return error code. This example shows how to set up the
trgmux_user_config_t parameters and how to call the TRGMUX_DRV_Init() function with the required parameters:

1 trgmux_user_config_t trgmuxConfig;
2 trgmux_inout_mapping_config_t trgmuxInoutMappingConfig[] =
3 {
4 {TRGMUX_TRIG_SOURCE_TRGMUX_IN9, TRGMUX_TARGET_MODULE_DMA_CH0, false},
5 {TRGMUX_TRIG_SOURCE_FTM1_EXT_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT4, true}
6 };
7
8 trgmuxConfig.numInOutMappingConfigs = 2;
9 trgmuxConfig.inOutMappingConfig = trgmuxInoutMappingConfig;
10
11 TRGMUX_DRV_Init(instance, &trgmuxConfig);

Parameters

in instance The TRGMUX instance number.
in trgmuxUser←↩

Config
Pointer to the user configuration structure.

Returns

Execution status:
STATUS_SUCCESS
STATUS_ERROR - if at least one of the target module register is locked.

Definition at line 75 of file trgmux_driver.c.

14.98.4.5 void TRGMUX_DRV_SetLockForTargetModule (const uint32_t instance, const trgmux_target_module_t
targetModule)

Locks the TRGMUX register of a target module.

This function sets the LK bit of the TRGMUX register corresponding to the selected target module. Please note that
some TRGMUX registers can contain up to 4 SEL bitfields, meaning that these registers can be used to configure
up to 4 target modules independently. Because the LK bit is only one per register, the configuration of all target
modules referred from that register will be locked.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

760 CONTENTS

Parameters

in instance The TRGMUX instance number.
in targetModule One of the values in the trgmux_target_module_t enumeration

Definition at line 189 of file trgmux_driver.c.

14.98.4.6 status_t TRGMUX_DRV_SetTrigSourceForTargetModule (const uint32_t instance, const
trgmux_trigger_source_t triggerSource, const trgmux_target_module_t targetModule)

Configure a source trigger for a selected target module.

This function configures a TRGMUX link between a source trigger and a target module, if the requested target
module is not locked.

Parameters

in instance The TRGMUX instance number.
in triggerSource One of the values in the trgmux_trigger_source_t enumeration
in targetModule One of the values in the trgmux_target_module_t enumeration

Returns

Execution status:
STATUS_SUCCESS
STATUS_ERROR - if requested target module is locked

Definition at line 139 of file trgmux_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.99 Transport layer API 761

14.99 Transport layer API

14.99.1 Detailed Description

Transport layer stands between the application layer and the core API layer.

This layer consists the implementation of data transportation which contains one or more LIN frames. It is situated
between the application layer and the core API layer including LIN2.1 TL API and LIN TL J2602. This layer provides
APIs for the transport protocol, node configuration and diagnostic services. For LIN 2.1, all components will be
extended from LIN 2.0 specification. The node configuration for J2602 implements only some functions of LIN 2.0
specification.

Modules

• Common Transport Layer API

Contains Transport Layer APIs that used for both protocols LIN 2.1 and J2602.

• J2602 Transport Layer specific API

Contains Transport Layer APIs that only used for J2602 protocol.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

762 CONTENTS

14.100 Trigger MUX Control (TRGMUX)

14.100.1 Detailed Description

The TRGMUX introduces an extremely flexible methodology for connecting various trigger sources to multiple
pins/peripherals.

The S32 SDK provides Peripheral Drivers for the Trigger MUX Control (TRGMUX) module of S32 SDK devices.

Modules

• TRGMUX Driver

Trigger MUX Control Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 763

14.101 UJA1169 SBC Driver

14.101.1 Detailed Description

Data Structures

• struct sbc_wtdog_ctr_t

Watchdog control register structure. Watchdog configuration structure. More...

• struct sbc_sbc_t

SBC configuration control register structure. Two operating modes have a major impact on the operation of the
watchdog: Forced Normal mode and Software Development mode (Software Development mode is provided for test
and development purposes only and is not a dedicated SBC operating mode; the UJA1169 can be in any functional
operating mode with Software Development mode enabled). These modes are enabled and disabled via bits FNMC
and SDMC respectively in the SBC configuration control register. Note that this register is located in the non-volatile
memory area. The watchdog is disabled in Forced Normal mode (FNM). In Software Development mode (SDM), the
watchdog can be disabled or activated for test and software debugging purposes. More...

• struct sbc_start_up_t

Start-up control register structure. This structure contains settings of RSTN output reset pulse width and V2/VEXT
start-up control. More...

• struct sbc_regulator_t

Regulator control register structure. This structure set power distribution control, V2/VEXT configuration, set V1 reset
threshold. More...

• struct sbc_supply_evnt_t

Supply event capture enable register structure. This structure enables or disables detection of V2/VEXT overvoltage,
undervoltage and V1 undervoltage enable. More...

• struct sbc_sys_evnt_t

System event capture enable register structure. This structure enables or disables overtemperature warning, SPI
failure enable. More...

• struct sbc_can_ctr_t

CAN control register structure. This structure configure CAN peripheral behavior. More...

• struct sbc_trans_evnt_t

Transceiver event capture enable register structure. Can bus silence, Can failure and Can wake-up settings. More...

• struct sbc_frame_t

Frame control register structure. The wake-up frame format, standard (11-bit) or extended (29-bit) identifier, is se-
lected via bit IDE in the Frame control register. More...

• struct sbc_can_conf_t

CAN configuration group structure. This structure configure CAN peripheral behavior. More...

• struct sbc_wake_t

WAKE pin event capture enable register structure. Local wake-up is enabled via bits WPRE and WPFE in the WAKE
pin event capture enable register. A wake-up event is triggered by a LOW-to-HIGH (ifWPRE = 1) and/or a HIGH-to-
LOW (if WPFE = 1) transition on the WAKE pin. This arrangement allows for maximum flexibility when designing a
local wake-up circuit. In applications that do not use the local wake-up facility, local wake-up should be disabled and
the WAKE pin connected to GND. More...

• struct sbc_regulator_ctr_t

Regulator control register group. This structure is group of regulator settings. More...

• struct sbc_int_config_t

Init configuration structure. This structure is used for initialization of sbc. More...

• struct sbc_factories_conf_t

Factory configuration structure. It contains Start-up control register and SBC configuration control register. This
is non-volatile memory with limited write access. The MTPNV cells can be reprogrammed a maximum of 200 times
(Ncy(W)MTP; Bit NVMPS in the MTPNV status register indicates whether the non-volatile cells can be reprogrammed.
This register also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are repro-
grammed (up to a maximum value of 111111; there is no overflow; performing a factory reset also increments the
counter). This counter is provided for information purposes only; reprogramming will not be rejected when it reaches
its maximum value. Factory preset values are restored if the following conditions apply continuously for at least td(←↩

MTPNV) during battery power-up: pin RSTN is held LOW, CANH is pulled up to VBAT, CANL is pulled down to GND

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

764 CONTENTS

After the factory preset values have been restored, the SBC performs a system reset and enters Forced normal Mode.
Since the CAN-bus is clamped dominant, pin RXDC is forced LOW. Pin RXD is forced HIGH during the factory preset
restore process (td(MTPNV)). A falling edge on RXD caused by bit PO being set after power-on indicates that the
factory preset process has been completed. Note that the write counter, WRCNTS, in the MTPNV status register is
incremented every time the factory presets are restored. More...

• struct sbc_main_status_t

Main status register structure. The Main status register can be accessed to monitor the status of the overtemperature
warning flag and to determine whether the UJA1169 has entered Normal mode after initial power-up. It also indicates
the source of the most recent reset event. More...

• struct sbc_wtdog_status_t

Watchdog status register structure. Information on the status of the watchdog is available from the Watchdog status
register. This register also indicates whether Forced Normal and Software Development modes are active. More...

• struct sbc_supply_status_t

Supply voltage status register structure. V2/VEXT and V1 undervoltage and overvoltage status. More...

• struct sbc_trans_stat_t

Transceiver status register structure. There are stored CAN transceiver statuses. More...

• struct sbc_gl_evnt_stat_t

Global event status register. The microcontroller can monitor events via the event status registers. An extra status
register, the Global event status register, is provided to help speed up software polling routines. By polling the Global
event status register, the microcontroller can quickly determine the type of event captured (system, supply, transceiver
or WAKE pin) and then query the relevant event status register. More...

• struct sbc_sys_evnt_stat_t

System event status register. Wake-up and interrupt event diagnosis in the UJA1169 is intended to provide the
microcontroller with information on the status of a range of features and functions. This information is stored in the
event status registers and is signaled on pin RXD, if enabled. More...

• struct sbc_sup_evnt_stat_t

Supply event status register. More...

• struct sbc_trans_evnt_stat_t

Transceiver event status register. More...

• struct sbc_wake_evnt_stat_t

WAKE pin event status register. More...

• struct sbc_evn_capt_t

Event capture registers structure. This structure contains Global event status, System event status, Supply event
status, Transceiver event status, WAKE pin event status. More...

• struct sbc_mtpnv_stat_t

MTPNV status register. The MTPNV cells can be reprogrammed a maximum of 200 times (Ncy(W)MTP). Bit N←↩

VMPS in the MTPNV status register indicates whether the non-volatile cells can be reprogrammed. This register
also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are reprogrammed (up to a
maximum value of 111111; there is no overflow; performing a factory reset also increments the counter). This counter
is provided for information purposes only; reprogramming will not be rejected when it reaches its maximum value.
More...

• struct sbc_status_group_t

Status group structure. All statuses of SBC are stored in this structure. More...

Macros

• #define SBC_UJA_TIMEOUT 1000U

• #define SBC_UJA_COUNT_ID_REG 4U

• #define SBC_UJA_COUNT_MASK 4U

• #define SBC_UJA_COUNT_DMASK 8U

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 765

Typedefs

• typedef uint8_t sbc_fail_safe_rcc_t

Fail-safe control register, reset counter control (0x02). incremented every time the SBC enters Reset mode while
FNMC = 0; RCC overflows from 11 to 00; default at power-on is 00.

• typedef uint8_t sbc_identifier_t

ID registers, identifier format (0x27 to 0x2A). A valid WUF identifier is defined and stored in the ID registers. An ID
mask can be defined to allow a group of identifiers to be recognized as valid by an individual node.

• typedef uint8_t sbc_identif_mask_t

ID mask registers (0x2B to 0x2E). The identifier mask is defined in the ID mask registers, where a 1 means dont care.

• typedef uint8_t sbc_frame_ctr_dlc_t

Frame control register, number of data bytes expected in a CAN frame (0x2F).

• typedef uint8_t sbc_data_mask_t

Data mask registers. The data field indicates the nodes to be woken up. Within the data field, groups of nodes can
be predefined and associated with bits in a data mask. By comparing the incoming data field with the data mask,
multiple groups of nodes can be woken up simultaneously with a single wake-up message.

• typedef uint8_t sbc_mtpnv_stat_wrcnts_t

MTPNV status register, write counter status (0x70). 6-bits - contains the number of times the MTPNV cells were
reprogrammed.

Enumerations

• enum sbc_register_t {
SBC_UJA_WTDOG_CTR = 0x00U, SBC_UJA_MODE = 0x01U, SBC_UJA_FAIL_SAFE = 0x02U, SBC_U←↩

JA_MAIN = 0x03U,
SBC_UJA_SYSTEM_EVNT = 0x04U, SBC_UJA_WTDOG_STAT = 0x05U, SBC_UJA_MEMORY_0 =
0x06U, SBC_UJA_MEMORY_1 = 0x07U,
SBC_UJA_MEMORY_2 = 0x08U, SBC_UJA_MEMORY_3 = 0x09U, SBC_UJA_LOCK = 0x0AU, SBC_UJ←↩

A_REGULATOR = 0x10U,
SBC_UJA_SUPPLY_STAT = 0x1BU, SBC_UJA_SUPPLY_EVNT = 0x1CU, SBC_UJA_CAN = 0x20U, SB←↩

C_UJA_TRANS_STAT = 0x22U,
SBC_UJA_TRANS_EVNT = 0x23U, SBC_UJA_DAT_RATE = 0x26U, SBC_UJA_IDENTIF_0 = 0x27U, S←↩

BC_UJA_IDENTIF_1 = 0x28U,
SBC_UJA_IDENTIF_2 = 0x29U, SBC_UJA_IDENTIF_3 = 0x2AU, SBC_UJA_MASK_0 = 0x2BU, SBC_UJ←↩

A_MASK_1 = 0x2CU,
SBC_UJA_MASK_2 = 0x2DU, SBC_UJA_MASK_3 = 0x2EU, SBC_UJA_FRAME_CTR = 0x2FU, SBC_U←↩

JA_DAT_MASK_0 = 0x68U,
SBC_UJA_DAT_MASK_1 = 0x69U, SBC_UJA_DAT_MASK_2 = 0x6AU, SBC_UJA_DAT_MASK_3 = 0x6←↩

BU, SBC_UJA_DAT_MASK_4 = 0x6CU,
SBC_UJA_DAT_MASK_5 = 0x6DU, SBC_UJA_DAT_MASK_6 = 0x6EU, SBC_UJA_DAT_MASK_7 = 0x6←↩

FU, SBC_UJA_WAKE_STAT = 0x4BU,
SBC_UJA_WAKE_EN = 0x4CU, SBC_UJA_GL_EVNT_STAT = 0x60U, SBC_UJA_SYS_EVNT_STAT =
0x61U, SBC_UJA_SUP_EVNT_STAT = 0x62U,
SBC_UJA_TRANS_EVNT_STAT = 0x63U, SBC_UJA_WAKE_EVNT_STAT = 0x64U, SBC_UJA_MTPNV←↩

_STAT = 0x70U, SBC_UJA_START_UP = 0x73U,
SBC_UJA_SBC = 0x74U, SBC_UJA_MTPNV_CRC = 0x75U, SBC_UJA_IDENTIF = 0x7EU }

Register map.

• enum sbc_wtdog_ctr_wmc_t { SBC_UJA_WTDOG_CTR_WMC_AUTO = SBC_UJA_WTDOG_CTR_WM←↩

C_F(1U), SBC_UJA_WTDOG_CTR_WMC_TIME = SBC_UJA_WTDOG_CTR_WMC_F(2U), SBC_UJA_←↩

WTDOG_CTR_WMC_WIND = SBC_UJA_WTDOG_CTR_WMC_F(4U) }

Watchdog control register, watchdog mode control (0x00). The UJA1169 contains a watchdog that supports three
operating modes: Window, Timeout and Autonomous. In Window mode (available only in SBC Normal mode), a
watchdog trigger event within a defined watchdog window triggers and resets the watchdog timer. In Timeout mode,
the watchdog runs continuously and can be triggered and reset at any time within the watchdog period by a watchdog
trigger. Watchdog time-out mode can also be used for cyclic wake-up of the microcontroller. In Autonomous mode, the
watchdog can be off or autonomously in Timeout mode, depending on the selected SBC mode. The watchdog mode

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

766 CONTENTS

is selected via bits WMC in the Watchdog control register. The SBC must be in Standby mode when the watchdog
mode is changed.

• enum sbc_wtdog_ctr_nwp_t {
SBC_UJA_WTDOG_CTR_NWP_8 = 0x08U, SBC_UJA_WTDOG_CTR_NWP_16 = 0x01U, SBC_UJA_W←↩

TDOG_CTR_NWP_32 = 0x02U, SBC_UJA_WTDOG_CTR_NWP_64 = 0x0BU,
SBC_UJA_WTDOG_CTR_NWP_128 = 0x04U, SBC_UJA_WTDOG_CTR_NWP_256 = 0x0DU, SBC_UJA←↩

_WTDOG_CTR_NWP_1024 = 0x0EU, SBC_UJA_WTDOG_CTR_NWP_4096 = 0x07U }

Watchdog control register, nominal watchdog period (0x00). Eight watchdog periods are supported, from 8 ms to 4096
ms. The watchdog period is programmed via bits NWP. The selected period is valid for both Window and Timeout
modes. The default watchdog period is 128 ms. A watchdog trigger event resets the watchdog timer. A watchdog
trigger event is any valid write access to the Watchdog control register. If the watchdog mode or the watchdog period
have changed as a result of the write access, the new values are immediately valid.

• enum sbc_mode_mc_t { SBC_UJA_MODE_MC_SLEEP = 0x01U, SBC_UJA_MODE_MC_STANDBY =
0x04U, SBC_UJA_MODE_MC_NORMAL = 0x07U }

Mode control register, mode control (0x01)

• enum sbc_fail_safe_lhc_t { SBC_UJA_FAIL_SAFE_LHC_FLOAT = SBC_UJA_FAIL_SAFE_LHC_F(0U), S←↩

BC_UJA_FAIL_SAFE_LHC_LOW = SBC_UJA_FAIL_SAFE_LHC_F(1U) }

Fail-safe control register, LIMP home control (0x02). The dedicated LIMP pin can be used to enable so called limp
home hardware in the event of a serious ECU failure. Detectable failure conditions include SBC overtemperature
events, loss of watchdog service, short-circuits on pins RSTN or V1 and user-initiated or external reset events. The
LIMP pin is a battery-robust, active-LOW, open-drain output. The LIMP pin can also be forced LOW by setting bit
LHC in the Fail-safe control register.

• enum sbc_main_otws_t { SBC_UJA_MAIN_OTWS_BELOW = SBC_UJA_MAIN_OTWS_F(0U), SBC_UJ←↩

A_MAIN_OTWS_ABOVE = SBC_UJA_MAIN_OTWS_F(1U) }

Main status register, Overtemperature warning status (0x03).

• enum sbc_main_nms_t { SBC_UJA_MAIN_NMS_NORMAL = SBC_UJA_MAIN_NMS_F(0U), SBC_UJA_←↩

MAIN_NMS_PWR_UP = SBC_UJA_MAIN_NMS_F(1U) }

Main status register, normal mode status (0x03).

• enum sbc_main_rss_t {
SBC_UJA_MAIN_RSS_OFF_MODE = 0x00U, SBC_UJA_MAIN_RSS_CAN_WAKEUP = 0x01U, SBC_UJ←↩

A_MAIN_RSS_SLP_WAKEUP = 0x04U, SBC_UJA_MAIN_RSS_OVF_SLP = 0x0CU,
SBC_UJA_MAIN_RSS_DIAG_WAKEUP = 0x0DU, SBC_UJA_MAIN_RSS_WATCH_TRIG = 0x0EU, SBC←↩

_UJA_MAIN_RSS_WATCH_OVF = 0x0FU, SBC_UJA_MAIN_RSS_ILLEG_WATCH = 0x10U,
SBC_UJA_MAIN_RSS_RSTN_PULDW = 0x11U, SBC_UJA_MAIN_RSS_LFT_OVERTM = 0x12U, SBC_←↩

UJA_MAIN_RSS_V1_UNDERV = 0x13U, SBC_UJA_MAIN_RSS_ILLEG_SLP = 0x14U,
SBC_UJA_MAIN_RSS_WAKE_SLP = 0x16U }

Main status register, Reset source status (0x03).

• enum sbc_sys_evnt_otwe_t { SBC_UJA_SYS_EVNT_OTWE_DIS = SBC_UJA_SYS_EVNT_OTWE_F(0U),
SBC_UJA_SYS_EVNT_OTWE_EN = SBC_UJA_SYS_EVNT_OTWE_F(1U) }

System event capture enable, overtemperature warning enable (0x04).

• enum sbc_sys_evnt_spife_t { SBC_UJA_SYS_EVNT_SPIFE_DIS = SBC_UJA_SYS_EVNT_SPIFE_F(0U),
SBC_UJA_SYS_EVNT_SPIFE_EN = SBC_UJA_SYS_EVNT_SPIFE_F(1U) }

System event capture enable, SPI failure enable (0x04).

• enum sbc_wtdog_stat_fnms_t { SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL = SBC_UJA_WTDOG_←↩

STAT_FNMS_F(0U), SBC_UJA_WTDOG_STAT_FNMS_NORMAL = SBC_UJA_WTDOG_STAT_FNMS←↩

_F(1U) }

Watchdog status register, forced Normal mode status (0x05).

• enum sbc_wtdog_stat_sdms_t { SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL = SBC_UJA_WTDOG_←↩

STAT_SDMS_F(0U), SBC_UJA_WTDOG_STAT_SDMS_NORMAL = SBC_UJA_WTDOG_STAT_SDMS←↩

_F(1U) }

Watchdog status register, Software Development mode status (0x05).

• enum sbc_wtdog_stat_wds_t { SBC_UJA_WTDOG_STAT_WDS_OFF = SBC_UJA_WTDOG_STAT_WD←↩

S_F(0U), SBC_UJA_WTDOG_STAT_WDS_FIH = SBC_UJA_WTDOG_STAT_WDS_F(1U), SBC_UJA_←↩

WTDOG_STAT_WDS_SEH = SBC_UJA_WTDOG_STAT_WDS_F(2U) }

Watchdog status register, watchdog status (0x05).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 767

• enum sbc_lock_t {
LK0C = SBC_UJA_LOCK_LK0C_MASK, LK1C = SBC_UJA_LOCK_LK1C_MASK, LK2C = SBC_UJA_LO←↩

CK_LK2C_MASK, LK3C = SBC_UJA_LOCK_LK3C_MASK,
LK4C = SBC_UJA_LOCK_LK4C_MASK, LK5C = SBC_UJA_LOCK_LK5C_MASK, LK6C = SBC_UJA_LO←↩

CK_LK6C_MASK, LKAC = SBC_UJA_LOCK_LKNC_MASK }

Lock control(0x0A). Sections of the register address area can be write-protected to protect against unintended mod-
ifications. This facility only protects locked bits from being modified via the SPI and will not prevent the UJA1169
updating status registers etc.

• enum sbc_regulator_pdc_t { SBC_UJA_REGULATOR_PDC_HV = SBC_UJA_REGULATOR_PDC_F(0U),
SBC_UJA_REGULATOR_PDC_LV = SBC_UJA_REGULATOR_PDC_F(1U) }

Regulator control register, power distribution control (0x10).

• enum sbc_regulator_v2c_t { SBC_UJA_REGULATOR_V2C_OFF = SBC_UJA_REGULATOR_V2C_F(0U),
SBC_UJA_REGULATOR_V2C_N = SBC_UJA_REGULATOR_V2C_F(1U), SBC_UJA_REGULATOR_V2←↩

C_N_S_R = SBC_UJA_REGULATOR_V2C_F(2U), SBC_UJA_REGULATOR_V2C_N_S_S_R = SBC_UJ←↩

A_REGULATOR_V2C_F(3U) }

Regulator control register, V2/VEXT configuration (0x10).

• enum sbc_regulator_v1rtc_t { SBC_UJA_REGULATOR_V1RTC_90 = SBC_UJA_REGULATOR_V1RTC←↩

_F(0U), SBC_UJA_REGULATOR_V1RTC_80 = SBC_UJA_REGULATOR_V1RTC_F(1U), SBC_UJA_RE←↩

GULATOR_V1RTC_70 = SBC_UJA_REGULATOR_V1RTC_F(2U), SBC_UJA_REGULATOR_V1RTC_60 =
SBC_UJA_REGULATOR_V1RTC_F(3U) }

Regulator control register, set V1 reset threshold (0x10).

• enum sbc_supply_stat_v2s_t { SBC_UJA_SUPPLY_STAT_V2S_VOK = SBC_UJA_SUPPLY_STAT_V2S←↩

_F(0U), SBC_UJA_SUPPLY_STAT_V2S_VBE = SBC_UJA_SUPPLY_STAT_V2S_F(1U), SBC_UJA_SU←↩

PPLY_STAT_V2S_VAB = SBC_UJA_SUPPLY_STAT_V2S_F(2U), SBC_UJA_SUPPLY_STAT_V2S_DIS =
SBC_UJA_SUPPLY_STAT_V2S_F(3U) }

Supply voltage status register, V2/VEXT status (0x1B).

• enum sbc_supply_stat_v1s_t { SBC_UJA_SUPPLY_STAT_V1S_VAB = SBC_UJA_SUPPLY_STAT_V1S←↩

_F(0U), SBC_UJA_SUPPLY_STAT_V1S_VBE = SBC_UJA_SUPPLY_STAT_V1S_F(1U) }

Supply voltage status register, V1 status (0x1B).

• enum sbc_supply_evnt_v2oe_t { SBC_UJA_SUPPLY_EVNT_V2OE_DIS = SBC_UJA_SUPPLY_EVNT_←↩

V2OE_F(0U), SBC_UJA_SUPPLY_EVNT_V2OE_EN = SBC_UJA_SUPPLY_EVNT_V2OE_F(1U) }

Supply event capture enable register, V2/VEXT overvoltage enable (0x1C).

• enum sbc_supply_evnt_v2ue_t { SBC_UJA_SUPPLY_EVNT_V2UE_DIS = SBC_UJA_SUPPLY_EVNT_←↩

V2UE_F(0U), SBC_UJA_SUPPLY_EVNT_V2UE_EN = SBC_UJA_SUPPLY_EVNT_V2UE_F(1U) }

Supply event capture enable register, V2/VEXT undervoltage enable (0x1C).

• enum sbc_supply_evnt_v1ue_t { SBC_UJA_SUPPLY_EVNT_V1UE_DIS = SBC_UJA_SUPPLY_EVNT_←↩

V1UE_F(0U), SBC_UJA_SUPPLY_EVNT_V1UE_EN = SBC_UJA_SUPPLY_EVNT_V1UE_F(1U) }

Supply event capture enable register, V1 undervoltage enable (0x1C).

• enum sbc_can_cfdc_t { SBC_UJA_CAN_CFDC_DIS = SBC_UJA_CAN_CFDC_F(0U), SBC_UJA_CAN_←↩

CFDC_EN = SBC_UJA_CAN_CFDC_F(1U) }

CAN control register, CAN FD control (0x20).

• enum sbc_can_pncok_t { SBC_UJA_CAN_PNCOK_DIS = SBC_UJA_CAN_PNCOK_F(0U), SBC_UJA_C←↩

AN_PNCOK_EN = SBC_UJA_CAN_PNCOK_F(1U) }

CAN control register, CAN partial networking configuration OK (0x20).

• enum sbc_can_cpnc_t { SBC_UJA_CAN_CPNC_DIS = SBC_UJA_CAN_CPNC_F(0U), SBC_UJA_CAN_←↩

CPNC_EN = SBC_UJA_CAN_CPNC_F(1U) }

CAN control register, CAN partial networking control (0x20).

• enum sbc_can_cmc_t { SBC_UJA_CAN_CMC_OFMODE = SBC_UJA_CAN_CMC_F(0U), SBC_UJA_CA←↩

N_CMC_ACMODE_DA = SBC_UJA_CAN_CMC_F(1U), SBC_UJA_CAN_CMC_ACMODE_DD = SBC_U←↩

JA_CAN_CMC_F(2U), SBC_UJA_CAN_CMC_LISTEN = SBC_UJA_CAN_CMC_F(3U) }

CAN control register, CAN mode control (0x20).

• enum sbc_trans_stat_cts_t { SBC_UJA_TRANS_STAT_CTS_INACT = SBC_UJA_TRANS_STAT_CTS_←↩

F(0U), SBC_UJA_TRANS_STAT_CTS_ACT = SBC_UJA_TRANS_STAT_CTS_F(1U) }

Transceiver status register, CAN transceiver status (0x22).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

768 CONTENTS

• enum sbc_trans_stat_cpnerr_t { SBC_UJA_TRANS_STAT_CPNERR_NO_DET = SBC_UJA_TRANS_ST←↩

AT_CPNERR_F(0U), SBC_UJA_TRANS_STAT_CPNERR_DET = SBC_UJA_TRANS_STAT_CPNERR_←↩

F(1U) }

Transceiver status register, CAN partial networking error (0x22).

• enum sbc_trans_stat_cpns_t { SBC_UJA_TRANS_STAT_CPNS_ERR = SBC_UJA_TRANS_STAT_CPN←↩

S_F(0U), SBC_UJA_TRANS_STAT_CPNS_OK = SBC_UJA_TRANS_STAT_CPNS_F(1U) }

Transceiver status register, CAN partial networking status (0x22).

• enum sbc_trans_stat_coscs_t { SBC_UJA_TRANS_STAT_COSCS_NRUN = SBC_UJA_TRANS_STAT_←↩

COSCS_F(0U), SBC_UJA_TRANS_STAT_COSCS_RUN = SBC_UJA_TRANS_STAT_COSCS_F(1U) }

Transceiver status register, CAN oscillator status (0x22).

• enum sbc_trans_stat_cbss_t { SBC_UJA_TRANS_STAT_CBSS_ACT = SBC_UJA_TRANS_STAT_CBSS←↩

_F(0U), SBC_UJA_TRANS_STAT_CBSS_INACT = SBC_UJA_TRANS_STAT_CBSS_F(1U) }

Transceiver status register, CAN-bus silence status (0x22).

• enum sbc_trans_stat_vcs_t { SBC_UJA_TRANS_STAT_VCS_AB = SBC_UJA_TRANS_STAT_VCS_F(0U),
SBC_UJA_TRANS_STAT_VCS_BE = SBC_UJA_TRANS_STAT_VCS_F(1U) }

Transceiver status register, VCAN status (0x22).

• enum sbc_trans_stat_cfs_t { SBC_UJA_TRANS_STAT_CFS_NO_TXD = SBC_UJA_TRANS_STAT_CFS←↩

_F(0U), SBC_UJA_TRANS_STAT_CFS_TXD = SBC_UJA_TRANS_STAT_CFS_F(1U) }

Transceiver status register, CAN failure status (0x22).

• enum sbc_trans_evnt_cbse_t { SBC_UJA_TRANS_EVNT_CBSE_DIS = SBC_UJA_TRANS_EVNT_CBS←↩

E_F(0U), SBC_UJA_TRANS_EVNT_CBSE_EN = SBC_UJA_TRANS_EVNT_CBSE_F(1U) }

Transceiver event capture enable register, CAN-bus silence enable (0x23).

• enum sbc_trans_evnt_cfe_t { SBC_UJA_TRANS_EVNT_CFE_DIS = SBC_UJA_TRANS_EVNT_CFE_F(0←↩

U), SBC_UJA_TRANS_EVNT_CFE_EN = SBC_UJA_TRANS_EVNT_CFE_F(1U) }

Transceiver event capture enable register, CAN failure enable (0x23).

• enum sbc_trans_evnt_cwe_t { SBC_UJA_TRANS_EVNT_CWE_DIS = SBC_UJA_TRANS_EVNT_CWE_←↩

F(0U), SBC_UJA_TRANS_EVNT_CWE_EN = SBC_UJA_TRANS_EVNT_CWE_F(1U) }

Transceiver event capture enable register, CAN wake-up enable (0x23).

• enum sbc_dat_rate_t {
SBC_UJA_DAT_RATE_CDR_50KB = SBC_UJA_DAT_RATE_CDR_F(0U), SBC_UJA_DAT_RATE_CDR←↩

_100KB = SBC_UJA_DAT_RATE_CDR_F(1U), SBC_UJA_DAT_RATE_CDR_125KB = SBC_UJA_DAT_←↩

RATE_CDR_F(2U), SBC_UJA_DAT_RATE_CDR_250KB = SBC_UJA_DAT_RATE_CDR_F(3U),
SBC_UJA_DAT_RATE_CDR_500KB = SBC_UJA_DAT_RATE_CDR_F(5U), SBC_UJA_DAT_RATE_CD←↩

R_1000KB = SBC_UJA_DAT_RATE_CDR_F(7U) }

Data rate register, CAN data rate selection (0x26). CAN partial networking configuration registers. Dedicated registers
are provided for configuring CAN partial networking.

• enum sbc_frame_ctr_ide_t { SBC_UJA_FRAME_CTR_IDE_11B = SBC_UJA_FRAME_CTR_IDE_F(0U),
SBC_UJA_FRAME_CTR_IDE_29B = SBC_UJA_FRAME_CTR_IDE_F(1U) }

Frame control register, identifier format (0x2F). The wake-up frame format, standard (11-bit) or extended (29-bit)
identifier, is selected via bit IDE in the Frame control register.

• enum sbc_frame_ctr_pndm_t { SBC_UJA_FRAME_CTR_PNDM_DCARE = SBC_UJA_FRAME_CTR_PN←↩

DM_F(0U), SBC_UJA_FRAME_CTR_PNDM_EVAL = SBC_UJA_FRAME_CTR_PNDM_F(1U) }

Frame control register, partial networking data mask (0x2F).

• enum sbc_wake_stat_wpvs_t { SBC_UJA_WAKE_STAT_WPVS_BE = SBC_UJA_WAKE_STAT_WPVS_←↩

F(0U), SBC_UJA_WAKE_STAT_WPVS_AB = SBC_UJA_WAKE_STAT_WPVS_F(1U) }

WAKE pin status register, WAKE pin status (0x4B).

• enum sbc_wake_en_wpre_t { SBC_UJA_WAKE_EN_WPRE_DIS = SBC_UJA_WAKE_EN_WPRE_F(0U),
SBC_UJA_WAKE_EN_WPRE_EN = SBC_UJA_WAKE_EN_WPRE_F(1U) }

WAKE pin event capture enable register, WAKE pin rising-edge enable (0x4C).

• enum sbc_wake_en_wpfe_t { SBC_UJA_WAKE_EN_WPFE_DIS = SBC_UJA_WAKE_EN_WPFE_F(0U),
SBC_UJA_WAKE_EN_WPFE_EN = SBC_UJA_WAKE_EN_WPFE_F(1U) }

WAKE pin event capture enable register, WAKE pin falling-edge enable (0x4C).

• enum sbc_gl_evnt_stat_wpe_t { SBC_UJA_GL_EVNT_STAT_WPE_NO = SBC_UJA_GL_EVNT_STAT_←↩

WPE_F(0U), SBC_UJA_GL_EVNT_STAT_WPE = SBC_UJA_GL_EVNT_STAT_WPE_F(1U) }

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 769

Global event status register, WAKE pin event (0x60).

• enum sbc_gl_evnt_stat_trxe_t { SBC_UJA_GL_EVNT_STAT_TRXE_NO = SBC_UJA_GL_EVNT_STAT_←↩

TRXE_F(0U), SBC_UJA_GL_EVNT_STAT_TRXE = SBC_UJA_GL_EVNT_STAT_TRXE_F(1U) }

Global event status register, transceiver event (0x60).

• enum sbc_gl_evnt_stat_supe_t { SBC_UJA_GL_EVNT_STAT_SUPE_NO = SBC_UJA_GL_EVNT_STAT←↩

_SUPE_F(0U), SBC_UJA_GL_EVNT_STAT_SUPE = SBC_UJA_GL_EVNT_STAT_SUPE_F(1U) }

Global event status register, supply event (0x60).

• enum sbc_gl_evnt_stat_syse_t { SBC_UJA_GL_EVNT_STAT_SYSE_NO = SBC_UJA_GL_EVNT_STAT←↩

_SYSE_F(0U), SBC_UJA_GL_EVNT_STAT_SYSE = SBC_UJA_GL_EVNT_STAT_SYSE_F(1U) }

Global event status register, system event (0x60).

• enum sbc_sys_evnt_stat_po_t { SBC_UJA_SYS_EVNT_STAT_PO_NO = SBC_UJA_SYS_EVNT_STAT_←↩

PO_F(0U), SBC_UJA_SYS_EVNT_STAT_PO = SBC_UJA_SYS_EVNT_STAT_PO_F(1U) }

System event status register, power-on (0x61).

• enum sbc_sys_evnt_stat_otw_t { SBC_UJA_SYS_EVNT_STAT_OTW_NO = SBC_UJA_SYS_EVNT_ST←↩

AT_OTW_F(0U), SBC_UJA_SYS_EVNT_STAT_OTW = SBC_UJA_SYS_EVNT_STAT_OTW_F(1U) }

System event status register, overtemperature warning (0x61).

• enum sbc_sys_evnt_stat_spif_t { SBC_UJA_SYS_EVNT_STAT_SPIF_NO = SBC_UJA_SYS_EVNT_STA←↩

T_SPIF_F(0U), SBC_UJA_SYS_EVNT_STAT_SPIF = SBC_UJA_SYS_EVNT_STAT_SPIF_F(1U) }

System event status register, SPI failure (0x61).

• enum sbc_sys_evnt_stat_wdf_t { SBC_UJA_SYS_EVNT_STAT_WDF_NO = SBC_UJA_SYS_EVNT_ST←↩

AT_WDF_F(0U), SBC_UJA_SYS_EVNT_STAT_WDF = SBC_UJA_SYS_EVNT_STAT_WDF_F(1U) }

System event status register, watchdog failure (0x61).

• enum sbc_sup_evnt_stat_v2o_t { SBC_UJA_SUP_EVNT_STAT_V2O_NO = SBC_UJA_SUP_EVNT_ST←↩

AT_V2O_F(0U), SBC_UJA_SUP_EVNT_STAT_V2O = SBC_UJA_SUP_EVNT_STAT_V2O_F(1U) }

Supply event status register, V2/VEXT overvoltage (0x62).

• enum sbc_sup_evnt_stat_v2u_t { SBC_UJA_SUP_EVNT_STAT_V2U_NO = SBC_UJA_SUP_EVNT_STA←↩

T_V2U_F(0U), SBC_UJA_SUP_EVNT_STAT_V2U = SBC_UJA_SUP_EVNT_STAT_V2U_F(1U) }

Supply event status register, V2/VEXT undervoltage (0x62).

• enum sbc_sup_evnt_stat_v1u_t { SBC_UJA_SUP_EVNT_STAT_V1U_NO = SBC_UJA_SUP_EVNT_STA←↩

T_V1U_F(0U), SBC_UJA_SUP_EVNT_STAT_V1U = SBC_UJA_SUP_EVNT_STAT_V1U_F(1U) }

Supply event status register, V1 undervoltage (0x62).

• enum sbc_trans_evnt_stat_pnfde_t { SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO = SBC_UJA_TRANS←↩

_EVNT_STAT_PNFDE_F(0U), SBC_UJA_TRANS_EVNT_STAT_PNFDE = SBC_UJA_TRANS_EVNT_S←↩

TAT_PNFDE_F(1U) }

Transceiver event status register,partial networking frame detection error (0x63).

• enum sbc_trans_evnt_stat_cbs_t { SBC_UJA_TRANS_EVNT_STAT_CBS_NO = SBC_UJA_TRANS_EV←↩

NT_STAT_CBS_F(0U), SBC_UJA_TRANS_EVNT_STAT_CBS = SBC_UJA_TRANS_EVNT_STAT_CBS←↩

_F(1U) }

Transceiver event status register, CAN-bus status (0x63).

• enum sbc_trans_evnt_stat_cf_t { SBC_UJA_TRANS_EVNT_STAT_CF_NO = SBC_UJA_TRANS_EVNT_←↩

STAT_CF_F(0U), SBC_UJA_TRANS_EVNT_STAT_CF = SBC_UJA_TRANS_EVNT_STAT_CF_F(1U) }

Transceiver event status register, CAN failure (0x63).

• enum sbc_trans_evnt_stat_cw_t { SBC_UJA_TRANS_EVNT_STAT_CW_NO = SBC_UJA_TRANS_EVN←↩

T_STAT_CW_F(0U), SBC_UJA_TRANS_EVNT_STAT_CW = SBC_UJA_TRANS_EVNT_STAT_CW_F(1U)
}

Transceiver event status register, CAN wake-up (0x63).

• enum sbc_wake_evnt_stat_wpr_t { SBC_UJA_WAKE_EVNT_STAT_WPR_NO = SBC_UJA_WAKE_EVN←↩

T_STAT_WPR_F(0U), SBC_UJA_WAKE_EVNT_STAT_WPR = SBC_UJA_WAKE_EVNT_STAT_WPR_←↩

F(1U) }

WAKE pin event status register, WAKE pin rising edge (0x64).

• enum sbc_wake_evnt_stat_wpf_t { SBC_UJA_WAKE_EVNT_STAT_WPF_NO = SBC_UJA_WAKE_EVNT←↩

_STAT_WPF_F(0U), SBC_UJA_WAKE_EVNT_STAT_WPF = SBC_UJA_WAKE_EVNT_STAT_WPF_F(1←↩

U) }

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

770 CONTENTS

WAKE pin event status register, WAKE pin falling edge (0x64).

• enum sbc_mtpnv_stat_eccs_t { SBC_UJA_MTPNV_STAT_ECCS_NO = SBC_UJA_MTPNV_STAT_ECC←↩

S_F(0U), SBC_UJA_MTPNV_STAT_ECCS = SBC_UJA_MTPNV_STAT_ECCS_F(1U) }

MTPNV status register, error correction code status (0x70).

• enum sbc_mtpnv_stat_nvmps_t { SBC_UJA_MTPNV_STAT_NVMPS_NO = SBC_UJA_MTPNV_STAT_N←↩

VMPS_F(0U), SBC_UJA_MTPNV_STAT_NVMPS = SBC_UJA_MTPNV_STAT_NVMPS_F(1U) }

MTPNV status register, non-volatile memory programming status (0x70).

• enum sbc_start_up_rlc_t { SBC_UJA_START_UP_RLC_20_25p0 = SBC_UJA_START_UP_RLC_F(0U),
SBC_UJA_START_UP_RLC_10_12p5 = SBC_UJA_START_UP_RLC_F(1U), SBC_UJA_START_UP_R←↩

LC_03p6_05 = SBC_UJA_START_UP_RLC_F(2U), SBC_UJA_START_UP_RLC_01_01p5 = SBC_UJA_←↩

START_UP_RLC_F(3U) }

Start-up control register, RSTN output reset pulse width macros (0x73).

• enum sbc_start_up_v2suc_t { SBC_UJA_START_UP_V2SUC_00 = SBC_UJA_START_UP_V2SUC_F(0U),
SBC_UJA_START_UP_V2SUC_11 = SBC_UJA_START_UP_V2SUC_F(1U) }

Start-up control register, V2/VEXT start-up control (0x73).

• enum sbc_sbc_v1rtsuc_t { SBC_UJA_SBC_V1RTSUC_90 = SBC_UJA_SBC_V1RTSUC_F(0U), SBC_U←↩

JA_SBC_V1RTSUC_80 = SBC_UJA_SBC_V1RTSUC_F(1U), SBC_UJA_SBC_V1RTSUC_70 = SBC_UJ←↩

A_SBC_V1RTSUC_F(2U), SBC_UJA_SBC_V1RTSUC_60 = SBC_UJA_SBC_V1RTSUC_F(3U) }

SBC configuration control register, V1 undervoltage threshold (defined by bit V1RTC) at start-up (0x74).

• enum sbc_sbc_fnmc_t { SBC_UJA_SBC_FNMC_DIS = SBC_UJA_SBC_FNMC_F(0U), SBC_UJA_SBC_←↩

FNMC_EN = SBC_UJA_SBC_FNMC_F(1U) }

SBC configuration control register, Forced Normal mode control (0x74).

• enum sbc_sbc_sdmc_t { SBC_UJA_SBC_SDMC_DIS = SBC_UJA_SBC_SDMC_F(0U), SBC_UJA_SBC←↩

_SDMC_EN = SBC_UJA_SBC_SDMC_F(1U) }

SBC configuration control register, Software Development mode control (0x74).

• enum sbc_sbc_slpc_t { SBC_UJA_SBC_SLPC_AC = SBC_UJA_SBC_SLPC_F(0U), SBC_UJA_SBC_SL←↩

PC_IG = SBC_UJA_SBC_SLPC_F(1U) }

SBC configuration control register, Sleep control (0x74).

14.101.2 Data Structure Documentation

14.101.2.1 struct sbc_wtdog_ctr_t

Watchdog control register structure. Watchdog configuration structure.

Implements : sbc_wtdog_ctr_t_Class

Definition at line 1087 of file sbc_uja1169_driver.h.

Data Fields

• sbc_wtdog_ctr_wmc_t modeControl
• sbc_wtdog_ctr_nwp_t nominalPeriod

Field Documentation

14.101.2.1.1 sbc_wtdog_ctr_wmc_t modeControl

Watchdog mode control.

Definition at line 1088 of file sbc_uja1169_driver.h.

14.101.2.1.2 sbc_wtdog_ctr_nwp_t nominalPeriod

Nominal watchdog period.

Definition at line 1089 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 771

14.101.2.2 struct sbc_sbc_t

SBC configuration control register structure. Two operating modes have a major impact on the operation of the
watchdog: Forced Normal mode and Software Development mode (Software Development mode is provided for
test and development purposes only and is not a dedicated SBC operating mode; the UJA1169 can be in any
functional operating mode with Software Development mode enabled). These modes are enabled and disabled via
bits FNMC and SDMC respectively in the SBC configuration control register. Note that this register is located in
the non-volatile memory area. The watchdog is disabled in Forced Normal mode (FNM). In Software Development
mode (SDM), the watchdog can be disabled or activated for test and software debugging purposes.

Implements : sbc_sbc_t_Class

Definition at line 1108 of file sbc_uja1169_driver.h.

Data Fields

• sbc_sbc_v1rtsuc_t v1rtsuc

• sbc_sbc_fnmc_t fnmc

• sbc_sbc_sdmc_t sdmc

• sbc_sbc_slpc_t slpc

Field Documentation

14.101.2.2.1 sbc_sbc_fnmc_t fnmc

Forced Normal mode control.

Definition at line 1111 of file sbc_uja1169_driver.h.

14.101.2.2.2 sbc_sbc_sdmc_t sdmc

Software Development mode control.

Definition at line 1112 of file sbc_uja1169_driver.h.

14.101.2.2.3 sbc_sbc_slpc_t slpc

Sleep control.

Definition at line 1114 of file sbc_uja1169_driver.h.

14.101.2.2.4 sbc_sbc_v1rtsuc_t v1rtsuc

V1 undervoltage threshold (defined by bit V1RTC) at start-up (0x74).

Definition at line 1109 of file sbc_uja1169_driver.h.

14.101.2.3 struct sbc_start_up_t

Start-up control register structure. This structure contains settings of RSTN output reset pulse width and V2/VEXT
start-up control.

Implements : sbc_start_up_t_Class

Definition at line 1124 of file sbc_uja1169_driver.h.

Data Fields

• sbc_start_up_rlc_t rlc

• sbc_start_up_v2suc_t v2suc

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

772 CONTENTS

14.101.2.3.1 sbc_start_up_rlc_t rlc

RSTN output reset pulse width macros.

Definition at line 1125 of file sbc_uja1169_driver.h.

14.101.2.3.2 sbc_start_up_v2suc_t v2suc

V2/VEXT start-up control.

Definition at line 1127 of file sbc_uja1169_driver.h.

14.101.2.4 struct sbc_regulator_t

Regulator control register structure. This structure set power distribution control, V2/VEXT configuration, set V1
reset threshold.

Implements : sbc_regulator_t_Class

Definition at line 1137 of file sbc_uja1169_driver.h.

Data Fields

• sbc_regulator_pdc_t pdc

• sbc_regulator_v2c_t v2c

• sbc_regulator_v1rtc_t v1rtc

Field Documentation

14.101.2.4.1 sbc_regulator_pdc_t pdc

Power distribution control.

Definition at line 1138 of file sbc_uja1169_driver.h.

14.101.2.4.2 sbc_regulator_v1rtc_t v1rtc

Set V1 reset threshold.

Definition at line 1140 of file sbc_uja1169_driver.h.

14.101.2.4.3 sbc_regulator_v2c_t v2c

V2/VEXT configuration.

Definition at line 1139 of file sbc_uja1169_driver.h.

14.101.2.5 struct sbc_supply_evnt_t

Supply event capture enable register structure. This structure enables or disables detection of V2/VEXT overvoltage,
undervoltage and V1 undervoltage enable.

Implements : sbc_supply_evnt_t_Class

Definition at line 1150 of file sbc_uja1169_driver.h.

Data Fields

• sbc_supply_evnt_v2oe_t v2oe

• sbc_supply_evnt_v2ue_t v2ue

• sbc_supply_evnt_v1ue_t v1ue

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 773

14.101.2.5.1 sbc_supply_evnt_v1ue_t v1ue

SV1 undervoltage enable.

Definition at line 1153 of file sbc_uja1169_driver.h.

14.101.2.5.2 sbc_supply_evnt_v2oe_t v2oe

V2/VEXT overvoltage enable.

Definition at line 1151 of file sbc_uja1169_driver.h.

14.101.2.5.3 sbc_supply_evnt_v2ue_t v2ue

V2/VEXT undervoltage enable.

Definition at line 1152 of file sbc_uja1169_driver.h.

14.101.2.6 struct sbc_sys_evnt_t

System event capture enable register structure. This structure enables or disables overtemperature warning, SPI
failure enable.

Implements : sbc_sys_evnt_t_Class

Definition at line 1163 of file sbc_uja1169_driver.h.

Data Fields

• sbc_sys_evnt_otwe_t owte
• sbc_sys_evnt_spife_t spife

Field Documentation

14.101.2.6.1 sbc_sys_evnt_otwe_t owte

Overtemperature warning enable.

Definition at line 1164 of file sbc_uja1169_driver.h.

14.101.2.6.2 sbc_sys_evnt_spife_t spife

SPI failure enable.

Definition at line 1165 of file sbc_uja1169_driver.h.

14.101.2.7 struct sbc_can_ctr_t

CAN control register structure. This structure configure CAN peripheral behavior.

Implements : sbc_can_ctr_t_Class

Definition at line 1174 of file sbc_uja1169_driver.h.

Data Fields

• sbc_can_cfdc_t cfdc
• sbc_can_pncok_t pncok
• sbc_can_cpnc_t cpnc
• sbc_can_cmc_t cmc

Field Documentation

14.101.2.7.1 sbc_can_cfdc_t cfdc

CAN FD control.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

774 CONTENTS

Definition at line 1175 of file sbc_uja1169_driver.h.

14.101.2.7.2 sbc_can_cmc_t cmc

CAN mode control.

Definition at line 1180 of file sbc_uja1169_driver.h.

14.101.2.7.3 sbc_can_cpnc_t cpnc

CAN partial. networking control.

Definition at line 1178 of file sbc_uja1169_driver.h.

14.101.2.7.4 sbc_can_pncok_t pncok

CAN partial networking. configuration OK.

Definition at line 1176 of file sbc_uja1169_driver.h.

14.101.2.8 struct sbc_trans_evnt_t

Transceiver event capture enable register structure. Can bus silence, Can failure and Can wake-up settings.

Implements : sbc_trans_evnt_t_Class

Definition at line 1189 of file sbc_uja1169_driver.h.

Data Fields

• sbc_trans_evnt_cbse_t cbse

• sbc_trans_evnt_cfe_t cfe

• sbc_trans_evnt_cwe_t cwe

Field Documentation

14.101.2.8.1 sbc_trans_evnt_cbse_t cbse

CAN-bus silence enable.

Definition at line 1190 of file sbc_uja1169_driver.h.

14.101.2.8.2 sbc_trans_evnt_cfe_t cfe

CAN failure enable.

Definition at line 1191 of file sbc_uja1169_driver.h.

14.101.2.8.3 sbc_trans_evnt_cwe_t cwe

CAN wake-up enable.

Definition at line 1192 of file sbc_uja1169_driver.h.

14.101.2.9 struct sbc_frame_t

Frame control register structure. The wake-up frame format, standard (11-bit) or extended (29-bit) identifier, is
selected via bit IDE in the Frame control register.

Implements : sbc_frame_t_Class

Definition at line 1202 of file sbc_uja1169_driver.h.

Data Fields

• sbc_frame_ctr_ide_t ide

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 775

• sbc_frame_ctr_pndm_t pndm
• sbc_frame_ctr_dlc_t dlc

Field Documentation

14.101.2.9.1 sbc_frame_ctr_dlc_t dlc

Number of data bytes expected.

Definition at line 1205 of file sbc_uja1169_driver.h.

14.101.2.9.2 sbc_frame_ctr_ide_t ide

Identifier format.

Definition at line 1203 of file sbc_uja1169_driver.h.

14.101.2.9.3 sbc_frame_ctr_pndm_t pndm

Partial networking data mask.

Definition at line 1204 of file sbc_uja1169_driver.h.

14.101.2.10 struct sbc_can_conf_t

CAN configuration group structure. This structure configure CAN peripheral behavior.

Implements : sbc_can_conf_t_Class

Definition at line 1214 of file sbc_uja1169_driver.h.

Data Fields

• sbc_can_ctr_t canConf
• sbc_trans_evnt_t canTransEvnt
• sbc_dat_rate_t datRate
• sbc_identifier_t identif [SBC_UJA_COUNT_ID_REG]
• sbc_identif_mask_t mask [SBC_UJA_COUNT_MASK]
• sbc_frame_t frame
• sbc_data_mask_t dataMask [SBC_UJA_COUNT_DMASK]

Field Documentation

14.101.2.10.1 sbc_can_ctr_t canConf

CAN control register.

Definition at line 1215 of file sbc_uja1169_driver.h.

14.101.2.10.2 sbc_trans_evnt_t canTransEvnt

Transceiver event capture enable register.

Definition at line 1216 of file sbc_uja1169_driver.h.

14.101.2.10.3 sbc_data_mask_t dataMask[SBC_UJA_COUNT_DMASK]

Data mask 0 - 7 configuration.

Definition at line 1222 of file sbc_uja1169_driver.h.

14.101.2.10.4 sbc_dat_rate_t datRate

CAN data rate selection.

Definition at line 1218 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

776 CONTENTS

14.101.2.10.5 sbc_frame_t frame

Frame control register.

Definition at line 1221 of file sbc_uja1169_driver.h.

14.101.2.10.6 sbc_identifier_t identif[SBC_UJA_COUNT_ID_REG]

ID registers.

Definition at line 1219 of file sbc_uja1169_driver.h.

14.101.2.10.7 sbc_identif_mask_t mask[SBC_UJA_COUNT_MASK]

ID mask registers.

Definition at line 1220 of file sbc_uja1169_driver.h.

14.101.2.11 struct sbc_wake_t

WAKE pin event capture enable register structure. Local wake-up is enabled via bits WPRE and WPFE in the
WAKE pin event capture enable register. A wake-up event is triggered by a LOW-to-HIGH (ifWPRE = 1) and/or a
HIGH-to-LOW (if WPFE = 1) transition on the WAKE pin. This arrangement allows for maximum flexibility when
designing a local wake-up circuit. In applications that do not use the local wake-up facility, local wake-up should be
disabled and the WAKE pin connected to GND.

Implements : sbc_wake_t_Class

Definition at line 1237 of file sbc_uja1169_driver.h.

Data Fields

• sbc_wake_en_wpre_t wpre

• sbc_wake_en_wpfe_t wpfe

Field Documentation

14.101.2.11.1 sbc_wake_en_wpfe_t wpfe

WAKE pin falling-edge enable.

Definition at line 1239 of file sbc_uja1169_driver.h.

14.101.2.11.2 sbc_wake_en_wpre_t wpre

WAKE pin rising-edge enable.

Definition at line 1238 of file sbc_uja1169_driver.h.

14.101.2.12 struct sbc_regulator_ctr_t

Regulator control register group. This structure is group of regulator settings.

Implements : sbc_regulator_ctr_t_Class

Definition at line 1248 of file sbc_uja1169_driver.h.

Data Fields

• sbc_regulator_t regulator

• sbc_supply_evnt_t supplyEvnt

Field Documentation

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 777

14.101.2.12.1 sbc_regulator_t regulator

Regulator control register.

Definition at line 1249 of file sbc_uja1169_driver.h.

14.101.2.12.2 sbc_supply_evnt_t supplyEvnt

Supply event capture enable register.

Definition at line 1250 of file sbc_uja1169_driver.h.

14.101.2.13 struct sbc_int_config_t

Init configuration structure. This structure is used for initialization of sbc.

Implements : sbc_int_config_t_Class

Definition at line 1260 of file sbc_uja1169_driver.h.

Data Fields

• sbc_regulator_ctr_t regulatorCtr
• sbc_wtdog_ctr_t watchdog
• sbc_mode_mc_t mode
• sbc_fail_safe_lhc_t lhc
• sbc_sys_evnt_t sysEvnt
• sbc_lock_t lockMask
• sbc_can_conf_t can
• sbc_wake_t wakePin

Field Documentation

14.101.2.13.1 sbc_can_conf_t can

CAN configuration group.

Definition at line 1268 of file sbc_uja1169_driver.h.

14.101.2.13.2 sbc_fail_safe_lhc_t lhc

LIMP home control.

Definition at line 1264 of file sbc_uja1169_driver.h.

14.101.2.13.3 sbc_lock_t lockMask

Lock control register.

Definition at line 1267 of file sbc_uja1169_driver.h.

14.101.2.13.4 sbc_mode_mc_t mode

Mode control register.

Definition at line 1263 of file sbc_uja1169_driver.h.

14.101.2.13.5 sbc_regulator_ctr_t regulatorCtr

Regulator control register group.

Definition at line 1261 of file sbc_uja1169_driver.h.

14.101.2.13.6 sbc_sys_evnt_t sysEvnt

System event capture enable registers.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

778 CONTENTS

Definition at line 1265 of file sbc_uja1169_driver.h.

14.101.2.13.7 sbc_wake_t wakePin

WAKE pin event capture enable register.

Definition at line 1269 of file sbc_uja1169_driver.h.

14.101.2.13.8 sbc_wtdog_ctr_t watchdog

Watchdog control register.

Definition at line 1262 of file sbc_uja1169_driver.h.

14.101.2.14 struct sbc_factories_conf_t

Factory configuration structure. It contains Start-up control register and SBC configuration control register. This
is non-volatile memory with limited write access. The MTPNV cells can be reprogrammed a maximum of 200
times (Ncy(W)MTP; Bit NVMPS in the MTPNV status register indicates whether the non-volatile cells can be repro-
grammed. This register also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are
reprogrammed (up to a maximum value of 111111; there is no overflow; performing a factory reset also increments
the counter). This counter is provided for information purposes only; reprogramming will not be rejected when it
reaches its maximum value. Factory preset values are restored if the following conditions apply continuously for at
least td(MTPNV) during battery power-up: pin RSTN is held LOW, CANH is pulled up to VBAT, CANL is pulled down
to GND After the factory preset values have been restored, the SBC performs a system reset and enters Forced
normal Mode. Since the CAN-bus is clamped dominant, pin RXDC is forced LOW. Pin RXD is forced HIGH during
the factory preset restore process (td(MTPNV)). A falling edge on RXD caused by bit PO being set after power-on
indicates that the factory preset process has been completed. Note that the write counter, WRCNTS, in the MTPNV
status register is incremented every time the factory presets are restored.

Implements : sbc_factories_conf_t_Class

Definition at line 1299 of file sbc_uja1169_driver.h.

Data Fields

• sbc_start_up_t startUp

• sbc_sbc_t control

Field Documentation

14.101.2.14.1 sbc_sbc_t control

SBC configuration control register. Note that this register is located in the non-volatile memory area.

Definition at line 1301 of file sbc_uja1169_driver.h.

14.101.2.14.2 sbc_start_up_t startUp

Start-up control register.

Definition at line 1300 of file sbc_uja1169_driver.h.

14.101.2.15 struct sbc_main_status_t

Main status register structure. The Main status register can be accessed to monitor the status of the overtemper-
ature warning flag and to determine whether the UJA1169 has entered Normal mode after initial power-up. It also
indicates the source of the most recent reset event.

Implements : sbc_main_status_t_Class

Definition at line 1315 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 779

Data Fields

• sbc_main_otws_t otws
• sbc_main_nms_t nms
• sbc_main_rss_t rss

Field Documentation

14.101.2.15.1 sbc_main_nms_t nms

Normal mode status.

Definition at line 1317 of file sbc_uja1169_driver.h.

14.101.2.15.2 sbc_main_otws_t otws

Overtemperature warning status.

Definition at line 1316 of file sbc_uja1169_driver.h.

14.101.2.15.3 sbc_main_rss_t rss

Reset source status.

Definition at line 1318 of file sbc_uja1169_driver.h.

14.101.2.16 struct sbc_wtdog_status_t

Watchdog status register structure. Information on the status of the watchdog is available from the Watchdog status
register. This register also indicates whether Forced Normal and Software Development modes are active.

Implements : sbc_wtdog_status_t_Class

Definition at line 1329 of file sbc_uja1169_driver.h.

Data Fields

• sbc_wtdog_stat_fnms_t fnms
• sbc_wtdog_stat_sdms_t sdms
• sbc_wtdog_stat_wds_t wds

Field Documentation

14.101.2.16.1 sbc_wtdog_stat_fnms_t fnms

Forced Normal mode status.

Definition at line 1330 of file sbc_uja1169_driver.h.

14.101.2.16.2 sbc_wtdog_stat_sdms_t sdms

Software Development mode status.

Definition at line 1331 of file sbc_uja1169_driver.h.

14.101.2.16.3 sbc_wtdog_stat_wds_t wds

Watchdog status.

Definition at line 1332 of file sbc_uja1169_driver.h.

14.101.2.17 struct sbc_supply_status_t

Supply voltage status register structure. V2/VEXT and V1 undervoltage and overvoltage status.

Implements : sbc_supply_status_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

780 CONTENTS

Definition at line 1341 of file sbc_uja1169_driver.h.

Data Fields

• sbc_supply_stat_v2s_t v2s
• sbc_supply_stat_v1s_t v1s

Field Documentation

14.101.2.17.1 sbc_supply_stat_v1s_t v1s

V1 status.

Definition at line 1343 of file sbc_uja1169_driver.h.

14.101.2.17.2 sbc_supply_stat_v2s_t v2s

V2/VEXT status.

Definition at line 1342 of file sbc_uja1169_driver.h.

14.101.2.18 struct sbc_trans_stat_t

Transceiver status register structure. There are stored CAN transceiver statuses.

Implements : sbc_trans_stat_t_Class

Definition at line 1352 of file sbc_uja1169_driver.h.

Data Fields

• sbc_trans_stat_cts_t cts
• sbc_trans_stat_cpnerr_t cpnerr
• sbc_trans_stat_cpns_t cpns
• sbc_trans_stat_coscs_t coscs
• sbc_trans_stat_cbss_t cbss
• sbc_trans_stat_vcs_t vcs
• sbc_trans_stat_cfs_t cfs

Field Documentation

14.101.2.18.1 sbc_trans_stat_cbss_t cbss

CAN-bus silence status.

Definition at line 1357 of file sbc_uja1169_driver.h.

14.101.2.18.2 sbc_trans_stat_cfs_t cfs

CAN failure status.

Definition at line 1359 of file sbc_uja1169_driver.h.

14.101.2.18.3 sbc_trans_stat_coscs_t coscs

CAN oscillator status.

Definition at line 1356 of file sbc_uja1169_driver.h.

14.101.2.18.4 sbc_trans_stat_cpnerr_t cpnerr

CAN partial networking error.

Definition at line 1354 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 781

14.101.2.18.5 sbc_trans_stat_cpns_t cpns

CAN partial networking status.

Definition at line 1355 of file sbc_uja1169_driver.h.

14.101.2.18.6 sbc_trans_stat_cts_t cts

CAN transceiver status.

Definition at line 1353 of file sbc_uja1169_driver.h.

14.101.2.18.7 sbc_trans_stat_vcs_t vcs

VCAN status.

Definition at line 1358 of file sbc_uja1169_driver.h.

14.101.2.19 struct sbc_gl_evnt_stat_t

Global event status register. The microcontroller can monitor events via the event status registers. An extra status
register, the Global event status register, is provided to help speed up software polling routines. By polling the
Global event status register, the microcontroller can quickly determine the type of event captured (system, supply,
transceiver or WAKE pin) and then query the relevant event status register.

Implements : sbc_gl_evnt_stat_t_Class

Definition at line 1373 of file sbc_uja1169_driver.h.

Data Fields

• sbc_gl_evnt_stat_wpe_t wpe
• sbc_gl_evnt_stat_trxe_t trxe
• sbc_gl_evnt_stat_supe_t supe
• sbc_gl_evnt_stat_syse_t syse

Field Documentation

14.101.2.19.1 sbc_gl_evnt_stat_supe_t supe

Supply event.

Definition at line 1376 of file sbc_uja1169_driver.h.

14.101.2.19.2 sbc_gl_evnt_stat_syse_t syse

System event.

Definition at line 1377 of file sbc_uja1169_driver.h.

14.101.2.19.3 sbc_gl_evnt_stat_trxe_t trxe

Transceiver event.

Definition at line 1375 of file sbc_uja1169_driver.h.

14.101.2.19.4 sbc_gl_evnt_stat_wpe_t wpe

WAKE pin event.

Definition at line 1374 of file sbc_uja1169_driver.h.

14.101.2.20 struct sbc_sys_evnt_stat_t

System event status register. Wake-up and interrupt event diagnosis in the UJA1169 is intended to provide the
microcontroller with information on the status of a range of features and functions. This information is stored in the

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

782 CONTENTS

event status registers and is signaled on pin RXD, if enabled.

Implements : sbc_sys_evnt_stat_t_Class

Definition at line 1389 of file sbc_uja1169_driver.h.

Data Fields

• sbc_sys_evnt_stat_po_t po
• sbc_sys_evnt_stat_otw_t otw
• sbc_sys_evnt_stat_spif_t spif
• sbc_sys_evnt_stat_wdf_t wdf

Field Documentation

14.101.2.20.1 sbc_sys_evnt_stat_otw_t otw

Transceiver event, overtemperature warning

Definition at line 1391 of file sbc_uja1169_driver.h.

14.101.2.20.2 sbc_sys_evnt_stat_po_t po

Power-on.

Definition at line 1390 of file sbc_uja1169_driver.h.

14.101.2.20.3 sbc_sys_evnt_stat_spif_t spif

SPI failure.

Definition at line 1393 of file sbc_uja1169_driver.h.

14.101.2.20.4 sbc_sys_evnt_stat_wdf_t wdf

Watchdog failure.

Definition at line 1394 of file sbc_uja1169_driver.h.

14.101.2.21 struct sbc_sup_evnt_stat_t

Supply event status register.

Implements : sbc_sup_evnt_stat_t_Class

Definition at line 1402 of file sbc_uja1169_driver.h.

