
LM3S5747 Microcontroller
DATA SHEET

Copyr ight © 2007-2008 Luminary Micro, Inc.DS-LM3S5747-2972

PRELIMINARY

Legal Disclaimers and Trademark Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTIONWITH LUMINARYMICRO PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO
LIABILITYWHATSOEVER,ANDLUMINARYMICRODISCLAIMSANYEXPRESSOR IMPLIEDWARRANTY, RELATINGTOSALEAND/OR
USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

LuminaryMicro may make changes to specifications and product descriptions at any time, without notice. Contact your local LuminaryMicro sales office
or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007-2008 Luminary Micro, Inc. All rights reserved. Stellaris, Luminary Micro, and the Luminary Micro logo are registered trademarks of
Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark
of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com

June 02, 20082
Preliminary

Table of Contents
About This Document .. 24
Audience .. 24
About This Manual .. 24
Related Documents ... 24
Documentation Conventions .. 24

1 Architectural Overview .. 27
1.1 Product Features .. 27
1.2 Target Applications .. 34
1.3 High-Level Block Diagram ... 34
1.4 Functional Overview .. 35
1.4.1 ARM Cortex™-M3 ... 36
1.4.2 Motor Control Peripherals .. 37
1.4.3 Analog Peripherals .. 37
1.4.4 Serial Communications Peripherals .. 37
1.4.5 System Peripherals ... 39
1.4.6 Memory Peripherals .. 40
1.4.7 Additional Features ... 41
1.4.8 Hardware Details .. 41

2 ARM Cortex-M3 Processor Core .. 43
2.1 Block Diagram .. 44
2.2 Functional Description ... 44
2.2.1 Serial Wire and JTAG Debug ... 45
2.2.2 Embedded Trace Macrocell (ETM) ... 45
2.2.3 Trace Port Interface Unit (TPIU) ... 45
2.2.4 ROM Table ... 45
2.2.5 Memory Protection Unit (MPU) ... 45
2.2.6 Nested Vectored Interrupt Controller (NVIC) .. 46

3 Memory Map ... 49
4 Interrupts .. 52
5 JTAG Interface .. 55
5.1 Block Diagram .. 56
5.2 Functional Description ... 56
5.2.1 JTAG Interface Pins .. 57
5.2.2 JTAG TAP Controller ... 58
5.2.3 Shift Registers .. 59
5.2.4 Operational Considerations .. 59
5.3 Initialization and Configuration ... 62
5.4 Register Descriptions .. 62
5.4.1 Instruction Register (IR) ... 62
5.4.2 Data Registers .. 64

6 System Control ... 67
6.1 Functional Description ... 67
6.1.1 Device Identification .. 67
6.1.2 Reset Control .. 67

3June 02, 2008
Preliminary

LM3S5747 Microcontroller

6.1.3 Non-Maskable Interrupt ... 70
6.1.4 Power Control ... 70
6.1.5 Clock Control .. 70
6.1.6 System Control ... 74
6.2 Initialization and Configuration ... 75
6.3 Register Map .. 76
6.4 Register Descriptions .. 77

7 Hibernation Module .. 131
7.1 Block Diagram .. 132
7.2 Functional Description ... 132
7.2.1 Register Access Timing ... 132
7.2.2 Clock Source .. 133
7.2.3 Battery Management ... 135
7.2.4 Real-Time Clock .. 136
7.2.5 Non-Volatile Memory ... 136
7.2.6 Power Control ... 136
7.2.7 Interrupts and Status ... 137
7.3 Initialization and Configuration ... 137
7.3.1 Initialization ... 137
7.3.2 RTC Match Functionality (No Hibernation) .. 138
7.3.3 RTC Match/Wake-Up from Hibernation ... 138
7.3.4 External Wake-Up from Hibernation .. 138
7.3.5 RTC/External Wake-Up from Hibernation .. 138
7.3.6 Register Reset .. 138
7.4 Register Map .. 139
7.5 Register Descriptions .. 140

8 Internal Memory ... 154
8.1 Block Diagram .. 154
8.2 Functional Description ... 154
8.2.1 SRAM Memory .. 154
8.2.2 ROM Memory ... 155
8.2.3 Flash Memory ... 155
8.3 Flash Memory Initialization and Configuration ... 156
8.3.1 Flash Programming ... 156
8.3.2 Nonvolatile Register Programming ... 157
8.4 Register Map .. 158
8.5 ROM Register Descriptions (System Control Offset) .. 159
8.6 Flash Register Descriptions (Flash Control Offset) ... 160
8.7 Flash Register Descriptions (System Control Offset) .. 167

9 Micro Direct Memory Access (μDMA) .. 183
9.1 Block Diagram .. 184
9.2 Functional Description ... 184
9.2.1 Channel Assigments .. 185
9.2.2 Priority .. 185
9.2.3 Arbitration Size .. 185
9.2.4 Request Types .. 186
9.2.5 Channel Configuration ... 186
9.2.6 Transfer Modes ... 188

June 02, 20084
Preliminary

Table of Contents

9.2.7 Transfer Size and Increment .. 196
9.2.8 Peripheral Interface ... 196
9.2.9 Software Request .. 196
9.2.10 Interrupts and Errors .. 197
9.3 Initialization and Configuration ... 197
9.3.1 Module Initialization ... 197
9.3.2 Configuring a Memory-to-Memory Transfer ... 197
9.3.3 Configuring a Peripheral for Simple Transmit .. 199
9.3.4 Configuring a Peripheral for Ping-Pong Receive .. 200
9.4 Register Map .. 203
9.5 μDMA Channel Control Structure ... 204
9.6 μDMA Register Descriptions .. 210

10 General-Purpose Input/Outputs (GPIOs) ... 244
10.1 Functional Description ... 244
10.1.1 Data Control ... 246
10.1.2 Interrupt Control .. 247
10.1.3 Mode Control .. 248
10.1.4 Commit Control ... 248
10.1.5 Pad Control ... 248
10.1.6 Identification ... 249
10.2 Initialization and Configuration ... 249
10.3 Register Map .. 250
10.4 Register Descriptions .. 252

11 General-Purpose Timers ... 291
11.1 Block Diagram .. 291
11.2 Functional Description ... 292
11.2.1 GPTM Reset Conditions .. 292
11.2.2 32-Bit Timer Operating Modes .. 293
11.2.3 16-Bit Timer Operating Modes .. 294
11.3 Initialization and Configuration ... 298
11.3.1 32-Bit One-Shot/Periodic Timer Mode ... 298
11.3.2 32-Bit Real-Time Clock (RTC) Mode ... 299
11.3.3 16-Bit One-Shot/Periodic Timer Mode ... 299
11.3.4 16-Bit Input Edge Count Mode ... 300
11.3.5 16-Bit Input Edge Timing Mode .. 300
11.3.6 16-Bit PWM Mode ... 301
11.4 Register Map .. 301
11.5 Register Descriptions .. 302

12 Watchdog Timer ... 325
12.1 Block Diagram .. 325
12.2 Functional Description ... 325
12.3 Initialization and Configuration ... 326
12.4 Register Map .. 326
12.5 Register Descriptions .. 327

13 Analog-to-Digital Converter (ADC) ... 348
13.1 Block Diagram .. 349
13.2 Functional Description ... 349

5June 02, 2008
Preliminary

LM3S5747 Microcontroller

13.2.1 Sample Sequencers .. 349
13.2.2 Module Control .. 350
13.2.3 Hardware Sample Averaging Circuit ... 351
13.2.4 Analog-to-Digital Converter .. 351
13.2.5 Differential Sampling ... 351
13.2.6 Internal Temperature Sensor .. 353
13.3 Initialization and Configuration ... 353
13.3.1 Module Initialization ... 354
13.3.2 Sample Sequencer Configuration ... 354
13.4 Register Map .. 354
13.5 Register Descriptions .. 355

14 Universal Asynchronous Receivers/Transmitters (UARTs) ... 380
14.1 Block Diagram .. 381
14.2 Functional Description ... 381
14.2.1 Transmit/Receive Logic ... 381
14.2.2 Baud-Rate Generation ... 382
14.2.3 Data Transmission .. 382
14.2.4 Serial IR (SIR) ... 383
14.2.5 FIFO Operation ... 384
14.2.6 Interrupts .. 384
14.2.7 Loopback Operation .. 385
14.2.8 DMA Operation ... 385
14.2.9 IrDA SIR block .. 386
14.3 Initialization and Configuration ... 386
14.4 Register Map .. 387
14.5 Register Descriptions .. 388

15 Synchronous Serial Interface (SSI) .. 423
15.1 Block Diagram .. 423
15.2 Functional Description ... 424
15.2.1 Bit Rate Generation ... 424
15.2.2 FIFO Operation ... 424
15.2.3 Interrupts .. 424
15.2.4 Frame Formats ... 425
15.2.5 DMA Operation ... 432
15.3 Initialization and Configuration ... 433
15.4 Register Map .. 434
15.5 Register Descriptions .. 435

16 Inter-Integrated Circuit (I2C) Interface .. 462
16.1 Block Diagram .. 462
16.2 Functional Description ... 462
16.2.1 I2C Bus Functional Overview .. 463
16.2.2 Available Speed Modes ... 465
16.2.3 Interrupts .. 466
16.2.4 Loopback Operation .. 467
16.2.5 Command Sequence Flow Charts .. 467
16.3 Initialization and Configuration ... 473
16.4 I2C Register Map ... 474

June 02, 20086
Preliminary

Table of Contents

16.5 Register Descriptions (I2C Master) ... 475
16.6 Register Descriptions (I2C Slave) ... 488

17 Controller Area Network (CAN) Module ... 497
17.1 Controller Area Network Overview .. 497
17.2 Controller Area Network Features .. 497
17.3 Controller Area Network Block Diagram .. 498
17.4 Controller Area Network Functional Description ... 498
17.4.1 Initialization ... 499
17.4.2 Operation ... 499
17.4.3 Transmitting Message Objects ... 500
17.4.4 Configuring a Transmit Message Object .. 500
17.4.5 Updating a Transmit Message Object ... 501
17.4.6 Accepting Received Message Objects .. 501
17.4.7 Receiving a Data Frame .. 501
17.4.8 Receiving a Remote Frame .. 501
17.4.9 Receive/Transmit Priority ... 502
17.4.10 Configuring a Receive Message Object .. 502
17.4.11 Handling of Received Message Objects .. 503
17.4.12 Handling of Interrupts .. 503
17.4.13 Bit Timing Configuration Error Considerations ... 504
17.4.14 Bit Time and Bit Rate ... 504
17.4.15 Calculating the Bit Timing Parameters .. 506
17.5 Controller Area Network Register Map .. 508
17.6 Register Descriptions .. 509

