Features

e Core
— ARM926EJ-S™ ARM® Thumb® Processor running at up to 400 MHz @ 1.0V +/- 10%
— 16 Kbytes Data Cache, 16 Kbytes Instruction Cache, Memory Management Unit
* Memories
— One 64-Kbyte internal ROM embedding bootstrap routine: Boot on NAND Flash,
SDCard, DataFlash® or serial DataFlash. Programmable order.
— One 32-Kbyte internal SRAM, single-cycle access at system speed
— High Bandwidth Multi-port DDR2 Controller
— 32-bit External Bus Interface supporting 8-bank DDR2/LPDDR, SDR/LPSDR, Static
Memories
— MLC/SLC NAND Controller, with up to 24-bit Programmable Multi-bit Error
Correcting Code (PMECC)
¢ System running at up to 133 MHz
— Power-on Reset Cells, Reset Controller, Shut Down Controller, Periodic Interval
Timer, Watchdog Timer and Real Time Clock
— Boot Mode Select Option, Remap Command
— Internal Low Power 32 kHz RC and Fast 12 MHz RC Oscillators
— Selectable 32768 Hz Low-power Oscillator and 12 MHz Oscillator
— One PLL for the system and one PLL at 480 MHz optimized for USB High Speed
— Twelve 32-bit-layer AHB Bus Matrix for large Bandwidth transfers
— Dual Peripheral Bridge with dedicated programmable clock for best performance
— Two dual port 8-channel DMA Controllers
— Advanced Interrupt Controller and Debug Unit
— Two Programmable External Clock Signals
* Low Power Mode
— Shut Down Controller with four 32-bit Battery Backup Registers
— Clock Generator and Power Management Controller
— Very Slow Clock Operating Mode, Software Programmable Power Optimization
Capabilities
* Peripherals
— USB Device High Speed, USB Host High Speed and USB Host Full Speed with
dedicated On-Chip Transceiver
— Two 10/100 Mbps Ethernet MAC Controllers
— Two High Speed Memory Card Hosts
— Two CAN Controllers
— Two Master/Slave Serial Peripheral Interface
— Two Three-channel 32-bit Timer/Counters
— One Synchronous Serial Controller
— One Four-channel 16-bit PWM Controller
— Three Two-wire Interfaces
— Four USARTSs, two UARTs
— One 12-channel 10-bit Analog-to-Digital Converter
— Soft Modem
* 1/O
— Four 32-bit Parallel Input/Output Controllers
— 105 Programmable I/O Lines Multiplexed with up to Three Peripheral I/Os
— Input Change Interrupt Capability on Each I/O Line, optional Schmitt trigger input
- Individually Programmable Open-drain, Pull-up and pull-down resistor,
Synchronous Output
* Package
— 217-ball BGA, pitch 0.8 mm

ATMEL

Y ()

AT91SAM
ARM-based
Embedded MPU

SAM9X25

11054A-ATARM-27-Jul-11

1.

2

Description

ATMEL

The SAM9X25 is a high-performance ARM926-based embedded microprocessor unit, running
at 400 MHz and featuring multiple networking/connectivity peripherals, optimized for industrial
applications such as building automation, gateways and medical.

The SAM9X25 features two 2.0A/B compatible Controller Area Network (CAN) interfaces and
two IEEE Std 802.3-compatible 10/100Mbps Ethernet MACs. Additional communication inter-
faces include a soft modem supporting exclusively the Conexant SmartDAA line driver, HS USB
Device and Host, FS USB Host, two HS SDCard/SDIO/MMC interfaces, USARTSs, SPIs, I2S,
TWIs and 10-bit ADC.

To ensure uninterrupted data transfer with minimum processor overhead, the SAM9X25 offers a
10-layer bus matrix coupled with 2 x 8 central DMA channels and dedicated DMAs for the high-
speed connectivity peripherals.

The External Bus Interface incorporates controllers for 8-bank DDR2/LPDDR, SDRAM/LPS-
DRAM, static memories, and specific circuitry for MLC/SLC NAND Flash with integrated ECC.

The SAM9X25 is available in a 217-ball BGA package with 0.8mm ball pitch.

SAMIX25 m——————— e —

11054A-ATARM-27-Jul-11

Block Diagram

2,

SAM9IX25 Block Diagram

Figure 2-1.

-
SS SINPSINY A A
X4 FOESEY &
&F LS LS L5 P00 Son
y OO oL REIE ELTESE Sa&x
& oor & o @%@% s%s% IS s%%%p% %%@ﬁ%o@o@%% %%%o@o@%%
3, & &
M H%w w « FEL EF FSESE EEEEEETE EEFEETE
A Wty I R .
oW
TS S HS = ©
A@A —| System Controller _ JTAG /Boundary Scan _ Transc. qhzmo. _N B0 w <t >> 00%@%%,2%&
3 pO" 0S50
Sok) i i
. _Circui 3 020
40«;0 O AC In-Circuit Emulator - _ s _ — > vwm@.v»
LT ARMO926EJ-S = % i
) o &= pscu HS EHel/ HS EMACO | | g.cn || s-on | | EmaACH >
o —— e uUsB DMA || DMA (RMIN) DDR2SDR > e
S < Cache |y e USB HOST Controller [%M) ¢
PLLA PMC Bus Interface DMA DMA DMA DMA c > M’@oﬁr/@zﬁw)onv@@f@
PLLUTMI) > %)M@m@,f S
+ [osciam > e
N ROM < (CCIRY
N || P >S5
= WDT \ 2R Memory @
y v Vv v L4 YY VY \4 Controller > 004%.....,/
4 3 P
GPBR)) -
B 0sC 32| Multi-Layer AHB Matrix o ®
i < RC > ~ o W o |
> o o
O < sHDC [[R/rc — [2 ¢
m/\//r% |V|_ — AIvawbﬂo%%é«« E
Wy —> POR €| 0 fe>O'cp. ¥ WP
TR — RSTC 1 1 —>] & e "ot W
A\ 4 A
%m,ﬂm\\ —> [_eor_| nan Fras_ o] € ¢W4/OVM
OOO — Peripheral SRAM Peripheral Controller rd > ¢OO
© PIOA PIOD Bridge 32KB Bridge PMECC >L S>> A
PIoB_|| PioC PMERRLOG
0 v
APB
v v] v [2 2 v v v v
FIFo FFo USARTO e \2-Chamnel
USART1 UARTO|| Tc2 -vhanne
USART3 HmM
AAAA ;CCCCr;CCC(ﬁ “r;ﬁ “r A AA A @ ;44’ Y
YYVYYVVVVVVYVVVYVVYVYVYVYYY Y YV Y YYIY YYY ﬁ »»»»» a
PIO (
D h ASEDO PANSEXOELOLELYE F R 2 F LS T S @ PP PR PSP F € SIFFILE I I
SELRILELZHEETACTEE £ 95 F S L SFLE & EESERS Ooﬁ,.o»n«//oﬂ/o & EITIETEF S
SELIEINEEEE FE T ST & CEI PGS T FeLe
&N & & O NOXY <
Oﬂo S R %O %.,T %/.f & O%O.Af KORY RS
& F ¥
~ <

11054A-ATARM-27-Jul-11

ATMEL

3. Signal Description
Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1. Signal Description List

Signal Name Function Type Active Level

Clocks, Oscillators and PLLs

XIN Main Oscillator Input Input
XOUT Main Oscillator Output Output
XIN32 Slow Clock Oscillator Input Input
XOUT32 Slow Clock Oscillator Output Output
VBG Bias Voltage Reference for USB Analog
PCKO0-PCK1 Programmable Clock Output Output
Shutdown, Wakeup Logic
SHDN Shut-Down Control Output
WKUP Wake-Up Input Input
ICE and JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
T™MS Test Mode Select Input
JTAGSEL JTAG Selection Input
RTCK Return Test Clock Output
Reset/Test
NRST Microcontroller Reset I/0 Low
TST Test Mode Select Input
NTRST Test Reset Signal Input
BMS Boot Mode Select Input
Debug Unit - DBGU
DRXD Debug Receive Data Input
DTXD Debug Transmit Data Output
Advanced Interrupt Controller - AIC
IRQ External Interrupt Input Input
FlQ Fast Interrupt Input Input
PIO Controller - PIOA - PIOB - PIOC - PIOD
PAO-PA31 Parallel 10 Controller A I/O
PBO-PB18 Parallel 10 Controller B I/O
PCO-PC31 Parallel 10 Controller C I/0
PDO-PD21 Parallel 10 Controller D I/0
4 S /A VIO X 2 5 10—

11054A-ATARM-27-Jul-11

Table 3-1. Signal Description List (Continued)
Signal Name Function Type Active Level
External Bus Interface - EBI
D0-D15 Data Bus I/0
D16-D31 Data Bus I/O
A0-A25 Address Bus Output
NWAIT External Wait Signal Input Low
Static Memory Controller - SMC
NCSO0-NCS5 Chip Select Lines Output Low
NWRO-NWRS3 Write Signal Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO0-NBS3 Byte Mask Signal Output Low
NAND Flash Support
NFDO-NFD16 NAND Flash I/0 I/0
NANDCS NAND Flash Chip Select Output Low
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
DDR2/SDRAM/LPDDR Controller
SDCK,#SDCK DDR2/SDRAM Differential Clock Output
SDCKE DDR2/SDRAM Clock Enable Output High
SDCS DDR2/SDRAM Controller Chip Select Output Low
BA[0..2] Bank Select Output Low
SDWE DDR2/SDRAM Write Enable Output Low
RAS-CAS Row and Column Signal Output Low
SDA10 SDRAM Address 10 Line Output
DQSI0..1] Data Strobe I/0
DQM[0..3] Write Data Mask Output
High Speed MultiMedia Card Interface - HSMCI0-1
MCI0_CK, MCI1_CK Multimedia Card Clock 1/10
MCIO_CDA, MCI1_CDA Multimedia Card Slot Command 110
MCI0_DAO-MCI0O_DA3 Multimedia Card 0 Slot A Data I/0
MCI1_DAO-MCI1_DA3 Multimedia Card 1 Slot A Data I/O

11054A-ATARM-27-Jul-11

ATMEL

ATMEL

Table 3-1. Signal Description List (Continued)
Signal Name Function Type Active Level
Universal Synchronous Asynchronous Receiver Transmitter - USARTx
SCKx USARTX Serial Clock I/0
TXDx USARTXx Transmit Data Output
RXDx USARTXx Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTXx Clear To Send Input
Universal Asynchronous Receiver Transmitter - UARTX
UTXDx UARTXx Transmit Data Output
URXDx UARTX Receive Data Input
Synchronous Serial Controller - SSC
TD SSC Transmit Data Output
RD SSC Receive Data Input
TK SSC Transmit Clock I/0
RK SSC Receive Clock I/0
TF SSC Transmit Frame Sync I/0
RF SSC Receive Frame Sync I/0
Timer/Counter - TCx x=0..5
TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A I/0
TIOBx TC Channel x I/O Line B I/0
Serial Peripheral Interface - SPIx
SPIx_MISO Master In Slave Out /0
SPIx_MOSI Master Out Slave In I/0
SPIx_SPCK SPI Serial Clock IO
SPIx_NPCS0 SPI Peripheral Chip Select 0 I/0 Low
SPIx_NPCS1-SPIx_NPCS3 SPI Peripheral Chip Select Output Low
Two-Wire Interface -TWix
TWDx Two-wire Serial Data I/0
TWCKx Two-wire Serial Clock I/0

11054A-ATARM-27-Jul-11

Table 3-1. Signal Description List (Continued)
Signal Name Function Type Active Level
Pulse Width Modulation Controller- PWMC
PWMO-PWM3 Pulse Width Modulation Output Output
USB Host High Speed Port - UHPHS
HFSDPA USB Host Port A Full Speed Data + Analog
HFSDMA USB Host Port A Full Speed Data - Analog
HHSDPA USB Host Port A High Speed Data + Analog
HHSDMA USB Host Port A High Speed Data - Analog
HFSDPB USB Host Port B Full Speed Data + Analog
HFSDMB USB Host Port B Full Speed Data - Analog
HHSDPB USB Host Port B High Speed Data + Analog
HHSDMB USB Host Port B High Speed Data - Analog
HFSDMC USB Host Port C Full Speed Data - Analog
HFSDPC USB Host Port C Full Speed Data + Analog
USB Device High Speed Port - UDPHS
DFSDM USB Device Full Speed Data - Analog
DFSDP USB Device Full Speed Data + Analog
DHSDM USB Device High Speed Data - Analog
DHSDP USB Device High Speed Data + Analog
Ethernet 10/100 - EMACO
ETXCK Transmit Clock or Reference Clock Input
ERXCK Receive Clock Input
ETXEN Transmit Enable Output
ETX0-ETX3 Transmit Data Output
ETXER Transmit Coding Error Output
ERXDV Receive Data Valid Input
ERXO-ERX3 Receive Data Input
ERXER Receive Error Input
ECRS Carrier Sense and Data Valid Input
ECOL Collision Detect Input
EMDC Management Data Clock Output
EMDIO Management Data Input/Output /0
RMII Ethernet 10/100 - EMAC1
REFCK Transmit Clock or Reference Clock Input
ETXEN Transmit Enable Output
ETX0-ETX1 Transmit Data Output
CRSDV Receive Data Valid Input

11054A-ATARM-27-Jul-11

ATMEL

Table 3-1. Signal Description List (Continued)

Signal Name Function Type Active Level
ERXO0-ERX1 Receive Data Input
ERXER Receive Error Input
EMDC Management Data Clock Output
EMDIO Management Data Input/Output /10
Analog-to-Digital Converter - ADC
ADO-AD11 12 Analog Inputs Analog
ADTRG ADC Trigger Input
ADVREF ADC Reference Analog
CAN Controller - CANx
CANRXx CAN input Input
CANTXx CAN output Output
Soft Modem - SMD
DIBN Soft Modem Signal I/0
DIBP Soft Modem Signal I/0

11054A-ATARM-27-Jul-11

4. Package and Pinout
The SAM9X25 is available in 217-ball BGA package.

4.1 Overview of the 217-ball BGA Package
Figure 4-1 shows the orientation of the 217-ball BGA Package.

Figure 4-1. Orientation of the 217-ball BGA Package
TOP VIEW

000000
6] 00000000000000000
5] 00000000000000000
4] 00000000000000000
13| 0000 0000
12 [eXeNeXe] 0000
11 0000 0000
10| ooco0o0 o000 0000
9 0000 000 0000
8 0000 o000 0000
7 0000 0000
6 0000 0000
5 0000 0000
4 000000000000 00000
3 000000000000 00000
f 00000000000000000

.OOOOOOOOOOOOOOOOO

ABCDEFGHJ KLMNPRTU
BALLA1 /

4.2 1/O Description

Table 4-1. SAM9IX25 1/0O Type Description

1/0 Type Voltage Range Analog Pull-up Pull-down Schmitt Trigger
GPIO 1.65-3.6V switchable switchable switchable
GPIO_CLK 1.65-3.6V switchable switchable switchable
GPIO_CLK2 1.65-3.6V switchable switchable switchable
GPIO_ANA 3.0-3.6V | switchable switchable
EBI 1.65-1.95, 3.0- switchable switchable
3.6V
EBI_O 1.65-1.95V, 3.0- Reset State Reset State
3.6V
EBI_CLK 1.65 13%5\/V 3.0
RSTJTAG 3.0-3.6V Reset State Reset State Reset State
SYSC 1.65-3.6V Reset State Reset State Reset State
VBG 0.9-1.1V |
USBFS 3.0-3.6V I/O
USBHS 3.0-3.6V 1/0
CLOCK 1.65-3.6V 1/0
DIB 3.0-3.6V I/O

ATMEL ;

11054A-ATARM-27-Jul-11

ATMEL

When “Reset State” is mentioned, the configuration is defined by the “Reset State” column of the
Pin Description table.

Table 4-2. SAM9IX25 1/0O Type Assignment and Frequency

1/0 Frequency | Charge Load Output
1/0 Type (MHz) (pF) Current Signal Name
GPIO 40 10 all PIO lines except the following
MCIOCK, MCI1CK, SPIOSPCK, SPI1SPCK,
GPIO_CLK 54 10 EMACx_ETXCK, ISI_MCK
GPIO_CLK2 75 10
16mA,
GPIO_ANA 25 10 ADx, GPADx
40mA (peak)
50 (3.3V)) .
EBI 133 all Data lines (Input/output) except the following
30 (1.8V)
50 (3.3V) all Address and control lines (output only) except the
EBI_O 66 .
30 (1.8V) following
EBI_CLK 133 10 CK, #CK
RSTJTAG 10 10 NRST, NTRST, BMS, TCK, TDI, TMS, TDO, RTCK
SYSC 0.25 10 WKUP, SHDN, JTAGSEL, TST, SHDN
VBG 0.25 10 VBG
HFSDPA, HFSDPB/DFSDP, HFSDPC, HFSDMA,
USBFS 12 10 HFSDMB/DFSDM, HFSDMC
HHSDPA, HHSDPB/DHSDP, HHSDMA,
USBHS 480 10 HHSDMB/DHSDM
CLOCK 50 50 XIN, XOUT, XIN32, XOUT32
DIB 25 25 DIBN, DIBP

421 Reset State
In the tables that follow, the column “Reset State” indicates the reset state of the line with

mnemonics.
* “PIO” “/” signal
Indicates whether the PIO Line resets in I/O mode or in peripheral mode. If “PIO” is mentioned,

the PIO Line is maintained in a static state as soon as the reset is released. As a result, the bit
corresponding to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.

If a signal name is mentioned in the “Reset State” column, the PIO Line is assigned to this func-
tion and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling
memories, in particular the address lines, which require the pin to be driven as soon as the reset
is released.

° “I”/”O”
Indicates whether the signal is input or output state.

° “PU”/”PDH
Indicates whether Pull-Up, Pull-Down or nothing is enabled.

° “ST”

10 S A IO X 2 5 ——— e —

11054A-ATARM-27-Jul-11

Indicates if Schmitt Trigger is enabled.

Note: Example: The PB18 “Reset State” column shows “PIO, I, PU, ST”. That means the line PIO18 is
configured as an Input with Pull-Up and Schmitt Trigger enabled. PD14 reset state is “PIO, I, PU”.
That means PIO Input with Pull-Up. PD15 reset state is “A20, O, PD” which means output address
line 20 with Pull-Down.

ATMEL Y

11054A-ATARM-27-Jul-11

AIMEL
4.3 217-ball BGA Package Pinout

Table 4-3. Pin Description BGA217

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir, PU,
Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir PD, ST
L3 VDDIOPO GPIO PAO 110 TXDO (0] SPI1_NPCSH1 [¢] PIO, I, PU, ST
P1 VDDIOPO GPIO PA1 /0 RXDO | SPIO_NPCS2 o PIO, I, PU, ST
L4 VDDIOPO GPIO PA2 110 RTSO o MCI1_DA1 110 EO_TX0 (0] PIO, I, PU, ST
N4 VDDIOPO GPIO PA3 1/0 CTSO0 | MCI1_DA2 1/0 EO_TX1 O PIO, I, PU, ST
T3 VDDIOPO GPIO PA4 110 SCKO 110 MCI1_DA3 110 EO_TXER (0] PIO, I, PU, ST
R1 VDDIOPO GPIO PA5 /0 TXD1 o CANTX1 O PIO, I, PU, ST
R4 VDDIOPO GPIO PA6 110 RXD1 | CANRX1 | PIO, I, PU, ST
R3 VDDIOPO GPIO PA7 /0 TXD2 o SPIO_NPCS1 o PIO, I, PU, ST
P4 VDDIOPO GPIO PA8 110 RXD2 | SPI1_NPCSO 110 PIO, |, PU, ST
us VDDIOPO GPIO PA9 /0 DRXD | CANRXO | PIO, I, PU, ST
T VDDIOPO GPIO PA10 110 DTXD [¢] CANTX0 (0] PIO, I, PU, ST
U1 VDDIOPO GPIO PA11 /0 SPI0_MISO 110 MCI1_DAO /0 PIO, I, PU, ST
T2 VDDIOPO GPIO PA12 110 SPI0_MOSI l{e] MCI1_CDA 110 PIO, I, PU, ST
T4 VDDIOPO GPIO_CLK PA13 /0 SPI0_SPCK /10 MCIH_CK 1/0 PIO, I, PU, ST
U2 VDDIOPO GPIO PA14 110 SPI0_NPCSO l{e] PIO, I, PU, ST
U4 VDDIOPO GPIO PA15 /0 MCIO_DAO /10 PIO, I, PU, ST
P5 VDDIOPO GPIO PA16 110 MCI0_CDA l{e] PIO, I, PU, ST
R5 VDDIOPO GPIO_CLK PA17 /0 MCI0_CK 110 PIO, I, PU, ST
us VDDIOPO GPIO PA18 110 MCIO0_DA1 l{e] PIO, I, PU, ST
T5 VDDIOPO GPIO PA19 /0 MCIO_DA2 /10 PIO, I, PU, ST
ué VDDIOPO GPIO PA20 110 MCIO0_DA3 110 PIO, I, PU, ST
T6 VDDIOPO GPIO PA21 /0 TIOAO /10 SPI1_MISO 1/0 PIO, I, PU, ST
R6 VDDIOPO GPIO PA22 110 TIOA1 110 SPI1_MOSI 110 PIO, |, PU, ST
u7 VDDIOPO GPIO_CLK PA23 /0 TIOA2 /0 SPI1_SPCK /0 PIO, I, PU, ST
T7 VDDIOPO GPIO PA24 l{e] TCLKO | TK 110 PIO, |, PU, ST
T8 VDDIOPO GPIO PA25 /0 TCLK1 | TF /0 PIO, I, PU, ST
R7 VDDIOPO GPIO PA26 110 TCLK2 | TD (0] PIO, I, PU, ST
P8 VDDIOPO GPIO PA27 /0 TIOBO /10 RD | PIO, I, PU, ST
us VDDIOPO GPIO PA28 110 TIOB1 l{e] RK 110 PIO, I, PU, ST
R9 VDDIOPO GPIO PA29 /0 TIOB2 110 RF /0 PIO, I, PU, ST
R8 VDDIOPO GPIO PA30 110 TWDO l{e] SPI1_NPCS3 (0] EO_MDC (0] PIO, I, PU, ST
U9 VDDIOPO GPIO PA31 /0 TWCKO o SPI1_NPCS2 o EO_TXEN o PIO, I, PU, ST
D3 VDDANA GPIO PBO 110 EO_RX0 | RTS2 (0] PIO, I, PU, ST
D4 VDDANA GPIO PB1 /0 EO0_RX1 | CTSs2 | PIO, I, PU, ST
D2 VDDANA GPIO PB2 110 EO_RXER | SCK2 110 PIO, |, PU, ST
E4 VDDANA GPIO PB3 /0 EO_RXDV | SPIO_NPCS3 o PIO, I, PU, ST
D1 VDDANA GPIO_CLK PB4 /0 EO_TXCK | TWD2 /0 PIO, I, PU, ST
E3 VDDANA GPIO PB5 110 EO_MDIO /0 TWCK2 (0] PIO, I, PU, ST
B3 VDDANA GPIO_ANA PB6 /0 AD7 | EO_MDC o PIO, I, PU, ST
Cc2 VDDANA GPIO_ANA PB7 110 AD8 | EO_TXEN (0] PIO, I, PU, ST
12 S /A V1D X 2.5 1000 ———