Data Fields

• sbc_sup_evnt_stat_v2o_t v2o
• sbc_sup_evnt_stat_v2u_t v2u
• sbc_sup_evnt_stat_v1u_t v1u

Field Documentation

14.101.2.21.1 sbc_sup_evnt_stat_v1u_t v1u

V1 undervoltage.

Definition at line 1405 of file sbc_uja1169_driver.h.

14.101.2.21.2 sbc_sup_evnt_stat_v2o_t v2o

V2/VEXT overvoltage.

Definition at line 1403 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 783

14.101.2.21.3 sbc_sup_evnt_stat_v2u_t v2u

V2/VEXT undervoltage.

Definition at line 1404 of file sbc_uja1169_driver.h.

14.101.2.22 struct sbc_trans_evnt_stat_t

Transceiver event status register.

Implements : sbc_trans_evnt_stat_t_Class

Definition at line 1413 of file sbc_uja1169_driver.h.

Data Fields

• sbc_trans_evnt_stat_pnfde_t pnfde
• sbc_trans_evnt_stat_cbs_t cbs
• sbc_trans_evnt_stat_cf_t cf
• sbc_trans_evnt_stat_cw_t cw

Field Documentation

14.101.2.22.1 sbc_trans_evnt_stat_cbs_t cbs

CAN-bus status.

Definition at line 1416 of file sbc_uja1169_driver.h.

14.101.2.22.2 sbc_trans_evnt_stat_cf_t cf

CAN failure.

Definition at line 1417 of file sbc_uja1169_driver.h.

14.101.2.22.3 sbc_trans_evnt_stat_cw_t cw

CAN wake-up.

Definition at line 1418 of file sbc_uja1169_driver.h.

14.101.2.22.4 sbc_trans_evnt_stat_pnfde_t pnfde

Partial networking frame detection error.

Definition at line 1414 of file sbc_uja1169_driver.h.

14.101.2.23 struct sbc_wake_evnt_stat_t

WAKE pin event status register.

Implements : sbc_wake_evnt_stat_t_Class

Definition at line 1426 of file sbc_uja1169_driver.h.

Data Fields

• sbc_wake_evnt_stat_wpr_t wpr
• sbc_wake_evnt_stat_wpf_t wpf

Field Documentation

14.101.2.23.1 sbc_wake_evnt_stat_wpf_t wpf

WAKE pin falling edge.

Definition at line 1428 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

784 CONTENTS

14.101.2.23.2 sbc_wake_evnt_stat_wpr_t wpr

WAKE pin rising edge.

Definition at line 1427 of file sbc_uja1169_driver.h.

14.101.2.24 struct sbc_evn_capt_t

Event capture registers structure. This structure contains Global event status, System event status, Supply event
status, Transceiver event status, WAKE pin event status.

Implements : sbc_evn_capt_t_Class

Definition at line 1438 of file sbc_uja1169_driver.h.

Data Fields

• sbc_gl_evnt_stat_t glEvnt
• sbc_sys_evnt_stat_t sysEvnt
• sbc_sup_evnt_stat_t supEvnt
• sbc_trans_evnt_stat_t transEvnt
• sbc_wake_evnt_stat_t wakePinEvnt

Field Documentation

14.101.2.24.1 sbc_gl_evnt_stat_t glEvnt

Global event status.

Definition at line 1439 of file sbc_uja1169_driver.h.

14.101.2.24.2 sbc_sup_evnt_stat_t supEvnt

Supply event status.

Definition at line 1441 of file sbc_uja1169_driver.h.

14.101.2.24.3 sbc_sys_evnt_stat_t sysEvnt

System event status.

Definition at line 1440 of file sbc_uja1169_driver.h.

14.101.2.24.4 sbc_trans_evnt_stat_t transEvnt

Transceiver event status.

Definition at line 1442 of file sbc_uja1169_driver.h.

14.101.2.24.5 sbc_wake_evnt_stat_t wakePinEvnt

WAKE pin event status.

Definition at line 1443 of file sbc_uja1169_driver.h.

14.101.2.25 struct sbc_mtpnv_stat_t

MTPNV status register. The MTPNV cells can be reprogrammed a maximum of 200 times (Ncy(W)MTP). Bit N←↩

VMPS in the MTPNV status register indicates whether the non-volatile cells can be reprogrammed. This register
also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are reprogrammed (up to
a maximum value of 111111; there is no overflow; performing a factory reset also increments the counter). This
counter is provided for information purposes only; reprogramming will not be rejected when it reaches its maximum
value.

Implements : sbc_mtpnv_stat_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 785

Definition at line 1459 of file sbc_uja1169_driver.h.

Data Fields

• sbc_mtpnv_stat_wrcnts_t wrcnts
• sbc_mtpnv_stat_eccs_t eccs
• sbc_mtpnv_stat_nvmps_t nvmps

Field Documentation

14.101.2.25.1 sbc_mtpnv_stat_eccs_t eccs

Error correction code status.

Definition at line 1461 of file sbc_uja1169_driver.h.

14.101.2.25.2 sbc_mtpnv_stat_nvmps_t nvmps

Non-volatile memory programming status.

Definition at line 1462 of file sbc_uja1169_driver.h.

14.101.2.25.3 sbc_mtpnv_stat_wrcnts_t wrcnts

Write counter status.

Definition at line 1460 of file sbc_uja1169_driver.h.

14.101.2.26 struct sbc_status_group_t

Status group structure. All statuses of SBC are stored in this structure.

Implements : sbc_status_group_t_Class

Definition at line 1473 of file sbc_uja1169_driver.h.

Data Fields

• sbc_main_status_t mainS
• sbc_wtdog_status_t wtdog
• sbc_supply_status_t supply
• sbc_trans_stat_t trans
• sbc_wake_stat_wpvs_t wakePin
• sbc_evn_capt_t events

Field Documentation

14.101.2.26.1 sbc_evn_capt_t events

Event capture registers.

Definition at line 1479 of file sbc_uja1169_driver.h.

14.101.2.26.2 sbc_main_status_t mainS

Main status.

Definition at line 1474 of file sbc_uja1169_driver.h.

14.101.2.26.3 sbc_supply_status_t supply

Supply voltage status.

Definition at line 1476 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

786 CONTENTS

14.101.2.26.4 sbc_trans_stat_t trans

Transceiver status.

Definition at line 1477 of file sbc_uja1169_driver.h.

14.101.2.26.5 sbc_wake_stat_wpvs_t wakePin

WAKE pin status.

Definition at line 1478 of file sbc_uja1169_driver.h.

14.101.2.26.6 sbc_wtdog_status_t wtdog

Watchdog status.

Definition at line 1475 of file sbc_uja1169_driver.h.

14.101.3 Macro Definition Documentation

14.101.3.1 #define SBC_UJA_COUNT_DMASK 8U

Definition at line 44 of file sbc_uja1169_driver.h.

14.101.3.2 #define SBC_UJA_COUNT_ID_REG 4U

Definition at line 42 of file sbc_uja1169_driver.h.

14.101.3.3 #define SBC_UJA_COUNT_MASK 4U

Definition at line 43 of file sbc_uja1169_driver.h.

14.101.3.4 #define SBC_UJA_TIMEOUT 1000U

Timeout for the transfer in milliseconds. If the transfer takes longer than this time, the transfer is aborted and
LPSPI_STATUS_SBC_UJA_TIMEOUT error is reported.

Definition at line 36 of file sbc_uja1169_driver.h.

14.101.4 Typedef Documentation

14.101.4.1 typedef uint8_t sbc_data_mask_t

Data mask registers. The data field indicates the nodes to be woken up. Within the data field, groups of nodes can
be predefined and associated with bits in a data mask. By comparing the incoming data field with the data mask,
multiple groups of nodes can be woken up simultaneously with a single wake-up message.

Implements : sbc_data_mask_t_Class

Definition at line 707 of file sbc_uja1169_driver.h.

14.101.4.2 typedef uint8_t sbc_fail_safe_rcc_t

Fail-safe control register, reset counter control (0x02). incremented every time the SBC enters Reset mode while
FNMC = 0; RCC overflows from 11 to 00; default at power-on is 00.

Implements : sbc_fail_safe_rcc_t_Class

Definition at line 198 of file sbc_uja1169_driver.h.

14.101.4.3 typedef uint8_t sbc_frame_ctr_dlc_t

Frame control register, number of data bytes expected in a CAN frame (0x2F).

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 787

Implements : sbc_frame_ctr_dlc_t_Class

Definition at line 696 of file sbc_uja1169_driver.h.

14.101.4.4 typedef uint8_t sbc_identif_mask_t

ID mask registers (0x2B to 0x2E). The identifier mask is defined in the ID mask registers, where a 1 means dont
care.

Implements : sbc_identif_mask_t_Class

Definition at line 662 of file sbc_uja1169_driver.h.

14.101.4.5 typedef uint8_t sbc_identifier_t

ID registers, identifier format (0x27 to 0x2A). A valid WUF identifier is defined and stored in the ID registers. An ID
mask can be defined to allow a group of identifiers to be recognized as valid by an individual node.

Implements : sbc_identifier_t_Class

Definition at line 653 of file sbc_uja1169_driver.h.

14.101.4.6 typedef uint8_t sbc_mtpnv_stat_wrcnts_t

MTPNV status register, write counter status (0x70). 6-bits - contains the number of times the MTPNV cells were
reprogrammed.

Implements : sbc_mtpnv_stat_wrcnts_t_Class

Definition at line 968 of file sbc_uja1169_driver.h.

14.101.5 Enumeration Type Documentation

14.101.5.1 enum sbc_can_cfdc_t

CAN control register, CAN FD control (0x20).

Implements : sbc_can_cfdc_t_Class

Enumerator

SBC_UJA_CAN_CFDC_DIS CAN FD tolerance disabled.

SBC_UJA_CAN_CFDC_EN CAN FD tolerance enabled.

Definition at line 461 of file sbc_uja1169_driver.h.

14.101.5.2 enum sbc_can_cmc_t

CAN control register, CAN mode control (0x20).

Implements : sbc_can_cmc_t_Class

Enumerator

SBC_UJA_CAN_CMC_OFMODE Offline mode.

SBC_UJA_CAN_CMC_ACMODE_DA Active mode (when the SBC is in Normal mode); CAN supply under-
voltage detection active.

SBC_UJA_CAN_CMC_ACMODE_DD Active mode (when the SBC is in Normal mode); CAN supply under-
voltage detection disabled.

SBC_UJA_CAN_CMC_LISTEN Listen-only mode.

Definition at line 497 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

788 CONTENTS

14.101.5.3 enum sbc_can_cpnc_t

CAN control register, CAN partial networking control (0x20).

Implements : sbc_can_cpnc_t_Class

Enumerator

SBC_UJA_CAN_CPNC_DIS Disable CAN selective wake-up.

SBC_UJA_CAN_CPNC_EN Enable CAN selective wake-up.

Definition at line 485 of file sbc_uja1169_driver.h.

14.101.5.4 enum sbc_can_pncok_t

CAN control register, CAN partial networking configuration OK (0x20).

Implements : sbc_can_pncok_t_Class

Enumerator

SBC_UJA_CAN_PNCOK_DIS Partial networking register configuration invalid (wake-up via standard wake-
up pattern only).

SBC_UJA_CAN_PNCOK_EN Partial networking registers configured successfully.

Definition at line 473 of file sbc_uja1169_driver.h.

14.101.5.5 enum sbc_dat_rate_t

Data rate register, CAN data rate selection (0x26). CAN partial networking configuration registers. Dedicated
registers are provided for configuring CAN partial networking.

Implements : sbc_dat_rate_t_Class

Enumerator

SBC_UJA_DAT_RATE_CDR_50KB 50 kbit/s.

SBC_UJA_DAT_RATE_CDR_100KB 100 kbit/s.

SBC_UJA_DAT_RATE_CDR_125KB 125 kbit/s.

SBC_UJA_DAT_RATE_CDR_250KB 250 kbit/s.

SBC_UJA_DAT_RATE_CDR_500KB 500 kbit/s.

SBC_UJA_DAT_RATE_CDR_1000KB 1000 kbit/s.

Definition at line 636 of file sbc_uja1169_driver.h.

14.101.5.6 enum sbc_fail_safe_lhc_t

Fail-safe control register, LIMP home control (0x02). The dedicated LIMP pin can be used to enable so called limp
home hardware in the event of a serious ECU failure. Detectable failure conditions include SBC overtemperature
events, loss of watchdog service, short-circuits on pins RSTN or V1 and user-initiated or external reset events. The
LIMP pin is a battery-robust, active-LOW, open-drain output. The LIMP pin can also be forced LOW by setting bit
LHC in the Fail-safe control register.

Implements : sbc_fail_safe_lhc_t_Class

Enumerator

SBC_UJA_FAIL_SAFE_LHC_FLOAT LIMP pin is floating.

SBC_UJA_FAIL_SAFE_LHC_LOW LIMP pin is driven LOW.

Definition at line 186 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 789

14.101.5.7 enum sbc_frame_ctr_ide_t

Frame control register, identifier format (0x2F). The wake-up frame format, standard (11-bit) or extended (29-bit)
identifier, is selected via bit IDE in the Frame control register.

Implements : sbc_frame_ctr_ide_t_Class

Enumerator

SBC_UJA_FRAME_CTR_IDE_11B Standard frame format (11-bit).

SBC_UJA_FRAME_CTR_IDE_29B Extended frame format (29-bit).

Definition at line 671 of file sbc_uja1169_driver.h.

14.101.5.8 enum sbc_frame_ctr_pndm_t

Frame control register, partial networking data mask (0x2F).

Implements : sbc_frame_ctr_pndm_t_Class

Enumerator

SBC_UJA_FRAME_CTR_PNDM_DCARE Data length code and data field are do not care for wake-up.

SBC_UJA_FRAME_CTR_PNDM_EVAL Data length code and data field are evaluated at wake-up.

Definition at line 683 of file sbc_uja1169_driver.h.

14.101.5.9 enum sbc_gl_evnt_stat_supe_t

Global event status register, supply event (0x60).

Implements : sbc_gl_evnt_stat_supe_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_SUPE_NO No pending supply event.

SBC_UJA_GL_EVNT_STAT_SUPE Supply event pending at address 0x62 .

Definition at line 774 of file sbc_uja1169_driver.h.

14.101.5.10 enum sbc_gl_evnt_stat_syse_t

Global event status register, system event (0x60).

Implements : sbc_gl_evnt_stat_syse_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_SYSE_NO No pending system event.

SBC_UJA_GL_EVNT_STAT_SYSE System event pending at address 0x61.

Definition at line 786 of file sbc_uja1169_driver.h.

14.101.5.11 enum sbc_gl_evnt_stat_trxe_t

Global event status register, transceiver event (0x60).

Implements : sbc_gl_evnt_stat_trxe_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_TRXE_NO No pending transceiver event.

SBC_UJA_GL_EVNT_STAT_TRXE Transceiver event pending at address 0x63.

Definition at line 762 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

790 CONTENTS

14.101.5.12 enum sbc_gl_evnt_stat_wpe_t

Global event status register, WAKE pin event (0x60).

Implements : sbc_gl_evnt_stat_wpe_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_WPE_NO No pending WAKE pin event.

SBC_UJA_GL_EVNT_STAT_WPE WAKE pin event pending at address 0x64.

Definition at line 750 of file sbc_uja1169_driver.h.

14.101.5.13 enum sbc_lock_t

Lock control(0x0A). Sections of the register address area can be write-protected to protect against unintended
modifications. This facility only protects locked bits from being modified via the SPI and will not prevent the UJ←↩

A1169 updating status registers etc.

Implements : sbc_lock_t_Class

Enumerator

LK0C Lock control 0: address area 0x06 to 0x09 - general-purpose memory macros. Lock control 1: address
area 0x10 to 0x1F - regulator control macros.

LK1C Lock control 2: address area 0x20 to 0x2F - transceiver control macros.

LK2C Lock control 3: address area 0x30 to 0x3F - unused register range macros.

LK3C Lock control 4: address area 0x40 to 0x4F - WAKE pin control macros.

LK4C Lock control 5: address area 0x50 to 0x5F.

LK5C Lock control 6: address area 0x68 to 0x6F macros.

LK6C Lock control All: address area 0x10 to 0x6F macros.

LKAC

Definition at line 320 of file sbc_uja1169_driver.h.

14.101.5.14 enum sbc_main_nms_t

Main status register, normal mode status (0x03).

Implements : sbc_main_nms_t_Class

Enumerator

SBC_UJA_MAIN_NMS_NORMAL UJA1169 has entered Normal mode (after power-up)

SBC_UJA_MAIN_NMS_PWR_UP UJA1169 has powered up but has not yet switched to Normal mode.

Definition at line 217 of file sbc_uja1169_driver.h.

14.101.5.15 enum sbc_main_otws_t

Main status register, Overtemperature warning status (0x03).

Implements : sbc_main_otws_t_Class

Enumerator

SBC_UJA_MAIN_OTWS_BELOW IC temperature below overtemperature warning threshold.

SBC_UJA_MAIN_OTWS_ABOVE IC temperature above overtemperature warning threshold.

Definition at line 205 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 791

14.101.5.16 enum sbc_main_rss_t

Main status register, Reset source status (0x03).

Implements : sbc_main_rss_t_Class

Enumerator

SBC_UJA_MAIN_RSS_OFF_MODE Left Off mode (power-on).

SBC_UJA_MAIN_RSS_CAN_WAKEUP CAN wake-up in Sleep mode.

SBC_UJA_MAIN_RSS_SLP_WAKEUP Wake-up via WAKE pin in Sleep mode.

SBC_UJA_MAIN_RSS_OVF_SLP Watchdog overflow in Sleep mode (Timeout mode).

SBC_UJA_MAIN_RSS_DIAG_WAKEUP Diagnostic wake-up in Sleep mode

SBC_UJA_MAIN_RSS_WATCH_TRIG Watchdog triggered too early (Window mode).

SBC_UJA_MAIN_RSS_WATCH_OVF Watchdog overflow (Window mode or Timeout mode with WDF = 1)

SBC_UJA_MAIN_RSS_ILLEG_WATCH Illegal watchdog mode control access.

SBC_UJA_MAIN_RSS_RSTN_PULDW RSTN pulled down externally.

SBC_UJA_MAIN_RSS_LFT_OVERTM Left Overtemp mode.

SBC_UJA_MAIN_RSS_V1_UNDERV V1 undervoltage.

SBC_UJA_MAIN_RSS_ILLEG_SLP Illegal Sleep mode command received.

SBC_UJA_MAIN_RSS_WAKE_SLP Wake-up from Sleep mode due to a frame detect error

Definition at line 229 of file sbc_uja1169_driver.h.

14.101.5.17 enum sbc_mode_mc_t

Mode control register, mode control (0x01)

Implements : sbc_mode_mc_t_Class

Enumerator

SBC_UJA_MODE_MC_SLEEP Sleep mode.

SBC_UJA_MODE_MC_STANDBY Standby mode.

SBC_UJA_MODE_MC_NORMAL Normal mode.

Definition at line 168 of file sbc_uja1169_driver.h.

14.101.5.18 enum sbc_mtpnv_stat_eccs_t

MTPNV status register, error correction code status (0x70).

Implements : sbc_mtpnv_stat_eccs_t_Class

Enumerator

SBC_UJA_MTPNV_STAT_ECCS_NO No bit failure detected in non-volatile memory.

SBC_UJA_MTPNV_STAT_ECCS Bit failure detected and corrected in non-volatile memory.

Definition at line 975 of file sbc_uja1169_driver.h.

14.101.5.19 enum sbc_mtpnv_stat_nvmps_t

MTPNV status register, non-volatile memory programming status (0x70).

Implements : sbc_mtpnv_stat_nvmps_t_Class

Enumerator

SBC_UJA_MTPNV_STAT_NVMPS_NO MTPNV memory cannot be overwritten.

SBC_UJA_MTPNV_STAT_NVMPS MTPNV memory is ready to be reprogrammed.

Definition at line 987 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

792 CONTENTS

14.101.5.20 enum sbc_register_t

Register map.

Implements : sbc_register_t_Class

Enumerator

SBC_UJA_WTDOG_CTR

SBC_UJA_MODE

SBC_UJA_FAIL_SAFE

SBC_UJA_MAIN

SBC_UJA_SYSTEM_EVNT

SBC_UJA_WTDOG_STAT

SBC_UJA_MEMORY_0

SBC_UJA_MEMORY_1

SBC_UJA_MEMORY_2

SBC_UJA_MEMORY_3

SBC_UJA_LOCK

SBC_UJA_REGULATOR

SBC_UJA_SUPPLY_STAT

SBC_UJA_SUPPLY_EVNT

SBC_UJA_CAN

SBC_UJA_TRANS_STAT

SBC_UJA_TRANS_EVNT

SBC_UJA_DAT_RATE

SBC_UJA_IDENTIF_0

SBC_UJA_IDENTIF_1

SBC_UJA_IDENTIF_2

SBC_UJA_IDENTIF_3

SBC_UJA_MASK_0

SBC_UJA_MASK_1

SBC_UJA_MASK_2

SBC_UJA_MASK_3

SBC_UJA_FRAME_CTR

SBC_UJA_DAT_MASK_0

SBC_UJA_DAT_MASK_1

SBC_UJA_DAT_MASK_2

SBC_UJA_DAT_MASK_3

SBC_UJA_DAT_MASK_4

SBC_UJA_DAT_MASK_5

SBC_UJA_DAT_MASK_6

SBC_UJA_DAT_MASK_7

SBC_UJA_WAKE_STAT

SBC_UJA_WAKE_EN

SBC_UJA_GL_EVNT_STAT

SBC_UJA_SYS_EVNT_STAT

SBC_UJA_SUP_EVNT_STAT

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 793

SBC_UJA_TRANS_EVNT_STAT

SBC_UJA_WAKE_EVNT_STAT

SBC_UJA_MTPNV_STAT

SBC_UJA_START_UP

SBC_UJA_SBC

SBC_UJA_MTPNV_CRC

SBC_UJA_IDENTIF

Definition at line 54 of file sbc_uja1169_driver.h.

14.101.5.21 enum sbc_regulator_pdc_t

Regulator control register, power distribution control (0x10).

Implements : sbc_regulator_pdc_t_Class

Enumerator

SBC_UJA_REGULATOR_PDC_HV V1 threshold current for activating the external PNP transistor, load cur-
rent rising; Ith(act)PNP (higher value) V1 threshold current for deactivating the external PNP transistor,
load current falling; Ith(deact)PNP (higher value).

SBC_UJA_REGULATOR_PDC_LV V1 threshold current for activating the external PNP transistor; load cur-
rent rising; Ith(act)PNP (lower value) V1 threshold current for deactivating the external PNP transistor;
load current falling; Ith(deact)PNP (lower value).

Definition at line 345 of file sbc_uja1169_driver.h.

14.101.5.22 enum sbc_regulator_v1rtc_t

Regulator control register, set V1 reset threshold (0x10).

Implements : sbc_regulator_v1rtc_t_Class

Enumerator

SBC_UJA_REGULATOR_V1RTC_90 Reset threshold set to 90 % of V1 nominal output voltage.

SBC_UJA_REGULATOR_V1RTC_80 Reset threshold set to 80 % of V1 nominal output voltage.

SBC_UJA_REGULATOR_V1RTC_70 Reset threshold set to 70 % of V1 nominal output voltage.

SBC_UJA_REGULATOR_V1RTC_60 Reset threshold set to 60 % of V1 nominal output voltage.

Definition at line 379 of file sbc_uja1169_driver.h.

14.101.5.23 enum sbc_regulator_v2c_t

Regulator control register, V2/VEXT configuration (0x10).

Implements : sbc_regulator_v2c_t_Class

Enumerator

SBC_UJA_REGULATOR_V2C_OFF V2/VEXT off in all modes.

SBC_UJA_REGULATOR_V2C_N V2/VEXT on in Normal mode.

SBC_UJA_REGULATOR_V2C_N_S_R V2/VEXT on in Normal, Standby and Reset modes.

SBC_UJA_REGULATOR_V2C_N_S_S_R V2/VEXT on in Normal, Standby, Sleep and Reset modes.

Definition at line 363 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

794 CONTENTS

14.101.5.24 enum sbc_sbc_fnmc_t

SBC configuration control register, Forced Normal mode control (0x74).

Implements : sbc_sbc_fnmc_t_Class

Enumerator

SBC_UJA_SBC_FNMC_DIS Forced Normal mode disabled.

SBC_UJA_SBC_FNMC_EN Forced Normal mode enabled.

Definition at line 1044 of file sbc_uja1169_driver.h.

14.101.5.25 enum sbc_sbc_sdmc_t

SBC configuration control register, Software Development mode control (0x74).

Implements : sbc_sbc_sdmc_t_Class

Enumerator

SBC_UJA_SBC_SDMC_DIS Software Development mode disabled.

SBC_UJA_SBC_SDMC_EN Software Development mode enabled.

Definition at line 1057 of file sbc_uja1169_driver.h.

14.101.5.26 enum sbc_sbc_slpc_t

SBC configuration control register, Sleep control (0x74).

Implements : sbc_sbc_slpc_t_Class

Enumerator

SBC_UJA_SBC_SLPC_AC Sleep mode commands accepted. Factory preset value.

SBC_UJA_SBC_SLPC_IG Sleep mode commands ignored.

Definition at line 1070 of file sbc_uja1169_driver.h.

14.101.5.27 enum sbc_sbc_v1rtsuc_t

SBC configuration control register, V1 undervoltage threshold (defined by bit V1RTC) at start-up (0x74).

Implements : sbc_sbc_v1rtsuc_t_Class

Enumerator

SBC_UJA_SBC_V1RTSUC_90 V1 undervoltage detection at 90 % of nominal value at start-up (V1RTC =
00).

SBC_UJA_SBC_V1RTSUC_80 V1 undervoltage detection at 80 % of nominal value at start-up (V1RTC =
01).

SBC_UJA_SBC_V1RTSUC_70 V1 undervoltage detection at 70 % of nominal value at start-up V1RTC = 10).

SBC_UJA_SBC_V1RTSUC_60 V1 undervoltage detection at 60 % of nominal value at start-up (V1RTC =
11).

Definition at line 1028 of file sbc_uja1169_driver.h.

14.101.5.28 enum sbc_start_up_rlc_t

Start-up control register, RSTN output reset pulse width macros (0x73).

Implements : sbc_start_up_rlc_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 795

Enumerator

SBC_UJA_START_UP_RLC_20_25p0 Tw(rst) = 20 ms to 25 ms.

SBC_UJA_START_UP_RLC_10_12p5 Tw(rst) = 10 ms to 12.5 ms.

SBC_UJA_START_UP_RLC_03p6_05 Tw(rst) = 3.6 ms to 5 ms.

SBC_UJA_START_UP_RLC_01_01p5 Tw(rst) = 1 ms to 1.5 ms.

Definition at line 999 of file sbc_uja1169_driver.h.

14.101.5.29 enum sbc_start_up_v2suc_t

Start-up control register, V2/VEXT start-up control (0x73).

Implements : sbc_start_up_v2suc_t_Class

Enumerator

SBC_UJA_START_UP_V2SUC_00 bits V2C/VEXTC set to 00 at power-up.

SBC_UJA_START_UP_V2SUC_11 bits V2C/VEXTC set to 11 at power-up.

Definition at line 1015 of file sbc_uja1169_driver.h.

14.101.5.30 enum sbc_sup_evnt_stat_v1u_t

Supply event status register, V1 undervoltage (0x62).

Implements : sbc_sup_evnt_stat_v1u_t_Class

Enumerator

SBC_UJA_SUP_EVNT_STAT_V1U_NO no V1 undervoltage event captured.

SBC_UJA_SUP_EVNT_STAT_V1U voltage on V1 has dropped below the 90 % undervoltage threshold while
V1 is active (event is not captured in Sleep mode because V1 is off); V1U event capture is independent
of the setting of bits V1RTC.

Definition at line 877 of file sbc_uja1169_driver.h.

14.101.5.31 enum sbc_sup_evnt_stat_v2o_t

Supply event status register, V2/VEXT overvoltage (0x62).

Implements : sbc_sup_evnt_stat_v2o_t_Class

Enumerator

SBC_UJA_SUP_EVNT_STAT_V2O_NO No V2/VEXT overvoltage event captured.

SBC_UJA_SUP_EVNT_STAT_V2O V2/VEXT overvoltage event captured.

Definition at line 853 of file sbc_uja1169_driver.h.

14.101.5.32 enum sbc_sup_evnt_stat_v2u_t

Supply event status register, V2/VEXT undervoltage (0x62).

Implements : sbc_sup_evnt_stat_v2u_t_Class

Enumerator

SBC_UJA_SUP_EVNT_STAT_V2U_NO No V2/VEXT undervoltage event captured.

SBC_UJA_SUP_EVNT_STAT_V2U V2/VEXT undervoltage event captured.

Definition at line 865 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

796 CONTENTS

14.101.5.33 enum sbc_supply_evnt_v1ue_t

Supply event capture enable register, V1 undervoltage enable (0x1C).

Implements : sbc_supply_evnt_v1ue_t_Class

Enumerator

SBC_UJA_SUPPLY_EVNT_V1UE_DIS V1 undervoltage detection disabled.

SBC_UJA_SUPPLY_EVNT_V1UE_EN V1 undervoltage detection enabled.

Definition at line 449 of file sbc_uja1169_driver.h.

14.101.5.34 enum sbc_supply_evnt_v2oe_t

Supply event capture enable register, V2/VEXT overvoltage enable (0x1C).

Implements : sbc_supply_evnt_v2oe_t_Class

Enumerator

SBC_UJA_SUPPLY_EVNT_V2OE_DIS V2/VEXT overvoltage detection disabled.

SBC_UJA_SUPPLY_EVNT_V2OE_EN V2/VEXT overvoltage detection enabled.

Definition at line 424 of file sbc_uja1169_driver.h.

14.101.5.35 enum sbc_supply_evnt_v2ue_t

Supply event capture enable register, V2/VEXT undervoltage enable (0x1C).

Implements : sbc_supply_evnt_v2ue_t_Class

Enumerator

SBC_UJA_SUPPLY_EVNT_V2UE_DIS V2/VEXT undervoltage detection disabled.

SBC_UJA_SUPPLY_EVNT_V2UE_EN V2/VEXT undervoltage detection enabled.

Definition at line 437 of file sbc_uja1169_driver.h.

14.101.5.36 enum sbc_supply_stat_v1s_t

Supply voltage status register, V1 status (0x1B).

Implements : sbc_supply_stat_v1s_t_Class

Enumerator

SBC_UJA_SUPPLY_STAT_V1S_VAB V1 output voltage above 90 % undervoltage threshold.

SBC_UJA_SUPPLY_STAT_V1S_VBE V1 output voltage below 90 % undervoltage threshold.

Definition at line 411 of file sbc_uja1169_driver.h.

14.101.5.37 enum sbc_supply_stat_v2s_t

Supply voltage status register, V2/VEXT status (0x1B).

Implements : sbc_supply_stat_v2s_t_Class

Enumerator

SBC_UJA_SUPPLY_STAT_V2S_VOK V2/VEXT voltage ok.

SBC_UJA_SUPPLY_STAT_V2S_VBE V2/VEXT output voltage below undervoltage threshold

SBC_UJA_SUPPLY_STAT_V2S_VAB V2/VEXT output voltage above overvoltage threshold

SBC_UJA_SUPPLY_STAT_V2S_DIS V2/VEXT disabled

Definition at line 395 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 797

14.101.5.38 enum sbc_sys_evnt_otwe_t

System event capture enable, overtemperature warning enable (0x04).

Implements : sbc_sys_evnt_otwe_t_Class

Enumerator

SBC_UJA_SYS_EVNT_OTWE_DIS Overtemperature warning disabled.

SBC_UJA_SYS_EVNT_OTWE_EN Overtemperature warning enabled.

Definition at line 254 of file sbc_uja1169_driver.h.

14.101.5.39 enum sbc_sys_evnt_spife_t

System event capture enable, SPI failure enable (0x04).

Implements : sbc_sys_evnt_spife_t_Class

Enumerator

SBC_UJA_SYS_EVNT_SPIFE_DIS SPI failure detection disabled.

SBC_UJA_SYS_EVNT_SPIFE_EN SPI failure detection enabled.

Definition at line 266 of file sbc_uja1169_driver.h.

14.101.5.40 enum sbc_sys_evnt_stat_otw_t

System event status register, overtemperature warning (0x61).

Implements : sbc_sys_evnt_stat_otw_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_OTW_NO Overtemperature not detected.

SBC_UJA_SYS_EVNT_STAT_OTW The global chip temperature has exceeded the overtemperature warn-
ing threshold, Tth(warn)otp (not in Sleep mode).

Definition at line 810 of file sbc_uja1169_driver.h.

14.101.5.41 enum sbc_sys_evnt_stat_po_t

System event status register, power-on (0x61).

Implements : sbc_sys_evnt_stat_po_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_PO_NO No recent battery power-on.

SBC_UJA_SYS_EVNT_STAT_PO The UJA1169 has left Off mode after battery power-on.

Definition at line 798 of file sbc_uja1169_driver.h.

14.101.5.42 enum sbc_sys_evnt_stat_spif_t

System event status register, SPI failure (0x61).

Implements : sbc_sys_evnt_stat_spif_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_SPIF_NO No SPI failure detected

SBC_UJA_SYS_EVNT_STAT_SPIF SPI clock count error (only 16-, 24- and 32-bit commands are valid),
illegal WMC, NWP or MC code or attempted write access to locked register (not in Sleep mode)

Definition at line 823 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

798 CONTENTS

14.101.5.43 enum sbc_sys_evnt_stat_wdf_t

System event status register, watchdog failure (0x61).

Implements : sbc_sys_evnt_stat_wdf_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_WDF_NO No watchdog failure event captured

SBC_UJA_SYS_EVNT_STAT_WDF Watchdog overflow in Window or Timeout mode or watchdog triggered
too early in Window mode; a system reset is triggered immediately in response to a watchdog failure in
Window mode; when the watchdog overflows in Timeout mode, a system reset is only performed if a WDF
is already pending (WDF = 1).

Definition at line 837 of file sbc_uja1169_driver.h.

14.101.5.44 enum sbc_trans_evnt_cbse_t

Transceiver event capture enable register, CAN-bus silence enable (0x23).

Implements : sbc_trans_evnt_cbse_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_CBSE_DIS CAN-bus silence detection disabled.

SBC_UJA_TRANS_EVNT_CBSE_EN CAN-bus silence detection enabled.

Definition at line 598 of file sbc_uja1169_driver.h.

14.101.5.45 enum sbc_trans_evnt_cfe_t

Transceiver event capture enable register, CAN failure enable (0x23).

Implements : sbc_trans_evnt_cfe_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_CFE_DIS CAN failure detection disabled.

SBC_UJA_TRANS_EVNT_CFE_EN CAN failure detection enabled.

Definition at line 610 of file sbc_uja1169_driver.h.

14.101.5.46 enum sbc_trans_evnt_cwe_t

Transceiver event capture enable register, CAN wake-up enable (0x23).

Implements : sbc_trans_evnt_cwe_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_CWE_DIS CAN wake-up detection disabled.

SBC_UJA_TRANS_EVNT_CWE_EN CAN wake-up detection enabled.

Definition at line 622 of file sbc_uja1169_driver.h.

14.101.5.47 enum sbc_trans_evnt_stat_cbs_t

Transceiver event status register, CAN-bus status (0x63).

Implements : sbc_trans_evnt_stat_cbs_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_CBS_NO CAN-bus active.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 799

SBC_UJA_TRANS_EVNT_STAT_CBS No activity on CAN-bus for tto(silence) (detected only when CBSE =
1 while bus active).

Definition at line 904 of file sbc_uja1169_driver.h.

14.101.5.48 enum sbc_trans_evnt_stat_cf_t

Transceiver event status register, CAN failure (0x63).

Implements : sbc_trans_evnt_stat_cf_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_CF_NO No CAN failure detected.

SBC_UJA_TRANS_EVNT_STAT_CF CAN transceiver deactivated due to VCAN undervoltage OR dominant
clamped TXD (not in Sleep mode)

Definition at line 917 of file sbc_uja1169_driver.h.

14.101.5.49 enum sbc_trans_evnt_stat_cw_t

Transceiver event status register, CAN wake-up (0x63).

Implements : sbc_trans_evnt_stat_cw_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_CW_NO No CAN wake-up event detected.

SBC_UJA_TRANS_EVNT_STAT_CW CAN wake-up event detected while the transceiver is in CAN Offline
Mode.

Definition at line 930 of file sbc_uja1169_driver.h.

14.101.5.50 enum sbc_trans_evnt_stat_pnfde_t

Transceiver event status register,partial networking frame detection error (0x63).

Implements : sbc_trans_evnt_stat_pnfde_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO No partial networking frame detection error detected.

SBC_UJA_TRANS_EVNT_STAT_PNFDE Partial networking frame detection error detected.

Definition at line 892 of file sbc_uja1169_driver.h.

14.101.5.51 enum sbc_trans_stat_cbss_t

Transceiver status register, CAN-bus silence status (0x22).

Implements : sbc_trans_stat_cbss_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CBSS_ACT CAN-bus active (communication detected on bus)

SBC_UJA_TRANS_STAT_CBSS_INACT CAN-bus inactive (for longer than t_to(silence)).

Definition at line 562 of file sbc_uja1169_driver.h.

14.101.5.52 enum sbc_trans_stat_cfs_t

Transceiver status register, CAN failure status (0x22).

Implements : sbc_trans_stat_cfs_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

800 CONTENTS

Enumerator

SBC_UJA_TRANS_STAT_CFS_NO_TXD No TXD dominant time-out event detected.

SBC_UJA_TRANS_STAT_CFS_TXD CAN transmitter disabled due to a TXD dominant time-out event.

Definition at line 586 of file sbc_uja1169_driver.h.

14.101.5.53 enum sbc_trans_stat_coscs_t

Transceiver status register, CAN oscillator status (0x22).

Implements : sbc_trans_stat_coscs_t_Class

Enumerator

SBC_UJA_TRANS_STAT_COSCS_NRUN CAN partial networking oscillator not running at target frequency.

SBC_UJA_TRANS_STAT_COSCS_RUN CAN partial networking oscillator running at target.

Definition at line 550 of file sbc_uja1169_driver.h.

14.101.5.54 enum sbc_trans_stat_cpnerr_t

Transceiver status register, CAN partial networking error (0x22).

Implements : sbc_trans_stat_cpnerr_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CPNERR_NO_DET no CAN partial networking error detected (PNFDE = 0 AND
PNCOK = 1).

SBC_UJA_TRANS_STAT_CPNERR_DET CAN partial networking error detected (PNFDE = 1OR PNCOK =
0; wake-up via standard wake-up pattern only).

Definition at line 525 of file sbc_uja1169_driver.h.

14.101.5.55 enum sbc_trans_stat_cpns_t

Transceiver status register, CAN partial networking status (0x22).

Implements : sbc_trans_stat_cpns_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CPNS_ERR CAN partial networking configuration error detected(PNCOK = 0).

SBC_UJA_TRANS_STAT_CPNS_OK CAN partial networking configuration ok (PNCOK = 1).

Definition at line 538 of file sbc_uja1169_driver.h.

14.101.5.56 enum sbc_trans_stat_cts_t

Transceiver status register, CAN transceiver status (0x22).

Implements : sbc_trans_stat_cts_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CTS_INACT CAN transceiver not in Active mode.

SBC_UJA_TRANS_STAT_CTS_ACT CAN transceiver in Active mode.

Definition at line 513 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 801

14.101.5.57 enum sbc_trans_stat_vcs_t

Transceiver status register, VCAN status (0x22).

Implements : sbc_trans_stat_vcs_t_Class

Enumerator

SBC_UJA_TRANS_STAT_VCS_AB CAN supply voltage is above the 90 % threshold.

SBC_UJA_TRANS_STAT_VCS_BE CAN supply voltage is below the 90 % threshold

Definition at line 574 of file sbc_uja1169_driver.h.

14.101.5.58 enum sbc_wake_en_wpfe_t

WAKE pin event capture enable register, WAKE pin falling-edge enable (0x4C).

Implements : sbc_wake_en_wpfe_t_Class

Enumerator

SBC_UJA_WAKE_EN_WPFE_DIS Falling-edge detection on WAKE pin disabled.

SBC_UJA_WAKE_EN_WPFE_EN Falling-edge detection on WAKE pin enabled.

Definition at line 738 of file sbc_uja1169_driver.h.

14.101.5.59 enum sbc_wake_en_wpre_t

WAKE pin event capture enable register, WAKE pin rising-edge enable (0x4C).

Implements : sbc_wake_en_wpre_t_Class

Enumerator

SBC_UJA_WAKE_EN_WPRE_DIS Rising-edge detection on WAKE pin disabled.

SBC_UJA_WAKE_EN_WPRE_EN Rising-edge detection on WAKE pin enabled.

Definition at line 726 of file sbc_uja1169_driver.h.

14.101.5.60 enum sbc_wake_evnt_stat_wpf_t

WAKE pin event status register, WAKE pin falling edge (0x64).

Implements : sbc_wake_evnt_stat_wpf_t_Class

Enumerator

SBC_UJA_WAKE_EVNT_STAT_WPF_NO No falling edge detected on WAKE pin.

SBC_UJA_WAKE_EVNT_STAT_WPF Falling edge detected on WAKE pin.

Definition at line 954 of file sbc_uja1169_driver.h.

14.101.5.61 enum sbc_wake_evnt_stat_wpr_t

WAKE pin event status register, WAKE pin rising edge (0x64).

Implements : sbc_wake_evnt_stat_wpr_t_Class

Enumerator

SBC_UJA_WAKE_EVNT_STAT_WPR_NO No rising edge detected on WAKE pin.

SBC_UJA_WAKE_EVNT_STAT_WPR Rising edge detected on WAKE pin.

Definition at line 942 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

802 CONTENTS

14.101.5.62 enum sbc_wake_stat_wpvs_t

WAKE pin status register, WAKE pin status (0x4B).

Implements : sbc_wake_stat_wpvs_t_Class

Enumerator

SBC_UJA_WAKE_STAT_WPVS_BE Voltage on WAKE pin below switching threshold (Vth(sw)).

SBC_UJA_WAKE_STAT_WPVS_AB voltage on WAKE pin above switching threshold (Vth(sw)).

Definition at line 714 of file sbc_uja1169_driver.h.

14.101.5.63 enum sbc_wtdog_ctr_nwp_t

Watchdog control register, nominal watchdog period (0x00). Eight watchdog periods are supported, from 8 ms to
4096 ms. The watchdog period is programmed via bits NWP. The selected period is valid for both Window and
Timeout modes. The default watchdog period is 128 ms. A watchdog trigger event resets the watchdog timer. A
watchdog trigger event is any valid write access to the Watchdog control register. If the watchdog mode or the
watchdog period have changed as a result of the write access, the new values are immediately valid.

Implements : sbc_wtdog_ctr_nwp_t_Class

Enumerator

SBC_UJA_WTDOG_CTR_NWP_8 8 ms.

SBC_UJA_WTDOG_CTR_NWP_16 16 ms.

SBC_UJA_WTDOG_CTR_NWP_32 32 ms.

SBC_UJA_WTDOG_CTR_NWP_64 64 ms.

SBC_UJA_WTDOG_CTR_NWP_128 128 ms.

SBC_UJA_WTDOG_CTR_NWP_256 256 ms.

SBC_UJA_WTDOG_CTR_NWP_1024 1024 ms.

SBC_UJA_WTDOG_CTR_NWP_4096 4096 ms.

Definition at line 152 of file sbc_uja1169_driver.h.

14.101.5.64 enum sbc_wtdog_ctr_wmc_t

Watchdog control register, watchdog mode control (0x00). The UJA1169 contains a watchdog that supports three
operating modes: Window, Timeout and Autonomous. In Window mode (available only in SBC Normal mode),
a watchdog trigger event within a defined watchdog window triggers and resets the watchdog timer. In Timeout
mode, the watchdog runs continuously and can be triggered and reset at any time within the watchdog period
by a watchdog trigger. Watchdog time-out mode can also be used for cyclic wake-up of the microcontroller. In
Autonomous mode, the watchdog can be off or autonomously in Timeout mode, depending on the selected SBC
mode. The watchdog mode is selected via bits WMC in the Watchdog control register. The SBC must be in Standby
mode when the watchdog mode is changed.

Implements : sbc_wtdog_ctr_wmc_t_Class

Enumerator

SBC_UJA_WTDOG_CTR_WMC_AUTO Autonomous mode.

SBC_UJA_WTDOG_CTR_WMC_TIME Timeout mode.

SBC_UJA_WTDOG_CTR_WMC_WIND Window mode (available only in SBC Normal mode).

Definition at line 131 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.101 UJA1169 SBC Driver 803

14.101.5.65 enum sbc_wtdog_stat_fnms_t

Watchdog status register, forced Normal mode status (0x05).

Implements : sbc_wtdog_stat_fnms_t_Class

Enumerator

SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL SBC is not in Forced Normal mode.

SBC_UJA_WTDOG_STAT_FNMS_NORMAL SBC is in Forced Normal mode.

Definition at line 278 of file sbc_uja1169_driver.h.

14.101.5.66 enum sbc_wtdog_stat_sdms_t

Watchdog status register, Software Development mode status (0x05).

Implements : sbc_wtdog_stat_sdms_t_Class

Enumerator

SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL SBC is not in Software Development mode.

SBC_UJA_WTDOG_STAT_SDMS_NORMAL SBC is in Software Development mode.

Definition at line 290 of file sbc_uja1169_driver.h.

14.101.5.67 enum sbc_wtdog_stat_wds_t

Watchdog status register, watchdog status (0x05).

Implements : sbc_wtdog_stat_wds_t_Class

Enumerator

SBC_UJA_WTDOG_STAT_WDS_OFF Watchdog is off.

SBC_UJA_WTDOG_STAT_WDS_FIH Watchdog is in first half of the nominal period.

SBC_UJA_WTDOG_STAT_WDS_SEH Watchdog is in second half of the nominal period.

Definition at line 302 of file sbc_uja1169_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

804 CONTENTS

14.102 User provided call-outs

14.102.1 Detailed Description

This group contains APIs which may be called from within the LIN module in order to enable/disable LIN communi-
cation interrupts.

Functions

• l_u16 l_sys_irq_disable (l_ifc_handle iii)

Disable LIN related IRQ.

• void l_sys_irq_restore (l_ifc_handle iii)

Enable LIN related IRQ.

14.102.2 Function Documentation

14.102.2.1 l_u16 l_sys_irq_disable (l_ifc_handle iii)

Disable LIN related IRQ.

Parameters

in iii Interface name

Returns

l_u16

Definition at line 549 of file lin_common_api.c.

14.102.2.2 void l_sys_irq_restore (l_ifc_handle iii)

Enable LIN related IRQ.

Parameters

in iii Interface name

Returns

void

Definition at line 563 of file lin_common_api.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.103 WDOG Driver 805

14.103 WDOG Driver

14.103.1 Detailed Description

Watchdog Timer Peripheral Driver.

How to use the WDOG driver in your application

In order to be able to use the Watchdog in your application, the first thing to do is initializing it with the desired
configuration. This is done by calling the WDOG_DRV_Init function. One of the arguments passed to this function
is the configuration which will be used for the Watchdog, specified by the wdog_user_config_t structure.

The wdog_user_config_t structure allows you to configure the following:

• the clock source of the Watchdog;

• the prescaler (a fixed 256 pre-scaling of the Watchdog counter reference clock may be enabled);

• the operation modes in which the Watchdog is functional (by default, the Watchdog is not functional in Debug
mode, Wait mode or Stop mode);

• the timeout value to which the Watchdog counter is compared;

• the window mode option for the refresh mechanism (by default, the window mode is disabled, but it may be
enabled and a window value may be set);

• the Watchdog timeout interrupt (if enabled, after a reset-triggering event, the Watchdog first generates an
interrupt request; next, the Watchdog delays 128 bus clocks before forcing a reset, to allow the interrupt
service routine to perform tasks (like analyzing the stack to debug code));

• the update mechanism (by default, the Watchdog reconfiguration is enabled, but updates can be disabled)

Please note that if the updates are disabled the Watchdog cannot be later modified without forcing a reset (this
implies that further calls of the WDOG_DRV_Init, WDOG_DRV_Deinit or WDOG_DRV_SetInt functions will lead
to a reset).

As mentioned before, a timeout interrupt may be enabled by specifying it at the module initialization. The WDO←↩

G_DRV_Init only allows enabling/disabling the interrupt, and it does not set up the ISR to be used for the interrupt
request. In order to set up a function to be called after a reset-triggering event (and also enable/disable the interrupt),
the WDOG_DRV_SetInt function may be used. Please note that, due to the 128 bus clocks delay before the reset,
a limited amount of job can be done in the ISR.

Basic Operations of WDOG

1. To initialize WDOG, call WDOG_DRV_Init() with an user configuration structure. In the following code,
WDOG is initialized with default settings.

#define INST_WDOG1 (0U)

wdog_user_config_t userConfigPtr = {
false, /* Window mode disabled */
false, /* Prescaler disabled */
WDOG_LPO_CLOCK, /* Use the LPO clock as source */
false, /* Timeout interrupt disabled */
false, /* Disable further updates of the WDOG configuration */
{ false, false, false }, /* WDOG not functional in Wait/Debug/Stop mode */
0x400, /* Timeout value */
0x100 /* Window value */

};

/* Initialize WDOG module */
WDOG_DRV_Init(INST_WDOG1, &userConfigPtr);

2. To get default configuration of WDOG module, just call the function WDOG_DRV_GetDefaultConfig(). Make
sure that the operation before WDOG timeout executing.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

806 CONTENTS

wdog_user_config_t userConfigPtr;

/* Get default configuration of WDOG module */
WDOG_DRV_GetDefaultConfig(&userConfigPtr);

3. To refresh WDOG counter of WDOG module, just call the function WDOG_DRV_Trigger(). Make sure that
the operation before WDOG timeout executing.

/* Refresh counter of WDOG counter */
WDOG_DRV_Trigger(INST_WDOG1);

4. To de-initialize WDOG module, just call the function WDOG_DRV_Deinit(). Make sure that the operation
before WDOG timeout executing.

/* De-initialize WDOG module */
WDOG_DRV_Deinit(INST_WDOG1);

Example:

#define INST_WDOG1 (0U)

wdog_user_config_t userConfigPtr = {
false, /* Window mode disabled */
false, /* Prescaler disabled */
WDOG_LPO_CLOCK, /* Use the LPO clock as source */
false, /* Timeout interrupt disabled */
false, /* Disable further updates of the WDOG configuration */
{ false, false, false }, /* WDOG not functional in Wait/Debug/Stop mode */
0x400, /* Timeout value */
0x100 /* Window value */

};

/* Initialize WDOG module */
WDOG_DRV_Init(INST_WDOG1, &userConfigPtr);

/* Enable the timeout interrupt and set the ISR */
WDOG_DRV_SetInt(INST_WDOG1, true);

while (1) {

/* Do something that takes between 0x100 and 0x400 clock cycles */

/* Refresh the counter */
WDOG_DRV_Trigger(INST_WDOG1);

}

/* De-initialize WDOG module */
WDOG_DRV_Deinit(INST_WDOG1);

Data Structures

• struct wdog_op_mode_t

WDOG option mode configuration structure Implements : wdog_op_mode_t_Class. More...

• struct wdog_user_config_t

WDOG user configuration structure Implements : wdog_user_config_t_Class. More...

Enumerations

• enum wdog_clk_source_t { WDOG_BUS_CLOCK = 0x00U, WDOG_LPO_CLOCK = 0x01U, WDOG_SOS←↩

C_CLOCK = 0x02U, WDOG_SIRC_CLOCK = 0x03U }

Clock sources for the WDOG. Implements : wdog_clk_source_t_Class.

• enum wdog_test_mode_t { WDOG_TST_DISABLED = 0x00U, WDOG_TST_USER = 0x01U, WDOG_TS←↩

T_LOW = 0x02U, WDOG_TST_HIGH = 0x03U }

Test modes for the WDOG. Implements : wdog_test_mode_t_Class.

• enum wdog_set_mode_t { WDOG_DEBUG_MODE = 0x00U, WDOG_WAIT_MODE = 0x01U, WDOG_ST←↩

OP_MODE = 0x02U }

set modes for the WDOG. Implements : wdog_set_mode_t_Class

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.103 WDOG Driver 807

WDOG Driver API

• status_t WDOG_DRV_Init (uint32_t instance, const wdog_user_config_t ∗userConfigPtr)

Initializes the WDOG driver.

• void WDOG_DRV_Deinit (uint32_t instance)

De-initializes the WDOG driver.

• void WDOG_DRV_GetConfig (uint32_t instance, wdog_user_config_t ∗const config)

Gets the current configuration of the WDOG.

• void WDOG_DRV_GetDefaultConfig (wdog_user_config_t ∗const config)

Gets default configuration of the WDOG.

• status_t WDOG_DRV_SetInt (uint32_t instance, bool enable)

Enables/Disables the WDOG timeout interrupt and sets a function to be called when a timeout interrupt is received,
before reset.

• void WDOG_DRV_Trigger (uint32_t instance)

Refreshes the WDOG counter.

• uint16_t WDOG_DRV_GetCounter (uint32_t instance)

Gets the value of the WDOG counter.

• void WDOG_DRV_SetWindow (uint32_t instance, bool enable, uint16_t windowvalue)

Set window mode and window value of the WDOG.

• void WDOG_DRV_SetMode (uint32_t instance, bool enable, wdog_set_mode_t Setmode)

Sets the mode operation of the WDOG.

• void WDOG_DRV_SetTimeout (uint32_t instance, uint16_t timeout)

Sets the value of the WDOG timeout.

• void WDOG_DRV_SetTestMode (uint32_t instance, wdog_test_mode_t testMode)

Changes the WDOG test mode.

• wdog_test_mode_t WDOG_DRV_GetTestMode (uint32_t instance)

Gets the WDOG test mode.

14.103.2 Data Structure Documentation

14.103.2.1 struct wdog_op_mode_t

WDOG option mode configuration structure Implements : wdog_op_mode_t_Class.

Definition at line 87 of file wdog_driver.h.

Data Fields

• bool wait
• bool stop
• bool debug

Field Documentation

14.103.2.1.1 bool debug

Debug mode

Definition at line 91 of file wdog_driver.h.

14.103.2.1.2 bool stop

Stop mode

Definition at line 90 of file wdog_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

808 CONTENTS

14.103.2.1.3 bool wait

Wait mode

Definition at line 89 of file wdog_driver.h.

14.103.2.2 struct wdog_user_config_t

WDOG user configuration structure Implements : wdog_user_config_t_Class.

Definition at line 98 of file wdog_driver.h.

Data Fields

• wdog_clk_source_t clkSource
• wdog_op_mode_t opMode
• bool updateEnable
• bool intEnable
• bool winEnable
• uint32_t windowValue
• uint32_t timeoutValue
• bool prescalerEnable

Field Documentation

14.103.2.2.1 wdog_clk_source_t clkSource

The clock source of the WDOG

Definition at line 100 of file wdog_driver.h.

14.103.2.2.2 bool intEnable

If true, an interrupt request is generated before reset

Definition at line 103 of file wdog_driver.h.

14.103.2.2.3 wdog_op_mode_t opMode

The modes in which the WDOG is functional

Definition at line 101 of file wdog_driver.h.

14.103.2.2.4 bool prescalerEnable

If true, a fixed 256 prescaling of the counter reference clock is enabled

Definition at line 107 of file wdog_driver.h.

14.103.2.2.5 uint32_t timeoutValue

The timeout value

Definition at line 106 of file wdog_driver.h.

14.103.2.2.6 bool updateEnable

If true, further updates of the WDOG are enabled

Definition at line 102 of file wdog_driver.h.

14.103.2.2.7 uint32_t windowValue

The window value

Definition at line 105 of file wdog_driver.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.103 WDOG Driver 809

14.103.2.2.8 bool winEnable

If true, window mode is enabled

Definition at line 104 of file wdog_driver.h.

14.103.3 Enumeration Type Documentation

14.103.3.1 enum wdog_clk_source_t

Clock sources for the WDOG. Implements : wdog_clk_source_t_Class.

Enumerator

WDOG_BUS_CLOCK Bus clock

WDOG_LPO_CLOCK LPO clock

WDOG_SOSC_CLOCK SOSC clock

WDOG_SIRC_CLOCK SIRC clock

Definition at line 52 of file wdog_driver.h.

14.103.3.2 enum wdog_set_mode_t

set modes for the WDOG. Implements : wdog_set_mode_t_Class

Enumerator

WDOG_DEBUG_MODE Debug mode

WDOG_WAIT_MODE Wait mode

WDOG_STOP_MODE Stop mode

Definition at line 76 of file wdog_driver.h.

14.103.3.3 enum wdog_test_mode_t

Test modes for the WDOG. Implements : wdog_test_mode_t_Class.

Enumerator

WDOG_TST_DISABLED Test mode disabled

WDOG_TST_USER User mode enabled. (Test mode disabled.)

WDOG_TST_LOW Test mode enabled, only the low byte is used.

WDOG_TST_HIGH Test mode enabled, only the high byte is used.

Definition at line 64 of file wdog_driver.h.

14.103.4 Function Documentation

14.103.4.1 void WDOG_DRV_Deinit (uint32_t instance)

De-initializes the WDOG driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

810 CONTENTS

Parameters

in instance WDOG peripheral instance number

Definition at line 143 of file wdog_driver.c.

14.103.4.2 void WDOG_DRV_GetConfig (uint32_t instance, wdog_user_config_t ∗const config)

Gets the current configuration of the WDOG.

Parameters

in instance WDOG peripheral instance number
out configures the current configuration

Definition at line 166 of file wdog_driver.c.

14.103.4.3 uint16_t WDOG_DRV_GetCounter (uint32_t instance)

Gets the value of the WDOG counter.

Parameters

in instance WDOG peripheral instance number.

Returns

the value of the WDOG counter.

Definition at line 258 of file wdog_driver.c.

14.103.4.4 void WDOG_DRV_GetDefaultConfig (wdog_user_config_t ∗const config)

Gets default configuration of the WDOG.

Parameters

out configures the default configuration

Definition at line 183 of file wdog_driver.c.

14.103.4.5 wdog_test_mode_t WDOG_DRV_GetTestMode (uint32_t instance)

Gets the WDOG test mode.

This function verifies the test mode of the WDOG.

Parameters

in instance WDOG peripheral instance number

Returns

Test modes for the WDOG

Definition at line 372 of file wdog_driver.c.

14.103.4.6 status_t WDOG_DRV_Init (uint32_t instance, const wdog_user_config_t ∗ userConfigPtr)

Initializes the WDOG driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.103 WDOG Driver 811

Parameters

in instance WDOG peripheral instance number
in userConfigPtr pointer to the WDOG user configuration structure

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed. Possible causes: previous clock source or the one specified in the
configuration structure is disabled; WDOG configuration updates are not allowed.

Definition at line 105 of file wdog_driver.c.

14.103.4.7 status_t WDOG_DRV_SetInt (uint32_t instance, bool enable)

Enables/Disables the WDOG timeout interrupt and sets a function to be called when a timeout interrupt is received,
before reset.

Parameters

in instance WDOG peripheral instance number
in enable enable/disable interrupt

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed. Possible causes: failed to WDOG configuration updates not al-
lowed.

Definition at line 207 of file wdog_driver.c.

14.103.4.8 void WDOG_DRV_SetMode (uint32_t instance, bool enable, wdog_set_mode_t Setmode)

Sets the mode operation of the WDOG.

This function changes the mode operation of the WDOG.

Parameters

in instance WDOG peripheral instance number.
in enable enable/disable mode of the WDOG.
in Setmode select mode of the WDOG.

Definition at line 298 of file wdog_driver.c.

14.103.4.9 void WDOG_DRV_SetTestMode (uint32_t instance, wdog_test_mode_t testMode)

Changes the WDOG test mode.

This function changes the test mode of the WDOG. If the WDOG is tested in mode, software should set this field to
0x01U in order to indicate that the WDOG is functioning normally.

Parameters

in instance WDOG peripheral instance number

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

812 CONTENTS

in testMode Test modes for the WDOG.

Definition at line 350 of file wdog_driver.c.

14.103.4.10 void WDOG_DRV_SetTimeout (uint32_t instance, uint16_t timeout)

Sets the value of the WDOG timeout.

This function sets the value of the WDOG timeout.

Parameters

in instance WDOG peripheral instance number.
in timeout the value of the WDOG timeout.

Definition at line 332 of file wdog_driver.c.

14.103.4.11 void WDOG_DRV_SetWindow (uint32_t instance, bool enable, uint16_t windowvalue)

Set window mode and window value of the WDOG.

This function set window mode, window value is set when window mode enabled.

Parameters

in instance WDOG peripheral instance number.
in enable enable/disable window mode and window value.
in windowvalue the value of the WDOG window.

Definition at line 273 of file wdog_driver.c.

14.103.4.12 void WDOG_DRV_Trigger (uint32_t instance)

Refreshes the WDOG counter.

Parameters

in instance WDOG peripheral instance number

Definition at line 243 of file wdog_driver.c.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

14.104 Watchdog timer (WDOG) 813

14.104 Watchdog timer (WDOG)

14.104.1 Detailed Description

The S32 SDK provides Peripheral Driver for the Watchdog timer (WDOG) module of S32 SDK devices.
.

Hardware background

The Watchdog Timer (WDOG) module is an independent timer that is available for system use. It provides a safety
feature to ensure that software is executing as planned and that the CPU is not stuck in an infinite loop or executing
unintended code. If the WDOG module is not serviced (refreshed) within a certain period, it resets the MCU.

Features of the WDOG module include:

• Configurable clock source inputs independent from the bus clock

• Programmable timeout period

– Programmable 16-bit timeout value

– Optional fixed 256 clock prescaler when longer timeout periods are needed

• Window mode option for the refresh mechanism

– Programmable 16-bit window value

– Provides robust check that program flow is faster than expected

– Early refresh attempts trigger a reset

• Optional timeout interrupt to allow post-processing diagnostics

– Interrupt request to CPU with interrupt vector for an interrupt service routine (ISR)

– Forced reset occurs 128 bus clocks after the interrupt vector fetch

• Configuration bits are write-once-after-reset to ensure watchdog configuration cannot be mistakenly altered

• Robust write sequence for unlocking write-once configuration bits

Modules

• WDOG Driver

Watchdog Timer Peripheral Driver.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

814 CONTENTS

15 Data Structure Documentation

15.1 drv_config_t Struct Reference

Data Fields

• sbc_wtdog_ctr_t watchdogCtr
• uint32_t lpspiIntace
• bool isInit

15.1.1 Detailed Description

Definition at line 61 of file sbc_uja1169_driver.c.

15.1.2 Field Documentation

15.1.2.1 bool isInit

Definition at line 64 of file sbc_uja1169_driver.c.

15.1.2.2 uint32_t lpspiIntace

Definition at line 63 of file sbc_uja1169_driver.c.

15.1.2.3 sbc_wtdog_ctr_t watchdogCtr

Definition at line 62 of file sbc_uja1169_driver.c.

The documentation for this struct was generated from the following file:

• middleware/sbc/sbc_uja1169/source/sbc_uja1169_driver.c

15.2 firc_config_t Struct Reference

SCG fast IRC clock configuration. Implements scg_firc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• firc_range_t range
• pwr_modes_t modes
• bool regulator

15.2.1 Detailed Description

SCG fast IRC clock configuration. Implements scg_firc_config_t_Class.

Definition at line 741 of file clock_S32K1xx.h.

15.2.2 Field Documentation

15.2.2.1 pwr_modes_t modes

Modes in which FIRC is enabled

Definition at line 744 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.3 lin_product_id_t Struct Reference 815

15.2.2.2 firc_range_t range

Fast IRC frequency range.

Definition at line 743 of file clock_S32K1xx.h.

15.2.2.3 bool regulator

FIRC regulator is enable or not.

Definition at line 745 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.3 lin_product_id_t Struct Reference

Product id structure Implements : lin_product_id_t_Class.

#include <middleware/lin/include/lin_types.h>

Data Fields

• l_u16 supplier_id

• l_u16 function_id

• l_u8 variant

15.3.1 Detailed Description

Product id structure Implements : lin_product_id_t_Class.

Definition at line 57 of file lin_types.h.

15.3.2 Field Documentation

15.3.2.1 l_u16 function_id

Function ID

Definition at line 60 of file lin_types.h.

15.3.2.2 l_u16 supplier_id

Supplier ID

Definition at line 59 of file lin_types.h.

15.3.2.3 l_u8 variant

Variant value

Definition at line 61 of file lin_types.h.

The documentation for this struct was generated from the following file:

• middleware/lin/include/lin_types.h

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

816 CONTENTS

15.4 pcc_config_t Struct Reference

PCC configuration. Implements pcc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• uint32_t count

• peripheral_clock_config_t ∗ peripheralClocks

15.4.1 Detailed Description

PCC configuration. Implements pcc_config_t_Class.

Definition at line 566 of file clock_S32K1xx.h.

15.4.2 Field Documentation

15.4.2.1 uint32_t count

Number of peripherals to be configured.

Definition at line 568 of file clock_S32K1xx.h.

15.4.2.2 peripheral_clock_config_t∗ peripheralClocks

Pointer to the peripheral clock configurations array.

Definition at line 569 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.5 periph_clk_config_t Struct Reference

peripheral instance clock configuration. Implements periph_clk_config_t_Class

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• periph_clk_src_t source

• periph_div_t divider

• periph_mul_t multiplier

15.5.1 Detailed Description

peripheral instance clock configuration. Implements periph_clk_config_t_Class

Definition at line 629 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.6 peripheral_clock_config_t Struct Reference 817

15.5.2 Field Documentation

15.5.2.1 periph_div_t divider

Peripheral clock divider value.

Definition at line 632 of file clock_S32K1xx.h.

15.5.2.2 periph_mul_t multiplier

Peripheral clock multiplier value.

Definition at line 633 of file clock_S32K1xx.h.

15.5.2.3 periph_clk_src_t source

Peripheral clock source.