18 Univeral Serial Bus (USB) Controller ... 538
18.1 Block Diagram .. 538
18.2 Functional Description ... 539
18.2.1 Operation as a Device ... 539
18.2.2 Operation as a Host .. 544
18.3 Initialization and Configuration ... 548
18.3.1 Pin Configuration ... 548
18.3.2 Endpoint Configuration .. 548
18.4 Register Map .. 549
18.5 Register Descriptions .. 552

19 Pulse Width Modulator (PWM) .. 626
19.1 Block Diagram .. 626
19.2 Functional Description ... 627
19.2.1 PWM Timer ... 627
19.2.2 PWM Comparators .. 627
19.2.3 PWM Signal Generator .. 628
19.2.4 Dead-Band Generator ... 629
19.2.5 Interrupt/ADC-Trigger Selector ... 630
19.2.6 Synchronization Methods ... 630
19.2.7 Fault Conditions .. 631
19.2.8 Output Control Block ... 631
19.3 Initialization and Configuration ... 631
19.4 Register Map .. 632
19.5 Register Descriptions .. 634

7June 02, 2008
Preliminary

LM3S5747 Microcontroller

20 Pin Diagram .. 665
21 Signal Tables .. 666
22 Operating Characteristics ... 679
23 Electrical Characteristics .. 680
23.1 DC Characteristics .. 680
23.1.1 Maximum Ratings ... 680
23.1.2 Recommended DC Operating Conditions .. 680
23.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics .. 681
23.1.4 Power Specifications ... 681
23.1.5 Flash Memory Characteristics .. 683
23.1.6 Hibernation ... 683
23.1.7 USB ... 683
23.2 AC Characteristics ... 683
23.2.1 Load Conditions .. 683
23.2.2 Clocks .. 684
23.2.3 Analog-to-Digital Converter .. 685
23.2.4 I2C ... 685
23.2.5 Hibernation Module ... 686
23.2.6 Synchronous Serial Interface (SSI) ... 687
23.2.7 JTAG and Boundary Scan .. 688
23.2.8 General-Purpose I/O ... 689
23.2.9 Reset ... 690
23.2.10 USB ... 691

24 Package Information .. 692
A Boot Loader .. 694
A.1 Boot Loader .. 694
A.2 Interfaces ... 694
A.2.1 UART ... 694
A.2.2 SSI ... 694
A.2.3 I2C ... 695
A.3 Packet Handling .. 695
A.3.1 Packet Format .. 695
A.3.2 Sending Packets ... 695
A.3.3 Receiving Packets ... 696
A.4 Commands ... 696
A.4.1 COMMAND_PING (0X20) .. 696
A.4.2 COMMAND_GET_STATUS (0x23) ... 696
A.4.3 COMMAND_DOWNLOAD (0x21) ... 696
A.4.4 COMMAND_SEND_DATA (0x24) ... 697
A.4.5 COMMAND_RUN (0x22) ... 697
A.4.6 COMMAND_RESET (0x25) ... 698

B ROM DriverLib Functions .. 699
B.1 DriverLib Functions Included in the Integrated ROM .. 699

C Register Quick Reference ... 712
D Ordering and Contact Information ... 739
D.1 Ordering Information .. 739

June 02, 20088
Preliminary

Table of Contents

D.2 Kits ... 739
D.3 Company Information .. 739
D.4 Support Information ... 740

9June 02, 2008
Preliminary

LM3S5747 Microcontroller

List of Figures
Figure 1-1. Stellaris® 5000 Series High-Level Block Diagram ... 35
Figure 2-1. CPU Block Diagram ... 44
Figure 2-2. TPIU Block Diagram .. 45
Figure 5-1. JTAG Module Block Diagram .. 56
Figure 5-2. Test Access Port State Machine ... 59
Figure 5-3. IDCODE Register Format ... 64
Figure 5-4. BYPASS Register Format .. 65
Figure 5-5. Boundary Scan Register Format ... 65
Figure 6-1. External Circuitry to Extend Reset .. 68
Figure 6-2. Main Clock Tree .. 72
Figure 7-1. Hibernation Module Block Diagram ... 132
Figure 7-2. Clock Source Using Crystal .. 134
Figure 7-3. Clock Source Using Dedicated Oscillator ... 135
Figure 8-1. Flash Block Diagram .. 154
Figure 9-1. μDMA Block Diagram ... 184
Figure 9-2. Example of Ping-Pong DMA Transaction ... 189
Figure 9-3. Memory Scatter-Gather, Setup and Configuration .. 191
Figure 9-4. Memory Scatter-Gather, μDMA Copy Sequence .. 192
Figure 9-5. Peripheral Scatter-Gather, Setup and Configuration ... 194
Figure 9-6. Peripheral Scatter-Gather, μDMA Copy Sequence ... 195
Figure 10-1. Digital I/O Pads ... 245
Figure 10-2. Analog/Digital I/O Pads .. 246
Figure 10-3. GPIODATA Write Example ... 247
Figure 10-4. GPIODATA Read Example ... 247
Figure 11-1. GPTM Module Block Diagram .. 292
Figure 11-2. 16-Bit Input Edge Count Mode Example .. 296
Figure 11-3. 16-Bit Input Edge Time Mode Example ... 297
Figure 11-4. 16-Bit PWM Mode Example .. 298
Figure 12-1. WDT Module Block Diagram .. 325
Figure 13-1. ADC Module Block Diagram ... 349
Figure 13-2. Differential Sampling Range, VIN_ODD = 1.5 V .. 352
Figure 13-3. Differential Sampling Range, VIN_ODD = 0.75 V .. 352
Figure 13-4. Differential Sampling Range, VIN_ODD = 2.25 V .. 353
Figure 13-5. Internal Temperature Sensor Characteristic ... 353
Figure 14-1. UART Module Block Diagram ... 381
Figure 14-2. UART Character Frame ... 382
Figure 14-3. IrDA Data Modulation ... 384
Figure 15-1. SSI Module Block Diagram ... 423
Figure 15-2. TI Synchronous Serial Frame Format (Single Transfer) .. 426
Figure 15-3. TI Synchronous Serial Frame Format (Continuous Transfer) .. 426
Figure 15-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0 427
Figure 15-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0 427
Figure 15-6. Freescale SPI Frame Format with SPO=0 and SPH=1 ... 428
Figure 15-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 429
Figure 15-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 429

June 02, 200810
Preliminary

Table of Contents

Figure 15-9. Freescale SPI Frame Format with SPO=1 and SPH=1 ... 430
Figure 15-10. MICROWIRE Frame Format (Single Frame) .. 431
Figure 15-11. MICROWIRE Frame Format (Continuous Transfer) ... 432
Figure 15-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements 432
Figure 16-1. I2C Block Diagram ... 462
Figure 16-2. I2C Bus Configuration .. 463
Figure 16-3. START and STOP Conditions ... 463
Figure 16-4. Complete Data Transfer with a 7-Bit Address ... 464
Figure 16-5. R/S Bit in First Byte .. 464
Figure 16-6. Data Validity During Bit Transfer on the I2C Bus ... 464
Figure 16-7. Master Single SEND .. 467
Figure 16-8. Master Single RECEIVE ... 468
Figure 16-9. Master Burst SEND ... 469
Figure 16-10. Master Burst RECEIVE .. 470
Figure 16-11. Master Burst RECEIVE after Burst SEND .. 471
Figure 16-12. Master Burst SEND after Burst RECEIVE .. 472
Figure 16-13. Slave Command Sequence .. 473
Figure 17-1. CAN Module Block Diagram ... 498
Figure 17-2. CAN Bit Time .. 505
Figure 18-1. USB Module Block Diagram ... 538
Figure 19-1. PWM Unit Diagram .. 626
Figure 19-2. PWM Module Block Diagram .. 627
Figure 19-3. PWM Count-Down Mode .. 628
Figure 19-4. PWM Count-Up/Down Mode .. 628
Figure 19-5. PWM Generation Example In Count-Up/Down Mode ... 629
Figure 19-6. PWM Dead-Band Generator ... 629
Figure 20-1. 100-Pin LQFP Package Pin Diagram .. 665
Figure 23-1. Load Conditions .. 683
Figure 23-2. I2C Timing ... 686
Figure 23-3. Hibernation Module Timing ... 686
Figure 23-4. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement 687
Figure 23-5. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer 687
Figure 23-6. SSI Timing for SPI Frame Format (FRF=00), with SPH=1 ... 688
Figure 23-7. JTAG Test Clock Input Timing ... 689
Figure 23-8. JTAG Test Access Port (TAP) Timing .. 689
Figure 23-9. External Reset Timing (RST) .. 690
Figure 23-10. Power-On Reset Timing ... 690
Figure 23-11. Brown-Out Reset Timing .. 691
Figure 23-12. Software Reset Timing ... 691
Figure 23-13. Watchdog Reset Timing ... 691
Figure 24-1. 100-Pin LQFP Package .. 692