11054A-ATARM-27-Jul-11

Table 4-3. Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir, PU,
Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir PD, ST
C5 VDDANA GPIO_ANA PB8 110 AD9 | EO_TXER (0] PIO, I, PU, ST
c1 VDDANA GPIO_ANA PB9 110 AD10 | EO0_TX0 (0] PCK1 (0] PIO, I, PU, ST
B2 VDDANA GPIO_ANA PB10 110 AD11 | EO_TX1 (0] PCKO (0] PIO, I, PU, ST
A3 VDDANA GPIO_ANA PB11 110 ADO | E0_TX2 (0] PWMO (0] PIO, I, PU, ST
B4 VDDANA GPIO_ANA PB12 110 AD1 | EO_TX3 (0] PWM1 (0] PIO, I, PU, ST
A2 VDDANA GPIO_ANA PB13 110 AD2 | EO0_RX2 | PWM2 (0] PIO, I, PU, ST
c4 VDDANA GPIO_ANA PB14 110 AD3 | EO0_RX3 | PWM3 (0] PIO, I, PU, ST
c3 VDDANA GPIO_ANA PB15 110 AD4 | EO_RXCK | PIO, I, PU, ST
A1l VDDANA GPIO_ANA PB16 110 AD5 | EO_CRS | | PIO, I, PU, ST
B1 VDDANA GPIO_ANA PB17 110 AD6 | EO0_COL | | PIO, I, PU, ST
D5 VDDANA GPIO PB18 110 IRQ | ADTRG | PIO, I, PU, ST
E2 VDDIOP1 GPIO PCO l[e} TWD1 110 PIO, I, PU, ST
F4 VDDIOP1 GPIO PC1 110 TWCKA1 o} PIO, I, PU, ST
F3 VDDIOP1 GPIO PC2 110 TIOA3 110 PIO, I, PU, ST
H2 VDDIOP1 GPIO PC3 110 TIOB3 /0 PIO, I, PU, ST
E1 VDDIOP1 GPIO PC4 l[e} TCLK3 | PIO, I, PU, ST
G4 VDDIOP1 GPIO PC5 110 TIOA4 110 PIO, I, PU, ST
F2 VDDIOP1 GPIO PCé l[e} TIOB4 110 PIO, I, PU, ST
F1 VDDIOP1 GPIO PC7 110 TCLK4 | PIO, I, PU, ST
G1 VDDIOP1 GPIO PC8 l[e} UTXDO (0] PIO, I, PU, ST
G3 VDDIOP1 GPIO PC9 /0 URXDO | PIO, I, PU, ST
G2 VDDIOP1 GPIO PC10 l[e} PWMO (0] PIO, I, PU, ST
H3 VDDIOP1 GPIO PC11 110 PWM1 (0] PIO, I, PU, ST
J3 VDDIOP1 GPIO PC12 l[e} TIOA5 110 PIO, I, PU, ST
L2 VDDIOP1 GPIO PC13 110 TIOB5 /0 PIO, I, PU, ST
H1 VDDIOP1 GPIO PC14 l[e} TCLK5 | PIO, I, PU, ST
J2 VDDIOP1 GPIO_CLK PC15 110 PCKO O PIO, I, PU, ST
J1 VDDIOP1 GPIO PC16 110 E1_RXER | UTXD1 (e} PIO, I, PU, ST
L1 VDDIOP1 GPIO PC17 110 URXD1 | PIO, I, PU, ST
K2 VDDIOP1 GPIO PC18 110 E1_TX0 (0] PWMO (0] PIO, I, PU, ST
N3 VDDIOP1 GPIO PC19 110 E1_TX1 (0] PWM1 (0] PIO, I, PU, ST
K1 VDDIOP1 GPIO PC20 110 E1_RX0 | PWM2 (0] PIO, I, PU, ST
M3 VDDIOP1 GPIO PC21 110 E1_RX1 | PWM3 (0] PIO, I, PU, ST
P3 VDDIOP1 GPIO PC22 l[e} TXD3 (0] PIO, I, PU, ST
J4 VDDIOP1 GPIO PC23 110 RXD3 | PIO, I, PU, ST
K3 VDDIOP1 GPIO PC24 110 RTS3 (0] PIO, I, PU, ST
M2 VDDIOP1 GPIO PC25 110 CTS3 | PIO, I, PU, ST
P2 VDDIOP1 GPIO PC26 110 SCK3 110 PIO, I, PU, ST
M1 VDDIOP1 GPIO PC27 110 E1_TXEN (0] RTS1 (0] PIO, I, PU, ST
K4 VDDIOP1 GPIO PC28 l[e} E1_CRSDV | CTst | PIO, I, PU, ST
N1 VDDIOP1 GPIO_CLK PC29 110 E1_TXCK | SCK1 110 PIO, I, PU, ST
R2 VDDIOP1 GPIO_CLK2 PC30 l[e} E1_MDC (0] PIO, I, PU, ST
N2 VDDIOP1 GPIO PC31 110 FlQ | E1_MDIO 110 PCK1 (0] PIO, I, PU, ST

ATMEL 1

11054A-ATARM-27-Jul-11

ATMEL

Table 4-3. Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir, PU,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir PD, ST
P13 VDDNF EBI PDO 1o NANDOE 0 PIO, I, PU
R14 VDDNF EBI PD1 10 NANDWE o PIO, I, PU
R13 VDDNF EBI PD2 1o A21/NANDALE | O A21,0, PD
P15 VDDNF EBI PD3 10 A22/NANDCLE | O A22,0, PD
P12 VDDNF EBI PD4 1o NCS3) PIO, I, PU
P14 VDDNF EBI PD5 10 NWAIT | PIO, I, PU
N14 VDDNF EBI PD6 110 D16 0 PIO, I, PU
R15 VDDNF EBI PD7 110 D17 0 PIO, I, PU
M14 VDDNF EBI PDS8 110 D18 0 PIO, I, PU
N16 VDDNF EBI PD9 110 D19) PIO, I, PU
N17 VDDNF EBI PD10 e} D20 0 PIO, I, PU
N15 VDDNF EBI PD11 110 D21 o PIO, I, PU
K15 VDDNF EBI PD12 e} D22 0 PIO, I, PU
M15 VDDNF EBI PD13 110 D23 o PIO, I, PU
L14 VDDNF EBI PD14 e} D24 0 PIO, I, PU
M16 VDDNF EBI PD15 1o D25 o A20 o A20,0, PD
L16 VDDNF EBI PD16 o D26 o A23 0 A23,0, PD
L15 VDDNF EBI PD17 1o D27 o A24 o A24,0, PD
K17 VDDNF EBI PD18 1o D28 o A25 0 A25,0,PD
N7 VDDNF EBI PD19 10 D29 0 NCS2 o PIO, I, PU
K16 VDDNF EBI PD20 1o D30) NCS4 o PIO, I, PU
J16 VDDNF EBI PD21 10 D31 0 NCS5 o PIO, I, PU
D10,
D13, VDDIOM POWER VDDIOM |

F14

e VDDNF POWER VDDNF |

Ho,
"'119"” GNDIOM GND GNDIOM I

J10

P7 VDDIOPO POWER VDDIOPO | |

H4 VDDIOP1 POWER VDDIOP1 | |

e GNDIOP GND GNDIOP | |

B5 VDDBU POWER VDDBU | |

B6 GNDBU GND GNDBU | |

c6 VDDANA POWER VDDANA | |

D6 GNDANA GND GNDANA ! |

R12 VDDPLLA POWER VDDPLLA I |

T13 VDDOSC POWER VDDOSC | |

u13 GNDOSG GND GNDOSC | |
H14,

Ks, VDDCORE POWER VDDCORE |

K9

Hs,

Js, GNDCORE GND GNDCORE |

K10

U6 VDDUTMII POWER VDDUTMII |

14 S /A V1O X 2 00—

11054A-ATARM-27-Jul-11

Table 4-3. Pin Description BGA217 (Continued)
Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir, PU,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir PD, ST
T17 VDDUTMIC POWER VDDUTMIC | |

T16 GNDUTMI GND GNDUTMI | |

D14 VDDIOM EBI DO 110 O, PD
D15 VDDIOM EBI D1 /0 O, PD
A16 VDDIOM EBI D2 110 O, PD
B16 VDDIOM EBI D3 /0 O, PD
A17 VDDIOM EBI D4 110 O, PD
B15 VDDIOM EBI D5 /0 O, PD
C14 VDDIOM EBI D6 110 O, PD
B14 VDDIOM EBI D7 /0 O, PD
A15 VDDIOM EBI D8 /0 O, PD
C15 VDDIOM EBI D9 /0 O, PD
D12 VDDIOM EBI D10 110 O, PD
Cc13 VDDIOM EBI D11 /0 O, PD
A14 VDDIOM EBI D12 110 O, PD
B13 VDDIOM EBI D13 /0 O, PD
A13 VDDIOM EBI D14 110 O, PD
Cc12 VDDIOM EBI D15 /0 O, PD
J15 VDDIOM EBI_O A0 (0] NBSO [e] O, PD
H16 VDDIOM EBI_O Al (0] NBS\%RSM/ (0] O, PD
H15 VDDIOM EBI_O A2 (0] O, PD
H17 VDDIOM EBI_O A3 O O, PD
G17 VDDIOM EBI_O A4 (0] O, PD
G16 VDDIOM EBI_O A5 O O, PD
F17 VDDIOM EBI_O A6 (0] O, PD
E17 VDDIOM EBI_O A7 O O, PD
F16 VDDIOM EBI_O A8 (0] O, PD
G15 VDDIOM EBI_O A9 O O, PD
G14 VDDIOM EBI_O A10 (0] O, PD
F15 VDDIOM EBI_O A1 O O, PD
D17 VDDIOM EBI_O A12 (0] O, PD
c17 VDDIOM EBI_O A13 O O, PD
E16 VDDIOM EBI_O A4 (0] O, PD
D16 VDDIOM EBI_O A15 O O, PD
C16 VDDIOM EBI_O A16 (0] BAO O, PD
B17 VDDIOM EBI_O A17 (o} BA1 O, PD
E15 VDDIOM EBI_O A18 (0] BA2 O, PD
E14 VDDIOM EBI_O A19 O O, PD
B9 VDDIOM EBI_O NCS0 O O, PU
B8 VDDIOM EBI_O NCS1 O SDCS o O, PU
D9 VDDIOM EBI_O NRD (0] O, PU
Cc9 VDDIOM EBI_O NWRO o NWRE O, PU
Cc7 VDDIOM EBI_O NWR1 (0] NBS1 O, PU

AIMEL 15
I)

11054A-ATARM-27-Jul-11

ATMEL

Table 4-3. Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir, PU,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir PD, ST
A8 VDDIOM EBI_O NWR3 o NBS3/DQM3 o O, PU
D11 VDDIOM EBI_CLK SDCK (0] o
c1 VDDIOM EBI_CLK #SDCK O o
B12 VDDIOM EBI_O SDCKE (0] O, PU
B11 VDDIOM EBI_O RAS (0] O, PU
c10 VDDIOM EBI_O CAS (0] O, PU
A12 VDDIOM EBI_O SDWE (0] O, PU
cs VDDIOM EBI_O SDA10 (0] O, PU
A10 VDDIOM EBI_O DQMO o} O, PU
B10 VDDIOM EBI_O DQM1 (0] O, PU
A1l VDDIOM EBI DQSO0 /0 O, PD
A9 VDDIOM EBI DQSt 110 O, PD
A4 VDDANA POWER ADVREF | |
u17 VDDUTMIC VBG VBG | |
T14 VDDUTMII USBFS HFSDPA 110 DFSDP /0 O, PD
T15 VDDUTMII USBFS HFSDMA 110 DFSDM 110 O, PD
u14 VDDUTMII USBHS HHSDPA 110 DHSDP /10 O, PD
(U E) VDDUTMII USBHS HHSDMA 110 DHSDM l[e} O, PD
R16 VDDUTMII USBFS HFSDPB 110 O, PD
P16 VDDUTMII USBFS HFSDMB /0 O, PD
R17 VDDUTMII USBHS HHSDPB 110 O, PD
P17 VDDUTMII USBHS HHSDMB 1/0 O, PD
L17 VDDUTMII USBFS HFSDPC 110 O, PD
M17 VDDUTMII USBFS HFSDMC /0 O, PD
R11 VDDIOPO DIB DIBN 110 O, PU
P11 VDDIOPO DIB DIBP /0 O, PU
A7 VDDBU SYSC WKUP | 1, ST
D8 VDDBU SYSC SHDN o O, PU
P9 VDDIOPO RSTJTAG BMS | |, PD, ST
D7 VDDBU SYSC JTAGSEL | |, PD
B7 VDDBU SYSC TST | |, PD, ST
uto VDDIOPO RSTJTAG TCK | 1, ST
T9 VDDIOPO RSTJTAG TDI | 1, ST
T10 VDDIOPO RSTJTAG TDO O o
ut1 VDDIOPO RSTJTAG T™MS | 1, ST
R10 VDDIOPO RSTJTAG RTCK O o
P10 VDDIOPO RSTJTAG NRST 110 I, PU, ST
T VDDIOPO RSTJTAG NTRST | I, PU, ST
A6 VDDBU CLOCK XIN32 | |

A5 VDDBU CLOCK XOuT32 o o
T12 VDDOSC CLOCK XIN | |
u12 VDDOSC CLOCK XOUT o o

11054A-ATARM-27-Jul-11

5. Power Considerations

5.1 Power Supplies
The SAM9X25 has several types of power supply pins.

Table 5-1. SAM9IX25 Power Supplies
Associated
Name Voltage Range, nhominal Powers Ground
VDDCORE 0.9-1.1V. 1.0V ARM core, internal memories, internal peripherals and GNDCORE
part of the system controller.
1.65-1.95V, 1.8V .
VDDIOM 3.0-3.6V, 3.3V External Memory Interface I/O lines GNDIOM
1.65-1.95V, 1.8V NAND Flash I/O and control, D16-D32 and multiplexed
VDDNF 3.0-3.6V, 3.3V SMC lines GNDIOM
VDDIOPO 1.65-3.6V a part of Peripheral I/O lines" GNDIOP
VDDIOP1 1.65-3.6V a part of Peripheral I/O lines (! GNDIOP
the Slow Clock oscillator, the internal 32 kHz RC
VDDBU 1.65-3.6V oscillator and backup part of the System Controller GNDBU
VDDUTMIC 0.9-1.1V, 1.0V the USB transceiver core logic GNDUTMI
VDDUTMII 3.0-3.6V, 3.3V the USB transceiver interface GNDUTMI
VDDPLLA 0.9-1.1V, 1.0V the PLLA cell GNDOSC
VDDOSC 1.65-3.6V the Main Oscillator cells GNDOSC
VDDANA 3.0-3.6V, 3.3V the Analog to Digital Converter GNDANA
Note: 1. Refer to Table 4-2 for more details.

11054A-ATARM-27-Jul-11

ATMEL

17

ATMEL

6. Memories

Figure 6-1. SAM9X25 Memory Mapping

Address Memory Space Internal Memory Mapping
0x0000 0000 0x0000 0000
Boot Memory (1) 1 MByte
) Notes: 0x0010 0000
Internal Memories | 256 MBytes (1) Can be ROM, EBI1_NCSO or SRAM ROM 1 MByte
depending on BMS and REMAP -
OXOFFF FFFF 0x0020 0000 Undefined 1 MByte
0x1000 0000 0X0030 0000 (Abort)
_EBl SRAM 1Byte
Chip Select 0 256 MBytes 0x0040 0000
Ox1FFF FFFF SMD 1 MByte
0X0050 0000
0x2000 0000 "~ EBl T—— 1 MByte
Chip Select 1 0X0060 0000
DDR2/LPDDR | 256 MBytes)
Peripheral Mappi UHP OHCI 1 MByte
O0X2FFF FFFF SDR/LPSDR erpheralapping 0x0070 0000
0x3000 0000 0xF000 0000 UHP EHCI 1 MByte
EBI SPIO 0X0080 0000
Chip Select 2 256 MBytes 0xF000 4000 - Undefined
(Abort)
Oi’fg g g gggg 0xF000 8000 OXOFFF FFFF
. HSMCIO
Chip Select 3 256 MBytes 0xF000 C000
NAND Flash HSMCIt
OX4FFF FFFF 0xF001 0000
0x5000 0000 ssc S Controller Manoi
ystem Controller Mapping
o ESBII » 256 MBytes 0xF001 4000
S ip Selec PR 0xFFFF C000
X5
0x6000 0000 0xF800 0000 Reserved
EBI CANO
. 256 MBytes
Chip Select 5 0xF800 4000 CANY OXFFFF DE0O
OX6FFF FFFF . MATRIX 512 Bytes
0x7000 0000 0xF800 8000 OXFFFF E000
TCO, TC1, TC2 .
1536 Bytes
0xF800 C000
A — OXFFFF E600
PMERRLOC 512 Bytes
0xF801 0000 OXFFFF E800 "
™wo DDR2/LPDDR 512 Bytes
0xF801 4000 OXFFFF EA00 SDR/LPSDR
Wi
0xF801 8000 SMC 512 Bytes
e OXFFFF EC00
0xF801 G000 DMACO 512 Bytes
USARTO OXFFFF EE00
0xF802 0000 DMACH 512 Bytes
USART1 OXFFFF F000
0xF802 4000 AlC 512 Bytes
USART2 OXFFFF F200
0xF802 8000 DBGU 512 Bytes
USART3 OXFFFF F400
0xF802 C000 PIOA 512 Bytes
OXFFFF F600
EMACO
) 1,792 MBytes 0XFB03 0000 PIOB 512 Bytes
Undefined
(Abort EMACT OXFFFF F800
0xF803 4000 PIOC 512 Bytes
PWMC OxFFFF FA0O
0xF803 8000 PIOD 512 Bytes
Reserved OxFFFF FC00
0xF803 C000 PMC 512 Bytes
UDPHS OXFFFF FE0O
0xF804 0000 RSTC 16 Bytes
OXFFFF FE10
UARTO SHDC 16 Bytes
0xF804 4000 OXFFFF FE20 a "
eserve: 16 Bytes
UART1 OXFFFF FE30
0xF804 8000 PIT 16 Bytes
OXFFFF FE40 woT
16 Bytes
0xF804 C000 OXFFFF FE50
ADC OXFFFF FE54 SCKCR 4 Bies
0xF805 0000 X 5
X BSCR 12 Bytes
OXFFFF FE60
OXEFFF FFFF I GPBR 16 Bytes
0xFO00 0000 Reserved OxFFFF FE70
Reserved
; OXFFFF FEBO
Internal Peripherals | 256 MBytes OXxEFEF C000 —_— X RTC 16 Bytes
OXFFFF FFFF SYSC OxFFFF FECO
T OXFFFFFFFF — OXFFFFFFFF (R
18 S A IV O X 2 S s —

11054A-ATARM-27-Jul-11

6.1 Memory Mapping

A first level of address decoding is performed by the AHB Bus Matrix, i.e., the implementation of
the Advanced High performance Bus (AHB) for its Master and Slave interfaces with additional
features.

Decoding breaks up the 4 Gbytes of address space into 16 banks of 256 Mbytes. Banks 1 to 6
are directed to the EBI that associates these banks to the external chip selects, EBI_NCSO0 to
EBI_NCSS5. Bank 0 is reserved for the addressing of the internal memories, and a second level
of decoding provides 1 Mbyte of internal memory area. Bank 15 is reserved for the peripherals
and provides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master
requesting such an access.

6.2 Embedded Memories

6.2.1 Internal SRAM

6.2.2 Internal ROM

The SAM9X25 embeds a total of 32 Kbytes of high-speed SRAM.

After reset and until the Remap Command is performed, the SRAM is only accessible at address
0x0030 0000.

After Remap, the SRAM also becomes available at address 0x0.

The SAM9X25 embeds an Internal ROM, which contains the SAM-BA program.

At any time, the ROM is mapped at address 0x0010 0000. It is also accessible at address 0x0
(BMS = 1) after the reset and before the Remap Command.

6.3 External Memories

6.3.1 External Bus Interface

* Integrates three External Memory Controllers:
— Static Memory Controller
— DDR2/SDRAM Controller
— MLC NAND Flash ECC Controller

« Additional logic for NAND Flash and CompactFlash®

¢ Up to 26-bit Address Bus (up to 64 MBytes linear per chip select)

* Up to 6 chips selects, Configurable Assignment:
— Static Memory Controller on NCS0, NCS1, NCS2, NCS3, NCS4, NCS5
— DDR2/SDRAM Controller (SDCS) or Static Memory Controller on NCS1
— Optional NAND Flash support on NCS3

6.3.2 Static Memory Controller

11054A-ATARM-27-Jul-11

* 8- or 16-bit Data Bus
¢ Multiple Access Modes supported
— Byte Write or Byte Select Lines
— Asynchronous read in Page Mode supported (4- up to 16-byte page size)

ATMEL 1

ATMEL

* Multiple device adaptability

— Control signals programmable setup, pulse and hold time for each Memory Bank
* Multiple Wait State Management

— Programmable Wait State Generation

— External Wait Request

— Programmable Data Float Time
¢ Slow Clock mode supported

6.3.3 DDR2SDR Controller
¢ Supports 8-bank DDR2, LPDDR2, SDR and LPSDR
¢ Numerous Configurations Supported
— 2K, 4K, 8K, 16K Row Address Memory Parts
— SDRAM with 8 Internal Banks
— SDR-SDRAM with 32-bit Data Path
— DDR2/LPDDR with 16-bit Data Path
— One Chip Select for SDRAM Device (256 Mbyte Address Space)
* Programming Facilities

— Multibank Ping-pong Access (Up to 8 Banks Opened at Same Time = Reduces
Average Latency of Transactions)

— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable
— Automatic Update of DS, TCR and PASR Parameters (LPSDR)
* Energy-saving Capabilities
— Self-refresh, Power-down and Deep Power Modes Supported
* SDRAM Power-up Initialization by Software
¢ CAS Latency of 2, 3 Supported
* Auto Precharge Command Not Used
* SDR-SDRAM with 16-bit Datapath and Eight Columns Not Supported
— Clock Frequency Change in Precharge Power-down Mode Not Supported

20 S A IO X 2 5 ——— e —

7. System Controller

11054A-ATARM-27-Jul-11

The System Controller is a set of peripherals that allows handling of key elements of the system,
such as power, resets, clocks, time, interrupts, watchdog, etc.

The System Controller User Interface also embeds the registers that configure the Matrix and a
set of registers for the chip configuration. The chip configuration registers configure the EBI chip
select assignment and voltage range for external memories.

The System Controller’s peripherals are all mapped within the highest 16 KBytes of address
space, between addresses OxFFFF C000 and OxFFFF FFFF.

However, all the registers of System Controller are mapped on the top of the address space. All
the registers of the System Controller can be addressed from a single pointer by using the stan-
dard ARM instruction set, as the Load/Store instruction have an indexing mode of +4 KBytes.

Figure 7-1 on page 22 shows the System Controller block diagram.

Figure 6-1 on page 18 shows the mapping of the User Interface of the System Controller
peripherals.