Definition at line 631 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.6 peripheral_clock_config_t Struct Reference

PCC peripheral instance clock configuration. Implements peripheral_clock_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• clock_names_t clockName
• bool clkGate
• peripheral_clock_source_t clkSrc
• peripheral_clock_frac_t frac
• peripheral_clock_divider_t divider

15.6.1 Detailed Description

PCC peripheral instance clock configuration. Implements peripheral_clock_config_t_Class.

Definition at line 547 of file clock_S32K1xx.h.

15.6.2 Field Documentation

15.6.2.1 bool clkGate

Peripheral clock gate.

Definition at line 557 of file clock_S32K1xx.h.

15.6.2.2 peripheral_clock_source_t clkSrc

Peripheral clock source.

Definition at line 558 of file clock_S32K1xx.h.

15.6.2.3 clock_names_t clockName

Definition at line 556 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

818 CONTENTS

15.6.2.4 peripheral_clock_divider_t divider

Peripheral clock divider value.

Definition at line 560 of file clock_S32K1xx.h.

15.6.2.5 peripheral_clock_frac_t frac

Peripheral clock fractional value.

Definition at line 559 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.7 pmc_config_t Struct Reference

PMC configure structure.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• pmc_lpo_clock_config_t lpoClockConfig

15.7.1 Detailed Description

PMC configure structure.

Definition at line 583 of file clock_S32K1xx.h.

15.7.2 Field Documentation

15.7.2.1 pmc_lpo_clock_config_t lpoClockConfig

Low Power Clock configuration.

Definition at line 585 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.8 pmc_lpo_clock_config_t Struct Reference

PMC LPO configuration.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• bool initialize

• bool enable

• int8_t trimValue

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.9 scg_clock_mode_config_t Struct Reference 819

15.8.1 Detailed Description

PMC LPO configuration.

Definition at line 573 of file clock_S32K1xx.h.

15.8.2 Field Documentation

15.8.2.1 bool enable

Enable/disable LPO

Definition at line 576 of file clock_S32K1xx.h.

15.8.2.2 bool initialize

Initialize or not the PMC LPO settings.

Definition at line 575 of file clock_S32K1xx.h.

15.8.2.3 int8_t trimValue

LPO trimming value

Definition at line 577 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.9 scg_clock_mode_config_t Struct Reference

SCG Clock Mode Configuration structure. Implements scg_clock_mode_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• scg_system_clock_config_t rccrConfig

• scg_system_clock_config_t vccrConfig

• scg_system_clock_config_t hccrConfig

• scg_system_clock_src_t alternateClock

• bool initialize

15.9.1 Detailed Description

SCG Clock Mode Configuration structure. Implements scg_clock_mode_config_t_Class.

Definition at line 474 of file clock_S32K1xx.h.

15.9.2 Field Documentation

15.9.2.1 scg_system_clock_src_t alternateClock

Alternate clock used during initialization

Definition at line 479 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

820 CONTENTS

15.9.2.2 scg_system_clock_config_t hccrConfig

HSRUN Clock Control configuration.

Definition at line 478 of file clock_S32K1xx.h.

15.9.2.3 bool initialize

Initialize or not the Clock Mode Configuration.

Definition at line 480 of file clock_S32K1xx.h.

15.9.2.4 scg_system_clock_config_t rccrConfig

Run Clock Control configuration.

Definition at line 476 of file clock_S32K1xx.h.

15.9.2.5 scg_system_clock_config_t vccrConfig

VLPR Clock Control configuration.

Definition at line 477 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.10 scg_clockout_config_t Struct Reference

SCG ClockOut Configuration structure. Implements scg_clockout_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• scg_clockout_src_t source
• bool initialize

15.10.1 Detailed Description

SCG ClockOut Configuration structure. Implements scg_clockout_config_t_Class.

Definition at line 487 of file clock_S32K1xx.h.

15.10.2 Field Documentation

15.10.2.1 bool initialize

Initialize or not the ClockOut.

Definition at line 490 of file clock_S32K1xx.h.

15.10.2.2 scg_clockout_src_t source

ClockOut source select.

Definition at line 489 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.11 scg_config_t Struct Reference 821

15.11 scg_config_t Struct Reference

SCG configure structure. Implements scg_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• scg_sirc_config_t sircConfig

• scg_firc_config_t fircConfig

• scg_sosc_config_t soscConfig

• scg_spll_config_t spllConfig

• scg_rtc_config_t rtcConfig

• scg_clockout_config_t clockOutConfig

• scg_clock_mode_config_t clockModeConfig

15.11.1 Detailed Description

SCG configure structure. Implements scg_config_t_Class.

Definition at line 497 of file clock_S32K1xx.h.

15.11.2 Field Documentation

15.11.2.1 scg_clock_mode_config_t clockModeConfig

SCG Clock Mode Configuration.

Definition at line 505 of file clock_S32K1xx.h.

15.11.2.2 scg_clockout_config_t clockOutConfig

SCG ClockOut Configuration.

Definition at line 504 of file clock_S32K1xx.h.

15.11.2.3 scg_firc_config_t fircConfig

Fast internal reference clock configuration.

Definition at line 500 of file clock_S32K1xx.h.

15.11.2.4 scg_rtc_config_t rtcConfig

Real Time Clock configuration.

Definition at line 503 of file clock_S32K1xx.h.

15.11.2.5 scg_sirc_config_t sircConfig

Slow internal reference clock configuration.

Definition at line 499 of file clock_S32K1xx.h.

15.11.2.6 scg_sosc_config_t soscConfig

System oscillator configuration.

Definition at line 501 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

822 CONTENTS

15.11.2.7 scg_spll_config_t spllConfig

System Phase locked loop configuration.

Definition at line 502 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.12 scg_firc_config_t Struct Reference

SCG fast IRC clock configuration. Implements scg_firc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• scg_firc_range_t range

• scg_async_clock_div_t div1

• scg_async_clock_div_t div2

• bool enableInStop

• bool enableInLowPower

• bool regulator

• bool locked

• bool initialize

15.12.1 Detailed Description

SCG fast IRC clock configuration. Implements scg_firc_config_t_Class.

Definition at line 412 of file clock_S32K1xx.h.

15.12.2 Field Documentation

15.12.2.1 scg_async_clock_div_t div1

Divider for platform asynchronous clock.

Definition at line 416 of file clock_S32K1xx.h.

15.12.2.2 scg_async_clock_div_t div2

Divider for bus asynchronous clock.

Definition at line 417 of file clock_S32K1xx.h.

15.12.2.3 bool enableInLowPower

FIRC is enable or not in lowpower mode.

Definition at line 420 of file clock_S32K1xx.h.

15.12.2.4 bool enableInStop

FIRC is enable or not in stop mode.

Definition at line 419 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.13 scg_rtc_config_t Struct Reference 823

15.12.2.5 bool initialize

Initialize or not the FIRC module.

Definition at line 424 of file clock_S32K1xx.h.

15.12.2.6 bool locked

FIRC Control Register can be written.

Definition at line 422 of file clock_S32K1xx.h.

15.12.2.7 scg_firc_range_t range

Fast IRC frequency range.

Definition at line 414 of file clock_S32K1xx.h.

15.12.2.8 bool regulator

FIRC regulator is enable or not.

Definition at line 421 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.13 scg_rtc_config_t Struct Reference

SCG RTC configuration. Implements scg_rtc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• uint32_t rtcClkInFreq
• bool initialize

15.13.1 Detailed Description

SCG RTC configuration. Implements scg_rtc_config_t_Class.

Definition at line 464 of file clock_S32K1xx.h.

15.13.2 Field Documentation

15.13.2.1 bool initialize

Initialize or not the RTC.

Definition at line 467 of file clock_S32K1xx.h.

15.13.2.2 uint32_t rtcClkInFreq

RTC_CLKIN frequency.

Definition at line 466 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

824 CONTENTS

15.14 scg_sirc_config_t Struct Reference

SCG slow IRC clock configuration. Implements scg_sirc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• scg_sirc_range_t range

• scg_async_clock_div_t div1

• scg_async_clock_div_t div2

• bool initialize

• bool enableInStop

• bool enableInLowPower

• bool locked

15.14.1 Detailed Description

SCG slow IRC clock configuration. Implements scg_sirc_config_t_Class.

Definition at line 382 of file clock_S32K1xx.h.

15.14.2 Field Documentation

15.14.2.1 scg_async_clock_div_t div1

Divider for platform asynchronous clock.

Definition at line 386 of file clock_S32K1xx.h.

15.14.2.2 scg_async_clock_div_t div2

Divider for bus asynchronous clock.

Definition at line 387 of file clock_S32K1xx.h.

15.14.2.3 bool enableInLowPower

SIRC is enable or not in low power mode.

Definition at line 391 of file clock_S32K1xx.h.

15.14.2.4 bool enableInStop

SIRC is enable or not in stop mode.

Definition at line 390 of file clock_S32K1xx.h.

15.14.2.5 bool initialize

Initialize or not the SIRC module.

Definition at line 389 of file clock_S32K1xx.h.

15.14.2.6 bool locked

SIRC Control Register can be written.

Definition at line 393 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.15 scg_sosc_config_t Struct Reference 825

15.14.2.7 scg_sirc_range_t range

Slow IRC frequency range.

Definition at line 384 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.15 scg_sosc_config_t Struct Reference

SCG system OSC configuration. Implements scg_sosc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• uint32_t freq
• scg_sosc_monitor_mode_t monitorMode
• scg_sosc_ext_ref_t extRef
• scg_sosc_gain_t gain
• scg_sosc_range_t range
• scg_async_clock_div_t div1
• scg_async_clock_div_t div2
• bool enableInStop
• bool enableInLowPower
• bool locked
• bool initialize

15.15.1 Detailed Description

SCG system OSC configuration. Implements scg_sosc_config_t_Class.

Definition at line 346 of file clock_S32K1xx.h.

15.15.2 Field Documentation

15.15.2.1 scg_async_clock_div_t div1

Divider for platform asynchronous clock.

Definition at line 357 of file clock_S32K1xx.h.

15.15.2.2 scg_async_clock_div_t div2

Divider for bus asynchronous clock.

Definition at line 358 of file clock_S32K1xx.h.

15.15.2.3 bool enableInLowPower

System OSC is enable or not in low power mode.

Definition at line 361 of file clock_S32K1xx.h.

15.15.2.4 bool enableInStop

System OSC is enable or not in stop mode.

Definition at line 360 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

826 CONTENTS

15.15.2.5 scg_sosc_ext_ref_t extRef

System OSC External Reference Select.

Definition at line 352 of file clock_S32K1xx.h.

15.15.2.6 uint32_t freq

System OSC frequency.

Definition at line 348 of file clock_S32K1xx.h.

15.15.2.7 scg_sosc_gain_t gain

System OSC high-gain operation.

Definition at line 353 of file clock_S32K1xx.h.

15.15.2.8 bool initialize

Initialize or not the System OSC module.

Definition at line 365 of file clock_S32K1xx.h.

15.15.2.9 bool locked

System OSC Control Register can be written.

Definition at line 363 of file clock_S32K1xx.h.

15.15.2.10 scg_sosc_monitor_mode_t monitorMode

System OSC Clock monitor mode.

Definition at line 350 of file clock_S32K1xx.h.

15.15.2.11 scg_sosc_range_t range

System OSC frequency range.

Definition at line 355 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.16 scg_spll_config_t Struct Reference

SCG system PLL configuration. Implements scg_spll_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• scg_spll_monitor_mode_t monitorMode
• uint8_t prediv
• uint8_t mult
• uint8_t src
• scg_async_clock_div_t div1
• scg_async_clock_div_t div2
• bool enableInStop
• bool locked
• bool initialize

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.16 scg_spll_config_t Struct Reference 827

15.16.1 Detailed Description

SCG system PLL configuration. Implements scg_spll_config_t_Class.

Definition at line 443 of file clock_S32K1xx.h.

15.16.2 Field Documentation

15.16.2.1 scg_async_clock_div_t div1

Divider for platform asynchronous clock.

Definition at line 451 of file clock_S32K1xx.h.

15.16.2.2 scg_async_clock_div_t div2

Divider for bus asynchronous clock.

Definition at line 452 of file clock_S32K1xx.h.

15.16.2.3 bool enableInStop

System PLL clock is enable or not in stop mode.

Definition at line 454 of file clock_S32K1xx.h.

15.16.2.4 bool initialize

Initialize or not the System PLL module.

Definition at line 457 of file clock_S32K1xx.h.

15.16.2.5 bool locked

System PLL Control Register can be written.

Definition at line 456 of file clock_S32K1xx.h.

15.16.2.6 scg_spll_monitor_mode_t monitorMode

Clock monitor mode selected.

Definition at line 445 of file clock_S32K1xx.h.

15.16.2.7 uint8_t mult

System PLL multiplier.

Definition at line 448 of file clock_S32K1xx.h.

15.16.2.8 uint8_t prediv

PLL reference clock divider.

Definition at line 447 of file clock_S32K1xx.h.

15.16.2.9 uint8_t src

System PLL source.

Definition at line 449 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

828 CONTENTS

15.17 sirc_config_t Struct Reference

SCG slow IRC clock configuration. Implements sirc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• sirc_range_t range

• pwr_modes_t modes

15.17.1 Detailed Description

SCG slow IRC clock configuration. Implements sirc_config_t_Class.

Definition at line 717 of file clock_S32K1xx.h.

15.17.2 Field Documentation

15.17.2.1 pwr_modes_t modes

Modes in which SIRC is enabled

Definition at line 720 of file clock_S32K1xx.h.

15.17.2.2 sirc_range_t range

Slow IRC frequency range.

Definition at line 719 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.18 sosc_config_t Struct Reference

SCG system OSC configuration. Implements scg_sosc_config_t_Class.

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• uint32_t freq

• sosc_range_t range

• pwr_modes_t modes

• sosc_ref_t ref

15.18.1 Detailed Description

SCG system OSC configuration. Implements scg_sosc_config_t_Class.

Definition at line 777 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

15.19 spll_config_t Struct Reference 829

15.18.2 Field Documentation

15.18.2.1 uint32_t freq

System OSC frequency.

Definition at line 779 of file clock_S32K1xx.h.

15.18.2.2 pwr_modes_t modes

Modes in which SOSC is enabled

Definition at line 781 of file clock_S32K1xx.h.

15.18.2.3 sosc_range_t range

System OSC frequency range.

Definition at line 780 of file clock_S32K1xx.h.

15.18.2.4 sosc_ref_t ref

System OSC Reference Clock Select.

Definition at line 782 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.19 spll_config_t Struct Reference

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• spll_clock_div_t prediv

• spll_clock_mul_t mult

• pwr_modes_t modes

15.19.1 Detailed Description

Definition at line 842 of file clock_S32K1xx.h.

15.19.2 Field Documentation

15.19.2.1 pwr_modes_t modes

Modes in which SOSC is enabled

Definition at line 846 of file clock_S32K1xx.h.

15.19.2.2 spll_clock_mul_t mult

System PLL multiplier.

Definition at line 845 of file clock_S32K1xx.h.

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

830 CONTENTS

15.19.2.3 spll_clock_div_t prediv

PLL reference clock divider.

Definition at line 844 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

15.20 sys_clk_config_t Struct Reference

system clock configuration. Implements sys_clk_config_t_Class

#include <platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h>

Data Fields

• sys_clk_div_t slow
• sys_clk_div_t bus
• sys_clk_div_t core
• sys_clk_src_t src

15.20.1 Detailed Description

system clock configuration. Implements sys_clk_config_t_Class

Definition at line 678 of file clock_S32K1xx.h.

15.20.2 Field Documentation

15.20.2.1 sys_clk_div_t bus

Bus clock divider.

Definition at line 681 of file clock_S32K1xx.h.

15.20.2.2 sys_clk_div_t core

Core clock divider.

Definition at line 682 of file clock_S32K1xx.h.

15.20.2.3 sys_clk_div_t slow

Slow clock divider.

Definition at line 680 of file clock_S32K1xx.h.

15.20.2.4 sys_clk_src_t src

System clock source.

Definition at line 683 of file clock_S32K1xx.h.

The documentation for this struct was generated from the following file:

• platform/drivers/src/clock/S32K1xx/clock_S32K1xx.h

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

Index

ADC Driver, 161
ADC_AVERAGE_16, 169
ADC_AVERAGE_32, 169
ADC_AVERAGE_4, 169
ADC_AVERAGE_8, 169
ADC_CLK_ALT_1, 170
ADC_CLK_ALT_2, 170
ADC_CLK_ALT_3, 170
ADC_CLK_ALT_4, 170
ADC_CLK_DIVIDE_1, 170
ADC_CLK_DIVIDE_2, 170
ADC_CLK_DIVIDE_4, 170
ADC_CLK_DIVIDE_8, 170
ADC_DRV_AutoCalibration, 172
ADC_DRV_ClearLatchedTriggers, 173
ADC_DRV_ClearTriggerErrors, 173
ADC_DRV_ConfigChan, 173
ADC_DRV_ConfigConverter, 173
ADC_DRV_ConfigHwAverage, 174
ADC_DRV_ConfigHwCompare, 174
ADC_DRV_ConfigUserCalibration, 174
ADC_DRV_GetChanConfig, 174
ADC_DRV_GetChanResult, 174
ADC_DRV_GetConvCompleteFlag, 175
ADC_DRV_GetConverterConfig, 175
ADC_DRV_GetHwAverageConfig, 175
ADC_DRV_GetHwCompareConfig, 175
ADC_DRV_GetInterruptNumber, 175
ADC_DRV_GetTriggerErrorFlags, 176
ADC_DRV_GetUserCalibration, 176
ADC_DRV_InitChanStruct, 176
ADC_DRV_InitConverterStruct, 176
ADC_DRV_InitHwAverageStruct, 177
ADC_DRV_InitHwCompareStruct, 177
ADC_DRV_InitUserCalibrationStruct, 177
ADC_DRV_Reset, 177
ADC_DRV_SetSwPretrigger, 177
ADC_DRV_WaitConvDone, 178
ADC_INPUTCHAN_BANDGAP, 171
ADC_INPUTCHAN_DISABLED, 171
ADC_INPUTCHAN_EXT0, 170
ADC_INPUTCHAN_EXT1, 170
ADC_INPUTCHAN_EXT10, 170
ADC_INPUTCHAN_EXT11, 171
ADC_INPUTCHAN_EXT12, 171
ADC_INPUTCHAN_EXT13, 171
ADC_INPUTCHAN_EXT14, 171
ADC_INPUTCHAN_EXT15, 171
ADC_INPUTCHAN_EXT2, 170
ADC_INPUTCHAN_EXT3, 170
ADC_INPUTCHAN_EXT4, 170
ADC_INPUTCHAN_EXT5, 170
ADC_INPUTCHAN_EXT6, 170
ADC_INPUTCHAN_EXT7, 170
ADC_INPUTCHAN_EXT8, 170

ADC_INPUTCHAN_EXT9, 170
ADC_INPUTCHAN_INT0, 171
ADC_INPUTCHAN_INT1, 171
ADC_INPUTCHAN_INT2, 171
ADC_INPUTCHAN_INT3, 171
ADC_INPUTCHAN_TEMP, 171
ADC_INPUTCHAN_VREFSH, 171
ADC_INPUTCHAN_VREFSL, 171
ADC_LATCH_CLEAR_FORCE, 171
ADC_LATCH_CLEAR_WAIT, 171
ADC_PRETRIGGER_SEL_PDB, 171
ADC_PRETRIGGER_SEL_SW, 171
ADC_PRETRIGGER_SEL_TRGMUX, 171
ADC_RESOLUTION_10BIT, 171
ADC_RESOLUTION_12BIT, 171
ADC_RESOLUTION_8BIT, 171
ADC_SW_PRETRIGGER_0, 172
ADC_SW_PRETRIGGER_1, 172
ADC_SW_PRETRIGGER_2, 172
ADC_SW_PRETRIGGER_3, 172
ADC_SW_PRETRIGGER_DISABLED, 172
ADC_TRIGGER_HARDWARE, 172
ADC_TRIGGER_SEL_PDB, 172
ADC_TRIGGER_SEL_TRGMUX, 172
ADC_TRIGGER_SOFTWARE, 172
ADC_VOLTAGEREF_VALT, 172
ADC_VOLTAGEREF_VREF, 172
adc_average_t, 169
adc_clk_divide_t, 170
adc_input_clock_t, 170
adc_inputchannel_t, 170
adc_latch_clear_t, 171
adc_pretrigger_sel_t, 171
adc_resolution_t, 171
adc_sw_pretrigger_t, 171
adc_trigger_sel_t, 172
adc_trigger_t, 172
adc_voltage_reference_t, 172

ADC_AVERAGE_16
ADC Driver, 169

ADC_AVERAGE_32
ADC Driver, 169

ADC_AVERAGE_4
ADC Driver, 169

ADC_AVERAGE_8
ADC Driver, 169

ADC_CLK_ALT_1
ADC Driver, 170

ADC_CLK_ALT_2
ADC Driver, 170

ADC_CLK_ALT_3
ADC Driver, 170

ADC_CLK_ALT_4
ADC Driver, 170

ADC_CLK_DIVIDE_1

832 INDEX

ADC Driver, 170
ADC_CLK_DIVIDE_2

ADC Driver, 170
ADC_CLK_DIVIDE_4

ADC Driver, 170
ADC_CLK_DIVIDE_8

ADC Driver, 170
ADC_DRV_AutoCalibration

ADC Driver, 172
ADC_DRV_ClearLatchedTriggers

ADC Driver, 173
ADC_DRV_ClearTriggerErrors

ADC Driver, 173
ADC_DRV_ConfigChan

ADC Driver, 173
ADC_DRV_ConfigConverter

ADC Driver, 173
ADC_DRV_ConfigHwAverage

ADC Driver, 174
ADC_DRV_ConfigHwCompare

ADC Driver, 174
ADC_DRV_ConfigUserCalibration

ADC Driver, 174
ADC_DRV_GetChanConfig

ADC Driver, 174
ADC_DRV_GetChanResult

ADC Driver, 174
ADC_DRV_GetConvCompleteFlag

ADC Driver, 175
ADC_DRV_GetConverterConfig

ADC Driver, 175
ADC_DRV_GetHwAverageConfig

ADC Driver, 175
ADC_DRV_GetHwCompareConfig

ADC Driver, 175
ADC_DRV_GetInterruptNumber

ADC Driver, 175
ADC_DRV_GetTriggerErrorFlags

ADC Driver, 176
ADC_DRV_GetUserCalibration

ADC Driver, 176
ADC_DRV_InitChanStruct

ADC Driver, 176
ADC_DRV_InitConverterStruct

ADC Driver, 176
ADC_DRV_InitHwAverageStruct

ADC Driver, 177
ADC_DRV_InitHwCompareStruct

ADC Driver, 177
ADC_DRV_InitUserCalibrationStruct

ADC Driver, 177
ADC_DRV_Reset

ADC Driver, 177
ADC_DRV_SetSwPretrigger

ADC Driver, 177
ADC_DRV_WaitConvDone

ADC Driver, 178
ADC_INPUTCHAN_BANDGAP

ADC Driver, 171
ADC_INPUTCHAN_DISABLED

ADC Driver, 171
ADC_INPUTCHAN_EXT0

ADC Driver, 170
ADC_INPUTCHAN_EXT1

ADC Driver, 170
ADC_INPUTCHAN_EXT10

ADC Driver, 170
ADC_INPUTCHAN_EXT11

ADC Driver, 171
ADC_INPUTCHAN_EXT12

ADC Driver, 171
ADC_INPUTCHAN_EXT13

ADC Driver, 171
ADC_INPUTCHAN_EXT14

ADC Driver, 171
ADC_INPUTCHAN_EXT15

ADC Driver, 171
ADC_INPUTCHAN_EXT2

ADC Driver, 170
ADC_INPUTCHAN_EXT3

ADC Driver, 170
ADC_INPUTCHAN_EXT4

ADC Driver, 170
ADC_INPUTCHAN_EXT5

ADC Driver, 170
ADC_INPUTCHAN_EXT6

ADC Driver, 170
ADC_INPUTCHAN_EXT7

ADC Driver, 170
ADC_INPUTCHAN_EXT8

ADC Driver, 170
ADC_INPUTCHAN_EXT9

ADC Driver, 170
ADC_INPUTCHAN_INT0

ADC Driver, 171
ADC_INPUTCHAN_INT1

ADC Driver, 171
ADC_INPUTCHAN_INT2

ADC Driver, 171
ADC_INPUTCHAN_INT3

ADC Driver, 171
ADC_INPUTCHAN_TEMP

ADC Driver, 171
ADC_INPUTCHAN_VREFSH

ADC Driver, 171
ADC_INPUTCHAN_VREFSL

ADC Driver, 171
ADC_LATCH_CLEAR_FORCE

ADC Driver, 171
ADC_LATCH_CLEAR_WAIT

ADC Driver, 171
ADC_PRETRIGGER_SEL_PDB

ADC Driver, 171
ADC_PRETRIGGER_SEL_SW

ADC Driver, 171
ADC_PRETRIGGER_SEL_TRGMUX

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 833

ADC Driver, 171
ADC_RESOLUTION_10BIT

ADC Driver, 171
ADC_RESOLUTION_12BIT

ADC Driver, 171
ADC_RESOLUTION_8BIT

ADC Driver, 171
ADC_SW_PRETRIGGER_0

ADC Driver, 172
ADC_SW_PRETRIGGER_1

ADC Driver, 172
ADC_SW_PRETRIGGER_2

ADC Driver, 172
ADC_SW_PRETRIGGER_3

ADC Driver, 172
ADC_SW_PRETRIGGER_DISABLED

ADC Driver, 172
ADC_TRIGGER_HARDWARE

ADC Driver, 172
ADC_TRIGGER_SEL_PDB

ADC Driver, 172
ADC_TRIGGER_SEL_TRGMUX

ADC Driver, 172
ADC_TRIGGER_SOFTWARE

ADC Driver, 172
ADC_VOLTAGEREF_VALT

ADC Driver, 172
ADC_VOLTAGEREF_VREF

ADC Driver, 172
ALLOW_HSRUN

Power_s32k1xx, 690
ALLOW_MAX

Power_s32k1xx, 690
ALLOW_VLP

Power_s32k1xx, 690
accessCtr

mpu_access_err_info_t, 636
accessRight

mpu_master_access_right_t, 636
accessType

mpu_access_err_info_t, 636
active_schedule_id

lin_master_data_t, 615
adc_average_config_t, 168

hwAverage, 168
hwAvgEnable, 168

adc_average_t
ADC Driver, 169

adc_calibration_t, 169
userGain, 169
userOffset, 169

adc_chan_config_t, 168
channel, 169
interruptEnable, 169

adc_clk_divide_t
ADC Driver, 170

adc_compare_config_t, 167
compVal1, 168

compVal2, 168
compareEnable, 168
compareGreaterThanEnable, 168
compareRangeFuncEnable, 168

adc_converter_config_t, 166
clockDivide, 166
continuousConvEnable, 166
dmaEnable, 166
inputClock, 167
pretriggerSel, 167
resolution, 167
sampleTime, 167
trigger, 167
triggerSel, 167
voltageRef, 167

adc_input_clock_t
ADC Driver, 170

adc_inputchannel_t
ADC Driver, 170

adc_latch_clear_t
ADC Driver, 171

adc_pretrigger_sel_t
ADC Driver, 171

adc_resolution_t
ADC Driver, 171

adc_sw_pretrigger_t
ADC Driver, 171

adc_trigger_sel_t
ADC Driver, 172

adc_trigger_t
ADC Driver, 172

adc_voltage_reference_t
ADC Driver, 172

adcPreTriggerIdx
pdb_adc_pretrigger_config_t, 663

addr
mpu_access_err_info_t, 636

address
edma_scatter_gather_list_t, 269

alarmCallback
rtc_alarm_config_t, 712

alarmIntEnable
rtc_alarm_config_t, 712

alarmTime
rtc_alarm_config_t, 712

allMasters
qspi_ahb_config_t, 698

alternateClock
scg_clock_mode_config_t, 818

Analog to Digital Converter (ADC), 179
assertLogic

ewm_init_config_t, 313
associated_uncond_frame_ptr

lin_associate_frame_t, 606
attributes

mpu_access_err_info_t, 636
autoClearTrigger

ftm_pwm_sync_t, 327

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

834 INDEX

autobaudEnable
lin_user_config_t, 507

BDMMode
ftm_user_config_t, 328

BUS_ACTIVITY_SET
Common Core API., 226

Backward Compatibility Symbols for S32K144, 180
baud_rate

lin_protocol_state_t, 616
baudRate

flexio_i2c_master_user_config_t, 441
flexio_i2s_master_user_config_t, 449
flexio_spi_master_user_config_t, 464
flexio_uart_user_config_t, 476
lin_user_config_t, 507
lpi2c_baud_rate_params_t, 526
lpi2c_master_user_config_t, 524
lpuart_user_config_t, 582

baudrateEvalEnable
lin_state_t, 508

BitClkDiv
sai_user_config_t, 731

BitClkFreq
sai_user_config_t, 731

BitClkInternal
sai_user_config_t, 731

BitClkNegPolar
sai_user_config_t, 731

bitCount
flexio_uart_user_config_t, 476

bitCountPerChar
lpuart_state_t, 580
lpuart_user_config_t, 582

bitOrder
flexio_spi_master_user_config_t, 464
flexio_spi_slave_user_config_t, 466

bitcount
lpspi_master_config_t, 552
lpspi_slave_config_t, 557

bitrate
flexcan_user_config_t, 422

bitrate_cbt
flexcan_user_config_t, 422

bitsPerFrame
lpspi_state_t, 554

bitsPerSec
lpspi_master_config_t, 552

bitsWidth
flexio_i2s_master_user_config_t, 449
flexio_i2s_slave_user_config_t, 451

brownOutCode
Flash Memory (Flash), 400

bus
sys_clk_config_t, 829

bus_activity
lin_word_status_str_t, 603

bypassPrescaler
lptmr_config_t, 570

bytesPerFrame
lpspi_state_t, 554

CALLBACK_HANDLER
Low level API, 618

CHECK_PARITY
LIN Driver, 510

CLEAR_FTFx_FSTAT_ERROR_BITS
Flash Memory (Flash), 390

CLOCK_MANAGER_CALLBACK_AFTER
Clock Manager, 213

CLOCK_MANAGER_CALLBACK_BEFORE
Clock Manager, 213

CLOCK_MANAGER_CALLBACK_BEFORE_AFTER
Clock Manager, 213

CLOCK_MANAGER_NOTIFY_AFTER
Clock Manager, 213

CLOCK_MANAGER_NOTIFY_BEFORE
Clock Manager, 213

CLOCK_MANAGER_NOTIFY_RECOVER
Clock Manager, 213

CLOCK_MANAGER_POLICY_AGREEMENT
Clock Manager, 213

CLOCK_MANAGER_POLICY_FORCIBLE
Clock Manager, 213

CLOCK_SYS_GetCurrentConfiguration
Clock Manager, 213

CLOCK_SYS_GetErrorCallback
Clock Manager, 213

CLOCK_SYS_GetFreq
Clock Manager, 213

CLOCK_SYS_Init
Clock Manager, 214

CLOCK_SYS_SetConfiguration
Clock Manager, 214

CLOCK_SYS_UpdateConfiguration
Clock Manager, 214

CLOCK_TRACE_SRC_CORE_CLK
Clock_manager_s32k1xx, 223

CLOCK_TRACE_SRC_PLATFORM_CLK
Clock_manager_s32k1xx, 223

CMP_AVAILABLE
Comparator Driver, 243

CMP_BOTH_EDGES
Comparator Driver, 243

CMP_CONTINUOUS
Comparator Driver, 242

CMP_COUT
Comparator Driver, 243

CMP_COUTA
Comparator Driver, 243

CMP_DAC
Comparator Driver, 243

CMP_DISABLED
Comparator Driver, 242

CMP_DRV_ClearInputFlags
Comparator Driver, 244

CMP_DRV_ClearOutputFlags
Comparator Driver, 244

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 835

CMP_DRV_ConfigComparator
Comparator Driver, 244

CMP_DRV_ConfigDAC
Comparator Driver, 245

CMP_DRV_ConfigMUX
Comparator Driver, 245

CMP_DRV_ConfigTriggerMode
Comparator Driver, 245

CMP_DRV_GetComparatorConfig
Comparator Driver, 245

CMP_DRV_GetConfigAll
Comparator Driver, 246

CMP_DRV_GetDACConfig
Comparator Driver, 246

CMP_DRV_GetInitConfigAll
Comparator Driver, 246

CMP_DRV_GetInitConfigComparator
Comparator Driver, 247

CMP_DRV_GetInitConfigDAC
Comparator Driver, 247

CMP_DRV_GetInitConfigMUX
Comparator Driver, 247

CMP_DRV_GetInitTriggerMode
Comparator Driver, 247

CMP_DRV_GetInputFlags
Comparator Driver, 248

CMP_DRV_GetMUXConfig
Comparator Driver, 248

CMP_DRV_GetOutputFlags
Comparator Driver, 248

CMP_DRV_GetTriggerModeConfig
Comparator Driver, 249

CMP_DRV_Init
Comparator Driver, 249

CMP_DRV_Reset
Comparator Driver, 249

CMP_FALLING_EDGE
Comparator Driver, 243

CMP_HIGH_SPEED
Comparator Driver, 244

CMP_INPUT_FLAGS_MASK
Comparator Driver, 241

CMP_INPUT_FLAGS_SHIFT
Comparator Driver, 241

CMP_INVERT
Comparator Driver, 242

CMP_LEVEL_HYS_0
Comparator Driver, 242

CMP_LEVEL_HYS_1
Comparator Driver, 242

CMP_LEVEL_HYS_2
Comparator Driver, 242

CMP_LEVEL_HYS_3
Comparator Driver, 242

CMP_LEVEL_OFFSET_0
Comparator Driver, 243

CMP_LEVEL_OFFSET_1
Comparator Driver, 243

CMP_LOW_SPEED
Comparator Driver, 244

CMP_MINUS_FIXED
Comparator Driver, 242

CMP_MUX
Comparator Driver, 243

CMP_NO_EVENT
Comparator Driver, 243

CMP_NORMAL
Comparator Driver, 242

CMP_PLUS_FIXED
Comparator Driver, 242

CMP_RISING_EDGE
Comparator Driver, 243

CMP_ROUND_ROBIN_CHANNELS_MASK
Comparator Driver, 241

CMP_ROUND_ROBIN_CHANNELS_SHIFT
Comparator Driver, 241

CMP_SAMPLED_FILTRED_EXT_CLK
Comparator Driver, 242

CMP_SAMPLED_FILTRED_INT_CLK
Comparator Driver, 242

CMP_SAMPLED_NONFILTRED_EXT_CLK
Comparator Driver, 242

CMP_SAMPLED_NONFILTRED_INT_CLK
Comparator Driver, 242

CMP_UNAVAILABLE
Comparator Driver, 243

CMP_VIN1
Comparator Driver, 244

CMP_VIN2
Comparator Driver, 244

CMP_WINDOWED
Comparator Driver, 242

CMP_WINDOWED_FILTRED
Comparator Driver, 242

CMP_WINDOWED_RESAMPLED
Comparator Driver, 242

CRC Driver, 181, 186
CRC_DEFAULT_SEED, 182
CRC_DEFAULT_WRITE_TRANSPOSE, 182
CRC_DRV_Configure, 182
CRC_DRV_Deinit, 183
CRC_DRV_GetConfig, 183
CRC_DRV_GetCrc16, 183
CRC_DRV_GetCrc32, 184
CRC_DRV_GetCrc8, 184
CRC_DRV_GetCrcResult, 184
CRC_DRV_GetDefaultConfig, 185
CRC_DRV_Init, 185
CRC_DRV_WriteData, 185
CRC_TRANSPOSE_BITS, 182
CRC_TRANSPOSE_BITS_AND_BYTES, 182
CRC_TRANSPOSE_BYTES, 182
CRC_TRANSPOSE_NONE, 182
crc_transpose_t, 182

CRC_DEFAULT_SEED
CRC Driver, 182

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

836 INDEX

CRC_DEFAULT_WRITE_TRANSPOSE
CRC Driver, 182

CRC_DRV_Configure
CRC Driver, 182

CRC_DRV_Deinit
CRC Driver, 183

CRC_DRV_GetConfig
CRC Driver, 183

CRC_DRV_GetCrc16
CRC Driver, 183

CRC_DRV_GetCrc32
CRC Driver, 184

CRC_DRV_GetCrc8
CRC Driver, 184

CRC_DRV_GetCrcResult
CRC Driver, 184

CRC_DRV_GetDefaultConfig
CRC Driver, 185

CRC_DRV_Init
CRC Driver, 185

CRC_DRV_WriteData
CRC Driver, 185

CRC_TRANSPOSE_BITS
CRC Driver, 182

CRC_TRANSPOSE_BITS_AND_BYTES
CRC Driver, 182

CRC_TRANSPOSE_BYTES
CRC Driver, 182

CRC_TRANSPOSE_NONE
CRC Driver, 182

CSE_KEY_SIZE_CODE_MAX
Flash Memory (Flash), 390

CSEC_BOOT_MAC
CSEc Driver, 197

CSEC_BOOT_MAC_KEY
CSEc Driver, 197

CSEC_BOOT_NOT_DEFINED
CSEc Driver, 196

CSEC_BOOT_PARALLEL
CSEc Driver, 196

CSEC_BOOT_SERIAL
CSEc Driver, 196

CSEC_BOOT_STRICT
CSEc Driver, 196

CSEC_CALL_SEQ_FIRST
CSEc Driver, 196

CSEC_CALL_SEQ_SUBSEQUENT
CSEc Driver, 196

CSEC_CMD_BOOT_DEFINE
CSEc Driver, 197

CSEC_CMD_BOOT_FAILURE
CSEc Driver, 197

CSEC_CMD_BOOT_OK
CSEc Driver, 197

CSEC_CMD_DBG_AUTH
CSEc Driver, 197

CSEC_CMD_DBG_CHAL
CSEc Driver, 197

CSEC_CMD_DEC_CBC
CSEc Driver, 196

CSEC_CMD_DEC_ECB
CSEc Driver, 196

CSEC_CMD_ENC_CBC
CSEc Driver, 196

CSEC_CMD_ENC_ECB
CSEc Driver, 196

CSEC_CMD_EXPORT_RAM_KEY
CSEc Driver, 196

CSEC_CMD_EXTEND_SEED
CSEc Driver, 196

CSEC_CMD_GENERATE_MAC
CSEc Driver, 196

CSEC_CMD_GET_ID
CSEc Driver, 197

CSEC_CMD_INIT_RNG
CSEc Driver, 196

CSEC_CMD_LOAD_KEY
CSEc Driver, 196

CSEC_CMD_LOAD_PLAIN_KEY
CSEc Driver, 196

CSEC_CMD_MP_COMPRESS
CSEc Driver, 197

CSEC_CMD_RESERVED_1
CSEc Driver, 197

CSEC_CMD_RESERVED_2
CSEc Driver, 197

CSEC_CMD_RND
CSEc Driver, 196

CSEC_CMD_TRNG_RND
CSEc Driver, 197

CSEC_CMD_VERIFY_MAC
CSEc Driver, 196

CSEC_DRV_BootDefine
CSEc Driver, 198

CSEC_DRV_BootFailure
CSEc Driver, 198

CSEC_DRV_BootOK
CSEc Driver, 198

CSEC_DRV_DbgAuth
CSEc Driver, 198

CSEC_DRV_DbgChal
CSEc Driver, 198

CSEC_DRV_DecryptCBC
CSEc Driver, 199

CSEC_DRV_DecryptCBCAsync
CSEc Driver, 199

CSEC_DRV_DecryptECB
CSEc Driver, 199

CSEC_DRV_DecryptECBAsync
CSEc Driver, 200

CSEC_DRV_Deinit
CSEc Driver, 200

CSEC_DRV_EncryptCBC
CSEc Driver, 200

CSEC_DRV_EncryptCBCAsync
CSEc Driver, 201

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 837

CSEC_DRV_EncryptECB
CSEc Driver, 201

CSEC_DRV_EncryptECBAsync
CSEc Driver, 201

CSEC_DRV_ExportRAMKey
CSEc Driver, 202

CSEC_DRV_ExtendSeed
CSEc Driver, 202

CSEC_DRV_GenerateMAC
CSEc Driver, 202

CSEC_DRV_GenerateMACAddrMode
CSEc Driver, 203

CSEC_DRV_GenerateMACAsync
CSEc Driver, 203

CSEC_DRV_GenerateRND
CSEc Driver, 203

CSEC_DRV_GetAsyncCmdStatus
CSEc Driver, 204

CSEC_DRV_GetID
CSEc Driver, 204

CSEC_DRV_GetStatus
CSEc Driver, 204

CSEC_DRV_Init
CSEc Driver, 204

CSEC_DRV_InitRNG
CSEc Driver, 205

CSEC_DRV_InstallCallback
CSEc Driver, 205

CSEC_DRV_LoadKey
CSEc Driver, 205

CSEC_DRV_LoadPlainKey
CSEc Driver, 205

CSEC_DRV_MPCompress
CSEc Driver, 206

CSEC_DRV_VerifyMAC
CSEc Driver, 206

CSEC_DRV_VerifyMACAddrMode
CSEc Driver, 206

CSEC_DRV_VerifyMACAsync
CSEc Driver, 208

CSEC_KEY_1
CSEc Driver, 197

CSEC_KEY_10
CSEc Driver, 197

CSEC_KEY_11
CSEc Driver, 197

CSEC_KEY_12
CSEc Driver, 197

CSEC_KEY_13
CSEc Driver, 197

CSEC_KEY_14
CSEc Driver, 197

CSEC_KEY_15
CSEc Driver, 197

CSEC_KEY_16
CSEc Driver, 197

CSEC_KEY_17
CSEc Driver, 197

CSEC_KEY_18
CSEc Driver, 197

CSEC_KEY_19
CSEc Driver, 197

CSEC_KEY_2
CSEc Driver, 197

CSEC_KEY_20
CSEc Driver, 197

CSEC_KEY_21
CSEc Driver, 197

CSEC_KEY_3
CSEc Driver, 197

CSEC_KEY_4
CSEc Driver, 197

CSEC_KEY_5
CSEc Driver, 197

CSEC_KEY_6
CSEc Driver, 197

CSEC_KEY_7
CSEc Driver, 197

CSEC_KEY_8
CSEc Driver, 197

CSEC_KEY_9
CSEc Driver, 197

CSEC_MASTER_ECU
CSEc Driver, 197

CSEC_RAM_KEY
CSEc Driver, 197

CSEC_SECRET_KEY
CSEc Driver, 197

CSEC_STATUS_BOOT_FINISHED
CSEc Driver, 195

CSEC_STATUS_BOOT_INIT
CSEc Driver, 195

CSEC_STATUS_BOOT_OK
CSEc Driver, 195

CSEC_STATUS_BUSY
CSEc Driver, 195

CSEC_STATUS_EXT_DEBUGGER
CSEc Driver, 195

CSEC_STATUS_INT_DEBUGGER
CSEc Driver, 195

CSEC_STATUS_RND_INIT
CSEc Driver, 195

CSEC_STATUS_SECURE_BOOT
CSEc Driver, 195

CSEc Driver, 188
CSEC_BOOT_MAC, 197
CSEC_BOOT_MAC_KEY, 197
CSEC_BOOT_NOT_DEFINED, 196
CSEC_BOOT_PARALLEL, 196
CSEC_BOOT_SERIAL, 196
CSEC_BOOT_STRICT, 196
CSEC_CALL_SEQ_FIRST, 196
CSEC_CALL_SEQ_SUBSEQUENT, 196
CSEC_CMD_BOOT_DEFINE, 197
CSEC_CMD_BOOT_FAILURE, 197
CSEC_CMD_BOOT_OK, 197

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

838 INDEX

CSEC_CMD_DBG_AUTH, 197
CSEC_CMD_DBG_CHAL, 197
CSEC_CMD_DEC_CBC, 196
CSEC_CMD_DEC_ECB, 196
CSEC_CMD_ENC_CBC, 196
CSEC_CMD_ENC_ECB, 196
CSEC_CMD_EXPORT_RAM_KEY, 196
CSEC_CMD_EXTEND_SEED, 196
CSEC_CMD_GENERATE_MAC, 196
CSEC_CMD_GET_ID, 197
CSEC_CMD_INIT_RNG, 196
CSEC_CMD_LOAD_KEY, 196
CSEC_CMD_LOAD_PLAIN_KEY, 196
CSEC_CMD_MP_COMPRESS, 197
CSEC_CMD_RESERVED_1, 197
CSEC_CMD_RESERVED_2, 197
CSEC_CMD_RND, 196
CSEC_CMD_TRNG_RND, 197
CSEC_CMD_VERIFY_MAC, 196
CSEC_DRV_BootDefine, 198
CSEC_DRV_BootFailure, 198
CSEC_DRV_BootOK, 198
CSEC_DRV_DbgAuth, 198
CSEC_DRV_DbgChal, 198
CSEC_DRV_DecryptCBC, 199
CSEC_DRV_DecryptCBCAsync, 199
CSEC_DRV_DecryptECB, 199
CSEC_DRV_DecryptECBAsync, 200
CSEC_DRV_Deinit, 200
CSEC_DRV_EncryptCBC, 200
CSEC_DRV_EncryptCBCAsync, 201
CSEC_DRV_EncryptECB, 201
CSEC_DRV_EncryptECBAsync, 201
CSEC_DRV_ExportRAMKey, 202
CSEC_DRV_ExtendSeed, 202
CSEC_DRV_GenerateMAC, 202
CSEC_DRV_GenerateMACAddrMode, 203
CSEC_DRV_GenerateMACAsync, 203
CSEC_DRV_GenerateRND, 203
CSEC_DRV_GetAsyncCmdStatus, 204
CSEC_DRV_GetID, 204
CSEC_DRV_GetStatus, 204
CSEC_DRV_Init, 204
CSEC_DRV_InitRNG, 205
CSEC_DRV_InstallCallback, 205
CSEC_DRV_LoadKey, 205
CSEC_DRV_LoadPlainKey, 205
CSEC_DRV_MPCompress, 206
CSEC_DRV_VerifyMAC, 206
CSEC_DRV_VerifyMACAddrMode, 206
CSEC_DRV_VerifyMACAsync, 208
CSEC_KEY_1, 197
CSEC_KEY_10, 197
CSEC_KEY_11, 197
CSEC_KEY_12, 197
CSEC_KEY_13, 197
CSEC_KEY_14, 197
CSEC_KEY_15, 197

CSEC_KEY_16, 197
CSEC_KEY_17, 197
CSEC_KEY_18, 197
CSEC_KEY_19, 197
CSEC_KEY_2, 197
CSEC_KEY_20, 197
CSEC_KEY_21, 197
CSEC_KEY_3, 197
CSEC_KEY_4, 197
CSEC_KEY_5, 197
CSEC_KEY_6, 197
CSEC_KEY_7, 197
CSEC_KEY_8, 197
CSEC_KEY_9, 197
CSEC_MASTER_ECU, 197
CSEC_RAM_KEY, 197
CSEC_SECRET_KEY, 197
CSEC_STATUS_BOOT_FINISHED, 195
CSEC_STATUS_BOOT_INIT, 195
CSEC_STATUS_BOOT_OK, 195
CSEC_STATUS_BUSY, 195
CSEC_STATUS_EXT_DEBUGGER, 195
CSEC_STATUS_INT_DEBUGGER, 195
CSEC_STATUS_RND_INIT, 195
CSEC_STATUS_SECURE_BOOT, 195
csec_boot_flavor_t, 196
csec_call_sequence_t, 196
csec_callback_t, 195
csec_cmd_t, 196
csec_key_id_t, 197
csec_status_t, 195

CallBack
Flash Memory (Flash), 400

Callback
lin_state_t, 508

callback
clock_manager_callback_user_config_t, 211
csec_state_t, 193
edma_channel_config_t, 268
edma_chn_state_t, 268
enet_config_t, 295
enet_state_t, 296
FlexCANState, 420
flexio_i2c_master_user_config_t, 441
flexio_i2s_master_user_config_t, 449
flexio_i2s_slave_user_config_t, 451
flexio_spi_master_user_config_t, 464
flexio_spi_slave_user_config_t, 466
flexio_uart_user_config_t, 476
lpspi_master_config_t, 553
lpspi_slave_config_t, 557
lpspi_state_t, 554
qspi_user_config_t, 696
sai_user_config_t, 731

callbackConfig
clock_manager_state_t, 212

callbackData
clock_manager_callback_user_config_t, 211

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 839

power_manager_callback_user_config_t, 679
callbackFunction

power_manager_callback_user_config_t, 679
callbackNum

clock_manager_state_t, 212
callbackParam

csec_state_t, 193
edma_channel_config_t, 268
FlexCANState, 420
flexio_i2c_master_user_config_t, 441
flexio_i2s_master_user_config_t, 449
flexio_i2s_slave_user_config_t, 451
flexio_spi_master_user_config_t, 464
flexio_spi_slave_user_config_t, 466
flexio_uart_user_config_t, 477
lpi2c_master_user_config_t, 524
lpi2c_slave_user_config_t, 525
lpspi_master_config_t, 553
lpspi_slave_config_t, 557
lpspi_state_t, 555
qspi_user_config_t, 696

callbackParams
rtc_alarm_config_t, 712
rtc_interrupt_config_t, 712

callbackType
clock_manager_callback_user_config_t, 211
power_manager_callback_user_config_t, 679

can
sbc_int_config_t, 776

canConf
sbc_can_conf_t, 774

canTransEvnt
sbc_can_conf_t, 774

cbs
sbc_trans_evnt_stat_t, 782

cbse
sbc_trans_evnt_t, 773

cbss
sbc_trans_stat_t, 779

cf
sbc_trans_evnt_stat_t, 782

cfdc
sbc_can_ctr_t, 772

cfe
sbc_trans_evnt_t, 773

cfs
sbc_trans_stat_t, 779

cgmConfig
clock_manager_user_config_t, 210

cgmcsConfig
clock_manager_user_config_t, 210

chMode
ftm_output_cmp_ch_param_t, 367

chainChannel
lpit_user_channel_config_t, 542

channel
adc_chan_config_t, 169
edma_channel_config_t, 268

edma_chn_state_t, 268
eim_user_channel_config_t, 286
erm_user_config_t, 308

ChannelCount
sai_user_config_t, 731

ChannelEnable
sai_user_config_t, 732

channelsCallbacks
ftm_input_ch_param_t, 360
ftm_state_t, 326

channelsCallbacksParams
ftm_input_ch_param_t, 360
ftm_state_t, 326

check_timeout
lin_tl_descriptor_t, 610

check_timeout_type
lin_tl_descriptor_t, 610

checkBitMask
eim_user_channel_config_t, 286

checkSum
lin_state_t, 508

chn
edma_state_t, 269

chnArbitration
edma_user_config_t, 267

clkGate
peripheral_clock_config_t, 816

clkPhase
lpspi_master_config_t, 553
lpspi_slave_config_t, 557

clkPolarity
lpspi_master_config_t, 553
lpspi_slave_config_t, 557

clkPreDiv
pdb_timer_config_t, 662

clkPreMultFactor
pdb_timer_config_t, 662

clkSource
wdog_user_config_t, 807

clkSrc
peripheral_clock_config_t, 816

Clock Manager, 209
CLOCK_MANAGER_CALLBACK_AFTER, 213
CLOCK_MANAGER_CALLBACK_BEFORE, 213
CLOCK_MANAGER_CALLBACK_BEFORE_AF←↩

TER, 213
CLOCK_MANAGER_NOTIFY_AFTER, 213
CLOCK_MANAGER_NOTIFY_BEFORE, 213
CLOCK_MANAGER_NOTIFY_RECOVER, 213
CLOCK_MANAGER_POLICY_AGREEMENT, 213
CLOCK_MANAGER_POLICY_FORCIBLE, 213
CLOCK_SYS_GetCurrentConfiguration, 213
CLOCK_SYS_GetErrorCallback, 213
CLOCK_SYS_GetFreq, 213
CLOCK_SYS_Init, 214
CLOCK_SYS_SetConfiguration, 214
CLOCK_SYS_UpdateConfiguration, 214
clock_manager_callback_t, 212

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

840 INDEX

clock_manager_callback_type_t, 212
clock_manager_notify_t, 213
clock_manager_policy_t, 213

Clock Manager Driver, 216
clock_manager_callback_t

Clock Manager, 212
clock_manager_callback_type_t

Clock Manager, 212
clock_manager_callback_user_config_t, 211

callback, 211
callbackData, 211
callbackType, 211

clock_manager_notify_t
Clock Manager, 213

clock_manager_policy_t
Clock Manager, 213

Clock_manager_s32k1xx, 217
CLOCK_TRACE_SRC_CORE_CLK, 223
CLOCK_TRACE_SRC_PLATFORM_CLK, 223
clock_trace_src_t, 223
g_RtcClkInFreq, 225
g_TClkFreq, 225
g_xtal0ClkFreq, 225
NUMBER_OF_TCLK_INPUTS, 223
peripheralFeaturesList, 225
SCG_SYSTEM_CLOCK_DIV_BY_1, 223
SCG_SYSTEM_CLOCK_DIV_BY_10, 224
SCG_SYSTEM_CLOCK_DIV_BY_11, 224
SCG_SYSTEM_CLOCK_DIV_BY_12, 224
SCG_SYSTEM_CLOCK_DIV_BY_13, 224
SCG_SYSTEM_CLOCK_DIV_BY_14, 224
SCG_SYSTEM_CLOCK_DIV_BY_15, 224
SCG_SYSTEM_CLOCK_DIV_BY_16, 224
SCG_SYSTEM_CLOCK_DIV_BY_2, 223
SCG_SYSTEM_CLOCK_DIV_BY_3, 223
SCG_SYSTEM_CLOCK_DIV_BY_4, 223
SCG_SYSTEM_CLOCK_DIV_BY_5, 223
SCG_SYSTEM_CLOCK_DIV_BY_6, 223
SCG_SYSTEM_CLOCK_DIV_BY_7, 223
SCG_SYSTEM_CLOCK_DIV_BY_8, 223
SCG_SYSTEM_CLOCK_DIV_BY_9, 223
SCG_SYSTEM_CLOCK_SRC_FIRC, 224
SCG_SYSTEM_CLOCK_SRC_NONE, 224
SCG_SYSTEM_CLOCK_SRC_SIRC, 224
SCG_SYSTEM_CLOCK_SRC_SYS_OSC, 224
SCG_SYSTEM_CLOCK_SRC_SYS_PLL, 224
SIM_CLKOUT_DIV_BY_1, 224
SIM_CLKOUT_DIV_BY_2, 224
SIM_CLKOUT_DIV_BY_3, 224
SIM_CLKOUT_DIV_BY_4, 224
SIM_CLKOUT_DIV_BY_5, 224
SIM_CLKOUT_DIV_BY_6, 224
SIM_CLKOUT_DIV_BY_7, 224
SIM_CLKOUT_DIV_BY_8, 224
SIM_CLKOUT_SEL_SYSTEM_BUS_CLK, 225
SIM_CLKOUT_SEL_SYSTEM_FIRC_DIV2_CLK,

224
SIM_CLKOUT_SEL_SYSTEM_HCLK, 224

SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK,
225

SIM_CLKOUT_SEL_SYSTEM_LPO_CLK, 225
SIM_CLKOUT_SEL_SYSTEM_RTC_CLK, 225
SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT,

224
SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK,

224
SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK,

224
SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK,

224
SIM_LPO_CLK_SEL_LPO_128K, 225
SIM_LPO_CLK_SEL_LPO_1K, 225
SIM_LPO_CLK_SEL_LPO_32K, 225
SIM_LPO_CLK_SEL_NO_CLOCK, 225
SIM_RTCCLK_SEL_FIRCDIV1_CLK, 225
SIM_RTCCLK_SEL_LPO_32K, 225
SIM_RTCCLK_SEL_RTC_CLKIN, 225
SIM_RTCCLK_SEL_SOSCDIV1_CLK, 225
scg_system_clock_div_t, 223
scg_system_clock_src_t, 224
sim_clkout_div_t, 224
sim_clkout_src_t, 224
sim_lpoclk_sel_src_t, 225
sim_rtc_clk_sel_src_t, 225

clock_manager_state_t, 211
callbackConfig, 212
callbackNum, 212
clockConfigNum, 212
configTable, 212
curConfigIndex, 212
errorCallbackIndex, 212

clock_manager_user_config_t, 210
cgmConfig, 210
cgmcsConfig, 210
mcmeConfig, 210

clock_notify_struct_t, 210
notifyType, 211
policy, 211
targetClockConfigIndex, 211

clock_src
qspi_user_config_t, 696

clock_trace_src_t
Clock_manager_s32k1xx, 223

clockConfigNum
clock_manager_state_t, 212

clockDivide
adc_converter_config_t, 166

clockModeConfig
scg_config_t, 820

clockName
peripheral_clock_config_t, 816

clockOutConfig
rtc_init_config_t, 711
scg_config_t, 820
sim_clock_config_t, 222

clockPhase

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 841

flexio_spi_master_user_config_t, 464
flexio_spi_slave_user_config_t, 466
qspi_user_config_t, 696

clockPolarity
flexio_spi_master_user_config_t, 464
flexio_spi_slave_user_config_t, 466

clockSelect
lptmr_config_t, 570
rtc_init_config_t, 711

cmc
sbc_can_ctr_t, 773

cmd
csec_state_t, 193

cmdInProgress
csec_state_t, 193

cmp_anmux_t, 238
negativeInputMux, 238
negativePortMux, 239
positiveInputMux, 239
positivePortMux, 239

cmp_ch_list_t
Comparator Driver, 241

cmp_ch_number_t
Comparator Driver, 241

cmp_comparator_t, 237
dmaTriggerState, 237
filterSampleCount, 237
filterSamplePeriod, 237
hysteresisLevel, 237
inverterState, 237
mode, 238
offsetLevel, 238
outputInterruptTrigger, 238
outputSelect, 238
pinState, 238
powerMode, 238

cmp_dac_t, 239
state, 239
voltage, 239
voltageReferenceSource, 239

cmp_fixed_port_t
Comparator Driver, 242

cmp_hysteresis_t
Comparator Driver, 242

cmp_inverter_t
Comparator Driver, 242

cmp_mode_t
Comparator Driver, 242

cmp_module_t, 240
comparator, 241
dac, 241
mux, 241
triggerMode, 241

cmp_offset_t
Comparator Driver, 242

cmp_output_enable_t
Comparator Driver, 243

cmp_output_select_t

Comparator Driver, 243
cmp_output_trigger_t

Comparator Driver, 243
cmp_port_mux_t

Comparator Driver, 243
cmp_power_mode_t

Comparator Driver, 243
cmp_trigger_mode_t, 239

fixedChannel, 240
fixedPort, 240
initializationDelay, 240
programedState, 240
roundRobinChannelsState, 240
roundRobinInterruptState, 240
roundRobinState, 240
samples, 240

cmp_voltage_reference_t
Comparator Driver, 244

cntByte
lin_state_t, 509

coll_resolv_schd
lin_associate_frame_t, 606

columnAddr
qspi_user_config_t, 696

Common Core API., 226
BUS_ACTIVITY_SET, 226
ERROR_IN_RESPONSE, 226
EVENT_TRIGGER_COLLISION_SET, 226
GO_TO_SLEEP_SET, 226
OVERRUN, 226
SAVE_CONFIG_SET, 227
SUCCESSFULL_TRANSFER, 227

Common Transport Layer API, 228
DIAG_SERVICE_CALLBACK_HANDLER, 228
GENERAL_REJECT, 228
LD_ANY_FUNCTION, 229
LD_ANY_MESSAGE, 229
LD_ANY_SUPPLIER, 229
LD_BROADCAST, 229
LD_DATA_ERROR, 229
LD_FUNCTIONAL_NAD, 229
LD_LENGTH_NOT_CORRECT, 229
LD_LENGTH_TOO_SHORT, 229
LD_READ_OK, 229
LD_SET_OK, 229
LIN_PRODUCT_ID, 229
LIN_SERIAL_NUMBER, 230
lin_diag_service_callback, 231
NEGATIVE, 230
POSITIVE, 230
RECEIVING, 230
RES_NEGATIVE, 230
RES_POSITIVE, 230
SERVICE_NOT_SUPPORTED, 230
SERVICE_TARGET_RESET, 230
SUBFUNCTION_NOT_SUPPORTED, 230
TRANSMITTING, 230

compVal1

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

842 INDEX

adc_compare_config_t, 168
compVal2

adc_compare_config_t, 168
comparator

cmp_module_t, 241
Comparator (CMP), 232
Comparator Driver, 235

CMP_AVAILABLE, 243
CMP_BOTH_EDGES, 243
CMP_CONTINUOUS, 242
CMP_COUT, 243
CMP_COUTA, 243
CMP_DAC, 243
CMP_DISABLED, 242
CMP_DRV_ClearInputFlags, 244
CMP_DRV_ClearOutputFlags, 244
CMP_DRV_ConfigComparator, 244
CMP_DRV_ConfigDAC, 245
CMP_DRV_ConfigMUX, 245
CMP_DRV_ConfigTriggerMode, 245
CMP_DRV_GetComparatorConfig, 245
CMP_DRV_GetConfigAll, 246
CMP_DRV_GetDACConfig, 246
CMP_DRV_GetInitConfigAll, 246
CMP_DRV_GetInitConfigComparator, 247
CMP_DRV_GetInitConfigDAC, 247
CMP_DRV_GetInitConfigMUX, 247
CMP_DRV_GetInitTriggerMode, 247
CMP_DRV_GetInputFlags, 248
CMP_DRV_GetMUXConfig, 248
CMP_DRV_GetOutputFlags, 248
CMP_DRV_GetTriggerModeConfig, 249
CMP_DRV_Init, 249
CMP_DRV_Reset, 249
CMP_FALLING_EDGE, 243
CMP_HIGH_SPEED, 244
CMP_INPUT_FLAGS_MASK, 241
CMP_INPUT_FLAGS_SHIFT, 241
CMP_INVERT, 242
CMP_LEVEL_HYS_0, 242
CMP_LEVEL_HYS_1, 242
CMP_LEVEL_HYS_2, 242
CMP_LEVEL_HYS_3, 242
CMP_LEVEL_OFFSET_0, 243
CMP_LEVEL_OFFSET_1, 243
CMP_LOW_SPEED, 244
CMP_MINUS_FIXED, 242
CMP_MUX, 243
CMP_NO_EVENT, 243
CMP_NORMAL, 242
CMP_PLUS_FIXED, 242
CMP_RISING_EDGE, 243
CMP_ROUND_ROBIN_CHANNELS_MASK, 241
CMP_ROUND_ROBIN_CHANNELS_SHIFT, 241
CMP_SAMPLED_FILTRED_EXT_CLK, 242
CMP_SAMPLED_FILTRED_INT_CLK, 242
CMP_SAMPLED_NONFILTRED_EXT_CLK, 242
CMP_SAMPLED_NONFILTRED_INT_CLK, 242