11June 02, 2008
Preliminary

LM3S5747 Microcontroller

List of Tables
Table 1. Documentation Conventions .. 24
Table 3-1. Memory Map ... 49
Table 4-1. Exception Types .. 52
Table 4-2. Interrupts .. 53
Table 5-1. JTAG Port Pins Reset State ... 57
Table 5-2. JTAG Instruction Register Commands ... 62
Table 6-1. System Control Register Map ... 76
Table 7-1. Hibernation Module Register Map ... 139
Table 8-1. Flash Protection Policy Combinations ... 156
Table 8-2. Flash Resident Registers ... 157
Table 8-3. Flash Register Map .. 158
Table 9-1. DMA Channel Assignments .. 185
Table 9-2. Request Type Support ... 186
Table 9-3. Control Structure Memory Map ... 187
Table 9-4. Channel Control Structure .. 187
Table 9-5. μDMA Read Example: 8-Bit Peripheral .. 196
Table 9-6. μDMA Interrupt Assignments .. 197
Table 9-7. Channel Control Structure Offsets for Channel 30 .. 198
Table 9-8. Channel Control Word Configuration for Memory Transfer Example 198
Table 9-9. Channel Control Structure Offsets for Channel 7 .. 199
Table 9-10. Channel Control Word Configuration for Peripheral Transmit Example 200
Table 9-11. Primary and Alternate Channel Control Structure Offsets for Channel 8 201
Table 9-12. Channel Control Word Configuration for Peripheral Ping-Pong Receive Example 202
Table 9-13. μDMA Register Map .. 203
Table 10-1. GPIO Pad Configuration Examples ... 249
Table 10-2. GPIO Interrupt Configuration Example .. 250
Table 10-3. GPIO Register Map ... 251
Table 11-1. Available CCP Pins .. 292
Table 11-2. 16-Bit Timer With Prescaler Configurations ... 295
Table 11-3. Timers Register Map .. 301
Table 12-1. Watchdog Timer Register Map .. 326
Table 13-1. Samples and FIFO Depth of Sequencers .. 349
Table 13-2. Differential Sampling Pairs ... 351
Table 13-3. ADC Register Map ... 354
Table 14-1. UART Register Map ... 387
Table 15-1. SSI Register Map .. 434
Table 16-1. Examples of I2C Master Timer Period versus Speed Mode ... 465
Table 16-2. Inter-Integrated Circuit (I2C) Interface Register Map ... 474
Table 16-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3) .. 479
Table 17-1. Transmit Message Object Bit Settings ... 500
Table 17-2. Receive Message Object Bit Settings .. 502
Table 17-3. CAN Protocol Ranges .. 505
Table 17-4. CAN Register Map ... 508
Table 18-1. Univeral Serial Bus (USB) Controller Register Map .. 549
Table 19-1. PWM Register Map .. 632
Table 21-1. Signals by Pin Number ... 666

June 02, 200812
Preliminary

Table of Contents

Table 21-2. Signals by Signal Name ... 670
Table 21-3. Signals by Function, Except for GPIO ... 674
Table 21-4. GPIO Pins and Alternate Functions ... 676
Table 22-1. Temperature Characteristics ... 679
Table 22-2. Thermal Characteristics ... 679
Table 23-1. Maximum Ratings .. 680
Table 23-2. Recommended DC Operating Conditions .. 680
Table 23-3. LDO Regulator Characteristics ... 681
Table 23-4. Detailed Power Specifications .. 682
Table 23-5. Flash Memory Characteristics .. 683
Table 23-6. Hibernation Module DC Characteristics ... 683
Table 23-7. USB Controller DC Electricals .. 683
Table 23-8. Phase Locked Loop (PLL) Characteristics ... 684
Table 23-9. Clock Characteristics ... 684
Table 23-10. Crystal Characteristics ... 684
Table 23-11. ADC Characteristics ... 685
Table 23-12. I2C Characteristics ... 685
Table 23-13. Hibernation Module AC Characteristics ... 686
Table 23-14. SSI Characteristics .. 687
Table 23-15. JTAG Characteristics ... 688
Table 23-16. GPIO Characteristics ... 689
Table 23-17. Reset Characteristics ... 690
Table D-1. Part Ordering Information ... 739

13June 02, 2008
Preliminary

LM3S5747 Microcontroller

List of Registers
System Control .. 67
Register 1: Device Identification 0 (DID0), offset 0x000 ... 78
Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030 .. 80
Register 3: LDO Power Control (LDOPCTL), offset 0x034 ... 81
Register 4: Raw Interrupt Status (RIS), offset 0x050 ... 82
Register 5: Interrupt Mask Control (IMC), offset 0x054 .. 83
Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058 .. 84
Register 7: Reset Cause (RESC), offset 0x05C .. 85
Register 8: Run-Mode Clock Configuration (RCC), offset 0x060 .. 86
Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064 .. 91
Register 10: GPIO High Speed Control (GPIOHSCTL), offset 0x06C ... 92
Register 11: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 .. 94
Register 12: Main Oscillator Control (MOSCCTL), offset 0x07C ... 96
Register 13: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 .. 97
Register 14: Device Identification 1 (DID1), offset 0x004 ... 98
Register 15: Device Capabilities 0 (DC0), offset 0x008 .. 100
Register 16: Device Capabilities 1 (DC1), offset 0x010 .. 101
Register 17: Device Capabilities 2 (DC2), offset 0x014 .. 103
Register 18: Device Capabilities 3 (DC3), offset 0x018 .. 104
Register 19: Device Capabilities 4 (DC4), offset 0x01C ... 106
Register 20: Device Capabilities 5 (DC5), offset 0x020 .. 107
Register 21: Device Capabilities 6 (DC6), offset 0x024 .. 108
Register 22: Device Capabilities 7 (DC7), offset 0x028 .. 109
Register 23: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 110
Register 24: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110 112
Register 25: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 114
Register 26: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 116
Register 27: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 118
Register 28: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 120
Register 29: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 122
Register 30: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 124
Register 31: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 126
Register 32: Software Reset Control 0 (SRCR0), offset 0x040 ... 128
Register 33: Software Reset Control 1 (SRCR1), offset 0x044 ... 129
Register 34: Software Reset Control 2 (SRCR2), offset 0x048 ... 130

Hibernation Module ... 131
Register 1: Hibernation RTC Counter (HIBRTCC), offset 0x000 ... 141
Register 2: Hibernation RTC Match 0 (HIBRTCM0), offset 0x004 ... 142
Register 3: Hibernation RTC Match 1 (HIBRTCM1), offset 0x008 ... 143
Register 4: Hibernation RTC Load (HIBRTCLD), offset 0x00C ... 144
Register 5: Hibernation Control (HIBCTL), offset 0x010 ... 145
Register 6: Hibernation Interrupt Mask (HIBIM), offset 0x014 ... 148
Register 7: Hibernation Raw Interrupt Status (HIBRIS), offset 0x018 .. 149
Register 8: Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C .. 150
Register 9: Hibernation Interrupt Clear (HIBIC), offset 0x020 ... 151

June 02, 200814
Preliminary

Table of Contents

Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024 ... 152
Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C .. 153

Internal Memory ... 154
Register 1: ROM Control (RMCTL), offset 0x0F0 .. 160
Register 2: Flash Memory Address (FMA), offset 0x000 .. 161
Register 3: Flash Memory Data (FMD), offset 0x004 ... 162
Register 4: Flash Memory Control (FMC), offset 0x008 ... 163
Register 5: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C .. 165
Register 6: Flash Controller Interrupt Mask (FCIM), offset 0x010 .. 166
Register 7: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 167
Register 8: USec Reload (USECRL), offset 0x140 .. 168
Register 9: ROM Version Register (RMVER), offset 0x0F4 .. 169
Register 10: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200 170
Register 11: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400 171
Register 12: User Debug (USER_DBG), offset 0x1D0 ... 172
Register 13: User Register 0 (USER_REG0), offset 0x1E0 .. 173
Register 14: User Register 1 (USER_REG1), offset 0x1E4 .. 174
Register 15: User Register 2 (USER_REG2), offset 0x1E8 .. 175
Register 16: User Register 3 (USER_REG3), offset 0x1EC ... 176
Register 17: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204 177
Register 18: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208 178
Register 19: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C 179
Register 20: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404 180
Register 21: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408 181
Register 22: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C 182

Micro Direct Memory Access (μDMA) .. 183
Register 1: DMA Channel Source Address End Pointer (DMASRCENDP), offset 0x000 205
Register 2: DMA Channel Destination Address End Pointer (DMADSTENDP), offset 0x004 206
Register 3: DMA Channel Control Word (DMACHCTL), offset 0x008 .. 207
Register 4: DMA Status (DMASTAT), offset 0x000 .. 211
Register 5: DMA Configuration (DMACFG), offset 0x004 ... 213
Register 6: DMA Channel Control Base Pointer (DMACTLBASE), offset 0x008 214
Register 7: DMA Alternate Channel Control Base Pointer (DMAALTBASE), offset 0x00C 215
Register 8: DMA Channel Wait on Request Status (DMAWAITSTAT), offset 0x010 216
Register 9: DMA Channel Software Request (DMASWREQ), offset 0x014 ... 217
Register 10: DMA Channel Useburst Set (DMAUSEBURSTSET), offset 0x018 218
Register 11: DMA Channel Useburst Clear (DMAUSEBURSTCLR), offset 0x01C 220
Register 12: DMA Channel Request Mask Set (DMAREQMASKSET), offset 0x020 221
Register 13: DMA Channel Request Mask Clear (DMAREQMASKCLR), offset 0x024 223
Register 14: DMA Channel Enable Set (DMAENASET), offset 0x028 ... 224
Register 15: DMA Channel Enable Clear (DMAENACLR), offset 0x02C ... 226
Register 16: DMA Channel Primary Alternate Set (DMAALTSET), offset 0x030 227
Register 17: DMA Channel Primary Alternate Clear (DMAALTCLR), offset 0x034 229
Register 18: DMA Channel Priority Set (DMAPRIOSET), offset 0x038 ... 230
Register 19: DMA Channel Priority Clear (DMAPRIOCLR), offset 0x03C .. 232
Register 20: DMA Bus Error Clear (DMAERRCLR), offset 0x04C .. 233
Register 21: DMA Peripheral Identification 0 (DMAPeriphID0), offset 0xFE0 ... 235
Register 22: DMA Peripheral Identification 1 (DMAPeriphID1), offset 0xFE4 ... 236