ATMEL 2

ATMEL

Figure 7-1. SAM9X25 System Controller Block Diagram

System Controller
VDDCORE Powered .
irq ——>| nirg
fiq Advanced nfig
L Interrupt
periph_irg[2..30] —— > Controller
trst
pit_irq B por_ntrst nrell ARvig2eErS
wdt_irq
dbgu_irq proc_nreset
pmc_irq
rstc_irq PCK
MCK — .
periph_nreset ——— D‘abl,’? —> dbgu_irq debug
- ni
dbgu_rxd —— > dbgu_txd
MCK ————> Periodic :
debug ——> Interval > pit_irq jtag_nreset Boundary Scan
periph_nresst ——— | Timer TAP Controller
SCK ——— MCK
debug —> Watchdog wdt_ir
idle —— Timer e Bus Matrix
proc_nreset —— > periph_nreset
wdt_fault
WDRPROC
NRST D —— rstc_irq
por_ntrst ioh t
VDDCORE F: e e > periph_nrese
POR Reset —— proc_nreset
Controller ——> backup_nreset
UPLLCK
VDDBU
UHP48M
_|VDDBU VDDBU Powered ey
POR__ | s« USB High Speed
SK ————— RealTime ——> rtc_irq periph_nreset Host Port
backup_nresest ——» Clock ——> rtc_alarm periph_irg[23]
K ———>
soN [
wp [Shut-Down UPLLCK
backup_nreset — Controller
rtc_alarm ~|) USB High Speed
32K RC 4 General-purpose periph_nreset Device Port
OSsC Backup Registers periph_irg[22]
XIN32 | I—» SLOW _l
CLOCK
xoutsz [“osc [sckcm | | BScR
12M RC SLCK SMDCK
0osc . i
" _>_' g::[[())hﬁc'k[zusm periph_nreset SMD
. Software Modem
XN -1 1omnz MAINC ——> UHP48M periph_irq[4]
MAIN OSC —> UHP12M
Xout | |<— Power
Management PCK
Controller MCK
UPLL UPLLCK [— > DDR sysclk
—— pmc_irq
PLLA —— idle
PLLACK |, SMDCK = periph_clk[4] periph_clk[5..30]
periph_nreset —— >
periph_nreset
periph_nreset ————] ——> periph_irq[2..3] Embedded
periph_clk[2..3] —— > ——> irq Peripherals
dbgu_rxd —— > PIO —— fiq periph_irq([5..30]
PAO-PA31 E Controllers | dbgu_txd
PBo-PB18] in
pco-PC3t] out
PDO-PD21 enable
22 S /A V1O X 2 00—

11054A-ATARM-27-Jul-11

7.1 Chip Identification
e Chip ID: 0x819A_05A1
e Chip ID Extension: 4
* JTAG ID: 0x05B2_FO3F
* ARM926 TAP ID: 0x0792_603F

7.2 Backup Section
The SAM9X25 features a Backup Section that embeds:

¢ RC Oscillator
* Slow Clock Oscillator
¢ Real Time Counter (RTC)
¢ Shutdown Controller
* 4 Backup Registers
¢ Slow Clock Control Register (SCKCR)
¢ Boot Sequence Configuration Register (BSCR)
¢ A part of the Reset Controller (RSTC)
This section is powered by the VDDBU rail.

ATMEL 2

11054A-ATARM-27-Jul-11

ATMEL

8. Peripherals

8.1 Peripheral Mapping
As shown in Figure 6-1, the Peripherals are mapped in the upper 256 Mbytes of the address
space between the addresses 0xFO00 0000 and OxFFFF C000.

Each User Peripheral is allocated 16 Kbytes of address space.

8.2 Peripheral Identifiers
Table 8-1 defines the Peripheral Identifiers of the SAM9X25. A peripheral identifier is required
for the control of the peripheral interrupt with the Advanced Interrupt Controller and for the con-
trol of the peripheral clock with the Power Management Controller.

Table 8-1. Peripheral Identifiers

Instance Instance External Wired-OR
ID Name Instance Description interrupt interrupt
0 AlC Advanced Interrupt Controller FIQ
DBGU, PMC,
1 SYS System Controller Interrupt IEP\(/I?E%C
PMERRLOC
2 PIOA,PIOB Parallel 1/0O Controller A and B
3 PIOC,PIOD Parallel I1/0 Controller C and D
4 SMD SMD Soft Modem
5 USARTO USART 0
6 USART1 USART 1
7 USART2 USART 2
8 USART3 USART 3
9 TWIO Two-Wire Interface 0
10 TWH Two-Wire Interface 1
11 TWI2 Two-Wire Interface 2
12 HSMCIO mitge?f:(?:gd Multimedia Card
13 SPIO Serial Peripheral Interface 0
14 SPI1 Serial Peripheral Interface 1
15 UARTO UART 0
16 UART1 UART 1
17 TCO,TC1 Timer Counter 0,1,2,3,4,5
18 PWM gzl:ﬁom(rjth Modulation
19 ADC ADC Controller
20 DMACO DMA Controller 0
21 DMACH1 DMA Controller 1
24 S /A VIO X 2 5 10—

11054A-ATARM-27-Jul-11

Table 8-1. Peripheral Identifiers (Continued)

Instance Instance External Wired-OR
ID Name Instance Description interrupt interrupt
22 UHPHS USB Host High Speed
23 UDPHS USB Device High Speed
24 EMACO Ethernet MACO
25 - Reserved
26 HSMCH High Speed Multimedia Card

Interface 1
27 EMAC1 Ethernet MAC1
28 SSC Synchronous Serial Controller
29 CANO CAN Controller 0
30 CAN1 CAN Controller 1
31 AlC Advanced Interrupt Controller IRQ

8.3 Peripheral Signal Multiplexing on I/O Lines

The SAM9X25 features 4 PIO Controllers, PIOA, PIOB, PIOC and PIOD, which multiplex the 1/0
lines of the peripheral set.

Each PIO Controller controls 32 lines, 19 lines, 32 lines and 22 lines respectively for PIOA,
PIOB, PIOC and PIOD. Each line can be assigned to one of three peripheral functions, A, B or
C. Refer to Section 4. “Package and Pinout”, Table 4-3 to see the PIO assignments.

ATMEL 2

11054A-ATARM-27-Jul-11

ATMEL

26 S A IO X 2 5 ——— e —

9. ARM926EJ-S™

9.1 Description

The ARM926EJ-S processor is a member of the ARM9™ family of general-purpose microproces-
sors. The ARM926EJ-S implements ARM architecture version 5TEJ and is targeted at multi-
tasking applications where full memory management, high performance, low die size and low
power are all important features.

The ARM926EJ-S processor supports the 32-bit ARM and 16-bit THUMB instruction sets,
enabling the user to trade off between high performance and high code density. It also supports
8-bit Java instruction set and includes features for efficient execution of Java bytecode, provid-
ing a Java performance similar to a JIT (Just-In-Time compilers), for the next generation of Java-
powered wireless and embedded devices. It includes an enhanced multiplier design for
improved DSP performance.

The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist
in both hardware and software debug.

The ARM926EJ-S provides a complete high performance processor subsystem, including:

 an ARM9EJ-S™ integer core
* a Memory Management Unit (MMU)
» separate instruction and data AMBA AHB bus interfaces

9.2 Embedded Characteristics

11054A-ATARM-27-Jul-11

* ARM9EJ-S™ Based on ARM® Architecture vSTEJ with Jazelle Technology
* Three Instruction Sets
— ARM® High-performance 32-bit Instruction Set
— Thumb® High Code Density 16-bit Instruction Set
— Jazelle® 8-bit Instruction Set
» 5-Stage Pipeline Architecture when Jazelle is not Used
— Fetch (F)
— Decode (D)
— Execute (E)
— Memory (M)
— Writeback (W)
* 6-Stage Pipeline when Jazelle is Used
— Fetch
— Jazelle/Decode (Two Cycles)
— Execute
— Memory
— Writeback
¢ ICache and DCache
— Virtually-addressed 4-way Set Associative Caches
— 8 Words per Line
— Critical-word First Cache Refilling

ATMEL 2

ATMEL

— Write-though and Write-back Operation for DCache Only
— Pseudo-random or Round-robin Replacement
— Cache Lockdown Registers
— Cache Maintenance
* Write Buffer
— 16-word Data Buffer
— 4-address Address Buffer
— Software Control Drain
¢ DCache Write-back Buffer
— 8 Data Word Entries
— One Address Entry
— Software Control Drain
* Memory Management Unit (MMU)
— Access Permission for Sections
— Access Permission for Large Pages and Small Pages
— 16 Embedded Domains
— 64 Entry Instruction TLB and 64 Entry Data TLB
* Memory Access
— 8-, 16-, and 32-bit Data Types

— Separate AMBA AHB Buses for Both the 32-bit Data Interface and the 32-bit
Instructions Interface

¢ Bus Interface Unit
— Arbitrates and Schedules AHB Requests
— Enables Multi-layer AHB to be Implemented
— Increases Overall Bus Bandwidth
— Makes System Architecture Mode Flexible

11054A-ATARM-27-Jul-11

9.3 Block Diagram

Figure 9-1. ARM926EJ-S Internal Functional Block Diagram

External Coprocessors ETM9
CP15 System »| External —| Trace Port
Configuration | Coprocessor Interface
Coprocessor |« Interface
A
Write Data
[
ARM9YEJ-S
> Processor Core
_> <«
— Instruction
Read Fetches
Data I I
.]
¢
— Data Instruction *
Address Address
MMU
\4 Y
\4
Instruction
DTCM Data TLB TLB ITCM
Interface Interface
— _
Data TCM Instruction TCM
<

O -
* Data * * Instruction *
Address Address
AHB Interface
Data Cache > and

Write Buffer

Instruction
Cache

AMBA AHB

ATMEL 2

11054A-ATARM-27-Jul-11

9.4

9.4.1

9.4.2

9.4.3

9.4.4

9.4.5

30

ATMEL

ARM9EJ-S Processor

ARMO9EJ-S Operating States
The ARM9EJ-S processor can operate in three different states, each with a specific instruction
set:

* ARM state: 32-bit, word-aligned ARM instructions.

* THUMB state: 16-bit, halfword-aligned Thumb instructions.

* Jazelle state: variable length, byte-aligned Jazelle instructions.
In Jazelle state, all instruction Fetches are in words.

Switching State
The operating state of the ARM9EJ-S core can be switched between:

* ARM state and THUMB state using the BX and BLX instructions, and loads to the PC
* ARM state and Jazelle state using the BXJ instruction

All exceptions are entered, handled and exited in ARM state. If an exception occurs in Thumb or
Jazelle states, the processor reverts to ARM state. The transition back to Thumb or Jazelle
states occurs automatically on return from the exception handler.

Instruction Pipelines
The ARM9EJ-S core uses two kinds of pipelines to increase the speed of the flow of instructions
to the processor.

A five-stage (five clock cycles) pipeline is used for ARM and Thumb states. It consists of Fetch,
Decode, Execute, Memory and Writeback stages.

A six-stage (six clock cycles) pipeline is used for Jazelle state It consists of Fetch,
Jazelle/Decode (two clock cycles), Execute, Memory and Writeback stages.

Memory Access
The ARM9EJ-S core supports byte (8-bit), half-word (16-bit) and word (32-bit) access. Words
must be aligned to four-byte boundaries, half-words must be aligned to two-byte boundaries and
bytes can be placed on any byte boundary.

Because of the nature of the pipelines, it is possible for a value to be required for use before it
has been placed in the register bank by the actions of an earlier instruction. The ARM9EJ-S con-
trol logic automatically detects these cases and stalls the core or forward data.

Jazelle Technology
The Jazelle technology enables direct and efficient execution of Java byte codes on ARM pro-
cessors, providing high performance for the next generation of Java-powered wireless and
embedded devices.

The new Java feature of ARM9EJ-S can be described as a hardware emulation of a JVM (Java
Virtual Machine). Java mode will appear as another state: instead of executing ARM or Thumb
instructions, it executes Java byte codes. The Java byte code decoder logic implemented in
ARMBO9EJ-S decodes 95% of executed byte codes and turns them into ARM instructions without
any overhead, while less frequently used byte codes are broken down into optimized sequences
of ARM instructions. The hardware/software split is invisible to the programmer, invisible to the
application and invisible to the operating system. All existing ARM registers are re-used in
Jazelle state and all registers then have particular functions in this mode.

Minimum interrupt latency is maintained across both ARM state and Java state. Since byte
codes execution can be restarted, an interrupt automatically triggers the core to switch from
Java state to ARM state for the execution of the interrupt handler. This means that no special
provision has to be made for handling interrupts while executing byte codes, whether in hard-
ware or in software.

9.4.6 ARM9EJ-S Operating Modes

In all states, there are seven operation modes:
e User mode is the usual ARM program execution state. It is used for executing most
application programs

¢ Fast Interrupt (FIQ) mode is used for handling fast interrupts. It is suitable for high-speed data
transfer or channel process

¢ Interrupt (IRQ) mode is used for general-purpose interrupt handling

* Supervisor mode is a protected mode for the operating system

* Abort mode is entered after a data or instruction prefetch abort

» System mode is a privileged user mode for the operating system

¢ Undefined mode is entered when an undefined instruction exception occurs

Mode changes may be made under software control, or may be brought about by external inter-
rupts or exception processing. Most application programs execute in User Mode. The non-user
modes, known as privileged modes, are entered in order to service interrupts or exceptions or to
access protected resources.

9.4.7 ARMO9EJ-S Registers

The ARM9EJ-S core has a total of 37 registers.

¢ 31 general-purpose 32-bit registers
* 6 32-bit status registers
Table 9-1 shows all the registers in all modes.

Table 9-1. ARM9TDMI Modes and Registers Layout

User and System Mode | Supervisor Mode Abort Mode | Undefined Mode Interrupt Mode Fast Interrupt Mode
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8_FIQ
R9 R9 R9 R9 R9 R9_FIQ
R10 R10 R10 R10 R10 R10_FIQ
R11 R11 R11 R11 R11 R11_FIQ

11054A-ATARM-27-Jul-11

ATMEL s

Table 9-1.

ATMEL

ARMY9TDMI Modes and Registers Layout (Continued)

User and System Mode

Supervisor Mode

Abort Mode

Undefined Mode

Interrupt Mode

Fast Interrupt Mode

R12

R12

R12

R12

R12

R12_FIQ

R13

R13_SVC

R13_ABORT

R13_UNDEF

R13_IRQ

R13_FIQ

R14

R14_SVC

R14_ABORT

R14_UNDEF

R14_IRQ

R14_FIQ

PC

PC

PC

PC

PC

PC

CPSR

CPSR

CPSR

CPSR

CPSR

CPSR

SPSR_SVC

SPSR_ABO

SPSR_UNDEF

SPSR_IRQ

SPSR_FIQ

RT

Mode-specific banked registers

The ARM state register set contains 16 directly-accessible registers, r0 to r15, and an additional
register, the Current Program Status Register (CPSR). Registers r0 to r13 are general-purpose
registers used to hold either data or address values. Register r14 is used as a Link register that
holds a value (return address) of r15 when BL or BLX is executed. Register r15 is used as a pro-
gram counter (PC), whereas the Current Program Status Register (CPSR) contains condition
code flags and the current mode bits.

In privileged modes (FIQ, Supervisor, Abort, IRQ, Undefined), mode-specific banked registers
(r8 to r14 in FIQ mode or r13 to r14 in the other modes) become available. The corresponding
banked registers r14_fiq, r14_svc, r14_abt, r14_irq, r14_und are similarly used to hold the val-
ues (return address for each mode) of r15 (PC) when interrupts and exceptions arise, or when
BL or BLX instructions are executed within interrupt or exception routines. There is another reg-
ister called Saved Program Status Register (SPSR) that becomes available in privileged modes
instead of CPSR. This register contains condition code flags and the current mode bits saved as
a result of the exception that caused entry to the current (privileged) mode.

In all modes and due to a software agreement, register r13 is used as stack pointer.

The use and the function of all the registers described above should obey ARM Procedure Call
Standard (APCS) which defines:

e constraints on the use of registers

¢ stack conventions

e argument passing and result return
For more details, refer to ARM Software Development Kit.
The Thumb state register set is a subset of the ARM state set. The programmer has direct
access to:

* Eight general-purpose registers r0-r7

e Stack pointer, SP

e Link register, LR (ARM r14)

e PC

* CPSR

11054A-ATARM-27-Jul-11

There are banked registers SPs, LRs and SPSRs for each privileged mode (for more details see
the ARM9EJ-S Technical Reference Manual, revision r1p2 page 2-12).

9.4.7.1 Status Registers

The ARM9EJ-S core contains one CPSR, and five SPSRs for exception handlers to use. The
program status registers:

¢ hold information about the most recently performed ALU operation
» control the enabling and disabling of interrupts
¢ set the processor operation mode
Figure 9-2. Status Register Format

3130292827 24 765

Nfz|C|V|Q J Reserved I |FIT Mode

J |_ |
Jazelle state bit
Reserved Mode bits

Sticky Overflow

Overflow Thumb state bit
Carry/Borrow/Extend
Zero FIQ disable
Negative/Less than

IRQ disable

Figure 9-2 shows the status register format, where:

* N: Negative, Z: Zero, C: Carry, and V: Overflow are the four ALU flags

* The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic

instructions like QADD, QDADD, QSUB, QDSUB, SMLAxy, and SMLAWYy needed to achieve
DSP operations.

The Q flag is sticky in that, when set by an instruction, it remains set until explicitly cleared by

an MSR instruction writing to the CPSR. Instructions cannot execute conditionally on the
status of the Q flag.

¢ The J bit in the CPSR indicates when the ARM9EJ-S core is in Jazelle state, where:
—J =0: The processor is in ARM or Thumb state, depending on the T bit
— J =1:The processor is in Jazelle state.

¢ Mode: five bits to encode the current processor mode

94.7.2 Exceptions
Exception Types and Priorities

The ARM9EJ-S supports five types of exceptions. Each type drives the ARM9EJ-S in a privi-
leged mode. The types of exceptions are:

e Fast interrupt (FIQ)

* Normal interrupt (IRQ)

¢ Data and Prefetched aborts (Abort)

¢ Undefined instruction (Undefined)

¢ Software interrupt and Reset (Supervisor)

When an exception occurs, the banked version of R14 and the SPSR for the exception mode
are used to save the state.

ATMEL s

11054A-ATARM-27-Jul-11

ATMEL

More than one exception can happen at a time, therefore the ARM9EJ-S takes the arisen excep-
tions according to the following priority order:

* Reset (highest priority)

¢ Data Abort

* FIQ

* IRQ

* Prefetch Abort

¢ BKPT, Undefined instruction, and Software Interrupt (SWI) (Lowest priority)
The BKPT, or Undefined instruction, and SWI exceptions are mutually exclusive.

Note that there is one exception in the priority scheme: when FIQs are enabled and a Data Abort
occurs at the same time as an FIQ, the ARM9EJ-S core enters the Data Abort handler, and pro-
ceeds immediately to FIQ vector. A normal return from the FIQ causes the Data Abort handler to
resume execution. Data Aborts must have higher priority than FIQs to ensure that the transfer
error does not escape detection.

Exception Modes and Handling

Exceptions arise whenever the normal flow of a program must be halted temporarily, for exam-
ple, to service an interrupt from a peripheral.

When handling an ARM exception, the ARM9EJ-S core performs the following operations:

1. Preserves the address of the next instruction in the appropriate Link Register that cor-
responds to the new mode that has been entered. When the exception entry is from:

— ARM and Jazelle states, the ARM9EJ-S copies the address of the next instruction
into LR (current PC(r15) + 4 or PC + 8 depending on the exception).

— THUMB state, the ARM9EJ-S writes the value of the PC into LR, offset by a value
(current PC + 2, PC + 4 or PC + 8 depending on the exception) that causes the
program to resume from the correct place on return.

2. Copies the CPSR into the appropriate SPSR.
3. Forces the CPSR mode bits to a value that depends on the exception.
4. Forces the PC to fetch the next instruction from the relevant exception vector.

The register r13 is also banked across exception modes to provide each exception handler with
private stack pointer.

The ARM9EJ-S can also set the interrupt disable flags to prevent otherwise unmanageable
nesting of exceptions.

When an exception has completed, the exception handler must move both the return value in
the banked LR minus an offset to the PC and the SPSR to the CPSR. The offset value varies
according to the type of exception. This action restores both PC and the CPSR.

The fast interrupt mode has seven private registers r8 to r14 (banked registers) to reduce or
remove the requirement for register saving which minimizes the overhead of context switching.

The Prefetch Abort is one of the aborts that indicates that the current memory access cannot be
completed. When a Prefetch Abort occurs, the ARM9EJ-S marks the prefetched instruction as
invalid, but does not take the exception until the instruction reaches the Execute stage in the
pipeline. If the instruction is not executed, for example because a branch occurs while it is in the
pipeline, the abort does not take place.

11054A-ATARM-27-Jul-11

The breakpoint (BKPT) instruction is a new feature of ARM9EJ-S that is destined to solve the
problem of the Prefetch Abort. A breakpoint instruction operates as though the instruction
caused a Prefetch Abort.

A breakpoint instruction does not cause the ARM9EJ-S to take the Prefetch Abort exception until
the instruction reaches the Execute stage of the pipeline. If the instruction is not executed, for
example because a branch occurs while it is in the pipeline, the breakpoint does not take place.

9.4.8 ARM Instruction Set Overview
The ARM instruction set is divided into:
¢ Branch instructions
» Data processing instructions
e Status register transfer instructions
* Load and Store instructions
» Coprocessor instructions
¢ Exception-generating instructions
ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition
code field (bits[31:28]).
For further details, see the ARM Technical Reference Manual.

Table 9-2 gives the ARM instruction mnemonic list.

Table 9-2. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation
MOV Move MVN Move Not
ADD Add ADC Add with Carry
SuB Subtract SBC Subtract with Carry
RSB Reverse Subtract RSC Reverse Subtract with Carry
CMP Compare CMN Compare Negated
TST Test TEQ Test Equivalence
AND Logical AND BIC Bit Clear
EOR Logical Exclusive OR ORR Logical (inclusive) OR
MUL Multiply MLA Multiply Accumulate
SMULL Sign Long Multiply UMULL Unsigned Long Multiply
SMLAL | e WAL | e
MSR Move to Status Register MRS Move From Status Register
B Branch BL Branch and Link
BX Branch and Exchange Swi Software Interrupt
LDR Load Word STR Store Word
LDRSH Load Signed Halfword
LDRSB Load Signed Byte
LDRH Load Half Word STRH Store Half Word
LDRB Load Byte STRB Store Byte

ATMEL s

11054A-ATARM-27-Jul-11

9.4.9

9.4.10

36

ATMEL

ARM Instruction Mnemonic List (Continued)

Mnemonic Operation
STRBT Store Rgglster Byte with
Translation
STRT Store Rgg|ster with
Translation
STM Store Multiple
SWPB Swap Byte
MRC Move From Coprocessor
STC Store From Coprocessor

Table 9-2.
Mnemonic Operation
LDRBT Load Rgglster Byte with
Translation
LDRT Load Rgg|ster with
Translation
LDM Load Multiple
SWP Swap Word
MCR Move To Coprocessor
LDC Load To Coprocessor
CDP Coprocgssor Data
Processing

New ARM Instruction Set

Table 9-3.

New ARM Instruction Mnemonic List

Mnemonic

Operation

BXJ

Branch and exchange to
Java

BLX ™

Branch, Link and exchange

SMLAxy

Signed Multiply Accumulate
16 * 16 bit

SMLAL

Signed Multiply Accumulate
Long

SMLAWY

Signed Multiply Accumulate
32 * 16 bit

SMULxy

Signed Multiply 16 * 16 bit

SMULWYy

Signed Multiply 32 * 16 bit

QADD

Saturated Add

QDADD

Saturated Add with Double

QSuUB

Saturated subtract

QDSuUB

Saturated Subtract with
double

Mnemonic Operation
MRRC Move double from
coprocessor
MCR2 Alternative move of ARM reg
to coprocessor
MCRR Move double to coprocessor
CDP2 Alternative qurocessor
Data Processing
BKPT Breakpoint
Soft Preload, Memory
PLD
prepare to load from address
STRD Store Double
STC2 Alternative Store from
Coprocessor
LDRD Load Double
LDC2 Alternative Load to
Coprocessor
CLz Count Leading Zeroes

Notes: 1.