CMP_UNAVAILABLE, 243
CMP_VIN1, 244
CMP_VIN2, 244
CMP_WINDOWED, 242
CMP_WINDOWED_FILTRED, 242
CMP_WINDOWED_RESAMPLED, 242
cmp_ch_list_t, 241
cmp_ch_number_t, 241
cmp_fixed_port_t, 242
cmp_hysteresis_t, 242
cmp_inverter_t, 242
cmp_mode_t, 242
cmp_offset_t, 242
cmp_output_enable_t, 243
cmp_output_select_t, 243
cmp_output_trigger_t, 243
cmp_port_mux_t, 243
cmp_power_mode_t, 243
cmp_voltage_reference_t, 244

compareEnable
adc_compare_config_t, 168

compareGreaterThanEnable
adc_compare_config_t, 168

compareHigh
ewm_init_config_t, 313

compareLow
ewm_init_config_t, 313

compareRangeFuncEnable
adc_compare_config_t, 168

compareValue
lptmr_config_t, 570

comparedValue
ftm_output_cmp_ch_param_t, 367

compensation
rtc_init_config_t, 711

compensationInterval
rtc_init_config_t, 711

complementChecksum
crc_user_config_t, 182

configTable
clock_manager_state_t, 212

configs
power_manager_state_t, 680

configsNumber
power_manager_state_t, 680

configured_NAD_ptr
lin_node_attribute_t, 605

continuousConvEnable
adc_converter_config_t, 166

continuousModeEn
ftm_input_ch_param_t, 360

continuousModeEnable
pdb_timer_config_t, 662

control
sbc_factories_conf_t, 777

controlRegisterLock
rtc_register_lock_config_t, 714

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 843

Controller Area Network with Flexible Data Rate (Flex←↩

CAN), 250
Cooked API, 252

ld_receive_message, 252
ld_rx_status, 252
ld_send_message, 253
ld_tx_status, 253

core
sys_clk_config_t, 829

coscs
sbc_trans_stat_t, 779

count
pcc_config_t, 815

counter
ftm_quad_decoder_state_t, 380

counterDirection
ftm_quad_decoder_state_t, 381

counterUnits
lptmr_config_t, 570

cpnc
sbc_can_ctr_t, 773

cpnerr
sbc_trans_stat_t, 779

cpns
sbc_trans_stat_t, 779

crc_transpose_t
CRC Driver, 182

crc_user_config_t, 181
complementChecksum, 182
seed, 182
writeTranspose, 182

Cryptographic Services Engine (CSEc), 254
cs

flexcan_msgbuff_t, 418
csHoldTime

qspi_user_config_t, 696
csSetupTime

qspi_user_config_t, 697
csec_boot_flavor_t

CSEc Driver, 196
csec_call_sequence_t

CSEc Driver, 196
csec_callback_t

CSEc Driver, 195
csec_cmd_t

CSEc Driver, 196
csec_key_id_t

CSEc Driver, 197
csec_state_t, 192

callback, 193
callbackParam, 193
cmd, 193
cmdInProgress, 193
errCode, 193
fullSize, 193
index, 193
inputBuff, 193
iv, 194

keyId, 194
mac, 194
macLen, 194
macWritten, 194
msgLen, 194
outputBuff, 194
partSize, 194
seq, 194
verifStatus, 194

csec_status_t
CSEc Driver, 195

cts
sbc_trans_stat_t, 780

curConfigIndex
clock_manager_state_t, 212

current_id
lin_protocol_state_t, 616

currentConfig
power_manager_state_t, 680

currentEventId
lin_state_t, 509

currentId
lin_state_t, 509

currentNodeState
lin_state_t, 509

currentPid
lin_state_t, 509

cw
sbc_trans_evnt_stat_t, 782

cwe
sbc_trans_evnt_t, 773

Cyclic Redundancy Check (CRC), 255

DAYS_IN_A_LEAP_YEAR
Real Time Clock Driver, 714

DAYS_IN_A_YEAR
Real Time Clock Driver, 714

DFLASH_IFR_READRESOURCE_ADDRESS
Flash Memory (Flash), 390

DFlashBase
Flash Memory (Flash), 401

DFlashSize
Flash Memory (Flash), 401

DIAG_INTERLEAVE_MODE
Low level API, 621

DIAG_NO_RESPONSE
Low level API, 621

DIAG_NONE
Low level API, 621

DIAG_NOT_START
Low level API, 621

DIAG_ONLY_MODE
Low level API, 621

DIAG_RESPONSE
Low level API, 621

DIAG_SERVICE_CALLBACK_HANDLER
Common Transport Layer API, 228

dac
cmp_module_t, 241

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

844 INDEX

datRate
sbc_can_conf_t, 774

data
enet_buffer_t, 294
flexcan_msgbuff_t, 418

data_length
flexcan_data_info_t, 420

dataLen
flexcan_msgbuff_t, 418

dataMask
eim_user_channel_config_t, 286
sbc_can_conf_t, 774

dataPin
flexio_uart_user_config_t, 477

dataRate
qspi_user_config_t, 697

day
rtc_timedate_t, 710

deadTime
ftm_combined_ch_param_t, 374

deadTimePrescaler
ftm_pwm_param_t, 375

deadTimeValue
ftm_pwm_param_t, 375

debug
wdog_op_mode_t, 806

DefaultISR
Interrupt Manager (Interrupt), 495

delay_integer
lin_schedule_data_t, 608

destAddr
edma_transfer_config_t, 271

destLastAddrAdjust
edma_transfer_config_t, 271

destModulo
edma_transfer_config_t, 271

destOffset
edma_transfer_config_t, 271

destTransferSize
edma_transfer_config_t, 271

diag_IO_control
Diagnostic services, 258

diag_clear_flag
Diagnostic services, 257

diag_fault_memory_clear
Diagnostic services, 257

diag_fault_memory_read
Diagnostic services, 257

diag_get_flag
Diagnostic services, 258

diag_interleave_state
lin_tl_descriptor_t, 610

diag_interleaved_state_t
Low level API, 621

diag_read_data_by_identifier
Diagnostic services, 258

diag_session_control
Diagnostic services, 258

diag_state
lin_tl_descriptor_t, 610

diag_write_data_by_identifier
Diagnostic services, 259

Diagnostic services, 256
diag_IO_control, 258
diag_clear_flag, 257
diag_fault_memory_clear, 257
diag_fault_memory_read, 257
diag_get_flag, 258
diag_read_data_by_identifier, 258
diag_session_control, 258
diag_write_data_by_identifier, 259

diagnostic_class
lin_protocol_user_config_t, 613

diagnostic_mode
lin_protocol_state_t, 616

Direct Memory Access (DMA), 260
direction

flexio_uart_user_config_t, 477
pin_settings_config_t, 671

div1
scg_firc_config_t, 821
scg_sirc_config_t, 823
scg_sosc_config_t, 824
scg_spll_config_t, 826

div2
scg_firc_config_t, 821
scg_sirc_config_t, 823
scg_sosc_config_t, 824
scg_spll_config_t, 826

divBus
scg_system_clock_config_t, 223

divCore
scg_system_clock_config_t, 223

divEnable
sim_trace_clock_config_t, 221

divFraction
sim_trace_clock_config_t, 221

divSlow
scg_system_clock_config_t, 223

divider
periph_clk_config_t, 816
peripheral_clock_config_t, 816
sim_clock_out_config_t, 218
sim_trace_clock_config_t, 221

dlc
sbc_frame_t, 774

DmaChannel
sai_user_config_t, 732

dmaChannel
flexio_uart_user_config_t, 477
lpi2c_master_user_config_t, 524
lpi2c_slave_user_config_t, 525
qspi_user_config_t, 697

dmaEnable
adc_converter_config_t, 166
pdb_timer_config_t, 663

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 845

dmaRequest
lptmr_config_t, 570

dmaSupport
flash_mx25l6433f_user_config_t, 404
qspi_user_config_t, 697

dmaTriggerState
cmp_comparator_t, 237

Driver and cluster management, 261
l_sys_init, 261

driverType
flexio_i2c_master_user_config_t, 441
flexio_i2s_master_user_config_t, 449
flexio_i2s_slave_user_config_t, 451
flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 466
flexio_uart_user_config_t, 477

drv_config_t, 813
isInit, 813
lpspiIntace, 813
watchdogCtr, 813

dstOffsetEnable
edma_loop_transfer_config_t, 270

EDMA Driver, 262
EDMA_ARBITRATION_FIXED_PRIORITY, 273
EDMA_ARBITRATION_ROUND_ROBIN, 273
EDMA_CHN_DEFAULT_PRIORITY, 274
EDMA_CHN_ERR_INT, 273
EDMA_CHN_ERROR, 274
EDMA_CHN_HALF_MAJOR_LOOP_INT, 273
EDMA_CHN_MAJOR_LOOP_INT, 273
EDMA_CHN_NORMAL, 274
EDMA_CHN_PRIORITY_0, 274
EDMA_CHN_PRIORITY_1, 274
EDMA_CHN_PRIORITY_10, 274
EDMA_CHN_PRIORITY_11, 274
EDMA_CHN_PRIORITY_12, 274
EDMA_CHN_PRIORITY_13, 274
EDMA_CHN_PRIORITY_14, 274
EDMA_CHN_PRIORITY_15, 274
EDMA_CHN_PRIORITY_2, 274
EDMA_CHN_PRIORITY_3, 274
EDMA_CHN_PRIORITY_4, 274
EDMA_CHN_PRIORITY_5, 274
EDMA_CHN_PRIORITY_6, 274
EDMA_CHN_PRIORITY_7, 274
EDMA_CHN_PRIORITY_8, 274
EDMA_CHN_PRIORITY_9, 274
EDMA_DRV_CancelTransfer, 276
EDMA_DRV_ChannelInit, 276
EDMA_DRV_ClearTCD, 276
EDMA_DRV_ConfigLoopTransfer, 276
EDMA_DRV_ConfigMultiBlockTransfer, 277
EDMA_DRV_ConfigScatterGatherTransfer, 277
EDMA_DRV_ConfigSingleBlockTransfer, 278
EDMA_DRV_ConfigureInterrupt, 278
EDMA_DRV_Deinit, 279
EDMA_DRV_DisableRequestsOnTransfer←↩

Complete, 279

EDMA_DRV_GetChannelStatus, 279
EDMA_DRV_GetRemainingMajorIterationsCount,

279
EDMA_DRV_Init, 280
EDMA_DRV_InstallCallback, 280
EDMA_DRV_PushConfigToReg, 280
EDMA_DRV_PushConfigToSTCD, 281
EDMA_DRV_ReleaseChannel, 281
EDMA_DRV_SetChannelRequest, 281
EDMA_DRV_SetDestAddr, 281
EDMA_DRV_SetDestLastAddrAdjustment, 282
EDMA_DRV_SetDestOffset, 282
EDMA_DRV_SetDestWriteChunkSize, 282
EDMA_DRV_SetMajorLoopIterationCount, 282
EDMA_DRV_SetMinorLoopBlockSize, 282
EDMA_DRV_SetScatterGatherLink, 283
EDMA_DRV_SetSrcAddr, 283
EDMA_DRV_SetSrcLastAddrAdjustment, 283
EDMA_DRV_SetSrcOffset, 283
EDMA_DRV_SetSrcReadChunkSize, 283
EDMA_DRV_StartChannel, 284
EDMA_DRV_StopChannel, 284
EDMA_DRV_TriggerSwRequest, 284
EDMA_ERR_LSB_MASK, 272
EDMA_MODULO_128B, 274
EDMA_MODULO_128KB, 275
EDMA_MODULO_128MB, 275
EDMA_MODULO_16B, 274
EDMA_MODULO_16KB, 275
EDMA_MODULO_16MB, 275
EDMA_MODULO_1GB, 275
EDMA_MODULO_1KB, 275
EDMA_MODULO_1MB, 275
EDMA_MODULO_256B, 275
EDMA_MODULO_256KB, 275
EDMA_MODULO_256MB, 275
EDMA_MODULO_2B, 274
EDMA_MODULO_2GB, 275
EDMA_MODULO_2KB, 275
EDMA_MODULO_2MB, 275
EDMA_MODULO_32B, 274
EDMA_MODULO_32KB, 275
EDMA_MODULO_32MB, 275
EDMA_MODULO_4B, 274
EDMA_MODULO_4KB, 275
EDMA_MODULO_4MB, 275
EDMA_MODULO_512B, 275
EDMA_MODULO_512KB, 275
EDMA_MODULO_512MB, 275
EDMA_MODULO_64B, 274
EDMA_MODULO_64KB, 275
EDMA_MODULO_64MB, 275
EDMA_MODULO_8B, 274
EDMA_MODULO_8KB, 275
EDMA_MODULO_8MB, 275
EDMA_MODULO_OFF, 274
EDMA_TRANSFER_MEM2MEM, 275
EDMA_TRANSFER_MEM2PERIPH, 275

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

846 INDEX

EDMA_TRANSFER_PERIPH2MEM, 275
EDMA_TRANSFER_PERIPH2PERIPH, 275
EDMA_TRANSFER_SIZE_16B, 275
EDMA_TRANSFER_SIZE_1B, 275
EDMA_TRANSFER_SIZE_2B, 275
EDMA_TRANSFER_SIZE_32B, 275
EDMA_TRANSFER_SIZE_4B, 275
edma_arbitration_algorithm_t, 273
edma_callback_t, 273
edma_channel_interrupt_t, 273
edma_channel_priority_t, 273
edma_chn_status_t, 274
edma_modulo_t, 274
edma_transfer_size_t, 275
edma_transfer_type_t, 275
STCD_ADDR, 273
STCD_SIZE, 273

EDMA_ARBITRATION_FIXED_PRIORITY
EDMA Driver, 273

EDMA_ARBITRATION_ROUND_ROBIN
EDMA Driver, 273

EDMA_CHN_DEFAULT_PRIORITY
EDMA Driver, 274

EDMA_CHN_ERR_INT
EDMA Driver, 273

EDMA_CHN_ERROR
EDMA Driver, 274

EDMA_CHN_HALF_MAJOR_LOOP_INT
EDMA Driver, 273

EDMA_CHN_MAJOR_LOOP_INT
EDMA Driver, 273

EDMA_CHN_NORMAL
EDMA Driver, 274

EDMA_CHN_PRIORITY_0
EDMA Driver, 274

EDMA_CHN_PRIORITY_1
EDMA Driver, 274

EDMA_CHN_PRIORITY_10
EDMA Driver, 274

EDMA_CHN_PRIORITY_11
EDMA Driver, 274

EDMA_CHN_PRIORITY_12
EDMA Driver, 274

EDMA_CHN_PRIORITY_13
EDMA Driver, 274

EDMA_CHN_PRIORITY_14
EDMA Driver, 274

EDMA_CHN_PRIORITY_15
EDMA Driver, 274

EDMA_CHN_PRIORITY_2
EDMA Driver, 274

EDMA_CHN_PRIORITY_3
EDMA Driver, 274

EDMA_CHN_PRIORITY_4
EDMA Driver, 274

EDMA_CHN_PRIORITY_5
EDMA Driver, 274

EDMA_CHN_PRIORITY_6

EDMA Driver, 274
EDMA_CHN_PRIORITY_7

EDMA Driver, 274
EDMA_CHN_PRIORITY_8

EDMA Driver, 274
EDMA_CHN_PRIORITY_9

EDMA Driver, 274
EDMA_DRV_CancelTransfer

EDMA Driver, 276
EDMA_DRV_ChannelInit

EDMA Driver, 276
EDMA_DRV_ClearTCD

EDMA Driver, 276
EDMA_DRV_ConfigLoopTransfer

EDMA Driver, 276
EDMA_DRV_ConfigMultiBlockTransfer

EDMA Driver, 277
EDMA_DRV_ConfigScatterGatherTransfer

EDMA Driver, 277
EDMA_DRV_ConfigSingleBlockTransfer

EDMA Driver, 278
EDMA_DRV_ConfigureInterrupt

EDMA Driver, 278
EDMA_DRV_Deinit

EDMA Driver, 279
EDMA_DRV_DisableRequestsOnTransferComplete

EDMA Driver, 279
EDMA_DRV_GetChannelStatus

EDMA Driver, 279
EDMA_DRV_GetRemainingMajorIterationsCount

EDMA Driver, 279
EDMA_DRV_Init

EDMA Driver, 280
EDMA_DRV_InstallCallback

EDMA Driver, 280
EDMA_DRV_PushConfigToReg

EDMA Driver, 280
EDMA_DRV_PushConfigToSTCD

EDMA Driver, 281
EDMA_DRV_ReleaseChannel

EDMA Driver, 281
EDMA_DRV_SetChannelRequest

EDMA Driver, 281
EDMA_DRV_SetDestAddr

EDMA Driver, 281
EDMA_DRV_SetDestLastAddrAdjustment

EDMA Driver, 282
EDMA_DRV_SetDestOffset

EDMA Driver, 282
EDMA_DRV_SetDestWriteChunkSize

EDMA Driver, 282
EDMA_DRV_SetMajorLoopIterationCount

EDMA Driver, 282
EDMA_DRV_SetMinorLoopBlockSize

EDMA Driver, 282
EDMA_DRV_SetScatterGatherLink

EDMA Driver, 283
EDMA_DRV_SetSrcAddr

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 847

EDMA Driver, 283
EDMA_DRV_SetSrcLastAddrAdjustment

EDMA Driver, 283
EDMA_DRV_SetSrcOffset

EDMA Driver, 283
EDMA_DRV_SetSrcReadChunkSize

EDMA Driver, 283
EDMA_DRV_StartChannel

EDMA Driver, 284
EDMA_DRV_StopChannel

EDMA Driver, 284
EDMA_DRV_TriggerSwRequest

EDMA Driver, 284
EDMA_ERR_LSB_MASK

EDMA Driver, 272
EDMA_MODULO_128B

EDMA Driver, 274
EDMA_MODULO_128KB

EDMA Driver, 275
EDMA_MODULO_128MB

EDMA Driver, 275
EDMA_MODULO_16B

EDMA Driver, 274
EDMA_MODULO_16KB

EDMA Driver, 275
EDMA_MODULO_16MB

EDMA Driver, 275
EDMA_MODULO_1GB

EDMA Driver, 275
EDMA_MODULO_1KB

EDMA Driver, 275
EDMA_MODULO_1MB

EDMA Driver, 275
EDMA_MODULO_256B

EDMA Driver, 275
EDMA_MODULO_256KB

EDMA Driver, 275
EDMA_MODULO_256MB

EDMA Driver, 275
EDMA_MODULO_2B

EDMA Driver, 274
EDMA_MODULO_2GB

EDMA Driver, 275
EDMA_MODULO_2KB

EDMA Driver, 275
EDMA_MODULO_2MB

EDMA Driver, 275
EDMA_MODULO_32B

EDMA Driver, 274
EDMA_MODULO_32KB

EDMA Driver, 275
EDMA_MODULO_32MB

EDMA Driver, 275
EDMA_MODULO_4B

EDMA Driver, 274
EDMA_MODULO_4KB

EDMA Driver, 275
EDMA_MODULO_4MB

EDMA Driver, 275
EDMA_MODULO_512B

EDMA Driver, 275
EDMA_MODULO_512KB

EDMA Driver, 275
EDMA_MODULO_512MB

EDMA Driver, 275
EDMA_MODULO_64B

EDMA Driver, 274
EDMA_MODULO_64KB

EDMA Driver, 275
EDMA_MODULO_64MB

EDMA Driver, 275
EDMA_MODULO_8B

EDMA Driver, 274
EDMA_MODULO_8KB

EDMA Driver, 275
EDMA_MODULO_8MB

EDMA Driver, 275
EDMA_MODULO_OFF

EDMA Driver, 274
EDMA_TRANSFER_MEM2MEM

EDMA Driver, 275
EDMA_TRANSFER_MEM2PERIPH

EDMA Driver, 275
EDMA_TRANSFER_PERIPH2MEM

EDMA Driver, 275
EDMA_TRANSFER_PERIPH2PERIPH

EDMA Driver, 275
EDMA_TRANSFER_SIZE_16B

EDMA Driver, 275
EDMA_TRANSFER_SIZE_1B

EDMA Driver, 275
EDMA_TRANSFER_SIZE_2B

EDMA Driver, 275
EDMA_TRANSFER_SIZE_32B

EDMA Driver, 275
EDMA_TRANSFER_SIZE_4B

EDMA Driver, 275
EEE_COMPLETE_INTERRUPT_QUICK_WRITE

Flash Memory (Flash), 394
EEE_DISABLE

Flash Memory (Flash), 394
EEE_ENABLE

Flash Memory (Flash), 393
EEE_QUICK_WRITE

Flash Memory (Flash), 394
EEE_STATUS_QUERY

Flash Memory (Flash), 394
EEESize

Flash Memory (Flash), 401
EERAMBase

Flash Memory (Flash), 401
EIM Driver, 285

EIM_CHECKBITMASK_DEFAULT, 287
EIM_DATAMASK_DEFAULT, 287
EIM_DRV_ConfigChannel, 287
EIM_DRV_Deinit, 287

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

848 INDEX

EIM_DRV_GetChannelConfig, 287
EIM_DRV_GetDefaultConfig, 288
EIM_DRV_Init, 288

EIM_CHECKBITMASK_DEFAULT
EIM Driver, 287

EIM_DATAMASK_DEFAULT
EIM Driver, 287

EIM_DRV_ConfigChannel
EIM Driver, 287

EIM_DRV_Deinit
EIM Driver, 287

EIM_DRV_GetChannelConfig
EIM Driver, 287

EIM_DRV_GetDefaultConfig
EIM Driver, 288

EIM_DRV_Init
EIM Driver, 288

ENET Driver, 289
ENET_BABR_INTERRUPT, 299
ENET_BABT_INTERRUPT, 299
ENET_BUFF_ALIGN, 297
ENET_BUFF_IS_ALIGNED, 297
ENET_BUFFDESCR_ALIGN, 297
ENET_BUFFDESCR_IS_ALIGNED, 297
ENET_CTR_IEEE_R_ALIGN, 299
ENET_CTR_IEEE_R_CRC, 299
ENET_CTR_IEEE_R_DROP, 299
ENET_CTR_IEEE_R_FDXFC, 299
ENET_CTR_IEEE_R_FRAME_OK, 299
ENET_CTR_IEEE_R_MACERR, 299
ENET_CTR_IEEE_R_OCTETS_OK, 299
ENET_CTR_IEEE_T_1COL, 298
ENET_CTR_IEEE_T_CSERR, 298
ENET_CTR_IEEE_T_DEF, 298
ENET_CTR_IEEE_T_DROP, 298
ENET_CTR_IEEE_T_EXCOL, 298
ENET_CTR_IEEE_T_FDXFC, 298
ENET_CTR_IEEE_T_FRAME_OK, 298
ENET_CTR_IEEE_T_LCOL, 298
ENET_CTR_IEEE_T_MACERR, 298
ENET_CTR_IEEE_T_MCOL, 298
ENET_CTR_IEEE_T_OCTETS_OK, 298
ENET_CTR_IEEE_T_SQE, 298
ENET_CTR_RMON_R_BC_PKT, 298
ENET_CTR_RMON_R_CRC_ALIGN, 298
ENET_CTR_RMON_R_FRAG, 299
ENET_CTR_RMON_R_JAB, 299
ENET_CTR_RMON_R_MC_PKT, 298
ENET_CTR_RMON_R_OCTETS, 299
ENET_CTR_RMON_R_OVERSIZE, 299
ENET_CTR_RMON_R_P1024TO2047, 299
ENET_CTR_RMON_R_P128TO255, 299
ENET_CTR_RMON_R_P256TO511, 299
ENET_CTR_RMON_R_P512TO1023, 299
ENET_CTR_RMON_R_P64, 299
ENET_CTR_RMON_R_P65TO127, 299
ENET_CTR_RMON_R_P_GTE2048, 299
ENET_CTR_RMON_R_PACKETS, 298

ENET_CTR_RMON_R_RESVD_0, 299
ENET_CTR_RMON_R_UNDERSIZE, 298
ENET_CTR_RMON_T_BC_PKT, 298
ENET_CTR_RMON_T_COL, 298
ENET_CTR_RMON_T_CRC_ALIGN, 298
ENET_CTR_RMON_T_DROP, 298
ENET_CTR_RMON_T_FRAG, 298
ENET_CTR_RMON_T_JAB, 298
ENET_CTR_RMON_T_MC_PKT, 298
ENET_CTR_RMON_T_OCTETS, 298
ENET_CTR_RMON_T_OVERSIZE, 298
ENET_CTR_RMON_T_P1024TO2047, 298
ENET_CTR_RMON_T_P128TO255, 298
ENET_CTR_RMON_T_P256TO511, 298
ENET_CTR_RMON_T_P512TO1023, 298
ENET_CTR_RMON_T_P64, 298
ENET_CTR_RMON_T_P65TO127, 298
ENET_CTR_RMON_T_P_GTE2048, 298
ENET_CTR_RMON_T_PACKETS, 298
ENET_CTR_RMON_T_UNDERSIZE, 298
ENET_DRV_ConfigCounters, 301
ENET_DRV_Deinit, 301
ENET_DRV_EnableMDIO, 302
ENET_DRV_GetCounter, 302
ENET_DRV_GetDefaultConfig, 302
ENET_DRV_GetMacAddr, 302
ENET_DRV_GetTransmitStatus, 303
ENET_DRV_Init, 303
ENET_DRV_MDIORead, 303
ENET_DRV_MDIOWrite, 303
ENET_DRV_ProvideRxBuff, 304
ENET_DRV_ReadFrame, 304
ENET_DRV_SendFrame, 305
ENET_DRV_SetMacAddr, 305
ENET_DRV_SetMulticastForward, 305
ENET_DRV_SetMulticastForwardAll, 305
ENET_DRV_SetSleepMode, 306
ENET_DRV_SetUnicastForward, 306
ENET_EBERR_INTERRUPT, 300
ENET_ERR_EVENT, 299
ENET_FRAME_MAX_FRAMELEN, 297
ENET_GRACE_STOP_INTERRUPT, 299
ENET_LATE_COLLISION_INTERRUPT, 300
ENET_MII_FULL_DUPLEX, 300
ENET_MII_HALF_DUPLEX, 300
ENET_MII_INTERRUPT, 299
ENET_MII_MODE, 300
ENET_MII_SPEED_100M, 300
ENET_MII_SPEED_10M, 300
ENET_MIN_BUFFERSIZE, 297
ENET_PAYLOAD_RX_INTERRUPT, 300
ENET_RETRY_LIMIT_INTERRUPT, 300
ENET_RMII_MODE, 300
ENET_RX_ACCEL_ENABLE_IP_CHECK, 300
ENET_RX_ACCEL_ENABLE_MAC_CHECK, 300
ENET_RX_ACCEL_ENABLE_PROTO_CHECK,

300
ENET_RX_ACCEL_ENABLE_SHIFT16, 300

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 849

ENET_RX_ACCEL_REMOVE_PAD, 300
ENET_RX_BUFFER_INTERRUPT, 299
ENET_RX_CONFIG_ENABLE_FLOW_CONTR←↩

OL, 301
ENET_RX_CONFIG_ENABLE_MII_LOOPBACK,

301
ENET_RX_CONFIG_ENABLE_PAYLOAD_LEN←↩

_CHECK, 301
ENET_RX_CONFIG_ENABLE_PROMISCUOU←↩

S_MODE, 301
ENET_RX_CONFIG_FORWARD_PAUSE_FRA←↩

MES, 301
ENET_RX_CONFIG_REJECT_BROADCAST_F←↩

RAMES, 301
ENET_RX_CONFIG_REMOVE_PADDING, 301
ENET_RX_CONFIG_STRIP_CRC_FIELD, 301
ENET_RX_EVENT, 299
ENET_RX_FRAME_INTERRUPT, 299
ENET_TS_AVAIL_INTERRUPT, 300
ENET_TS_TIMER_INTERRUPT, 300
ENET_TX_ACCEL_ENABLE_SHIFT16, 301
ENET_TX_ACCEL_INSERT_IP_CHECKSUM,

301
ENET_TX_ACCEL_INSERT_PROTO_CHECKS←↩

UM, 301
ENET_TX_BUFFER_INTERRUPT, 299
ENET_TX_CONFIG_DISABLE_CRC_APPEND,

301
ENET_TX_CONFIG_ENABLE_MAC_ADDR_IN←↩

SERTION, 301
ENET_TX_EVENT, 299
ENET_TX_FRAME_INTERRUPT, 299
ENET_UNDERRUN_INTERRUPT, 300
ENET_WAKE_UP_EVENT, 299
ENET_WAKEUP_INTERRUPT, 300
enet_callback_t, 297
enet_counter_t, 298
enet_event_t, 299
enet_interrupt_enable_t, 299
enet_mii_duplex_t, 300
enet_mii_mode_t, 300
enet_mii_speed_t, 300
enet_rx_accelerator_t, 300
enet_rx_special_config_t, 300
enet_tx_accelerator_t, 301
enet_tx_special_config_t, 301

ENET_BABR_INTERRUPT
ENET Driver, 299

ENET_BABT_INTERRUPT
ENET Driver, 299

ENET_BUFF_ALIGN
ENET Driver, 297

ENET_BUFF_IS_ALIGNED
ENET Driver, 297

ENET_BUFFDESCR_ALIGN
ENET Driver, 297

ENET_BUFFDESCR_IS_ALIGNED
ENET Driver, 297

ENET_CTR_IEEE_R_ALIGN
ENET Driver, 299

ENET_CTR_IEEE_R_CRC
ENET Driver, 299

ENET_CTR_IEEE_R_DROP
ENET Driver, 299

ENET_CTR_IEEE_R_FDXFC
ENET Driver, 299

ENET_CTR_IEEE_R_FRAME_OK
ENET Driver, 299

ENET_CTR_IEEE_R_MACERR
ENET Driver, 299

ENET_CTR_IEEE_R_OCTETS_OK
ENET Driver, 299

ENET_CTR_IEEE_T_1COL
ENET Driver, 298

ENET_CTR_IEEE_T_CSERR
ENET Driver, 298

ENET_CTR_IEEE_T_DEF
ENET Driver, 298

ENET_CTR_IEEE_T_DROP
ENET Driver, 298

ENET_CTR_IEEE_T_EXCOL
ENET Driver, 298

ENET_CTR_IEEE_T_FDXFC
ENET Driver, 298

ENET_CTR_IEEE_T_FRAME_OK
ENET Driver, 298

ENET_CTR_IEEE_T_LCOL
ENET Driver, 298

ENET_CTR_IEEE_T_MACERR
ENET Driver, 298

ENET_CTR_IEEE_T_MCOL
ENET Driver, 298

ENET_CTR_IEEE_T_OCTETS_OK
ENET Driver, 298

ENET_CTR_IEEE_T_SQE
ENET Driver, 298

ENET_CTR_RMON_R_BC_PKT
ENET Driver, 298

ENET_CTR_RMON_R_CRC_ALIGN
ENET Driver, 298

ENET_CTR_RMON_R_FRAG
ENET Driver, 299

ENET_CTR_RMON_R_JAB
ENET Driver, 299

ENET_CTR_RMON_R_MC_PKT
ENET Driver, 298

ENET_CTR_RMON_R_OCTETS
ENET Driver, 299

ENET_CTR_RMON_R_OVERSIZE
ENET Driver, 299

ENET_CTR_RMON_R_P1024TO2047
ENET Driver, 299

ENET_CTR_RMON_R_P128TO255
ENET Driver, 299

ENET_CTR_RMON_R_P256TO511
ENET Driver, 299

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

850 INDEX

ENET_CTR_RMON_R_P512TO1023
ENET Driver, 299

ENET_CTR_RMON_R_P64
ENET Driver, 299

ENET_CTR_RMON_R_P65TO127
ENET Driver, 299

ENET_CTR_RMON_R_P_GTE2048
ENET Driver, 299

ENET_CTR_RMON_R_PACKETS
ENET Driver, 298

ENET_CTR_RMON_R_RESVD_0
ENET Driver, 299

ENET_CTR_RMON_R_UNDERSIZE
ENET Driver, 298

ENET_CTR_RMON_T_BC_PKT
ENET Driver, 298

ENET_CTR_RMON_T_COL
ENET Driver, 298

ENET_CTR_RMON_T_CRC_ALIGN
ENET Driver, 298

ENET_CTR_RMON_T_DROP
ENET Driver, 298

ENET_CTR_RMON_T_FRAG
ENET Driver, 298

ENET_CTR_RMON_T_JAB
ENET Driver, 298

ENET_CTR_RMON_T_MC_PKT
ENET Driver, 298

ENET_CTR_RMON_T_OCTETS
ENET Driver, 298

ENET_CTR_RMON_T_OVERSIZE
ENET Driver, 298

ENET_CTR_RMON_T_P1024TO2047
ENET Driver, 298

ENET_CTR_RMON_T_P128TO255
ENET Driver, 298

ENET_CTR_RMON_T_P256TO511
ENET Driver, 298

ENET_CTR_RMON_T_P512TO1023
ENET Driver, 298

ENET_CTR_RMON_T_P64
ENET Driver, 298

ENET_CTR_RMON_T_P65TO127
ENET Driver, 298

ENET_CTR_RMON_T_P_GTE2048
ENET Driver, 298

ENET_CTR_RMON_T_PACKETS
ENET Driver, 298

ENET_CTR_RMON_T_UNDERSIZE
ENET Driver, 298

ENET_DRV_ConfigCounters
ENET Driver, 301

ENET_DRV_Deinit
ENET Driver, 301

ENET_DRV_EnableMDIO
ENET Driver, 302

ENET_DRV_GetCounter
ENET Driver, 302

ENET_DRV_GetDefaultConfig
ENET Driver, 302

ENET_DRV_GetMacAddr
ENET Driver, 302

ENET_DRV_GetTransmitStatus
ENET Driver, 303

ENET_DRV_Init
ENET Driver, 303

ENET_DRV_MDIORead
ENET Driver, 303

ENET_DRV_MDIOWrite
ENET Driver, 303

ENET_DRV_ProvideRxBuff
ENET Driver, 304

ENET_DRV_ReadFrame
ENET Driver, 304

ENET_DRV_SendFrame
ENET Driver, 305

ENET_DRV_SetMacAddr
ENET Driver, 305

ENET_DRV_SetMulticastForward
ENET Driver, 305

ENET_DRV_SetMulticastForwardAll
ENET Driver, 305

ENET_DRV_SetSleepMode
ENET Driver, 306

ENET_DRV_SetUnicastForward
ENET Driver, 306

ENET_EBERR_INTERRUPT
ENET Driver, 300

ENET_ERR_EVENT
ENET Driver, 299

ENET_FRAME_MAX_FRAMELEN
ENET Driver, 297

ENET_GRACE_STOP_INTERRUPT
ENET Driver, 299

ENET_LATE_COLLISION_INTERRUPT
ENET Driver, 300

ENET_MII_FULL_DUPLEX
ENET Driver, 300

ENET_MII_HALF_DUPLEX
ENET Driver, 300

ENET_MII_INTERRUPT
ENET Driver, 299

ENET_MII_MODE
ENET Driver, 300

ENET_MII_SPEED_100M
ENET Driver, 300

ENET_MII_SPEED_10M
ENET Driver, 300

ENET_MIN_BUFFERSIZE
ENET Driver, 297

ENET_PAYLOAD_RX_INTERRUPT
ENET Driver, 300

ENET_RETRY_LIMIT_INTERRUPT
ENET Driver, 300

ENET_RMII_MODE
ENET Driver, 300

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 851

ENET_RX_ACCEL_ENABLE_IP_CHECK
ENET Driver, 300

ENET_RX_ACCEL_ENABLE_MAC_CHECK
ENET Driver, 300

ENET_RX_ACCEL_ENABLE_PROTO_CHECK
ENET Driver, 300

ENET_RX_ACCEL_ENABLE_SHIFT16
ENET Driver, 300

ENET_RX_ACCEL_REMOVE_PAD
ENET Driver, 300

ENET_RX_BUFFER_INTERRUPT
ENET Driver, 299

ENET_RX_CONFIG_ENABLE_FLOW_CONTROL
ENET Driver, 301

ENET_RX_CONFIG_ENABLE_MII_LOOPBACK
ENET Driver, 301

ENET_RX_CONFIG_ENABLE_PAYLOAD_LEN_CH←↩

ECK
ENET Driver, 301

ENET_RX_CONFIG_ENABLE_PROMISCUOUS_M←↩

ODE
ENET Driver, 301

ENET_RX_CONFIG_FORWARD_PAUSE_FRAMES
ENET Driver, 301

ENET_RX_CONFIG_REJECT_BROADCAST_FRAM←↩

ES
ENET Driver, 301

ENET_RX_CONFIG_REMOVE_PADDING
ENET Driver, 301

ENET_RX_CONFIG_STRIP_CRC_FIELD
ENET Driver, 301

ENET_RX_EVENT
ENET Driver, 299

ENET_RX_FRAME_INTERRUPT
ENET Driver, 299

ENET_TS_AVAIL_INTERRUPT
ENET Driver, 300

ENET_TS_TIMER_INTERRUPT
ENET Driver, 300

ENET_TX_ACCEL_ENABLE_SHIFT16
ENET Driver, 301

ENET_TX_ACCEL_INSERT_IP_CHECKSUM
ENET Driver, 301

ENET_TX_ACCEL_INSERT_PROTO_CHECKSUM
ENET Driver, 301

ENET_TX_BUFFER_INTERRUPT
ENET Driver, 299

ENET_TX_CONFIG_DISABLE_CRC_APPEND
ENET Driver, 301

ENET_TX_CONFIG_ENABLE_MAC_ADDR_INSER←↩

TION
ENET Driver, 301

ENET_TX_EVENT
ENET Driver, 299

ENET_TX_FRAME_INTERRUPT
ENET Driver, 299

ENET_UNDERRUN_INTERRUPT
ENET Driver, 300

ENET_WAKE_UP_EVENT
ENET Driver, 299

ENET_WAKEUP_INTERRUPT
ENET Driver, 300

ERM Driver, 307
ERM_DRV_ClearEvent, 308
ERM_DRV_Deinit, 309
ERM_DRV_GetErrorDetail, 309
ERM_DRV_GetInterruptConfig, 309
ERM_DRV_Init, 309
ERM_DRV_SetInterruptConfig, 310
ERM_EVENT_NON_CORRECTABLE, 308
ERM_EVENT_NONE, 308
ERM_EVENT_SINGLE_BIT, 308
erm_ecc_event_t, 308

ERM_DRV_ClearEvent
ERM Driver, 308

ERM_DRV_Deinit
ERM Driver, 309

ERM_DRV_GetErrorDetail
ERM Driver, 309

ERM_DRV_GetInterruptConfig
ERM Driver, 309

ERM_DRV_Init
ERM Driver, 309

ERM_DRV_SetInterruptConfig
ERM Driver, 310

ERM_EVENT_NON_CORRECTABLE
ERM Driver, 308

ERM_EVENT_NONE
ERM Driver, 308

ERM_EVENT_SINGLE_BIT
ERM Driver, 308

ERROR_IN_RESPONSE
Common Core API., 226

EVENT_TRIGGER_COLLISION_SET
Common Core API., 226

EWM Driver, 311
EWM_DRV_GetDefaultConfig, 313
EWM_DRV_GetInputPinAssertLogic, 313
EWM_DRV_Init, 314
EWM_DRV_Refresh, 314
EWM_IN_ASSERT_DISABLED, 313
EWM_IN_ASSERT_ON_LOGIC_ONE, 313
EWM_IN_ASSERT_ON_LOGIC_ZERO, 313
ewm_in_assert_logic_t, 313

EWM_DRV_GetDefaultConfig
EWM Driver, 313

EWM_DRV_GetInputPinAssertLogic
EWM Driver, 313

EWM_DRV_Init
EWM Driver, 314

EWM_DRV_Refresh
EWM Driver, 314

EWM_IN_ASSERT_DISABLED
EWM Driver, 313

EWM_IN_ASSERT_ON_LOGIC_ONE
EWM Driver, 313

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

852 INDEX

EWM_IN_ASSERT_ON_LOGIC_ZERO
EWM Driver, 313

eccs
sbc_mtpnv_stat_t, 784

edgeAlignement
ftm_input_ch_param_t, 360

edma_arbitration_algorithm_t
EDMA Driver, 273

edma_callback_t
EDMA Driver, 273

edma_channel_config_t, 268
callback, 268
callbackParam, 268
channel, 268
priority, 268
source, 269

edma_channel_interrupt_t
EDMA Driver, 273

edma_channel_priority_t
EDMA Driver, 273

edma_chn_state_t, 267
callback, 268
channel, 268
parameter, 268
status, 268

edma_chn_status_t
EDMA Driver, 274

edma_loop_transfer_config_t, 269
dstOffsetEnable, 270
majorLoopChnLinkEnable, 270
majorLoopChnLinkNumber, 270
majorLoopIterationCount, 270
minorLoopChnLinkEnable, 270
minorLoopChnLinkNumber, 270
minorLoopOffset, 270
srcOffsetEnable, 270

edma_modulo_t
EDMA Driver, 274

edma_scatter_gather_list_t, 269
address, 269
length, 269
type, 269

edma_state_t, 269
chn, 269

edma_transfer_config_t, 271
destAddr, 271
destLastAddrAdjust, 271
destModulo, 271
destOffset, 271
destTransferSize, 271
interruptEnable, 271
loopTransferConfig, 272
minorByteTransferCount, 272
scatterGatherEnable, 272
scatterGatherNextDescAddr, 272
srcAddr, 272
srcLastAddrAdjust, 272
srcModulo, 272

srcOffset, 272
srcTransferSize, 272

edma_transfer_size_t
EDMA Driver, 275

edma_transfer_type_t
EDMA Driver, 275

edma_user_config_t, 267
chnArbitration, 267
notHaltOnError, 267

eim_user_channel_config_t, 286
channel, 286
checkBitMask, 286
dataMask, 286
enable, 286

ElementSize
sai_user_config_t, 732

enable
eim_user_channel_config_t, 286
pmc_lpo_clock_config_t, 818
sim_clock_out_config_t, 218

enable_brs
flexcan_data_info_t, 420

enableDma
sim_plat_gate_config_t, 220

enableEim
sim_plat_gate_config_t, 220

enableErm
sim_plat_gate_config_t, 220

enableExternalTrigger
ftm_combined_ch_param_t, 374
ftm_independent_ch_param_t, 373
ftm_output_cmp_ch_param_t, 368

enableExternalTriggerOnNextChn
ftm_combined_ch_param_t, 374

enableInLowPower
scg_firc_config_t, 821
scg_sirc_config_t, 823
scg_sosc_config_t, 824

enableInStop
scg_firc_config_t, 821
scg_sirc_config_t, 823
scg_sosc_config_t, 824
scg_spll_config_t, 826

enableInitializationTrigger
ftm_user_config_t, 329

enableLpo1k
sim_lpo_clock_config_t, 219

enableLpo32k
sim_lpo_clock_config_t, 219

enableModifiedCombine
ftm_combined_ch_param_t, 374

enableMpu
sim_plat_gate_config_t, 220

enableMscm
sim_plat_gate_config_t, 220

enableNonCorrectable
erm_interrupt_config_t, 307

enableQspiRefClk

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 853

sim_qspi_ref_clk_gating_t, 221
enableReloadOnTrigger

lpit_user_channel_config_t, 542
enableRunInDebug

lpit_user_config_t, 541
enableRunInDoze

lpit_user_config_t, 541
enableSecondChannelOutput

ftm_combined_ch_param_t, 374
enableSingleCorrection

erm_interrupt_config_t, 307
enableStartOnTrigger

lpit_user_channel_config_t, 542
enableStopOnInterrupt

lpit_user_channel_config_t, 542
endAddr

mpu_user_config_t, 637
endianess

qspi_user_config_t, 697
enet_buffer_config_t, 294

rxBufferAligned, 294
rxRingAligned, 294
rxRingSize, 295
txRingAligned, 295
txRingSize, 295

enet_buffer_t, 294
data, 294
length, 294

enet_callback_t
ENET Driver, 297

enet_config_t, 295
callback, 295
interrupt, 295
maxFrameLen, 295
miiDuplex, 295
miiMode, 296
miiSpeed, 296
rxAccelerConfig, 296
rxConfig, 296
txAccelerConfig, 296
txConfig, 296

enet_counter_t
ENET Driver, 298

enet_event_t
ENET Driver, 299

enet_interrupt_enable_t
ENET Driver, 299

enet_mii_duplex_t
ENET Driver, 300

enet_mii_mode_t
ENET Driver, 300

enet_mii_speed_t
ENET Driver, 300

enet_rx_accelerator_t
ENET Driver, 300

enet_rx_special_config_t
ENET Driver, 300

enet_state_t, 296

callback, 296
rxBdAlloc, 296
rxBdBase, 296
rxBdCurrent, 297
txBdBase, 297
txBdCurrent, 297

enet_tx_accelerator_t
ENET Driver, 301

enet_tx_special_config_t
ENET Driver, 301

erm_ecc_event_t
ERM Driver, 308

erm_interrupt_config_t, 307
enableNonCorrectable, 307
enableSingleCorrection, 307

erm_user_config_t, 308
channel, 308
interruptCfg, 308

errCode
csec_state_t, 193

Error Injection Module (EIM), 315
Error Reporting Module (ERM), 316
error_in_res

lin_word_status_str_t, 603
error_in_response

lin_protocol_state_t, 616
errorCallbackIndex

clock_manager_state_t, 212
power_manager_state_t, 680

Ethernet MAC (ENET), 318
event_trigger_collision_flg

lin_master_data_t, 615
lin_word_status_str_t, 603

events
sbc_status_group_t, 784

ewm_in_assert_logic_t
EWM Driver, 313

ewm_init_config_t, 312
assertLogic, 313
compareHigh, 313
compareLow, 313
interruptEnable, 313
prescaler, 313

extRef
scg_sosc_config_t, 824

External Watchdog Monitor (EWM), 321

FF_pdu_received
lin_tl_descriptor_t, 610

FLASH_CALLBACK_CS
Flash Memory (Flash), 390

FLASH_DRV_CheckSum
Flash Memory (Flash), 394

FLASH_DRV_EraseAllBlock
Flash Memory (Flash), 394

FLASH_DRV_EraseResume
Flash Memory (Flash), 394

FLASH_DRV_EraseSector
Flash Memory (Flash), 395

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

854 INDEX

FLASH_DRV_EraseSuspend
Flash Memory (Flash), 395

FLASH_DRV_GetPFlashProtection
Flash Memory (Flash), 395

FLASH_DRV_GetSecurityState
Flash Memory (Flash), 395

FLASH_DRV_Init
Flash Memory (Flash), 396

FLASH_DRV_Program
Flash Memory (Flash), 396

FLASH_DRV_ProgramCheck
Flash Memory (Flash), 396

FLASH_DRV_ProgramOnce
Flash Memory (Flash), 398

FLASH_DRV_ReadOnce
Flash Memory (Flash), 398

FLASH_DRV_SecurityBypass
Flash Memory (Flash), 399

FLASH_DRV_SetPFlashProtection
Flash Memory (Flash), 399

FLASH_DRV_VerifyAllBlock
Flash Memory (Flash), 399

FLASH_DRV_VerifySection
Flash Memory (Flash), 400

FLASH_MX25L6433F_DRV_Deinit
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_DRV_EnterDPD
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_DRV_EnterOTP
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_DRV_Erase32K
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_DRV_Erase4K
Flash_mx25l6433f_drv, 408

FLASH_MX25L6433F_DRV_Erase64K
Flash_mx25l6433f_drv, 408

FLASH_MX25L6433F_DRV_EraseAll
Flash_mx25l6433f_drv, 408

FLASH_MX25L6433F_DRV_EraseVerify
Flash_mx25l6433f_drv, 408

FLASH_MX25L6433F_DRV_ExitDPD
Flash_mx25l6433f_drv, 409

FLASH_MX25L6433F_DRV_ExitOTP
Flash_mx25l6433f_drv, 409

FLASH_MX25L6433F_DRV_GetProtection
Flash_mx25l6433f_drv, 409

FLASH_MX25L6433F_DRV_GetSecureLock
Flash_mx25l6433f_drv, 409

FLASH_MX25L6433F_DRV_GetStatus
Flash_mx25l6433f_drv, 410

FLASH_MX25L6433F_DRV_Init
Flash_mx25l6433f_drv, 410

FLASH_MX25L6433F_DRV_Program
Flash_mx25l6433f_drv, 410

FLASH_MX25L6433F_DRV_ProgramVerify
Flash_mx25l6433f_drv, 410

FLASH_MX25L6433F_DRV_Read
Flash_mx25l6433f_drv, 411

FLASH_MX25L6433F_DRV_Reset
Flash_mx25l6433f_drv, 411

FLASH_MX25L6433F_DRV_STRENGTH_HIGH
Flash_mx25l6433f_drv, 405

FLASH_MX25L6433F_DRV_STRENGTH_LOW
Flash_mx25l6433f_drv, 405

FLASH_MX25L6433F_DRV_SetProtection
Flash_mx25l6433f_drv, 411

FLASH_MX25L6433F_DRV_SetSecureLock
Flash_mx25l6433f_drv, 412

FLASH_MX25L6433F_PROT_DIR_BOTTOM
Flash_mx25l6433f_drv, 405

FLASH_MX25L6433F_PROT_DIR_TOP
Flash_mx25l6433f_drv, 405

FLASH_MX25L6433F_PROT_SIZE_0
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_128K
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_1M
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_256K
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_2M
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_4M
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_512K
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_64K
Flash_mx25l6433f_drv, 406

FLASH_MX25L6433F_PROT_SIZE_8M
Flash_mx25l6433f_drv, 406

FLASH_NOT_SECURE
Flash Memory (Flash), 390

FLASH_SECURE_BACKDOOR_DISABLED
Flash Memory (Flash), 390

FLASH_SECURE_BACKDOOR_ENABLED
Flash Memory (Flash), 390

FLASH_SECURITY_STATE_KEYEN
Flash Memory (Flash), 390

FLASH_SECURITY_STATE_UNSECURED
Flash Memory (Flash), 390

FLEXCAN_DISABLE_MODE
FlexCAN Driver, 425

FLEXCAN_DRV_AbortTransfer
FlexCAN Driver, 426

FLEXCAN_DRV_ClearTDCFail
FlexCAN Driver, 426

FLEXCAN_DRV_ConfigRxFifo
FlexCAN Driver, 426

FLEXCAN_DRV_ConfigRxMb
FlexCAN Driver, 426

FLEXCAN_DRV_ConfigTxMb
FlexCAN Driver, 427

FLEXCAN_DRV_Deinit
FlexCAN Driver, 427

FLEXCAN_DRV_GetBitrate
FlexCAN Driver, 427

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 855

FLEXCAN_DRV_GetBitrateFD
FlexCAN Driver, 427

FLEXCAN_DRV_GetDefaultConfig
FlexCAN Driver, 428

FLEXCAN_DRV_GetTDCFail
FlexCAN Driver, 428

FLEXCAN_DRV_GetTDCValue
FlexCAN Driver, 428

FLEXCAN_DRV_GetTransferStatus
FlexCAN Driver, 428

FLEXCAN_DRV_Init
FlexCAN Driver, 430

FLEXCAN_DRV_InstallEventCallback
FlexCAN Driver, 430

FLEXCAN_DRV_Receive
FlexCAN Driver, 430

FLEXCAN_DRV_ReceiveBlocking
FlexCAN Driver, 430

FLEXCAN_DRV_RxFifo
FlexCAN Driver, 431

FLEXCAN_DRV_RxFifoBlocking
FlexCAN Driver, 431

FLEXCAN_DRV_Send
FlexCAN Driver, 431

FLEXCAN_DRV_SendBlocking
FlexCAN Driver, 432

FLEXCAN_DRV_SetBitrate
FlexCAN Driver, 432

FLEXCAN_DRV_SetBitrateCbt
FlexCAN Driver, 432

FLEXCAN_DRV_SetRxFifoGlobalMask
FlexCAN Driver, 433

FLEXCAN_DRV_SetRxIndividualMask
FlexCAN Driver, 433

FLEXCAN_DRV_SetRxMaskType
FlexCAN Driver, 433

FLEXCAN_DRV_SetRxMb14Mask
FlexCAN Driver, 433

FLEXCAN_DRV_SetRxMb15Mask
FlexCAN Driver, 433

FLEXCAN_DRV_SetRxMbGlobalMask
FlexCAN Driver, 434

FLEXCAN_DRV_SetTDCOffset
FlexCAN Driver, 434

FLEXCAN_EVENT_RX_COMPLETE
FlexCAN Driver, 424

FLEXCAN_EVENT_RXFIFO_COMPLETE
FlexCAN Driver, 424

FLEXCAN_EVENT_TX_COMPLETE
FlexCAN Driver, 424

FLEXCAN_FREEZE_MODE
FlexCAN Driver, 425

FLEXCAN_LISTEN_ONLY_MODE
FlexCAN Driver, 424

FLEXCAN_LOOPBACK_MODE
FlexCAN Driver, 424

FLEXCAN_MB_IDLE
FlexCAN Driver, 424

FLEXCAN_MB_RX_BUSY
FlexCAN Driver, 424

FLEXCAN_MB_TX_BUSY
FlexCAN Driver, 424

FLEXCAN_MSG_ID_EXT
FlexCAN Driver, 424

FLEXCAN_MSG_ID_STD
FlexCAN Driver, 424

FLEXCAN_NORMAL_MODE
FlexCAN Driver, 424

FLEXCAN_PAYLOAD_SIZE_16
FlexCAN Driver, 424

FLEXCAN_PAYLOAD_SIZE_32
FlexCAN Driver, 424

FLEXCAN_PAYLOAD_SIZE_64
FlexCAN Driver, 424

FLEXCAN_PAYLOAD_SIZE_8
FlexCAN Driver, 424

FLEXCAN_RX_FIFO_ID_FILTERS_104
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_112
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_120
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_128
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_16
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_24
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_32
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_40
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_48
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_56
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_64
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_72
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_8
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_80
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_88
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FILTERS_96
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FORMAT_A
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FORMAT_B
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FORMAT_C
FlexCAN Driver, 425

FLEXCAN_RX_FIFO_ID_FORMAT_D
FlexCAN Driver, 425

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

856 INDEX

FLEXCAN_RX_MASK_GLOBAL
FlexCAN Driver, 425

FLEXCAN_RX_MASK_INDIVIDUAL
FlexCAN Driver, 425

FLEXCAN_RXFIFO_USING_DMA
FlexCAN Driver, 426

FLEXCAN_RXFIFO_USING_INTERRUPTS
FlexCAN Driver, 426

FLEXIO_DRIVER_TYPE_DMA
FlexIO Common Driver, 436

FLEXIO_DRIVER_TYPE_INTERRUPTS
FlexIO Common Driver, 436

FLEXIO_DRIVER_TYPE_POLLING
FlexIO Common Driver, 436

FLEXIO_DRV_DeinitDevice
FlexIO Common Driver, 436

FLEXIO_DRV_InitDevice
FlexIO Common Driver, 436

FLEXIO_DRV_Reset
FlexIO Common Driver, 436

FLEXIO_EVENT_END_TRANSFER
FlexIO Common Driver, 436

FLEXIO_EVENT_RX_FULL
FlexIO Common Driver, 436

FLEXIO_EVENT_TX_EMPTY
FlexIO Common Driver, 436

FLEXIO_I2C_DRV_MasterDeinit
FlexIO I2C Driver, 442

FLEXIO_I2C_DRV_MasterGetBaudRate
FlexIO I2C Driver, 442

FLEXIO_I2C_DRV_MasterGetStatus
FlexIO I2C Driver, 442

FLEXIO_I2C_DRV_MasterInit
FlexIO I2C Driver, 443

FLEXIO_I2C_DRV_MasterReceiveData
FlexIO I2C Driver, 443

FLEXIO_I2C_DRV_MasterReceiveDataBlocking
FlexIO I2C Driver, 443

FLEXIO_I2C_DRV_MasterSendData
FlexIO I2C Driver, 444

FLEXIO_I2C_DRV_MasterSendDataBlocking
FlexIO I2C Driver, 444

FLEXIO_I2C_DRV_MasterSetBaudRate
FlexIO I2C Driver, 444

FLEXIO_I2C_DRV_MasterSetSlaveAddr
FlexIO I2C Driver, 445

FLEXIO_I2C_DRV_MasterTransferAbort
FlexIO I2C Driver, 445

FLEXIO_I2C_MAX_SIZE
FlexIO I2C Driver, 442

FLEXIO_I2S_DRV_MasterDeinit
FlexIO I2S Driver, 452

FLEXIO_I2S_DRV_MasterGetBaudRate
FlexIO I2S Driver, 452

FLEXIO_I2S_DRV_MasterGetStatus
FlexIO I2S Driver, 452

FLEXIO_I2S_DRV_MasterInit
FlexIO I2S Driver, 453

FLEXIO_I2S_DRV_MasterReceiveData
FlexIO I2S Driver, 453

FLEXIO_I2S_DRV_MasterReceiveDataBlocking
FlexIO I2S Driver, 453

FLEXIO_I2S_DRV_MasterSendData
FlexIO I2S Driver, 454

FLEXIO_I2S_DRV_MasterSendDataBlocking
FlexIO I2S Driver, 454

FLEXIO_I2S_DRV_MasterSetConfig
FlexIO I2S Driver, 454

FLEXIO_I2S_DRV_MasterSetRxBuffer
FlexIO I2S Driver, 456

FLEXIO_I2S_DRV_MasterSetTxBuffer
FlexIO I2S Driver, 456

FLEXIO_I2S_DRV_MasterTransferAbort
FlexIO I2S Driver, 456

FLEXIO_I2S_DRV_SlaveDeinit
FlexIO I2S Driver, 457

FLEXIO_I2S_DRV_SlaveGetStatus
FlexIO I2S Driver, 457

FLEXIO_I2S_DRV_SlaveInit
FlexIO I2S Driver, 457

FLEXIO_I2S_DRV_SlaveReceiveData
FlexIO I2S Driver, 458

FLEXIO_I2S_DRV_SlaveReceiveDataBlocking
FlexIO I2S Driver, 458

FLEXIO_I2S_DRV_SlaveSendData
FlexIO I2S Driver, 458

FLEXIO_I2S_DRV_SlaveSendDataBlocking
FlexIO I2S Driver, 459

FLEXIO_I2S_DRV_SlaveSetConfig
FlexIO I2S Driver, 459

FLEXIO_I2S_DRV_SlaveSetRxBuffer
FlexIO I2S Driver, 459

FLEXIO_I2S_DRV_SlaveSetTxBuffer
FlexIO I2S Driver, 460

FLEXIO_I2S_DRV_SlaveTransferAbort
FlexIO I2S Driver, 460

FLEXIO_SPI_DRV_MasterDeinit
FlexIO SPI Driver, 468

FLEXIO_SPI_DRV_MasterGetBaudRate
FlexIO SPI Driver, 468

FLEXIO_SPI_DRV_MasterGetStatus
FlexIO SPI Driver, 468

FLEXIO_SPI_DRV_MasterInit
FlexIO SPI Driver, 469

FLEXIO_SPI_DRV_MasterSetBaudRate
FlexIO SPI Driver, 469

FLEXIO_SPI_DRV_MasterTransfer
FlexIO SPI Driver, 469

FLEXIO_SPI_DRV_MasterTransferAbort
FlexIO SPI Driver, 471

FLEXIO_SPI_DRV_MasterTransferBlocking
FlexIO SPI Driver, 471

FLEXIO_SPI_DRV_SlaveDeinit
FlexIO SPI Driver, 471

FLEXIO_SPI_DRV_SlaveGetStatus
FlexIO SPI Driver, 472

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 857

FLEXIO_SPI_DRV_SlaveInit
FlexIO SPI Driver, 472

FLEXIO_SPI_DRV_SlaveTransfer
FlexIO SPI Driver, 472

FLEXIO_SPI_DRV_SlaveTransferAbort
FlexIO SPI Driver, 473

FLEXIO_SPI_DRV_SlaveTransferBlocking
FlexIO SPI Driver, 473

FLEXIO_SPI_TRANSFER_1BYTE
FlexIO SPI Driver, 468

FLEXIO_SPI_TRANSFER_2BYTE
FlexIO SPI Driver, 468

FLEXIO_SPI_TRANSFER_4BYTE
FlexIO SPI Driver, 468

FLEXIO_SPI_TRANSFER_LSB_FIRST
FlexIO SPI Driver, 467

FLEXIO_SPI_TRANSFER_MSB_FIRST
FlexIO SPI Driver, 467

FLEXIO_UART_DIRECTION_RX
FlexIO UART Driver, 477

FLEXIO_UART_DIRECTION_TX
FlexIO UART Driver, 477

FLEXIO_UART_DRV_Deinit
FlexIO UART Driver, 477

FLEXIO_UART_DRV_GetBaudRate
FlexIO UART Driver, 478

FLEXIO_UART_DRV_GetStatus
FlexIO UART Driver, 478

FLEXIO_UART_DRV_Init
FlexIO UART Driver, 478

FLEXIO_UART_DRV_ReceiveData
FlexIO UART Driver, 479

FLEXIO_UART_DRV_ReceiveDataBlocking
FlexIO UART Driver, 479

FLEXIO_UART_DRV_SendData
FlexIO UART Driver, 479

FLEXIO_UART_DRV_SendDataBlocking
FlexIO UART Driver, 480

FLEXIO_UART_DRV_SetConfig
FlexIO UART Driver, 480

FLEXIO_UART_DRV_SetRxBuffer
FlexIO UART Driver, 480

FLEXIO_UART_DRV_SetTxBuffer
FlexIO UART Driver, 481

FLEXIO_UART_DRV_TransferAbort
FlexIO UART Driver, 481

FTFx_DPHRASE_SIZE
Flash Memory (Flash), 390

FTFx_ERASE_ALL_BLOCK
Flash Memory (Flash), 390

FTFx_ERASE_ALL_BLOCK_UNSECURE
Flash Memory (Flash), 390

FTFx_ERASE_BLOCK
Flash Memory (Flash), 390

FTFx_ERASE_SECTOR
Flash Memory (Flash), 391

FTFx_LONGWORD_SIZE
Flash Memory (Flash), 391

FTFx_PFLASH_SWAP
Flash Memory (Flash), 391

FTFx_PHRASE_SIZE
Flash Memory (Flash), 391

FTFx_PROGRAM_CHECK
Flash Memory (Flash), 391

FTFx_PROGRAM_LONGWORD
Flash Memory (Flash), 391

FTFx_PROGRAM_ONCE
Flash Memory (Flash), 391

FTFx_PROGRAM_PARTITION
Flash Memory (Flash), 391

FTFx_PROGRAM_PHRASE
Flash Memory (Flash), 391

FTFx_PROGRAM_SECTION
Flash Memory (Flash), 391

FTFx_READ_ONCE
Flash Memory (Flash), 391

FTFx_READ_RESOURCE
Flash Memory (Flash), 391

FTFx_RSRC_CODE_REG
Flash Memory (Flash), 391

FTFx_SECURITY_BY_PASS
Flash Memory (Flash), 391

FTFx_SET_EERAM
Flash Memory (Flash), 391

FTFx_SWAP_COMPLETE
Flash Memory (Flash), 392

FTFx_SWAP_READY
Flash Memory (Flash), 392

FTFx_SWAP_REPORT_STATUS
Flash Memory (Flash), 392

FTFx_SWAP_SET_IN_COMPLETE
Flash Memory (Flash), 392

FTFx_SWAP_SET_IN_PREPARE
Flash Memory (Flash), 392

FTFx_SWAP_SET_INDICATOR_ADDR
Flash Memory (Flash), 392

FTFx_SWAP_UNINIT
Flash Memory (Flash), 392

FTFx_SWAP_UPDATE
Flash Memory (Flash), 392

FTFx_SWAP_UPDATE_ERASED
Flash Memory (Flash), 392

FTFx_VERIFY_ALL_BLOCK
Flash Memory (Flash), 392

FTFx_VERIFY_BLOCK
Flash Memory (Flash), 392

FTFx_VERIFY_SECTION
Flash Memory (Flash), 392

FTFx_WORD_SIZE
Flash Memory (Flash), 393

FTM Common Driver, 322
FTM_DRV_ClearChSC, 330
FTM_DRV_ClearChnEventStatus, 330
FTM_DRV_ClearChnTriggerFlag, 330
FTM_DRV_ClearFaultFlagDetected, 331
FTM_DRV_ClearFaultsIsr, 331

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

858 INDEX

FTM_DRV_ClearReloadFlag, 331
FTM_DRV_ConvertFreqToPeriodTicks, 331
FTM_DRV_Deinit, 331
FTM_DRV_DisableFaultInt, 332
FTM_DRV_GetChInputState, 332
FTM_DRV_GetChOutputValue, 334
FTM_DRV_GetChnCountVal, 332
FTM_DRV_GetChnEdgeLevel, 332
FTM_DRV_GetChnEventStatus, 334
FTM_DRV_GetChnMode, 334
FTM_DRV_GetClockFilterPs, 335
FTM_DRV_GetClockPs, 335
FTM_DRV_GetClockSource, 335
FTM_DRV_GetCounter, 335
FTM_DRV_GetCounterInitVal, 337
FTM_DRV_GetCpwms, 337
FTM_DRV_GetDetectedFaultInput, 337
FTM_DRV_GetDualChnCombineCmd, 337
FTM_DRV_GetDualEdgeCaptureBit, 339
FTM_DRV_GetEventStatus, 339
FTM_DRV_GetFrequency, 339
FTM_DRV_GetMod, 340
FTM_DRV_GetQuadDir, 340
FTM_DRV_GetQuadTimerOverflowDir, 340
FTM_DRV_GetReloadFlag, 340
FTM_DRV_GetTriggerControled, 341
FTM_DRV_HasChnEventOccurred, 341
FTM_DRV_HasTimerOverflowed, 341
FTM_DRV_Init, 342
FTM_DRV_IsChnDma, 342
FTM_DRV_IsChnIcrst, 342
FTM_DRV_IsChnIntEnabled, 343
FTM_DRV_IsChnTriggerGenerated, 343
FTM_DRV_IsFaultFlagDetected, 343
FTM_DRV_IsFaultInputEnabled, 343
FTM_DRV_IsFaultIntEnabled, 345
FTM_DRV_IsFtmEnable, 345
FTM_DRV_IsOverflowIntEnabled, 345
FTM_DRV_IsWriteProtectionEnabled, 345
FTM_DRV_MaskOutputChannels, 346
FTM_DRV_SetCaptureTestCmd, 346
FTM_DRV_SetChnDmaCmd, 346
FTM_DRV_SetChnIcrstCmd, 347
FTM_DRV_SetChnOutputInitStateCmd, 347
FTM_DRV_SetChnOutputMask, 347
FTM_DRV_SetChnSoftwareCtrlCmd, 348
FTM_DRV_SetChnSoftwareCtrlVal, 348
FTM_DRV_SetClockFilterPs, 348
FTM_DRV_SetCountReinitSyncCmd, 348
FTM_DRV_SetDualChnInvertCmd, 349
FTM_DRV_SetExtPairDeadtimeValue, 349
FTM_DRV_SetGlobalLoadCmd, 349
FTM_DRV_SetGlobalTimeBaseCmd, 349
FTM_DRV_SetGlobalTimeBaseOutputCmd, 350
FTM_DRV_SetHalfCycleCmd, 350
FTM_DRV_SetHalfCycleReloadPoint, 350
FTM_DRV_SetInitChnOutputCmd, 350
FTM_DRV_SetInitTrigOnReloadCmd, 351

FTM_DRV_SetInitialCounterValue, 351
FTM_DRV_SetInvertingControl, 351
FTM_DRV_SetLoadCmd, 352
FTM_DRV_SetLoadFreq, 352
FTM_DRV_SetModuloCounterValue, 352
FTM_DRV_SetPairDeadtimeCount, 352
FTM_DRV_SetPairDeadtimePrescale, 354
FTM_DRV_SetPwmLoadChnSelCmd, 354
FTM_DRV_SetPwmLoadCmd, 354
FTM_DRV_SetQuadMode, 355
FTM_DRV_SetQuadPhaseAPolarity, 355
FTM_DRV_SetQuadPhaseBFilterCmd, 355
FTM_DRV_SetQuadPhaseBPolarity, 355
FTM_DRV_SetReIntEnabledCmd, 356
FTM_DRV_SetSoftOutChnValue, 356
FTM_DRV_SetSoftwareOutputChannelControl,

356
FTM_DRV_SetSync, 357
FTM_DRV_SetTrigModeControlCmd, 357
FTM_MODE_CEN_ALIGNED_PWM, 329
FTM_MODE_EDGE_ALIGNED_PWM, 329
FTM_MODE_INPUT_CAPTURE, 329
FTM_MODE_NOT_INITIALIZED, 329
FTM_MODE_OUTPUT_COMPARE, 329
FTM_MODE_QUADRATURE_DECODER, 330
FTM_MODE_UP_DOWN_TIMER, 330
FTM_MODE_UP_TIMER, 330
FTM_QUAD_COUNT_AND_DIR, 330
FTM_QUAD_PHASE_ENCODE, 330
FTM_QUAD_PHASE_INVERT, 330
FTM_QUAD_PHASE_NORMAL, 330
ftm_channel_event_callback_t, 329
ftm_config_mode_t, 329
ftm_quad_decode_mode_t, 330
ftm_quad_phase_polarity_t, 330
ftmStatePtr, 357
g_ftmBase, 357
g_ftmFaultIrqId, 358
g_ftmIrqId, 358
g_ftmOverflowIrqId, 358
g_ftmReloadIrqId, 358