15June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 23: DMA Peripheral Identification 2 (DMAPeriphID2), offset 0xFE8 ... 237
Register 24: DMA Peripheral Identification 3 (DMAPeriphID3), offset 0xFEC .. 238
Register 25: DMA Peripheral Identification 4 (DMAPeriphID4), offset 0xFD0 ... 239
Register 26: DMA PrimeCell Identification 0 (DMAPCellID0), offset 0xFF0 ... 240
Register 27: DMA PrimeCell Identification 1 (DMAPCellID1), offset 0xFF4 ... 241
Register 28: DMA PrimeCell Identification 2 (DMAPCellID2), offset 0xFF8 ... 242
Register 29: DMA PrimeCell Identification 3 (DMAPCellID3), offset 0xFFC ... 243

General-Purpose Input/Outputs (GPIOs) ... 244
Register 1: GPIO Data (GPIODATA), offset 0x000 .. 253
Register 2: GPIO Direction (GPIODIR), offset 0x400 ... 254
Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404 .. 255
Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408 .. 256
Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C .. 257
Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410 ... 258
Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414 .. 259
Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418 ... 260
Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C .. 262
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420 .. 263
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 .. 265
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 .. 266
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 .. 267
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C ... 268
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510 .. 269
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514 ... 270
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518 .. 271
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C .. 272
Register 19: GPIO Lock (GPIOLOCK), offset 0x520 .. 274
Register 20: GPIO Commit (GPIOCR), offset 0x524 .. 275
Register 21: GPIO Analog Mode Select (GPIOAMSEL), offset 0x528 ... 277
Register 22: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 279
Register 23: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 280
Register 24: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 281
Register 25: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC 282
Register 26: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 283
Register 27: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4 284
Register 28: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 285
Register 29: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC 286
Register 30: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 .. 287
Register 31: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 .. 288
Register 32: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 .. 289
Register 33: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC ... 290

General-Purpose Timers ... 291
Register 1: GPTM Configuration (GPTMCFG), offset 0x000 .. 303
Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004 .. 304
Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008 .. 306
Register 4: GPTM Control (GPTMCTL), offset 0x00C .. 308
Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018 .. 311
Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C ... 313

June 02, 200816
Preliminary

Table of Contents

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020 .. 314
Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024 .. 315
Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028 ... 317
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C .. 318
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030 ... 319
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034 .. 320
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038 .. 321
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C ... 322
Register 15: GPTM TimerA (GPTMTAR), offset 0x048 .. 323
Register 16: GPTM TimerB (GPTMTBR), offset 0x04C ... 324

Watchdog Timer ... 325
Register 1: Watchdog Load (WDTLOAD), offset 0x000 .. 328
Register 2: Watchdog Value (WDTVALUE), offset 0x004 ... 329
Register 3: Watchdog Control (WDTCTL), offset 0x008 ... 330
Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C .. 331
Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010 .. 332
Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014 ... 333
Register 7: Watchdog Test (WDTTEST), offset 0x418 ... 334
Register 8: Watchdog Lock (WDTLOCK), offset 0xC00 ... 335
Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0 336
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4 337
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8 338
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC 339
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0 340
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4 341
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8 342
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC 343
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0 344
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4 345
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8 346
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC 347

Analog-to-Digital Converter (ADC) ... 348
Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000 ... 356
Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004 ... 357
Register 3: ADC Interrupt Mask (ADCIM), offset 0x008 ... 358
Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C .. 359
Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010 .. 360
Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014 ... 361
Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018 ... 364
Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020 ... 365
Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028 366
Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030 ... 367
Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040 368
Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044 .. 370
Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 373
Register 14: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 373
Register 15: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088 373
Register 16: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8 373

17June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 17: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C 374
Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C 374
Register 19: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C 374
Register 20: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC 374
Register 21: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060 375
Register 22: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080 375
Register 23: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064 .. 376
Register 24: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084 .. 376
Register 25: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0 378
Register 26: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4 .. 379

Universal Asynchronous Receivers/Transmitters (UARTs) ... 380
Register 1: UART Data (UARTDR), offset 0x000 ... 389
Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004 391
Register 3: UART Flag (UARTFR), offset 0x018 .. 393
Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020 ... 395
Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024 .. 396
Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028 397
Register 7: UART Line Control (UARTLCRH), offset 0x02C ... 398
Register 8: UART Control (UARTCTL), offset 0x030 ... 400
Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034 ... 402
Register 10: UART Interrupt Mask (UARTIM), offset 0x038 ... 404
Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C .. 406
Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040 ... 407
Register 13: UART Interrupt Clear (UARTICR), offset 0x044 ... 408
Register 14: UART DMA Control (UARTDMACTL), offset 0x048 .. 410
Register 15: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0 411
Register 16: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4 412
Register 17: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8 413
Register 18: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC 414
Register 19: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0 415
Register 20: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4 416
Register 21: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8 417
Register 22: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC 418
Register 23: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0 .. 419
Register 24: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4 .. 420
Register 25: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8 .. 421
Register 26: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC .. 422

Synchronous Serial Interface (SSI) .. 423
Register 1: SSI Control 0 (SSICR0), offset 0x000 .. 436
Register 2: SSI Control 1 (SSICR1), offset 0x004 .. 438
Register 3: SSI Data (SSIDR), offset 0x008 .. 440
Register 4: SSI Status (SSISR), offset 0x00C ... 441
Register 5: SSI Clock Prescale (SSICPSR), offset 0x010 .. 443
Register 6: SSI Interrupt Mask (SSIIM), offset 0x014 ... 444
Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018 .. 446
Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C .. 447
Register 9: SSI Interrupt Clear (SSIICR), offset 0x020 ... 448
Register 10: SSI DMA Control (SSIDMACTL), offset 0x024 ... 449

June 02, 200818
Preliminary

Table of Contents

Register 11: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0 ... 450
Register 12: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 ... 451
Register 13: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8 ... 452
Register 14: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC .. 453
Register 15: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0 ... 454
Register 16: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 ... 455
Register 17: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8 ... 456
Register 18: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC .. 457
Register 19: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 ... 458
Register 20: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 ... 459
Register 21: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 ... 460
Register 22: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC ... 461

Inter-Integrated Circuit (I2C) Interface .. 462
Register 1: I2C Master Slave Address (I2CMSA), offset 0x000 ... 476
Register 2: I2C Master Control/Status (I2CMCS), offset 0x004 ... 477
Register 3: I2C Master Data (I2CMDR), offset 0x008 ... 481
Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C ... 482
Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010 ... 483
Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014 ... 484
Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018 ... 485
Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C ... 486
Register 9: I2C Master Configuration (I2CMCR), offset 0x020 .. 487
Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000 .. 489
Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004 ... 490
Register 12: I2C Slave Data (I2CSDR), offset 0x008 ... 492
Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C ... 493
Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010 ... 494
Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014 .. 495
Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018 .. 496

Controller Area Network (CAN) Module ... 497
Register 1: CAN Control (CANCTL), offset 0x000 ... 510
Register 2: CAN Status (CANSTS), offset 0x004 ... 512
Register 3: CAN Error Counter (CANERR), offset 0x008 ... 515
Register 4: CAN Bit Timing (CANBIT), offset 0x00C .. 516
Register 5: CAN Interrupt (CANINT), offset 0x010 ... 518
Register 6: CAN Test (CANTST), offset 0x014 .. 519
Register 7: CAN Baud Rate Prescalar Extension (CANBRPE), offset 0x018 521
Register 8: CAN IF1 Command Request (CANIF1CRQ), offset 0x020 .. 522
Register 9: CAN IF2 Command Request (CANIF2CRQ), offset 0x080 .. 522
Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024 .. 523
Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084 .. 523
Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028 .. 526
Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088 .. 526
Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C .. 527
Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C .. 527
Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030 ... 528
Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090 ... 528

19June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034 ... 529
Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094 ... 529
Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038 .. 531
Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098 .. 531
Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C ... 533
Register 23: CAN IF1 Data A2 (CANIF1DA2), offset 0x040 ... 533
Register 24: CAN IF1 Data B1 (CANIF1DB1), offset 0x044 ... 533
Register 25: CAN IF1 Data B2 (CANIF1DB2), offset 0x048 ... 533
Register 26: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C ... 533
Register 27: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0 ... 533
Register 28: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4 ... 533
Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8 ... 533
Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100 .. 534
Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104 .. 534
Register 32: CAN New Data 1 (CANNWDA1), offset 0x120 ... 535
Register 33: CAN New Data 2 (CANNWDA2), offset 0x124 ... 535
Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140 536
Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144 536
Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160 ... 537
Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164 ... 537

Univeral Serial Bus (USB) Controller ... 538
Register 1: USB Device Functional Address (USBFADDR), offset 0x000 .. 553
Register 2: USB Power (USBPOWER), offset 0x001 ... 554
Register 3: USB Transmit Interrupt Status (USBTXIS), offset 0x002 ... 556
Register 4: USB Receive Interrupt Status (USBRXIS), offset 0x004 ... 557
Register 5: USB Transmit Interrupt Enable (USBTXIE), offset 0x006 .. 558
Register 6: USB Receive Interrupt Enable (USBRXIE), offset 0x008 .. 559
Register 7: USB General Interrupt Status (USBIS), offset 0x00A .. 560
Register 8: USB Interrupt Enable (USBIE), offset 0x00B .. 562
Register 9: USB Frame Value (USBFRAME), offset 0x00C .. 564
Register 10: USB Endpoint Index (USBEPIDX), offset 0x0E .. 565
Register 11: USB Test Mode (USBTEST), offset 0x00F ... 566
Register 12: USB FIFO Endpoint 0 (USBFIFO0), offset 0x020 ... 568
Register 13: USB FIFO Endpoint 1 (USBFIFO1), offset 0x024 ... 568
Register 14: USB FIFO Endpoint 2 (USBFIFO2), offset 0x028 ... 568
Register 15: USB FIFO Endpoint 3 (USBFIFO3), offset 0x02C .. 568
Register 16: USB Device Control (USBDEVCTL), offset 0x060 .. 569
Register 17: USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ), offset 0x062 571
Register 18: USB Receive Dynamic FIFO Sizing (USBRXFIFOSZ), offset 0x063 571
Register 19: USB Transmit FIFO Start Address (USBTXFIFOADD), offset 0x064 572
Register 20: USB Receive FIFO Start Address (USBRXFIFOADD), offset 0x066 572
Register 21: USB Connect Timing (USBCONTIM), offset 0x07A .. 573
Register 22: USB Full-Speed Last Transaction to End of Frame Timing (USBFSEOF), offset 0x07D 574
Register 23: USB Low-Speed Last Transaction to End of Frame Timing (USBLSEOF), offset 0x07E 575
Register 24: USB Transmit Functional Address Endpoint 0 (USBTXFUNCADDR0), offset 0x080 576
Register 25: USB Transmit Functional Address Endpoint 1 (USBTXFUNCADDR1), offset 0x088 576
Register 26: USB Transmit Functional Address Endpoint 2 (USBTXFUNCADDR2), offset 0x090 576
Register 27: USB Transmit Functional Address Endpoint 3 (USBTXFUNCADDR3), offset 0x098 576