Thumb Instruction Set Overview
The Thumb instruction set is a re-encoded subset of the ARM instruction set.

The Thumb instruction set is divided into:

¢ Branch instructions

* Data processing instructions

¢ Load and Store instructions

A Thumb BLX contains two consecutive Thumb instructions, and takes four cycles.

¢ Load and Store multiple instructions
* Exception-generating instruction
For further details, see the ARM Technical Reference Manual.

Table 9-4 gives the Thumb instruction mnemonic list.

Table 9-4. Thumb Instruction Mnemonic List

Mnemonic | Operation Mnemonic | Operation

MOV Move MVN Move Not

ADD Add ADC Add with Carry

SuB Subtract SBC Subtract with Carry
CMP Compare CMN Compare Negated

TST Test NEG Negate

AND Logical AND BIC Bit Clear

EOR Logical Exclusive OR ORR Logical (inclusive) OR
LSL Logical Shift Left LSR Logical Shift Right

ASR Arithmetic Shift Right ROR Rotate Right

MUL Multiply BLX Branch, Link, and Exchange
B Branch BL Branch and Link

BX Branch and Exchange Swi Software Interrupt

LDR Load Word STR Store Word

LDRH Load Half Word STRH Store Half Word

LDRB Load Byte STRB Store Byte

LDRSH Load Signed Halfword LDRSB Load Signed Byte
LDMIA Load Multiple STMIA Store Multiple

PUSH Push Register to stack POP Pop Register from stack
BCC Conditional Branch BKPT Breakpoint

9.5 CP15 Coprocessor
Coprocessor 15, or System Control Coprocessor CP15, is used to configure and control all the

items in the list below:
¢ ARM9EJ-S
¢ Caches (ICache, DCache and write buffer)
e TCM
e MMU
* Other system options
To control these features, CP15 provides 16 additional registers. See Table 9-5.

ATMEL 5

11054A-ATARM-27-Jul-11

ATMEL

Table 9-5. CP15 Registers

Register Name Read/Write
0 ID Code" Read/Unpredictable
0 Cache type(" Read/Unpredictable
0 TCM status(! Read/Unpredictable
1 Control Read/write
2 Translation Table Base Read/write
3 Domain Access Control Read/write
4 Reserved None
5 Data fault Status(" Read/write
5 Instruction fault status'" Read/write
6 Fault Address Read/write
7 Cache Operations Read/Write
8 TLB operations Unpredictable/Write
9 cache lockdown® Read/write
9 TCM region Read/write
10 TLB lockdown Read/write
11 Reserved None
12 Reserved None
13 FCSE PID™ Read/write
13 Context ID™") Read/Write
14 Reserved None
15 Test configuration Read/Write

Notes: 1. Register locations 0,5, and 13 each provide access to more than one register. The register
accessed depends on the value of the opcode_2 field.

2. Register location 9 provides access to more than one register. The register accessed depends
on the value of the CRm field.

38 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

9.5.1 CP15 Registers Access
CP15 registers can only be accessed in privileged mode by:

* MCR (Move to Coprocessor from ARM Register) instruction is used to write an ARM register
to CP15.

* MRC (Move to ARM Register from Coprocessor) instruction is used to read the value of
CP15 to an ARM register.

Other instructions like CDP, LDC, STC can cause an undefined instruction exception.
The assembler code for these instructions is:

MCR/MRC{cond} pl5, opcode_1, Rd, CRn, CRm, opcode_2.
The MCR, MRC instructions bit pattern is shown below:

31 30 29 28 27 26 25 24

| cond | 1 1 1 0 |
23 22 21 20 19 18 17 16

| opcode_1 L | CRn |
15 14 13 12 11 10 9 8

| Rd | 1 1 1 |
7 6 5 4 3 2 1 0

| opcode_2 | 1 | CRm |

¢ CRm[3:0]: Specified Coprocessor Action

Determines specific coprocessor action. lts value is dependent on the CP15 register used. For details, refer to CP15 spe-
cific register behavior.

e opcode_2[7:5]

Determines specific coprocessor operation code. By default, set to 0.

¢ Rd[15:12]: ARM Register

Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable.

e CRn[19:16]: Coprocessor Register
Determines the destination coprocessor register.

e L: Instruction Bit
0 = MCR instruction

1 = MRC instruction

e opcode_1[23:20]: Coprocessor Code
Defines the coprocessor specific code. Value is ¢15 for CP15.

e cond [31:28]: Condition
For more details, see Chapter 2 in ARM926EJ-S TRM.
9.6 Memory Management Unit (MMU)

The ARM926EJ-S processor implements an enhanced ARM architecture v6 MMU to provide vir-
tual memory features required by operating systems like Symbian OS, WindowsCE, and Linux.

ATMEL s

11054A-ATARM-27-Jul-11

9.6.1

9.6.2

40

ATMEL

These virtual memory features are memory access permission controls and virtual to physical
address translations.

The Virtual Address generated by the CPU core is converted to a Modified Virtual Address
(MVA) by the FCSE (Fast Context Switch Extension) using the value in CP15 register13. The
MMU translates modified virtual addresses to physical addresses by using a single, two-level
page table set stored in physical memory. Each entry in the set contains the access permissions
and the physical address that correspond to the virtual address.

The first level translation tables contain 4096 entries indexed by bits [31:20] of the MVA. These
entries contain a pointer to either a 1 MB section of physical memory along with attribute infor-
mation (access permissions, domain, etc.) or an entry in the second level translation tables;
coarse table and fine table.

The second level translation tables contain two subtables, coarse table and fine table. An entry
in the coarse table contains a pointer to both large pages and small pages along with access
permissions. An entry in the fine table contains a pointer to large, small and tiny pages.

Table 7 shows the different attributes of each page in the physical memory.

Table 9-6. Mapping Details

Mapping Name Mapping Size Access Permission By Subpage Size
Section 1M byte Section -

Large Page 64K bytes 4 separated subpages 16K bytes
Small Page 4K bytes 4 separated subpages 1K byte

Tiny Page 1K byte Tiny Page -

The MMU consists of:

¢ Access control logic
* Translation Look-aside Buffer (TLB)
* Translation table walk hardware

Access Control Logic

The access control logic controls access information for every entry in the translation table. The
access control logic checks two pieces of access information: domain and access permissions.
The domain is the primary access control mechanism for a memory region; there are 16 of them.
It defines the conditions necessary for an access to proceed. The domain determines whether
the access permissions are used to qualify the access or whether they should be ignored.

The second access control mechanism is access permissions that are defined for sections and
for large, small and tiny pages. Sections and tiny pages have a single set of access permissions
whereas large and small pages can be associated with 4 sets of access permissions, one for
each subpage (quarter of a page).

Translation Look-aside Buffer (TLB)

The Translation Look-aside Buffer (TLB) caches translated entries and thus avoids going
through the translation process every time. When the TLB contains an entry for the MVA (Modi-
fied Virtual Address), the access control logic determines if the access is permitted and outputs
the appropriate physical address corresponding to the MVA. If access is not permitted, the MMU
signals the CPU core to abort.

11054A-ATARM-27-Jul-11

9.6.3

9.6.4

9.7

If the TLB does not contain an entry for the MVA, the translation table walk hardware is invoked
to retrieve the translation information from the translation table in physical memory.

Translation Table Walk Hardware

MMU Faults

11054A-ATARM-27-Jul-11

The translation table walk hardware is a logic that traverses the translation tables located in
physical memory, gets the physical address and access permissions and updates the TLB.

The number of stages in the hardware table walking is one or two depending whether the
address is marked as a section-mapped access or a page-mapped access.

There are three sizes of page-mapped accesses and one size of section-mapped access. Page-
mapped accesses are for large pages, small pages and tiny pages. The translation process
always begins with a level one fetch. A section-mapped access requires only a level one fetch,
but a page-mapped access requires an additional level two fetch. For further details on the
MMU, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual.

The MMU generates an abort on the following types of faults:

» Alignment faults (for data accesses only)
e Translation faults

¢ Domain faults

¢ Permission faults

The access control mechanism of the MMU detects the conditions that produce these faults. If
the fault is a result of memory access, the MMU aborts the access and signals the fault to the
CPU core.The MMU retains status and address information about faults generated by the data
accesses in the data fault status register and fault address register. It also retains the status of
faults generated by instruction fetches in the instruction fault status register.

The fault status register (register 5 in CP15) indicates the cause of a data or prefetch abort, and
the domain number of the aborted access when it happens. The fault address register (register 6
in CP15) holds the MVA associated with the access that caused the Data Abort. For further
details on MMU faults, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual.

Caches and Write Buffer

The ARM926EJ-S contains a 16KB Instruction Cache (ICache), a 16KB Data Cache (DCache),
and a write buffer. Although the ICache and DCache share common features, each still has
some specific mechanisms.

The caches (ICache and DCache) are four-way set associative, addressed, indexed and tagged
using the Modified Virtual Address (MVA), with a cache line length of eight words with two dirty
bits for the DCache. The ICache and DCache provide mechanisms for cache lockdown, cache
pollution control, and line replacement.

A new feature is now supported by ARM926EJ-S caches called allocate on read-miss commonly
known as wrapping. This feature enables the caches to perform critical word first cache refilling.
This means that when a request for a word causes a read-miss, the cache performs an AHB
access. Instead of loading the whole line (eight words), the cache loads the critical word first, so
the processor can reach it quickly, and then the remaining words, no matter where the word is
located in the line.

ATMEL o

9.7.1

9.7.2

9.7.2.1

42

ATMEL

The caches and the write buffer are controlled by the CP15 register 1 (Control), CP15 register 7
(cache operations) and CP15 register 9 (cache lockdown).

Instruction Cache (ICache)

The ICache caches fetched instructions to be executed by the processor. The ICache can be
enabled by writing 1 to | bit of the CP15 Register 1 and disabled by writing 0 to this same bit.

When the MMU is enabled, all instruction fetches are subject to translation and permission
checks. If the MMU is disabled, all instructions fetches are cachable, no protection checks are
made and the physical address is flat-mapped to the modified virtual address. With the MVA use
disabled, context switching incurs ICache cleaning and/or invalidating.

When the ICache is disabled, all instruction fetches appear on external memory (AHB) (see
Tables 4-1 and 4-2 in page 4-4 in ARM926EJ-S TRM).

On reset, the ICache entries are invalidated and the ICache is disabled. For best performance,
ICache should be enabled as soon as possible after reset.

Data Cache (DCache) and Write Buffer

DCache

ARM926EJ-S includes a DCache and a write buffer to reduce the effect of main memory band-
width and latency on data access performance. The operations of DCache and write buffer are
closely connected.

The DCache needs the MMU to be enabled. All data accesses are subject to MMU permission
and translation checks. Data accesses that are aborted by the MMU do not cause lin€efills or data
accesses to appear on the AMBA ASB interface. If the MMU is disabled, all data accesses are
noncachable, nonbufferable, with no protection checks, and appear on the AHB bus. All
addresses are flat-mapped, VA = MVA = PA, which incurs DCache cleaning and/or invalidating
every time a context switch occurs.

The DCache stores the Physical Address Tag (PA Tag) from which every line was loaded and
uses it when writing modified lines back to external memory. This means that the MMU is not
involved in write-back operations.

Each line (8 words) in the DCache has two dirty bits, one for the first four words and the other
one for the second four words. These bits, if set, mark the associated half-lines as dirty. If the
cache line is replaced due to a linefill or a cache clean operation, the dirty bits are used to decide
whether all, half or none is written back to memory.

DCache can be enabled or disabled by writing either 1 or 0 to bit C in register 1 of CP15 (see
Tables 4-3 and 4-4 on page 4-5 in ARM926EJ-S TRM).

The DCache supports write-through and write-back cache operations, selected by memory
region using the C and B bits in the MMU translation tables.

The DCache contains an eight data word entry, single address entry write-back buffer used to
hold write-back data for cache line eviction or cleaning of dirty cache lines.

The Write Buffer can hold up to 16 words of data and four separate addresses. DCache and
Write Buffer operations are closely connected as their configuration is set in each section by the
page descriptor in the MMU translation table.

11054A-ATARM-27-Jul-11

9.7.22

Write Buffer
The ARM926EJ-S contains a write buffer that has a 16-word data buffer and a four- address buf-
fer. The write buffer is used for all writes to a bufferable region, write-through region and write-
back region. It also allows to avoid stalling the processor when writes to external memory are
performed. When a store occurs, data is written to the write buffer at core speed (high speed).
The write buffer then completes the store to external memory at bus speed (typically slower than
the core speed). During this time, the ARM9EJ-S processor can preform other tasks.

DCache and Write Buffer support write-back and write-through memory regions, controlled by C
and B bits in each section and page descriptor within the MMU translation tables.

Write-though Operation

When a cache write hit occurs, the DCache line is updated. The updated data is then written to
the write buffer which transfers it to external memory.

When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in
the write buffer which transfers it to external memory.

Write-back Operation

9.8

9.8.1

11054A-ATARM-27-Jul-11

When a cache write hit occurs, the cache line or half line is marked as dirty, meaning that its
contents are not up-to-date with those in the external memory.

When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in
the write buffer which transfers it to external memory.

Bus Interface Unit

The ARM926EJ-S features a Bus Interface Unit (BIU) that arbitrates and schedules AHB
requests. The BIU implements a multi-layer AHB, based on the AHB-Lite protocol, that enables
parallel access paths between multiple AHB masters and slaves in a system. This is achieved by
using a more complex interconnection matrix and gives the benefit of increased overall bus
bandwidth, and a more flexible system architecture.

The multi-master bus architecture has a number of benéefits:

* |t allows the development of multi-master systems with an increased bus bandwidth and a
flexible architecture.

* Each AHB layer becomes simple because it only has one master, so no arbitration or master-
to-slave muxing is required. AHB layers, implementing AHB-Lite protocol, do not have to
support request and grant, nor do they have to support retry and split transactions.

¢ The arbitration becomes effective when more than one master wants to access the same
slave simultaneously.

Supported Transfers
The ARM926EJ-S processor performs all AHB accesses as single word, bursts of four words, or
bursts of eight words. Any ARM9EJ-S core request that is not 1, 4, 8 words in size is split into
packets of these sizes. Note that the Atmel bus is AHB-Lite protocol compliant, hence it does not
support split and retry requests.

ATMEL 1

ATMEL

Table 8 gives an overview of the supported transfers and different kinds of transactions they are
used for.

Table 9-7. Supported Transfers

HBurst[2:0] Description

Single transfer of word, half word, or byte:
 data write (NCNB, NCB, WT, or WB that has missed in DCache)
SINGLE Single transfer * data read (NCNB or NCB)
* NC instruction fetch (prefetched and non-prefetched)
* page table walk read

Half-line cache write-back, Instruction prefetch, if enabled. Four-word burst NCNB,

INCR4 Four-word incrementing burst NCB, WT, or WB write.
INCR8 Eight-word incrementing burst | Full-line cache write-back, eight-word burst NCNB, NCB, WT, or WB write.
WRAP8 Eight-word wrapping burst Cache linefill

9.8.2 Thumb Instruction Fetches

All instructions fetches, regardless of the state of ARM9EJ-S core, are made as 32-bit accesses
on the AHB. If the ARM9EJ-S is in Thumb state, then two instructions can be fetched at a time.

9.8.3 Address Alignment
The ARM926EJ-S BIU performs address alignment checking and aligns AHB addresses to the
necessary boundary. 16-bit accesses are aligned to halfword boundaries, and 32-bit accesses
are aligned to word boundaries.

11054A-ATARM-27-Jul-11

10. Debug and Test

10.1 Description

The SAM9X25 features a number of complementary debug and test capabilities. A common
JTAG/ICE (In-Circuit Emulator) port is used for standard debugging functions, such as down-
loading code and single-stepping through programs. The Debug Unit provides a two-pin UART
that can be used to upload an application into internal SRAM. It manages the interrupt handling
of the internal COMMTX and COMMRX signals that trace the activity of the Debug Communica-
tion Channel.

A set of dedicated debug and test input/output pins gives direct access to these capabilities from
a PC-based test environment.

10.2 Embedded Characteristics

* ARM926 Real-time In-circuit Emulator
— Two real-time Watchpoint Units
— Two Independent Registers: Debug Control Register and Debug Status Register
— Test Access Port Accessible through JTAG Protocol
— Debug Communications Channel

¢ Debug Unit
— Two-pin UART
— Debug Communication Channel Interrupt Handling
— Chip ID Register

* IEEE1149.1 JTAG Boundary-scan on All Digital Pins.

ATMEL s

11054A-ATARM-27-Jul-11

10.3 Block Diagram

ATMEL

Figure 10-1. Debug and Test Block Diagram
[]| T™s
[]| Tex
[]| o
/_
]
l_C hd []| nTRsT
: 1
Boundary ICI?,-/X-PI—AG e I:l JTAGSEL
Port
[|
:) []| oo
|:| RTCK
POR
Reset
and
Test |:| TST
ARM9EJ-S ICE-RT
ARM926EJ-S
A
A /
- o []| otxo
DMA DBGU o
< | []| orxo
TAP: Test Access Port

11054A-ATARM-27-Jul-11

10.4 Application Examples

10.4.1 Debug Environment
Figure 10-2 shows a complete debug environment example. The ICE/JTAG interface is used for
standard debugging functions, such as downloading code and single-stepping through the pro-
gram. A software debugger running on a personal computer provides the user interface for
configuring a Trace Port interface utilizing the ICE/JTAG interface.

11054A-ATARM-27-Jul-11

Figure 10-2. Application Debug and Trace Environment Example

/

/ Host Debugger

\

Terminal

ICENTAG
Interface
ICENTAG
Connector
SAM9 | | Rs232
Connector
SAM9-based Application Board

ATMEL

47

ATMEL

10.4.2 Test Environment
Figure 10-3 shows a test environment example. Test vectors are sent and interpreted by the tes-
ter. In this example, the “board in test” is designed using a number of JTAG-compliant devices.
These devices can be connected to form a single scan chain.

Figure 10-3. Application Test Environment Example

Test Adaptor

Tester
JTAG
Interface
ICE/AJTAG _ _
Connector [Chip nf - - -Chip 2
SAM9-based Application Board In Test

11054A-ATARM-27-Jul-11

10.5 Debug and Test Pin Description

Table 10-1. Debug and Test Pin List

11054A-ATARM-27-Jul-11

Pin Name Function Type Active Level
Reset/Test

NRST Microcontroller Reset Input/Output Low

TST Test Mode Select Input High

ICE and JTAG

NTRST Test Reset Signal Input Low

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

RTCK Returned Test Clock Output

JTAGSEL JTAG Selection Input
Debug Unit

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output

ATMEL

49

ATMEL

10.6 Functional Description

10.6.1 Test Pin
One dedicated pin, TST, is used to define the device operating mode. The user must make sure
that this pin is tied at low level to ensure normal operating conditions. Other values associated
with this pin are reserved for manufacturing test.

10.6.2 EmbeddedICE™

The ARM9EJ-S EmbeddedICE-RT" is supported via the ICE/JTAG port. It is connected to a
host computer via an ICE interface. Debug support is implemented using an ARM9EJ-S core
embedded within the ARM926EJ-S. The internal state of the ARM926EJ-S is examined through
an ICE/JTAG port which allows instructions to be serially inserted into the pipeline of the core
without using the external data bus. Therefore, when in debug state, a store-multiple (STM) can
be inserted into the instruction pipeline. This exports the contents of the ARM9EJ-S registers.
This data can be serially shifted out without affecting the rest of the system.

There are two scan chains inside the ARM9EJ-S processor which support testing, debugging,
and programming of the EmbeddedICE-RT. The scan chains are controlled by the ICE/JTAG
port.

EmbeddedICE mode is selected when JTAGSEL is low. It is not possible to switch directly
between ICE and JTAG operations. A chip reset must be performed after JTAGSEL is changed.

For further details on the EmbeddedICE-RT, see the ARM document:
ARMBO9EJ-S Technical Reference Manual (DDI 0222A).

10.6.3 JTAG Signal Description

TMS is the Test Mode Select input which controls the transitions of the test interface state
machine.

TDI is the Test Data Input line which supplies the data to the JTAG registers (Boundary Scan
Register, Instruction Register, or other data registers).

TDO is the Test Data Output line which is used to serially output the data from the JTAG regis-
ters to the equipment controlling the test. It carries the sampled values from the boundary scan
chain (or other JTAG registers) and propagates them to the next chip in the serial test circuit.

NTRST (optional in IEEE Standard 1149.1) is a Test-ReSeT input which is mandatory in ARM
cores and used to reset the debug logic. On Atmel ARM926EJ-S-based cores, NTRST is a
Power On Reset output. It is asserted on power on. If necessary, the user can also reset the
debug logic with the NTRST pin assertion during 2.5 MCK periods.

TCK is the Test ClocK input which enables the test interface. TCK is pulsed by the equipment
controlling the test and not by the tested device. It can be pulsed at any frequency. Note the
maximum JTAG clock rate on ARM926EJ-S cores is 1/6th the clock of the CPU. This gives 5.45
kHz maximum initial JTAG clock rate for an ARM9E running from the 32.768 kHz slow clock.

RTCK is the Return Test Clock. Not an IEEE Standard 1149.1 signal added for a better clock
handling by emulators. From some ICE Interface probes, this return signal can be used to syn-
chronize the TCK clock and take not care about the given ratio between the ICE Interface clock
and system clock equal to 1/6th. This signal is only available in JTAG ICE Mode and not in
boundary scan mode.

50 'S /A V1O X 2 G 10—
11054A—-ATARM-27-Jul-11

10.6.4 Debug Unit

The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for several
debug and trace purposes and offers an ideal means for in-situ programming solutions and
debug monitor communication. Moreover, the association with two peripheral data controller
channels permits packet handling of these tasks with processor time reduced to a minimum.

The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals
that come from the ICE and that trace the activity of the Debug Communication Channel.The
Debug Unit allows blockage of access to the system through the ICE interface.

A specific register, the Debug Unit Chip ID Register, gives information about the product version
and its internal configuration.

The device Debug Unit Chip ID value is 0x819A_05A1 on 32-bit width.

For further details on the Debug Unit, see the Debug Unit section.

10.6.5 IEEE 1149.1 JTAG Boundary Scan

11054A-ATARM-27-Jul-11

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST
and BYPASS functions are implemented. In ICE debug mode, the ARM processor responds
with a non-JTAG chip ID that identifies the processor to the ICE system. This is not IEEE 1149.1
JTAG-compliant.

It is not possible to switch directly between JTAG and ICE operations. A chip reset must be per-
formed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided to set up test.

ATMEL 2

ATMEL

10.6.6 JTAG ID Code Register
Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

¢ VERSION[31:28]: Product Version Number
Set to 0x0.

e PART NUMBER[27:12]: Product Part Number
Product part Number is 0x5B2F

¢ MANUFACTURER IDENTITY[11:1]
Set to 0x01F.

Bit[0] required by IEEE Std. 1149.1.
Set to 0x1.

JTAG ID Code value is 0x05B2_FO3F.

11054A-ATARM-27-Jul-11

11. Boot Strategies

11.1 ROM Code

11054A-ATARM-27-Jul-11

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory
layout can be changed thanks to the BMS pin. This allows the user to layout the ROM or an
external memory to 0x0. The sampling of the BMS pin is done at reset.