FTM Input Capture Driver, 359
FTM_BOTH_EDGES, 361
FTM_DRV_DeinitInputCapture, 362
FTM_DRV_GetInputCaptureMeasurement, 362
FTM_DRV_InitInputCapture, 362
FTM_DRV_StartNewSignalMeasurement, 363
FTM_EDGE_DETECT, 361
FTM_FALLING_EDGE, 361
FTM_FALLING_EDGE_PERIOD_MEASUREM←↩

ENT, 362
FTM_NO_MEASUREMENT, 362
FTM_NO_OPERATION, 361
FTM_NO_PIN_CONTROL, 361
FTM_PERIOD_OFF_MEASUREMENT, 362
FTM_PERIOD_ON_MEASUREMENT, 362
FTM_RISING_EDGE, 361

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 859

FTM_RISING_EDGE_PERIOD_MEASUREME←↩

NT, 362
FTM_SIGNAL_MEASUREMENT, 361
ftm_edge_alignment_mode_t, 361
ftm_input_op_mode_t, 361
ftm_signal_measurement_mode_t, 362

FTM Module Counter Driver, 364
FTM_DRV_CounterRead, 365
FTM_DRV_CounterStart, 365
FTM_DRV_CounterStop, 365
FTM_DRV_InitCounter, 365

FTM Output Compare Driver, 367
FTM_ABSOLUTE_VALUE, 369
FTM_CLEAR_ON_MATCH, 369
FTM_DISABLE_OUTPUT, 369
FTM_DRV_DeinitOutputCompare, 369
FTM_DRV_InitOutputCompare, 369
FTM_DRV_UpdateOutputCompareChannel, 370
FTM_RELATIVE_VALUE, 369
FTM_SET_ON_MATCH, 369
FTM_TOGGLE_ON_MATCH, 369
ftm_output_compare_mode_t, 368
ftm_output_compare_update_t, 369

FTM Pulse Width Modulation Driver, 371
FTM_DRV_DeinitPwm, 376
FTM_DRV_FastUpdatePwmChannels, 377
FTM_DRV_InitPwm, 377
FTM_DRV_UpdatePwmChannel, 377
FTM_DRV_UpdatePwmPeriod, 378
FTM_DUTY_TO_TICKS_SHIFT, 376
FTM_MAX_DUTY_CYCLE, 376
FTM_PWM_UPDATE_IN_DUTY_CYCLE, 376
FTM_PWM_UPDATE_IN_TICKS, 376
ftm_pwm_update_option_t, 376

FTM Quadrature Decoder Driver, 379
FTM_DRV_QuadDecodeStart, 381
FTM_DRV_QuadDecodeStop, 381
FTM_DRV_QuadGetState, 381

FTM_ABSOLUTE_VALUE
FTM Output Compare Driver, 369

FTM_BOTH_EDGES
FTM Input Capture Driver, 361

FTM_CLEAR_ON_MATCH
FTM Output Compare Driver, 369

FTM_DISABLE_OUTPUT
FTM Output Compare Driver, 369

FTM_DRV_ClearChSC
FTM Common Driver, 330

FTM_DRV_ClearChnEventStatus
FTM Common Driver, 330

FTM_DRV_ClearChnTriggerFlag
FTM Common Driver, 330

FTM_DRV_ClearFaultFlagDetected
FTM Common Driver, 331

FTM_DRV_ClearFaultsIsr
FTM Common Driver, 331

FTM_DRV_ClearReloadFlag
FTM Common Driver, 331

FTM_DRV_ConvertFreqToPeriodTicks
FTM Common Driver, 331

FTM_DRV_CounterRead
FTM Module Counter Driver, 365

FTM_DRV_CounterStart
FTM Module Counter Driver, 365

FTM_DRV_CounterStop
FTM Module Counter Driver, 365

FTM_DRV_Deinit
FTM Common Driver, 331

FTM_DRV_DeinitInputCapture
FTM Input Capture Driver, 362

FTM_DRV_DeinitOutputCompare
FTM Output Compare Driver, 369

FTM_DRV_DeinitPwm
FTM Pulse Width Modulation Driver, 376

FTM_DRV_DisableFaultInt
FTM Common Driver, 332

FTM_DRV_FastUpdatePwmChannels
FTM Pulse Width Modulation Driver, 377

FTM_DRV_GetChInputState
FTM Common Driver, 332

FTM_DRV_GetChOutputValue
FTM Common Driver, 334

FTM_DRV_GetChnCountVal
FTM Common Driver, 332

FTM_DRV_GetChnEdgeLevel
FTM Common Driver, 332

FTM_DRV_GetChnEventStatus
FTM Common Driver, 334

FTM_DRV_GetChnMode
FTM Common Driver, 334

FTM_DRV_GetClockFilterPs
FTM Common Driver, 335

FTM_DRV_GetClockPs
FTM Common Driver, 335

FTM_DRV_GetClockSource
FTM Common Driver, 335

FTM_DRV_GetCounter
FTM Common Driver, 335

FTM_DRV_GetCounterInitVal
FTM Common Driver, 337

FTM_DRV_GetCpwms
FTM Common Driver, 337

FTM_DRV_GetDetectedFaultInput
FTM Common Driver, 337

FTM_DRV_GetDualChnCombineCmd
FTM Common Driver, 337

FTM_DRV_GetDualEdgeCaptureBit
FTM Common Driver, 339

FTM_DRV_GetEventStatus
FTM Common Driver, 339

FTM_DRV_GetFrequency
FTM Common Driver, 339

FTM_DRV_GetInputCaptureMeasurement
FTM Input Capture Driver, 362

FTM_DRV_GetMod
FTM Common Driver, 340

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

860 INDEX

FTM_DRV_GetQuadDir
FTM Common Driver, 340

FTM_DRV_GetQuadTimerOverflowDir
FTM Common Driver, 340

FTM_DRV_GetReloadFlag
FTM Common Driver, 340

FTM_DRV_GetTriggerControled
FTM Common Driver, 341

FTM_DRV_HasChnEventOccurred
FTM Common Driver, 341

FTM_DRV_HasTimerOverflowed
FTM Common Driver, 341

FTM_DRV_Init
FTM Common Driver, 342

FTM_DRV_InitCounter
FTM Module Counter Driver, 365

FTM_DRV_InitInputCapture
FTM Input Capture Driver, 362

FTM_DRV_InitOutputCompare
FTM Output Compare Driver, 369

FTM_DRV_InitPwm
FTM Pulse Width Modulation Driver, 377

FTM_DRV_IsChnDma
FTM Common Driver, 342

FTM_DRV_IsChnIcrst
FTM Common Driver, 342

FTM_DRV_IsChnIntEnabled
FTM Common Driver, 343

FTM_DRV_IsChnTriggerGenerated
FTM Common Driver, 343

FTM_DRV_IsFaultFlagDetected
FTM Common Driver, 343

FTM_DRV_IsFaultInputEnabled
FTM Common Driver, 343

FTM_DRV_IsFaultIntEnabled
FTM Common Driver, 345

FTM_DRV_IsFtmEnable
FTM Common Driver, 345

FTM_DRV_IsOverflowIntEnabled
FTM Common Driver, 345

FTM_DRV_IsWriteProtectionEnabled
FTM Common Driver, 345

FTM_DRV_MaskOutputChannels
FTM Common Driver, 346

FTM_DRV_QuadDecodeStart
FTM Quadrature Decoder Driver, 381

FTM_DRV_QuadDecodeStop
FTM Quadrature Decoder Driver, 381

FTM_DRV_QuadGetState
FTM Quadrature Decoder Driver, 381

FTM_DRV_SetCaptureTestCmd
FTM Common Driver, 346

FTM_DRV_SetChnDmaCmd
FTM Common Driver, 346

FTM_DRV_SetChnIcrstCmd
FTM Common Driver, 347

FTM_DRV_SetChnOutputInitStateCmd
FTM Common Driver, 347

FTM_DRV_SetChnOutputMask
FTM Common Driver, 347

FTM_DRV_SetChnSoftwareCtrlCmd
FTM Common Driver, 348

FTM_DRV_SetChnSoftwareCtrlVal
FTM Common Driver, 348

FTM_DRV_SetClockFilterPs
FTM Common Driver, 348

FTM_DRV_SetCountReinitSyncCmd
FTM Common Driver, 348

FTM_DRV_SetDualChnInvertCmd
FTM Common Driver, 349

FTM_DRV_SetExtPairDeadtimeValue
FTM Common Driver, 349

FTM_DRV_SetGlobalLoadCmd
FTM Common Driver, 349

FTM_DRV_SetGlobalTimeBaseCmd
FTM Common Driver, 349

FTM_DRV_SetGlobalTimeBaseOutputCmd
FTM Common Driver, 350

FTM_DRV_SetHalfCycleCmd
FTM Common Driver, 350

FTM_DRV_SetHalfCycleReloadPoint
FTM Common Driver, 350

FTM_DRV_SetInitChnOutputCmd
FTM Common Driver, 350

FTM_DRV_SetInitTrigOnReloadCmd
FTM Common Driver, 351

FTM_DRV_SetInitialCounterValue
FTM Common Driver, 351

FTM_DRV_SetInvertingControl
FTM Common Driver, 351

FTM_DRV_SetLoadCmd
FTM Common Driver, 352

FTM_DRV_SetLoadFreq
FTM Common Driver, 352

FTM_DRV_SetModuloCounterValue
FTM Common Driver, 352

FTM_DRV_SetPairDeadtimeCount
FTM Common Driver, 352

FTM_DRV_SetPairDeadtimePrescale
FTM Common Driver, 354

FTM_DRV_SetPwmLoadChnSelCmd
FTM Common Driver, 354

FTM_DRV_SetPwmLoadCmd
FTM Common Driver, 354

FTM_DRV_SetQuadMode
FTM Common Driver, 355

FTM_DRV_SetQuadPhaseAPolarity
FTM Common Driver, 355

FTM_DRV_SetQuadPhaseBFilterCmd
FTM Common Driver, 355

FTM_DRV_SetQuadPhaseBPolarity
FTM Common Driver, 355

FTM_DRV_SetReIntEnabledCmd
FTM Common Driver, 356

FTM_DRV_SetSoftOutChnValue
FTM Common Driver, 356

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 861

FTM_DRV_SetSoftwareOutputChannelControl
FTM Common Driver, 356

FTM_DRV_SetSync
FTM Common Driver, 357

FTM_DRV_SetTrigModeControlCmd
FTM Common Driver, 357

FTM_DRV_StartNewSignalMeasurement
FTM Input Capture Driver, 363

FTM_DRV_UpdateOutputCompareChannel
FTM Output Compare Driver, 370

FTM_DRV_UpdatePwmChannel
FTM Pulse Width Modulation Driver, 377

FTM_DRV_UpdatePwmPeriod
FTM Pulse Width Modulation Driver, 378

FTM_DUTY_TO_TICKS_SHIFT
FTM Pulse Width Modulation Driver, 376

FTM_EDGE_DETECT
FTM Input Capture Driver, 361

FTM_FALLING_EDGE
FTM Input Capture Driver, 361

FTM_FALLING_EDGE_PERIOD_MEASUREMENT
FTM Input Capture Driver, 362

FTM_MAX_DUTY_CYCLE
FTM Pulse Width Modulation Driver, 376

FTM_MODE_CEN_ALIGNED_PWM
FTM Common Driver, 329

FTM_MODE_EDGE_ALIGNED_PWM
FTM Common Driver, 329

FTM_MODE_INPUT_CAPTURE
FTM Common Driver, 329

FTM_MODE_NOT_INITIALIZED
FTM Common Driver, 329

FTM_MODE_OUTPUT_COMPARE
FTM Common Driver, 329

FTM_MODE_QUADRATURE_DECODER
FTM Common Driver, 330

FTM_MODE_UP_DOWN_TIMER
FTM Common Driver, 330

FTM_MODE_UP_TIMER
FTM Common Driver, 330

FTM_NO_MEASUREMENT
FTM Input Capture Driver, 362

FTM_NO_OPERATION
FTM Input Capture Driver, 361

FTM_NO_PIN_CONTROL
FTM Input Capture Driver, 361

FTM_PERIOD_OFF_MEASUREMENT
FTM Input Capture Driver, 362

FTM_PERIOD_ON_MEASUREMENT
FTM Input Capture Driver, 362

FTM_PWM_UPDATE_IN_DUTY_CYCLE
FTM Pulse Width Modulation Driver, 376

FTM_PWM_UPDATE_IN_TICKS
FTM Pulse Width Modulation Driver, 376

FTM_QUAD_COUNT_AND_DIR
FTM Common Driver, 330

FTM_QUAD_PHASE_ENCODE
FTM Common Driver, 330

FTM_QUAD_PHASE_INVERT
FTM Common Driver, 330

FTM_QUAD_PHASE_NORMAL
FTM Common Driver, 330

FTM_RELATIVE_VALUE
FTM Output Compare Driver, 369

FTM_RISING_EDGE
FTM Input Capture Driver, 361

FTM_RISING_EDGE_PERIOD_MEASUREMENT
FTM Input Capture Driver, 362

FTM_SET_ON_MATCH
FTM Output Compare Driver, 369

FTM_SIGNAL_MEASUREMENT
FTM Input Capture Driver, 361

FTM_TOGGLE_ON_MATCH
FTM Output Compare Driver, 369

factoryAreaLock
flash_mx25l6433f_secure_lock_t, 405

fallingEdgeInterruptCount
lin_state_t, 509

fault_state_signal_ptr
lin_node_attribute_t, 605

faultChannelEnabled
ftm_pwm_ch_fault_param_t, 372

faultConfig
ftm_pwm_param_t, 375

faultFilterEnabled
ftm_pwm_ch_fault_param_t, 372

faultFilterValue
ftm_pwm_fault_param_t, 372

faultMode
ftm_pwm_fault_param_t, 372

fd_enable
flexcan_data_info_t, 420
flexcan_user_config_t, 422

fd_padding
flexcan_data_info_t, 420

featureNumber
lpit_module_information_t, 540
rcm_version_info_t, 688
smc_version_info_t, 688

fifoSize
lpspi_state_t, 555

filterEn
ftm_input_ch_param_t, 360

filterSampleCount
cmp_comparator_t, 237

filterSamplePeriod
cmp_comparator_t, 237

filterValue
ftm_input_ch_param_t, 360

finalValue
ftm_timer_param_t, 364

firc_config_t, 813
modes, 813
range, 813
regulator, 814

fircConfig

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

862 INDEX

scg_config_t, 820
FirstBitIndex

sai_user_config_t, 732
firstEdge

ftm_combined_ch_param_t, 374
fixedChannel

cmp_trigger_mode_t, 240
fixedPort

cmp_trigger_mode_t, 240
flag_offset

lin_frame_t, 607
lin_master_data_t, 615

flag_size
lin_frame_t, 607
lin_master_data_t, 615

Flash Memory (Flash), 383, 386
brownOutCode, 400
CLEAR_FTFx_FSTAT_ERROR_BITS, 390
CSE_KEY_SIZE_CODE_MAX, 390
CallBack, 400
DFLASH_IFR_READRESOURCE_ADDRESS,

390
DFlashBase, 401
DFlashSize, 401
EEE_COMPLETE_INTERRUPT_QUICK_WRITE,

394
EEE_DISABLE, 394
EEE_ENABLE, 393
EEE_QUICK_WRITE, 394
EEE_STATUS_QUERY, 394
EEESize, 401
EERAMBase, 401
FLASH_CALLBACK_CS, 390
FLASH_DRV_CheckSum, 394
FLASH_DRV_EraseAllBlock, 394
FLASH_DRV_EraseResume, 394
FLASH_DRV_EraseSector, 395
FLASH_DRV_EraseSuspend, 395
FLASH_DRV_GetPFlashProtection, 395
FLASH_DRV_GetSecurityState, 395
FLASH_DRV_Init, 396
FLASH_DRV_Program, 396
FLASH_DRV_ProgramCheck, 396
FLASH_DRV_ProgramOnce, 398
FLASH_DRV_ReadOnce, 398
FLASH_DRV_SecurityBypass, 399
FLASH_DRV_SetPFlashProtection, 399
FLASH_DRV_VerifyAllBlock, 399
FLASH_DRV_VerifySection, 400
FLASH_NOT_SECURE, 390
FLASH_SECURE_BACKDOOR_DISABLED, 390
FLASH_SECURE_BACKDOOR_ENABLED, 390
FLASH_SECURITY_STATE_KEYEN, 390
FLASH_SECURITY_STATE_UNSECURED, 390
FTFx_DPHRASE_SIZE, 390
FTFx_ERASE_ALL_BLOCK, 390
FTFx_ERASE_ALL_BLOCK_UNSECURE, 390
FTFx_ERASE_BLOCK, 390

FTFx_ERASE_SECTOR, 391
FTFx_LONGWORD_SIZE, 391
FTFx_PFLASH_SWAP, 391
FTFx_PHRASE_SIZE, 391
FTFx_PROGRAM_CHECK, 391
FTFx_PROGRAM_LONGWORD, 391
FTFx_PROGRAM_ONCE, 391
FTFx_PROGRAM_PARTITION, 391
FTFx_PROGRAM_PHRASE, 391
FTFx_PROGRAM_SECTION, 391
FTFx_READ_ONCE, 391
FTFx_READ_RESOURCE, 391
FTFx_RSRC_CODE_REG, 391
FTFx_SECURITY_BY_PASS, 391
FTFx_SET_EERAM, 391
FTFx_SWAP_COMPLETE, 392
FTFx_SWAP_READY, 392
FTFx_SWAP_REPORT_STATUS, 392
FTFx_SWAP_SET_IN_COMPLETE, 392
FTFx_SWAP_SET_IN_PREPARE, 392
FTFx_SWAP_SET_INDICATOR_ADDR, 392
FTFx_SWAP_UNINIT, 392
FTFx_SWAP_UPDATE, 392
FTFx_SWAP_UPDATE_ERASED, 392
FTFx_VERIFY_ALL_BLOCK, 392
FTFx_VERIFY_BLOCK, 392
FTFx_VERIFY_SECTION, 392
FTFx_WORD_SIZE, 393
flash_callback_t, 393
flash_flexRam_function_control_code_t, 393
GET_BIT_0_7, 393
GET_BIT_16_23, 393
GET_BIT_24_31, 393
GET_BIT_8_15, 393
NULL_CALLBACK, 393
numOfRecordReqMaintain, 401
PFlashBase, 401
PFlashSize, 401, 402
RESUME_WAIT_CNT, 393
SUSPEND_WAIT_CNT, 393
sectorEraseCount, 402

flash_callback_t
Flash Memory (Flash), 393

flash_eeprom_status_t, 389
flash_flexRam_function_control_code_t

Flash Memory (Flash), 393
Flash_mx25l6433f_drv, 403

FLASH_MX25L6433F_DRV_Deinit, 406
FLASH_MX25L6433F_DRV_EnterDPD, 406
FLASH_MX25L6433F_DRV_EnterOTP, 406
FLASH_MX25L6433F_DRV_Erase32K, 406
FLASH_MX25L6433F_DRV_Erase4K, 408
FLASH_MX25L6433F_DRV_Erase64K, 408
FLASH_MX25L6433F_DRV_EraseAll, 408
FLASH_MX25L6433F_DRV_EraseVerify, 408
FLASH_MX25L6433F_DRV_ExitDPD, 409
FLASH_MX25L6433F_DRV_ExitOTP, 409
FLASH_MX25L6433F_DRV_GetProtection, 409

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 863

FLASH_MX25L6433F_DRV_GetSecureLock, 409
FLASH_MX25L6433F_DRV_GetStatus, 410
FLASH_MX25L6433F_DRV_Init, 410
FLASH_MX25L6433F_DRV_Program, 410
FLASH_MX25L6433F_DRV_ProgramVerify, 410
FLASH_MX25L6433F_DRV_Read, 411
FLASH_MX25L6433F_DRV_Reset, 411
FLASH_MX25L6433F_DRV_STRENGTH_HIGH,

405
FLASH_MX25L6433F_DRV_STRENGTH_LOW,

405
FLASH_MX25L6433F_DRV_SetProtection, 411
FLASH_MX25L6433F_DRV_SetSecureLock, 412
FLASH_MX25L6433F_PROT_DIR_BOTTOM, 405
FLASH_MX25L6433F_PROT_DIR_TOP, 405
FLASH_MX25L6433F_PROT_SIZE_0, 406
FLASH_MX25L6433F_PROT_SIZE_128K, 406
FLASH_MX25L6433F_PROT_SIZE_1M, 406
FLASH_MX25L6433F_PROT_SIZE_256K, 406
FLASH_MX25L6433F_PROT_SIZE_2M, 406
FLASH_MX25L6433F_PROT_SIZE_4M, 406
FLASH_MX25L6433F_PROT_SIZE_512K, 406
FLASH_MX25L6433F_PROT_SIZE_64K, 406
FLASH_MX25L6433F_PROT_SIZE_8M, 406
flash_mx25l6433f_drv_strength_t, 405
flash_mx25l6433f_prot_dir_t, 405
flash_mx25l6433f_prot_size_t, 405

flash_mx25l6433f_drv_strength_t
Flash_mx25l6433f_drv, 405

flash_mx25l6433f_prot_dir_t
Flash_mx25l6433f_drv, 405

flash_mx25l6433f_prot_size_t
Flash_mx25l6433f_drv, 405

flash_mx25l6433f_secure_lock_t, 405
factoryAreaLock, 405
userAreaLock, 405

flash_mx25l6433f_state_t, 404
flash_mx25l6433f_user_config_t, 404

dmaSupport, 404
outputDriverStrength, 404

flash_ssd_config_t, 389
flash_user_config_t, 389
FlexCAN Driver, 413

FLEXCAN_DISABLE_MODE, 425
FLEXCAN_DRV_AbortTransfer, 426
FLEXCAN_DRV_ClearTDCFail, 426
FLEXCAN_DRV_ConfigRxFifo, 426
FLEXCAN_DRV_ConfigRxMb, 426
FLEXCAN_DRV_ConfigTxMb, 427
FLEXCAN_DRV_Deinit, 427
FLEXCAN_DRV_GetBitrate, 427
FLEXCAN_DRV_GetBitrateFD, 427
FLEXCAN_DRV_GetDefaultConfig, 428
FLEXCAN_DRV_GetTDCFail, 428
FLEXCAN_DRV_GetTDCValue, 428
FLEXCAN_DRV_GetTransferStatus, 428
FLEXCAN_DRV_Init, 430
FLEXCAN_DRV_InstallEventCallback, 430

FLEXCAN_DRV_Receive, 430
FLEXCAN_DRV_ReceiveBlocking, 430
FLEXCAN_DRV_RxFifo, 431
FLEXCAN_DRV_RxFifoBlocking, 431
FLEXCAN_DRV_Send, 431
FLEXCAN_DRV_SendBlocking, 432
FLEXCAN_DRV_SetBitrate, 432
FLEXCAN_DRV_SetBitrateCbt, 432
FLEXCAN_DRV_SetRxFifoGlobalMask, 433
FLEXCAN_DRV_SetRxIndividualMask, 433
FLEXCAN_DRV_SetRxMaskType, 433
FLEXCAN_DRV_SetRxMb14Mask, 433
FLEXCAN_DRV_SetRxMb15Mask, 433
FLEXCAN_DRV_SetRxMbGlobalMask, 434
FLEXCAN_DRV_SetTDCOffset, 434
FLEXCAN_EVENT_RX_COMPLETE, 424
FLEXCAN_EVENT_RXFIFO_COMPLETE, 424
FLEXCAN_EVENT_TX_COMPLETE, 424
FLEXCAN_FREEZE_MODE, 425
FLEXCAN_LISTEN_ONLY_MODE, 424
FLEXCAN_LOOPBACK_MODE, 424
FLEXCAN_MB_IDLE, 424
FLEXCAN_MB_RX_BUSY, 424
FLEXCAN_MB_TX_BUSY, 424
FLEXCAN_MSG_ID_EXT, 424
FLEXCAN_MSG_ID_STD, 424
FLEXCAN_NORMAL_MODE, 424
FLEXCAN_PAYLOAD_SIZE_16, 424
FLEXCAN_PAYLOAD_SIZE_32, 424
FLEXCAN_PAYLOAD_SIZE_64, 424
FLEXCAN_PAYLOAD_SIZE_8, 424
FLEXCAN_RX_FIFO_ID_FILTERS_104, 425
FLEXCAN_RX_FIFO_ID_FILTERS_112, 425
FLEXCAN_RX_FIFO_ID_FILTERS_120, 425
FLEXCAN_RX_FIFO_ID_FILTERS_128, 425
FLEXCAN_RX_FIFO_ID_FILTERS_16, 425
FLEXCAN_RX_FIFO_ID_FILTERS_24, 425
FLEXCAN_RX_FIFO_ID_FILTERS_32, 425
FLEXCAN_RX_FIFO_ID_FILTERS_40, 425
FLEXCAN_RX_FIFO_ID_FILTERS_48, 425
FLEXCAN_RX_FIFO_ID_FILTERS_56, 425
FLEXCAN_RX_FIFO_ID_FILTERS_64, 425
FLEXCAN_RX_FIFO_ID_FILTERS_72, 425
FLEXCAN_RX_FIFO_ID_FILTERS_8, 425
FLEXCAN_RX_FIFO_ID_FILTERS_80, 425
FLEXCAN_RX_FIFO_ID_FILTERS_88, 425
FLEXCAN_RX_FIFO_ID_FILTERS_96, 425
FLEXCAN_RX_FIFO_ID_FORMAT_A, 425
FLEXCAN_RX_FIFO_ID_FORMAT_B, 425
FLEXCAN_RX_FIFO_ID_FORMAT_C, 425
FLEXCAN_RX_FIFO_ID_FORMAT_D, 425
FLEXCAN_RX_MASK_GLOBAL, 425
FLEXCAN_RX_MASK_INDIVIDUAL, 425
FLEXCAN_RXFIFO_USING_DMA, 426
FLEXCAN_RXFIFO_USING_INTERRUPTS, 426
flexcan_callback_t, 423
flexcan_event_type_t, 424
flexcan_fd_payload_size_t, 424

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

864 INDEX

flexcan_mb_state_t, 424
flexcan_msgbuff_id_type_t, 424
flexcan_operation_modes_t, 424
flexcan_rx_fifo_id_element_format_t, 425
flexcan_rx_fifo_id_filter_num_t, 425
flexcan_rx_mask_type_t, 425
flexcan_rxfifo_transfer_type_t, 425
flexcan_state_t, 423

FlexCANState, 419
callback, 420
callbackParam, 420
mbs, 420
transferType, 420

FlexIO Common Driver, 435
FLEXIO_DRIVER_TYPE_DMA, 436
FLEXIO_DRIVER_TYPE_INTERRUPTS, 436
FLEXIO_DRIVER_TYPE_POLLING, 436
FLEXIO_DRV_DeinitDevice, 436
FLEXIO_DRV_InitDevice, 436
FLEXIO_DRV_Reset, 436
FLEXIO_EVENT_END_TRANSFER, 436
FLEXIO_EVENT_RX_FULL, 436
FLEXIO_EVENT_TX_EMPTY, 436
flexio_callback_t, 435
flexio_driver_type_t, 436
flexio_event_t, 436

FlexIO I2C Driver, 438
FLEXIO_I2C_DRV_MasterDeinit, 442
FLEXIO_I2C_DRV_MasterGetBaudRate, 442
FLEXIO_I2C_DRV_MasterGetStatus, 442
FLEXIO_I2C_DRV_MasterInit, 443
FLEXIO_I2C_DRV_MasterReceiveData, 443
FLEXIO_I2C_DRV_MasterReceiveDataBlocking,

443
FLEXIO_I2C_DRV_MasterSendData, 444
FLEXIO_I2C_DRV_MasterSendDataBlocking, 444
FLEXIO_I2C_DRV_MasterSetBaudRate, 444
FLEXIO_I2C_DRV_MasterSetSlaveAddr, 445
FLEXIO_I2C_DRV_MasterTransferAbort, 445
FLEXIO_I2C_MAX_SIZE, 442

FlexIO I2S Driver, 446
FLEXIO_I2S_DRV_MasterDeinit, 452
FLEXIO_I2S_DRV_MasterGetBaudRate, 452
FLEXIO_I2S_DRV_MasterGetStatus, 452
FLEXIO_I2S_DRV_MasterInit, 453
FLEXIO_I2S_DRV_MasterReceiveData, 453
FLEXIO_I2S_DRV_MasterReceiveDataBlocking,

453
FLEXIO_I2S_DRV_MasterSendData, 454
FLEXIO_I2S_DRV_MasterSendDataBlocking, 454
FLEXIO_I2S_DRV_MasterSetConfig, 454
FLEXIO_I2S_DRV_MasterSetRxBuffer, 456
FLEXIO_I2S_DRV_MasterSetTxBuffer, 456
FLEXIO_I2S_DRV_MasterTransferAbort, 456
FLEXIO_I2S_DRV_SlaveDeinit, 457
FLEXIO_I2S_DRV_SlaveGetStatus, 457
FLEXIO_I2S_DRV_SlaveInit, 457
FLEXIO_I2S_DRV_SlaveReceiveData, 458

FLEXIO_I2S_DRV_SlaveReceiveDataBlocking,
458

FLEXIO_I2S_DRV_SlaveSendData, 458
FLEXIO_I2S_DRV_SlaveSendDataBlocking, 459
FLEXIO_I2S_DRV_SlaveSetConfig, 459
FLEXIO_I2S_DRV_SlaveSetRxBuffer, 459
FLEXIO_I2S_DRV_SlaveSetTxBuffer, 460
FLEXIO_I2S_DRV_SlaveTransferAbort, 460
flexio_i2s_slave_state_t, 452

FlexIO SPI Driver, 461
FLEXIO_SPI_DRV_MasterDeinit, 468
FLEXIO_SPI_DRV_MasterGetBaudRate, 468
FLEXIO_SPI_DRV_MasterGetStatus, 468
FLEXIO_SPI_DRV_MasterInit, 469
FLEXIO_SPI_DRV_MasterSetBaudRate, 469
FLEXIO_SPI_DRV_MasterTransfer, 469
FLEXIO_SPI_DRV_MasterTransferAbort, 471
FLEXIO_SPI_DRV_MasterTransferBlocking, 471
FLEXIO_SPI_DRV_SlaveDeinit, 471
FLEXIO_SPI_DRV_SlaveGetStatus, 472
FLEXIO_SPI_DRV_SlaveInit, 472
FLEXIO_SPI_DRV_SlaveTransfer, 472
FLEXIO_SPI_DRV_SlaveTransferAbort, 473
FLEXIO_SPI_DRV_SlaveTransferBlocking, 473
FLEXIO_SPI_TRANSFER_1BYTE, 468
FLEXIO_SPI_TRANSFER_2BYTE, 468
FLEXIO_SPI_TRANSFER_4BYTE, 468
FLEXIO_SPI_TRANSFER_LSB_FIRST, 467
FLEXIO_SPI_TRANSFER_MSB_FIRST, 467
flexio_spi_slave_state_t, 467
flexio_spi_transfer_bit_order_t, 467
flexio_spi_transfer_size_t, 467

FlexIO UART Driver, 474
FLEXIO_UART_DIRECTION_RX, 477
FLEXIO_UART_DIRECTION_TX, 477
FLEXIO_UART_DRV_Deinit, 477
FLEXIO_UART_DRV_GetBaudRate, 478
FLEXIO_UART_DRV_GetStatus, 478
FLEXIO_UART_DRV_Init, 478
FLEXIO_UART_DRV_ReceiveData, 479
FLEXIO_UART_DRV_ReceiveDataBlocking, 479
FLEXIO_UART_DRV_SendData, 479
FLEXIO_UART_DRV_SendDataBlocking, 480
FLEXIO_UART_DRV_SetConfig, 480
FLEXIO_UART_DRV_SetRxBuffer, 480
FLEXIO_UART_DRV_SetTxBuffer, 481
FLEXIO_UART_DRV_TransferAbort, 481
flexio_uart_driver_direction_t, 477

FlexTimer (FTM), 482
flexcan_callback_t

FlexCAN Driver, 423
flexcan_data_info_t, 420

data_length, 420
enable_brs, 420
fd_enable, 420
fd_padding, 420
is_remote, 421
msg_id_type, 421

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 865

flexcan_event_type_t
FlexCAN Driver, 424

flexcan_fd_payload_size_t
FlexCAN Driver, 424

flexcan_id_table_t, 421
idFilter, 421
isExtendedFrame, 421
isRemoteFrame, 421

flexcan_mb_handle_t, 419
isBlocking, 419
isRemote, 419
mb_message, 419
mbSema, 419
state, 419

flexcan_mb_state_t
FlexCAN Driver, 424

flexcan_msgbuff_id_type_t
FlexCAN Driver, 424

flexcan_msgbuff_t, 418
cs, 418
data, 418
dataLen, 418
msgId, 418

flexcan_operation_modes_t
FlexCAN Driver, 424

flexcan_rx_fifo_id_element_format_t
FlexCAN Driver, 425

flexcan_rx_fifo_id_filter_num_t
FlexCAN Driver, 425

flexcan_rx_mask_type_t
FlexCAN Driver, 425

flexcan_rxfifo_transfer_type_t
FlexCAN Driver, 425

flexcan_state_t
FlexCAN Driver, 423

flexcan_time_segment_t, 421
phaseSeg1, 422
phaseSeg2, 422
preDivider, 422
propSeg, 422
rJumpwidth, 422

flexcan_user_config_t, 422
bitrate, 422
bitrate_cbt, 422
fd_enable, 422
flexcanMode, 423
is_rx_fifo_needed, 423
max_num_mb, 423
num_id_filters, 423
payload, 423
rxFifoDMAChannel, 423
transfer_type, 423

flexcanMode
flexcan_user_config_t, 423

Flexible I/O (FlexIO), 489
flexio_callback_t

FlexIO Common Driver, 435
flexio_driver_type_t

FlexIO Common Driver, 436
flexio_event_t

FlexIO Common Driver, 436
flexio_i2c_master_state_t, 441
flexio_i2c_master_user_config_t, 440

baudRate, 441
callback, 441
callbackParam, 441
driverType, 441
rxDMAChannel, 441
sclPin, 441
sdaPin, 441
slaveAddress, 441
txDMAChannel, 441

flexio_i2s_master_state_t, 451
flexio_i2s_master_user_config_t, 449

baudRate, 449
bitsWidth, 449
callback, 449
callbackParam, 449
driverType, 449
rxDMAChannel, 450
rxPin, 450
sckPin, 450
txDMAChannel, 450
txPin, 450
wsPin, 450

flexio_i2s_slave_state_t
FlexIO I2S Driver, 452

flexio_i2s_slave_user_config_t, 450
bitsWidth, 451
callback, 451
callbackParam, 451
driverType, 451
rxDMAChannel, 451
rxPin, 451
sckPin, 451
txDMAChannel, 451
txPin, 451
wsPin, 451

flexio_spi_master_state_t, 467
flexio_spi_master_user_config_t, 464

baudRate, 464
bitOrder, 464
callback, 464
callbackParam, 464
clockPhase, 464
clockPolarity, 464
driverType, 465
misoPin, 465
mosiPin, 465
rxDMAChannel, 465
sckPin, 465
ssPin, 465
transferSize, 465
txDMAChannel, 465

flexio_spi_slave_state_t
FlexIO SPI Driver, 467

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

866 INDEX

flexio_spi_slave_user_config_t, 465
bitOrder, 466
callback, 466
callbackParam, 466
clockPhase, 466
clockPolarity, 466
driverType, 466
misoPin, 466
mosiPin, 466
rxDMAChannel, 466
sckPin, 467
ssPin, 467
transferSize, 467
txDMAChannel, 467

flexio_spi_transfer_bit_order_t
FlexIO SPI Driver, 467

flexio_spi_transfer_size_t
FlexIO SPI Driver, 467

flexio_uart_driver_direction_t
FlexIO UART Driver, 477

flexio_uart_state_t, 477
flexio_uart_user_config_t, 476

baudRate, 476
bitCount, 476
callback, 476
callbackParam, 477
dataPin, 477
direction, 477
dmaChannel, 477
driverType, 477

fnmc
sbc_sbc_t, 770

fnms
sbc_wtdog_status_t, 778

frac
peripheral_clock_config_t, 817

frame
sbc_can_conf_t, 774

frame_counter
lin_tl_descriptor_t, 610

frame_data_ptr
lin_frame_t, 607

frame_start
lin_protocol_user_config_t, 613

frame_tbl_ptr
lin_protocol_user_config_t, 613

frame_timeout_cnt
lin_protocol_state_t, 617

FrameSize
sai_user_config_t, 732

FrameStartReport
sai_user_config_t, 732

FreeRTOS, 490
freeRun

lptmr_config_t, 570
freq

scg_sosc_config_t, 825
sosc_config_t, 828

frm_id
lin_schedule_data_t, 608

frm_len
lin_frame_t, 607

frm_offset
lin_frame_t, 607
lin_master_data_t, 615

frm_response
lin_frame_t, 607

frm_size
lin_master_data_t, 615

frm_type
lin_frame_t, 607

ftm_channel_event_callback_t
FTM Common Driver, 329

ftm_combined_ch_param_t, 373
deadTime, 374
enableExternalTrigger, 374
enableExternalTriggerOnNextChn, 374
enableModifiedCombine, 374
enableSecondChannelOutput, 374
firstEdge, 374
hwChannelId, 374
mainChannelPolarity, 374
secondChannelPolarity, 375
secondEdge, 375

ftm_config_mode_t
FTM Common Driver, 329

ftm_edge_alignment_mode_t
FTM Input Capture Driver, 361

ftm_independent_ch_param_t, 373
enableExternalTrigger, 373
hwChannelId, 373
polarity, 373
uDutyCyclePercent, 373

ftm_input_ch_param_t, 359
channelsCallbacks, 360
channelsCallbacksParams, 360
continuousModeEn, 360
edgeAlignement, 360
filterEn, 360
filterValue, 360
hwChannelId, 360
inputMode, 360
measurementType, 360

ftm_input_op_mode_t
FTM Input Capture Driver, 361

ftm_input_param_t, 361
inputChConfig, 361
nMaxCountValue, 361
nNumChannels, 361

ftm_output_cmp_ch_param_t, 367
chMode, 367
comparedValue, 367
enableExternalTrigger, 368
hwChannelId, 368

ftm_output_cmp_param_t, 368
maxCountValue, 368

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 867

mode, 368
nNumOutputChannels, 368
outputChannelConfig, 368

ftm_output_compare_mode_t
FTM Output Compare Driver, 368

ftm_output_compare_update_t
FTM Output Compare Driver, 369

ftm_phase_params_t, 379
phaseFilterVal, 379
phaseInputFilter, 379
phasePolarity, 379

ftm_pwm_ch_fault_param_t, 372
faultChannelEnabled, 372
faultFilterEnabled, 372
ftmFaultPinPolarity, 372

ftm_pwm_fault_param_t, 372
faultFilterValue, 372
faultMode, 372
ftmFaultChannelParam, 372
pwmFaultInterrupt, 373
pwmOutputStateOnFault, 373

ftm_pwm_param_t, 375
deadTimePrescaler, 375
deadTimeValue, 375
faultConfig, 375
mode, 375
nNumCombinedPwmChannels, 375
nNumIndependentPwmChannels, 375
pwmCombinedChannelConfig, 376
pwmIndependentChannelConfig, 376
uFrequencyHZ, 376

ftm_pwm_sync_t, 327
autoClearTrigger, 327
hardwareSync0, 327
hardwareSync1, 327
hardwareSync2, 327
initCounterSync, 327
inverterSync, 327
maskRegSync, 328
maxLoadingPoint, 328
minLoadingPoint, 328
outRegSync, 328
softwareSync, 328
syncPoint, 328

ftm_pwm_update_option_t
FTM Pulse Width Modulation Driver, 376

ftm_quad_decode_config_t, 379
initialVal, 380
maxVal, 380
mode, 380
phaseAConfig, 380
phaseBConfig, 380

ftm_quad_decode_mode_t
FTM Common Driver, 330

ftm_quad_decoder_state_t, 380
counter, 380
counterDirection, 381
overflowDirection, 381

overflowFlag, 381
ftm_quad_phase_polarity_t

FTM Common Driver, 330
ftm_signal_measurement_mode_t

FTM Input Capture Driver, 362
ftm_state_t, 326

channelsCallbacks, 326
channelsCallbacksParams, 326
ftmClockSource, 326
ftmMode, 326
ftmPeriod, 326
ftmSourceClockFrequency, 326
measurementResults, 327

ftm_timer_param_t, 364
finalValue, 364
initialValue, 364
mode, 364

ftm_user_config_t, 328
BDMMode, 328
enableInitializationTrigger, 329
ftmClockSource, 329
ftmMode, 329
ftmPrescaler, 329
isTofIsrEnabled, 329
syncMethod, 329

ftmClockSource
ftm_state_t, 326
ftm_user_config_t, 329

ftmFaultChannelParam
ftm_pwm_fault_param_t, 372

ftmFaultPinPolarity
ftm_pwm_ch_fault_param_t, 372

ftmMode
ftm_state_t, 326
ftm_user_config_t, 329

ftmPeriod
ftm_state_t, 326

ftmPrescaler
ftm_user_config_t, 329

ftmSourceClockFrequency
ftm_state_t, 326

ftmStatePtr
FTM Common Driver, 357

fullSize
csec_state_t, 193

function
lin_protocol_user_config_t, 613

function_id
lin_product_id_t, 814

g_RtcClkInFreq
Clock_manager_s32k1xx, 225

g_TClkFreq
Clock_manager_s32k1xx, 225

g_ftmBase
FTM Common Driver, 357

g_ftmFaultIrqId
FTM Common Driver, 358

g_ftmIrqId

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

868 INDEX

FTM Common Driver, 358
g_ftmOverflowIrqId

FTM Common Driver, 358
g_ftmReloadIrqId

FTM Common Driver, 358
g_lin_flag_handle_tbl

Low level API, 629
g_lin_frame_data_buffer

Low level API, 629
g_lin_frame_flag_handle_tbl

Low level API, 629
g_lin_hardware_ifc

Low level API, 629
g_lin_master_data_array

Low level API, 629
g_lin_node_attribute_array

Low level API, 629
g_lin_protocol_state_array

Low level API, 629
g_lin_protocol_user_cfg_array

Low level API, 629
g_lin_tl_descriptor_array

Low level API, 629
g_lin_virtual_ifc

Low level API, 629
g_lpspiBase

LPSPI Driver, 566
g_lpspiIrqId

LPSPI Driver, 566
g_lpspiStatePtr

LPSPI Driver, 566
g_qspiBase

Qspi_drv, 705
g_xtal0ClkFreq

Clock_manager_s32k1xx, 225
GENERAL_REJECT

Common Transport Layer API, 228
GET_BIT_0_7

Flash Memory (Flash), 393
GET_BIT_16_23

Flash Memory (Flash), 393
GET_BIT_24_31

Flash Memory (Flash), 393
GET_BIT_8_15

Flash Memory (Flash), 393
GO_TO_SLEEP_SET

Common Core API., 226
GPIO_INPUT_DIRECTION

PINS Driver, 671
GPIO_OUTPUT_DIRECTION

PINS Driver, 671
GPIO_UNSPECIFIED_DIRECTION

PINS Driver, 671
gain

scg_sosc_config_t, 825
glEvnt

sbc_evn_capt_t, 783
go_to_sleep_flg

lin_protocol_state_t, 617
lin_word_status_str_t, 603

gpioBase
pin_settings_config_t, 671

HOURS_IN_A_DAY
Real Time Clock Driver, 714

hardwareSync0
ftm_pwm_sync_t, 327

hardwareSync1
ftm_pwm_sync_t, 327

hardwareSync2
ftm_pwm_sync_t, 327

hccrConfig
scg_clock_mode_config_t, 818

highPriority
qspi_ahb_config_t, 698

hour
rtc_timedate_t, 710

hwAverage
adc_average_config_t, 168

hwAvgEnable
adc_average_config_t, 168

hwChannelId
ftm_combined_ch_param_t, 374
ftm_independent_ch_param_t, 373
ftm_input_ch_param_t, 360
ftm_output_cmp_ch_param_t, 368

hysteresisLevel
cmp_comparator_t, 237

INT_SYS_DisableIRQ
Interrupt Manager (Interrupt), 495

INT_SYS_DisableIRQGlobal
Interrupt Manager (Interrupt), 495

INT_SYS_EnableIRQ
Interrupt Manager (Interrupt), 495

INT_SYS_EnableIRQGlobal
Interrupt Manager (Interrupt), 495

INT_SYS_GetPriority
Interrupt Manager (Interrupt), 495

INT_SYS_InstallHandler
Interrupt Manager (Interrupt), 496

INT_SYS_SetPriority
Interrupt Manager (Interrupt), 496

INTERLEAVE_MAX_TIMEOUT
Low level API, 618

idFilter
flexcan_id_table_t, 421

ide
sbc_frame_t, 774

identif
sbc_can_conf_t, 775

idle_timeout_cnt
lin_protocol_state_t, 617

inOutMappingConfig
trgmux_user_config_t, 754

index
csec_state_t, 193

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 869

initCounterSync
ftm_pwm_sync_t, 327

initial_NAD
lin_node_attribute_t, 605

initialVal
ftm_quad_decode_config_t, 380

initialValue
ftm_timer_param_t, 364

Initialization, 491
ld_init, 491

initializationDelay
cmp_trigger_mode_t, 240

initialize
pmc_lpo_clock_config_t, 818
scg_clock_mode_config_t, 819
scg_clockout_config_t, 819
scg_firc_config_t, 821
scg_rtc_config_t, 822
scg_sirc_config_t, 823
scg_sosc_config_t, 825
scg_spll_config_t, 826
sim_clock_out_config_t, 218
sim_lpo_clock_config_t, 219
sim_plat_gate_config_t, 220
sim_tclk_config_t, 219
sim_trace_clock_config_t, 221

inputBuff
csec_state_t, 193

inputChConfig
ftm_input_param_t, 361

inputClock
adc_converter_config_t, 167

inputMode
ftm_input_ch_param_t, 360

intEnable
pdb_timer_config_t, 663
wdog_user_config_t, 807

Interface management, 492
l_ifc_goto_sleep, 492
l_ifc_init, 492
l_ifc_read_status, 493
l_ifc_wake_up, 493

interleave_timeout_counter
lin_tl_descriptor_t, 611

interrupt
enet_config_t, 295

Interrupt Manager (Interrupt), 494
DefaultISR, 495
INT_SYS_DisableIRQ, 495
INT_SYS_DisableIRQGlobal, 495
INT_SYS_EnableIRQ, 495
INT_SYS_EnableIRQGlobal, 495
INT_SYS_GetPriority, 495
INT_SYS_InstallHandler, 496
INT_SYS_SetPriority, 496
isr_t, 495

Interrupt vector numbers for S32K144, 497
interruptCfg

erm_user_config_t, 308
interruptEnable

adc_chan_config_t, 169
edma_transfer_config_t, 271
ewm_init_config_t, 313
lptmr_config_t, 570

inverterState
cmp_comparator_t, 237

inverterSync
ftm_pwm_sync_t, 327

io2IdleValue
qspi_user_config_t, 697

io3IdleValue
qspi_user_config_t, 697

is10bitAddr
lpi2c_master_user_config_t, 525
lpi2c_slave_user_config_t, 526

is_remote
flexcan_data_info_t, 421

is_rx_fifo_needed
flexcan_user_config_t, 423

isBlocking
flexcan_mb_handle_t, 419
lpspi_state_t, 555

isBusBusy
lin_state_t, 509

isExtendedFrame
flexcan_id_table_t, 421

isInit
drv_config_t, 813

isInterruptEnabled
lpit_user_channel_config_t, 542

isPcsContinuous
lpspi_master_config_t, 553
lpspi_state_t, 555

isRemote
flexcan_mb_handle_t, 419

isRemoteFrame
flexcan_id_table_t, 421

isRxBlocking
lin_state_t, 509
lpuart_state_t, 580

isRxBusy
lin_state_t, 509
lpuart_state_t, 580

isTofIsrEnabled
ftm_user_config_t, 329

isTransferInProgress
lpspi_state_t, 555

isTxBlocking
lin_state_t, 509
lpuart_state_t, 580

isTxBusy
lin_state_t, 509
lpuart_state_t, 580

isr_t
Interrupt Manager (Interrupt), 495

iv

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

870 INDEX

csec_state_t, 194

J2602 Specific API, 498
J2602 Transport Layer specific API, 499

keyId
csec_state_t, 194

l_diagnostic_mode_t
Low level API, 621

l_ifc_goto_sleep
Interface management, 492

l_ifc_init
Interface management, 492

l_ifc_read_status
Interface management, 493

l_ifc_wake_up
Interface management, 493

l_sch_set
Schedule management, 741

l_sch_tick
Schedule management, 741

l_sys_init
Driver and cluster management, 261

l_sys_irq_disable
User provided call-outs, 803

l_sys_irq_restore
User provided call-outs, 803

LD_ANY_FUNCTION
Common Transport Layer API, 229

LD_ANY_MESSAGE
Common Transport Layer API, 229

LD_ANY_SUPPLIER
Common Transport Layer API, 229

LD_BROADCAST
Common Transport Layer API, 229

LD_CHECK_N_AS_TIMEOUT
Low level API, 623

LD_CHECK_N_CR_TIMEOUT
Low level API, 623

LD_COMPLETED
Low level API, 623

LD_DATA_AVAILABLE
Low level API, 621

LD_DATA_ERROR
Common Transport Layer API, 229

LD_DIAG_IDLE
Low level API, 622

LD_DIAG_RX_FUNCTIONAL
Low level API, 622

LD_DIAG_RX_INTERLEAVED
Low level API, 622

LD_DIAG_RX_PHY
Low level API, 622

LD_DIAG_TX_FUNCTIONAL
Low level API, 622

LD_DIAG_TX_INTERLEAVED
Low level API, 622

LD_DIAG_TX_PHY

Low level API, 622
LD_FAILED

Low level API, 623
LD_FUNCTIONAL_NAD

Common Transport Layer API, 229
LD_ID_NO_RESPONSE

Low level API, 618
LD_IN_PROGRESS

Low level API, 623
LD_LENGTH_NOT_CORRECT

Common Transport Layer API, 229
LD_LENGTH_TOO_SHORT

Common Transport Layer API, 229
LD_N_AS_TIMEOUT

Low level API, 623
LD_N_CR_TIMEOUT

Low level API, 623
LD_NEGATIVE

Low level API, 622
LD_NEGATIVE_RESPONSE

Low level API, 618
LD_NO_CHECK_TIMEOUT

Low level API, 623
LD_NO_DATA

Low level API, 621
LD_NO_MSG

Low level API, 623
LD_NO_RESPONSE

Low level API, 622
LD_OVERWRITTEN

Low level API, 622
LD_POSITIVE_RESPONSE

Low level API, 618
LD_QUEUE_AVAILABLE

Low level API, 621
LD_QUEUE_EMPTY

Low level API, 621
LD_QUEUE_FULL

Low level API, 621
LD_READ_OK

Common Transport Layer API, 229
LD_RECEIVE_ERROR

Low level API, 621
LD_REQUEST_FINISHED

Low level API, 624
LD_SERVICE_BUSY

Low level API, 624
LD_SERVICE_ERROR

Low level API, 624
LD_SERVICE_IDLE

Low level API, 624
LD_SET_OK

Common Transport Layer API, 229
LD_SUCCESS

Low level API, 622
LD_TRANSFER_ERROR

Low level API, 621
LD_TRANSMIT_ERROR

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 871

Low level API, 621
LD_WRONG_SN

Low level API, 623
LIN 2.1 Specific API, 500

lin_collision_resolve, 500
lin_make_res_evnt_frame, 500
lin_update_err_signal, 501
lin_update_rx_evnt_frame, 501
lin_update_word_status_lin21, 501

LIN Core API, 502
LIN Driver, 503

CHECK_PARITY, 510
LIN_BAUDRATE_ADJUSTED, 511
LIN_CHECKSUM_ERROR, 511
LIN_DRV_AbortTransferData, 512
LIN_DRV_AutoBaudCapture, 512
LIN_DRV_Deinit, 512
LIN_DRV_DisableIRQ, 513
LIN_DRV_EnableIRQ, 513
LIN_DRV_GetCurrentNodeState, 513
LIN_DRV_GetReceiveStatus, 513
LIN_DRV_GetTransmitStatus, 514
LIN_DRV_GoToSleepMode, 514
LIN_DRV_GotoIdleState, 514
LIN_DRV_IRQHandler, 515
LIN_DRV_Init, 514
LIN_DRV_InstallCallback, 515
LIN_DRV_MakeChecksumByte, 515
LIN_DRV_MasterSendHeader, 515
LIN_DRV_ProcessParity, 516
LIN_DRV_ReceiveFrameData, 516
LIN_DRV_ReceiveFrameDataBlocking, 517
LIN_DRV_SendFrameData, 517
LIN_DRV_SendFrameDataBlocking, 518
LIN_DRV_SendWakeupSignal, 518
LIN_DRV_SetTimeoutCounter, 518
LIN_DRV_TimeoutService, 519
LIN_FRAME_ERROR, 511
LIN_NO_EVENT, 511
LIN_NODE_STATE_IDLE, 512
LIN_NODE_STATE_RECV_DATA, 512
LIN_NODE_STATE_RECV_DATA_COMPLETED,

512
LIN_NODE_STATE_RECV_PID, 512
LIN_NODE_STATE_RECV_SYNC, 512
LIN_NODE_STATE_SEND_BREAK_FIELD, 512
LIN_NODE_STATE_SEND_DATA, 512
LIN_NODE_STATE_SEND_DATA_COMPLETED,

512
LIN_NODE_STATE_SEND_PID, 512
LIN_NODE_STATE_SLEEP_MODE, 511
LIN_NODE_STATE_UNINIT, 511
LIN_PID_ERROR, 511
LIN_PID_OK, 511
LIN_READBACK_ERROR, 511
LIN_RECV_BREAK_FIELD_OK, 511
LIN_RX_COMPLETED, 511
LIN_SYNC_ERROR, 511

LIN_SYNC_OK, 511
LIN_TX_COMPLETED, 511
LIN_WAKEUP_SIGNAL, 511
lin_callback_t, 511
lin_event_id_t, 511
lin_node_state_t, 511
lin_timer_get_time_interval_t, 511
MAKE_PARITY, 510
MASTER, 511
SLAVE, 511

LIN Stack, 520
LIN_BAUDRATE_ADJUSTED

LIN Driver, 511
LIN_CHECKSUM_ERROR

LIN Driver, 511
LIN_DIAGNOSTIC_CLASS_I

Low level API, 621
LIN_DIAGNOSTIC_CLASS_II

Low level API, 621
LIN_DIAGNOSTIC_CLASS_III

Low level API, 622
LIN_DRV_AbortTransferData

LIN Driver, 512
LIN_DRV_AutoBaudCapture

LIN Driver, 512
LIN_DRV_Deinit

LIN Driver, 512
LIN_DRV_DisableIRQ

LIN Driver, 513
LIN_DRV_EnableIRQ

LIN Driver, 513
LIN_DRV_GetCurrentNodeState

LIN Driver, 513
LIN_DRV_GetReceiveStatus

LIN Driver, 513
LIN_DRV_GetTransmitStatus

LIN Driver, 514
LIN_DRV_GoToSleepMode

LIN Driver, 514
LIN_DRV_GotoIdleState

LIN Driver, 514
LIN_DRV_IRQHandler

LIN Driver, 515
LIN_DRV_Init

LIN Driver, 514
LIN_DRV_InstallCallback

LIN Driver, 515
LIN_DRV_MakeChecksumByte

LIN Driver, 515
LIN_DRV_MasterSendHeader

LIN Driver, 515
LIN_DRV_ProcessParity

LIN Driver, 516
LIN_DRV_ReceiveFrameData

LIN Driver, 516
LIN_DRV_ReceiveFrameDataBlocking

LIN Driver, 517
LIN_DRV_SendFrameData

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

872 INDEX

LIN Driver, 517
LIN_DRV_SendFrameDataBlocking

LIN Driver, 518
LIN_DRV_SendWakeupSignal

LIN Driver, 518
LIN_DRV_SetTimeoutCounter

LIN Driver, 518
LIN_DRV_TimeoutService

LIN Driver, 519
LIN_FRAME_ERROR

LIN Driver, 511
LIN_FRM_DIAG

Low level API, 622
LIN_FRM_EVNT

Low level API, 622
LIN_FRM_SPRDC

Low level API, 622
LIN_FRM_UNCD

Low level API, 622
LIN_LLD_BUS_ACTIVITY_TIMEOUT

Low level API, 623
LIN_LLD_CHECKSUM_ERR

Low level API, 623
LIN_LLD_ERROR

Low level API, 618
LIN_LLD_FRAME_ERR

Low level API, 623
LIN_LLD_NODATA_TIMEOUT

Low level API, 623
LIN_LLD_OK

Low level API, 618
LIN_LLD_PID_ERR

Low level API, 623
LIN_LLD_PID_OK

Low level API, 623
LIN_LLD_READBACK_ERR

Low level API, 623
LIN_LLD_RX_COMPLETED

Low level API, 623
LIN_LLD_TX_COMPLETED

Low level API, 623
LIN_MASTER

Low level API, 618
LIN_NO_EVENT

LIN Driver, 511
LIN_NODE_STATE_IDLE

LIN Driver, 512
LIN_NODE_STATE_RECV_DATA

LIN Driver, 512
LIN_NODE_STATE_RECV_DATA_COMPLETED

LIN Driver, 512
LIN_NODE_STATE_RECV_PID

LIN Driver, 512
LIN_NODE_STATE_RECV_SYNC

LIN Driver, 512
LIN_NODE_STATE_SEND_BREAK_FIELD

LIN Driver, 512
LIN_NODE_STATE_SEND_DATA

LIN Driver, 512
LIN_NODE_STATE_SEND_DATA_COMPLETED

LIN Driver, 512
LIN_NODE_STATE_SEND_PID

LIN Driver, 512
LIN_NODE_STATE_SLEEP_MODE

LIN Driver, 511
LIN_NODE_STATE_UNINIT

LIN Driver, 511
LIN_PID_ERROR

LIN Driver, 511
LIN_PID_OK

LIN Driver, 511
LIN_PRODUCT_ID

Common Transport Layer API, 229
LIN_PROTOCOL_21

Low level API, 623
LIN_PROTOCOL_J2602

Low level API, 623
LIN_READ_USR_DEF_MAX

Low level API, 619
LIN_READ_USR_DEF_MIN

Low level API, 619
LIN_READBACK_ERROR

LIN Driver, 511
LIN_RECV_BREAK_FIELD_OK

LIN Driver, 511
LIN_RES_PUB

Low level API, 622
LIN_RES_SUB

Low level API, 622
LIN_RX_COMPLETED

LIN Driver, 511
LIN_SCH_TBL_COLL_RESOLV

Low level API, 624
LIN_SCH_TBL_DIAG

Low level API, 624
LIN_SCH_TBL_GO_TO_SLEEP

Low level API, 624
LIN_SCH_TBL_NORM

Low level API, 624
LIN_SCH_TBL_NULL

Low level API, 624
LIN_SERIAL_NUMBER

Common Transport Layer API, 230
LIN_SLAVE

Low level API, 619
LIN_SYNC_ERROR

LIN Driver, 511
LIN_SYNC_OK

LIN Driver, 511
LIN_TL_CALLBACK_HANDLER

Low level API, 619
LIN_TX_COMPLETED

LIN Driver, 511
LIN_WAKEUP_SIGNAL

LIN Driver, 511
LK0C

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 873

UJA1169 SBC Driver, 789
LK1C

UJA1169 SBC Driver, 789
LK2C

UJA1169 SBC Driver, 789
LK3C

UJA1169 SBC Driver, 789
LK4C

UJA1169 SBC Driver, 789
LK5C

UJA1169 SBC Driver, 789
LK6C

UJA1169 SBC Driver, 789
LKAC

UJA1169 SBC Driver, 789
LPI2C Driver, 521

LPI2C_DRV_MasterAbortTransferData, 528
LPI2C_DRV_MasterDeinit, 528
LPI2C_DRV_MasterGetBaudRate, 528
LPI2C_DRV_MasterGetTransferStatus, 529
LPI2C_DRV_MasterIRQHandler, 529
LPI2C_DRV_MasterInit, 529
LPI2C_DRV_MasterReceiveData, 530
LPI2C_DRV_MasterReceiveDataBlocking, 530
LPI2C_DRV_MasterSendData, 530
LPI2C_DRV_MasterSendDataBlocking, 531
LPI2C_DRV_MasterSetBaudRate, 531
LPI2C_DRV_MasterSetSlaveAddr, 531
LPI2C_DRV_SlaveAbortTransferData, 531
LPI2C_DRV_SlaveDeinit, 533
LPI2C_DRV_SlaveGetTransferStatus, 533
LPI2C_DRV_SlaveIRQHandler, 533
LPI2C_DRV_SlaveInit, 533
LPI2C_DRV_SlaveReceiveData, 534
LPI2C_DRV_SlaveReceiveDataBlocking, 534
LPI2C_DRV_SlaveSendData, 534
LPI2C_DRV_SlaveSendDataBlocking, 535
LPI2C_DRV_SlaveSetRxBuffer, 535
LPI2C_DRV_SlaveSetTxBuffer, 535
LPI2C_FAST_MODE, 527
LPI2C_MASTER_EVENT_ARBITRATION_LOST,

527
LPI2C_MASTER_EVENT_FIFO_ERROR, 527
LPI2C_MASTER_EVENT_NACK, 527
LPI2C_MASTER_EVENT_RX, 527
LPI2C_MASTER_EVENT_TX, 527
LPI2C_SLAVE_EVENT_RX_FULL, 528
LPI2C_SLAVE_EVENT_RX_REQ, 528
LPI2C_SLAVE_EVENT_STOP, 528
LPI2C_SLAVE_EVENT_TX_EMPTY, 528
LPI2C_SLAVE_EVENT_TX_REQ, 528
LPI2C_STANDARD_MODE, 527
LPI2C_USING_DMA, 528
LPI2C_USING_INTERRUPTS, 528
lpi2c_master_callback_t, 527
lpi2c_master_event_t, 527
lpi2c_mode_t, 527
lpi2c_slave_callback_t, 527

lpi2c_slave_event_t, 528
lpi2c_transfer_type_t, 528

LPI2C_DRV_MasterAbortTransferData
LPI2C Driver, 528

LPI2C_DRV_MasterDeinit
LPI2C Driver, 528

LPI2C_DRV_MasterGetBaudRate
LPI2C Driver, 528

LPI2C_DRV_MasterGetTransferStatus
LPI2C Driver, 529

LPI2C_DRV_MasterIRQHandler
LPI2C Driver, 529

LPI2C_DRV_MasterInit
LPI2C Driver, 529

LPI2C_DRV_MasterReceiveData
LPI2C Driver, 530

LPI2C_DRV_MasterReceiveDataBlocking
LPI2C Driver, 530

LPI2C_DRV_MasterSendData
LPI2C Driver, 530

LPI2C_DRV_MasterSendDataBlocking
LPI2C Driver, 531

LPI2C_DRV_MasterSetBaudRate
LPI2C Driver, 531

LPI2C_DRV_MasterSetSlaveAddr
LPI2C Driver, 531

LPI2C_DRV_SlaveAbortTransferData
LPI2C Driver, 531

LPI2C_DRV_SlaveDeinit
LPI2C Driver, 533

LPI2C_DRV_SlaveGetTransferStatus
LPI2C Driver, 533

LPI2C_DRV_SlaveIRQHandler
LPI2C Driver, 533

LPI2C_DRV_SlaveInit
LPI2C Driver, 533

LPI2C_DRV_SlaveReceiveData
LPI2C Driver, 534

LPI2C_DRV_SlaveReceiveDataBlocking
LPI2C Driver, 534

LPI2C_DRV_SlaveSendData
LPI2C Driver, 534

LPI2C_DRV_SlaveSendDataBlocking
LPI2C Driver, 535

LPI2C_DRV_SlaveSetRxBuffer
LPI2C Driver, 535

LPI2C_DRV_SlaveSetTxBuffer
LPI2C Driver, 535

LPI2C_FAST_MODE
LPI2C Driver, 527

LPI2C_MASTER_EVENT_ARBITRATION_LOST
LPI2C Driver, 527

LPI2C_MASTER_EVENT_FIFO_ERROR
LPI2C Driver, 527

LPI2C_MASTER_EVENT_NACK
LPI2C Driver, 527

LPI2C_MASTER_EVENT_RX
LPI2C Driver, 527

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

874 INDEX

LPI2C_MASTER_EVENT_TX
LPI2C Driver, 527

LPI2C_SLAVE_EVENT_RX_FULL
LPI2C Driver, 528

LPI2C_SLAVE_EVENT_RX_REQ
LPI2C Driver, 528

LPI2C_SLAVE_EVENT_STOP
LPI2C Driver, 528

LPI2C_SLAVE_EVENT_TX_EMPTY
LPI2C Driver, 528

LPI2C_SLAVE_EVENT_TX_REQ
LPI2C Driver, 528

LPI2C_STANDARD_MODE
LPI2C Driver, 527

LPI2C_USING_DMA
LPI2C Driver, 528

LPI2C_USING_INTERRUPTS
LPI2C Driver, 528

LPIT Driver, 537
LPIT_DRV_ClearInterruptFlagTimerChannels, 544
LPIT_DRV_Deinit, 544
LPIT_DRV_GetCurrentTimerCount, 544
LPIT_DRV_GetCurrentTimerUs, 544
LPIT_DRV_GetInterruptFlagTimerChannels, 545
LPIT_DRV_GetTimerPeriodByCount, 545
LPIT_DRV_GetTimerPeriodByUs, 545
LPIT_DRV_Init, 546
LPIT_DRV_InitChannel, 546
LPIT_DRV_SetTimerPeriodByCount, 547
LPIT_DRV_SetTimerPeriodByUs, 547
LPIT_DRV_SetTimerPeriodInDual16ModeBy←↩