June 02, 200820
Preliminary

Table of Contents

Register 28: USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0), offset 0x082 577
Register 29: USB Transmit Hub Address Endpoint 1 (USBTXHUBADDR1), offset 0x08A 577
Register 30: USB Transmit Hub Address Endpoint 2 (USBTXHUBADDR2), offset 0x092 577
Register 31: USB Transmit Hub Address Endpoint 3 (USBTXHUBADDR3), offset 0x09A 577
Register 32: USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0), offset 0x083 578
Register 33: USB Transmit Hub Port Endpoint 1 (USBTXHUBPORT1), offset 0x08B 578
Register 34: USB Transmit Hub Port Endpoint 2 (USBTXHUBPORT2), offset 0x093 578
Register 35: USB Transmit Hub Port Endpoint 3 (USBTXHUBPORT3), offset 0x09B 578
Register 36: USB Receive Functional Address Endpoint 1 (USBRXFUNCADDR1), offset 0x08C 579
Register 37: USB Receive Functional Address Endpoint 2 (USBRXFUNCADDR2), offset 0x094 579
Register 38: USB Receive Functional Address Endpoint 3 (USBRXFUNCADDR3), offset 0x09C 579
Register 39: USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1), offset 0x08E 580
Register 40: USB Receive Hub Address Endpoint 2 (USBRXHUBADDR2), offset 0x096 580
Register 41: USB Receive Hub Address Endpoint 3 (USBRXHUBADDR3), offset 0x09E 580
Register 42: USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1), offset 0x08F 581
Register 43: USB Receive Hub Port Endpoint 2 (USBRXHUBPORT2), offset 0x097 581
Register 44: USB Receive Hub Port Endpoint 3 (USBRXHUBPORT3), offset 0x09F 581
Register 45: USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1), offset 0x110 582
Register 46: USB Maximum Transmit Data Endpoint 2 (USBTXMAXP2), offset 0x120 582
Register 47: USB Maximum Transmit Data Endpoint 3 (USBTXMAXP3), offset 0x130 582
Register 48: USB Control and Status Endpoint 0 Low (USBCSRL0), offset 0x102 583
Register 49: USB Control and Status Endpoint 0 High (USBCSRH0), offset 0x103 586
Register 50: USB Receive Byte Count Endpoint 0 (USBCOUNT0), offset 0x108 588
Register 51: USB Type Endpoint 0 (USBTYPE0), offset 0x10A .. 589
Register 52: USB NAK Limit (USBNAKLMT), offset 0x10B .. 590
Register 53: USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1), offset 0x112 591
Register 54: USB Transmit Control and Status Endpoint 2 Low (USBTXCSRL2), offset 0x122 591
Register 55: USB Transmit Control and Status Endpoint 3 Low (USBTXCSRL3), offset 0x132 591
Register 56: USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1), offset 0x113 594
Register 57: USB Transmit Control and Status Endpoint 2 High (USBTXCSRH2), offset 0x123 594
Register 58: USB Transmit Control and Status Endpoint 3 High (USBTXCSRH3), offset 0x133 594
Register 59: USB Maximum Receive Data Endpoint 1 (USBRXMAXP1), offset 0x114 597
Register 60: USB Maximum Receive Data Endpoint 2 (USBRXMAXP2), offset 0x124 597
Register 61: USB Maximum Receive Data Endpoint 3 (USBRXMAXP3), offset 0x134 597
Register 62: USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1), offset 0x116 598
Register 63: USB Receive Control and Status Endpoint 2 Low (USBRXCSRL2), offset 0x126 598
Register 64: USB Receive Control and Status Endpoint 3 Low (USBRXCSRL3), offset 0x136 598
Register 65: USB Receive Control and Status Endpoint 1 High (USBRXCSRH1), offset 0x117 601
Register 66: USB Receive Control and Status Endpoint 2 High (USBRXCSRH2), offset 0x127 601
Register 67: USB Receive Control and Status Endpoint 3 High (USBRXCSRH3), offset 0x137 601
Register 68: USB Receive Byte Count Endpoint 1 (USBRXCOUNT1), offset 0x118 606
Register 69: USB Receive Byte Count Endpoint 2 (USBRXCOUNT2), offset 0x128 606
Register 70: USB Receive Byte Count Endpoint 3 (USBRXCOUNT3), offset 0x138 606
Register 71: USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1), offset 0x11A 607
Register 72: USB Host Transmit Configure Type Endpoint 2 (USBTXTYPE2), offset 0x12A 607
Register 73: USB Host Transmit Configure Type Endpoint 3 (USBTXTYPE3), offset 0x13A 607
Register 74: USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1), offset 0x11B 609
Register 75: USB Host Transmit Interval Endpoint 2 (USBTXINTERVAL2), offset 0x12B 609

21June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 76: USB Host Transmit Interval Endpoint 3 (USBTXINTERVAL3), offset 0x13B 609
Register 77: USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1), offset 0x11C 610
Register 78: USB Host Configure Receive Type Endpoint 2 (USBRXTYPE2), offset 0x12C 610
Register 79: USB Host Configure Receive Type Endpoint 3 (USBRXTYPE3), offset 0x13C 610
Register 80: USB Host Receive Polling Interval Endpoint 1 (USBRXINTERVAL1), offset 0x11D 612
Register 81: USB Host Receive Polling Interval Endpoint 2 (USBRXINTERVAL2), offset 0x12D 612
Register 82: USB Host Receive Polling Interval Endpoint 3 (USBRXINTERVAL3), offset 0x13D 612
Register 83: USB Request Packet Count in Block Transfer Endpoint 1 (USBRQPKTCOUNT1), offset

0x304 ... 613
Register 84: USB Request Packet Count in Block Transfer Endpoint 2 (USBRQPKTCOUNT2), offset

0x308 ... 613
Register 85: USB Request Packet Count in Block Transfer Endpoint 3 (USBRQPKTCOUNT3), offset

0x30C ... 613
Register 86: USB Receive Double Packet Buffer Disable (USBRXDPKTBUFDIS), offset 0x340 614
Register 87: USB Transmit Double Packet Buffer Disable (USBTXDPKTBUFDIS), offset 0x342 615
Register 88: USB External Power Control (USBEPC), offset 0x400 .. 616
Register 89: USB External Power Control Raw Interrupt Status (USBEPCRIS), offset 0x404 619
Register 90: USB External Power Control Interrupt Mask (USBEPCIM), offset 0x408 620
Register 91: USB External Power Control Interrupt Status and Clear (USBEPCISC), offset 0x40C 621
Register 92: USB Device Resume Raw Interrupt Status (USBDRRIS), offset 0x410 622
Register 93: USB Device Resume Interrupt Mask (USBDRIM), offset 0x414 ... 623
Register 94: USB Device Resume Interrupt Status and Clear (USBDRISC), offset 0x418 624
Register 95: USB General-Purpose Control and Status (USBGPCS), offset 0x41C 625

Pulse Width Modulator (PWM) .. 626
Register 1: PWM Master Control (PWMCTL), offset 0x000 .. 635
Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004 ... 636
Register 3: PWM Output Enable (PWMENABLE), offset 0x008 .. 637
Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C ... 638
Register 5: PWM Output Fault (PWMFAULT), offset 0x010 .. 639
Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014 ... 640
Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018 .. 641
Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C .. 642
Register 9: PWM Status (PWMSTATUS), offset 0x020 .. 643
Register 10: PWM0 Control (PWM0CTL), offset 0x040 ... 644
Register 11: PWM1 Control (PWM1CTL), offset 0x080 ... 644
Register 12: PWM2 Control (PWM2CTL), offset 0x0C0 .. 644
Register 13: PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 648
Register 14: PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084 648
Register 15: PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4 648
Register 16: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 .. 650
Register 17: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088 .. 650
Register 18: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8 ... 650
Register 19: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C ... 651
Register 20: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C ... 651
Register 21: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC ... 651
Register 22: PWM0 Load (PWM0LOAD), offset 0x050 ... 652
Register 23: PWM1 Load (PWM1LOAD), offset 0x090 ... 652
Register 24: PWM2 Load (PWM2LOAD), offset 0x0D0 ... 652

June 02, 200822
Preliminary

Table of Contents

Register 25: PWM0 Counter (PWM0COUNT), offset 0x054 .. 653
Register 26: PWM1 Counter (PWM1COUNT), offset 0x094 .. 653
Register 27: PWM2 Counter (PWM2COUNT), offset 0x0D4 ... 653
Register 28: PWM0 Compare A (PWM0CMPA), offset 0x058 ... 654
Register 29: PWM1 Compare A (PWM1CMPA), offset 0x098 ... 654
Register 30: PWM2 Compare A (PWM2CMPA), offset 0x0D8 ... 654
Register 31: PWM0 Compare B (PWM0CMPB), offset 0x05C ... 655
Register 32: PWM1 Compare B (PWM1CMPB), offset 0x09C ... 655
Register 33: PWM2 Compare B (PWM2CMPB), offset 0x0DC .. 655
Register 34: PWM0 Generator A Control (PWM0GENA), offset 0x060 .. 656
Register 35: PWM1 Generator A Control (PWM1GENA), offset 0x0A0 .. 656
Register 36: PWM2 Generator A Control (PWM2GENA), offset 0x0E0 .. 656
Register 37: PWM0 Generator B Control (PWM0GENB), offset 0x064 .. 659
Register 38: PWM1 Generator B Control (PWM1GENB), offset 0x0A4 .. 659
Register 39: PWM2 Generator B Control (PWM2GENB), offset 0x0E4 .. 659
Register 40: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 .. 662
Register 41: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8 ... 662
Register 42: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8 .. 662
Register 43: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C 663
Register 44: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC 663
Register 45: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC 663
Register 46: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070 664
Register 47: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0 664
Register 48: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0 664

23June 02, 2008
Preliminary

LM3S5747 Microcontroller

About This Document
This data sheet provides reference information for the LM3S5747 microcontroller, describing the
functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex™-M3
core.