If BMS is detected at 0, the controller boots on the memory connected to Chip Select 0 of the
External Bus Interface.

In this boot mode, the chip starts with its default parameters (all registers in their reset state),
including as follows:

* the main clock is the on-chip 12 MHz RC oscillator

* the Static Memory Controller is configured with its default parameters
The user software in the external memory performs a complete configuration:

¢ Enable the 32,768 Hz oscillator if best accuracy is needed
¢ Program the PMC (main oscillator enable or bypass mode)
* Program and Start the PLL

* Reprogram the SMC setup, cycle, hold, mode timing registers for EBI CS0, to adapt them to
the new clock

¢ Switch the system clock to the new value

If BMS is detected at 1, the boot memory is the embedded ROM and the Boot Program
described below is executed. (Section 11.1 “ROM Code”)

The ROM Code is a boot program contained in the embedded ROM. It is also called “First level
bootloader”.

The ROM Code performs several steps:

* basic chip initialization: XTal or external clock frequency detection
¢ attempt to retrieve a valid code from external non-volatile memories (NVM)

* execution of a monitor called SAM-BA Monitor, in case no valid application has been found
on any NVM

ATMEL s

11.2 Flow Diagram

ATMEL

The ROM Code implements the algorithm shown below in Figure 11-1.

Figure 11-1. ROM Code Algorithm Flow Diagram

11.3 Chip Setup

Chip Setup

Valid boot code
found in one
NVM

Copy and run it
in internal SRAM

SAM-BA Monitor

At boot start-up, the processor clock (PCK) and the master clock (MCK) source is the 12 MHz
Fast RC Oscillator.

Initialization follows the steps described below:

1.
2.

Stack setup for ARM supervisor mode.

Main Oscillator Detection: the Main Clock is switched to the 32 kHz RC oscillator to
allow external clock frequency to be measured. Then the Main Oscillator is enabled and
set in bypass mode. If the MOSCSELS bit rises, an external clock is connected, and the
next step is Main Clock Selection (3). If not, the bypass mode is cleared to attempt
external quartz detection. This detection is successful when the MOSCXTS and
MOSCSELS bits rise, else the 12 MHz Fast RC internal oscillator is used as the Main
Clock.

Main Clock Selection: the Master Clock source is switched from the Slow Clock to the
Main Oscillator without prescaler. The PMC Status Register is polled to wait for MCK
Ready. PCK and MCK are now the Main Clock.

C variable initialization: non zero-initialized data is initialized in the RAM (copy from
ROM to RAM). Zero-initialized data is set to 0 in the RAM.

PLLA initialization: PLLA is configured to get a PCK at 96 MHz and an MCK at

48 MHz. If an external clock or crystal frequency running at 12 MHz is found, then the
PLLA is configured to allow communication on the USB link for the SAM-BA Monitor;
else the Main Clock is switched to the internal 12 MHz Fast RC, but USB will not be
activated.

11054A-ATARM-27-Jul-11

11.4 NVM Boot

11.4.1 NVM Boot Sequence
The boot sequence on external memory devices can be controlled using the Boot Sequence
Register (BSCR). The 3 LSBs of the BSCR are available to control the sequence.

The user can then choose to bypass some steps shown in Figure 11-2 “NVM Bootloader
Sequence Diagram” according to the BSCR Value.

Table 11-1. Boot Sequence Register Values

NAND SAM-BA
BSCR Value | SPI0 NPCSO | SDCard Flash | SPIO NPCS1 | TWIEEPROM | Monitor
0 Y Y Y Y Y Y
1 Y - Y Y Y Y
2 Y - - Y Y Y
3 Y - - Y Y Y
4 Y - - - Y Y
5 - - - - - Y
6 - - - - - Y
7 - - - - - Y

ATMEL 55

11054A-ATARM-27-Jul-11

ATMEL

Figure 11-2. NVM Bootloader Sequence Diagram

Device
Setup

Yes Copy from

SPI0 C0 Rash Boot S Rash to SRAM

)

Run

T
;

No -

Yes Copy from

<D Card Boot SD Card to SRAM

f

E

No -

S

es Copy from
NAND Fash Boot NAND Rasch to SFAM NAND Rash Bootloader
No -
es Copy from
SPI0 CS1 Rash Boot 1 At to SAM [An | SP1 Alash Bootloader
No
Yes Copy f
<= T S
No
SAM-BA
Monitor
56 'S /A V1O X 2 G 10—

SPl Hash Bootloader

D Card Bootloader

11054A-ATARM-27-Jul-11

SAM9X25

11.4.2 NVM Bootloader Program Description

Figure 11-3. NVM Bootloader Program Diagram

(Start)

Initialize NVM

Restore the reset values
— > for the peripheralsand
Jump to next boot solution

Initialization OK?

Valid code detection in NVM

NVM containsvalid code

Copy the valid code
from external NVM to internal SRAM.

Restore the reset valuesfor the peripherals.
Perform the REVIAP and set the PCto 0
to jump to the downloaded application

-«

The NVM bootloader program first initializes the PIOs related to the NVM device. Then it config-
ures the right peripheral depending on the NVM and tries to access this memory. If the
initialization fails, it restores the reset values for the PIO and the peripheral and then tries the
same operations on the next NVM of the sequence.

If the initialization is successful, the NVM bootloader program reads the beginning of the NVM
and determines if the NVM contains valid code.

If the NVM does not contain valid code, the NVM bootloader program restores the reset value for
the peripherals and then tries the same operations on the next NVM of the sequence.

ATMEL 5

11054A-ATARM-27-Jul-11

ATMEL

If valid code is found, this code is loaded from NVM into internal SRAM and executed by branch-
ing at address 0x0000_0000 after remap. This code may be the application code or a second-
level bootloader. All the calls to functions are PC relative and do not use absolute addresses.

Figure 11-4. Remap Action after Download Completion

0x0000_0000 0x0000_0000

REMAP
Internal Internal
ROM > SRAM
0x0010_0000 0x0010_0000
Internal Internal
ROM ROM
0x0030_0000 0x0030_0000
Internal Internal
SRAM SRAM

11.4.3 Valid Code Detection
There are two kinds of valid code detection.
11.4.3.1 ARM Exception Vectors Check
The NVM bootloader program reads and analyzes the first 28 bytes corresponding to the first
seven ARM exception vectors. Except for the sixth vector, these bytes must implement the ARM
instructions for either branch or load PC with PC relative addressing.
Figure 11-5. LDR Opcode
31 28|27 24|23 20(19 16|15 12| 11 0
11 1 0{0 1 I P|{U 1 WO Rn R O set
Figure 11-6. B Opcode
31 28|27 24|23
11 1 0|1 0 1 0 O set (24 bits)
Unconditional instruction: OxE for bits 31 to 28
Load PC with PC relative addressing instruction:
— Rn=Rd=PC =0xF
— I==0 (12-bit immediate value)
— P==1 (pre-indexed)
— U offset added (U==1) or subtracted (U==0)
-_— W::
58 S /A V10 X 2 00—

11054A-ATARM-27-Jul-11

The sixth vector, at offset 0x14, contains the size of the image to download. The user must
replace this vector with the user’'s own vector. This information is described below.

Figure 11-7. Structure of the ARM Vector 6

31 0

Sze of the code to download in bytes

The value has to be smaller than 24 kbytes. This size is the internal SRAM size minus the stack
size used by the ROM Code at the end of the internal SRAM.

Example

An example of valid vectors follows:

00 ea000006 B 0x20

04 eafffffe B 0x04

08 ea00002f B _main

Oc eafffffe B 0x0c

10 eafffffe B 0x10

14 00001234 B 0x14 <- Code size = 4660 bytes
18 eafffffe B 0x18

11.4.3.2 boot.bin File Check

This method is the one used on FAT formatted SDCard. The boot program must be a file named
“boot .bin” written in the root directory of the filesystem. Its size must not exceed the maximum
size allowed: 24 kbytes (0x6000).

1144 Detailed Memory Boot Procedures
11.4.4.1 NAND Flash Boot: NAND Flash Detection

After NAND Flash interface configuration, a reset command is sent to the memory.

The Boot Program first tries to find valid software on a NAND Flash device connected to
EBI CS3, with data lines connected to D0-D7, then on NAND Flash connected to D16-D23.
Hardware ECC detection and correction are provided by the PMECC peripheral (refer to the
PMECC section in the datasheet for more information).

The Boot Program is able to retrieve NAND Flash parameters and ECC requirements using two
methods as follows:

¢ the detection of a specific header written at the beginning of the first page of NAND Flash,
or

e through the ONFI parameters for ONFI compliant memories.

ATMEL s

11054A-ATARM-27-Jul-11

ATMEL

Figure 11-8. Boot NAND Flash Download

Initialize NAND Flash interface

Send Reset command

NAND Flash is ONFI Compliant

First page contains valid header

Read NAND Flash and PMECC parameters| Read NAND Flash and PMECC parameters|
from the header from the ONFI

Copy the valid code
from external NVM to internal SRAM.

Restore the reset values for the peripherals.
Perform the REMAP and set the PC to 0
to jump to the downloaded application

Restore the reset values
for the peripherals and

End Jump to next bootable memory

NAND Flash Specific Header Detection

This is the first method used to determine NAND Flash parameters. After Initialization and Reset
command, the Boot Program reads the first page without ECC check, to determine if the NAND
parameter header is present. The header is made of 52 times the same 32-bit word (for redun-
dancy reasons) which must contain NAND and PMECC parameters used to correctly perform
the read of the rest of the data in the NAND. This 32-bit word is described below:

31 30 29 28 27 26 25 24

| key - eccOffset |
23 22 21 20 19 18 17 16

| eccOffset sectorSize |
15 14 13 12 11 10 9 8

| eccBitReq spareSize |
7 6 5 4 3 2 1 0

| spareSize nbSectorPerPage usePmecc |

¢ usePmecc: Use PMECC
0 = Do not use PMECC to detect and correct the data.

1 = Use PMECC to detect and correct the data.

nbSectorPerPage: Number of sectors per page
e spareSize: Size of the spare zone in bytes
¢ eccBitReq: Number of ECC bits required

¢ sectorSize: Size of the ECC sector
0 = for 512 bytes.

1 = for 1024 bytes per sector.

Other value for future use.

¢ eccOffset: Offset of the first ECC byte in the spare zone
A value below 2 is not allowed and will be considered as 2.

¢ key: value 0xC must be written here to validate the content of the whole word.

If the header is valid, the Boot Program will continue with the detection of valid code.

ATMEL o

11054A-ATARM-27-Jul-11

ATMEL

ONFI 2.2 Parameters

In case no valid header has been found, the Boot Program will check if the NAND Flash is ONFI
compliant, sending a Read Id command (0x90) with 0x20 as parameter for the address. If the
NAND Flash is ONFI compliant, the Boot Program retrieves the following parameters with the
help of the Get Parameter Page command:

e Number of bytes per page (byte 80)

¢ Number of bytes in spare zone (byte 84)

¢ Number of ECC bit correction required (byte 112)

¢ ECC sector size: by default set to 512 bytes, or 1024 bytes if the ECC bit capability above is
OxFF
By default, ONFI NAND Flash detection will turn ON the usePmecc parameter, and ECC correc-
tion algorithm is automatically activated.

Once the Boot Program retrieves the parameter, using one of the two methods described above,
it will read the first page again, with or without ECC, depending on the usePmecc parameter.
Then it looks for a valid code programmed just after the header offset 0xDO. If the code is valid,
the program is copied at the beginning of the internal SRAM.

Note: Booting on 16-bit NAND Flash is not possible, only 8-bit NAND Flash memories are supported.

11.4.4.2 NAND Flash Boot: PMECC Error Detection and Correction
NAND Flash boot procedure uses PMECC to detect and correct errors during NAND Flash read
operations in two cases:

* when the usePmecc flag is set in the specific NAND header. If the flag is not set, no ECC
correction is performed during NAND Flash page read.
* when the NAND Flash has been detected using ONFI parameters.

The ROM code embeds the software used in the process of ECC detection/correction: the
Galois Field tables, and the function PMECC_CorrectionAlgo(). The user does not need to
embed it in other software.

This function can be called by user software when PMECC status returns errors after a read
page command.

Its address can be retrieved by reading the third vector of the ROM Code interrupt vector table,
at address 0x100008.

The API of this function is:

unsigned int PMECC_CorrectionAlgo (AT91PS_PMECC pPMECC,
AT91PS_PMERRLOC pPMERRLOC,
PMECC_paramDesc_struct *PMECC_desc,
unsigned int PMECC_status,

unsigned int pageBuffer)

pPMECC: pointer to the PMECC base address,

pPMERRLOC: pointer to the PMERRLOC base address,
PMECC_desc: pointer to the PMECC descriptor,

PMECC_status: the status returned by the read of PMECCISR register;

11054A-ATARM-27-Jul-11

pageBuffer: address of the buffer containing the page to be corrected.

The PMECC descriptor structure is:

typedef struct _PMECC_paramDesc_struct {
unsigned int pageSize;
unsigned int spareSize;
unsigned int sectorSize; // 0 for 512, 1 for 1024 bytes
unsigned int errBitNbrCapability;
unsigned int eccSizeByte;
unsigned int eccStartAddr;

unsigned int eccEndAddr;

unsigned int nandWR;
unsigned int spareEna;
unsigned int modeAuto;
unsigned int clkCtrl;

unsigned int interrupt;

int tt;
int mm;

int nn;

short *alpha_to;

short *index_of;

short partialSyn[100];
short si[100];

/* sigma table */
short smu[TT_MAX + 2][2 * TT_MAX + 1];
/* polynom order */

short 1lmu[TT_MAX + 11];

} PMECC_paramDesc_struct;

ATMEL e

11054A-ATARM-27-Jul-11

ATMEL

The Galois field tables are mapped in the ROM just after the ROM code, as described in Figure
11-9 below:

Figure 11-9. Galois Field Table Mapping
0x0010_0000

ROM Code

0x0010_8000

Galois field
tables for
512-byte

sectors

correction
0x0011_0000

Galois field
tables for
1024-byte
sectors
correction

For a full description and an example of how to use the PMECC detection and correction fea-
ture, refer to the software package dedicated to this device on Atmel’s web site.

11.4.4.3 SD Card Boot

The SD Card bootloader uses MCIO. It looks for a “boot .bin” file in the root directory of a
FAT12/16/32 formatted SD Card.

Supported SD Card Devices

SD Card Boot supports all SD Card memories compliant with SD Memory Card Specification
V2.0. This includes SDHC cards.

11.4.4.4 SPI Flash Boot
Two kinds of SPI Flash are supported: SPI Serial Flash and SPI DataFlash.

The SPI Flash bootloader tries to boot on SPI0 Chip Select 0, first looking for SPI Serial Flash,
and then for SPI DataFlash.

It uses only one valid code detection: analysis of ARM exception vectors.

The SPI Flash read is done by means of a Continuous Read command from address 0x0. This
command is OxE8 for DataFlash and 0x0B for Serial Flash devices.

11054A-ATARM-27-Jul-11

Supported DataFlash Devices
The SPI Flash Boot program supports all Atmel DataFlash devices.

Table 11-2. DataFlash Device

Device Density Page Size (bytes) Number of Pages
AT45DBO011 1 Mbit 264 512
AT45DB021 2 Mbits 264 1024
AT45DB041 4 Mbits 264 2048
AT45DB081 8 Mbits 264 4096
AT45DB161 16 Mbits 528 4096
AT45DB321 32 Mbits 528 8192
AT45DB642 64 Mbits 1056 8192

Supported Serial Flash Devices

The SPI Flash Boot program supports all SPI Serial Flash devices responding correctly at both
Get Status and Continuous Read commands.

11.4.4.5 TWI EEPROM Boot
The TWI EEPROM Bootloader uses the TWIO. It uses only one valid code detection. It analyzes
the ARM exception vectors.

Supported TWI EEPROM Devices

TWI EEPROM Boot supports all 12C-compatible TWI EEPROM memories using 7-bit device
address 0x50.

11.4.5 Hardware and Software Constraints
The NVM drivers use several PlOs in peripheral mode to communicate with external memory
devices. Care must be taken when these PIOs are used by the application. The devices con-
nected could be unintentionally driven at boot time, and electrical conflicts between output pins
used by the NVM drivers and the connected devices may occur.

To assure correct functionality, it is recommended to plug in critical devices to other pins not
used by NVM.

Table 11-3 contains a list of pins that are driven during the boot program execution. These pins
are driven during the boot sequence for a period of less than 1 second if no correct boot program
is found.

ATMEL L

11054A-ATARM-27-Jul-11

ATMEL

Before performing the jump to the application in internal SRAM, all the PIOs and peripherals

used in the boot program are set to their reset state.

Table 11-3. PIO Driven during Boot Program Execution

NVM Bootloader Peripheral Pin PIO Line
EBI CS3 SMC NANDOE PIODO
EBI CS3 SMC NANDWE PIOD1
EBI CS3 SMC NANDCS PIOD4
NAND
EBI CS3 SMC NAND ALE A21
EBI CS3 SMC NAND CLE A22
EBI CS3 SMC Cmd/Addr/Data D[16:0]
MCIO MCIO0_CK PIOA17
MCIO MCI0_Do PIOA15
SD Card MCIO MCI0_D1 PIOA18
MCIO MCI0_D2 PIOA19
MCIO MCI0_D3 PIOA20
SPIO MOSI PIOA10
SPIO MISO PIOA11
SPI Flash SPIO SPCK PIOA13
SPIO NPCSO0 PIOA14
SPIO NPCS1 PIOA7
TWIO TWDO PIOA30
TWIO EEPROM
TWIO TWCKO PIOA31
DBGU DRXD PIOA9
SAM-BA Monitor
DBGU DTXD PIOA10

11.5 SAM-BA Monitor

If no valid code has been found in NVM during the NVM bootloader sequence, the SAM-BA
Monitor program is launched.

The SAM-BA Monitor principle is to:
— Initialize DBGU and USB
— Check if USB Device enumeration has occurred

— Check if characters have been received on the DBGU

Once the communication interface is identified, the application runs in an infinite loop waiting for
different commands as listed in Table 11-4.

66 'S /A V1O X 2 G 10—
11054A—-ATARM-27-Jul-11

Figure 11-10. SAM-BA Monitor Diagram

No valid code in NVM

Init DBGU and USB

No

USB Enumeration
Successful ?

No

Run monitor
Wait for command
on the USB link

Character(s) received
on DBGU ?

Run monitor
Wait for command
on the DBGU link

11.5.1 Command List
Table 11-4. Commands Available through the SAM-BA Monitor
Command Action Argument(s) Example
N set Normal mode No argument N#
T set Terminal mode No argument T#
(o] write a byte Address, Value# 0200001,CA#
o read a byte Address,# 0200001,#
H write a half word Address, Value# H200002,CAFE#
h read a half word Address, # h200002,#
w write a word Address, Value# W200000,CAFEDECA#
w read a word Address, # w200000,#
S send a file Address, # $200000,#
R receive a file Address, NbOfBytes# R200000,1234#
G go Address# G200200#
v display version No argument Vi

* Mode commands:
— Normal mode configures SAM-BA Monitor to send / receive data in binary format,
— Terminal mode configures SAM-BA Monitor to send / receive data in ascii format.
* Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
— Address: Address in hexadecimal.
— Value: Byte, halfword or word to write in hexadecimal.
— Output. >’
¢ Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.

ATMEL o

11054A-ATARM-27-Jul-11

ATMEL

— Address: Address in hexadecimal.

— Output: The byte, halfword or word read in hexadecimal followed by >’
* Send a file (S): Send a file to a specified address.

— Address: Address in hexadecimal.

— Output. >’

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the
end of the command execution.

* Receive a file (R): Receive data into a file from a specified address
— Address: Address in hexadecimal.
— NbOfBytes: Number of bytes in hexadecimal to receive.
— Output. >’
¢ Go (G): Jump to a specified address and execute the code.
— Address: Address to jump in hexadecimal.

— Output: *>’once returned from the program execution. If the executed program does
not handle the link register at its entry and does not return, the prompt will not be
displayed.

¢ Get Version (V): Return the Boot Program version.
— Output: version, date and time of ROM code followed by ‘>’.

11.5.2 DBGU Serial Port
Communication is performed through the DBGU serial port initialized to 115,200 Baud, 8 bits of
data, no parity, 1 stop bit.

11.5.2.1 Supported External Crystal/External Clocks
The SAM-BA Monitor supports a frequency of 12 MHz to allow DBGU communication for both
external crystal and external clock.

11.6.2.2 Xmodem Protocol
The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal
performing this protocol can be used to send the application file to the target. The size of the
binary file to send depends on the SRAM size embedded in the product. In all cases, the size of
the binary file must be lower than the SRAM size because the Xmodem protocol requires some
SRAM memory in order to work.

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-charac-
ter CRC16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

— <SOH> =01 hex

— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not
to 01)

— <255-blk #> = 1’s complement of the blk#.
— <checksum> = 2 bytes CRC16
Figure 11-11 shows a transmission using this protocol.

68 'S /A V1O X 2 G 10—
11054A—-ATARM-27-Jul-11

Figure 11-11. Xmodem Transfer Example

Host Device

Cc

SOH 01 FEData[128] CRCCRC

-

ACK

SOH 02 FD Data[128] CRC CRC

ACK

A

SOH 03 FC Data[100] CRC CRC

ACK

A

EOT

\/

ACK

11.5.3 USB Device Port

11.5.3.1 Supported External Crystal / External Clocks

The only frequency supported by SAM-BA Monitor to allow USB communication is a 12 MHz
crystal or external clock.

11.56.3.2 USB Class
The device uses the USB Communication Device Class (CDC) drivers to take advantage of the
installed PC RS-232 software to talk over the USB. The CDC class is implemented in all
releases of Windows®, from Windows 98SE® to Windows XP®. The CDC document, available at
www.usb.org, describes how to implement devices such as ISDN modems and virtual COM
ports.

The Vendor ID is Atmel’s vendor ID 0xO3EB. The product ID is 0x6124. These references are
used by the host operating system to mount the correct driver. On Windows systems, the INF
files contain the correspondence between vendor ID and product ID.

11.5.3.3 Enumeration Process

The USB protocol is a master/slave protocol. The host starts the enumeration, sending requests
to the device through the control endpoint. The device handles standard requests as defined in
the USB Specification.

Table 11-5. Handled Standard Requests

Request Definition

GET_DESCRIPTOR Returns the current device configuration value.
SET_ADDRESS Sets the device address for all future device access.
SET_CONFIGURATION Sets the device configuration.
GET_CONFIGURATION Returns the current device configuration value.

ATMEL L

11054A-ATARM-27-Jul-11

www.usb.org

ATMEL

Table 11-5. Handled Standard Requests (Continued)

Request Definition

GET_STATUS Returns status for the specified recipient.
SET_FEATURE Used to set or enable a specific feature.
CLEAR_FEATURE Used to clear or disable a specific feature.

The device also handles some class requests defined in the CDC class.

Table 11-6. Handled Class Requests

Request Definition

Configures DTE rate, stop bits, parity and number of

SET_LINE_CODING character bits.

Requests current DTE rate, stop bits, parity and number
of character bits.

RS-232 signal used to tell the DCE device the DTE
device is now present.

GET_LINE_CODING

SET_CONTROL_LINE_STATE

Unhandled requests are STALLed.

11.5.34 Communication Endpoints
There are two communication endpoints and endpoint 0 is used for the enumeration process.
Endpoint 1 is a 64-byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-
BA Boot commands are sent by the host through endpoint 1. If required, the message is split by
the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.