Count, 547
LPIT_DRV_SetTimerPeriodInDual16ModeByUs,

548
LPIT_DRV_StartTimerChannels, 548
LPIT_DRV_StopTimerChannels, 548
LPIT_DUAL_PERIODIC_COUNTER, 543
LPIT_INPUT_CAPTURE, 543
LPIT_PERIOD_UNITS_COUNTS, 543
LPIT_PERIOD_UNITS_MICROSECONDS, 543
LPIT_PERIODIC_COUNTER, 543
LPIT_TRIGGER_ACCUMULATOR, 543
LPIT_TRIGGER_SOURCE_EXTERNAL, 543
LPIT_TRIGGER_SOURCE_INTERNAL, 543
lpit_period_units_t, 543
lpit_timer_modes_t, 543
lpit_trigger_source_t, 543
MAX_PERIOD_COUNT, 543
MAX_PERIOD_COUNT_16_BIT, 543
MAX_PERIOD_COUNT_IN_DUAL_16BIT_MO←↩

DE, 543
LPIT_DRV_ClearInterruptFlagTimerChannels

LPIT Driver, 544
LPIT_DRV_Deinit

LPIT Driver, 544
LPIT_DRV_GetCurrentTimerCount

LPIT Driver, 544
LPIT_DRV_GetCurrentTimerUs

LPIT Driver, 544
LPIT_DRV_GetInterruptFlagTimerChannels

LPIT Driver, 545
LPIT_DRV_GetTimerPeriodByCount

LPIT Driver, 545
LPIT_DRV_GetTimerPeriodByUs

LPIT Driver, 545
LPIT_DRV_Init

LPIT Driver, 546
LPIT_DRV_InitChannel

LPIT Driver, 546
LPIT_DRV_SetTimerPeriodByCount

LPIT Driver, 547
LPIT_DRV_SetTimerPeriodByUs

LPIT Driver, 547
LPIT_DRV_SetTimerPeriodInDual16ModeByCount

LPIT Driver, 547
LPIT_DRV_SetTimerPeriodInDual16ModeByUs

LPIT Driver, 548
LPIT_DRV_StartTimerChannels

LPIT Driver, 548
LPIT_DRV_StopTimerChannels

LPIT Driver, 548
LPIT_DUAL_PERIODIC_COUNTER

LPIT Driver, 543
LPIT_INPUT_CAPTURE

LPIT Driver, 543
LPIT_PERIOD_UNITS_COUNTS

LPIT Driver, 543
LPIT_PERIOD_UNITS_MICROSECONDS

LPIT Driver, 543
LPIT_PERIODIC_COUNTER

LPIT Driver, 543
LPIT_TRIGGER_ACCUMULATOR

LPIT Driver, 543
LPIT_TRIGGER_SOURCE_EXTERNAL

LPIT Driver, 543
LPIT_TRIGGER_SOURCE_INTERNAL

LPIT Driver, 543
LPSPI Driver, 550

g_lpspiBase, 566
g_lpspiIrqId, 566
g_lpspiStatePtr, 566
LPSPI0_IRQHandler, 559
LPSPI1_IRQHandler, 559
LPSPI2_IRQHandler, 559
LPSPI_ACTIVE_HIGH, 558
LPSPI_ACTIVE_LOW, 558
LPSPI_CLOCK_PHASE_1ST_EDGE, 558
LPSPI_CLOCK_PHASE_2ND_EDGE, 558
LPSPI_DRV_DisableTEIEInterrupts, 559
LPSPI_DRV_FillupTxBuffer, 559
LPSPI_DRV_IRQHandler, 559
LPSPI_DRV_MasterAbortTransfer, 560
LPSPI_DRV_MasterConfigureBus, 560
LPSPI_DRV_MasterDeinit, 560
LPSPI_DRV_MasterGetTransferStatus, 561
LPSPI_DRV_MasterIRQHandler, 562

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 875

LPSPI_DRV_MasterInit, 561
LPSPI_DRV_MasterSetDelay, 562
LPSPI_DRV_MasterTransfer, 562
LPSPI_DRV_MasterTransferBlocking, 563
LPSPI_DRV_ReadRXBuffer, 563
LPSPI_DRV_SlaveAbortTransfer, 564
LPSPI_DRV_SlaveDeinit, 564
LPSPI_DRV_SlaveGetTransferStatus, 564
LPSPI_DRV_SlaveIRQHandler, 565
LPSPI_DRV_SlaveInit, 564
LPSPI_DRV_SlaveTransfer, 565
LPSPI_DRV_SlaveTransferBlocking, 565
LPSPI_PCS0, 558
LPSPI_PCS1, 558
LPSPI_PCS2, 558
LPSPI_PCS3, 559
LPSPI_RECEIVE_FAIL, 559
LPSPI_SCK_ACTIVE_HIGH, 558
LPSPI_SCK_ACTIVE_LOW, 558
LPSPI_TRANSFER_OK, 559
LPSPI_TRANSMIT_FAIL, 559
LPSPI_USING_DMA, 558
LPSPI_USING_INTERRUPTS, 558
lpspi_clock_phase_t, 558
lpspi_sck_polarity_t, 558
lpspi_signal_polarity_t, 558
lpspi_transfer_type, 558
lpspi_which_pcs_t, 558
transfer_status_t, 559

LPSPI0_IRQHandler
LPSPI Driver, 559

LPSPI1_IRQHandler
LPSPI Driver, 559

LPSPI2_IRQHandler
LPSPI Driver, 559

LPSPI_ACTIVE_HIGH
LPSPI Driver, 558

LPSPI_ACTIVE_LOW
LPSPI Driver, 558

LPSPI_CLOCK_PHASE_1ST_EDGE
LPSPI Driver, 558

LPSPI_CLOCK_PHASE_2ND_EDGE
LPSPI Driver, 558

LPSPI_DRV_DisableTEIEInterrupts
LPSPI Driver, 559

LPSPI_DRV_FillupTxBuffer
LPSPI Driver, 559

LPSPI_DRV_IRQHandler
LPSPI Driver, 559

LPSPI_DRV_MasterAbortTransfer
LPSPI Driver, 560

LPSPI_DRV_MasterConfigureBus
LPSPI Driver, 560

LPSPI_DRV_MasterDeinit
LPSPI Driver, 560

LPSPI_DRV_MasterGetTransferStatus
LPSPI Driver, 561

LPSPI_DRV_MasterIRQHandler

LPSPI Driver, 562
LPSPI_DRV_MasterInit

LPSPI Driver, 561
LPSPI_DRV_MasterSetDelay

LPSPI Driver, 562
LPSPI_DRV_MasterTransfer

LPSPI Driver, 562
LPSPI_DRV_MasterTransferBlocking

LPSPI Driver, 563
LPSPI_DRV_ReadRXBuffer

LPSPI Driver, 563
LPSPI_DRV_SlaveAbortTransfer

LPSPI Driver, 564
LPSPI_DRV_SlaveDeinit

LPSPI Driver, 564
LPSPI_DRV_SlaveGetTransferStatus

LPSPI Driver, 564
LPSPI_DRV_SlaveIRQHandler

LPSPI Driver, 565
LPSPI_DRV_SlaveInit

LPSPI Driver, 564
LPSPI_DRV_SlaveTransfer

LPSPI Driver, 565
LPSPI_DRV_SlaveTransferBlocking

LPSPI Driver, 565
LPSPI_PCS0

LPSPI Driver, 558
LPSPI_PCS1

LPSPI Driver, 558
LPSPI_PCS2

LPSPI Driver, 558
LPSPI_PCS3

LPSPI Driver, 559
LPSPI_RECEIVE_FAIL

LPSPI Driver, 559
LPSPI_SCK_ACTIVE_HIGH

LPSPI Driver, 558
LPSPI_SCK_ACTIVE_LOW

LPSPI Driver, 558
LPSPI_TRANSFER_OK

LPSPI Driver, 559
LPSPI_TRANSMIT_FAIL

LPSPI Driver, 559
LPSPI_USING_DMA

LPSPI Driver, 558
LPSPI_USING_INTERRUPTS

LPSPI Driver, 558
LPTMR Driver, 567

LPTMR_CLOCKSOURCE_1KHZ_LPO, 571
LPTMR_CLOCKSOURCE_PCC, 571
LPTMR_CLOCKSOURCE_RTC, 571
LPTMR_CLOCKSOURCE_SIRCDIV2, 571
LPTMR_COUNTER_UNITS_MICROSECONDS,

571
LPTMR_COUNTER_UNITS_TICKS, 571
LPTMR_DRV_ClearCompareFlag, 572
LPTMR_DRV_Deinit, 573
LPTMR_DRV_GetCompareFlag, 573

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

876 INDEX

LPTMR_DRV_GetCompareValueByCount, 573
LPTMR_DRV_GetCompareValueByUs, 573
LPTMR_DRV_GetConfig, 573
LPTMR_DRV_GetCounterValueByCount, 573
LPTMR_DRV_Init, 574
LPTMR_DRV_InitConfigStruct, 574
LPTMR_DRV_IsRunning, 574
LPTMR_DRV_SetCompareValueByCount, 574
LPTMR_DRV_SetCompareValueByUs, 575
LPTMR_DRV_SetConfig, 575
LPTMR_DRV_SetInterrupt, 575
LPTMR_DRV_SetPinConfiguration, 576
LPTMR_DRV_StartCounter, 576
LPTMR_DRV_StopCounter, 576
LPTMR_PINPOLARITY_FALLING, 571
LPTMR_PINPOLARITY_RISING, 571
LPTMR_PINSELECT_ALT1, 572
LPTMR_PINSELECT_ALT2, 572
LPTMR_PINSELECT_ALT3, 572
LPTMR_PINSELECT_TRGMUX, 572
LPTMR_PRESCALE_1024_GLITCHFILTER_512,

572
LPTMR_PRESCALE_128_GLITCHFILTER_64,

572
LPTMR_PRESCALE_16384_GLITCHFILTER_←↩

8192, 572
LPTMR_PRESCALE_16_GLITCHFILTER_8, 572
LPTMR_PRESCALE_2, 572
LPTMR_PRESCALE_2048_GLITCHFILTER_←↩

1024, 572
LPTMR_PRESCALE_256_GLITCHFILTER_128,

572
LPTMR_PRESCALE_32768_GLITCHFILTER_←↩

16384, 572
LPTMR_PRESCALE_32_GLITCHFILTER_16, 572
LPTMR_PRESCALE_4096_GLITCHFILTER_←↩

2048, 572
LPTMR_PRESCALE_4_GLITCHFILTER_2, 572
LPTMR_PRESCALE_512_GLITCHFILTER_256,

572
LPTMR_PRESCALE_64_GLITCHFILTER_32, 572
LPTMR_PRESCALE_65536_GLITCHFILTER_←↩

32768, 572
LPTMR_PRESCALE_8192_GLITCHFILTER_←↩

4096, 572
LPTMR_PRESCALE_8_GLITCHFILTER_4, 572
LPTMR_WORKMODE_PULSECOUNTER, 572
LPTMR_WORKMODE_TIMER, 572
lptmr_clocksource_t, 571
lptmr_counter_units_t, 571
lptmr_pinpolarity_t, 571
lptmr_pinselect_t, 571
lptmr_prescaler_t, 572
lptmr_workmode_t, 572

LPTMR_CLOCKSOURCE_1KHZ_LPO
LPTMR Driver, 571

LPTMR_CLOCKSOURCE_PCC
LPTMR Driver, 571

LPTMR_CLOCKSOURCE_RTC
LPTMR Driver, 571

LPTMR_CLOCKSOURCE_SIRCDIV2
LPTMR Driver, 571

LPTMR_COUNTER_UNITS_MICROSECONDS
LPTMR Driver, 571

LPTMR_COUNTER_UNITS_TICKS
LPTMR Driver, 571

LPTMR_DRV_ClearCompareFlag
LPTMR Driver, 572

LPTMR_DRV_Deinit
LPTMR Driver, 573

LPTMR_DRV_GetCompareFlag
LPTMR Driver, 573

LPTMR_DRV_GetCompareValueByCount
LPTMR Driver, 573

LPTMR_DRV_GetCompareValueByUs
LPTMR Driver, 573

LPTMR_DRV_GetConfig
LPTMR Driver, 573

LPTMR_DRV_GetCounterValueByCount
LPTMR Driver, 573

LPTMR_DRV_Init
LPTMR Driver, 574

LPTMR_DRV_InitConfigStruct
LPTMR Driver, 574

LPTMR_DRV_IsRunning
LPTMR Driver, 574

LPTMR_DRV_SetCompareValueByCount
LPTMR Driver, 574

LPTMR_DRV_SetCompareValueByUs
LPTMR Driver, 575

LPTMR_DRV_SetConfig
LPTMR Driver, 575

LPTMR_DRV_SetInterrupt
LPTMR Driver, 575

LPTMR_DRV_SetPinConfiguration
LPTMR Driver, 576

LPTMR_DRV_StartCounter
LPTMR Driver, 576

LPTMR_DRV_StopCounter
LPTMR Driver, 576

LPTMR_PINPOLARITY_FALLING
LPTMR Driver, 571

LPTMR_PINPOLARITY_RISING
LPTMR Driver, 571

LPTMR_PINSELECT_ALT1
LPTMR Driver, 572

LPTMR_PINSELECT_ALT2
LPTMR Driver, 572

LPTMR_PINSELECT_ALT3
LPTMR Driver, 572

LPTMR_PINSELECT_TRGMUX
LPTMR Driver, 572

LPTMR_PRESCALE_1024_GLITCHFILTER_512
LPTMR Driver, 572

LPTMR_PRESCALE_128_GLITCHFILTER_64
LPTMR Driver, 572

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 877

LPTMR_PRESCALE_16384_GLITCHFILTER_8192
LPTMR Driver, 572

LPTMR_PRESCALE_16_GLITCHFILTER_8
LPTMR Driver, 572

LPTMR_PRESCALE_2
LPTMR Driver, 572

LPTMR_PRESCALE_2048_GLITCHFILTER_1024
LPTMR Driver, 572

LPTMR_PRESCALE_256_GLITCHFILTER_128
LPTMR Driver, 572

LPTMR_PRESCALE_32768_GLITCHFILTER_16384
LPTMR Driver, 572

LPTMR_PRESCALE_32_GLITCHFILTER_16
LPTMR Driver, 572

LPTMR_PRESCALE_4096_GLITCHFILTER_2048
LPTMR Driver, 572

LPTMR_PRESCALE_4_GLITCHFILTER_2
LPTMR Driver, 572

LPTMR_PRESCALE_512_GLITCHFILTER_256
LPTMR Driver, 572

LPTMR_PRESCALE_64_GLITCHFILTER_32
LPTMR Driver, 572

LPTMR_PRESCALE_65536_GLITCHFILTER_32768
LPTMR Driver, 572

LPTMR_PRESCALE_8192_GLITCHFILTER_4096
LPTMR Driver, 572

LPTMR_PRESCALE_8_GLITCHFILTER_4
LPTMR Driver, 572

LPTMR_WORKMODE_PULSECOUNTER
LPTMR Driver, 572

LPTMR_WORKMODE_TIMER
LPTMR Driver, 572

LPUART Driver, 577
LPUART_10_BITS_PER_CHAR, 583
LPUART_8_BITS_PER_CHAR, 583
LPUART_9_BITS_PER_CHAR, 583
LPUART_DRV_AbortReceivingData, 583
LPUART_DRV_AbortSendingData, 583
LPUART_DRV_Deinit, 585
LPUART_DRV_GetBaudRate, 585
LPUART_DRV_GetReceiveStatus, 585
LPUART_DRV_GetTransmitStatus, 585
LPUART_DRV_Init, 587
LPUART_DRV_InstallRxCallback, 587
LPUART_DRV_InstallTxCallback, 588
LPUART_DRV_ReceiveData, 588
LPUART_DRV_ReceiveDataBlocking, 588
LPUART_DRV_ReceiveDataPolling, 589
LPUART_DRV_SendData, 589
LPUART_DRV_SendDataBlocking, 589
LPUART_DRV_SendDataPolling, 589
LPUART_DRV_SetBaudRate, 591
LPUART_ONE_STOP_BIT, 583
LPUART_PARITY_DISABLED, 583
LPUART_PARITY_EVEN, 583
LPUART_PARITY_ODD, 583
LPUART_TWO_STOP_BIT, 583
LPUART_USING_DMA, 583

LPUART_USING_INTERRUPTS, 583
lpuart_bit_count_per_char_t, 582
lpuart_parity_mode_t, 583
lpuart_stop_bit_count_t, 583
lpuart_transfer_type_t, 583

LPUART_10_BITS_PER_CHAR
LPUART Driver, 583

LPUART_8_BITS_PER_CHAR
LPUART Driver, 583

LPUART_9_BITS_PER_CHAR
LPUART Driver, 583

LPUART_DRV_AbortReceivingData
LPUART Driver, 583

LPUART_DRV_AbortSendingData
LPUART Driver, 583

LPUART_DRV_Deinit
LPUART Driver, 585

LPUART_DRV_GetBaudRate
LPUART Driver, 585

LPUART_DRV_GetReceiveStatus
LPUART Driver, 585

LPUART_DRV_GetTransmitStatus
LPUART Driver, 585

LPUART_DRV_Init
LPUART Driver, 587

LPUART_DRV_InstallRxCallback
LPUART Driver, 587

LPUART_DRV_InstallTxCallback
LPUART Driver, 588

LPUART_DRV_ReceiveData
LPUART Driver, 588

LPUART_DRV_ReceiveDataBlocking
LPUART Driver, 588

LPUART_DRV_ReceiveDataPolling
LPUART Driver, 589

LPUART_DRV_SendData
LPUART Driver, 589

LPUART_DRV_SendDataBlocking
LPUART Driver, 589

LPUART_DRV_SendDataPolling
LPUART Driver, 589

LPUART_DRV_SetBaudRate
LPUART Driver, 591

LPUART_ONE_STOP_BIT
LPUART Driver, 583

LPUART_PARITY_DISABLED
LPUART Driver, 583

LPUART_PARITY_EVEN
LPUART Driver, 583

LPUART_PARITY_ODD
LPUART Driver, 583

LPUART_TWO_STOP_BIT
LPUART Driver, 583

LPUART_USING_DMA
LPUART Driver, 583

LPUART_USING_INTERRUPTS
LPUART Driver, 583

language_version

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

878 INDEX

lin_protocol_user_config_t, 613
last_RSID

lin_tl_descriptor_t, 611
last_cfg_result

lin_tl_descriptor_t, 611
last_pid

lin_protocol_state_t, 617
lin_word_status_str_t, 603

ld_assign_NAD
Node configuration, 645

ld_assign_NAD_j2602
Node configuration, 650

ld_assign_frame_id
Node configuration, 650

ld_assign_frame_id_range
Node configuration, 645

ld_check_response
Node configuration, 647

ld_check_response_j2602
Node configuration, 651

ld_conditional_change_NAD
Node configuration, 647

ld_error_code
lin_tl_descriptor_t, 611

ld_get_raw
Raw API, 706

ld_init
Initialization, 491

ld_is_ready
Node configuration, 647

ld_is_ready_j2602
Node configuration, 651

ld_put_raw
Raw API, 706

ld_queue_status_t
Low level API, 621

ld_raw_rx_status
Raw API, 706

ld_raw_tx_status
Raw API, 707

ld_read_by_id
Node identification, 652

ld_read_by_id_callout
Low level API, 625

ld_read_configuration
Node configuration, 648

ld_receive_message
Cooked API, 252

ld_reconfig_msg_ID
Node configuration, 651

ld_return_data
lin_tl_descriptor_t, 611

ld_rx_status
Cooked API, 252

ld_save_configuration
Node configuration, 648

ld_send_message
Cooked API, 253

ld_set_configuration
Node configuration, 648

ld_tx_status
Cooked API, 253

length
edma_scatter_gather_list_t, 269
enet_buffer_t, 294

lhc
sbc_int_config_t, 776

lin_associate_frame_t, 606
associated_uncond_frame_ptr, 606
coll_resolv_schd, 606
num_of_associated_uncond_frames, 607

lin_calc_max_header_timeout_cnt
Low level API, 625

lin_calc_max_res_timeout_cnt
Low level API, 625

lin_callback_t
LIN Driver, 511

lin_collision_resolve
LIN 2.1 Specific API, 500

lin_diag_service_callback
Common Transport Layer API, 231

lin_diagnostic_class_t
Low level API, 621

lin_diagnostic_state_t
Low level API, 622

lin_event_id_t
LIN Driver, 511

lin_frame_response_t
Low level API, 622

lin_frame_t, 607
flag_offset, 607
flag_size, 607
frame_data_ptr, 607
frm_len, 607
frm_offset, 607
frm_response, 607
frm_type, 607

lin_frame_type_t
Low level API, 622

lin_last_cfg_result_t
Low level API, 622

lin_lld_deinit
Low level API, 625

lin_lld_event_id_t
Low level API, 622

lin_lld_get_state
Low level API, 625

lin_lld_ignore_response
Low level API, 626

lin_lld_init
Low level API, 626

lin_lld_int_disable
Low level API, 626

lin_lld_int_enable
Low level API, 626

lin_lld_rx_response

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 879

Low level API, 627
lin_lld_set_low_power_mode

Low level API, 627
lin_lld_set_response

Low level API, 627
lin_lld_timeout_service

Low level API, 627
lin_lld_tx_header

Low level API, 628
lin_lld_tx_wake_up

Low level API, 628
lin_make_res_evnt_frame

LIN 2.1 Specific API, 500
lin_master_data_t, 614

active_schedule_id, 615
event_trigger_collision_flg, 615
flag_offset, 615
flag_size, 615
frm_offset, 615
frm_size, 615
master_data_buffer, 615
previous_schedule_id, 615
schedule_start_entry_ptr, 615
send_functional_request_flg, 616
send_slave_res_flg, 616

lin_message_status_t
Low level API, 623

lin_message_timeout_type_t
Low level API, 623

lin_node_attribute_t, 604
configured_NAD_ptr, 605
fault_state_signal_ptr, 605
initial_NAD, 605
N_As_timeout, 605
N_Cr_timeout, 605
num_frame_have_esignal, 605
num_of_fault_state_signal, 605
number_support_sid, 605
P2_min, 605
product_id, 605
resp_err_frm_id_ptr, 605
response_error, 606
response_error_bit_offset_ptr, 606
response_error_byte_offset_ptr, 606
ST_min, 606
serial_number, 606
service_flags_ptr, 606
service_supported_ptr, 606

lin_node_state_t
LIN Driver, 511

lin_pid_resp_callback_handler
Low level API, 628

lin_process_parity
Low level API, 629

lin_product_id_t, 814
function_id, 814
supplier_id, 814
variant, 814

lin_protocol_handle_t
Low level API, 623

lin_protocol_state_t, 616
baud_rate, 616
current_id, 616
diagnostic_mode, 616
error_in_response, 616
frame_timeout_cnt, 617
go_to_sleep_flg, 617
idle_timeout_cnt, 617
last_pid, 617
next_transmit_tick, 617
num_of_processed_frame, 617
overrun_flg, 617
response_buffer_ptr, 617
response_length, 617
save_config_flg, 617
successful_transfer, 617
transmit_error_resp_sig_flg, 618
word_status, 618

lin_protocol_user_config_t, 612
diagnostic_class, 613
frame_start, 613
frame_tbl_ptr, 613
function, 613
language_version, 613
lin_user_config_ptr, 613
list_identifiers_RAM_ptr, 613
list_identifiers_ROM_ptr, 613
master_ifc_handle, 613
max_idle_timeout_cnt, 614
max_message_length, 614
num_of_schedules, 614
number_of_configurable_frames, 614
protocol_version, 614
schedule_start, 614
schedule_tbl, 614
slave_ifc_handle, 614
tl_rx_queue_data_ptr, 614
tl_tx_queue_data_ptr, 614

lin_sch_tbl_type_t
Low level API, 623

lin_schedule_data_t, 608
delay_integer, 608
frm_id, 608
tl_queue_data, 608

lin_schedule_t, 608
num_slots, 608
ptr_sch_data_ptr, 608
sch_tbl_type, 608

lin_serial_number_t, 604
serial_0, 604
serial_1, 604
serial_2, 604
serial_3, 604

lin_service_status_t
Low level API, 624

lin_state_t, 508

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

880 INDEX

baudrateEvalEnable, 508
Callback, 508
checkSum, 508
cntByte, 509
currentEventId, 509
currentId, 509
currentNodeState, 509
currentPid, 509
fallingEdgeInterruptCount, 509
isBusBusy, 509
isRxBlocking, 509
isRxBusy, 509
isTxBlocking, 509
isTxBusy, 509
linSourceClockFreq, 510
rxBuff, 510
rxCompleted, 510
rxSize, 510
timeoutCounter, 510
timeoutCounterFlag, 510
txBuff, 510
txCompleted, 510
txSize, 510

lin_timer_get_time_interval_t
LIN Driver, 511

lin_tl_callback_handler
Low level API, 629

lin_tl_callback_return_t
Low level API, 624

lin_tl_descriptor_t, 609
check_timeout, 610
check_timeout_type, 610
diag_interleave_state, 610
diag_state, 610
FF_pdu_received, 610
frame_counter, 610
interleave_timeout_counter, 611
last_RSID, 611
last_cfg_result, 611
ld_error_code, 611
ld_return_data, 611
num_of_pdu, 611
product_id_ptr, 611
receive_NAD_ptr, 611
receive_message_length_ptr, 611
receive_message_ptr, 611
rx_msg_size, 611
rx_msg_status, 612
service_status, 612
slave_resp_cnt, 612
tl_rx_queue, 612
tl_tx_queue, 612
tx_msg_size, 612
tx_msg_status, 612

lin_tl_event_id_t
Low level API, 624

lin_tl_pdu_data_t
Low level API, 620

lin_tl_queue_t
Low level API, 621

lin_transport_layer_queue_t, 609
queue_current_size, 609
queue_header, 609
queue_max_size, 609
queue_status, 609
queue_tail, 609
tl_pdu_ptr, 609

lin_update_err_signal
LIN 2.1 Specific API, 501

lin_update_rx_evnt_frame
LIN 2.1 Specific API, 501

lin_update_word_status_lin21
LIN 2.1 Specific API, 501

lin_user_config_ptr
lin_protocol_user_config_t, 613

lin_user_config_t, 507
autobaudEnable, 507
baudRate, 507
nodeFunction, 507
timerGetTimeIntervalCallback, 508

lin_word_status_str_t, 602
bus_activity, 603
error_in_res, 603
event_trigger_collision_flg, 603
go_to_sleep_flg, 603
last_pid, 603
overrun, 603
reserved, 603
save_config_flg, 603
successful_transfer, 603

linSourceClockFreq
lin_state_t, 510

list_identifiers_RAM_ptr
lin_protocol_user_config_t, 613

list_identifiers_ROM_ptr
lin_protocol_user_config_t, 613

loadValueMode
pdb_timer_config_t, 663

Local Interconnect Network (LIN), 592
lockMask

sbc_int_config_t, 776
lockRegisterLock

rtc_register_lock_config_t, 714
lockTargetModuleReg

trgmux_inout_mapping_config_t, 753
locked

scg_firc_config_t, 822
scg_sirc_config_t, 823
scg_sosc_config_t, 825
scg_spll_config_t, 826

loopTransferConfig
edma_transfer_config_t, 272

Low level API, 599
CALLBACK_HANDLER, 618
DIAG_INTERLEAVE_MODE, 621
DIAG_NO_RESPONSE, 621

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 881

DIAG_NONE, 621
DIAG_NOT_START, 621
DIAG_ONLY_MODE, 621
DIAG_RESPONSE, 621
diag_interleaved_state_t, 621
g_lin_flag_handle_tbl, 629
g_lin_frame_data_buffer, 629
g_lin_frame_flag_handle_tbl, 629
g_lin_hardware_ifc, 629
g_lin_master_data_array, 629
g_lin_node_attribute_array, 629
g_lin_protocol_state_array, 629
g_lin_protocol_user_cfg_array, 629
g_lin_tl_descriptor_array, 629
g_lin_virtual_ifc, 629
INTERLEAVE_MAX_TIMEOUT, 618
l_diagnostic_mode_t, 621
LD_CHECK_N_AS_TIMEOUT, 623
LD_CHECK_N_CR_TIMEOUT, 623
LD_COMPLETED, 623
LD_DATA_AVAILABLE, 621
LD_DIAG_IDLE, 622
LD_DIAG_RX_FUNCTIONAL, 622
LD_DIAG_RX_INTERLEAVED, 622
LD_DIAG_RX_PHY, 622
LD_DIAG_TX_FUNCTIONAL, 622
LD_DIAG_TX_INTERLEAVED, 622
LD_DIAG_TX_PHY, 622
LD_FAILED, 623
LD_ID_NO_RESPONSE, 618
LD_IN_PROGRESS, 623
LD_N_AS_TIMEOUT, 623
LD_N_CR_TIMEOUT, 623
LD_NEGATIVE, 622
LD_NEGATIVE_RESPONSE, 618
LD_NO_CHECK_TIMEOUT, 623
LD_NO_DATA, 621
LD_NO_MSG, 623
LD_NO_RESPONSE, 622
LD_OVERWRITTEN, 622
LD_POSITIVE_RESPONSE, 618
LD_QUEUE_AVAILABLE, 621
LD_QUEUE_EMPTY, 621
LD_QUEUE_FULL, 621
LD_RECEIVE_ERROR, 621
LD_REQUEST_FINISHED, 624
LD_SERVICE_BUSY, 624
LD_SERVICE_ERROR, 624
LD_SERVICE_IDLE, 624
LD_SUCCESS, 622
LD_TRANSFER_ERROR, 621
LD_TRANSMIT_ERROR, 621
LD_WRONG_SN, 623
LIN_DIAGNOSTIC_CLASS_I, 621
LIN_DIAGNOSTIC_CLASS_II, 621
LIN_DIAGNOSTIC_CLASS_III, 622
LIN_FRM_DIAG, 622
LIN_FRM_EVNT, 622

LIN_FRM_SPRDC, 622
LIN_FRM_UNCD, 622
LIN_LLD_BUS_ACTIVITY_TIMEOUT, 623
LIN_LLD_CHECKSUM_ERR, 623
LIN_LLD_ERROR, 618
LIN_LLD_FRAME_ERR, 623
LIN_LLD_NODATA_TIMEOUT, 623
LIN_LLD_OK, 618
LIN_LLD_PID_ERR, 623
LIN_LLD_PID_OK, 623
LIN_LLD_READBACK_ERR, 623
LIN_LLD_RX_COMPLETED, 623
LIN_LLD_TX_COMPLETED, 623
LIN_MASTER, 618
LIN_PROTOCOL_21, 623
LIN_PROTOCOL_J2602, 623
LIN_READ_USR_DEF_MAX, 619
LIN_READ_USR_DEF_MIN, 619
LIN_RES_PUB, 622
LIN_RES_SUB, 622
LIN_SCH_TBL_COLL_RESOLV, 624
LIN_SCH_TBL_DIAG, 624
LIN_SCH_TBL_GO_TO_SLEEP, 624
LIN_SCH_TBL_NORM, 624
LIN_SCH_TBL_NULL, 624
LIN_SLAVE, 619
LIN_TL_CALLBACK_HANDLER, 619
ld_queue_status_t, 621
ld_read_by_id_callout, 625
lin_calc_max_header_timeout_cnt, 625
lin_calc_max_res_timeout_cnt, 625
lin_diagnostic_class_t, 621
lin_diagnostic_state_t, 622
lin_frame_response_t, 622
lin_frame_type_t, 622
lin_last_cfg_result_t, 622
lin_lld_deinit, 625
lin_lld_event_id_t, 622
lin_lld_get_state, 625
lin_lld_ignore_response, 626
lin_lld_init, 626
lin_lld_int_disable, 626
lin_lld_int_enable, 626
lin_lld_rx_response, 627
lin_lld_set_low_power_mode, 627
lin_lld_set_response, 627
lin_lld_timeout_service, 627
lin_lld_tx_header, 628
lin_lld_tx_wake_up, 628
lin_message_status_t, 623
lin_message_timeout_type_t, 623
lin_pid_resp_callback_handler, 628
lin_process_parity, 629
lin_protocol_handle_t, 623
lin_sch_tbl_type_t, 623
lin_service_status_t, 624
lin_tl_callback_handler, 629
lin_tl_callback_return_t, 624

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

882 INDEX

lin_tl_event_id_t, 624
lin_tl_pdu_data_t, 620
lin_tl_queue_t, 621
PCI_RES_ASSIGN_FRAME_ID_RANGE, 619
PCI_RES_READ_BY_IDENTIFY, 619
PCI_RES_SAVE_CONFIGURATION, 619
PCI_SAVE_CONFIGURATION, 619
SERIVCE_FAULT_MEMORY_CLEAR, 619
SERVICE_ASSIGN_FRAME_ID, 619
SERVICE_ASSIGN_FRAME_ID_RANGE, 619
SERVICE_ASSIGN_NAD, 620
SERVICE_CONDITIONAL_CHANGE_NAD, 620
SERVICE_FAULT_MEMORY_READ, 620
SERVICE_IO_CONTROL_BY_IDENTIFY, 620
SERVICE_READ_BY_IDENTIFY, 620
SERVICE_READ_DATA_BY_IDENTIFY, 620
SERVICE_SAVE_CONFIGURATION, 620
SERVICE_SESSION_CONTROL, 620
SERVICE_WRITE_DATA_BY_IDENTIFY, 620
TL_ACTION_ID_IGNORE, 624
TL_ACTION_NONE, 624
TL_ERROR, 624
TL_HANDLER_INTERLEAVE_MODE, 624
TL_MAKE_RES_DATA, 624
TL_RECEIVE_MESSAGE, 624
TL_RX_COMPLETED, 624
TL_SLAVE_GET_ACTION, 624
TL_TIMEOUT_SERVICE, 624
TL_TX_COMPLETED, 624
timerGetTimeIntervalCallbackArr, 629

Low Power Inter-Integrated Circuit (LPI2C), 593
Low Power Interrupt Timer (LPIT), 594
Low Power Serial Peripheral Interface (LPSPI), 595
Low Power Timer (LPTMR), 597
Low Power Universal Asynchronous Receiver-←↩

Transmitter (LPUART), 598
lpi2c_baud_rate_params_t, 526

baudRate, 526
lpi2c_master_callback_t

LPI2C Driver, 527
lpi2c_master_event_t

LPI2C Driver, 527
lpi2c_master_state_t, 526
lpi2c_master_user_config_t, 524

baudRate, 524
callbackParam, 524
dmaChannel, 524
is10bitAddr, 525
masterCallback, 525
operatingMode, 525
slaveAddress, 525
transferType, 525

lpi2c_mode_t
LPI2C Driver, 527

lpi2c_slave_callback_t
LPI2C Driver, 527

lpi2c_slave_event_t
LPI2C Driver, 528

lpi2c_slave_state_t, 527
lpi2c_slave_user_config_t, 525

callbackParam, 525
dmaChannel, 525
is10bitAddr, 526
operatingMode, 526
slaveAddress, 526
slaveCallback, 526
slaveListening, 526
transferType, 526

lpi2c_transfer_type_t
LPI2C Driver, 528

lpit_module_information_t, 540
featureNumber, 540
majorVersionNumber, 540
minorVersionNumber, 540
numberOfExternalTriggerInputs, 541
numberOfTimerChannels, 541

lpit_period_units_t
LPIT Driver, 543

lpit_timer_modes_t
LPIT Driver, 543

lpit_trigger_source_t
LPIT Driver, 543

lpit_user_channel_config_t, 541
chainChannel, 542
enableReloadOnTrigger, 542
enableStartOnTrigger, 542
enableStopOnInterrupt, 542
isInterruptEnabled, 542
period, 542
periodUnits, 542
timerMode, 542
triggerSelect, 542
triggerSource, 542

lpit_user_config_t, 541
enableRunInDebug, 541
enableRunInDoze, 541

lpoClockConfig
pmc_config_t, 817
sim_clock_config_t, 222

lpspi_clock_phase_t
LPSPI Driver, 558

lpspi_master_config_t, 552
bitcount, 552
bitsPerSec, 552
callback, 553
callbackParam, 553
clkPhase, 553
clkPolarity, 553
isPcsContinuous, 553
lpspiSrcClk, 553
lsbFirst, 553
pcsPolarity, 553
rxDMAChannel, 553
transferType, 553
txDMAChannel, 553
whichPcs, 554

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 883

lpspi_sck_polarity_t
LPSPI Driver, 558

lpspi_signal_polarity_t
LPSPI Driver, 558

lpspi_slave_config_t, 556
bitcount, 557
callback, 557
callbackParam, 557
clkPhase, 557
clkPolarity, 557
lsbFirst, 557
pcsPolarity, 557
rxDMAChannel, 557
transferType, 557
txDMAChannel, 557
whichPcs, 557

lpspi_state_t, 554
bitsPerFrame, 554
bytesPerFrame, 554
callback, 554
callbackParam, 555
fifoSize, 555
isBlocking, 555
isPcsContinuous, 555
isTransferInProgress, 555
lpspiSemaphore, 555
lpspiSrcClk, 555
lsb, 555
rxBuff, 555
rxCount, 555
rxDMAChannel, 555
rxFrameCnt, 556
status, 556
transferType, 556
txBuff, 556
txCount, 556
txDMAChannel, 556
txFrameCnt, 556

lpspi_transfer_type
LPSPI Driver, 558

lpspi_which_pcs_t
LPSPI Driver, 558

lpspiIntace
drv_config_t, 813

lpspiSemaphore
lpspi_state_t, 555

lpspiSrcClk
lpspi_master_config_t, 553
lpspi_state_t, 555

lptmr_clocksource_t
LPTMR Driver, 571

lptmr_config_t, 569
bypassPrescaler, 570
clockSelect, 570
compareValue, 570
counterUnits, 570
dmaRequest, 570
freeRun, 570

interruptEnable, 570
pinPolarity, 570
pinSelect, 570
prescaler, 571
workMode, 571

lptmr_counter_units_t
LPTMR Driver, 571

lptmr_pinpolarity_t
LPTMR Driver, 571

lptmr_pinselect_t
LPTMR Driver, 571

lptmr_prescaler_t
LPTMR Driver, 572

lptmr_workmode_t
LPTMR Driver, 572

lpuart_bit_count_per_char_t
LPUART Driver, 582

lpuart_parity_mode_t
LPUART Driver, 583

lpuart_state_t, 579
bitCountPerChar, 580
isRxBlocking, 580
isRxBusy, 580
isTxBlocking, 580
isTxBusy, 580
receiveStatus, 580
rxBuff, 580
rxCallback, 580
rxCallbackParam, 580
rxComplete, 581
rxSize, 581
transferType, 581
transmitStatus, 581
txBuff, 581
txCallback, 581
txCallbackParam, 581
txComplete, 581
txSize, 581

lpuart_stop_bit_count_t
LPUART Driver, 583

lpuart_transfer_type_t
LPUART Driver, 583

lpuart_user_config_t, 581
baudRate, 582
bitCountPerChar, 582
parityMode, 582
rxDMAChannel, 582
stopBitCount, 582
transferType, 582
txDMAChannel, 582

lsb
lpspi_state_t, 555

lsbFirst
lpspi_master_config_t, 553
lpspi_slave_config_t, 557

MAKE_PARITY
LIN Driver, 510

MASTER

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

884 INDEX

LIN Driver, 511
MAX_PERIOD_COUNT

LPIT Driver, 543
MAX_PERIOD_COUNT_16_BIT

LPIT Driver, 543
MAX_PERIOD_COUNT_IN_DUAL_16BIT_MODE

LPIT Driver, 543
MINS_IN_A_HOUR

Real Time Clock Driver, 714
MPU Driver, 631

MPU_DATA_ACCESS_IN_SUPERVISOR_MO←↩

DE, 640
MPU_DATA_ACCESS_IN_USER_MODE, 640
MPU_DRV_Deinit, 641
MPU_DRV_EnableRegion, 641
MPU_DRV_GetDefaultRegionConfig, 641
MPU_DRV_GetDetailErrorAccessInfo, 641
MPU_DRV_Init, 641
MPU_DRV_SetMasterAccessRights, 642
MPU_DRV_SetRegionAddr, 642
MPU_DRV_SetRegionConfig, 642
MPU_ERR_TYPE_READ, 640
MPU_ERR_TYPE_WRITE, 640
MPU_INSTRUCTION_ACCESS_IN_SUPERVIS←↩

OR_MODE, 640
MPU_INSTRUCTION_ACCESS_IN_USER_MO←↩

DE, 640
MPU_NONE, 640
MPU_R, 640
MPU_RW, 640
MPU_SUPERVISOR_RW_USER_NONE, 640
MPU_SUPERVISOR_RW_USER_R, 640
MPU_SUPERVISOR_RW_USER_RW, 640
MPU_SUPERVISOR_RW_USER_RWX, 640
MPU_SUPERVISOR_RW_USER_RX, 640
MPU_SUPERVISOR_RW_USER_W, 640
MPU_SUPERVISOR_RW_USER_WX, 640
MPU_SUPERVISOR_RW_USER_X, 640
MPU_SUPERVISOR_RWX_USER_NONE, 639
MPU_SUPERVISOR_RWX_USER_R, 639
MPU_SUPERVISOR_RWX_USER_RW, 639
MPU_SUPERVISOR_RWX_USER_RWX, 639
MPU_SUPERVISOR_RWX_USER_RX, 639
MPU_SUPERVISOR_RWX_USER_W, 639
MPU_SUPERVISOR_RWX_USER_WX, 639
MPU_SUPERVISOR_RWX_USER_X, 639
MPU_SUPERVISOR_RX_USER_NONE, 639
MPU_SUPERVISOR_RX_USER_R, 640
MPU_SUPERVISOR_RX_USER_RW, 640
MPU_SUPERVISOR_RX_USER_RWX, 640
MPU_SUPERVISOR_RX_USER_RX, 640
MPU_SUPERVISOR_RX_USER_W, 640
MPU_SUPERVISOR_RX_USER_WX, 640
MPU_SUPERVISOR_RX_USER_X, 640
MPU_SUPERVISOR_USER_NONE, 640
MPU_SUPERVISOR_USER_R, 640
MPU_SUPERVISOR_USER_RW, 640
MPU_SUPERVISOR_USER_RWX, 640

MPU_SUPERVISOR_USER_RX, 640
MPU_SUPERVISOR_USER_W, 640
MPU_SUPERVISOR_USER_WX, 640
MPU_SUPERVISOR_USER_X, 640
MPU_W, 640
mpu_access_rights_t, 637
mpu_err_access_type_t, 640
mpu_err_attributes_t, 640

MPU_DATA_ACCESS_IN_SUPERVISOR_MODE
MPU Driver, 640

MPU_DATA_ACCESS_IN_USER_MODE
MPU Driver, 640

MPU_DRV_Deinit
MPU Driver, 641

MPU_DRV_EnableRegion
MPU Driver, 641

MPU_DRV_GetDefaultRegionConfig
MPU Driver, 641

MPU_DRV_GetDetailErrorAccessInfo
MPU Driver, 641

MPU_DRV_Init
MPU Driver, 641

MPU_DRV_SetMasterAccessRights
MPU Driver, 642

MPU_DRV_SetRegionAddr
MPU Driver, 642

MPU_DRV_SetRegionConfig
MPU Driver, 642

MPU_ERR_TYPE_READ
MPU Driver, 640

MPU_ERR_TYPE_WRITE
MPU Driver, 640

MPU_INSTRUCTION_ACCESS_IN_SUPERVISOR_←↩

MODE
MPU Driver, 640

MPU_INSTRUCTION_ACCESS_IN_USER_MODE
MPU Driver, 640

MPU_NONE
MPU Driver, 640

MPU_R
MPU Driver, 640

MPU_RW
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_NONE
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_R
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_RW
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_RWX
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_RX
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_W
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_WX
MPU Driver, 640

MPU_SUPERVISOR_RW_USER_X

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 885

MPU Driver, 640
MPU_SUPERVISOR_RWX_USER_NONE

MPU Driver, 639
MPU_SUPERVISOR_RWX_USER_R

MPU Driver, 639
MPU_SUPERVISOR_RWX_USER_RW

MPU Driver, 639
MPU_SUPERVISOR_RWX_USER_RWX

MPU Driver, 639
MPU_SUPERVISOR_RWX_USER_RX

MPU Driver, 639
MPU_SUPERVISOR_RWX_USER_W

MPU Driver, 639
MPU_SUPERVISOR_RWX_USER_WX

MPU Driver, 639
MPU_SUPERVISOR_RWX_USER_X

MPU Driver, 639
MPU_SUPERVISOR_RX_USER_NONE

MPU Driver, 639
MPU_SUPERVISOR_RX_USER_R

MPU Driver, 640
MPU_SUPERVISOR_RX_USER_RW

MPU Driver, 640
MPU_SUPERVISOR_RX_USER_RWX

MPU Driver, 640
MPU_SUPERVISOR_RX_USER_RX

MPU Driver, 640
MPU_SUPERVISOR_RX_USER_W

MPU Driver, 640
MPU_SUPERVISOR_RX_USER_WX

MPU Driver, 640
MPU_SUPERVISOR_RX_USER_X

MPU Driver, 640
MPU_SUPERVISOR_USER_NONE

MPU Driver, 640
MPU_SUPERVISOR_USER_R

MPU Driver, 640
MPU_SUPERVISOR_USER_RW

MPU Driver, 640
MPU_SUPERVISOR_USER_RWX

MPU Driver, 640
MPU_SUPERVISOR_USER_RX

MPU Driver, 640
MPU_SUPERVISOR_USER_W

MPU Driver, 640
MPU_SUPERVISOR_USER_WX

MPU Driver, 640
MPU_SUPERVISOR_USER_X

MPU Driver, 640
MPU_W

MPU Driver, 640
mac

csec_state_t, 194
macLen

csec_state_t, 194
macWritten

csec_state_t, 194
mainChannelPolarity

ftm_combined_ch_param_t, 374
mainS

sbc_status_group_t, 784
majorLoopChnLinkEnable

edma_loop_transfer_config_t, 270
majorLoopChnLinkNumber

edma_loop_transfer_config_t, 270
majorLoopIterationCount

edma_loop_transfer_config_t, 270
majorNumber

rcm_version_info_t, 689
smc_version_info_t, 688

majorVersionNumber
lpit_module_information_t, 540

mask
sbc_can_conf_t, 775

MaskMode
sai_user_config_t, 732

maskRegSync
ftm_pwm_sync_t, 328

master
mpu_access_err_info_t, 636

master_data_buffer
lin_master_data_t, 615

master_ifc_handle
lin_protocol_user_config_t, 613

masterAccRight
mpu_user_config_t, 637

masterCallback
lpi2c_master_user_config_t, 525

MasterClkSrc
sai_user_config_t, 732

masterNum
mpu_master_access_right_t, 636

masters
qspi_ahb_config_t, 698

max_idle_timeout_cnt
lin_protocol_user_config_t, 614

max_message_length
lin_protocol_user_config_t, 614

max_num_mb
flexcan_user_config_t, 423

maxCountValue
ftm_output_cmp_param_t, 368

maxFrameLen
enet_config_t, 295

maxLoadingPoint
ftm_pwm_sync_t, 328

maxVal
ftm_quad_decode_config_t, 380

mb_message
flexcan_mb_handle_t, 419

mbSema
flexcan_mb_handle_t, 419

mbs
FlexCANState, 420

mcmeConfig
clock_manager_user_config_t, 210

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

886 INDEX

measurementResults
ftm_state_t, 327

measurementType
ftm_input_ch_param_t, 360

memSize
qspi_user_config_t, 697

Memory Protection Unit (MPU), 644
miiDuplex

enet_config_t, 295
miiMode

enet_config_t, 296
miiSpeed

enet_config_t, 296
minLoadingPoint

ftm_pwm_sync_t, 328
minorByteTransferCount

edma_transfer_config_t, 272
minorLoopChnLinkEnable

edma_loop_transfer_config_t, 270
minorLoopChnLinkNumber

edma_loop_transfer_config_t, 270
minorLoopOffset

edma_loop_transfer_config_t, 270
minorNumber

rcm_version_info_t, 689
smc_version_info_t, 688

minorVersionNumber
lpit_module_information_t, 540

minutes
rtc_timedate_t, 710

misoPin
flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 466

mode
cmp_comparator_t, 238
ftm_output_cmp_param_t, 368
ftm_pwm_param_t, 375
ftm_quad_decode_config_t, 380
ftm_timer_param_t, 364
sbc_int_config_t, 776

modeControl
sbc_wtdog_ctr_t, 769

modes
firc_config_t, 813
sirc_config_t, 827
sosc_config_t, 828
spll_config_t, 828

monitorMode
scg_sosc_config_t, 825
scg_spll_config_t, 826

month
rtc_timedate_t, 710

mosiPin
flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 466

mpu_access_err_info_t, 635
accessCtr, 636
accessType, 636

addr, 636
attributes, 636
master, 636

mpu_access_rights_t
MPU Driver, 637

mpu_err_access_type_t
MPU Driver, 640

mpu_err_attributes_t
MPU Driver, 640

mpu_master_access_right_t, 636
accessRight, 636
masterNum, 636

mpu_user_config_t, 636
endAddr, 637
masterAccRight, 637
startAddr, 637

MsbFirst
sai_user_config_t, 732

msg_id_type
flexcan_data_info_t, 421

msgId
flexcan_msgbuff_t, 418

msgLen
csec_state_t, 194

mult
scg_spll_config_t, 826
spll_config_t, 828

multiplier
periph_clk_config_t, 816

mux
cmp_module_t, 241
pin_settings_config_t, 671

MuxMode
sai_user_config_t, 732

N_As_timeout
lin_node_attribute_t, 605

N_Cr_timeout
lin_node_attribute_t, 605

NEGATIVE
Common Transport Layer API, 230

nMaxCountValue
ftm_input_param_t, 361

nNumChannels
ftm_input_param_t, 361

nNumCombinedPwmChannels
ftm_pwm_param_t, 375

nNumIndependentPwmChannels
ftm_pwm_param_t, 375

nNumOutputChannels
ftm_output_cmp_param_t, 368

NULL_CALLBACK
Flash Memory (Flash), 393

NUMBER_OF_TCLK_INPUTS
Clock_manager_s32k1xx, 223

negativeInputMux
cmp_anmux_t, 238

negativePortMux
cmp_anmux_t, 239

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 887

next_transmit_tick
lin_protocol_state_t, 617

nms
sbc_main_status_t, 778

Node configuration, 645, 650
ld_assign_NAD, 645
ld_assign_NAD_j2602, 650
ld_assign_frame_id, 650
ld_assign_frame_id_range, 645
ld_check_response, 647
ld_check_response_j2602, 651
ld_conditional_change_NAD, 647
ld_is_ready, 647
ld_is_ready_j2602, 651
ld_read_configuration, 648
ld_reconfig_msg_ID, 651
ld_save_configuration, 648
ld_set_configuration, 648

Node identification, 652
ld_read_by_id, 652

nodeFunction
lin_user_config_t, 507

nominalPeriod
sbc_wtdog_ctr_t, 769

nonSupervisorAccessEnable
rtc_init_config_t, 711

notHaltOnError
edma_user_config_t, 267

Notification, 653
notifyType

clock_notify_struct_t, 211
power_manager_notify_struct_t, 679

num_frame_have_esignal
lin_node_attribute_t, 605

num_id_filters
flexcan_user_config_t, 423

num_of_associated_uncond_frames
lin_associate_frame_t, 607

num_of_fault_state_signal
lin_node_attribute_t, 605

num_of_pdu
lin_tl_descriptor_t, 611

num_of_processed_frame
lin_protocol_state_t, 617

num_of_schedules
lin_protocol_user_config_t, 614

num_slots
lin_schedule_t, 608

numInOutMappingConfigs
trgmux_user_config_t, 754

numOfRecordReqMaintain
Flash Memory (Flash), 401

number_of_configurable_frames
lin_protocol_user_config_t, 614

number_support_sid
lin_node_attribute_t, 605

numberOfExternalTriggerInputs
lpit_module_information_t, 541

numberOfRepeats
rtc_alarm_config_t, 712

numberOfTimerChannels
lpit_module_information_t, 541

nvmps
sbc_mtpnv_stat_t, 784

OS Interface (OSIF), 654
OSIF_GetMilliseconds, 655
OSIF_MutexCreate, 655
OSIF_MutexDestroy, 655
OSIF_MutexLock, 655
OSIF_MutexUnlock, 656
OSIF_SemaCreate, 656
OSIF_SemaDestroy, 656
OSIF_SemaPost, 656
OSIF_SemaWait, 658
OSIF_TimeDelay, 658
OSIF_WAIT_FOREVER, 655

OSIF_GetMilliseconds
OS Interface (OSIF), 655

OSIF_MutexCreate
OS Interface (OSIF), 655

OSIF_MutexDestroy
OS Interface (OSIF), 655

OSIF_MutexLock
OS Interface (OSIF), 655

OSIF_MutexUnlock
OS Interface (OSIF), 656

OSIF_SemaCreate
OS Interface (OSIF), 656

OSIF_SemaDestroy
OS Interface (OSIF), 656

OSIF_SemaPost
OS Interface (OSIF), 656

OSIF_SemaWait
OS Interface (OSIF), 658

OSIF_TimeDelay
OS Interface (OSIF), 658

OSIF_WAIT_FOREVER
OS Interface (OSIF), 655

OVERRUN
Common Core API., 226

offsetLevel
cmp_comparator_t, 238

opMode
wdog_user_config_t, 807

operatingMode
lpi2c_master_user_config_t, 525
lpi2c_slave_user_config_t, 526

otw
sbc_sys_evnt_stat_t, 781

otws
sbc_main_status_t, 778

outRegSync
ftm_pwm_sync_t, 328

outputBuff
csec_state_t, 194

outputChannelConfig

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

888 INDEX

ftm_output_cmp_param_t, 368
outputDriverStrength

flash_mx25l6433f_user_config_t, 404
outputInterruptTrigger

cmp_comparator_t, 238
outputSelect

cmp_comparator_t, 238
overflowDirection

ftm_quad_decoder_state_t, 381
overflowFlag

ftm_quad_decoder_state_t, 381
overflowIntEnable

rtc_interrupt_config_t, 713
overrun

lin_word_status_str_t, 603
overrun_flg

lin_protocol_state_t, 617
owte

sbc_sys_evnt_t, 772

P2_min
lin_node_attribute_t, 605

PCI_RES_ASSIGN_FRAME_ID_RANGE
Low level API, 619

PCI_RES_READ_BY_IDENTIFY
Low level API, 619

PCI_RES_SAVE_CONFIGURATION
Low level API, 619

PCI_SAVE_CONFIGURATION
Low level API, 619

PDB Driver, 659
PDB_CLK_PREDIV_BY_1, 664
PDB_CLK_PREDIV_BY_128, 664
PDB_CLK_PREDIV_BY_16, 664
PDB_CLK_PREDIV_BY_2, 664
PDB_CLK_PREDIV_BY_32, 664
PDB_CLK_PREDIV_BY_4, 664
PDB_CLK_PREDIV_BY_64, 664
PDB_CLK_PREDIV_BY_8, 664
PDB_CLK_PREMULT_FACT_AS_1, 664
PDB_CLK_PREMULT_FACT_AS_10, 664
PDB_CLK_PREMULT_FACT_AS_20, 664
PDB_CLK_PREMULT_FACT_AS_40, 664
PDB_DRV_ClearAdcPreTriggerFlags, 665
PDB_DRV_ClearAdcPreTriggerSeqErrFlags, 665
PDB_DRV_ClearTimerIntFlag, 666
PDB_DRV_ConfigAdcPreTrigger, 666
PDB_DRV_Deinit, 666
PDB_DRV_GetAdcPreTriggerFlags, 666
PDB_DRV_GetAdcPreTriggerSeqErrFlags, 666
PDB_DRV_GetTimerIntFlag, 667
PDB_DRV_GetTimerValue, 667
PDB_DRV_Init, 667
PDB_DRV_LoadValuesCmd, 668
PDB_DRV_SetAdcPreTriggerDelayValue, 668
PDB_DRV_SetCmpPulseOutDelayForHigh, 668
PDB_DRV_SetCmpPulseOutDelayForLow, 668
PDB_DRV_SetCmpPulseOutEnable, 668
PDB_DRV_SetTimerModulusValue, 669

PDB_DRV_SetValueForTimerInterrupt, 669
PDB_DRV_SoftTriggerCmd, 669
PDB_LOAD_VAL_AT_MODULO_COUNTER, 664
PDB_LOAD_VAL_AT_MODULO_COUNTER_O←↩

R_NEXT_TRIGGER, 664
PDB_LOAD_VAL_AT_NEXT_TRIGGER, 664
PDB_LOAD_VAL_IMMEDIATELY, 664
PDB_SOFTWARE_TRIGGER, 665
PDB_TRIGGER_0, 665
PDB_TRIGGER_1, 665
PDB_TRIGGER_10, 665
PDB_TRIGGER_11, 665
PDB_TRIGGER_12, 665
PDB_TRIGGER_13, 665
PDB_TRIGGER_14, 665
PDB_TRIGGER_2, 665
PDB_TRIGGER_3, 665
PDB_TRIGGER_4, 665
PDB_TRIGGER_5, 665
PDB_TRIGGER_6, 665
PDB_TRIGGER_7, 665
PDB_TRIGGER_8, 665
PDB_TRIGGER_9, 665
pdb_clk_prescaler_div_t, 664
pdb_clk_prescaler_mult_factor_t, 664
pdb_load_value_mode_t, 664
pdb_trigger_src_t, 664

PDB_CLK_PREDIV_BY_1
PDB Driver, 664

PDB_CLK_PREDIV_BY_128
PDB Driver, 664

PDB_CLK_PREDIV_BY_16
PDB Driver, 664

PDB_CLK_PREDIV_BY_2
PDB Driver, 664

PDB_CLK_PREDIV_BY_32
PDB Driver, 664

PDB_CLK_PREDIV_BY_4
PDB Driver, 664

PDB_CLK_PREDIV_BY_64
PDB Driver, 664

PDB_CLK_PREDIV_BY_8
PDB Driver, 664

PDB_CLK_PREMULT_FACT_AS_1
PDB Driver, 664

PDB_CLK_PREMULT_FACT_AS_10
PDB Driver, 664

PDB_CLK_PREMULT_FACT_AS_20
PDB Driver, 664

PDB_CLK_PREMULT_FACT_AS_40
PDB Driver, 664

PDB_DRV_ClearAdcPreTriggerFlags
PDB Driver, 665

PDB_DRV_ClearAdcPreTriggerSeqErrFlags
PDB Driver, 665

PDB_DRV_ClearTimerIntFlag
PDB Driver, 666

PDB_DRV_ConfigAdcPreTrigger

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 889

PDB Driver, 666
PDB_DRV_Deinit

PDB Driver, 666
PDB_DRV_GetAdcPreTriggerFlags

PDB Driver, 666
PDB_DRV_GetAdcPreTriggerSeqErrFlags

PDB Driver, 666
PDB_DRV_GetTimerIntFlag

PDB Driver, 667
PDB_DRV_GetTimerValue

PDB Driver, 667
PDB_DRV_Init

PDB Driver, 667
PDB_DRV_LoadValuesCmd

PDB Driver, 668
PDB_DRV_SetAdcPreTriggerDelayValue

PDB Driver, 668
PDB_DRV_SetCmpPulseOutDelayForHigh

PDB Driver, 668
PDB_DRV_SetCmpPulseOutDelayForLow

PDB Driver, 668
PDB_DRV_SetCmpPulseOutEnable

PDB Driver, 668
PDB_DRV_SetTimerModulusValue

PDB Driver, 669
PDB_DRV_SetValueForTimerInterrupt

PDB Driver, 669
PDB_DRV_SoftTriggerCmd

PDB Driver, 669
PDB_LOAD_VAL_AT_MODULO_COUNTER

PDB Driver, 664
PDB_LOAD_VAL_AT_MODULO_COUNTER_OR_N←↩

EXT_TRIGGER
PDB Driver, 664

PDB_LOAD_VAL_AT_NEXT_TRIGGER
PDB Driver, 664

PDB_LOAD_VAL_IMMEDIATELY
PDB Driver, 664

PDB_SOFTWARE_TRIGGER
PDB Driver, 665

PDB_TRIGGER_0
PDB Driver, 665

PDB_TRIGGER_1
PDB Driver, 665

PDB_TRIGGER_10
PDB Driver, 665

PDB_TRIGGER_11
PDB Driver, 665

PDB_TRIGGER_12
PDB Driver, 665

PDB_TRIGGER_13
PDB Driver, 665

PDB_TRIGGER_14
PDB Driver, 665

PDB_TRIGGER_2
PDB Driver, 665

PDB_TRIGGER_3
PDB Driver, 665

PDB_TRIGGER_4
PDB Driver, 665

PDB_TRIGGER_5
PDB Driver, 665

PDB_TRIGGER_6
PDB Driver, 665

PDB_TRIGGER_7
PDB Driver, 665

PDB_TRIGGER_8
PDB Driver, 665

PDB_TRIGGER_9
PDB Driver, 665

PFlashBase
Flash Memory (Flash), 401

PFlashSize
Flash Memory (Flash), 401, 402

PINS Driver, 670
GPIO_INPUT_DIRECTION, 671
GPIO_OUTPUT_DIRECTION, 671
GPIO_UNSPECIFIED_DIRECTION, 671
PINS_DRV_ClearPins, 671
PINS_DRV_GetPinsOutput, 672
PINS_DRV_Init, 672
PINS_DRV_ReadPins, 672
PINS_DRV_SetPins, 673
PINS_DRV_TogglePins, 673
PINS_DRV_WritePin, 673
PINS_DRV_WritePins, 674
pins_level_type_t, 671
port_data_direction_t, 671

PINS_DRV_ClearPins
PINS Driver, 671

PINS_DRV_GetPinsOutput
PINS Driver, 672

PINS_DRV_Init
PINS Driver, 672

PINS_DRV_ReadPins
PINS Driver, 672

PINS_DRV_SetPins
PINS Driver, 673

PINS_DRV_TogglePins
PINS Driver, 673

PINS_DRV_WritePin
PINS Driver, 673

PINS_DRV_WritePins
PINS Driver, 674

PMC_INT_LOW_VOLT_DETECT
Power_s32k1xx, 689

PMC_INT_LOW_VOLT_WARN
Power_s32k1xx, 689

POSITIVE
Common Transport Layer API, 230

POWER_MANAGER_CALLBACK_AFTER
Power Manager, 681

POWER_MANAGER_CALLBACK_BEFORE
Power Manager, 681

POWER_MANAGER_CALLBACK_BEFORE_AFTER
Power Manager, 681

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

890 INDEX

POWER_MANAGER_MAX
Power_s32k1xx, 690

POWER_MANAGER_NOTIFY_AFTER
Power Manager, 682

POWER_MANAGER_NOTIFY_BEFORE
Power Manager, 681

POWER_MANAGER_NOTIFY_RECOVER
Power Manager, 681

POWER_MANAGER_POLICY_AGREEMENT
Power Manager, 682

POWER_MANAGER_POLICY_FORCIBLE
Power Manager, 682

POWER_MANAGER_RUN
Power_s32k1xx, 689

POWER_MANAGER_STOP
Power_s32k1xx, 689

POWER_MANAGER_VLPR
Power_s32k1xx, 689

POWER_MANAGER_VLPS
Power_s32k1xx, 690

POWER_SYS_Deinit
Power Manager, 682

POWER_SYS_DoDeinit
Power_s32k1xx, 692

POWER_SYS_DoInit
Power_s32k1xx, 692

POWER_SYS_DoSetMode
Power_s32k1xx, 692

POWER_SYS_GetCurrentMode
Power Manager, 682

POWER_SYS_GetErrorCallback
Power Manager, 682

POWER_SYS_GetErrorCallbackIndex
Power Manager, 682

POWER_SYS_GetLastMode
Power Manager, 683

POWER_SYS_GetLastModeConfig
Power Manager, 683

POWER_SYS_Init
Power Manager, 683

POWER_SYS_SetMode
Power Manager, 684

parameter
edma_chn_state_t, 268

parityMode
lpuart_user_config_t, 582

partSize
csec_state_t, 194

payload
flexcan_user_config_t, 423

pcc_config_t, 815
count, 815
peripheralClocks, 815

pcsPolarity
lpspi_master_config_t, 553
lpspi_slave_config_t, 557

pdb_adc_pretrigger_config_t, 663
adcPreTriggerIdx, 663

preTriggerBackToBackEnable, 663
preTriggerEnable, 663
preTriggerOutputEnable, 664

pdb_clk_prescaler_div_t
PDB Driver, 664

pdb_clk_prescaler_mult_factor_t
PDB Driver, 664

pdb_load_value_mode_t
PDB Driver, 664

pdb_timer_config_t, 662
clkPreDiv, 662
clkPreMultFactor, 662
continuousModeEnable, 662
dmaEnable, 663
intEnable, 663
loadValueMode, 663
seqErrIntEnable, 663
triggerInput, 663

pdb_trigger_src_t
PDB Driver, 664

pdc
sbc_regulator_t, 771

period
lpit_user_channel_config_t, 542

periodUnits
lpit_user_channel_config_t, 542

periph_clk_config_t, 815
divider, 816
multiplier, 816
source, 816

Peripheral access layer for S32K144, 675
peripheral_clock_config_t, 816

clkGate, 816
clkSrc, 816
clockName, 816
divider, 816
frac, 817

peripheralClocks
pcc_config_t, 815

peripheralFeaturesList
Clock_manager_s32k1xx, 225

phaseAConfig
ftm_quad_decode_config_t, 380

phaseBConfig
ftm_quad_decode_config_t, 380

phaseFilterVal
ftm_phase_params_t, 379

phaseInputFilter
ftm_phase_params_t, 379

phasePolarity
ftm_phase_params_t, 379

phaseSeg1
flexcan_time_segment_t, 422

phaseSeg2
flexcan_time_segment_t, 422

pin_settings_config_t, 670
direction, 671
gpioBase, 671

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 891

mux, 671
pinPortIdx, 671

pinPolarity
lptmr_config_t, 570

pinPortIdx
pin_settings_config_t, 671

pinSelect
lptmr_config_t, 570

pinState
cmp_comparator_t, 238

Pins Driver (PINS), 676
pins_level_type_t

PINS Driver, 671
platGateConfig

sim_clock_config_t, 222
pmc_config_t, 817

lpoClockConfig, 817
pmc_int_select_t

Power_s32k1xx, 689
pmc_lpo_clock_config_t, 817

enable, 818
initialize, 818
trimValue, 818

pncok
sbc_can_ctr_t, 773

pndm
sbc_frame_t, 774

pnfde
sbc_trans_evnt_stat_t, 782

po
sbc_sys_evnt_stat_t, 781

polarity
ftm_independent_ch_param_t, 373

policy
clock_notify_struct_t, 211
power_manager_notify_struct_t, 679

port_data_direction_t
PINS Driver, 671

positiveInputMux
cmp_anmux_t, 239

positivePortMux
cmp_anmux_t, 239

Power Manager, 677
POWER_MANAGER_CALLBACK_AFTER, 681
POWER_MANAGER_CALLBACK_BEFORE, 681
POWER_MANAGER_CALLBACK_BEFORE_A←↩