Audience
This manual is intended for system software developers, hardware designers, and application
developers.

About This Manual
This document is organized into sections that correspond to each major feature.

Related Documents
The following documents are referenced by the data sheet, and available on the documentation CD
or from the Luminary Micro web site at www.luminarymicro.com:

■ ARM® Cortex™-M3 Technical Reference Manual

■ ARM® CoreSight Technical Reference Manual

■ ARM® v7-M Architecture Application Level Reference Manual

■ Stellaris® Peripheral Driver Library User's Guide

■ Stellaris® ROM User’s Guide

The following related documents are also referenced:

■ IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web
site for additional documentation, including application notes and white papers.

Documentation Conventions
This document uses the conventions shown in Table 1 on page 24.

Table 1. Documentation Conventions

MeaningNotation

General Register Notation

APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and
Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more
than one register. For example, SRCRn represents any (or all) of the three Software Reset Control
registers: SRCR0, SRCR1 , and SRCR2.

REGISTER

A single bit in a register.bit

Two or more consecutive and related bits.bit field

A hexadecimal increment to a register's address, relative to that module's base address as specified
in “Memory Map” on page 49.

offset 0xnnn

June 02, 200824
Preliminary

About This Document

MeaningNotation

Registers are numbered consecutively throughout the document to aid in referencing them. The
register number has no meaning to software.

Register N

Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to
0; however, user software should not rely on the value of a reserved bit. To provide software
compatibility with future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

reserved

The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in
that register.

yy:xx

This value in the register bit diagram indicates whether software running on the controller can
change the value of the bit field.

Register Bit/Field
Types

Software can read this field. The bit or field is cleared by hardware after reading the bit/field.RC

Software can read this field. Always write the chip reset value.RO

Software can read or write this field.R/W

Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the
register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.

This register type is primarily used for clearing interrupt status bits where the read operation
provides the interrupt status and the write of the read value clears only the interrupts being reported
at the time the register was read.

R/W1C

Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit
value in the register.

R/W1S

Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register.
A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A
read of the register returns no meaningful data.

This register is typically used to clear the corresponding bit in an interrupt register.

W1C

Only a write by software is valid; a read of the register returns no meaningful data.WO

This value in the register bit diagram shows the bit/field value after any reset, unless noted.Register Bit/Field
Reset Value

Bit cleared to 0 on chip reset.0

Bit set to 1 on chip reset.1

Nondeterministic.-

Pin/Signal Notation

Pin alternate function; a pin defaults to the signal without the brackets.[]

Refers to the physical connection on the package.pin

Refers to the electrical signal encoding of a pin.signal

Change the value of the signal from the logically False state to the logically True state. For active
High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value
is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL
below).

assert a signal

Change the value of the signal from the logically True state to the logically False state.deassert a signal

Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that
it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.

SIGNAL

Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To
assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.

SIGNAL

Numbers

An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For
example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and
so on.

X

25June 02, 2008
Preliminary

LM3S5747 Microcontroller

MeaningNotation

Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.

All other numbers within register tables are assumed to be binary. Within conceptual information,
binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written
without a prefix or suffix.

0x

June 02, 200826
Preliminary

About This Document

1 Architectural Overview
The Luminary Micro Stellaris® family of microcontrollers—the first ARM® Cortex™-M3 based
controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller
applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to
legacy 8- and 16-bit devices, all in a package with a small footprint.

The Stellaris® family offers efficient performance and extensive integration, favorably positioning
the device into cost-conscious applications requiring significant control-processing and connectivity
capabilities. The Stellaris® LM3S5000 series combines USB 2.0 Full-Speed On-The-Go/Host/Device
combinations with Bosch CAN networking technology.

The LM3S5747 microcontroller is targeted for industrial applications, including remote monitoring,
electronic point-of-sale machines, test and measurement equipment, network appliances and
switches, factory automation, HVAC and building control, gaming equipment, motion control, medical
instrumentation, and fire and security.

For applications requiring extreme conservation of power, the LM3S5747 microcontroller features
a Battery-backed Hibernation module to efficiently power down the LM3S5747 to a low-power state
during extended periods of inactivity. With a power-up/power-down sequencer, a continuous time
counter (RTC), a pair of match registers, an APB interface to the system bus, and dedicated
non-volatile memory, the Hibernation module positions the LM3S5747 microcontroller perfectly for
battery applications.

In addition, the LM3S5747 microcontroller offers the advantages of ARM's widely available
development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community.
Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce
memory requirements and, thereby, cost. Finally, the LM3S5747 microcontroller is code-compatible
to all members of the extensive Stellaris® family; providing flexibility to fit our customers' precise
needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development
boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong
support, sales, and distributor network. See “Ordering and Contact Information” on page 739 for
ordering information for Stellaris® family devices.

1.1 Product Features
The LM3S5747 microcontroller includes the following product features:

■ 32-Bit RISC Performance

– 32-bit ARM® Cortex™-M3 v7M architecture optimized for small-footprint embedded
applications

– System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero
counter with a flexible control mechanism

– Thumb®-compatible Thumb-2-only instruction set processor core for high code density

– 50-MHz operation

– Hardware-division and single-cycle-multiplication

27June 02, 2008
Preliminary

LM3S5747 Microcontroller

– Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt
handling

– 30 interrupts with eight priority levels

– Memory protection unit (MPU), providing a privileged mode for protected operating system
functionality

– Unaligned data access, enabling data to be efficiently packed into memory

– Atomic bit manipulation (bit-banding), delivering maximummemory utilization and streamlined
peripheral control

■ Internal Memory

– 128 KB single-cycle flash

• User-managed flash block protection on a 2-KB block basis

• User-managed flash data programming

• User-defined and managed flash-protection block

– 64 KB single-cycle SRAM

– Pre-programmed ROM containing the Stellaris® family peripheral driver library (DriverLib)
and Stellaris® boot loader

■ DMA Controller

– ARM PrimeCell® 32-channel configurable µDMA controller

– Support for multiple transfer modes:

• Basic, for simple transfer scenarios

• Ping-pong, for continuous data flow to/from peripherals

• Scatter-gather, from a programmable list of arbitrary transfers initiated from a single request

– Dedicated channels for supported peripherals

– One channel each for receive and transmit path for bidirectional peripherals

– Dedicated channel for software-initiated transfers

– Independently configured and operated channels

– Per-channel configurable bus arbitration scheme

– Two levels of priority

– Design optimizations for improved bus access performance between µDMA controller and
the processor core:

• µDMA controller access is subordinate to core access

June 02, 200828
Preliminary

Architectural Overview

• RAM striping

• Peripheral bus segmentation

– Data sizes of 8, 16, and 32 bits

– Source and destination address increment size of byte, half-word, word, or no increment

– Maskable device requests

– Optional software initiated requests for any channel

– Interrupt on transfer completion, with a separate interrupt per channel

■ General-Purpose Timers

– Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers.
Each GPTM can be configured to operate independently:

• As a single 32-bit timer

• As one 32-bit Real-Time Clock (RTC) to event capture

• For Pulse Width Modulation (PWM)

• To trigger analog-to-digital conversions

– 32-bit Timer modes

• Programmable one-shot timer

• Programmable periodic timer

• Real-Time Clock when using an external 32.768-KHz clock as the input

• User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU
Halt flag during debug

• ADC event trigger

– 16-bit Timer modes

• General-purpose timer function with an 8-bit prescaler

• Programmable one-shot timer

• Programmable periodic timer

• User-enabled stalling when the controller asserts CPU Halt flag during debug

• ADC event trigger

– 16-bit Input Capture modes

• Input edge count capture

• Input edge time capture

29June 02, 2008
Preliminary

LM3S5747 Microcontroller

– 16-bit PWM mode

• Simple PWM mode with software-programmable output inversion of the PWM signal

■ ARM FiRM-compliant Watchdog Timer

– 32-bit down counter with a programmable load register

– Separate watchdog clock with an enable

– Programmable interrupt generation logic with interrupt masking

– Lock register protection from runaway software

– Reset generation logic with an enable/disable

– User-enabled stalling when the controller asserts the CPU Halt flag during debug

■ Controller Area Network (CAN)

– Supports CAN protocol version 2.0 part A/B

– Bit rates up to 1Mb/s

– 32 message objects, each with its own identifier mask

– Maskable interrupt

– Disable automatic retransmission mode for TTCAN

– Programmable loop-back mode for self-test operation

■ Synchronous Serial Interface (SSI)

– Master or slave operation

– Programmable clock bit rate and prescale

– Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep

– Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments
synchronous serial interfaces

– Programmable data frame size from 4 to 16 bits

– Internal loopback test mode for diagnostic/debug testing

– Direct memory access (DMA)

■ UART

– Fully programmable 16C550-type UART with IrDA support

– Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service
loading

– Programmable baud-rate generator allowing speeds up to 3.125 Mbps

June 02, 200830
Preliminary

Architectural Overview

– Programmable FIFO length, including 1-byte deep operation providing conventional
double-buffered interface

– FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8

– Standard asynchronous communication bits for start, stop, and parity

– False-start-bit detection

– Line-break generation and detection

– Direct memory access (DMA)

■ USB

– Standards-based universal serial bus controller

– USB 2.0 full-speed (12 Mbps) operation

– Flexible configuration option

• USB Device mode

• USB Host mode

– Integrated PHY

– 4 transfer types: Control, Interrupt, Bulk, and Isochronous

– 1 dedicated bi-directional control endpoint

– 3 Receive and 3 Transmit configurable endpoints

– 4 KB dedicated endpoint memory

• Direct memory access (DMA)