11054A-ATARM-27-Jul-11

12. Boot Sequence Controller (BSC)

12.1 Description

The System Controller embeds a Boot Sequence Configuration Register to save timeout delays
on boot. The boot sequence is programmable through the Boot Sequence Configuration Regis-
ter (BSCR).

This register is powered by VDDBU, the modification is saved and applied after the next reset.
The register is taking Factory Value in case of battery removing.

This register is programmable with user programs or SAM-BA and key-protected.

12.2 Embedded Characteristics
* VDDBU powered
¢ Product-dependent order

12.3 Boot Sequence Controller Registers (BSC) User Interface

Table 12-1. Register Mapping

Offset Register Name Access Reset

0x0 Boot Sequence Configuration Register BSC_CR Read-write -

ATMEL g

11054A-ATARM-27-Jul-11

12.3.1 Boot Sequence Configuration Register
Name: BSC_CR

Address: OxFFFFFE54

Access: Read-write

Factory Value:0x0000_0000
31 30 29 28 27 26 25 24

| BOOTKEY |
23 22 21 20 19 18 17 16

| BOOT |
15 14 13 12 11 10 9 8

| BOOT |
7 6 5 4 3 2 1 0

| BOOT |

¢ BOOTXx: Boot media sequence
Is defined in the product-dependent ROM code.

« BOOTKEY
0xB5 (VALID): valid boot key

To avoid spurious writing, this key is necessary for write accesses.

11054A-ATARM-27-Jul-11

13. Advanced Interrupt Controller (AIC)

13.1 Description

The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to sub-
stantially reduce the software and real-time overhead in handling internal and external
interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs
of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external inter-
rupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus
permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-
level or low-level sensitive.

The fast forcing feature redirects any internal or external interrupt source to provide a fast inter-
rupt rather than a normal interrupt.

13.2 Embedded Characteristics

11054A-ATARM-27-Jul-11

« Controls the Interrupt Lines (nIRQ and nFIQ) of an ARM® Processor
¢ Thirty-two Individually Maskable and Vectored Interrupt Sources

— Source 0 is Reserved for the Fast Interrupt Input (FIQ)

— Source 1 is Reserved for System Peripherals

— Source 2 to Source 31 Control up to Thirty Embedded Peripheral Interrupts or
External Interrupts

— Programmable Edge-triggered or Level-sensitive Internal Sources

— Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
External Sources

* 8-level Priority Controller

— Drives the Normal Interrupt of the Processor

— Handles Priority of the Interrupt Sources 1 to 31

— Higher Priority Interrupts Can Be Served During Service of Lower Priority Interrupt
* Vectoring

— Optimizes Interrupt Service Routine Branch and Execution

— One 32-bit Vector Register per Interrupt Source

— Interrupt Vector Register Reads the Corresponding Current Interrupt Vector
* Protect Mode

— Easy Debugging by Preventing Automatic Operations when Protect Models Are
Enabled

 Fast Forcing

— Permits Redirecting any Normal Interrupt Source to the Fast Interrupt of the
Processor

¢ General Interrupt Mask
— Provides Processor Synchronization on Events Without Triggering an Interrupt
* Write Protected Registers

ATMEL 7s

ATMEL

13.3 Block Diagram

Figure 13-1. Block Diagram

FIQ AIC
| I > ARM
IRQO-IRQN Processor
Up to
Thirty-two »| nFIlQ
~._Embedded | Sources
“.._Embedded | »| nIRQ
i Embedded g
Peripheral
4
) J ApB

13.4 Application Block Diagram

Figure 13-2. Description of the Application Block

0OS-based Applications

Standalone
Applications OS Drivers RTOS Drivers

Hard Real Time Tasks
General OS Interrupt Handler

Advanced Interrupt Controller

External Peripherals

Embedded Peripherals (External Interrupts)

13.5 AIC Detailed Block Diagram

Figure 13-3. AIC Detailed Block Diagram

Advanced Interrupt Controller ARM
Fa Processor
L PIO >|External "l Fast J|nFiQ

Controller Source Cntetrru”pt
Input I—» ontroller
Stage
[Je— ., ko
RQoIRan Fast Interrupt /
PIOIR as
ORa = Forcing R Priority Processor
Internal Controller Clock
Source
»| Input Power
Embedded Stage Management
Peripherals Controller
User Interface Wake Up
A
P Y APB

11054A-ATARM-27-Jul-11

13.6 /O Line Description

Table 13-1. I/O Line Description

Pin Name Pin Description Type
FIQ Fast Interrupt Input
IRQO - IRQN Interrupt O - Interrupt n Input

13.7 Product Dependencies

13.7.1 I/O Lines
The interrupt signals FIQ and IRQO to IRQn are normally multiplexed through the PIO control-
lers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.

Table 13-2. 1/O Lines

Instance Signal I/0 Line Peripheral
AIC FIQ PC31 A
AIC IRQ PB18 A

13.7.2 Power Management
The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing syn-
chronization of the processor on an event.

13.7.3 Interrupt Sources

The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring
of the system peripheral interrupt lines. When a system interrupt occurs, the service routine
must first distinguish the cause of the interrupt. This is performed by reading successively the
status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to sim-
plify the description of the functional operations and the user interface, the interrupt sources are
named FIQ, SYS, and PID2 to PID31.

ATMEL 7

11054A-ATARM-27-Jul-11

ATMEL

13.8 Functional Description

13.8.1

13.8.1.1

13.8.1.2

13.8.1.3

13.8.1.4

76

Interrupt Source Control

Interrupt Source Mode

The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-sen-
sitive modes, or in positive edge-triggered or negative edge-triggered modes.

Interrupt Source Enabling

Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruc-
tion. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.

Interrupt Clearing and Setting

All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clear-
ing or setting interrupt sources programmed in level-sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation. (See “Priority Controller” on page 79.) The automatic clear reduces
the operations required by the interrupt service routine entry code to reading the AIC_IVR. Note
that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing feature
enabled as it is considered uniquely as a FIQ source. (For further details, See “Fast Forcing” on
page 83.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

Interrupt Status

For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.

The AIC_ISR register reads the number of the current interrupt (see “Priority Controller” on page
79) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the
processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.

11054A-ATARM-27-Jul-11

SAM9X25

Figure 13-4. Internal Interrupt Source Input Stage

AIC_SMRI
(SRCTYPE)

Edge I

D e Fast Interrupt Controller
: or
Priority Controller

Source i

Edge
Detector AIC_IECR
Set Clear

|AIC_ISCR I
| AIC_ICCR I

Il

AIC_IDCR

Figure 13-5. External Interrupt Source Input Stage

AIC_SMRi
High/Low SRCTYPE
Level/ | AIC_IPR I
Edge
Source i AIC_IMR
|:| | — Ffs';:’nterrupt Controller
Priority Controller
Pos./Neg. | AIC_IECR |
I
Edge
Detector FF
Set Clear
I I
| AIC_ISCR | | AIC_IDCR |

| AIC_ICCR |

ATMEL L

11054A-ATARM-27-Jul-11

13.8.2

78

ATMEL

Interrupt Latencies
Global interrupt latencies depend on several parameters, including:

¢ The time the software masks the interrupts.

¢ Occurrence, either at the processor level or at the AIC level.

* The execution time of the instruction in progress when the interrupt occurs.

* The treatment of higher priority interrupts and the resynchronization of the hardware signals.
This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or the
assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the pro-
cessor. The resynchronization time depends on the programming of the interrupt source and on
its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.

Figure 13-6. External Interrupt Edge Triggered Source

IRQ or FIQ
(Positive Edge)

IRQ or FIQ
(Negative Edge)

nIRQ

Maximum IRQ Latency = 4 Cycles

nFIQ

=

Maximum FIQ Latency = 4 Cycles

1
1
1
1
!
T
!
1
!
1
1
1
I
1
1
<
1
1
1
!
|
1
1
1€
1

Figure 13-7. External Interrupt Level Sensitive Source

MCK I l I I l

} [}
[} [}
IRQ or FIQ : | | '
(High Level) ! !
[} [}
IRQ or FIQ i | | :
(Low Level) ' :
: |
nIRQ |
' Maximum IRQ
1 Latency = 3 Cycles |
l |
nFQ <
: Maximum FIQ

Latency = 3 cycles

13.8.3

13.8.3.1

11054A-ATARM-27-Jul-11

Figure 13-8. Internal Interrupt Edge Triggered Source

MCK

A A A X
nIRQ I

Yoo

A

' Maximum IRQ Latency = 4.5 Cycles

1 1 1
Peripheral Interrupt
Becomes Active

Figure 13-9. Internal Interrupt Level Sensitive Source

MCK |

nIRQ

> |

Peripheral Interrupt
Becomes Active

e e =

e e
---=-=-=--4>

Maximum IRQ Latency = 3.5 Cycles

Normal Interrupt

Priority Controller

An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31 (except for those programmed in Fast
Forcing).

Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writ-
ing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level O the lowest.

As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SMR
(Source Mode Register), the nIRQ line is asserted. As a new interrupt condition might have hap-
pened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The
read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider
that the interrupt has been taken into account by the software.

The current priority level is defined as the priority level of the current interrupt.

If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read,
the interrupt with the lowest interrupt source number is serviced first.

The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a
higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in

ATMEL 7

ATMEL

progress, it is delayed until the software indicates to the AIC the end of the current service by
writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the
exit point of the interrupt handling.

13.8.3.2 Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the high priority interrupt to be handled
during the service of lower priority interrupts. This requires the interrupt service routines of the
lower interrupts to re-enable the interrupt at the processor level.

When an interrupt of a higher priority happens during an already occurring interrupt service rou-
tine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is finished
and the AIC_EOICR is written.

The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt
nestings pursuant to having eight priority levels.

13.8.3.3 Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the reg-
isters AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads
AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the cur-
rent interrupt is returned.

This feature offers a way to branch in one single instruction to the handler corresponding to the
current interrupt, as AIC_IVR is mapped at the absolute address OxFFFF F100 and thus acces-
sible from the ARM interrupt vector at address 0x0000 0018 through the following instruction:

LDR PC, [PC,# -&F20]

When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.

This feature is often not used when the application is based on an operating system (either real
time or not). Operating systems often have a single entry point for all the interrupts and the first
task performed is to discern the source of the interrupt.

However, it is strongly recommended to port the operating system on AT91 products by support-
ing the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt
source to be handled by the operating system at the address of its interrupt handler. When doing
so, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very
fast handler and not onto the operating system’s general interrupt handler. This facilitates the
support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral han-
dling) to be handled efficiently and independently of the application running under an operating
system.

13.8.3.4 Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and the associated status bits.

It is assumed that:

80 'S /A V1O X 2 G 10—
11054A—-ATARM-27-Jul-11

The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.

The instruction at the ARM interrupt exception vector address is required to work with
the vectoring

LDR PC, [PC, # -&F20]
When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:

1.

Note:

Note:

11054A-ATARM-27-Jul-11

The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18.
In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, dec-
rementing it by four.

The ARM core enters Interrupt mode, if it has not already done so.

When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:

— Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.

— De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.

— Automatically clears the interrupt, if it has been programmed to be edge-triggered.
— Pushes the current level and the current interrupt number on to the stack.
— Returns the value written in the AIC_SVR corresponding to the current interrupt.

The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SUB pcC,
LR, #4 may be used.

Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-
assertion of the nIRQ to be taken into account by the core. This can happen if an inter-
rupt with a higher priority than the current interrupt occurs.

The interrupt handler can then proceed as required, saving the registers that will be
used and restoring them at the end. During this phase, an interrupt of higher priority
than the current level will restart the sequence from step 1.
If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared dur-
ing this phase.
The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.

The End of Interrupt Command Register (AIC_EOICR) must be written in order to indi-
cate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the inter-
rupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly into
the PC. This has the effect of returning from the interrupt to whatever was being exe-
cuted before, and of loading the CPSR with the stored SPSR, masking or unmasking
the interrupts depending on the state saved in SPSR_irq.

The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of

masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored,
the mask instruction is completed (interrupt is masked).

ATMEL o

ATMEL

13.8.4 Fast Interrupt

13.8.4.1 Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the processor
except if fast forcing is used. The interrupt source 0 is generally connected to a FIQ pin of the
product, either directly or through a PIO Controller.

13.8.4.2 Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMRO and the field PRIOR of this register is not used even if it reads
what has been written. The field SRCTYPE of AIC_SMRO enables programming the fast inter-
rupt source to be positive-edge triggered or negative-edge triggered or high-level sensitive or
low-level sensitive

Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit O of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.

13.8.4.3 Fast Interrupt Veectoring
The fast interrupt handler address can be stored in AIC_SVRO (Source Vector Register 0). The
value written into this register is returned when the processor reads AIC_FVR (Fast Vector Reg-
ister). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR
is mapped at the absolute address OxFFFF F104 and thus accessible from the ARM fast inter-
rupt vector at address 0x0000 001C through the following instruction:

LDR PC, [PC,# -&F20]

When the processor executes this instruction it loads the value read in AIC_FVR in its program
counter, thus branching the execution on the fast interrupt handler. It also automatically per-
forms the clear of the fast interrupt source if it is programmed in edge-triggered mode.

13.8.4.4 Fast Interrupt Handlers

This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and associated status bits.

Assuming that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVRO is loaded with
the fast interrupt service routine address, and the interrupt source 0 is enabled.

2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:

LDR PC, [PC, # -&F20]
3. The user does not need nested fast interrupts.
When nFIQ is asserted, if the bit “F” of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with Ox1C. In
the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decre-
menting it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automati-

11054A-ATARM-27-Jul-11

cally clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.

4. The previous step enables branching to the corresponding interrupt service routine. It is
not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, RO to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.

6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction SUB pPC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR
and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The “F” bitin SPSR is significant. If it is set, it indicates that the ARM core was just about to mask
FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the
interrupted instruction is completed (FIQ is masked).

Another way to handle the fast interrupt is to map the interrupt service routine at the address of

the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must

be performed at the very beginning of the handler operation. However, this method saves the
execution of a branch instruction.

13.8.4.5 Fast Forcing
The Fast Forcing feature of the advanced interrupt controller provides redirection of any normal
Interrupt source on the fast interrupt controller.

Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register (AIC_FFER)
and the Fast Forcing Disable Register (AIC_FFDR). Writing to these registers results in an
update of the Fast Forcing Status Register (AIC_FFSR) that controls the feature for each inter-
nal or external interrupt source.

When Fast Forcing is disabled, the interrupt sources are handled as described in the previous
pages.

When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detec-
tion of the interrupt source is still active but the source cannot trigger a normal interrupt to the
processor and is not seen by the priority handler.

If the interrupt source is programmed in level-sensitive mode and an active level is sampled,
Fast Forcing results in the assertion of the nFIQ line to the core.

If the interrupt source is programmed in edge-triggered mode and an active edge is detected,
Fast Forcing results in the assertion of the nFIQ line to the core.

The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending Reg-
ister (AIC_IPR).

The FIQ Vector Register (AIC_FVR) reads the contents of the Source Vector Register 0
(AIC_SVRO0), whatever the source of the fast interrupt may be. The read of the FVR does not
clear the Source 0 when the fast forcing feature is used and the interrupt source should be
cleared by writing to the Interrupt Clear Command Register (AIC_ICCR).

ATMEL s

11054A-ATARM-27-Jul-11

ATMEL

All enabled and pending interrupt sources that have the fast forcing feature enabled and that are
programmed in edge-triggered mode must be cleared by writing to the Interrupt Clear Command
Register. In doing so, they are cleared independently and thus lost interrupts are prevented.

The read of AIC_IVR does not clear the source that has the fast forcing feature enabled.
The source 0, reserved to the fast interrupt, continues operating normally and becomes one of
the Fast Interrupt sources.
Figure 13-10. Fast Forcing
Source 0 ~ FIQ [[AIC_IPR]

D—— Input Stage T
Automatic Clear AIC_IMR

: nFlQ

Read FVR if Fast Forcing is i |

disabled on Sources 1 to 31. b

AIC_FFSR
Source n AIC_IPR
F Input Stage }) Priority
O Manager

Automatic Clear AIC_IMR O——— ——— nIRQ

'

Read IVR if Source n is the current interrupt
and if Fast Forcing is disabled on Source n.

13.8.5 Protect Mode
The Protect Mode permits reading the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applica-
tions and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:

* If an enabled interrupt with a higher priority than the current one is pending, it is stacked.

¢ |f there is no enabled pending interrupt, the spurious vector is returned.
In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the debug
system would become strongly intrusive and cause the application to enter an undesired state.

This is avoided by using the Protect Mode. Writing PROT in AIC_DCR (Debug Control Register)
at Ox1 enables the Protect Mode.

When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access
is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary
data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the
Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is
written.

An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service routine
to make sure the debugger does not modify the AIC context.

11054A-ATARM-27-Jul-11

To summarize, in normal operating mode, the read of AIC_IVR performs the following opera-
tions within the AIC:

Calculates active interrupt (higher than current or spurious).
Determines and returns the vector of the active interrupt.
Memorizes the interrupt.

Pushes the current priority level onto the internal stack.

5. Acknowledges the interrupt.

However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.

Howb -

Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.

13.8.6 Spurious Interrupt

The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when:

* An external interrupt source is programmed in level-sensitive mode and an active level occurs
for only a short time.

* An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)

* An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a
pulse on the interrupt source.

The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to
the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.

13.8.7 General Interrupt Mask

11054A-ATARM-27-Jul-11

The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor.
Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR
(Debug Control Register) is set. However, this mask does not prevent waking up the processor if
it has entered Idle Mode. This function facilitates synchronizing the processor on a next event
and, as soon as the event occurs, performs subsequent operations without having to handle an
interrupt. It is strongly recommended to use this mask with caution.

ATMEL L

ATMEL

13.9 Write Protection Registers
To prevent any single software error that may corrupt AIC behavior, the registers listed below
can be write-protected by setting the WPEN bit in the AIC Write Protect Mode Register
(AIC_WPMR).

If a write access in a write-protected register is detected, then the WPVS flag in the AIC Write
Protect Status Register (AIC_WPSR) is set and the WPVSRC field indicates in which register
the write access has been attempted.

The WPVS flag is automatically reset after reading the AIC Write Protect Status Register.
The protected registers are:

¢ “AlIC Source Mode Register” on page 88

* “AlIC Source Vector Register” on page 89

* “AlC Spurious Interrupt Vector Register” on page 100
¢ “AlIC Debug Control Register” on page 101

86 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

13.10 Advanced Interrupt Controller (AIC) User Interface

13.10.1 Base Address
The AIC is mapped at the address O0xFFFF F000. It has a total 4-Kbyte addressing space. This permits the vectoring fea-
ture, as the PC-relative load/store instructions of the ARM processor support only a + 4-Kbyte offset.

Table 13-3. Register Mapping

Offset Register Name Access Reset
0x00 Source Mode Register 0 AIC_SMRO Read-write 0x0
0x04 Source Mode Register 1 AIC_SMR1 Read-write 0x0
0x7C Source Mode Register 31 AIC_SMRS31 Read-write 0x0
0x80 Source Vector Register 0 AIC_SVRO Read-write 0x0
0x84 Source Vector Register 1 AIC_SVR1 Read-write 0x0
O0xFC Source Vector Register 31 AIC_SVR31 Read-write 0x0
0x100 Interrupt Vector Register AIC_IVR Read-only 0x0
0x104 FIQ Interrupt Vector Register AIC_FVR Read-only 0x0
0x108 Interrupt Status Register AIC_ISR Read-only 0x0
0x10C Interrupt Pending Register® AIC_IPR Read-only ox0™
0x110 Interrupt Mask Register® AIC_IMR Read-only 0x0
0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0
0x118 - 0x11C Reserved --- --- ---
0x120 Interrupt Enable Command Register® AIC_IECR Write-only
0x124 Interrupt Disable Command Register® AIC_IDCR Write-only -
0x128 Interrupt Clear Command Register® AIC_ICCR Write-only -
0x12C Interrupt Set Command Register® AIC_ISCR Write-only
0x130 End of Interrupt Command Register AIC_EOICR Write-only
0x134 Spurious Interrupt Vector Register AIC_SPU Read-write 0x0
0x138 Debug Control Register AIC_DCR Read-write 0x0
0x13C Reserved --- ---
0x140 Fast Forcing Enable Register®® AIC_FFER Write-only
0x144 Fast Forcing Disable Register® AIC_FFDR Write-only
0x148 Fast Forcing Status Register® AIC_FFSR Read-only 0x0
0x14C - Ox1EOQ Reserved --- --- ---
Ox1E4 Write Protect Mode Register AIC_WPMR Read-write 0x0
Ox1E8 Write Protect Status Register AIC_WPSR Read-only 0x0
Ox1EC - Ox1FC Reserved

Notes: 1. The reset value of this register depends on the level of the external interrupt source. All other sources are cleared at reset,
thus not pending.

2. PID2...PID31 bit fields refer to the identifiers as defined in the Peripheral Identifiers Section of the product datasheet.

ATMEL o

11054A-ATARM-27-Jul-11

13.10.2 AIC Source Mode Register
Name: AIC_SMRO..AIC_SMR31

Address: OxFFFFFO000

Access Read-write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | SRCTYPE | - | - | PRIOR |

This register can only be written if the WPEN bit is cleared in AIC Write Protect Mode Register

¢ PRIOR: Priority Level

Value Name Description
0 LOWEST Lowest priority for the corresponding interrupt
7 HIGHEST Highest priority for the corresponding interrupt

Intermediate values, from 1 to 6, are not defined.

The priority level is not used for the FIQ in the related SMR register AIC_SMRXx.

e SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.

Value Name Description
High level itive for i |

0x0 INT_LEVEL SENSITIVE igh leve SenglIlve or internal source
Low level Sensitive for external source
Positi i fori |

0x1 INT_EDGE_TRIGGERED 03|t|\{e edge trlggered or internal source
Negative edge triggered for external source

0x2 EXT_HIGH_LEVEL HIgh level SensItIve for internal source
High level Sensitive for external source
Positi i fori |

0x3 EXT_POSITIVE_EDGE osItIve edge trIggered or internal source
Positive edge triggered for external source

88 S /A V1O X 2 10000

11054A-ATARM-27-Jul-11

13.10.3 AIC Source Vector Register
Name: AIC_SVRO0..AIC_SVR31

Address: OxFFFFF080

Access: Read-write

Reset: 0x0
31 30 29 28 27 26 25 24

| VECTOR |
23 22 21 20 19 18 17 16

| VECTOR |
15 14 13 12 11 10 9 8

| VECTOR |
7 6 5 4 3 2 1 0

| VECTOR |

This register can only be written if the WPEN bit is cleared in AIC Write Protect Mode Register

¢ VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.

ATMEL L

11054A-ATARM-27-Jul-11

13.10.4 AIC Interrupt Vector Register
Name: AIC_IVR

Address: OxFFFFF100

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

| IRQV |
23 22 21 20 19 18 17 16

| IRQV |
15 14 13 12 11 10 9 8

| IRQV |
7 6 5 4 3 2 1 0

| IRQV |

¢ IRQV: Interrupt Vector Register
The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.

The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.

When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.

90 'S /A V1O X 2 G 10—
11054A—-ATARM-27-Jul-11

13.10.5 AIC FIQ Vector Register
Name: AIC_FVR

Address: OxFFFFF104

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

| FlQVv |
23 22 21 20 19 18 17 16

| FlQVv |
15 14 13 12 11 10 9 8

| FlQVv |
7 6 5 4 3 2 1 0

| FlQVv |

* FIQV: FIQ Vector Register
The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the FIQ Vector Register reads the value stored in AIC_SPU.