FTER, 681
POWER_MANAGER_NOTIFY_AFTER, 682
POWER_MANAGER_NOTIFY_BEFORE, 681
POWER_MANAGER_NOTIFY_RECOVER, 681
POWER_MANAGER_POLICY_AGREEMEN←↩

T, 682
POWER_MANAGER_POLICY_FORCIBLE, 682
POWER_SYS_Deinit, 682
POWER_SYS_GetCurrentMode, 682
POWER_SYS_GetErrorCallback, 682
POWER_SYS_GetErrorCallbackIndex, 682
POWER_SYS_GetLastMode, 683

POWER_SYS_GetLastModeConfig, 683
POWER_SYS_Init, 683
POWER_SYS_SetMode, 684
power_manager_callback_data_t, 680
power_manager_callback_t, 680
power_manager_callback_type_t, 681
power_manager_notify_t, 681
power_manager_policy_t, 682

Power Manager Driver, 685
power_manager_callback_data_t

Power Manager, 680
power_manager_callback_t

Power Manager, 680
power_manager_callback_type_t

Power Manager, 681
power_manager_callback_user_config_t, 679

callbackData, 679
callbackFunction, 679
callbackType, 679

power_manager_modes_t
Power_s32k1xx, 689

power_manager_notify_struct_t, 678
notifyType, 679
policy, 679
targetPowerConfigIndex, 679
targetPowerConfigPtr, 679

power_manager_notify_t
Power Manager, 681

power_manager_policy_t
Power Manager, 682

power_manager_state_t, 679
configs, 680
configsNumber, 680
currentConfig, 680
errorCallbackIndex, 680
staticCallbacks, 680
staticCallbacksNumber, 680

power_manager_user_config_t, 687
powerMode, 687
sleepOnExitOption, 687
sleepOnExitValue, 687

power_mode_stat_t
Power_s32k1xx, 690

power_modes_protect_t
Power_s32k1xx, 690

Power_s32k1xx, 686
ALLOW_HSRUN, 690
ALLOW_MAX, 690
ALLOW_VLP, 690
PMC_INT_LOW_VOLT_DETECT, 689
PMC_INT_LOW_VOLT_WARN, 689
POWER_MANAGER_MAX, 690
POWER_MANAGER_RUN, 689
POWER_MANAGER_STOP, 689
POWER_MANAGER_VLPR, 689
POWER_MANAGER_VLPS, 690
POWER_SYS_DoDeinit, 692
POWER_SYS_DoInit, 692

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

892 INDEX

POWER_SYS_DoSetMode, 692
pmc_int_select_t, 689
power_manager_modes_t, 689
power_mode_stat_t, 690
power_modes_protect_t, 690
RCM_10LPO_CYCLES_DELAY, 690
RCM_130LPO_CYCLES_DELAY, 690
RCM_34LPO_CYCLES_DELAY, 690
RCM_514LPO_CYCLES_DELAY, 690
RCM_CORE1, 691
RCM_CORE_LOCKUP, 691
RCM_EXTERNAL_PIN, 691
RCM_FILTER_BUS_CLK, 690
RCM_FILTER_DISABLED, 690
RCM_FILTER_LPO_CLK, 690
RCM_FILTER_RESERVED, 690
RCM_LOSS_OF_CLK, 691
RCM_LOSS_OF_LOCK, 691
RCM_LOW_VOLT_DETECT, 691
RCM_POWER_ON, 691
RCM_SJTAG, 691
RCM_SMDM_AP, 691
RCM_SOFTWARE, 691
RCM_SRC_NAME_MAX, 691
RCM_STOP_MODE_ACK_ERR, 691
RCM_TAMPERR, 691
RCM_WAKEUP, 691
RCM_WATCH_DOG, 691
rcm_filter_run_wait_modes_t, 690
rcm_reset_delay_time_t, 690
rcm_source_names_t, 690
SMC_HSRUN, 691
SMC_RESERVED_RUN, 691
SMC_RESERVED_STOP1, 691
SMC_RUN, 691
SMC_STOP, 691
SMC_STOP1, 692
SMC_STOP2, 692
SMC_STOP_RESERVED, 692
SMC_VLPR, 691
SMC_VLPS, 691
STAT_HSRUN, 690
STAT_INVALID, 690
STAT_RUN, 690
STAT_STOP, 690
STAT_VLPR, 690
STAT_VLPS, 690
STAT_VLPW, 690
smc_run_mode_t, 691
smc_stop_mode_t, 691
smc_stop_option_t, 691

powerMode
cmp_comparator_t, 238
power_manager_user_config_t, 687

powerModeName
smc_power_mode_config_t, 688

preDivider
flexcan_time_segment_t, 422

preTriggerBackToBackEnable
pdb_adc_pretrigger_config_t, 663

preTriggerEnable
pdb_adc_pretrigger_config_t, 663

preTriggerOutputEnable
pdb_adc_pretrigger_config_t, 664

prediv
scg_spll_config_t, 826
spll_config_t, 828

prescaler
ewm_init_config_t, 313
lptmr_config_t, 571

prescalerEnable
wdog_user_config_t, 807

pretriggerSel
adc_converter_config_t, 167

previous_schedule_id
lin_master_data_t, 615

priority
edma_channel_config_t, 268

product_id
lin_node_attribute_t, 605

product_id_ptr
lin_tl_descriptor_t, 611

programedState
cmp_trigger_mode_t, 240

Programmable Delay Block (PDB), 693
propSeg

flexcan_time_segment_t, 422
protocol_version

lin_protocol_user_config_t, 614
ptr_sch_data_ptr

lin_schedule_t, 608
pwmCombinedChannelConfig

ftm_pwm_param_t, 376
pwmFaultInterrupt

ftm_pwm_fault_param_t, 373
pwmIndependentChannelConfig

ftm_pwm_param_t, 376
pwmOutputStateOnFault

ftm_pwm_fault_param_t, 373

QSPI_AHB_BUFFERS
Qspi_drv, 698

QSPI_CLK_SRC_FIRC_DIV1
Qspi_drv, 699

QSPI_CLK_SRC_PLL_DIV1
Qspi_drv, 699

QSPI_DATE_RATE_DDR
Qspi_drv, 699

QSPI_DATE_RATE_SDR
Qspi_drv, 699

QSPI_DRV_AhbSetup
Qspi_drv, 701

QSPI_DRV_ClearAHBSeqPointer
Qspi_drv, 702

QSPI_DRV_ClearIpSeqPointer
Qspi_drv, 702

QSPI_DRV_Deinit

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 893

Qspi_drv, 702
QSPI_DRV_GetDefaultConfig

Qspi_drv, 702
QSPI_DRV_Init

Qspi_drv, 702
QSPI_DRV_IpCommand

Qspi_drv, 703
QSPI_DRV_IpErase

Qspi_drv, 703
QSPI_DRV_IpGetStatus

Qspi_drv, 703
QSPI_DRV_IpRead

Qspi_drv, 703
QSPI_DRV_IpWrite

Qspi_drv, 704
QSPI_DRV_LockLut

Qspi_drv, 704
QSPI_DRV_SetAhbSeqId

Qspi_drv, 705
QSPI_DRV_SetLut

Qspi_drv, 705
QSPI_DRV_UnlockLut

Qspi_drv, 705
QSPI_END_32BIT_BE

Qspi_drv, 699
QSPI_END_32BIT_LE

Qspi_drv, 699
QSPI_END_64BIT_BE

Qspi_drv, 699
QSPI_END_64BIT_LE

Qspi_drv, 699
QSPI_FLASH_SIDE_A

Qspi_drv, 700
QSPI_FLASH_SIDE_B

Qspi_drv, 700
QSPI_LUT_CMD_ADDR

Qspi_drv, 700
QSPI_LUT_CMD_ADDR_DDR

Qspi_drv, 700
QSPI_LUT_CMD_CADDR

Qspi_drv, 700
QSPI_LUT_CMD_CADDR_DDR

Qspi_drv, 700
QSPI_LUT_CMD_CMD

Qspi_drv, 700
QSPI_LUT_CMD_CMD_DDR

Qspi_drv, 700
QSPI_LUT_CMD_DUMMY

Qspi_drv, 700
QSPI_LUT_CMD_JMP_ON_CS

Qspi_drv, 700
QSPI_LUT_CMD_MODE

Qspi_drv, 700
QSPI_LUT_CMD_MODE2

Qspi_drv, 700
QSPI_LUT_CMD_MODE2_DDR

Qspi_drv, 700
QSPI_LUT_CMD_MODE4

Qspi_drv, 700
QSPI_LUT_CMD_MODE4_DDR

Qspi_drv, 700
QSPI_LUT_CMD_MODE_DDR

Qspi_drv, 700
QSPI_LUT_CMD_READ

Qspi_drv, 700
QSPI_LUT_CMD_READ_DDR

Qspi_drv, 700
QSPI_LUT_CMD_STOP

Qspi_drv, 700
QSPI_LUT_CMD_WRITE

Qspi_drv, 700
QSPI_LUT_CMD_WRITE_DDR

Qspi_drv, 700
QSPI_LUT_LOCK_KEY

Qspi_drv, 699
QSPI_LUT_PADS_1

Qspi_drv, 700
QSPI_LUT_PADS_2

Qspi_drv, 700
QSPI_LUT_PADS_4

Qspi_drv, 700
QSPI_LUT_PADS_8

Qspi_drv, 700
QSPI_READ_MODE_EXTERNAL_DQS

Qspi_drv, 701
QSPI_READ_MODE_INTERNAL_DQS

Qspi_drv, 701
QSPI_READ_MODE_INTERNAL_SAMPLING

Qspi_drv, 701
QSPI_SAMPLE_DELAY_1

Qspi_drv, 701
QSPI_SAMPLE_DELAY_2

Qspi_drv, 701
QSPI_SAMPLE_PHASE_INVERTED

Qspi_drv, 701
QSPI_SAMPLE_PHASE_NON_INVERTED

Qspi_drv, 701
QSPI_TRANSFER_TYPE_ASYNC_DMA

Qspi_drv, 701
QSPI_TRANSFER_TYPE_ASYNC_INT

Qspi_drv, 701
QSPI_TRANSFER_TYPE_SYNC

Qspi_drv, 701
qspi_ahb_config_t, 698

allMasters, 698
highPriority, 698
masters, 698
sizes, 698

qspi_callback_t
Qspi_drv, 699

qspi_clock_src_t
Qspi_drv, 699

qspi_date_rate_t
Qspi_drv, 699

Qspi_drv, 694
g_qspiBase, 705

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

894 INDEX

QSPI_AHB_BUFFERS, 698
QSPI_CLK_SRC_FIRC_DIV1, 699
QSPI_CLK_SRC_PLL_DIV1, 699
QSPI_DATE_RATE_DDR, 699
QSPI_DATE_RATE_SDR, 699
QSPI_DRV_AhbSetup, 701
QSPI_DRV_ClearAHBSeqPointer, 702
QSPI_DRV_ClearIpSeqPointer, 702
QSPI_DRV_Deinit, 702
QSPI_DRV_GetDefaultConfig, 702
QSPI_DRV_Init, 702
QSPI_DRV_IpCommand, 703
QSPI_DRV_IpErase, 703
QSPI_DRV_IpGetStatus, 703
QSPI_DRV_IpRead, 703
QSPI_DRV_IpWrite, 704
QSPI_DRV_LockLut, 704
QSPI_DRV_SetAhbSeqId, 705
QSPI_DRV_SetLut, 705
QSPI_DRV_UnlockLut, 705
QSPI_END_32BIT_BE, 699
QSPI_END_32BIT_LE, 699
QSPI_END_64BIT_BE, 699
QSPI_END_64BIT_LE, 699
QSPI_FLASH_SIDE_A, 700
QSPI_FLASH_SIDE_B, 700
QSPI_LUT_CMD_ADDR, 700
QSPI_LUT_CMD_ADDR_DDR, 700
QSPI_LUT_CMD_CADDR, 700
QSPI_LUT_CMD_CADDR_DDR, 700
QSPI_LUT_CMD_CMD, 700
QSPI_LUT_CMD_CMD_DDR, 700
QSPI_LUT_CMD_DUMMY, 700
QSPI_LUT_CMD_JMP_ON_CS, 700
QSPI_LUT_CMD_MODE, 700
QSPI_LUT_CMD_MODE2, 700
QSPI_LUT_CMD_MODE2_DDR, 700
QSPI_LUT_CMD_MODE4, 700
QSPI_LUT_CMD_MODE4_DDR, 700
QSPI_LUT_CMD_MODE_DDR, 700
QSPI_LUT_CMD_READ, 700
QSPI_LUT_CMD_READ_DDR, 700
QSPI_LUT_CMD_STOP, 700
QSPI_LUT_CMD_WRITE, 700
QSPI_LUT_CMD_WRITE_DDR, 700
QSPI_LUT_LOCK_KEY, 699
QSPI_LUT_PADS_1, 700
QSPI_LUT_PADS_2, 700
QSPI_LUT_PADS_4, 700
QSPI_LUT_PADS_8, 700
QSPI_READ_MODE_EXTERNAL_DQS, 701
QSPI_READ_MODE_INTERNAL_DQS, 701
QSPI_READ_MODE_INTERNAL_SAMPLING,

701
QSPI_SAMPLE_DELAY_1, 701
QSPI_SAMPLE_DELAY_2, 701
QSPI_SAMPLE_PHASE_INVERTED, 701
QSPI_SAMPLE_PHASE_NON_INVERTED, 701

QSPI_TRANSFER_TYPE_ASYNC_DMA, 701
QSPI_TRANSFER_TYPE_ASYNC_INT, 701
QSPI_TRANSFER_TYPE_SYNC, 701
qspi_callback_t, 699
qspi_clock_src_t, 699
qspi_date_rate_t, 699
qspi_endianess_t, 699
qspi_flash_side_t, 699
qspi_lut_commands_t, 700
qspi_lut_pads_t, 700
qspi_read_mode_t, 700
qspi_sample_delay_t, 701
qspi_sample_phase_t, 701
qspi_transfer_type_t, 701

qspi_endianess_t
Qspi_drv, 699

qspi_flash_side_t
Qspi_drv, 699

qspi_lut_commands_t
Qspi_drv, 700

qspi_lut_pads_t
Qspi_drv, 700

qspi_read_mode_t
Qspi_drv, 700

qspi_sample_delay_t
Qspi_drv, 701

qspi_sample_phase_t
Qspi_drv, 701

qspi_state_t, 698
qspi_transfer_type_t

Qspi_drv, 701
qspi_user_config_t, 696

callback, 696
callbackParam, 696
clock_src, 696
clockPhase, 696
columnAddr, 696
csHoldTime, 696
csSetupTime, 697
dataRate, 697
dmaChannel, 697
dmaSupport, 697
endianess, 697
io2IdleValue, 697
io3IdleValue, 697
memSize, 697
readMode, 697
sampleDelay, 697
side, 697
wordAddresable, 698

qspiRefClkGating
sim_clock_config_t, 222

queue_current_size
lin_transport_layer_queue_t, 609

queue_header
lin_transport_layer_queue_t, 609

queue_max_size
lin_transport_layer_queue_t, 609

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 895

queue_status
lin_transport_layer_queue_t, 609

queue_tail
lin_transport_layer_queue_t, 609

RCM_10LPO_CYCLES_DELAY
Power_s32k1xx, 690

RCM_130LPO_CYCLES_DELAY
Power_s32k1xx, 690

RCM_34LPO_CYCLES_DELAY
Power_s32k1xx, 690

RCM_514LPO_CYCLES_DELAY
Power_s32k1xx, 690

RCM_CORE1
Power_s32k1xx, 691

RCM_CORE_LOCKUP
Power_s32k1xx, 691

RCM_EXTERNAL_PIN
Power_s32k1xx, 691

RCM_FILTER_BUS_CLK
Power_s32k1xx, 690

RCM_FILTER_DISABLED
Power_s32k1xx, 690

RCM_FILTER_LPO_CLK
Power_s32k1xx, 690

RCM_FILTER_RESERVED
Power_s32k1xx, 690

RCM_LOSS_OF_CLK
Power_s32k1xx, 691

RCM_LOSS_OF_LOCK
Power_s32k1xx, 691

RCM_LOW_VOLT_DETECT
Power_s32k1xx, 691

RCM_POWER_ON
Power_s32k1xx, 691

RCM_SJTAG
Power_s32k1xx, 691

RCM_SMDM_AP
Power_s32k1xx, 691

RCM_SOFTWARE
Power_s32k1xx, 691

RCM_SRC_NAME_MAX
Power_s32k1xx, 691

RCM_STOP_MODE_ACK_ERR
Power_s32k1xx, 691

RCM_TAMPERR
Power_s32k1xx, 691

RCM_WAKEUP
Power_s32k1xx, 691

RCM_WATCH_DOG
Power_s32k1xx, 691

RECEIVING
Common Transport Layer API, 230

RES_NEGATIVE
Common Transport Layer API, 230

RES_POSITIVE
Common Transport Layer API, 230

RESUME_WAIT_CNT
Flash Memory (Flash), 393

rJumpwidth
flexcan_time_segment_t, 422

RTC_CLK_SRC_LPO_1KHZ
Real Time Clock Driver, 715

RTC_CLK_SRC_OSC_32KHZ
Real Time Clock Driver, 715

RTC_CLKOUT_DISABLED
Real Time Clock Driver, 715

RTC_CLKOUT_SRC_32KHZ
Real Time Clock Driver, 715

RTC_CLKOUT_SRC_TSIC
Real Time Clock Driver, 715

RTC_CTRL_REG_LOCK
Real Time Clock Driver, 715

RTC_DRV_ConfigureAlarm
Real Time Clock Driver, 716

RTC_DRV_ConfigureFaultInt
Real Time Clock Driver, 716

RTC_DRV_ConfigureRegisterLock
Real Time Clock Driver, 716

RTC_DRV_ConfigureSecondsInt
Real Time Clock Driver, 717

RTC_DRV_ConfigureTimeCompensation
Real Time Clock Driver, 717

RTC_DRV_ConvertSecondsToTimeDate
Real Time Clock Driver, 717

RTC_DRV_ConvertTimeDateToSeconds
Real Time Clock Driver, 717

RTC_DRV_Deinit
Real Time Clock Driver, 718

RTC_DRV_GetAlarmConfig
Real Time Clock Driver, 718

RTC_DRV_GetCurrentTimeDate
Real Time Clock Driver, 718

RTC_DRV_GetDefaultConfig
Real Time Clock Driver, 718

RTC_DRV_GetNextAlarmTime
Real Time Clock Driver, 719

RTC_DRV_GetRegisterLock
Real Time Clock Driver, 719

RTC_DRV_GetTimeCompensation
Real Time Clock Driver, 719

RTC_DRV_IRQHandler
Real Time Clock Driver, 720

RTC_DRV_Init
Real Time Clock Driver, 719

RTC_DRV_IsAlarmPending
Real Time Clock Driver, 720

RTC_DRV_IsTimeDateCorrectFormat
Real Time Clock Driver, 720

RTC_DRV_IsYearLeap
Real Time Clock Driver, 720

RTC_DRV_SecondsIRQHandler
Real Time Clock Driver, 721

RTC_DRV_SetTimeDate
Real Time Clock Driver, 721

RTC_DRV_StartCounter
Real Time Clock Driver, 721

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

896 INDEX

RTC_DRV_StopCounter
Real Time Clock Driver, 721

RTC_INT_128HZ
Real Time Clock Driver, 716

RTC_INT_16HZ
Real Time Clock Driver, 716

RTC_INT_1HZ
Real Time Clock Driver, 715

RTC_INT_2HZ
Real Time Clock Driver, 715

RTC_INT_32HZ
Real Time Clock Driver, 716

RTC_INT_4HZ
Real Time Clock Driver, 715

RTC_INT_64HZ
Real Time Clock Driver, 716

RTC_INT_8HZ
Real Time Clock Driver, 716

RTC_LOCK_REG_LOCK
Real Time Clock Driver, 715

RTC_STATUS_REG_LOCK
Real Time Clock Driver, 715

RTC_TCL_REG_LOCK
Real Time Clock Driver, 715

range
firc_config_t, 813
scg_firc_config_t, 822
scg_sirc_config_t, 823
scg_sosc_config_t, 825
sirc_config_t, 827
sosc_config_t, 828

Raw API, 706
ld_get_raw, 706
ld_put_raw, 706
ld_raw_rx_status, 706
ld_raw_tx_status, 707

rccrConfig
scg_clock_mode_config_t, 819

rcm_filter_run_wait_modes_t
Power_s32k1xx, 690

rcm_reset_delay_time_t
Power_s32k1xx, 690

rcm_source_names_t
Power_s32k1xx, 690

rcm_version_info_t, 688
featureNumber, 688
majorNumber, 689
minorNumber, 689

readMode
qspi_user_config_t, 697

Real Time Clock Driver, 708
DAYS_IN_A_LEAP_YEAR, 714
DAYS_IN_A_YEAR, 714
HOURS_IN_A_DAY, 714
MINS_IN_A_HOUR, 714
RTC_CLK_SRC_LPO_1KHZ, 715
RTC_CLK_SRC_OSC_32KHZ, 715
RTC_CLKOUT_DISABLED, 715

RTC_CLKOUT_SRC_32KHZ, 715
RTC_CLKOUT_SRC_TSIC, 715
RTC_CTRL_REG_LOCK, 715
RTC_DRV_ConfigureAlarm, 716
RTC_DRV_ConfigureFaultInt, 716
RTC_DRV_ConfigureRegisterLock, 716
RTC_DRV_ConfigureSecondsInt, 717
RTC_DRV_ConfigureTimeCompensation, 717
RTC_DRV_ConvertSecondsToTimeDate, 717
RTC_DRV_ConvertTimeDateToSeconds, 717
RTC_DRV_Deinit, 718
RTC_DRV_GetAlarmConfig, 718
RTC_DRV_GetCurrentTimeDate, 718
RTC_DRV_GetDefaultConfig, 718
RTC_DRV_GetNextAlarmTime, 719
RTC_DRV_GetRegisterLock, 719
RTC_DRV_GetTimeCompensation, 719
RTC_DRV_IRQHandler, 720
RTC_DRV_Init, 719
RTC_DRV_IsAlarmPending, 720
RTC_DRV_IsTimeDateCorrectFormat, 720
RTC_DRV_IsYearLeap, 720
RTC_DRV_SecondsIRQHandler, 721
RTC_DRV_SetTimeDate, 721
RTC_DRV_StartCounter, 721
RTC_DRV_StopCounter, 721
RTC_INT_128HZ, 716
RTC_INT_16HZ, 716
RTC_INT_1HZ, 715
RTC_INT_2HZ, 715
RTC_INT_32HZ, 716
RTC_INT_4HZ, 715
RTC_INT_64HZ, 716
RTC_INT_8HZ, 716
RTC_LOCK_REG_LOCK, 715
RTC_STATUS_REG_LOCK, 715
RTC_TCL_REG_LOCK, 715
rtc_clk_out_config_t, 715
rtc_clk_select_t, 715
rtc_lock_register_select_t, 715
rtc_second_int_cfg_t, 715
SECONDS_IN_A_DAY, 714
SECONDS_IN_A_HOUR, 714
SECONDS_IN_A_MIN, 714
YEAR_RANGE_END, 715
YEAR_RANGE_START, 715

Real Time Clock Driver (RTC), 723
receive_NAD_ptr

lin_tl_descriptor_t, 611
receive_message_length_ptr

lin_tl_descriptor_t, 611
receive_message_ptr

lin_tl_descriptor_t, 611
receiveStatus

lpuart_state_t, 580
ref

sosc_config_t, 828
regulator

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 897

firc_config_t, 814
sbc_regulator_ctr_t, 775
scg_firc_config_t, 822

regulatorCtr
sbc_int_config_t, 776

repeatForever
rtc_alarm_config_t, 712

repetitionInterval
rtc_alarm_config_t, 712

reserved
lin_word_status_str_t, 603

resolution
adc_converter_config_t, 167

resp_err_frm_id_ptr
lin_node_attribute_t, 605

response_buffer_ptr
lin_protocol_state_t, 617

response_error
lin_node_attribute_t, 606

response_error_bit_offset_ptr
lin_node_attribute_t, 606

response_error_byte_offset_ptr
lin_node_attribute_t, 606

response_length
lin_protocol_state_t, 617

rlc
sbc_start_up_t, 770

roundRobinChannelsState
cmp_trigger_mode_t, 240

roundRobinInterruptState
cmp_trigger_mode_t, 240

roundRobinState
cmp_trigger_mode_t, 240

rss
sbc_main_status_t, 778

rtc_alarm_config_t, 711
alarmCallback, 712
alarmIntEnable, 712
alarmTime, 712
callbackParams, 712
numberOfRepeats, 712
repeatForever, 712
repetitionInterval, 712

rtc_clk_out_config_t
Real Time Clock Driver, 715

rtc_clk_select_t
Real Time Clock Driver, 715

rtc_init_config_t, 710
clockOutConfig, 711
clockSelect, 711
compensation, 711
compensationInterval, 711
nonSupervisorAccessEnable, 711
updateEnable, 711

rtc_interrupt_config_t, 712
callbackParams, 712
overflowIntEnable, 713
rtcCallback, 713

timeInvalidIntEnable, 713
rtc_lock_register_select_t

Real Time Clock Driver, 715
rtc_register_lock_config_t, 713

controlRegisterLock, 714
lockRegisterLock, 714
statusRegisterLock, 714
timeCompensationRegisterLock, 714

rtc_second_int_cfg_t
Real Time Clock Driver, 715

rtc_seconds_int_config_t, 713
rtcSecondsCallback, 713
secondIntConfig, 713
secondIntEnable, 713
secondsCallbackParams, 713

rtc_timedate_t, 710
day, 710
hour, 710
minutes, 710
month, 710
seconds, 710
year, 710

rtcCallback
rtc_interrupt_config_t, 713

rtcClkInFreq
scg_rtc_config_t, 822

rtcConfig
scg_config_t, 820

rtcSecondsCallback
rtc_seconds_int_config_t, 713

RunErrorReport
sai_user_config_t, 732

rx_msg_size
lin_tl_descriptor_t, 611

rx_msg_status
lin_tl_descriptor_t, 612

rxAccelerConfig
enet_config_t, 296

rxBdAlloc
enet_state_t, 296

rxBdBase
enet_state_t, 296

rxBdCurrent
enet_state_t, 297

rxBuff
lin_state_t, 510
lpspi_state_t, 555
lpuart_state_t, 580

rxBufferAligned
enet_buffer_config_t, 294

rxCallback
lpuart_state_t, 580

rxCallbackParam
lpuart_state_t, 580

rxComplete
lpuart_state_t, 581

rxCompleted
lin_state_t, 510

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

898 INDEX

rxConfig
enet_config_t, 296

rxCount
lpspi_state_t, 555

rxDMAChannel
flexio_i2c_master_user_config_t, 441
flexio_i2s_master_user_config_t, 450
flexio_i2s_slave_user_config_t, 451
flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 466
lpspi_master_config_t, 553
lpspi_slave_config_t, 557
lpspi_state_t, 555
lpuart_user_config_t, 582

rxFifoDMAChannel
flexcan_user_config_t, 423

rxFrameCnt
lpspi_state_t, 556

rxPin
flexio_i2s_master_user_config_t, 450
flexio_i2s_slave_user_config_t, 451

rxRingAligned
enet_buffer_config_t, 294

rxRingSize
enet_buffer_config_t, 295

rxSize
lin_state_t, 510
lpuart_state_t, 581

S32K144 SoC Header file, 726
S32K144 System Files, 727
SAI Driver, 728

SAI_ASYNC, 735
SAI_BUS_CLK, 734
SAI_CHANNEL_0, 733
SAI_CHANNEL_1, 733
SAI_CHANNEL_2, 734
SAI_CHANNEL_3, 734
SAI_DMA, 735
SAI_DRV_AbortReceiving, 735
SAI_DRV_AbortSending, 735
SAI_DRV_GetDefaultConfig, 735
SAI_DRV_GetReceivingStatus, 736
SAI_DRV_GetSendingStatus, 736
SAI_DRV_Receive, 736
SAI_DRV_ReceiveBlocking, 736
SAI_DRV_RxDeinit, 737
SAI_DRV_RxGetBitClockDiv, 737
SAI_DRV_RxGetBitClockFreq, 737
SAI_DRV_RxInit, 737
SAI_DRV_RxSetNextMaskWords, 738
SAI_DRV_Send, 738
SAI_DRV_SendBlocking, 738
SAI_DRV_TxDeinit, 738
SAI_DRV_TxGetBitClockDiv, 738
SAI_DRV_TxGetBitClockFreq, 740
SAI_DRV_TxInit, 740
SAI_DRV_TxSetNextMaskWords, 740
SAI_EXTERNAL_CLK, 734

SAI_FRAME_START, 735
SAI_INTERRUPT, 735
SAI_MASK_TRISTATE, 734
SAI_MASK_ZERO, 734
SAI_MUX_DISABLED, 734
SAI_MUX_LINE, 734
SAI_MUX_MEM, 734
SAI_RUN_ERROR, 735
SAI_SOSC_CLK, 734
SAI_SYNC_ERROR, 735
SAI_SYNC_WITH_OTHER, 735
SAI_TRANSFER_COMPLETE, 735
sai_mask_mode_t, 734
sai_master_clk_source_t, 734
sai_mux_mode_t, 734
sai_report_type_t, 734
sai_sync_mode_t, 735
sai_transfer_callback_t, 734
sai_transfer_type_t, 735

SAI_ASYNC
SAI Driver, 735

SAI_BUS_CLK
SAI Driver, 734

SAI_CHANNEL_0
SAI Driver, 733

SAI_CHANNEL_1
SAI Driver, 733

SAI_CHANNEL_2
SAI Driver, 734

SAI_CHANNEL_3
SAI Driver, 734

SAI_DMA
SAI Driver, 735

SAI_DRV_AbortReceiving
SAI Driver, 735

SAI_DRV_AbortSending
SAI Driver, 735

SAI_DRV_GetDefaultConfig
SAI Driver, 735

SAI_DRV_GetReceivingStatus
SAI Driver, 736

SAI_DRV_GetSendingStatus
SAI Driver, 736

SAI_DRV_Receive
SAI Driver, 736

SAI_DRV_ReceiveBlocking
SAI Driver, 736

SAI_DRV_RxDeinit
SAI Driver, 737

SAI_DRV_RxGetBitClockDiv
SAI Driver, 737

SAI_DRV_RxGetBitClockFreq
SAI Driver, 737

SAI_DRV_RxInit
SAI Driver, 737

SAI_DRV_RxSetNextMaskWords
SAI Driver, 738

SAI_DRV_Send

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 899

SAI Driver, 738
SAI_DRV_SendBlocking

SAI Driver, 738
SAI_DRV_TxDeinit

SAI Driver, 738
SAI_DRV_TxGetBitClockDiv

SAI Driver, 738
SAI_DRV_TxGetBitClockFreq

SAI Driver, 740
SAI_DRV_TxInit

SAI Driver, 740
SAI_DRV_TxSetNextMaskWords

SAI Driver, 740
SAI_EXTERNAL_CLK

SAI Driver, 734
SAI_FRAME_START

SAI Driver, 735
SAI_INTERRUPT

SAI Driver, 735
SAI_MASK_TRISTATE

SAI Driver, 734
SAI_MASK_ZERO

SAI Driver, 734
SAI_MUX_DISABLED

SAI Driver, 734
SAI_MUX_LINE

SAI Driver, 734
SAI_MUX_MEM

SAI Driver, 734
SAI_RUN_ERROR

SAI Driver, 735
SAI_SOSC_CLK

SAI Driver, 734
SAI_SYNC_ERROR

SAI Driver, 735
SAI_SYNC_WITH_OTHER

SAI Driver, 735
SAI_TRANSFER_COMPLETE

SAI Driver, 735
SAVE_CONFIG_SET

Common Core API., 227
SBC_UJA_CAN

UJA1169 SBC Driver, 791
SBC_UJA_CAN_CFDC_DIS

UJA1169 SBC Driver, 786
SBC_UJA_CAN_CFDC_EN

UJA1169 SBC Driver, 786
SBC_UJA_CAN_CMC_ACMODE_DA

UJA1169 SBC Driver, 786
SBC_UJA_CAN_CMC_ACMODE_DD

UJA1169 SBC Driver, 786
SBC_UJA_CAN_CMC_LISTEN

UJA1169 SBC Driver, 786
SBC_UJA_CAN_CMC_OFMODE

UJA1169 SBC Driver, 786
SBC_UJA_CAN_CPNC_DIS

UJA1169 SBC Driver, 787
SBC_UJA_CAN_CPNC_EN

UJA1169 SBC Driver, 787
SBC_UJA_CAN_PNCOK_DIS

UJA1169 SBC Driver, 787
SBC_UJA_CAN_PNCOK_EN

UJA1169 SBC Driver, 787
SBC_UJA_COUNT_DMASK

UJA1169 SBC Driver, 785
SBC_UJA_COUNT_ID_REG

UJA1169 SBC Driver, 785
SBC_UJA_COUNT_MASK

UJA1169 SBC Driver, 785
SBC_UJA_DAT_MASK_0

UJA1169 SBC Driver, 791
SBC_UJA_DAT_MASK_1

UJA1169 SBC Driver, 791
SBC_UJA_DAT_MASK_2

UJA1169 SBC Driver, 791
SBC_UJA_DAT_MASK_3

UJA1169 SBC Driver, 791
SBC_UJA_DAT_MASK_4

UJA1169 SBC Driver, 791
SBC_UJA_DAT_MASK_5

UJA1169 SBC Driver, 791
SBC_UJA_DAT_MASK_6

UJA1169 SBC Driver, 791
SBC_UJA_DAT_MASK_7

UJA1169 SBC Driver, 791
SBC_UJA_DAT_RATE

UJA1169 SBC Driver, 791
SBC_UJA_DAT_RATE_CDR_1000KB

UJA1169 SBC Driver, 787
SBC_UJA_DAT_RATE_CDR_100KB

UJA1169 SBC Driver, 787
SBC_UJA_DAT_RATE_CDR_125KB

UJA1169 SBC Driver, 787
SBC_UJA_DAT_RATE_CDR_250KB

UJA1169 SBC Driver, 787
SBC_UJA_DAT_RATE_CDR_500KB

UJA1169 SBC Driver, 787
SBC_UJA_DAT_RATE_CDR_50KB

UJA1169 SBC Driver, 787
SBC_UJA_FAIL_SAFE

UJA1169 SBC Driver, 791
SBC_UJA_FAIL_SAFE_LHC_FLOAT

UJA1169 SBC Driver, 787
SBC_UJA_FAIL_SAFE_LHC_LOW

UJA1169 SBC Driver, 787
SBC_UJA_FRAME_CTR

UJA1169 SBC Driver, 791
SBC_UJA_FRAME_CTR_IDE_11B

UJA1169 SBC Driver, 788
SBC_UJA_FRAME_CTR_IDE_29B

UJA1169 SBC Driver, 788
SBC_UJA_FRAME_CTR_PNDM_DCARE

UJA1169 SBC Driver, 788
SBC_UJA_FRAME_CTR_PNDM_EVAL

UJA1169 SBC Driver, 788
SBC_UJA_GL_EVNT_STAT

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

900 INDEX

UJA1169 SBC Driver, 791
SBC_UJA_GL_EVNT_STAT_SUPE

UJA1169 SBC Driver, 788
SBC_UJA_GL_EVNT_STAT_SUPE_NO

UJA1169 SBC Driver, 788
SBC_UJA_GL_EVNT_STAT_SYSE

UJA1169 SBC Driver, 788
SBC_UJA_GL_EVNT_STAT_SYSE_NO

UJA1169 SBC Driver, 788
SBC_UJA_GL_EVNT_STAT_TRXE

UJA1169 SBC Driver, 788
SBC_UJA_GL_EVNT_STAT_TRXE_NO

UJA1169 SBC Driver, 788
SBC_UJA_GL_EVNT_STAT_WPE

UJA1169 SBC Driver, 789
SBC_UJA_GL_EVNT_STAT_WPE_NO

UJA1169 SBC Driver, 789
SBC_UJA_IDENTIF

UJA1169 SBC Driver, 792
SBC_UJA_IDENTIF_0

UJA1169 SBC Driver, 791
SBC_UJA_IDENTIF_1

UJA1169 SBC Driver, 791
SBC_UJA_IDENTIF_2

UJA1169 SBC Driver, 791
SBC_UJA_IDENTIF_3

UJA1169 SBC Driver, 791
SBC_UJA_LOCK

UJA1169 SBC Driver, 791
SBC_UJA_MAIN

UJA1169 SBC Driver, 791
SBC_UJA_MAIN_NMS_NORMAL

UJA1169 SBC Driver, 789
SBC_UJA_MAIN_NMS_PWR_UP

UJA1169 SBC Driver, 789
SBC_UJA_MAIN_OTWS_ABOVE

UJA1169 SBC Driver, 789
SBC_UJA_MAIN_OTWS_BELOW

UJA1169 SBC Driver, 789
SBC_UJA_MAIN_RSS_CAN_WAKEUP

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_DIAG_WAKEUP

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_ILLEG_SLP

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_ILLEG_WATCH

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_LFT_OVERTM

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_OFF_MODE

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_OVF_SLP

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_RSTN_PULDW

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_SLP_WAKEUP

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_V1_UNDERV

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_WAKE_SLP

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_WATCH_OVF

UJA1169 SBC Driver, 790
SBC_UJA_MAIN_RSS_WATCH_TRIG

UJA1169 SBC Driver, 790
SBC_UJA_MASK_0

UJA1169 SBC Driver, 791
SBC_UJA_MASK_1

UJA1169 SBC Driver, 791
SBC_UJA_MASK_2

UJA1169 SBC Driver, 791
SBC_UJA_MASK_3

UJA1169 SBC Driver, 791
SBC_UJA_MEMORY_0

UJA1169 SBC Driver, 791
SBC_UJA_MEMORY_1

UJA1169 SBC Driver, 791
SBC_UJA_MEMORY_2

UJA1169 SBC Driver, 791
SBC_UJA_MEMORY_3

UJA1169 SBC Driver, 791
SBC_UJA_MODE

UJA1169 SBC Driver, 791
SBC_UJA_MODE_MC_NORMAL

UJA1169 SBC Driver, 790
SBC_UJA_MODE_MC_SLEEP

UJA1169 SBC Driver, 790
SBC_UJA_MODE_MC_STANDBY

UJA1169 SBC Driver, 790
SBC_UJA_MTPNV_CRC

UJA1169 SBC Driver, 792
SBC_UJA_MTPNV_STAT

UJA1169 SBC Driver, 792
SBC_UJA_MTPNV_STAT_ECCS

UJA1169 SBC Driver, 790
SBC_UJA_MTPNV_STAT_ECCS_NO

UJA1169 SBC Driver, 790
SBC_UJA_MTPNV_STAT_NVMPS

UJA1169 SBC Driver, 790
SBC_UJA_MTPNV_STAT_NVMPS_NO

UJA1169 SBC Driver, 790
SBC_UJA_REGULATOR

UJA1169 SBC Driver, 791
SBC_UJA_REGULATOR_PDC_HV

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_PDC_LV

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V1RTC_60

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V1RTC_70

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V1RTC_80

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V1RTC_90

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V2C_N

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 901

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V2C_N_S_R

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V2C_N_S_S_R

UJA1169 SBC Driver, 792
SBC_UJA_REGULATOR_V2C_OFF

UJA1169 SBC Driver, 792
SBC_UJA_SBC

UJA1169 SBC Driver, 792
SBC_UJA_SBC_FNMC_DIS

UJA1169 SBC Driver, 793
SBC_UJA_SBC_FNMC_EN

UJA1169 SBC Driver, 793
SBC_UJA_SBC_SDMC_DIS

UJA1169 SBC Driver, 793
SBC_UJA_SBC_SDMC_EN

UJA1169 SBC Driver, 793
SBC_UJA_SBC_SLPC_AC

UJA1169 SBC Driver, 793
SBC_UJA_SBC_SLPC_IG

UJA1169 SBC Driver, 793
SBC_UJA_SBC_V1RTSUC_60

UJA1169 SBC Driver, 793
SBC_UJA_SBC_V1RTSUC_70

UJA1169 SBC Driver, 793
SBC_UJA_SBC_V1RTSUC_80

UJA1169 SBC Driver, 793
SBC_UJA_SBC_V1RTSUC_90

UJA1169 SBC Driver, 793
SBC_UJA_START_UP

UJA1169 SBC Driver, 792
SBC_UJA_START_UP_RLC_01_01p5

UJA1169 SBC Driver, 794
SBC_UJA_START_UP_RLC_03p6_05

UJA1169 SBC Driver, 794
SBC_UJA_START_UP_RLC_10_12p5

UJA1169 SBC Driver, 794
SBC_UJA_START_UP_RLC_20_25p0

UJA1169 SBC Driver, 794
SBC_UJA_START_UP_V2SUC_00

UJA1169 SBC Driver, 794
SBC_UJA_START_UP_V2SUC_11

UJA1169 SBC Driver, 794
SBC_UJA_SUP_EVNT_STAT

UJA1169 SBC Driver, 791
SBC_UJA_SUP_EVNT_STAT_V1U

UJA1169 SBC Driver, 794
SBC_UJA_SUP_EVNT_STAT_V1U_NO

UJA1169 SBC Driver, 794
SBC_UJA_SUP_EVNT_STAT_V2O

UJA1169 SBC Driver, 794
SBC_UJA_SUP_EVNT_STAT_V2O_NO

UJA1169 SBC Driver, 794
SBC_UJA_SUP_EVNT_STAT_V2U

UJA1169 SBC Driver, 794
SBC_UJA_SUP_EVNT_STAT_V2U_NO

UJA1169 SBC Driver, 794
SBC_UJA_SUPPLY_EVNT

UJA1169 SBC Driver, 791
SBC_UJA_SUPPLY_EVNT_V1UE_DIS

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_EVNT_V1UE_EN

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_EVNT_V2OE_DIS

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_EVNT_V2OE_EN

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_EVNT_V2UE_DIS

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_EVNT_V2UE_EN

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_STAT

UJA1169 SBC Driver, 791
SBC_UJA_SUPPLY_STAT_V1S_VAB

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_STAT_V1S_VBE

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_STAT_V2S_DIS

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_STAT_V2S_VAB

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_STAT_V2S_VBE

UJA1169 SBC Driver, 795
SBC_UJA_SUPPLY_STAT_V2S_VOK

UJA1169 SBC Driver, 795
SBC_UJA_SYS_EVNT_OTWE_DIS

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_OTWE_EN

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_SPIFE_DIS

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_SPIFE_EN

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_STAT

UJA1169 SBC Driver, 791
SBC_UJA_SYS_EVNT_STAT_OTW

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_STAT_OTW_NO

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_STAT_PO

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_STAT_PO_NO

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_STAT_SPIF

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_STAT_SPIF_NO

UJA1169 SBC Driver, 796
SBC_UJA_SYS_EVNT_STAT_WDF

UJA1169 SBC Driver, 797
SBC_UJA_SYS_EVNT_STAT_WDF_NO

UJA1169 SBC Driver, 797
SBC_UJA_SYSTEM_EVNT

UJA1169 SBC Driver, 791
SBC_UJA_TIMEOUT

UJA1169 SBC Driver, 785
SBC_UJA_TRANS_EVNT

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

902 INDEX

UJA1169 SBC Driver, 791
SBC_UJA_TRANS_EVNT_CBSE_DIS

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_CBSE_EN

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_CFE_DIS

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_CFE_EN

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_CWE_DIS

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_CWE_EN

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_STAT

UJA1169 SBC Driver, 791
SBC_UJA_TRANS_EVNT_STAT_CBS

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_STAT_CBS_NO

UJA1169 SBC Driver, 797
SBC_UJA_TRANS_EVNT_STAT_CF

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_EVNT_STAT_CF_NO

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_EVNT_STAT_CW

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_EVNT_STAT_CW_NO

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_EVNT_STAT_PNFDE

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_STAT

UJA1169 SBC Driver, 791
SBC_UJA_TRANS_STAT_CBSS_ACT

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_STAT_CBSS_INACT

UJA1169 SBC Driver, 798
SBC_UJA_TRANS_STAT_CFS_NO_TXD

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_CFS_TXD

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_COSCS_NRUN

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_COSCS_RUN

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_CPNERR_DET

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_CPNERR_NO_DET

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_CPNS_ERR

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_CPNS_OK

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_CTS_ACT

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_CTS_INACT

UJA1169 SBC Driver, 799
SBC_UJA_TRANS_STAT_VCS_AB

UJA1169 SBC Driver, 800
SBC_UJA_TRANS_STAT_VCS_BE

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EN

UJA1169 SBC Driver, 791
SBC_UJA_WAKE_EN_WPFE_DIS

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EN_WPFE_EN

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EN_WPRE_DIS

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EN_WPRE_EN

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EVNT_STAT

UJA1169 SBC Driver, 792
SBC_UJA_WAKE_EVNT_STAT_WPF

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EVNT_STAT_WPF_NO

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EVNT_STAT_WPR

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_EVNT_STAT_WPR_NO

UJA1169 SBC Driver, 800
SBC_UJA_WAKE_STAT

UJA1169 SBC Driver, 791
SBC_UJA_WAKE_STAT_WPVS_AB

UJA1169 SBC Driver, 801
SBC_UJA_WAKE_STAT_WPVS_BE

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR

UJA1169 SBC Driver, 791
SBC_UJA_WTDOG_CTR_NWP_1024

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_NWP_128

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_NWP_16

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_NWP_256

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_NWP_32

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_NWP_4096

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_NWP_64

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_NWP_8

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_WMC_AUTO

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_WMC_TIME

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_CTR_WMC_WIND

UJA1169 SBC Driver, 801
SBC_UJA_WTDOG_STAT

UJA1169 SBC Driver, 791
SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL

UJA1169 SBC Driver, 802
SBC_UJA_WTDOG_STAT_FNMS_NORMAL

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 903

UJA1169 SBC Driver, 802
SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL

UJA1169 SBC Driver, 802
SBC_UJA_WTDOG_STAT_SDMS_NORMAL

UJA1169 SBC Driver, 802
SBC_UJA_WTDOG_STAT_WDS_FIH

UJA1169 SBC Driver, 802
SBC_UJA_WTDOG_STAT_WDS_OFF

UJA1169 SBC Driver, 802
SBC_UJA_WTDOG_STAT_WDS_SEH

UJA1169 SBC Driver, 802
SCG_SYSTEM_CLOCK_DIV_BY_1

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_10

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_DIV_BY_11

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_DIV_BY_12

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_DIV_BY_13

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_DIV_BY_14

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_DIV_BY_15

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_DIV_BY_16

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_DIV_BY_2

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_3

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_4

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_5

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_6

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_7

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_8

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_DIV_BY_9

Clock_manager_s32k1xx, 223
SCG_SYSTEM_CLOCK_SRC_FIRC

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_SRC_NONE

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_SRC_SIRC

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_SRC_SYS_OSC

Clock_manager_s32k1xx, 224
SCG_SYSTEM_CLOCK_SRC_SYS_PLL

Clock_manager_s32k1xx, 224
SECONDS_IN_A_DAY

Real Time Clock Driver, 714
SECONDS_IN_A_HOUR

Real Time Clock Driver, 714
SECONDS_IN_A_MIN

Real Time Clock Driver, 714
SERIVCE_FAULT_MEMORY_CLEAR

Low level API, 619
SERVICE_ASSIGN_FRAME_ID

Low level API, 619
SERVICE_ASSIGN_FRAME_ID_RANGE

Low level API, 619
SERVICE_ASSIGN_NAD

Low level API, 620
SERVICE_CONDITIONAL_CHANGE_NAD

Low level API, 620
SERVICE_FAULT_MEMORY_READ

Low level API, 620
SERVICE_IO_CONTROL_BY_IDENTIFY

Low level API, 620
SERVICE_NOT_SUPPORTED

Common Transport Layer API, 230
SERVICE_READ_BY_IDENTIFY

Low level API, 620
SERVICE_READ_DATA_BY_IDENTIFY

Low level API, 620
SERVICE_SAVE_CONFIGURATION

Low level API, 620
SERVICE_SESSION_CONTROL

Low level API, 620
SERVICE_TARGET_RESET

Common Transport Layer API, 230
SERVICE_WRITE_DATA_BY_IDENTIFY

Low level API, 620
SIM_CLKOUT_DIV_BY_1

Clock_manager_s32k1xx, 224
SIM_CLKOUT_DIV_BY_2

Clock_manager_s32k1xx, 224
SIM_CLKOUT_DIV_BY_3

Clock_manager_s32k1xx, 224
SIM_CLKOUT_DIV_BY_4

Clock_manager_s32k1xx, 224
SIM_CLKOUT_DIV_BY_5

Clock_manager_s32k1xx, 224
SIM_CLKOUT_DIV_BY_6

Clock_manager_s32k1xx, 224
SIM_CLKOUT_DIV_BY_7

Clock_manager_s32k1xx, 224
SIM_CLKOUT_DIV_BY_8

Clock_manager_s32k1xx, 224
SIM_CLKOUT_SEL_SYSTEM_BUS_CLK

Clock_manager_s32k1xx, 225
SIM_CLKOUT_SEL_SYSTEM_FIRC_DIV2_CLK

Clock_manager_s32k1xx, 224
SIM_CLKOUT_SEL_SYSTEM_HCLK

Clock_manager_s32k1xx, 224
SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK

Clock_manager_s32k1xx, 225
SIM_CLKOUT_SEL_SYSTEM_LPO_CLK

Clock_manager_s32k1xx, 225
SIM_CLKOUT_SEL_SYSTEM_RTC_CLK

Clock_manager_s32k1xx, 225
SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

904 INDEX

Clock_manager_s32k1xx, 224
SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK

Clock_manager_s32k1xx, 224
SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK

Clock_manager_s32k1xx, 224
SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK

Clock_manager_s32k1xx, 224
SIM_LPO_CLK_SEL_LPO_128K

Clock_manager_s32k1xx, 225
SIM_LPO_CLK_SEL_LPO_1K

Clock_manager_s32k1xx, 225
SIM_LPO_CLK_SEL_LPO_32K

Clock_manager_s32k1xx, 225
SIM_LPO_CLK_SEL_NO_CLOCK

Clock_manager_s32k1xx, 225
SIM_RTCCLK_SEL_FIRCDIV1_CLK

Clock_manager_s32k1xx, 225
SIM_RTCCLK_SEL_LPO_32K

Clock_manager_s32k1xx, 225
SIM_RTCCLK_SEL_RTC_CLKIN

Clock_manager_s32k1xx, 225
SIM_RTCCLK_SEL_SOSCDIV1_CLK

Clock_manager_s32k1xx, 225
SLAVE

LIN Driver, 511
SMC_HSRUN

Power_s32k1xx, 691
SMC_RESERVED_RUN

Power_s32k1xx, 691
SMC_RESERVED_STOP1

Power_s32k1xx, 691
SMC_RUN

Power_s32k1xx, 691
SMC_STOP

Power_s32k1xx, 691
SMC_STOP1

Power_s32k1xx, 692
SMC_STOP2

Power_s32k1xx, 692
SMC_STOP_RESERVED

Power_s32k1xx, 692
SMC_VLPR

Power_s32k1xx, 691
SMC_VLPS

Power_s32k1xx, 691
ST_min

lin_node_attribute_t, 606
STAT_HSRUN

Power_s32k1xx, 690
STAT_INVALID

Power_s32k1xx, 690
STAT_RUN

Power_s32k1xx, 690
STAT_STOP

Power_s32k1xx, 690
STAT_VLPR

Power_s32k1xx, 690
STAT_VLPS

Power_s32k1xx, 690
STAT_VLPW

Power_s32k1xx, 690
STCD_ADDR

EDMA Driver, 273
STCD_SIZE

EDMA Driver, 273
SUBFUNCTION_NOT_SUPPORTED

Common Transport Layer API, 230
SUCCESSFULL_TRANSFER

Common Core API., 227
SUSPEND_WAIT_CNT

Flash Memory (Flash), 393
sai_mask_mode_t

SAI Driver, 734
sai_master_clk_source_t

SAI Driver, 734
sai_mux_mode_t

SAI Driver, 734
sai_report_type_t

SAI Driver, 734
sai_state_t, 730
sai_sync_mode_t

SAI Driver, 735
sai_transfer_callback_t

SAI Driver, 734
sai_transfer_type_t

SAI Driver, 735
sai_user_config_t, 730

BitClkDiv, 731
BitClkFreq, 731
BitClkInternal, 731
BitClkNegPolar, 731
callback, 731
ChannelCount, 731
ChannelEnable, 732
DmaChannel, 732
ElementSize, 732
FirstBitIndex, 732
FrameSize, 732
FrameStartReport, 732
MaskMode, 732
MasterClkSrc, 732
MsbFirst, 732
MuxMode, 732
RunErrorReport, 732
SyncEarly, 733
SyncErrorReport, 733
SyncInternal, 733
SyncMode, 733
SyncNegPolar, 733
SyncWidth, 733
TransferType, 733
Word0Width, 733
WordNWidth, 733

sai_xfer_state_t, 730
sampleDelay

qspi_user_config_t, 697

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 905

sampleTime
adc_converter_config_t, 167

samples
cmp_trigger_mode_t, 240

save_config_flg
lin_protocol_state_t, 617
lin_word_status_str_t, 603

sbc_can_cfdc_t
UJA1169 SBC Driver, 786

sbc_can_cmc_t
UJA1169 SBC Driver, 786

sbc_can_conf_t, 774
canConf, 774
canTransEvnt, 774
datRate, 774
dataMask, 774
frame, 774
identif, 775
mask, 775

sbc_can_cpnc_t
UJA1169 SBC Driver, 786

sbc_can_ctr_t, 772
cfdc, 772
cmc, 773
cpnc, 773
pncok, 773

sbc_can_pncok_t
UJA1169 SBC Driver, 787

sbc_dat_rate_t
UJA1169 SBC Driver, 787

sbc_data_mask_t
UJA1169 SBC Driver, 785

sbc_evn_capt_t, 783
glEvnt, 783
supEvnt, 783
sysEvnt, 783
transEvnt, 783
wakePinEvnt, 783

sbc_factories_conf_t, 777
control, 777
startUp, 777

sbc_fail_safe_lhc_t
UJA1169 SBC Driver, 787

sbc_fail_safe_rcc_t
UJA1169 SBC Driver, 785

sbc_frame_ctr_dlc_t
UJA1169 SBC Driver, 785

sbc_frame_ctr_ide_t
UJA1169 SBC Driver, 787

sbc_frame_ctr_pndm_t
UJA1169 SBC Driver, 788

sbc_frame_t, 773
dlc, 774
ide, 774
pndm, 774

sbc_gl_evnt_stat_supe_t
UJA1169 SBC Driver, 788

sbc_gl_evnt_stat_syse_t

UJA1169 SBC Driver, 788
sbc_gl_evnt_stat_t, 780

supe, 780
syse, 780
trxe, 780
wpe, 780

sbc_gl_evnt_stat_trxe_t
UJA1169 SBC Driver, 788

sbc_gl_evnt_stat_wpe_t
UJA1169 SBC Driver, 788

sbc_identif_mask_t
UJA1169 SBC Driver, 786

sbc_identifier_t
UJA1169 SBC Driver, 786

sbc_int_config_t, 776
can, 776
lhc, 776
lockMask, 776
mode, 776
regulatorCtr, 776
sysEvnt, 776
wakePin, 777
watchdog, 777

sbc_lock_t
UJA1169 SBC Driver, 789

sbc_main_nms_t
UJA1169 SBC Driver, 789

sbc_main_otws_t
UJA1169 SBC Driver, 789

sbc_main_rss_t
UJA1169 SBC Driver, 789

sbc_main_status_t, 777
nms, 778
otws, 778
rss, 778

sbc_mode_mc_t
UJA1169 SBC Driver, 790

sbc_mtpnv_stat_eccs_t
UJA1169 SBC Driver, 790

sbc_mtpnv_stat_nvmps_t
UJA1169 SBC Driver, 790

sbc_mtpnv_stat_t, 783
eccs, 784
nvmps, 784
wrcnts, 784

sbc_mtpnv_stat_wrcnts_t
UJA1169 SBC Driver, 786

sbc_register_t
UJA1169 SBC Driver, 790

sbc_regulator_ctr_t, 775
regulator, 775
supplyEvnt, 776

sbc_regulator_pdc_t
UJA1169 SBC Driver, 792

sbc_regulator_t, 771
pdc, 771
v1rtc, 771
v2c, 771

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

906 INDEX

sbc_regulator_v1rtc_t
UJA1169 SBC Driver, 792

sbc_regulator_v2c_t
UJA1169 SBC Driver, 792

sbc_sbc_fnmc_t
UJA1169 SBC Driver, 792

sbc_sbc_sdmc_t
UJA1169 SBC Driver, 793

sbc_sbc_slpc_t
UJA1169 SBC Driver, 793

sbc_sbc_t, 769
fnmc, 770
sdmc, 770
slpc, 770
v1rtsuc, 770

sbc_sbc_v1rtsuc_t
UJA1169 SBC Driver, 793

sbc_start_up_rlc_t
UJA1169 SBC Driver, 793

sbc_start_up_t, 770
rlc, 770
v2suc, 771

sbc_start_up_v2suc_t
UJA1169 SBC Driver, 794

sbc_status_group_t, 784
events, 784
mainS, 784
supply, 784
trans, 784
wakePin, 785
wtdog, 785

sbc_sup_evnt_stat_t, 781
v1u, 781
v2o, 781
v2u, 781

sbc_sup_evnt_stat_v1u_t
UJA1169 SBC Driver, 794

sbc_sup_evnt_stat_v2o_t
UJA1169 SBC Driver, 794

sbc_sup_evnt_stat_v2u_t
UJA1169 SBC Driver, 794

sbc_supply_evnt_t, 771
v1ue, 771
v2oe, 772
v2ue, 772

sbc_supply_evnt_v1ue_t
UJA1169 SBC Driver, 794

sbc_supply_evnt_v2oe_t
UJA1169 SBC Driver, 795

sbc_supply_evnt_v2ue_t
UJA1169 SBC Driver, 795

sbc_supply_stat_v1s_t
UJA1169 SBC Driver, 795

sbc_supply_stat_v2s_t
UJA1169 SBC Driver, 795

sbc_supply_status_t, 778
v1s, 779
v2s, 779

sbc_sys_evnt_otwe_t
UJA1169 SBC Driver, 795

sbc_sys_evnt_spife_t
UJA1169 SBC Driver, 796

sbc_sys_evnt_stat_otw_t
UJA1169 SBC Driver, 796

sbc_sys_evnt_stat_po_t
UJA1169 SBC Driver, 796

sbc_sys_evnt_stat_spif_t
UJA1169 SBC Driver, 796

sbc_sys_evnt_stat_t, 780
otw, 781
po, 781
spif, 781
wdf, 781

sbc_sys_evnt_stat_wdf_t
UJA1169 SBC Driver, 796

sbc_sys_evnt_t, 772
owte, 772
spife, 772

sbc_trans_evnt_cbse_t
UJA1169 SBC Driver, 797

sbc_trans_evnt_cfe_t
UJA1169 SBC Driver, 797

sbc_trans_evnt_cwe_t
UJA1169 SBC Driver, 797

sbc_trans_evnt_stat_cbs_t
UJA1169 SBC Driver, 797

sbc_trans_evnt_stat_cf_t
UJA1169 SBC Driver, 798

sbc_trans_evnt_stat_cw_t
UJA1169 SBC Driver, 798

sbc_trans_evnt_stat_pnfde_t
UJA1169 SBC Driver, 798

sbc_trans_evnt_stat_t, 782
cbs, 782
cf, 782
cw, 782
pnfde, 782

sbc_trans_evnt_t, 773
cbse, 773
cfe, 773
cwe, 773

sbc_trans_stat_cbss_t
UJA1169 SBC Driver, 798

sbc_trans_stat_cfs_t
UJA1169 SBC Driver, 798

sbc_trans_stat_coscs_t
UJA1169 SBC Driver, 799

sbc_trans_stat_cpnerr_t
UJA1169 SBC Driver, 799

sbc_trans_stat_cpns_t
UJA1169 SBC Driver, 799

sbc_trans_stat_cts_t
UJA1169 SBC Driver, 799

sbc_trans_stat_t, 779
cbss, 779
cfs, 779

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 907

coscs, 779
cpnerr, 779
cpns, 779
cts, 780
vcs, 780

sbc_trans_stat_vcs_t
UJA1169 SBC Driver, 799

sbc_wake_en_wpfe_t
UJA1169 SBC Driver, 800

sbc_wake_en_wpre_t
UJA1169 SBC Driver, 800

sbc_wake_evnt_stat_t, 782
wpf, 782
wpr, 782

sbc_wake_evnt_stat_wpf_t
UJA1169 SBC Driver, 800

sbc_wake_evnt_stat_wpr_t
UJA1169 SBC Driver, 800

sbc_wake_stat_wpvs_t
UJA1169 SBC Driver, 800

sbc_wake_t, 775
wpfe, 775
wpre, 775

sbc_wtdog_ctr_nwp_t
UJA1169 SBC Driver, 801

sbc_wtdog_ctr_t, 769
modeControl, 769
nominalPeriod, 769

sbc_wtdog_ctr_wmc_t
UJA1169 SBC Driver, 801

sbc_wtdog_stat_fnms_t
UJA1169 SBC Driver, 801

sbc_wtdog_stat_sdms_t
UJA1169 SBC Driver, 802

sbc_wtdog_stat_wds_t
UJA1169 SBC Driver, 802

sbc_wtdog_status_t, 778
fnms, 778
sdms, 778
wds, 778

scatterGatherEnable
edma_transfer_config_t, 272

scatterGatherNextDescAddr
edma_transfer_config_t, 272

scg_clock_mode_config_t, 818
alternateClock, 818
hccrConfig, 818
initialize, 819
rccrConfig, 819
vccrConfig, 819

scg_clockout_config_t, 819
initialize, 819
source, 819

scg_config_t, 820
clockModeConfig, 820
clockOutConfig, 820
fircConfig, 820
rtcConfig, 820

sircConfig, 820
soscConfig, 820
spllConfig, 820

scg_firc_config_t, 821
div1, 821
div2, 821
enableInLowPower, 821
enableInStop, 821
initialize, 821
locked, 822
range, 822
regulator, 822

scg_rtc_config_t, 822
initialize, 822
rtcClkInFreq, 822

scg_sirc_config_t, 823
div1, 823
div2, 823
enableInLowPower, 823
enableInStop, 823
initialize, 823
locked, 823
range, 823

scg_sosc_config_t, 824
div1, 824
div2, 824
enableInLowPower, 824
enableInStop, 824
extRef, 824
freq, 825
gain, 825
initialize, 825
locked, 825
monitorMode, 825
range, 825

scg_spll_config_t, 825
div1, 826
div2, 826
enableInStop, 826
initialize, 826
locked, 826
monitorMode, 826
mult, 826
prediv, 826
src, 826

scg_system_clock_config_t, 222
divBus, 223
divCore, 223
divSlow, 223
src, 223

scg_system_clock_div_t
Clock_manager_s32k1xx, 223

scg_system_clock_src_t
Clock_manager_s32k1xx, 224

sch_tbl_type
lin_schedule_t, 608

Schedule management, 741
l_sch_set, 741

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

908 INDEX

l_sch_tick, 741
schedule_start

lin_protocol_user_config_t, 614
schedule_start_entry_ptr

lin_master_data_t, 615
schedule_tbl

lin_protocol_user_config_t, 614
sckPin

flexio_i2s_master_user_config_t, 450
flexio_i2s_slave_user_config_t, 451
flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 467

sclPin
flexio_i2c_master_user_config_t, 441

sdaPin
flexio_i2c_master_user_config_t, 441

sdmc
sbc_sbc_t, 770

sdms
sbc_wtdog_status_t, 778

secondChannelPolarity
ftm_combined_ch_param_t, 375

secondEdge
ftm_combined_ch_param_t, 375

secondIntConfig
rtc_seconds_int_config_t, 713

secondIntEnable
rtc_seconds_int_config_t, 713

seconds
rtc_timedate_t, 710

secondsCallbackParams
rtc_seconds_int_config_t, 713

sectorEraseCount
Flash Memory (Flash), 402

seed
crc_user_config_t, 182

send_functional_request_flg
lin_master_data_t, 616

send_slave_res_flg
lin_master_data_t, 616

seq
csec_state_t, 194

seqErrIntEnable
pdb_timer_config_t, 663

serial_0
lin_serial_number_t, 604

serial_1
lin_serial_number_t, 604

serial_2
lin_serial_number_t, 604

serial_3
lin_serial_number_t, 604

serial_number
lin_node_attribute_t, 606

service_flags_ptr
lin_node_attribute_t, 606

service_status
lin_tl_descriptor_t, 612

service_supported_ptr
lin_node_attribute_t, 606

side
qspi_user_config_t, 697

Signal interaction, 742
sim_clkout_div_t

Clock_manager_s32k1xx, 224
sim_clkout_src_t

Clock_manager_s32k1xx, 224
sim_clock_config_t, 221

clockOutConfig, 222
lpoClockConfig, 222
platGateConfig, 222
qspiRefClkGating, 222
tclkConfig, 222
traceClockConfig, 222

sim_clock_out_config_t, 218
divider, 218
enable, 218
initialize, 218
source, 218

sim_lpo_clock_config_t, 219
enableLpo1k, 219
enableLpo32k, 219
initialize, 219
sourceLpoClk, 219
sourceRtcClk, 219

sim_lpoclk_sel_src_t
Clock_manager_s32k1xx, 225

sim_plat_gate_config_t, 220
enableDma, 220
enableEim, 220
enableErm, 220
enableMpu, 220
enableMscm, 220
initialize, 220

sim_qspi_ref_clk_gating_t, 220
enableQspiRefClk, 221

sim_rtc_clk_sel_src_t
Clock_manager_s32k1xx, 225

sim_tclk_config_t, 219
initialize, 219
tclkFreq, 220

sim_trace_clock_config_t, 221
divEnable, 221
divFraction, 221
divider, 221
initialize, 221
source, 221

sirc_config_t, 827
modes, 827
range, 827

sircConfig
scg_config_t, 820

sizes
qspi_ahb_config_t, 698

slave_ifc_handle
lin_protocol_user_config_t, 614

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 909

slave_resp_cnt
lin_tl_descriptor_t, 612

slaveAddress
flexio_i2c_master_user_config_t, 441
lpi2c_master_user_config_t, 525
lpi2c_slave_user_config_t, 526

slaveCallback
lpi2c_slave_user_config_t, 526

slaveListening
lpi2c_slave_user_config_t, 526

sleepOnExitOption
power_manager_user_config_t, 687

sleepOnExitValue
power_manager_user_config_t, 687

slow
sys_clk_config_t, 829

slpc
sbc_sbc_t, 770

smc_power_mode_config_t, 687
powerModeName, 688

smc_power_mode_protection_config_t, 687
vlpProt, 687

smc_run_mode_t
Power_s32k1xx, 691

smc_stop_mode_t
Power_s32k1xx, 691

smc_stop_option_t
Power_s32k1xx, 691

smc_version_info_t, 688
featureNumber, 688
majorNumber, 688
minorNumber, 688

SoC Header file (SoC Header), 743
SoC Support, 744
softwareSync

ftm_pwm_sync_t, 328
sosc_config_t, 827

freq, 828
modes, 828
range, 828
ref, 828

soscConfig
scg_config_t, 820

source
edma_channel_config_t, 269
periph_clk_config_t, 816
scg_clockout_config_t, 819
sim_clock_out_config_t, 218
sim_trace_clock_config_t, 221

sourceLpoClk
sim_lpo_clock_config_t, 219

sourceRtcClk
sim_lpo_clock_config_t, 219

spif
sbc_sys_evnt_stat_t, 781

spife
sbc_sys_evnt_t, 772

spll_config_t, 828

modes, 828
mult, 828
prediv, 828

spllConfig
scg_config_t, 820

src
scg_spll_config_t, 826
scg_system_clock_config_t, 223
sys_clk_config_t, 829

srcAddr
edma_transfer_config_t, 272

srcLastAddrAdjust
edma_transfer_config_t, 272

srcModulo
edma_transfer_config_t, 272

srcOffset
edma_transfer_config_t, 272

srcOffsetEnable
edma_loop_transfer_config_t, 270

srcTransferSize
edma_transfer_config_t, 272

ssPin
flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 467

startAddr
mpu_user_config_t, 637

startUp
sbc_factories_conf_t, 777

state
cmp_dac_t, 239
flexcan_mb_handle_t, 419

staticCallbacks
power_manager_state_t, 680

staticCallbacksNumber
power_manager_state_t, 680

status
edma_chn_state_t, 268
lpspi_state_t, 556

statusRegisterLock
rtc_register_lock_config_t, 714

stop
wdog_op_mode_t, 806

stopBitCount
lpuart_user_config_t, 582

successful_transfer
lin_protocol_state_t, 617
lin_word_status_str_t, 603

supEvnt
sbc_evn_capt_t, 783

supe
sbc_gl_evnt_stat_t, 780

supplier_id
lin_product_id_t, 814

supply
sbc_status_group_t, 784

supplyEvnt
sbc_regulator_ctr_t, 776

SyncEarly

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

910 INDEX

sai_user_config_t, 733
SyncErrorReport

sai_user_config_t, 733
SyncInternal

sai_user_config_t, 733
syncMethod

ftm_user_config_t, 329
SyncMode

sai_user_config_t, 733
SyncNegPolar

sai_user_config_t, 733
syncPoint

ftm_pwm_sync_t, 328
SyncWidth

sai_user_config_t, 733
Synchronous Audio Interface (SAI), 745
sys_clk_config_t, 829

bus, 829
core, 829
slow, 829
src, 829

sysEvnt
sbc_evn_capt_t, 783
sbc_int_config_t, 776

syse
sbc_gl_evnt_stat_t, 780

System Basis Chip Driver (SBC) - UJA1169 Family, 746

TL_ACTION_ID_IGNORE
Low level API, 624

TL_ACTION_NONE
Low level API, 624

TL_ERROR
Low level API, 624

TL_HANDLER_INTERLEAVE_MODE
Low level API, 624

TL_MAKE_RES_DATA
Low level API, 624

TL_RECEIVE_MESSAGE
Low level API, 624

TL_RX_COMPLETED
Low level API, 624

TL_SLAVE_GET_ACTION
Low level API, 624

TL_TIMEOUT_SERVICE
Low level API, 624

TL_TX_COMPLETED
Low level API, 624

TRANSMITTING
Common Transport Layer API, 230

TRGMUX Driver, 751
TRGMUX_DRV_Deinit, 757
TRGMUX_DRV_GetLockForTargetModule, 757
TRGMUX_DRV_GetTrigSourceForTargetModule,