• One endpoint may be defined for double-buffered 1023-byte isochronous packet size

■ ADC

– Single- and differential-input configurations

– Eight 10-bit channels (inputs) when used as single-ended inputs

– Sample rate of 500 thousand samples/second

– Flexible, configurable analog-to-digital conversion

– Four programmable sample conversion sequences from one to eight entries long, with
corresponding conversion result FIFOs

– Each sequence triggered by software or internal event (timers, PWM or GPIO)

– On-chip temperature sensor

■ I2C

31June 02, 2008
Preliminary

LM3S5747 Microcontroller

– Master and slave receive and transmit operation with transmission speed up to 100 Kbps in
Standard mode and 400 Kbps in Fast mode

– Interrupt generation

– Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing
mode

■ PWM

– Three PWM generator blocks, each with one 16-bit counter, two comparators, a PWM
generator, and a dead-band generator

– One fault inputs in hardware to condition low-latency shutdown

– One 16-bit counter

• Runs in Down or Up/Down mode

• Output frequency controlled by a 16-bit load value

• Load value updates can be synchronized

• Produces output signals at zero and load value

– Two PWM comparators

• Comparator value updates can be synchronized

• Produces output signals on match

– PWM generator

• Output PWM signal is constructed based on actions taken as a result of the counter and
PWM comparator output signals

• Produces two independent PWM signals

– Dead-band generator

• Produces two PWM signals with programmable dead-band delays suitable for driving a
half-H bridge

• Can be bypassed, leaving input PWM signals unmodified

– Flexible output control block with PWM output enable of each PWM signal

• PWM output enable of each PWM signal

• Optional output inversion of each PWM signal (polarity control)

• Optional fault handling for each PWM signal

• Synchronization of timers in the PWM generator blocks

• Synchronization of timer/comparator updates across the PWM generator blocks

June 02, 200832
Preliminary

Architectural Overview

• Interrupt status summary of the PWM generator blocks

– Can initiate an ADC sample sequence

■ GPIOs

– 27-61 GPIOs, depending on configuration

– 5-V-tolerant input/outputs

– Programmable interrupt generation as either edge-triggered or level-sensitive

– Low interrupt latency; as low as 6 cycles and never more than 12 cycles

– Bit masking in both read and write operations through address lines

– Can initiate an ADC sample sequence

– Pins configured as digital inputs are Schmitt-triggered.

– Programmable control for GPIO pad configuration:

• Weak pull-up or pull-down resistors

• 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be
configured with an 18-mA pad drive for high-current applications

• Slew rate control for the 8-mA drive

• Open drain enables

• Digital input enables

■ Power

– On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable
from 2.25 V to 2.75 V

– Hibernation module handles the power-up/down 3.3 V sequencing and control for the core
digital logic and analog circuits

– Low-power options on controller: Sleep and Deep-sleep modes

– Low-power options for peripherals: software controls shutdown of individual peripherals

– User-enabled LDO unregulated voltage detection and automatic reset

– 3.3-V supply brown-out detection and reporting via interrupt or reset

■ Flexible Reset Sources

– Power-on reset (POR)

– Reset pin assertion

– Brown-out (BOR) detector alerts to system power drops

33June 02, 2008
Preliminary

LM3S5747 Microcontroller

– Software reset

– Watchdog timer reset

– Internal low drop-out (LDO) regulator output goes unregulated

■ Additional Features

– Six reset sources

– Programmable clock source control

– Clock gating to individual peripherals for power savings

– IEEE 1149.1-1990 compliant Test Access Port (TAP) controller

– Debug access via JTAG and Serial Wire interfaces

– Full JTAG boundary scan

■ Industrial-range 100-pin RoHS-compliant LQFP package

1.2 Target Applications
■ Remote monitoring

■ Electronic point-of-sale (POS) machines

■ Test and measurement equipment

■ Network appliances and switches

■ Factory automation

■ HVAC and building control

■ Gaming equipment

■ Motion control

■ Medical instrumentation

■ Fire and security

■ Power and energy

■ Transportation

1.3 High-Level Block Diagram
Figure 1-1 on page 35 represents the full set of features in the Stellaris® 5000 series of devices;
not all features may be available on the LM3S5747 microcontroller.

June 02, 200834
Preliminary

Architectural Overview

Figure 1-1. Stellaris® 5000 Series High-Level Block Diagram

LDO Voltage
Regulator

3 Analog
Comparators

10-bit ADC
8 channel

1 Msps

Temp Sensor

A
N

A
LO

G

Battery-Backed
Hibernate

R
T
C

S
Y

S
TE

M
64 KB SRAM

128 KB Flash

ROM

Quadrature
Encoder Input

8 PWM Outputs

Dead-Band
Generator

Comparators

PWM
Generator

PWM
Interrupt

Timer

M
O

T
IO

N
C

O
N

T
R

O
L

3 UARTs

2 SSI/SPI

2 CAN

2 I2C

USB Full Speed
Host / Device / OTG

SE
R

IA
L

IN
TE

R
FA

C
ES

ARM®

Cortex ™-M3

50 MHz

JTAG

NVIC

SWD

32

32

32

Clocks, Reset
System Control

4 Timer/PWM/CC P
Each 32-bit or 2x16-bit

Watchdog Timer

GPIOs

Systick Timer

32ch DMA

1.4 Functional Overview
The following sections provide an overview of the features of the LM3S5747 microcontroller. The
page number in parenthesis indicates where that feature is discussed in detail. Ordering and support
information can be found in “Ordering and Contact Information” on page 739.

35June 02, 2008
Preliminary

LM3S5747 Microcontroller

1.4.1 ARM Cortex™-M3

1.4.1.1 Processor Core (see page 43)
All members of the Stellaris® product family, including the LM3S5747 microcontroller, are designed
around an ARM Cortex™-M3 processor core. The ARM Cortex-M3 processor provides the core for
a high-performance, low-cost platform that meets the needs of minimal memory implementation,
reduced pin count, and low-power consumption, while delivering outstanding computational
performance and exceptional system response to interrupts.

“ARM Cortex-M3 Processor Core” on page 43 provides an overview of the ARM core; the core is
detailed in the ARM® Cortex™-M3 Technical Reference Manual.

1.4.1.2 System Timer (SysTick)
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter
can be used in several different ways, for example:

■ An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a
SysTick routine.

■ A high-speed alarm timer using the system clock.

■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock
used and the dynamic range of the counter.

■ A simple counter. Software can use this to measure time to completion and time used.

■ An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field
in the control and status register can be used to determine if an action completed within a set
duration, as part of a dynamic clock management control loop.

1.4.1.3 Nested Vectored Interrupt Controller (NVIC)
The LM3S5747 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the
ARM®Cortex™-M3 core. The NVIC andCortex-M3 prioritize and handle all exceptions. All exceptions
are handled in Handler Mode. The processor state is automatically stored to the stack on an
exception, and automatically restored from the stack at the end of the Interrupt Service Routine
(ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry.
The processor supports tail-chaining, which enables back-to-back interrupts to be performed without
the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions
(system handlers) and 30 interrupts.

“Interrupts” on page 52 provides an overview of the NVIC controller and the interrupt map. Exceptions
and interrupts are detailed in the ARM® Cortex™-M3 Technical Reference Manual.

1.4.1.4 Direct Memory Access (see page 183)
The LM3S5747 microcontroller includes a Direct Memory Access (DMA) controller, known as
micro-DMA (μDMA). The μDMA controller provides a way to offload data transfer tasks from the
Cortex-M3 processor, allowing for more effecient use of the processor and the expanded available
bus bandwidth. The μDMA controller can perform transfers between memory and peripherals. It
has dedicated channels for each supported peripheral and can be programmed to automatically
perform transfers between peripherals and memory as the peripheral is ready to transfer more data.
The μDMA controller also supports sophisticated transfer modes such as ping-pong and
scatter-gather, which allows the processor to set up a list of transfer tasks for the controller.

June 02, 200836
Preliminary

Architectural Overview

1.4.2 Motor Control Peripherals
To enhancemotor control, the LM3S5747 controller features PulseWidth Modulation (PWM) outputs.

1.4.2.1 PWM
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.
High-resolution counters are used to generate a square wave, and the duty cycle of the square
wave is modulated to encode an analog signal. Typical applications include switching power supplies
and motor control.

On the LM3S5747, PWM motion control functionality can be achieved through:

■ Dedicated, flexible motion control hardware using the PWM pins

■ The motion control features of the general-purpose timers using the CCP pins

PWM Pins (see page 626)

The LM3S5747 PWM module consists of three PWM generator blocks and a control block. Each
PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a
PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control
block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals or
a single pair of complementary signals with dead-band delays inserted. The output of the PWM
generation blocks are managed by the output control block before being passed to the device pins.

CCP Pins (see page 297)

TheGeneral-Purpose TimerModule's CCP (Capture Compare PWM) pins are software programmable
to support a simple PWMmode with a software-programmable output inversion of the PWM signal.

Fault Pins (see “Fault Conditions”)

The LM3S5747 PWM module includes one fault-condition handling inputs to quickly provide
low-latency shutdown and prevent damage to the motor being controlled.

1.4.3 Analog Peripherals
To handle analog signals, the LM3S5747 microcontroller offers an Analog-to-Digital Converter
(ADC).

1.4.3.1 ADC (see page 348)
An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a
discrete digital number.

The LM3S5747 ADCmodule features 10-bit conversion resolution and supports eight input channels,
plus an internal temperature sensor. Four buffered sample sequences allow rapid sampling of up
to eight analog input sources without controller intervention. Each sample sequence provides flexible
programming with fully configurable input source, trigger events, interrupt generation, and sequence
priority.

1.4.4 Serial Communications Peripherals
The LM3S5747 controller supports both asynchronous and synchronous serial communications
with:

37June 02, 2008
Preliminary

LM3S5747 Microcontroller

■ One fully programmable 16C550-type UART

■ One SSI module

■ One I2C module

■ One USB 2.0 full-speed controller

■ One CAN unit

1.4.4.1 UART (see page 380)
A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C
serial communications, containing a transmitter (parallel-to-serial converter) and a receiver
(serial-to-parallel converter), each clocked separately.