ATMEL o

11054A-ATARM-27-Jul-11

13.10.6 AIC Interrupt Status Register
Name: AIC_ISR

Address: OxFFFFF108

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | IRQID |

¢ IRQID: Current Interrupt Identifier

The Interrupt Status Register returns the current interrupt source number.

11054A-ATARM-27-Jul-11

13.10.7 AIC Interrupt Pending Register
Name: AIC_IPR

Address: OxFFFFF10C

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 PID26 PID25 PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 PID18 PID17 PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 PID10 PID9 PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 PID2 SYS FIQ |

e FIQ, SYS, PID2-PID31: Interrupt Pending

0 = Corresponding interrupt is not pending.

1 = Corresponding interrupt is pending.

13.10.8 AIC Interrupt Mask Register

Name: AIC_IMR

Address: OxFFFFF110

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

| PID31 | PID30 [PID29 | PID28 | PID27 PID26 PID25 PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 [PID21 | PID20 | PID19 PID18 PID17 PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 [PID13 | PID12 | PID11 PID10 PID9 PIDS |
7 6 5 4 3 2 1 0

| PID7 | PID6 [PID5 | PID4 | PID3 PID2 SYS FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Mask
0 = Corresponding interrupt is disabled.

1 = Corresponding interrupt is enabled.

11054A-ATARM-27-Jul-11

ATMEL

93

13.10.9 AIC Core Interrupt Status Register
Name: AIC_CISR

Address: OxFFFFF114

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - | NR@ | NFQ

+ NFIQ: NFIQ Status

0 = nFIQ line is deactivated.

1 =nFIQ line is active.

¢ NIRQ: NIRQ Status

0 = nIRQ line is deactivated.

1 =nIRQ line is active.

11054A-ATARM-27-Jul-11

13.10.10 AIC Interrupt Enable Command Register

Name: AIC_IECR

Address: OxFFFFF120

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Enable

0 = No effect.

1 = Enables corresponding interrupt.

11054A-ATARM-27-Jul-11

ATMEL

95

ATMEL

13.10.11 AIC Interrupt Disable Command Register
Name: AIC_IDCR

Address: OxFFFFF124

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYsS | FIQ |

e FIQ, SYS, PID2-PID31: Interrupt Disable
0 = No effect.

1 = Disables corresponding interrupt.

96 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

13.10.12 AIC Interrupt Clear Command Register

Name: AIC_ICCR

Address: OxFFFFF128

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Clear

0 = No effect.

1 = Clears corresponding interrupt.

11054A-ATARM-27-Jul-11

ATMEL

97

ATMEL

13.10.13 AIC Interrupt Set Command Register
Name: AIC_ISCR

Address: OxFFFFF12C

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYsS | FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Set
0 = No effect.

1 = Sets corresponding interrupt.

08 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

13.10.14 AIC End of Interrupt Command Register
Name: AIC_EOICR

Address: OxFFFFF130

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I = I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I = I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I = I - I - I - I - I - |
7 6 5 4 3 2 1 0

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.

ATMEL o

11054A-ATARM-27-Jul-11

13.10.15 AIC Spurious Interrupt Vector Register
Name: AIC_SPU

Address: OxFFFFF134

Access: Read-write

Reset: 0x0
31 30 29 28 27 26 25 24

| SIVR |
23 22 21 20 19 18 17 16

| SIVR |
15 14 13 12 11 10 9 8

| SIVR |
7 6 5 4 3 2 1 0

| SIVR |

This register can only be written if the WPEN bit is cleared in AIC Write Protect Mode Register

¢ SIVR: Spurious Interrupt Vector Register
The user may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.

100 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

13.10.16 AIC Debug Control Register
Name: AIC_DCR

Address: OxFFFFF138

Access: Read-write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - [- [aowsk | ProT |

This register can only be written if the WPEN bit is cleared in AIC Write Protect Mode Register
¢ PROT: Protection Mode

0 = The Protection Mode is disabled.

1 = The Protection Mode is enabled.

e GMSK: General Mask

0 = The nIRQ and nFIQ lines are normally controlled by the AIC.

1 = The nIRQ and nFIQ lines are tied to their inactive state.

AImEl@ 101

11054A-ATARM-27-Jul-11

ATMEL

13.10.17 AIC Fast Forcing Enable Register
Name: AIC_FFER

Address: OxFFFFF140

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS | - |

e SYS, PID2-PID31: Fast Forcing Enable
0 = No effect.

1 = Enables the fast forcing feature on the corresponding interrupt.

102 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

13.10.18 AIC Fast Forcing Disable Register

Name: AIC_FFDR

Address: OxFFFFF144

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 SYS | - |

e SYS, PID2-PID31: Fast Forcing Disable

0 = No effect.

1 = Disables the Fast Forcing feature on the corresponding interrupt.

11054A-ATARM-27-Jul-11

ATMEL

103

ATMEL

13.10.19 AIC Fast Forcing Status Register
Name: AIC_FFSR

Address: OxFFFFF148

Access: Read-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS | - |

e SYS, PID2-PID31: Fast Forcing Status
0 = The Fast Forcing feature is disabled on the corresponding interrupt.

1 = The Fast Forcing feature is enabled on the corresponding interrupt.

104 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

13.10.20 AIC Write Protect Mode Register

Name: AIC_WPMR

Address: OxFFFFF1E4

Access: Read-write

Reset: See Table 13-3
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

- 1 - 1 - T = T =T = = WPEN |

e WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x414943 ("AIC" in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x414943 ("AIC" in ASCII).

Protects the registers:

* “AlC Source Mode Register” on page 88

* “AlC Source Vector Register” on page 89

* “AlC Spurious Interrupt Vector Register” on page 100

* “AlC Debug Control Register” on page 101

e WPKEY: Write Protect KEY
Should be written at value 0x414943 ("AIC" in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

11054A-ATARM-27-Jul-11

ATMEL

105

13.10.21 AIC Write Protect Status Register
Name: AIC_WPSR

Address: OxFFFFF1E8

Access: Read-only

Reset: See Table 13-3
31 30 29 28 27 26 25 24

- T -1 = = = = =]
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

I — I — I — I — I — I — I — WPvs |

e WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the AIC_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the AIC_WPSR register. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

e WPVSRC: Write Protect Violation Source

When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write

access has been attempted.

Note: Reading AIC_WPSR automatically clears all fields.

106 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

14. Reset Controller (RSTC)

14.1 Description
The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-
tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.

14.2 Embedded Characteristics

* Manages All Resets of the System, Including
— External Devices Through the NRST Pin
— Processor Reset
— Peripheral Set Reset
— Backed-up Peripheral Reset

¢ Based on 2 Embedded Power-on Reset Cells

* Reset Source Status
— Status of the Last Reset

— Either General Reset, Wake-up Reset, Software Reset, User Reset, Watchdog
Reset

* External Reset Signal Shaping
* AMBA™-compliant Interface
— Interfaces to the ARM® Advanced Peripheral Bus

AImEl@ 107

11054A-ATARM-27-Jul-11

ATMEL

14.3 Block Diagram

Figure 14-1. Reset Controller Block Diagram

Reset Controller
Main Supply
POR
Backup Supply Startup rete-tr
POR Counter
Reset
State
Manager
> proc_nreset
user_reset
NRST
D NRST > periph_nreset
Manager
nrst_out
exter_nreset
> backup_neset
WDRPROC
wd_fault >

SLCK

14.4 Functional Description

Reset Controller Overview

The Reset Controller is made up of an NRST Manager, a Startup Counter and a Reset State
Manager. It runs at Slow Clock and generates the following reset signals:

* proc_nreset: Processor reset line. It also resets the Watchdog Timer.

¢ backup_nreset: Affects all the peripherals powered by VDDBU.

* periph_nreset: Affects the whole set of embedded peripherals.

e nrst_out: Drives the NRST pin.

These reset signals are asserted by the Reset Controller, either on external events or on soft-
ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

The startup counter waits for the complete crystal oscillator startup. The wait delay is given by
the crystal oscillator startup time maximum value that can be found in the section Crystal Oscil-
lator Characteristics in the Electrical Characteristics section of the product documentation.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDBU, so that its configuration is saved as long as VDDBU is on.

11054A-ATARM-27-Jul-11

14.4.2

14.4.3

14.4.3.1

14.4.4

NRST Manager

NRST Signal

After power-up, NRST is an output during the ERSTL time defined in the RSTC. When ERSTL
elapsed, the pin behaves as an input and all the system is held in reset if NRST is tied to GND
by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 14-2 shows the block diagram of the NRST Manager.

Figure 14-2. NRST Manager

RSTC_SR
URSTS
NRSTL

> user_reset
NRST | RSTC_MR

nrst_out
I = External Reset Timer jJ«——————— exter_nreset

The NRST Manager handles the NRST input line asynchronously. When the line is low, a User
Reset is immediately reported to the Reset State Manager. When the NRST goes from low to
high, the internal reset is synchronized with the Slow Clock to provide a safe internal de-asser-
tion of reset.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

NRST External Reset Control

BMS Sampling

11054A-ATARM-27-Jul-11

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2(ERSTL+1) 5low Clock cycles. This gives the approximate duration of an assertion between 60 ps
and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

As the field is within RSTC_MR, which is backed-up, this field can be used to shape the system
power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

The product matrix manages a boot memory that depends on the level on the BMS pin at reset.
The BMS signal is sampled three slow clock cycles after the Core Power-On-Reset output rising
edge.

AImEl@ 109

Figure 14-3. BMS Sampling

14.45

14.4.5.1

110

ST S I e

Core Supply
POR output

BMS Signal

proc_nreset

Reset States

BMS sampling delay
=3 cycles

)

The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

General Reset

A general reset occurs when VDDBU and VDDCORE are powered on. The backup supply POR
cell output rises and is filtered with a Startup Counter, which operates at Slow Clock. The pur-
pose of this counter is to make sure the Slow Clock oscillator is stable before starting up the
device. The length of startup time is hardcoded to comply with the Slow Clock Oscillator startup
time.

After this time, the processor clock is released at Slow Clock and all the other signals remain
valid for 3 cycles for proper processor and logic reset. Then, all the reset signals are released
and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR is reset, the
NRST line rises 2 cycles after the backup_nreset, as ERSTL defaults at value 0x0.

When VDDBU is detected low by the Backup Supply POR Cell, all resets signals are immedi-
ately asserted, even if the Main Supply POR Cell does not report a Main Supply shutdown.

VDDBU only activates the backup_nreset signal.

The backup_nreset must be released so that any other reset can be generated by VDDCORE
(Main Supply POR output).

Figure 14-4 shows how the General Reset affects the reset signals.

11054A-ATARM-27-Jul-11

Figure 14-4. General Reset State

SLCK
MCK

Backup Supply
POR output

Main Supply
POR output

backup_nreset

proc_nreset
RSTTYP

periph_nreset

NRST
(nrst_out)

14.4.5.2

11054A-ATARM-27-Jul-11

e einininliSEninlniniinl
WL

Startup Time

Processor Startup

XXX

0x0 = General Reset

XXX

Wake-up Reset

EXTERN|

>

IAL RESET LENGTH
= 2 cycles

BMS Sampling

The Wake-up Reset occurs when the Main Supply is down. When the Main Supply POR output
is active, all the reset signals are asserted except backup_nreset. When the Main Supply pow-
ers up, the POR output is resynchronized on Slow Clock. The processor clock is then re-enabled
during 3 Slow Clock cycles, depending on the requirements of the ARM processor.

At the end of this delay, the processor and other reset signals rise. The field RSTTYP in
RSTC_SR is updated to report a Wake-up Reset.

The “nrst_out” remains asserted for EXTERNAL_RESET_LENGTH cycles. As RSTC_MR is
backed-up, the programmed number of cycles is applicable.

When the Main Supply is detected falling, the reset signals are immediately asserted. This tran-
sition is synchronous with the output of the Main Supply POR.

ATMEL

111

Figure 14-5. Wake-up Reset

st~ L L L L L L LT L

MCK

Main Supply
POR output

backup_nreset

proc_nreset

RSTTYP

periph_nreset

NRST
(nrst_out)
14.4.5.3 User Reset
112

/

Resynch.
2 cycles

< > | >
< > <€ >

Processor Startup

XXX 0x1 = WakeUp Reset XXX

EXTERNAL RESET LENGTI—T
=4 cycles (ERSTL = 1)

The User Reset is entered when a low level is detected on the NRST pin. When a falling edge
occurs on NRST (reset activation), internal reset lines are immediately asserted.

The Processor Reset and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

11054A-ATARM-27-Jul-11

SAM9X25

Figure 14-6. User Reset State

pipipipipipinipinlispEnininl
Epipinlinl

SLCK

NRST /
Resynch. Processor Startup
2 cycles
proc_nreset
RSTTYP XXX 0x4 = User Reset

periph_nreset

NRST
(nrst_out)

J A4 dP

>= EXTERNAL RESET LENGTH

14.4.5.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These
commands are performed by writing the Control Register (RSTC_CR) with the following bits at
1:

* PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

* PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.

Except for Debug purposes, PERRST must always be used in conjunction with PROCRST
(PERRST and PROCRST set both at 1 simultaneously.)

e EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-
mands can be performed independently or simultaneously. The software reset lasts 3 Slow
Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in

RSTTYP.
AImEl@ 113

11054A-ATARM-27-Jul-11

ATMEL

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Prog-
ress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.
No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.

Figure 14-7. Software Reset

soc | LT L L L L L L
m NI LT L

MCK

Write RSTC_CR

proc_nreset
if PROCRST=1

RSTTYP

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1

SRCMP in RSTC_SR

14.4.5.5

114

L
L

Resynch.

Processor Startup
1 to 2 cycles

=3 cycles

A
Y

Any XXX 0x3 = Software Reset

S XK <~ D

A
3

EXTERNAL RESET LENGTH
8 clycles (ERSTL=2)

S

Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:

¢ If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.

* If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

11054A-ATARM-27-Jul-11

SAM9X25

Figure 14-8. Watchdog Reset

Any
MCK Freq. | | I | I | I | I | I | I |
wd_fault / N
Processor Startup
=3 cycles

/ :

RSTTYP Any XXX 0x2 = Watchdog Reset

1]

proc_nreset

periph_nreset

Only if
WDRPROC = 0

NRST
(nrst_out)

A
A

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

14.4.6 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,

given in descending order:
¢ Backup Reset
e Wake-up Reset
* User Reset
¢ Watchdog Reset
* Software Reset
Particular cases are listed below:

e When in User Reset:

— A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

— A software reset is impossible, since the processor reset is being activated.
* When in Software Reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.
* When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

AImEl@ 115

11054A-ATARM-27-Jul-11

ATMEL

14.4.7 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

* RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

* SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

* NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

* URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
14-9). . Reading the RSTC_SR status register resets the URSTS bit .

Figure 14-9. Reset Controller Status and Interrupt

read
Peripheral Access RSTC SR
2 cycle 2 cycle

resyn¢hronizatipn resynchionizatior

NRST _\/‘f\ /——\
NRSTL

URSTS /

rstc_irq
if (URSTEN = 0) and
(URSTIEN = 1)

116 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

14.5 Reset Controller (RSTC) User Interface

Table 14-1. Register Mapping
Offset Register Name Access Reset Back-up Reset
0x00 Control Register RSTC_CR Write-only -
0x04 Status Register RSTC_SR Read-only 0x0000_0001 0x0000_0000
0x08 Mode Register RSTC_MR Read-write - 0x0000_0000
Note: 1. The reset value of RSTC_SR either reports a General Reset or a Wake-up Reset depending on last rising power supply.

11054A-ATARM-27-Jul-11

ATMEL

117

A IIIIEI% O

14.5.1 Reset Controller Control Register

Name: RSTC_CR

Address: OxFFFFFEOQO

Access : Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| = | - | - | - [EXTRST | PERRST | - [PROCRST |

e PROCRST: Processor Reset
0 = No effect.

1 = If KEY is correct, resets the processor.
¢ PERRST: Peripheral Reset

0 = No effect.

1 = If KEY is correct, resets the peripherals.
e EXTRST: External Reset

0 = No effect.

1 = If KEY is correct, asserts the NRST pin.

* KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

118 S A M 9X25 __|
11054A-ATARM-27-Jul-11

14.5.2 Reset Controller Status Register

ATMEL

Name: RSTC_SR
Address: OxFFFFFEO4
Access: Read-only

31 30 29 28 27 26 25 24
- T - T - — T - - — T -]
23 22 21 20 19 18 17 16
| - | - | - - | - - SRCMP | NRSTL |
15 14 13 12 11 10 9 8
| - | - | - - | - RSTTYP |
7 6 5 4 3 2 1 0
- T - T - -~ T - - - URSTS]

e URSTS: User Reset Status

0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

e RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

RSTTYP Reset Type Comments
0 0 0 General Reset Both VDDCORE and VDDBU rising
0 0 1 Wake Up Reset VDDCORE rising
0 1 0 Watchdog Reset Watchdog fault occurred
0 1 1 Software Reset Processor reset required by the software
1 0 0 User Reset NRST pin detected low

e NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

¢ SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

119 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

14.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: OxFFFFFEO8

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- [- T - T - T = - - S
15 14 13 12 11 10 9 8

I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0

e ERSTL: External Reset Length
This field defines the external reset length. The external reset is asserted during a time of 2
allows assertion duration to be programmed between 60 ps and 2 seconds.

ERSTL+1) Slow Clock cycles. This

¢ KEY: Password
Should be written at value OxA5. Writing any other value in this field aborts the write operation.

120 S A M 9X25 __|
11054A-ATARM-27-Jul-11

15. Real-time Clock (RTC)

15.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calen-
dar, complemented by a programmable periodic interrupt. The alarm and calendar registers are
accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

15.2 Embedded Characteristics
¢ Low Power Consumption
* Full Asynchronous Design
* Two Hundred Year Gregorian Calendar
* Programmable Periodic Interrupt
e Time, Date and Alarm 32-bit Parallel Load

15.3 Block Diagram

Figure 15-1. RTC Block Diagram

Slow Clock: SLCK 32768 Divider Time Date
Bus Interface == Bus Interface |« % % >
Entry Interrupt RTC Interrupt
Control Control

AImEl@ 121

11054A-ATARM-27-Jul-11

ATMEL

15.4 Product Dependencies

15.4.1

15.4.2

Power Management

Interrupt

The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

Within the System Controller, the RTC interrupt is OR-wired with all the other module interrupts.

Only one System Controller interrupt line is connected on one of the internal sources of the inter-
rupt controller.

RTC interrupt requires the interrupt controller to be programmed first.

When a System Controller interrupt occurs, the service routine must first determine the cause of
the interrupt. This is done by reading each status register of the System Controller peripherals
successively.

15.5 Functional Description

15.5.1

15.5.2

15.5.3

122

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar.
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct
up to the year 2099.

Reference Clock

Timing

Alarm

The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768
kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical.
The crystal selection has to take into account the current consumption for power saving and the
frequency drift due to temperature effect on the circuit for time accuracy.

The RTC is updated in real time at one-second intervals in normal mode for the counters of sec-
onds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, sec-
onds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.

The RTC has five programmable fields: month, date, hours, minutes and seconds.
Each of these fields can be enabled or disabled to match the alarm condition:

* If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.

11054A-ATARM-27-Jul-11

¢ If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to
the user ranging from minutes to 365/366 days.

15.5.4 Error Checking

Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable
value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.

The following checks are performed:

Century (check if it is in range 19 - 20)

Year (BCD entry check)

Date (check range 01 - 31)

Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
Day (check range 1 - 7)

Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be pro-
grammed and the returned value on RTC_TIME will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to determine
the range to be checked.

o0~ 0bd -

15.5.5 Updating Time/Calendar
To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Regis-
ter. Once the bit reads 1, it is mandatory to clear this flag by writing the corresponding bit in
RTC_SCCR. The user can now write to the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When
entering the programming mode of the time fields, both time and calendar fields are stopped.
This is due to the location of the calendar logic circuity (downstream for low-power consider-
ations). It is highly recommended to prepare all the fields to be updated before entering
programming mode. In successive update operations, the user must wait at least one second
after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting
UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

AImEl@ 123

11054A-ATARM-27-Jul-11

Figure 15-2. Update Sequence
Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC_CR

End

124 'S /A V1O X 2 G 10—
11054A—-ATARM-27-Jul-11

15.6 Real Time Clock (RTC) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01210720
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30-0xF8 Reserved Register - - -
OxFC Reserved Register - - -

Note: if an offset is not listed in the table it must be considered as reserved.

11054A-ATARM-27-Jul-11

ATMEL

125

ATMEL

15.6.1 RTC Control Register

Name: RTC_CR

Address: OxFFFFFEBO

Access: Read-write
31 30 29 28 27 26 25 24

. - - ¢ - - 1 - [- [- - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TIMEVSEL |
7 6 5 4 3 2 1 0

| - | - | - [- [- [- [UPDCAL UPDTIM |

e UPDTIM: Update Request Time Register
0 = No effect.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

e UPDCAL: Update Request Calendar Register

0 = No effect.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once

this bit is set.

e TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon
e CALEVSEL: Calendar Event Selection

The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)
3 —

126 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

15.6.2 RTC Mode Register

Name: RTC_MR
Address: OxFFFFFEB4
Access: Read-write
31 30 29 28 27 26 25 24
T -1 - - - -]
23 22 21 20 19 18 17 16
T 71 - - - —]
15 14 13 12 11 10
I S S - —]
7 6 0
- T - T — - - — [nawop |

e HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

All non-significant bits read zero.

11054A-ATARM-27-Jul-11

ATMEL

127

ATMEL

15.6.3 RTC Time Register

Name: RTC_TIMR

Address: OxFFFFFEBS8

Access: Read-write
31 30 29 28 27 26 25 24

I R - - - -]
23 22 21 20 19 18 17 16

| — | Awpm | HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

e SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.
¢ MIN: Current Minute

The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

e AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.
0=AM.

1=PM.

All non-significant bits read zero.

128 S A M 9X25 __|
11054A-ATARM-27-Jul-11

15.6.4 RTC Calendar Register

Name: RTC_CALR

Address: OxFFFFFEBC

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

e CENT: Current Century
The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.
¢ YEAR: Current Year

The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.
¢ MONTH: Current Month

The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e DAY: Current Day in Current Week

The range that can be setis 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.
e DATE: Current Day in Current Month

The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

AImEl@ 129

11054A-ATARM-27-Jul-11

ATMEL

15.6.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: OxFFFFFECO

Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| HOUREN | AmpPm | HOUR |
15 14 13 12 11 10 9 8

[MINEN | MIN |
7 6 5 4 3 2 1 0

[SECEN | SEC |

e SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

e SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.
1 = The second-matching alarm is enabled.

e MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

¢ MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.
1 = The minute-matching alarm is enabled.

e HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

e AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

e HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

130 S A M 9X25 __|
11054A-ATARM-27-Jul-11

15.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: OxFFFFFEC4

Access: Read-write
31 30 29 28 27 26 25 24

| DATEEN | — | DATE |
23 22 21 20 19 18 17 16

| MTHEN | - | - | MONTH |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

e MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

e MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.
1 = The month-matching alarm is enabled.

e DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

e DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

AImEl@ 131

11054A-ATARM-27-Jul-11

15.6.7 RTC Status Register

Name: RTC_SR

Address: OxFFFFFECS

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [_ | - | cAlev | TMEV | SEC | ALARM | AckupD |

e ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.

1 = Time and calendar registers can be updated.

e ALARM: Alarm Flag

0 = No alarm matching condition occurred.