757
TRGMUX_DRV_Init, 758
TRGMUX_DRV_SetLockForTargetModule, 758
TRGMUX_DRV_SetTrigSourceForTargetModule,

759

TRGMUX_TARGET_MODULE_ADC0_ADHWT←↩

_TLA0, 755
TRGMUX_TARGET_MODULE_ADC0_ADHWT←↩

_TLA1, 755
TRGMUX_TARGET_MODULE_ADC0_ADHWT←↩

_TLA2, 755
TRGMUX_TARGET_MODULE_ADC0_ADHWT←↩

_TLA3, 755
TRGMUX_TARGET_MODULE_ADC1_ADHWT←↩

_TLA0, 755
TRGMUX_TARGET_MODULE_ADC1_ADHWT←↩

_TLA1, 755
TRGMUX_TARGET_MODULE_ADC1_ADHWT←↩

_TLA2, 755
TRGMUX_TARGET_MODULE_ADC1_ADHWT←↩

_TLA3, 755
TRGMUX_TARGET_MODULE_CMP0_SAMPL←↩

E_INPUT, 755
TRGMUX_TARGET_MODULE_DMA_CH0, 754
TRGMUX_TARGET_MODULE_DMA_CH1, 754
TRGMUX_TARGET_MODULE_DMA_CH2, 754
TRGMUX_TARGET_MODULE_DMA_CH3, 754
TRGMUX_TARGET_MODULE_FLEXIO_TRG_←↩

TIM0, 755
TRGMUX_TARGET_MODULE_FLEXIO_TRG_←↩

TIM1, 755
TRGMUX_TARGET_MODULE_FLEXIO_TRG_←↩

TIM2, 755
TRGMUX_TARGET_MODULE_FLEXIO_TRG_←↩

TIM3, 755
TRGMUX_TARGET_MODULE_FTM0_FAULT0,

755
TRGMUX_TARGET_MODULE_FTM0_FAULT1,

755
TRGMUX_TARGET_MODULE_FTM0_FAULT2,

755
TRGMUX_TARGET_MODULE_FTM0_HWTRIG0,

755
TRGMUX_TARGET_MODULE_FTM1_FAULT0,

755
TRGMUX_TARGET_MODULE_FTM1_FAULT1,

755
TRGMUX_TARGET_MODULE_FTM1_FAULT2,

755
TRGMUX_TARGET_MODULE_FTM1_HWTRIG0,

755
TRGMUX_TARGET_MODULE_FTM2_FAULT0,

755
TRGMUX_TARGET_MODULE_FTM2_FAULT1,

755
TRGMUX_TARGET_MODULE_FTM2_FAULT2,

755
TRGMUX_TARGET_MODULE_FTM2_HWTRIG0,

755
TRGMUX_TARGET_MODULE_FTM3_FAULT0,

755
TRGMUX_TARGET_MODULE_FTM3_FAULT1,

755

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 911

TRGMUX_TARGET_MODULE_FTM3_FAULT2,
755

TRGMUX_TARGET_MODULE_FTM3_HWTRIG0,
755

TRGMUX_TARGET_MODULE_LPI2C0_TRG, 755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH0,

755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH1,

755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH2,

755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH3,

755
TRGMUX_TARGET_MODULE_LPSPI0_TRG,

755
TRGMUX_TARGET_MODULE_LPSPI1_TRG,

755
TRGMUX_TARGET_MODULE_LPTMR0_ALT0,

755
TRGMUX_TARGET_MODULE_LPUART0_TRG,

755
TRGMUX_TARGET_MODULE_LPUART1_TRG,

755
TRGMUX_TARGET_MODULE_PDB0_TRG_IN,

755
TRGMUX_TARGET_MODULE_PDB1_TRG_IN,

755
TRGMUX_TARGET_MODULE_TRGMUX_OUT0,

754
TRGMUX_TARGET_MODULE_TRGMUX_OUT1,

754
TRGMUX_TARGET_MODULE_TRGMUX_OUT2,

754
TRGMUX_TARGET_MODULE_TRGMUX_OUT3,

754
TRGMUX_TARGET_MODULE_TRGMUX_OUT4,

755
TRGMUX_TARGET_MODULE_TRGMUX_OUT5,

755
TRGMUX_TARGET_MODULE_TRGMUX_OUT6,

755
TRGMUX_TARGET_MODULE_TRGMUX_OUT7,

755
TRGMUX_TRIG_SOURCE_ADC0_SC1A_COCO,

756
TRGMUX_TRIG_SOURCE_ADC0_SC1B_COCO,

756
TRGMUX_TRIG_SOURCE_ADC1_SC1A_COCO,

756
TRGMUX_TRIG_SOURCE_ADC1_SC1B_COCO,

756
TRGMUX_TRIG_SOURCE_CMP0_OUT, 756
TRGMUX_TRIG_SOURCE_DISABLED, 756
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG0, 756
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG1, 757
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG2, 757
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG3, 757
TRGMUX_TRIG_SOURCE_FTM0_EXT_TRIG,

756
TRGMUX_TRIG_SOURCE_FTM0_INIT_TRIG,

756
TRGMUX_TRIG_SOURCE_FTM1_EXT_TRIG,

756
TRGMUX_TRIG_SOURCE_FTM1_INIT_TRIG,

756
TRGMUX_TRIG_SOURCE_FTM2_EXT_TRIG,

756
TRGMUX_TRIG_SOURCE_FTM2_INIT_TRIG,

756
TRGMUX_TRIG_SOURCE_FTM3_EXT_TRIG,

756
TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG,

756
TRGMUX_TRIG_SOURCE_LPI2C0_MASTER_←↩

TRIG, 757
TRGMUX_TRIG_SOURCE_LPI2C0_SLAVE_T←↩

RIG, 757
TRGMUX_TRIG_SOURCE_LPIT_CH0, 756
TRGMUX_TRIG_SOURCE_LPIT_CH1, 756
TRGMUX_TRIG_SOURCE_LPIT_CH2, 756
TRGMUX_TRIG_SOURCE_LPIT_CH3, 756
TRGMUX_TRIG_SOURCE_LPSPI0_FRAME, 757
TRGMUX_TRIG_SOURCE_LPSPI0_RX_DATA,

757
TRGMUX_TRIG_SOURCE_LPSPI1_FRAME, 757
TRGMUX_TRIG_SOURCE_LPSPI1_RX_DATA,

757
TRGMUX_TRIG_SOURCE_LPTMR0, 756
TRGMUX_TRIG_SOURCE_LPUART0_RX_DA←↩

TA, 757
TRGMUX_TRIG_SOURCE_LPUART0_RX_IDLE,

757
TRGMUX_TRIG_SOURCE_LPUART0_TX_DA←↩

TA, 757
TRGMUX_TRIG_SOURCE_LPUART1_RX_DA←↩

TA, 757
TRGMUX_TRIG_SOURCE_LPUART1_RX_IDLE,

757
TRGMUX_TRIG_SOURCE_LPUART1_TX_DA←↩

TA, 757
TRGMUX_TRIG_SOURCE_PDB0_CH0_TRIG,

756
TRGMUX_TRIG_SOURCE_PDB0_PULSE_OUT,

756
TRGMUX_TRIG_SOURCE_PDB1_CH0_TRIG,

756
TRGMUX_TRIG_SOURCE_PDB1_PULSE_OUT,

756
TRGMUX_TRIG_SOURCE_RTC_ALARM, 756
TRGMUX_TRIG_SOURCE_RTC_SECOND, 756
TRGMUX_TRIG_SOURCE_SIM_SW_TRIG, 757
TRGMUX_TRIG_SOURCE_TRGMUX_IN0, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN1, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN10, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN11, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN2, 756

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

912 INDEX

TRGMUX_TRIG_SOURCE_TRGMUX_IN3, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN4, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN5, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN6, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN7, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN8, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN9, 756
TRGMUX_TRIG_SOURCE_VDD, 756
trgmux_target_module_t, 754
trgmux_trigger_source_t, 755

TRGMUX_DRV_Deinit
TRGMUX Driver, 757

TRGMUX_DRV_GetLockForTargetModule
TRGMUX Driver, 757

TRGMUX_DRV_GetTrigSourceForTargetModule
TRGMUX Driver, 757

TRGMUX_DRV_Init
TRGMUX Driver, 758

TRGMUX_DRV_SetLockForTargetModule
TRGMUX Driver, 758

TRGMUX_DRV_SetTrigSourceForTargetModule
TRGMUX Driver, 759

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA0
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA1
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA2
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_ADC0_ADHWT_TLA3
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA0
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA1
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA2
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_ADC1_ADHWT_TLA3
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_CMP0_SAMPLE_IN←↩

PUT
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_DMA_CH0
TRGMUX Driver, 754

TRGMUX_TARGET_MODULE_DMA_CH1
TRGMUX Driver, 754

TRGMUX_TARGET_MODULE_DMA_CH2
TRGMUX Driver, 754

TRGMUX_TARGET_MODULE_DMA_CH3
TRGMUX Driver, 754

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM0
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM1
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM2
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_FLEXIO_TRG_TIM3
TRGMUX Driver, 755

TRGMUX_TARGET_MODULE_FTM0_FAULT0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM0_FAULT1

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM0_FAULT2

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM0_HWTRIG0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM1_FAULT0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM1_FAULT1

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM1_FAULT2

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM1_HWTRIG0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM2_FAULT0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM2_FAULT1

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM2_FAULT2

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM2_HWTRIG0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM3_FAULT0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM3_FAULT1

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM3_FAULT2

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_FTM3_HWTRIG0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPI2C0_TRG

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH1

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH2

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPIT_TRG_CH3

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPSPI0_TRG

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPSPI1_TRG

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPTMR0_ALT0

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPUART0_TRG

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_LPUART1_TRG

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_PDB0_TRG_IN

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_PDB1_TRG_IN

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_TRGMUX_OUT0

TRGMUX Driver, 754
TRGMUX_TARGET_MODULE_TRGMUX_OUT1

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 913

TRGMUX Driver, 754
TRGMUX_TARGET_MODULE_TRGMUX_OUT2

TRGMUX Driver, 754
TRGMUX_TARGET_MODULE_TRGMUX_OUT3

TRGMUX Driver, 754
TRGMUX_TARGET_MODULE_TRGMUX_OUT4

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_TRGMUX_OUT5

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_TRGMUX_OUT6

TRGMUX Driver, 755
TRGMUX_TARGET_MODULE_TRGMUX_OUT7

TRGMUX Driver, 755
TRGMUX_TRIG_SOURCE_ADC0_SC1A_COCO

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_ADC0_SC1B_COCO

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_ADC1_SC1A_COCO

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_ADC1_SC1B_COCO

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_CMP0_OUT

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_DISABLED

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG0

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG1

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG2

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_FLEXIO_TRIG3

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_FTM0_EXT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FTM0_INIT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FTM1_EXT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FTM1_INIT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FTM2_EXT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FTM2_INIT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FTM3_EXT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_LPI2C0_MASTER_TRIG

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPI2C0_SLAVE_TRIG

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPIT_CH0

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_LPIT_CH1

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_LPIT_CH2

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_LPIT_CH3

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_LPSPI0_FRAME

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPSPI0_RX_DATA

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPSPI1_FRAME

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPSPI1_RX_DATA

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPTMR0

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_LPUART0_RX_DATA

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPUART0_RX_IDLE

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPUART0_TX_DATA

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPUART1_RX_DATA

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPUART1_RX_IDLE

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_LPUART1_TX_DATA

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_PDB0_CH0_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_PDB0_PULSE_OUT

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_PDB1_CH0_TRIG

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_PDB1_PULSE_OUT

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_RTC_ALARM

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_RTC_SECOND

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_SIM_SW_TRIG

TRGMUX Driver, 757
TRGMUX_TRIG_SOURCE_TRGMUX_IN0

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN1

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN10

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN11

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN2

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN3

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN4

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN5

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN6

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN7

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

914 INDEX

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN8

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_TRGMUX_IN9

TRGMUX Driver, 756
TRGMUX_TRIG_SOURCE_VDD

TRGMUX Driver, 756
targetClockConfigIndex

clock_notify_struct_t, 211
targetModule

trgmux_inout_mapping_config_t, 753
targetPowerConfigIndex

power_manager_notify_struct_t, 679
targetPowerConfigPtr

power_manager_notify_struct_t, 679
tclkConfig

sim_clock_config_t, 222
tclkFreq

sim_tclk_config_t, 220
timeCompensationRegisterLock

rtc_register_lock_config_t, 714
timeInvalidIntEnable

rtc_interrupt_config_t, 713
timeoutCounter

lin_state_t, 510
timeoutCounterFlag

lin_state_t, 510
timeoutValue

wdog_user_config_t, 807
timerGetTimeIntervalCallback

lin_user_config_t, 508
timerGetTimeIntervalCallbackArr

Low level API, 629
timerMode

lpit_user_channel_config_t, 542
tl_pdu_ptr

lin_transport_layer_queue_t, 609
tl_queue_data

lin_schedule_data_t, 608
tl_rx_queue

lin_tl_descriptor_t, 612
tl_rx_queue_data_ptr

lin_protocol_user_config_t, 614
tl_tx_queue

lin_tl_descriptor_t, 612
tl_tx_queue_data_ptr

lin_protocol_user_config_t, 614
traceClockConfig

sim_clock_config_t, 222
trans

sbc_status_group_t, 784
transEvnt

sbc_evn_capt_t, 783
transfer_status_t

LPSPI Driver, 559
transfer_type

flexcan_user_config_t, 423
transferSize

flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 467

TransferType
sai_user_config_t, 733

transferType
FlexCANState, 420
lpi2c_master_user_config_t, 525
lpi2c_slave_user_config_t, 526
lpspi_master_config_t, 553
lpspi_slave_config_t, 557
lpspi_state_t, 556
lpuart_state_t, 581
lpuart_user_config_t, 582

transmit_error_resp_sig_flg
lin_protocol_state_t, 618

transmitStatus
lpuart_state_t, 581

Transport layer API, 760
trgmux_inout_mapping_config_t, 753

lockTargetModuleReg, 753
targetModule, 753
triggerSource, 754

trgmux_target_module_t
TRGMUX Driver, 754

trgmux_trigger_source_t
TRGMUX Driver, 755

trgmux_user_config_t, 754
inOutMappingConfig, 754
numInOutMappingConfigs, 754

trigger
adc_converter_config_t, 167

Trigger MUX Control (TRGMUX), 761
triggerInput

pdb_timer_config_t, 663
triggerMode

cmp_module_t, 241
triggerSel

adc_converter_config_t, 167
triggerSelect

lpit_user_channel_config_t, 542
triggerSource

lpit_user_channel_config_t, 542
trgmux_inout_mapping_config_t, 754

trimValue
pmc_lpo_clock_config_t, 818

trxe
sbc_gl_evnt_stat_t, 780

tx_msg_size
lin_tl_descriptor_t, 612

tx_msg_status
lin_tl_descriptor_t, 612

txAccelerConfig
enet_config_t, 296

txBdBase
enet_state_t, 297

txBdCurrent
enet_state_t, 297

txBuff

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 915

lin_state_t, 510
lpspi_state_t, 556
lpuart_state_t, 581

txCallback
lpuart_state_t, 581

txCallbackParam
lpuart_state_t, 581

txComplete
lpuart_state_t, 581

txCompleted
lin_state_t, 510

txConfig
enet_config_t, 296

txCount
lpspi_state_t, 556

txDMAChannel
flexio_i2c_master_user_config_t, 441
flexio_i2s_master_user_config_t, 450
flexio_i2s_slave_user_config_t, 451
flexio_spi_master_user_config_t, 465
flexio_spi_slave_user_config_t, 467
lpspi_master_config_t, 553
lpspi_slave_config_t, 557
lpspi_state_t, 556
lpuart_user_config_t, 582

txFrameCnt
lpspi_state_t, 556

txPin
flexio_i2s_master_user_config_t, 450
flexio_i2s_slave_user_config_t, 451

txRingAligned
enet_buffer_config_t, 295

txRingSize
enet_buffer_config_t, 295

txSize
lin_state_t, 510
lpuart_state_t, 581

type
edma_scatter_gather_list_t, 269

uDutyCyclePercent
ftm_independent_ch_param_t, 373

uFrequencyHZ
ftm_pwm_param_t, 376

UJA1169 SBC Driver, 762
LK0C, 789
LK1C, 789
LK2C, 789
LK3C, 789
LK4C, 789
LK5C, 789
LK6C, 789
LKAC, 789
SBC_UJA_CAN, 791
SBC_UJA_CAN_CFDC_DIS, 786
SBC_UJA_CAN_CFDC_EN, 786
SBC_UJA_CAN_CMC_ACMODE_DA, 786
SBC_UJA_CAN_CMC_ACMODE_DD, 786
SBC_UJA_CAN_CMC_LISTEN, 786

SBC_UJA_CAN_CMC_OFMODE, 786
SBC_UJA_CAN_CPNC_DIS, 787
SBC_UJA_CAN_CPNC_EN, 787
SBC_UJA_CAN_PNCOK_DIS, 787
SBC_UJA_CAN_PNCOK_EN, 787
SBC_UJA_COUNT_DMASK, 785
SBC_UJA_COUNT_ID_REG, 785
SBC_UJA_COUNT_MASK, 785
SBC_UJA_DAT_MASK_0, 791
SBC_UJA_DAT_MASK_1, 791
SBC_UJA_DAT_MASK_2, 791
SBC_UJA_DAT_MASK_3, 791
SBC_UJA_DAT_MASK_4, 791
SBC_UJA_DAT_MASK_5, 791
SBC_UJA_DAT_MASK_6, 791
SBC_UJA_DAT_MASK_7, 791
SBC_UJA_DAT_RATE, 791
SBC_UJA_DAT_RATE_CDR_1000KB, 787
SBC_UJA_DAT_RATE_CDR_100KB, 787
SBC_UJA_DAT_RATE_CDR_125KB, 787
SBC_UJA_DAT_RATE_CDR_250KB, 787
SBC_UJA_DAT_RATE_CDR_500KB, 787
SBC_UJA_DAT_RATE_CDR_50KB, 787
SBC_UJA_FAIL_SAFE, 791
SBC_UJA_FAIL_SAFE_LHC_FLOAT, 787
SBC_UJA_FAIL_SAFE_LHC_LOW, 787
SBC_UJA_FRAME_CTR, 791
SBC_UJA_FRAME_CTR_IDE_11B, 788
SBC_UJA_FRAME_CTR_IDE_29B, 788
SBC_UJA_FRAME_CTR_PNDM_DCARE, 788
SBC_UJA_FRAME_CTR_PNDM_EVAL, 788
SBC_UJA_GL_EVNT_STAT, 791
SBC_UJA_GL_EVNT_STAT_SUPE, 788
SBC_UJA_GL_EVNT_STAT_SUPE_NO, 788
SBC_UJA_GL_EVNT_STAT_SYSE, 788
SBC_UJA_GL_EVNT_STAT_SYSE_NO, 788
SBC_UJA_GL_EVNT_STAT_TRXE, 788
SBC_UJA_GL_EVNT_STAT_TRXE_NO, 788
SBC_UJA_GL_EVNT_STAT_WPE, 789
SBC_UJA_GL_EVNT_STAT_WPE_NO, 789
SBC_UJA_IDENTIF, 792
SBC_UJA_IDENTIF_0, 791
SBC_UJA_IDENTIF_1, 791
SBC_UJA_IDENTIF_2, 791
SBC_UJA_IDENTIF_3, 791
SBC_UJA_LOCK, 791
SBC_UJA_MAIN, 791
SBC_UJA_MAIN_NMS_NORMAL, 789
SBC_UJA_MAIN_NMS_PWR_UP, 789
SBC_UJA_MAIN_OTWS_ABOVE, 789
SBC_UJA_MAIN_OTWS_BELOW, 789
SBC_UJA_MAIN_RSS_CAN_WAKEUP, 790
SBC_UJA_MAIN_RSS_DIAG_WAKEUP, 790
SBC_UJA_MAIN_RSS_ILLEG_SLP, 790
SBC_UJA_MAIN_RSS_ILLEG_WATCH, 790
SBC_UJA_MAIN_RSS_LFT_OVERTM, 790
SBC_UJA_MAIN_RSS_OFF_MODE, 790
SBC_UJA_MAIN_RSS_OVF_SLP, 790

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

916 INDEX

SBC_UJA_MAIN_RSS_RSTN_PULDW, 790
SBC_UJA_MAIN_RSS_SLP_WAKEUP, 790
SBC_UJA_MAIN_RSS_V1_UNDERV, 790
SBC_UJA_MAIN_RSS_WAKE_SLP, 790
SBC_UJA_MAIN_RSS_WATCH_OVF, 790
SBC_UJA_MAIN_RSS_WATCH_TRIG, 790
SBC_UJA_MASK_0, 791
SBC_UJA_MASK_1, 791
SBC_UJA_MASK_2, 791
SBC_UJA_MASK_3, 791
SBC_UJA_MEMORY_0, 791
SBC_UJA_MEMORY_1, 791
SBC_UJA_MEMORY_2, 791
SBC_UJA_MEMORY_3, 791
SBC_UJA_MODE, 791
SBC_UJA_MODE_MC_NORMAL, 790
SBC_UJA_MODE_MC_SLEEP, 790
SBC_UJA_MODE_MC_STANDBY, 790
SBC_UJA_MTPNV_CRC, 792
SBC_UJA_MTPNV_STAT, 792
SBC_UJA_MTPNV_STAT_ECCS, 790
SBC_UJA_MTPNV_STAT_ECCS_NO, 790
SBC_UJA_MTPNV_STAT_NVMPS, 790
SBC_UJA_MTPNV_STAT_NVMPS_NO, 790
SBC_UJA_REGULATOR, 791
SBC_UJA_REGULATOR_PDC_HV, 792
SBC_UJA_REGULATOR_PDC_LV, 792
SBC_UJA_REGULATOR_V1RTC_60, 792
SBC_UJA_REGULATOR_V1RTC_70, 792
SBC_UJA_REGULATOR_V1RTC_80, 792
SBC_UJA_REGULATOR_V1RTC_90, 792
SBC_UJA_REGULATOR_V2C_N, 792
SBC_UJA_REGULATOR_V2C_N_S_R, 792
SBC_UJA_REGULATOR_V2C_N_S_S_R, 792
SBC_UJA_REGULATOR_V2C_OFF, 792
SBC_UJA_SBC, 792
SBC_UJA_SBC_FNMC_DIS, 793
SBC_UJA_SBC_FNMC_EN, 793
SBC_UJA_SBC_SDMC_DIS, 793
SBC_UJA_SBC_SDMC_EN, 793
SBC_UJA_SBC_SLPC_AC, 793
SBC_UJA_SBC_SLPC_IG, 793
SBC_UJA_SBC_V1RTSUC_60, 793
SBC_UJA_SBC_V1RTSUC_70, 793
SBC_UJA_SBC_V1RTSUC_80, 793
SBC_UJA_SBC_V1RTSUC_90, 793
SBC_UJA_START_UP, 792
SBC_UJA_START_UP_RLC_01_01p5, 794
SBC_UJA_START_UP_RLC_03p6_05, 794
SBC_UJA_START_UP_RLC_10_12p5, 794
SBC_UJA_START_UP_RLC_20_25p0, 794
SBC_UJA_START_UP_V2SUC_00, 794
SBC_UJA_START_UP_V2SUC_11, 794
SBC_UJA_SUP_EVNT_STAT, 791
SBC_UJA_SUP_EVNT_STAT_V1U, 794
SBC_UJA_SUP_EVNT_STAT_V1U_NO, 794
SBC_UJA_SUP_EVNT_STAT_V2O, 794
SBC_UJA_SUP_EVNT_STAT_V2O_NO, 794

SBC_UJA_SUP_EVNT_STAT_V2U, 794
SBC_UJA_SUP_EVNT_STAT_V2U_NO, 794
SBC_UJA_SUPPLY_EVNT, 791
SBC_UJA_SUPPLY_EVNT_V1UE_DIS, 795
SBC_UJA_SUPPLY_EVNT_V1UE_EN, 795
SBC_UJA_SUPPLY_EVNT_V2OE_DIS, 795
SBC_UJA_SUPPLY_EVNT_V2OE_EN, 795
SBC_UJA_SUPPLY_EVNT_V2UE_DIS, 795
SBC_UJA_SUPPLY_EVNT_V2UE_EN, 795
SBC_UJA_SUPPLY_STAT, 791
SBC_UJA_SUPPLY_STAT_V1S_VAB, 795
SBC_UJA_SUPPLY_STAT_V1S_VBE, 795
SBC_UJA_SUPPLY_STAT_V2S_DIS, 795
SBC_UJA_SUPPLY_STAT_V2S_VAB, 795
SBC_UJA_SUPPLY_STAT_V2S_VBE, 795
SBC_UJA_SUPPLY_STAT_V2S_VOK, 795
SBC_UJA_SYS_EVNT_OTWE_DIS, 796
SBC_UJA_SYS_EVNT_OTWE_EN, 796
SBC_UJA_SYS_EVNT_SPIFE_DIS, 796
SBC_UJA_SYS_EVNT_SPIFE_EN, 796
SBC_UJA_SYS_EVNT_STAT, 791
SBC_UJA_SYS_EVNT_STAT_OTW, 796
SBC_UJA_SYS_EVNT_STAT_OTW_NO, 796
SBC_UJA_SYS_EVNT_STAT_PO, 796
SBC_UJA_SYS_EVNT_STAT_PO_NO, 796
SBC_UJA_SYS_EVNT_STAT_SPIF, 796
SBC_UJA_SYS_EVNT_STAT_SPIF_NO, 796
SBC_UJA_SYS_EVNT_STAT_WDF, 797
SBC_UJA_SYS_EVNT_STAT_WDF_NO, 797
SBC_UJA_SYSTEM_EVNT, 791
SBC_UJA_TIMEOUT, 785
SBC_UJA_TRANS_EVNT, 791
SBC_UJA_TRANS_EVNT_CBSE_DIS, 797
SBC_UJA_TRANS_EVNT_CBSE_EN, 797
SBC_UJA_TRANS_EVNT_CFE_DIS, 797
SBC_UJA_TRANS_EVNT_CFE_EN, 797
SBC_UJA_TRANS_EVNT_CWE_DIS, 797
SBC_UJA_TRANS_EVNT_CWE_EN, 797
SBC_UJA_TRANS_EVNT_STAT, 791
SBC_UJA_TRANS_EVNT_STAT_CBS, 797
SBC_UJA_TRANS_EVNT_STAT_CBS_NO, 797
SBC_UJA_TRANS_EVNT_STAT_CF, 798
SBC_UJA_TRANS_EVNT_STAT_CF_NO, 798
SBC_UJA_TRANS_EVNT_STAT_CW, 798
SBC_UJA_TRANS_EVNT_STAT_CW_NO, 798
SBC_UJA_TRANS_EVNT_STAT_PNFDE, 798
SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO,

798
SBC_UJA_TRANS_STAT, 791
SBC_UJA_TRANS_STAT_CBSS_ACT, 798
SBC_UJA_TRANS_STAT_CBSS_INACT, 798
SBC_UJA_TRANS_STAT_CFS_NO_TXD, 799
SBC_UJA_TRANS_STAT_CFS_TXD, 799
SBC_UJA_TRANS_STAT_COSCS_NRUN, 799
SBC_UJA_TRANS_STAT_COSCS_RUN, 799
SBC_UJA_TRANS_STAT_CPNERR_DET, 799
SBC_UJA_TRANS_STAT_CPNERR_NO_DET,

799

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 917

SBC_UJA_TRANS_STAT_CPNS_ERR, 799
SBC_UJA_TRANS_STAT_CPNS_OK, 799
SBC_UJA_TRANS_STAT_CTS_ACT, 799
SBC_UJA_TRANS_STAT_CTS_INACT, 799
SBC_UJA_TRANS_STAT_VCS_AB, 800
SBC_UJA_TRANS_STAT_VCS_BE, 800
SBC_UJA_WAKE_EN, 791
SBC_UJA_WAKE_EN_WPFE_DIS, 800
SBC_UJA_WAKE_EN_WPFE_EN, 800
SBC_UJA_WAKE_EN_WPRE_DIS, 800
SBC_UJA_WAKE_EN_WPRE_EN, 800
SBC_UJA_WAKE_EVNT_STAT, 792
SBC_UJA_WAKE_EVNT_STAT_WPF, 800
SBC_UJA_WAKE_EVNT_STAT_WPF_NO, 800
SBC_UJA_WAKE_EVNT_STAT_WPR, 800
SBC_UJA_WAKE_EVNT_STAT_WPR_NO, 800
SBC_UJA_WAKE_STAT, 791
SBC_UJA_WAKE_STAT_WPVS_AB, 801
SBC_UJA_WAKE_STAT_WPVS_BE, 801
SBC_UJA_WTDOG_CTR, 791
SBC_UJA_WTDOG_CTR_NWP_1024, 801
SBC_UJA_WTDOG_CTR_NWP_128, 801
SBC_UJA_WTDOG_CTR_NWP_16, 801
SBC_UJA_WTDOG_CTR_NWP_256, 801
SBC_UJA_WTDOG_CTR_NWP_32, 801
SBC_UJA_WTDOG_CTR_NWP_4096, 801
SBC_UJA_WTDOG_CTR_NWP_64, 801
SBC_UJA_WTDOG_CTR_NWP_8, 801
SBC_UJA_WTDOG_CTR_WMC_AUTO, 801
SBC_UJA_WTDOG_CTR_WMC_TIME, 801
SBC_UJA_WTDOG_CTR_WMC_WIND, 801
SBC_UJA_WTDOG_STAT, 791
SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL,

802
SBC_UJA_WTDOG_STAT_FNMS_NORMAL, 802
SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL,

802
SBC_UJA_WTDOG_STAT_SDMS_NORMAL, 802
SBC_UJA_WTDOG_STAT_WDS_FIH, 802
SBC_UJA_WTDOG_STAT_WDS_OFF, 802
SBC_UJA_WTDOG_STAT_WDS_SEH, 802
sbc_can_cfdc_t, 786
sbc_can_cmc_t, 786
sbc_can_cpnc_t, 786
sbc_can_pncok_t, 787
sbc_dat_rate_t, 787
sbc_data_mask_t, 785
sbc_fail_safe_lhc_t, 787
sbc_fail_safe_rcc_t, 785
sbc_frame_ctr_dlc_t, 785
sbc_frame_ctr_ide_t, 787
sbc_frame_ctr_pndm_t, 788
sbc_gl_evnt_stat_supe_t, 788
sbc_gl_evnt_stat_syse_t, 788
sbc_gl_evnt_stat_trxe_t, 788
sbc_gl_evnt_stat_wpe_t, 788
sbc_identif_mask_t, 786
sbc_identifier_t, 786

sbc_lock_t, 789
sbc_main_nms_t, 789
sbc_main_otws_t, 789
sbc_main_rss_t, 789
sbc_mode_mc_t, 790
sbc_mtpnv_stat_eccs_t, 790
sbc_mtpnv_stat_nvmps_t, 790
sbc_mtpnv_stat_wrcnts_t, 786
sbc_register_t, 790
sbc_regulator_pdc_t, 792
sbc_regulator_v1rtc_t, 792
sbc_regulator_v2c_t, 792
sbc_sbc_fnmc_t, 792
sbc_sbc_sdmc_t, 793
sbc_sbc_slpc_t, 793
sbc_sbc_v1rtsuc_t, 793
sbc_start_up_rlc_t, 793
sbc_start_up_v2suc_t, 794
sbc_sup_evnt_stat_v1u_t, 794
sbc_sup_evnt_stat_v2o_t, 794
sbc_sup_evnt_stat_v2u_t, 794
sbc_supply_evnt_v1ue_t, 794
sbc_supply_evnt_v2oe_t, 795
sbc_supply_evnt_v2ue_t, 795
sbc_supply_stat_v1s_t, 795
sbc_supply_stat_v2s_t, 795
sbc_sys_evnt_otwe_t, 795
sbc_sys_evnt_spife_t, 796
sbc_sys_evnt_stat_otw_t, 796
sbc_sys_evnt_stat_po_t, 796
sbc_sys_evnt_stat_spif_t, 796
sbc_sys_evnt_stat_wdf_t, 796
sbc_trans_evnt_cbse_t, 797
sbc_trans_evnt_cfe_t, 797
sbc_trans_evnt_cwe_t, 797
sbc_trans_evnt_stat_cbs_t, 797
sbc_trans_evnt_stat_cf_t, 798
sbc_trans_evnt_stat_cw_t, 798
sbc_trans_evnt_stat_pnfde_t, 798
sbc_trans_stat_cbss_t, 798
sbc_trans_stat_cfs_t, 798
sbc_trans_stat_coscs_t, 799
sbc_trans_stat_cpnerr_t, 799
sbc_trans_stat_cpns_t, 799
sbc_trans_stat_cts_t, 799
sbc_trans_stat_vcs_t, 799
sbc_wake_en_wpfe_t, 800
sbc_wake_en_wpre_t, 800
sbc_wake_evnt_stat_wpf_t, 800
sbc_wake_evnt_stat_wpr_t, 800
sbc_wake_stat_wpvs_t, 800
sbc_wtdog_ctr_nwp_t, 801
sbc_wtdog_ctr_wmc_t, 801
sbc_wtdog_stat_fnms_t, 801
sbc_wtdog_stat_sdms_t, 802
sbc_wtdog_stat_wds_t, 802

updateEnable
rtc_init_config_t, 711

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

918 INDEX

wdog_user_config_t, 807
User provided call-outs, 803

l_sys_irq_disable, 803
l_sys_irq_restore, 803

userAreaLock
flash_mx25l6433f_secure_lock_t, 405

userGain
adc_calibration_t, 169

userOffset
adc_calibration_t, 169

v1rtc
sbc_regulator_t, 771

v1rtsuc
sbc_sbc_t, 770

v1s
sbc_supply_status_t, 779

v1u
sbc_sup_evnt_stat_t, 781

v1ue
sbc_supply_evnt_t, 771

v2c
sbc_regulator_t, 771

v2o
sbc_sup_evnt_stat_t, 781

v2oe
sbc_supply_evnt_t, 772

v2s
sbc_supply_status_t, 779

v2suc
sbc_start_up_t, 771

v2u
sbc_sup_evnt_stat_t, 781

v2ue
sbc_supply_evnt_t, 772

variant
lin_product_id_t, 814

vccrConfig
scg_clock_mode_config_t, 819

vcs
sbc_trans_stat_t, 780

verifStatus
csec_state_t, 194

vlpProt
smc_power_mode_protection_config_t, 687

voltage
cmp_dac_t, 239

voltageRef
adc_converter_config_t, 167

voltageReferenceSource
cmp_dac_t, 239

WDOG Driver, 804
WDOG_BUS_CLOCK, 808
WDOG_DEBUG_MODE, 808
WDOG_DRV_Deinit, 808
WDOG_DRV_GetConfig, 809
WDOG_DRV_GetCounter, 809
WDOG_DRV_GetDefaultConfig, 809

WDOG_DRV_GetTestMode, 809
WDOG_DRV_Init, 809
WDOG_DRV_SetInt, 810
WDOG_DRV_SetMode, 810
WDOG_DRV_SetTestMode, 810
WDOG_DRV_SetTimeout, 811
WDOG_DRV_SetWindow, 811
WDOG_DRV_Trigger, 811
WDOG_LPO_CLOCK, 808
WDOG_SIRC_CLOCK, 808
WDOG_SOSC_CLOCK, 808
WDOG_STOP_MODE, 808
WDOG_TST_DISABLED, 808
WDOG_TST_HIGH, 808
WDOG_TST_LOW, 808
WDOG_TST_USER, 808
WDOG_WAIT_MODE, 808
wdog_clk_source_t, 808
wdog_set_mode_t, 808
wdog_test_mode_t, 808

WDOG_BUS_CLOCK
WDOG Driver, 808

WDOG_DEBUG_MODE
WDOG Driver, 808

WDOG_DRV_Deinit
WDOG Driver, 808

WDOG_DRV_GetConfig
WDOG Driver, 809

WDOG_DRV_GetCounter
WDOG Driver, 809

WDOG_DRV_GetDefaultConfig
WDOG Driver, 809

WDOG_DRV_GetTestMode
WDOG Driver, 809

WDOG_DRV_Init
WDOG Driver, 809

WDOG_DRV_SetInt
WDOG Driver, 810

WDOG_DRV_SetMode
WDOG Driver, 810

WDOG_DRV_SetTestMode
WDOG Driver, 810

WDOG_DRV_SetTimeout
WDOG Driver, 811

WDOG_DRV_SetWindow
WDOG Driver, 811

WDOG_DRV_Trigger
WDOG Driver, 811

WDOG_LPO_CLOCK
WDOG Driver, 808

WDOG_SIRC_CLOCK
WDOG Driver, 808

WDOG_SOSC_CLOCK
WDOG Driver, 808

WDOG_STOP_MODE
WDOG Driver, 808

WDOG_TST_DISABLED
WDOG Driver, 808

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

INDEX 919

WDOG_TST_HIGH
WDOG Driver, 808

WDOG_TST_LOW
WDOG Driver, 808

WDOG_TST_USER
WDOG Driver, 808

WDOG_WAIT_MODE
WDOG Driver, 808

wait
wdog_op_mode_t, 806

wakePin
sbc_int_config_t, 777
sbc_status_group_t, 785

wakePinEvnt
sbc_evn_capt_t, 783

watchdog
sbc_int_config_t, 777

Watchdog timer (WDOG), 812
watchdogCtr

drv_config_t, 813
wdf

sbc_sys_evnt_stat_t, 781
wdog_clk_source_t

WDOG Driver, 808
wdog_op_mode_t, 806

debug, 806
stop, 806
wait, 806

wdog_set_mode_t
WDOG Driver, 808

wdog_test_mode_t
WDOG Driver, 808

wdog_user_config_t, 807
clkSource, 807
intEnable, 807
opMode, 807
prescalerEnable, 807
timeoutValue, 807
updateEnable, 807
winEnable, 807
windowValue, 807

wds
sbc_wtdog_status_t, 778

whichPcs
lpspi_master_config_t, 554
lpspi_slave_config_t, 557

winEnable
wdog_user_config_t, 807

windowValue
wdog_user_config_t, 807

Word0Width
sai_user_config_t, 733

word_status
lin_protocol_state_t, 618

wordAddresable
qspi_user_config_t, 698

WordNWidth
sai_user_config_t, 733

workMode
lptmr_config_t, 571

wpe
sbc_gl_evnt_stat_t, 780

wpf
sbc_wake_evnt_stat_t, 782

wpfe
sbc_wake_t, 775

wpr
sbc_wake_evnt_stat_t, 782

wpre
sbc_wake_t, 775

wrcnts
sbc_mtpnv_stat_t, 784

writeTranspose
crc_user_config_t, 182

wsPin
flexio_i2s_master_user_config_t, 450
flexio_i2s_slave_user_config_t, 451

wtdog
sbc_status_group_t, 785

YEAR_RANGE_END
Real Time Clock Driver, 715

YEAR_RANGE_START
Real Time Clock Driver, 715

year
rtc_timedate_t, 710

Generated on Wed Jun 28 2017 18:19:39 for S32 SDK Documentation by Doxygen

	1 S32 SDK
	2 Components
	3 Supported Platforms
	4 Installation
	5 Build Tools
	6 IDE Support
	7 Configuration
	8 Acronyms and Abbreviations
	9 MISRA Compliance
	10 Error detection and reporting
	11 Examples and Demos
	11.1 Introduction
	11.2 Usage
	11.2.1 How to build
	11.2.2 How to debug
	11.2.3 Using terminal emulator

	11.3 S32K142 Examples
	11.3.1 Demo Applications

	11.4 S32K144 Examples
	11.4.1 Demo Applications
	11.4.2 Driver Examples
	11.4.3 ADC Hardware Trigger
	11.4.4 ADC Software Trigger
	11.4.5 CMP DAC
	11.4.6 FLEXIO I2C
	11.4.7 FLEXIO I2S
	11.4.8 FLEXIO SPI
	11.4.9 FLEXIO UART
	11.4.10 LPI2C MASTER
	11.4.11 LPI2C SLAVE
	11.4.12 LPSPI Transfer
	11.4.13 LPUART Echo
	11.4.14 SBC UJA1169
	11.4.15 CRC Checksum
	11.4.16 CSEc key configuration
	11.4.17 eDMA Transfer
	11.4.18 EWM Interrupt
	11.4.19 FLASH Partitioning
	11.4.20 MPU Memory Protection
	11.4.21 Power Mode Switch
	11.4.22 WDOG Interrupt
	11.4.23 FTM Combined PWM
	11.4.24 FTM Periodic Interrupt
	11.4.25 FTM PWM
	11.4.26 FTM Signal Measurement
	11.4.27 LPIT Periodic Interrupt
	11.4.28 LPTMR Periodic Interrupt
	11.4.29 LPTMR Pulse Counter
	11.4.30 PDB Periodic Interrupt
	11.4.31 RTC Alarm

	11.5 S32K148 Examples
	11.5.1 Demo Applications
	11.5.2 Driver Examples
	11.5.3 ADC Hardware Trigger
	11.5.4 ADC Software Trigger
	11.5.5 CMP DAC
	11.5.6 ENET Loopback
	11.5.7 FLEXIO I2C
	11.5.8 FLEXIO I2S
	11.5.9 FLEXIO SPI
	11.5.10 FLEXIO UART
	11.5.11 LPI2C MASTER
	11.5.12 LPI2C SLAVE
	11.5.13 LPSPI Transfer
	11.5.14 LPUART Echo
	11.5.15 SBC UJA1169
	11.5.16 SAI
	11.5.17 CRC Checksum
	11.5.18 CSEc key configuration
	11.5.19 eDMA Transfer
	11.5.20 EWM Interrupt
	11.5.21 FLASH Partitioning
	11.5.22 MPU Memory Protection
	11.5.23 Power Mode Switch
	11.5.24 WDOG Interrupt
	11.5.25 FTM Combined PWM
	11.5.26 FTM Periodic Interrupt
	11.5.27 FTM PWM
	11.5.28 FTM Signal Measurement
	11.5.29 LPIT Periodic Interrupt
	11.5.30 LPTMR Periodic Interrupt
	11.5.31 LPTMR Pulse Counter
	11.5.32 PDB Periodic Interrupt
	11.5.33 RTC Alarm

	12 Module Index
	12.1 Modules

	13 Data Structure Index
	13.1 Data Structures

	14 Module Documentation
	14.1 ADC Driver
	14.1.1 Detailed Description
	14.1.2 Data Structure Documentation
	14.1.3 Enumeration Type Documentation
	14.1.4 Function Documentation

	14.2 Analog to Digital Converter (ADC)
	14.2.1 Detailed Description

	14.3 Backward Compatibility Symbols for S32K144
	14.4 CRC Driver
	14.4.1 Detailed Description
	14.4.2 Data Structure Documentation
	14.4.3 Macro Definition Documentation
	14.4.4 Enumeration Type Documentation
	14.4.5 Function Documentation

	14.5 CRC Driver
	14.6 CSEc Driver
	14.6.1 Detailed Description
	14.6.2 Data Structure Documentation
	14.6.3 Macro Definition Documentation
	14.6.4 Typedef Documentation
	14.6.5 Enumeration Type Documentation
	14.6.6 Function Documentation

	14.7 Clock Manager
	14.7.1 Detailed Description
	14.7.2 Data Structure Documentation
	14.7.3 Typedef Documentation
	14.7.4 Enumeration Type Documentation
	14.7.5 Function Documentation

	14.8 Clock Manager Driver
	14.9 Clock_manager_s32k1xx
	14.9.1 Detailed Description
	14.9.2 Data Structure Documentation
	14.9.3 Macro Definition Documentation
	14.9.4 Enumeration Type Documentation
	14.9.5 Variable Documentation

	14.10 Common Core API.
	14.10.1 Detailed Description
	14.10.2 Macro Definition Documentation

	14.11 Common Transport Layer API
	14.11.1 Detailed Description
	14.11.2 Macro Definition Documentation
	14.11.3 Function Documentation

	14.12 Comparator (CMP)
	14.12.1 Detailed Description

	14.13 Comparator Driver
	14.13.1 Detailed Description
	14.13.2 Data Structure Documentation
	14.13.3 Macro Definition Documentation
	14.13.4 Typedef Documentation
	14.13.5 Enumeration Type Documentation
	14.13.6 Function Documentation

	14.14 Controller Area Network with Flexible Data Rate (FlexCAN)
	14.14.1 Detailed Description

	14.15 Cooked API
	14.15.1 Detailed Description
	14.15.2 Function Documentation

	14.16 Cryptographic Services Engine (CSEc)
	14.16.1 Detailed Description

	14.17 Cyclic Redundancy Check (CRC)
	14.17.1 Detailed Description

	14.18 Diagnostic services
	14.18.1 Detailed Description
	14.18.2 Function Documentation

	14.19 Direct Memory Access (DMA)
	14.19.1 Detailed Description

	14.20 Driver and cluster management
	14.20.1 Detailed Description
	14.20.2 Function Documentation

	14.21 EDMA Driver
	14.21.1 Detailed Description
	14.21.2 Data Structure Documentation
	14.21.3 Macro Definition Documentation
	14.21.4 Typedef Documentation
	14.21.5 Enumeration Type Documentation
	14.21.6 Function Documentation

	14.22 EIM Driver
	14.22.1 Detailed Description
	14.22.2 Data Structure Documentation
	14.22.3 Macro Definition Documentation
	14.22.4 Function Documentation

	14.23 ENET Driver
	14.23.1 Detailed Description
	14.23.2 Data Structure Documentation
	14.23.3 Macro Definition Documentation
	14.23.4 Typedef Documentation
	14.23.5 Enumeration Type Documentation
	14.23.6 Function Documentation

	14.24 ERM Driver
	14.24.1 Detailed Description
	14.24.2 Data Structure Documentation
	14.24.3 Enumeration Type Documentation
	14.24.4 Function Documentation

	14.25 EWM Driver
	14.25.1 Detailed Description
	14.25.2 Data Structure Documentation
	14.25.3 Enumeration Type Documentation
	14.25.4 Function Documentation

	14.26 Error Injection Module (EIM)
	14.26.1 Detailed Description

	14.27 Error Reporting Module (ERM)
	14.27.1 Detailed Description
	14.27.2 ERM Driver Initialization
	14.27.3 ERM Driver Operation

	14.28 Ethernet MAC (ENET)
	14.28.1 Detailed Description

	14.29 External Watchdog Monitor (EWM)
	14.29.1 Detailed Description

	14.30 FTM Common Driver
	14.30.1 Detailed Description
	14.30.2 Data Structure Documentation
	14.30.3 Typedef Documentation
	14.30.4 Enumeration Type Documentation
	14.30.5 Function Documentation
	14.30.6 Variable Documentation

	14.31 FTM Input Capture Driver
	14.31.1 Detailed Description
	14.31.2 Data Structure Documentation
	14.31.3 Enumeration Type Documentation
	14.31.4 Function Documentation

	14.32 FTM Module Counter Driver
	14.32.1 Detailed Description
	14.32.2 Data Structure Documentation
	14.32.3 Function Documentation

	14.33 FTM Output Compare Driver
	14.33.1 Detailed Description
	14.33.2 Data Structure Documentation
	14.33.3 Enumeration Type Documentation
	14.33.4 Function Documentation

	14.34 FTM Pulse Width Modulation Driver
	14.34.1 Detailed Description
	14.34.2 Data Structure Documentation
	14.34.3 Macro Definition Documentation
	14.34.4 Enumeration Type Documentation
	14.34.5 Function Documentation

	14.35 FTM Quadrature Decoder Driver
	14.35.1 Detailed Description
	14.35.2 Data Structure Documentation
	14.35.3 Function Documentation

	14.36 Flash Memory (Flash)
	14.36.1 Detailed Description

	14.37 Flash Memory (Flash)
	14.37.1 Detailed Description
	14.37.2 Data Structure Documentation
	14.37.3 Macro Definition Documentation
	14.37.4 Typedef Documentation
	14.37.5 Enumeration Type Documentation
	14.37.6 Function Documentation
	14.37.7 Variable Documentation

	14.38 Flash_mx25l6433f_drv
	14.38.1 Detailed Description
	14.38.2 Data Structure Documentation
	14.38.3 Enumeration Type Documentation
	14.38.4 Function Documentation

	14.39 FlexCAN Driver
	14.39.1 Detailed Description
	14.39.2 Data Structure Documentation
	14.39.3 Typedef Documentation
	14.39.4 Enumeration Type Documentation
	14.39.5 Function Documentation

	14.40 FlexIO Common Driver
	14.40.1 Detailed Description
	14.40.2 Typedef Documentation
	14.40.3 Enumeration Type Documentation
	14.40.4 Function Documentation

	14.41 FlexIO I2C Driver
	14.41.1 Detailed Description
	14.41.2 Data Structure Documentation
	14.41.3 Macro Definition Documentation
	14.41.4 Function Documentation

	14.42 FlexIO I2S Driver
	14.42.1 Detailed Description
	14.42.2 Data Structure Documentation
	14.42.3 Typedef Documentation
	14.42.4 Function Documentation

	14.43 FlexIO SPI Driver
	14.43.1 Detailed Description
	14.43.2 Data Structure Documentation
	14.43.3 Typedef Documentation
	14.43.4 Enumeration Type Documentation
	14.43.5 Function Documentation

	14.44 FlexIO UART Driver
	14.44.1 Detailed Description
	14.44.2 Data Structure Documentation
	14.44.3 Enumeration Type Documentation
	14.44.4 Function Documentation

	14.45 FlexTimer (FTM)
	14.45.1 Detailed Description

	14.46 Flexible I/O (FlexIO)
	14.46.1 Detailed Description

	14.47 FreeRTOS
	14.48 Initialization
	14.48.1 Detailed Description
	14.48.2 Function Documentation

	14.49 Interface management
	14.49.1 Detailed Description
	14.49.2 Function Documentation

	14.50 Interrupt Manager (Interrupt)
	14.50.1 Detailed Description
	14.50.2 Typedef Documentation
	14.50.3 Function Documentation

	14.51 Interrupt vector numbers for S32K144
	14.52 J2602 Specific API
	14.53 J2602 Transport Layer specific API
	14.53.1 Detailed Description

	14.54 LIN 2.1 Specific API
	14.54.1 Detailed Description
	14.54.2 Function Documentation

	14.55 LIN Core API
	14.55.1 Detailed Description

	14.56 LIN Driver
	14.56.1 Detailed Description
	14.56.2 LIN Driver Overview
	14.56.3 LIN Driver Device structures
	14.56.4 LIN Driver Initialization
	14.56.5 LIN Data Transfers
	14.56.6 Autobaud feature
	14.56.7 Data Structure Documentation
	14.56.8 Macro Definition Documentation
	14.56.9 Typedef Documentation
	14.56.10 Enumeration Type Documentation
	14.56.11 Function Documentation

	14.57 LIN Stack
	14.57.1 Detailed Description

	14.58 LPI2C Driver
	14.58.1 Detailed Description
	14.58.2 Data Structure Documentation
	14.58.3 Typedef Documentation
	14.58.4 Enumeration Type Documentation
	14.58.5 Function Documentation

	14.59 LPIT Driver
	14.59.1 Detailed Description
	14.59.2 Data Structure Documentation
	14.59.3 Macro Definition Documentation
	14.59.4 Enumeration Type Documentation
	14.59.5 Function Documentation

	14.60 LPSPI Driver
	14.60.1 Detailed Description
	14.60.2 Data Structure Documentation
	14.60.3 Enumeration Type Documentation
	14.60.4 Function Documentation
	14.60.5 Variable Documentation

	14.61 LPTMR Driver
	14.61.1 Detailed Description
	14.61.2 Data Structure Documentation
	14.61.3 Enumeration Type Documentation
	14.61.4 Function Documentation

	14.62 LPUART Driver
	14.62.1 Detailed Description
	14.62.2 Data Structure Documentation
	14.62.3 Enumeration Type Documentation
	14.62.4 Function Documentation

	14.63 Local Interconnect Network (LIN)
	14.63.1 Detailed Description

	14.64 Low Power Inter-Integrated Circuit (LPI2C)
	14.64.1 Detailed Description

	14.65 Low Power Interrupt Timer (LPIT)
	14.65.1 Detailed Description

	14.66 Low Power Serial Peripheral Interface (LPSPI)
	14.66.1 Detailed Description

	14.67 Low Power Timer (LPTMR)
	14.67.1 Detailed Description

	14.68 Low Power Universal Asynchronous Receiver-Transmitter (LPUART)
	14.68.1 Detailed Description

	14.69 Low level API
	14.69.1 Detailed Description
	14.69.2 Data Structure Documentation
	14.69.3 Macro Definition Documentation
	14.69.4 Typedef Documentation
	14.69.5 Enumeration Type Documentation
	14.69.6 Function Documentation
	14.69.7 Variable Documentation

	14.70 MPU Driver
	14.70.1 Detailed Description
	14.70.2 Data Structure Documentation
	14.70.3 Enumeration Type Documentation
	14.70.4 Function Documentation

	14.71 Memory Protection Unit (MPU)
	14.71.1 Detailed Description

	14.72 Node configuration
	14.72.1 Detailed Description
	14.72.2 Function Documentation

	14.73 Node configuration
	14.73.1 Detailed Description
	14.73.2 Function Documentation

	14.74 Node identification
	14.74.1 Detailed Description
	14.74.2 Function Documentation

	14.75 Notification
	14.76 OS Interface (OSIF)
	14.76.1 Detailed Description
	14.76.2 Macro Definition Documentation
	14.76.3 Function Documentation

	14.77 PDB Driver
	14.77.1 Detailed Description
	14.77.2 Data Structure Documentation
	14.77.3 Enumeration Type Documentation
	14.77.4 Function Documentation

	14.78 PINS Driver
	14.78.1 Detailed Description
	14.78.2 Data Structure Documentation
	14.78.3 Typedef Documentation
	14.78.4 Enumeration Type Documentation
	14.78.5 Function Documentation

	14.79 Peripheral access layer for S32K144
	14.80 Pins Driver (PINS)
	14.80.1 Detailed Description

	14.81 Power Manager
	14.81.1 Detailed Description
	14.81.2 Data Structure Documentation
	14.81.3 Typedef Documentation
	14.81.4 Enumeration Type Documentation
	14.81.5 Function Documentation

	14.82 Power Manager Driver
	14.83 Power_s32k1xx
	14.83.1 Detailed Description
	14.83.2 Data Structure Documentation
	14.83.3 Enumeration Type Documentation
	14.83.4 Function Documentation

	14.84 Programmable Delay Block (PDB)
	14.84.1 Detailed Description

	14.85 Qspi_drv
	14.85.1 Detailed Description
	14.85.2 Data Structure Documentation
	14.85.3 Macro Definition Documentation
	14.85.4 Typedef Documentation
	14.85.5 Enumeration Type Documentation
	14.85.6 Function Documentation
	14.85.7 Variable Documentation

	14.86 Raw API
	14.86.1 Detailed Description
	14.86.2 Function Documentation

	14.87 Real Time Clock Driver
	14.87.1 Detailed Description
	14.87.2 Data Structure Documentation
	14.87.3 Macro Definition Documentation
	14.87.4 Enumeration Type Documentation
	14.87.5 Function Documentation

	14.88 Real Time Clock Driver (RTC)
	14.88.1 Detailed Description

	14.89 S32K144 SoC Header file
	14.89.1 Detailed Description

	14.90 S32K144 System Files
	14.91 SAI Driver
	14.91.1 Detailed Description
	14.91.2 Data Structure Documentation
	14.91.3 Macro Definition Documentation
	14.91.4 Typedef Documentation
	14.91.5 Enumeration Type Documentation
	14.91.6 Function Documentation

	14.92 Schedule management
	14.92.1 Detailed Description
	14.92.2 Function Documentation

	14.93 Signal interaction
	14.94 SoC Header file (SoC Header)
	14.94.1 Detailed Description

	14.95 SoC Support
	14.95.1 Detailed Description

	14.96 Synchronous Audio Interface (SAI)
	14.96.1 Detailed Description

	14.97 System Basis Chip Driver (SBC) - UJA1169 Family
	14.97.1 Detailed Description

	14.98 TRGMUX Driver
	14.98.1 Detailed Description
	14.98.2 Data Structure Documentation
	14.98.3 Enumeration Type Documentation
	14.98.4 Function Documentation

	14.99 Transport layer API
	14.99.1 Detailed Description

	14.100 Trigger MUX Control (TRGMUX)
	14.100.1 Detailed Description

	14.101 UJA1169 SBC Driver
	14.101.1 Detailed Description
	14.101.2 Data Structure Documentation
	14.101.3 Macro Definition Documentation
	14.101.4 Typedef Documentation
	14.101.5 Enumeration Type Documentation

	14.102 User provided call-outs
	14.102.1 Detailed Description
	14.102.2 Function Documentation

	14.103 WDOG Driver
	14.103.1 Detailed Description
	14.103.2 Data Structure Documentation
	14.103.3 Enumeration Type Documentation
	14.103.4 Function Documentation

	14.104 Watchdog timer (WDOG)
	14.104.1 Detailed Description

	15 Data Structure Documentation
	15.1 drv_config_t Struct Reference
	15.1.1 Detailed Description
	15.1.2 Field Documentation

	15.2 firc_config_t Struct Reference
	15.2.1 Detailed Description
	15.2.2 Field Documentation

	15.3 lin_product_id_t Struct Reference
	15.3.1 Detailed Description
	15.3.2 Field Documentation

	15.4 pcc_config_t Struct Reference
	15.4.1 Detailed Description
	15.4.2 Field Documentation

	15.5 periph_clk_config_t Struct Reference
	15.5.1 Detailed Description
	15.5.2 Field Documentation

	15.6 peripheral_clock_config_t Struct Reference
	15.6.1 Detailed Description
	15.6.2 Field Documentation

	15.7 pmc_config_t Struct Reference
	15.7.1 Detailed Description
	15.7.2 Field Documentation

	15.8 pmc_lpo_clock_config_t Struct Reference
	15.8.1 Detailed Description
	15.8.2 Field Documentation

	15.9 scg_clock_mode_config_t Struct Reference
	15.9.1 Detailed Description
	15.9.2 Field Documentation

	15.10 scg_clockout_config_t Struct Reference
	15.10.1 Detailed Description
	15.10.2 Field Documentation

	15.11 scg_config_t Struct Reference
	15.11.1 Detailed Description
	15.11.2 Field Documentation

	15.12 scg_firc_config_t Struct Reference
	15.12.1 Detailed Description
	15.12.2 Field Documentation

	15.13 scg_rtc_config_t Struct Reference
	15.13.1 Detailed Description
	15.13.2 Field Documentation

	15.14 scg_sirc_config_t Struct Reference
	15.14.1 Detailed Description
	15.14.2 Field Documentation

	15.15 scg_sosc_config_t Struct Reference
	15.15.1 Detailed Description
	15.15.2 Field Documentation

	15.16 scg_spll_config_t Struct Reference
	15.16.1 Detailed Description
	15.16.2 Field Documentation

	15.17 sirc_config_t Struct Reference
	15.17.1 Detailed Description
	15.17.2 Field Documentation

	15.18 sosc_config_t Struct Reference
	15.18.1 Detailed Description
	15.18.2 Field Documentation

	15.19 spll_config_t Struct Reference
	15.19.1 Detailed Description
	15.19.2 Field Documentation

	15.20 sys_clk_config_t Struct Reference
	15.20.1 Detailed Description
	15.20.2 Field Documentation

	Index