1 = An alarm matching condition has occurred.

e SEC: Second Event

0 = No second event has occurred since the last clear.

1 = At least one second event has occurred since the last clear.

e TIMEV: Time Event

0 = No time event has occurred since the last clear.

1 = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).
e CALEV: Calendar Event

0 = No calendar event has occurred since the last clear.

1 = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

132 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

15.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: OxFFFFFECC

Access: Write-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1}
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | cActR | TmMCLR | SECCLR | ALRCLR | ACKCLR |

ACKCLR: Acknowledge Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).
e ALRCLR: Alarm Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

SECCLR: Second Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).
¢ TIMCLR: Time Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

CALCLR: Calendar Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

ATMEL

11054A-ATARM-27-Jul-11

133

15.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: OxFFFFFEDO

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[- [- | - | CALEN | TIMEN [SECEN | ALREN | ACKEN |

ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.
e ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

e TIMEN: Time Event Interrupt Enable

0 = No effect.

1 = The selected time event interrupt is enabled.
e CALEN: Calendar Event Interrupt Enable

0 = No effect.

* 1 =The selected calendar event interrupt is enabled.

134 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

15.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: OxFFFFFED4

Access: Write-only
31 30 29 28 27 26 25 24

- - r - r - r - +r - 1 - [- [- |
23 22 21 20 19 18 17 16

- - - fr - r - r - [- [- [- |
15 14 13 12 11 10 9 8

- - r - - r - r - [- [- [-]
7 6 5 4 3 2 1 0

| — [= | - | cabis | TiMDIS | SECDIS | ALRDIS | ACKDIS |

e ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.
e ALRDIS: Alarm Interrupt Disable

0 = No effect.

1 = The alarm interrupt is disabled.

e SECDIS: Second Event Interrupt Disable

0 = No effect.

1 = The second periodic interrupt is disabled.

¢ TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

e CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

11054A-ATARM-27-Jul-11

ATMEL

135

15.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: OxFFFFFEDS8

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | CAL | TIM | SEC | ALR | ACK |

¢ ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.
¢ ALR: Alarm Interrupt Mask

0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

e SEC: Second Event Interrupt Mask

0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

¢ TIM: Time Event Interrupt Mask

0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

e CAL: Calendar Event Interrupt Mask

0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

136 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

15.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: OxFFFFFEDC

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [_ | _ | - | NvCALALR [NvTIMALR [NvecAL | NvTim |

¢ NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.
¢ NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

e NVTIMALR: Non-valid Time Alarm

0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

e NVCALALR: Non-valid Calendar Alarm

0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

ATMEL

11054A-ATARM-27-Jul-11

137

ATMEL

138 S A M 9X25 __|
11054A-ATARM-27-Jul-11

16. Periodic Interval Timer (PIT)

16.1 Description

The Periodic Interval Timer (PIT) provides the operating system’s scheduler interrupt. It is
designed to offer maximum accuracy and efficient management, even for systems with long
response time.

16.2 Embedded Characteristics
¢ 20-bit Programmable Counter plus 12-bit Interval Counter
* Reset-on-read Feature
* Both Counters Work on Master Clock/16
* Real Time OS or Linux®/WinCE® compliant tick generator
« AMBA™-compliant Interface
— Interfaces to the ARM Advanced Peripheral Bus

16.3 Block Diagram

Figure 16-1. Periodic Interval Timer

PIT_MR
PIV

E‘I«

PIT_MR
PITIEN
set L
0 PTSR [piTs Pt
l i reset
0 0 1/
[
\o__ 1/ i
p——————————————>
Adder
read PIT_PIVR
MCK 20-bit
Counter
A
MCK/16
Prescaler > | CPIV | PIT_PIVR | PICNT |
[cpv | PIT_PIIR [pont |

AImEl@ 139

11054A-ATARM-27-Jul-11

ATMEL

16.4 Functional Description

140

The Periodic Interval Timer aims at providing periodic interrupts for use by operating systems.

The PIT provides a programmable overflow counter and a reset-on-read feature. It is built
around two counters: a 20-bit CPIV counter and a 12-bit PICNT counter. Both counters work at
Master Clock /16.

The first 20-bit CPIV counter increments from 0 up to a programmable overflow value set in the
field PIV of the Mode Register (PIT_MR). When the counter CPIV reaches this value, it resets to
0 and increments the Periodic Interval Counter, PICNT. The status bit PITS in the Status Regis-
ter (PIT_SR) rises and triggers an interrupt, provided the interrupt is enabled (PITIEN in
PIT_MR).

Writing a new PIV value in PIT_MR does not reset/restart the counters.

When CPIV and PICNT values are obtained by reading the Periodic Interval Value Register
(PIT_PIVR), the overflow counter (PICNT) is reset and the PITS is cleared, thus acknowledging
the interrupt. The value of PICNT gives the number of periodic intervals elapsed since the last
read of PIT_PIVR.

When CPIV and PICNT values are obtained by reading the Periodic Interval Image Register
(PIT_PIIR), there is no effect on the counters CPIV and PICNT, nor on the bit PITS. For exam-
ple, a profiler can read PIT_PIIR without clearing any pending interrupt, whereas a timer
interrupt clears the interrupt by reading PIT_PIVR.

The PIT may be enabled/disabled using the PITEN bit in the PIT_MR register (disabled on
reset). The PITEN bit only becomes effective when the CPIV value is 0. Figure 16-2 illustrates
the PIT counting. After the PIT Enable bit is reset (PITEN= 0), the CPIV goes on counting until
the PIV value is reached, and is then reset. PIT restarts counting, only if the PITEN is set again.

The PIT is stopped when the core enters debug state.

11054A-ATARM-27-Jul-11

SAM9X25

Figure 16-2. Enabling/Disabling PIT with PITEN

APB cycle APB cycle
<> <>
vec [UUUL TULDL
15
estarts MCK Prescaler
MCK Prescaler 0 N
y/
PITEN)
CPV | 0 1 v -1 PIv 0 X1
PICNT 0 1 0
PITS (PIT_SR)
APB Interface ><

read PIT_PIVR

AI“]EL@ 141

11054A-ATARM-27-Jul-11

|
AIMEL
16.5 Periodic Interval Timer (PIT) User Interface

Table 16-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register PIT_MR Read-write 0x000F_FFFF
0x04 Status Register PIT_SR Read-only 0x0000_0000
0x08 Periodic Interval Value Register PIT_PIVR Read-only 0x0000_0000
0x0C Periodic Interval Image Register PIT_PIR Read-only 0x0000_0000

142 'S /A V1O X 2 G 10—
11054A—-ATARM-27-Jul-11

16.5.1 Periodic Interval Timer Mode Register

Name: PIT_MR

Address: OxFFFFFE30

Access: Read-write
31 30 29 28 27 26 25 24

| — | — | — | — | — - PITIEN PITEN |
23 22 21 20 19 18 17 16

I - I - I - I - I PIV |
15 14 13 12 11 10 9 8

| PIV |
7 6 5 4 3 2 1 0

|

| PIV

¢ PIV: Periodic Interval Value

Defines the value compared with the primary 20-bit counter of the Periodic Interval Timer (CPIV). The period is equal to

(PIV + 1).

¢ PITEN: Period Interval Timer Enabled

0 = The Periodic Interval Timer is disabled when the PIV value is reached.
1 = The Periodic Interval Timer is enabled.

¢ PITIEN: Periodic Interval Timer Interrupt Enable

0 = The bit PITS in PIT_SR has no effect on interrupt.

1 =The bit PITS in PIT_SR asserts interrupt.

ATMEL

11054A-ATARM-27-Jul-11

143

16.5.2 Periodic Interval Timer Status Register

Name: PIT_SR

Address: OxFFFFFE34

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 4 2 1 0

| - | - | - | - | - | - | - | PTS |

¢ PITS: Periodic Interval Timer Status
0 = The Periodic Interval timer has not reached PIV since the last read of PIT_PIVR.

1 = The Periodic Interval timer has reached PIV since the last read of PIT_PIVR.

AImEl@ 144

11054A-ATARM-27-Jul-11

16.5.3 Periodic Interval Timer Value Register

Name: PIT_PIVR

Address: OxFFFFFE38

Access: Read-only
31 30 29 28 27 26 25 24

| PICNT |
23 22 21 20 19 18 17 16

| PICNT CPIV |
15 14 13 12 11 10 9 8

| CPIV |
7 6 5 4 3 2 1 0

| CPIV |

Reading this register clears PITS in PIT_SR.

e CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.

¢ PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.

AImEl@ 145

11054A-ATARM-27-Jul-11

ATMEL

16.5.4 Periodic Interval Timer Image Register

Name: PIT_PIIR

Address: OxFFFFFE3C

Access: Read-only
31 30 29 28 27 26 25 24

| PICNT |
23 22 21 20 19 18 17 16

| PICNT CPIV |
15 14 13 12 11 10 9 8

| CPIV |
7 6 5 4 3 2 1 0

| CPIV |

e CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.

¢ PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.

146 S A M 9X25 __|
11054A-ATARM-27-Jul-11

17. Watchdog Timer (WDT)

17.1 Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.

17.2 Embedded Features
* 16-bit Key-protected only-once Programmable Counter
¢ Provides Reset or Interrupt Signals to the System
* Windowed, prevents the processor to be in a dead lock on the watchdog access
* Counter May Be Stopped While the Processor is in Debug State or in Idle Mode
» AMBA™-compliant Interface
— Interfaces to the ARM® Advanced Peripheral Bus

17.3 Block Diagram

Figure 17-1. Watchdog Timer Block Diagram

write WDT_MR
WDT_MR
WDT_CR WDV
|WDRSTT | reload - l
0—[) \1_30
12-bit Down
Counter
WDT_MR
reload
WDD Current
Value < l_m 28 SLCK
'
<=WDD
WDT_MR
v WDRSTEN
-0
T\ wdt_fault
1_/ N (to Reset Controller)
y set

L D) e i
set reset

WDEF%FII r
read WDT_SR reset WDFIEN

or 3
reset WDT_MR

AImEl@ 147

11054A-ATARM-27-Jul-11

ATMEL

17.4 Functional Description

148

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

11054A-ATARM-27-Jul-11

SAM9X25

While the processor is in debug state or in idle mode, the counter may be stopped depending on

the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

Figure 17-2. Watchdog Behavior

Watchdog Error

Watchdog Underflow

if WDRSTEN is 1
FFF.
Normal behavior \ if WDRSTEN is 0
WDV \ <
Forbidden
Window -t
WDD Vad
Permitted \ \ \ \
0
Watchd WDT_CR =WDRSTT
o atchdog

Fault

11054A-ATARM-27-Jul-11

ATMEL

149

ATMEL

17.5 Watchdog Timer (WDT) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

150 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

17.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: OxFFFFFE40

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- T - T - -~ T - - — -]
15 14 13 12 11 10 9 8

- T - T - — T - - — T -]
7 4 2 1 0

- T - T - -~ T - - — T vorstT]

e WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the Watchdog.

e KEY: Password

Should be written at value OxA5. Writing any other value in this field aborts the write operation.

11054A-ATARM-27-Jul-11

ATMEL

151

17.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: OxFFFFFE44

Access: Read-write Once
31 30 29 28 27 26 25 24

| [WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

| WDDIS | wprPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

e WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

* WDFIEN: Watchdog Fault Interrupt Enable

0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

e WDRSTEN: Watchdog Reset Enable

0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

¢ WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

e WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

e WDDBGHLT: Watchdog Debug Halt
: The Watchdog runs when the processor is in debug state.

= O

: The Watchdog stops when the processor is in debug state.

WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.

1: The Watchdog stops when the system is in idle state.

WDDIS: Watchdog Disable

152 S A M 9X25 __|
11054A-ATARM-27-Jul-11

0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.

AImEl@ 153

11054A-ATARM-27-Jul-11

ATMEL

17.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: OxFFFFFE48

Access: Read-only
31 30 29 28 27 26 25 24

- T - T - - - — 1 - T -]
23 22 21 20 19 18 17 16

- T - T - - - — [- T -]
15 14 13 12 11 10 9 8

- T - T - - - — 1 - T -]
7 4 2 1 0

| - [- | - - - - [WDERR [WDUNF |

o

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

o

1: At least one Watchdog error occurred since the last read of WDT_SR.

154

WDERR: Watchdog Error
: No Watchdog error occurred since the last read of WDT_SR.

WDUNF: Watchdog Underflow
: No Watchdog underflow occurred since the last read of WDT_SR.

11054A-ATARM-27-Jul-11

18. Shutdown Controller (SHDWC)

18.1 Description

The Shutdown Controller controls the power supplies VDDIO and VDDCORE and the wake-up
detection on debounced input lines.

18.2 Embedded Characteristics
* Shutdown and Wake-up Logic
— Software Assertion of the SHDW Output Pin

— Programmable De-assertion from the WKUP Input Pins
* AMBA-compliant Interface

— Interfaces to the ARM Advanced Peripheral Bus

18.3 Block Diagram

Figure 18-1. Shutdown Controller Block Diagram

SLCK
Shutdown Controller l
SHDW_MR read SHDW_SR
CPTWKO resetl
WKMODEO | WAKEUPO| SHDW_SR
setT
WKUPO | I
read SHDW_SR
Wake-up
reset
RTTWKEN | SHDW_MR | RTTWK |SHDW7$R Shutdown SHDN
Output I |
RTT Alarm set T Controller
SHDW_CR
read SHDW_SR SHDW Shutdown
reset
RTCWKEN | SHDW_MR | RTCWK | SHDW_SR
RTC Alarm setT

AImEl@ 155

11054A-ATARM-27-Jul-11

ATMEL

Figure 18-2. Shutdown Controller Block Diagram

WKUPO | I

Shutdown Controller

SLCK

SHDW_MR

read SHDW_SR

reSetl
| WAKEUPO| SHDW_SR
setT

read SHDW_SR
Wake-up
reset l
SHDW_MR | RTCWK |SHDW73R Shutdown SHDN
Output
RTC Alarm set T Controller D
SHDW_CR
Shutdown
18.4 1/0 Lines Description
Table 18-1. I/O Lines Description
Name Description Type
WKUPO Wake-up 0 input Input
SHDN Shutdown output Output

18.5 Product Dependencies

18.5.1

Power Management

The Shutdown Controller is continuously clocked by Slow Clock. The Power Management Con-
troller has no effect on the behavior of the Shutdown Controller.

18.6 Functional Description

The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU
and manages wake-up input pins and one output pin, SHDN.

156

A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter pro-
viding the main power supplies of the system, and especially VDDCORE and/or VDDIO. The
wake-up inputs (WKUPOQ) connect to any push-buttons or signal that wake up the system.

The software is able to control the pin SHDN by writing the Shutdown Control Register
(SHDW_CR) with the bit SHDW at 1. The shutdown is taken into account only 2 slow clock
cycles after the write of SHDW_CR. This register is password-protected and so the value written

11054A-ATARM-27-Jul-11

11054A-ATARM-27-Jul-11

should contain the correct key for the command to be taken into account. As a result, the system
should be powered down.

A level change on WKUPO is used as wake-up. Wake-up is configured in the Shutdown Mode
Register (SHDW_MR). The transition detector can be programmed to detect either a positive or
negative transition or any level change on WKUPO. The detection can also be disabled. Pro-
gramming is performed by defining WKMODEDO.

Moreover, a debouncing circuit can be programmed for WKUPO. The debouncing circuit filters
pulses on WKUPO shorter than the programmed number of 16 SLCK cycles in CPTWKO of the
SHDW_MR register. If the programmed level change is detected on a pin, a counter starts.
When the counter reaches the value programmed in the corresponding field, CPTWKO, the
SHDN pin is released. If a new input change is detected before the counter reaches the corre-
sponding value, the counter is stopped and cleared. WAKEUPO of the Status Register
(SHDW_SR) reports the detection of the programmed events on WKUPO with a reset after the
read of SHDW_SR.

The Shutdown Controller can be programmed so as to activate the wake-up using the RTC
alarm (the detection of the rising edge of the RTC alarm is synchronized with SLCK). This is
done by writing the SHDW_MR register using the RTCWKEN field. When enabled, the detection
of the RTC alarm is reported in the RTCWK bit of the SHDW_SR Status register. It is reset after
the read of SHDW_SR. When using the RTC alarm to wake up the system, the user must
ensure that the RTC alarm status flag is cleared before shutting down the system.Otherwise, no
rising edge of the status flag may be detected and the wake-up fails fail.

AImEl@ 157

AIMEL
18.7 Shutdown Controller (SHDWC) User Interface

Table 18-2. Register Mapping

Offset Register Name Access Reset
0x00 Shutdown Control Register SHDW_CR Write-only -

0x04 Shutdown Mode Register SHDW_MR Read-write 0x0000_0003
0x08 Shutdown Status Register SHDW_SR Read-only 0x0000_0000

158 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

18.7.1 Shutdown Control Register

Name: SHDW_CR

Address: OxFFFFFE10

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I R — T - - — 1 -]
15 14 13 12 11 10 9 8

- 1T - T = — T - - — T -]
7 4 2 1 0

I - I - I - - I - - - | sHow |

e SHDW: Shutdown Command

0 = No effect.

1 = If KEY is correct, asserts the SHDN pin.

e KEY: Password

Should be written at value OxA5. Writing any other value in this field aborts the write operation.

11054A-ATARM-27-Jul-11

ATMEL

159

18.7.2 Shutdown Mode Register
Name: SHDW_MR

Address: OxFFFFFE14

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - | RTCWKEN | - |
15 14 13 12 11 10 9 8

I - I - I - I - |
7 6 5 4 3 2 1 0

| CPTWKO | - | - | WKMODEO |

¢ WKMODEOQ: Wake-up Mode 0

WKMODE([1:0] Wake-up Input Transition Selection
0 0 None. No detection is performed on the wake-up input
0 1 Low to high level
1 0 High to low level
1 1 Both levels change

e CPTWKO: Counter on Wake-up 0

Defines the number of 16 Slow Clock cycles, the level detection on the corresponding input pin shall last before the wake-
up event occurs. Because of the internal synchronization of WKUPO, the SHDN pin is released

(CPTWK x 16 + 1) Slow Clock cycles after the event on WKUP.

¢ RTCWKEN: Real-time Clock Wake-up Enable
0 = The RTC Alarm signal has no effect on the Shutdown Controller.

1 = The RTC Alarm signal forces the de-assertion of the SHDN pin.

160 S A M 9X25 __|
11054A-ATARM-27-Jul-11

18.7.3 Shutdown Status Register
Name: SHDW_SR

Address: OxFFFFFE18

Access: Read-only
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - | RTOWK | - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | WAKEUPO |

e WAKEUPO: Wake-up 0 Status
0 = No wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.

1 = At least one wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.
e RTCWK: Real-time Clock Wake-up
0 = No wake-up alarm from the RTC occurred since the last read of SHDW_SR.

1 = At least one wake-up alarm from the RTC occurred since the last read of SHDW_SR.

161 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

ATMEL

162 S A M 9X25 __|
11054A-ATARM-27-Jul-11

19. General Purpose Backup Registers (GPBR)

19.1 Description
The System Controller embeds Four general-purpose backup registers.

19.2 Embedded Characteristics
¢ Four 32-bit General Purpose Backup Registers

19.3 General Purpose Backup Registers (GPBR) User Interface

Table 19-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read-write -
Oxc General Purpose Backup Register 3 SYS_GPBRS3 Read-write -

AImEl@ 163

11054A-ATARM-27-Jul-11

ATMEL

19.3.1 General Purpose Backup Register x
Name: SYS_GPBRXx

Address: OxFFFFFEG60 [0], OXFFFFFE®64 [1], OXFFFFFE68 [2], OXFFFFFEGC [3]

Access: Read-write
31 30 29 28 27 26 25 24

| GPBR_VALUEX |
23 22 21 20 19 18 17 16

| GPBR_VALUEx |
15 14 13 12 11 10 9 8

| GPBR_VALUEX |
7 6 5 4 3 2 1 0

| GPBR_VALUEx |

* GPBR_VALUEX: Value of GPBR x

164 S /A V10 X 2 5 s —

11054A-ATARM-27-Jul-11

20. Slow Clock Controller (SCKC)

20.1 Description
The System Controller embeds a Slow Clock Controller.

The slow clock can be generated either by an external 32,768 Hz crystal oscillator or by the on-
chip 32 kHz RC oscillator. The 32,768 Hz crystal oscillator can be bypassed by setting the bit
OSC32BYP to accept an external slow clock on XIN32.

The internal 32 kHz RC oscillator and the 32,768 Hz oscillator can be enabled by setting to 1,
respectively, RCEN bit and OSC32EN bit in the System Controller user interface. The OSCSEL
command selects the slow clock source.

20.2 Embedded Characteristics
¢ 32 kHz RC Oscillator or 32,768 Hz Crystal Oscillator Selector
e VDDBU Powered

20.3 Block Diagram

Figure 20-1. Block Diagram

RCEN
On Chip
RC OSC
Slow Clock
—1—>» SLCK
XIN32 | I Slow Clock
Oscillator
xoutsz [_] L OSCSEL
| OSC32EN
OSC32BYP

RCEN, OSC32EN, OSCSEL and OSC32BYP bits are located in the Slow Clock Control Register
(SCKCR) located at address OxFFFFFES50 in the backed up part of the System Controller and so
are preserved while VDDBU is present.

After a VDDBU power on reset, the default configuration is RCEN =1, OSC32EN = 0 and
OSCSEL = 0, allowing the system to start on the internal 32 kHz RC oscillator.

The programmer controls the slow clock switching by software and so must take precautions
during the switching phase.

20.3.1 Switch from Internal 32 kHz RC Oscillator to 32,768 Hz Crystal Oscillator
To switch from the internal 32 kHz RC oscillator to the 32,768 Hz crystal oscillator, the program-
mer must execute the following sequence:

* Switch the master clock to a source different from slow clock (PLL or Main Oscillator) through
the Power Management Controller.

e Enable the 32,768 Hz oscillator by setting the bit OSC32EN to 1.

AImEl@ 165

11054A-ATARM-27-Jul-11

ATMEL

* Wait 32,768 Hz Startup Time for clock stabilization (software loop).

» Switch from internal 32 kHz RC oscillator to 32,768 Hz oscillator by setting the bit OSCSEL
to 1.

* Wait 5 slow clock cycles for internal resynchronization.
* Disable the 32 kHz RC oscillator by setting the bit RCEN to 0.

20.3.2 Bypass the 32,768 Hz Oscillator
The following steps must be added to bypass the 32,768 Hz oscillator:
* An external clock must be connected on XIN32.
* Enable the bypass path OSC32BYP bit set to 1.
¢ Disable the 32,768 Hz oscillator by setting the bit OSC32EN to 0.

20.3.3 Switch from 32,768 Hz Crystal Oscillator to Internal 32 kHz RC Oscillator
The same procedure must be followed to switch from the 32,768 Hz crystal oscillator to the inter-

nal 32 kHz RC oscillator:
* Switch the master clock to a source different from slow clock (PLL or Main Oscillator).
* Enable the internal 32 kHz RC oscillator for low power by setting the bit RCEN to 1
» Wait internal 32 kHz RC Startup Time for clock stabilization (software loop).
» Switch from 32,768 Hz oscillator to internal RC by setting the bit OSCSEL to 0.
¢ Wait 5 slow clock cycles for internal resynchronization.
¢ Disable the 32,768 Hz oscillator by setting the bit OSC32EN to 0.

166 S A M 9X25 __|
11054A-ATARM-27-Jul-11

20.4 Slow Clock Configuration (SCKC) User Interface

Table 20-1. Register Mapping

Offset Register Name A