The LM3S5747 controller includes one fully programmable 16C550-type UARTthat supports data
transfer speeds up to 3.125 Mbps. (Although similar in functionality to a 16C550 UART, it is not
register-compatible.) In addition, each UART is capable of supporting IrDA.

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading.
The UART can generate individually masked interrupts from the RX, TX, modem status, and error
conditions. The module provides a single combined interrupt when any of the interrupts are asserted
and are unmasked.

1.4.4.2 SSI (see page 423)
Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The LM3S5747 controller includes one SSI module that provides the functionality for synchronous
serial communications with peripheral devices, and can be configured to use the Freescale SPI,
MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also
configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device,
and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths
are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI
module can also be configured to disable its output, which allows a master device to be coupled
with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module's input clock. Bit rates are generated based on the
input clock and the maximum bit rate is determined by the connected peripheral.

1.4.4.3 I2C (see page 462)
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design
(a serial data line SDA and a serial clock line SCL).

The I2C bus interfaces to external I2C devices such as serial memory (RAMs and ROMs), networking
devices, LCDs, tone generators, and so on. The I2C bus may also be used for system testing and
diagnostic purposes in product development and manufacture.

The LM3S5747 controller includes one I2Cmodule that provides the ability to communicate to other
IC devices over an I2C bus. The I2C bus supports devices that can both transmit and receive (write
and read) data.

June 02, 200838
Preliminary

Architectural Overview

Devices on the I2C bus can be designated as either a master or a slave. The I2C module supports
both sending and receiving data as either a master or a slave, and also supports the simultaneous
operation as both a master and a slave. The four I2C modes are: Master Transmit, Master Receive,
Slave Transmit, and Slave Receive.

A Stellaris® I2C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I2C master and slave can generate interrupts. The I2C master generates interrupts when
a transmit or receive operation completes (or aborts due to an error). The I2C slave generates
interrupts when data has been sent or requested by a master.

1.4.4.4 USB (see page 538)
Universal Serial Bus (USB) is a serial bus standard designed to allow peripherals to be connected
and disconnected using a standardized interface without rebooting the system.

The LM3S5747 controller supports the USB 2.0 full-speed configuration with Device or USB Host
mode. The specified throughput for a USB 2.0 full-speed controller is 12 Mbps.

1.4.4.5 Controller Area Network (see page 497)
Controller Area Network (CAN) is a multicast shared serial-bus standard for connecting electronic
control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy
environments and can utilize a differential balanced line like RS-485 or a more robust twisted-pair
wire. Originally created for automotive purposes, now it is used in many embedded control
applications (for example, industrial or medical). Bit rates up to 1Mb/s are possible at network lengths
below 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kb/s at
500m).

A transmitter sends a message to all CAN nodes (broadcasting). Each node decides on the basis
of the identifier received whether it should process the message. The identifier also determines the
priority that the message enjoys in competition for bus access. Each CAN message can transmit
from 0 to 8 bytes of user information. The LM3S5747 includes one CAN units.

1.4.5 System Peripherals

1.4.5.1 Programmable GPIOs (see page 244)
General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris® GPIO module is comprised of eight physical GPIO blocks, each corresponding to an
individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP
for Real-Time Microcontrollers specification) and supports 27-61 programmable input/output pins.
The number of GPIOs available depends on the peripherals being used (see “Signal Tables” on page
666 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or
level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in
both read and write operations through address lines. Pins configured as digital inputs are
Schmitt-triggered.

1.4.5.2 Three Programmable Timers (see page 291)
Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris® General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM
block provides two 16-bit timers/counters that can be configured to operate independently as timers

39June 02, 2008
Preliminary

LM3S5747 Microcontroller

or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).
Timers can also be used to trigger analog-to-digital (ADC) conversions.

When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or
periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can
extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event
capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 325)
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is
reached. The watchdog timer is used to regain control when a system has failed due to a software
error or to the failure of an external device to respond in the expected way.

The Stellaris® Watchdog Timer module consists of a 32-bit down counter, a programmable load
register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,
and to generate a reset signal on its second time-out. Once theWatchdog Timer has been configured,
the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals
The LM3S5747 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 154)
The LM3S5747 static random accessmemory (SRAM) controller supports 64 KB SRAM. The internal
SRAM of the Stellaris® devices is located at offset 0x0000.0000 of the device memory map. To
reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced
bit-banding technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain
regions in the memory map (SRAM and peripheral space) can use address aliases to access
individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 155)
The LM3S5747 Flash controller supports 128 KB of flash memory. The flash is organized as a set
of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the
block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually
protected. The blocks can be marked as read-only or execute-only, providing different levels of code
protection. Read-only blocks cannot be erased or programmed, protecting the contents of those
blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only
be read by the controller instruction fetch mechanism, protecting the contents of those blocks from
being read by either the controller or by a debugger.

1.4.6.3 ROM
The LM3S5747 microcontroller ships with the Stellaris® family Peripheral Driver Library conveniently
preprogrammed in read-only memory (ROM). The Stellaris® Peripheral Driver Library is a royalty-free
software library for controlling on-chip peripherals, and includes a boot-loader capability. The library
performs both peripheral initialization and peripheral control functions, with a choice of polled or
interrupt-driven peripheral support, and takes full advantage of the stellar interrupt performance of
the ARM® Cortex™-M3 core. No special pragmas or custom assembly code prologue/epilogue
functions are required. For applications that require in-field programmability, the royalty-free Stellaris®

boot loader included in the Stellaris® Peripheral Driver Library can act as an application loader and
support in-field firmware updates.

June 02, 200840
Preliminary

Architectural Overview

1.4.7 Additional Features

1.4.7.1 Memory Map (see page 49)
A memory map lists the location of instructions and data in memory. The memory map for the
LM3S5747 controller can be found in “Memory Map” on page 49. Register addresses are given as
a hexadecimal increment, relative to the module's base address as shown in the memory map.

The ARM® Cortex™-M3 Technical Reference Manual provides further information on the memory
map.

1.4.7.2 JTAG TAP Controller (see page 55)
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing
information on the components. The JTAG Port also provides a means of accessing and controlling
design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is composed of the standard four pins: TCK, TMS, TDI, and TDO. Data is transmitted
serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is
dependent on the current state of the TAP controller. For detailed information on the operation of
the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test Access Port and
Boundary-Scan Architecture.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3
core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG
instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary
Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has
comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

1.4.7.3 System Control and Clocks (see page 67)
System control determines the overall operation of the device. It provides information about the
device, controls the clocking of the device and individual peripherals, and handles reset detection
and reporting.

1.4.7.4 Hibernation Module (see page 131)
The Hibernation module provides logic to switch power off to the main processor and peripherals,
and to wake on external or time-based events. The Hibernation module includes power-sequencing
logic, a real-time clock with a pair of match registers, low-battery detection circuitry, and interrupt
signalling to the processor. It also includes 64 32-bit words of non-volatile memory that can be used
for saving state during hibernation.

1.4.8 Hardware Details
Details on the pins and package can be found in the following sections:

■ “Pin Diagram” on page 665

■ “Signal Tables” on page 666

■ “Operating Characteristics” on page 679

■ “Electrical Characteristics” on page 680

41June 02, 2008
Preliminary

LM3S5747 Microcontroller

■ “Package Information” on page 692

June 02, 200842
Preliminary

Architectural Overview

2 ARM Cortex-M3 Processor Core
The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that
meets the needs of minimal memory implementation, reduced pin count, and low power consumption,
while delivering outstanding computational performance and exceptional system response to
interrupts. Features include:

■ Compact core.

■ Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory
size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of
memory for microcontroller class applications.

■ Rapid application execution through Harvard architecture characterized by separate buses for
instruction and data.

■ Exceptional interrupt handling, by implementing the register manipulations required for handling
an interrupt in hardware.

■ Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining

■ External non-maskable interrupt signal (NMI) available for immediate execution of NMI handler
for safety critical applications.

■ Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.

■ Migration from the ARM7™ processor family for better performance and power efficiency.

■ Full-featured debug solution with a:

– Serial Wire JTAG Debug Port (SWJ-DP)

– Flash Patch and Breakpoint (FPB) unit for implementing breakpoints

– Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,
and system profiling

– Instrumentation Trace Macrocell (ITM) for support of printf style debugging

– Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

■ Optimized for single-cycle flash usage

■ Three sleep modes with clock gating for low power

■ Single-cycle multiply instruction and hardware divide

■ Atomic operations

■ ARM Thumb2 mixed 16-/32-bit instruction set

■ 1.25 DMIPS/MHz

43June 02, 2008
Preliminary

LM3S5747 Microcontroller

The Stellaris® family of microcontrollers builds on this core to bring high-performance 32-bit computing
to cost-sensitive embedded microcontroller applications, such as factory automation and control,
industrial control power devices, building and home automation, and stepper motors.

For more information on the ARMCortex-M3 processor core, see the ARM®Cortex™-M3 Technical
Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference
Manual.

2.1 Block Diagram

Figure 2-1. CPU Block Diagram

Private Peripheral
Bus

(internal)

Data
Watchpoint
and Trace

Interrupts

Debug

Sleep

Instrumentation
Trace Macrocell

Trace
Port

Interface
Unit

CM3 Core

Instructions Data

Flash
Patch and
Breakpoint

Memory
Protection

Unit

Adv. High-
Perf. Bus

Access Port

Nested
Vectored
Interrupt
Controller

Serial Wire JTAG
Debug Port

Bus
Matrix

Adv. Peripheral
Bus

I-code bus
D-code bus
System bus

ROM
Table

Private
Peripheral

Bus
(external)

Serial
Wire
Output
Trace
Port

(SWO)

ARM
Cortex-M3

2.2 Functional Description
Important: The ARM® Cortex™-M3 Technical Reference Manual describes all the features of an

ARM Cortex-M3 in detail. However, these features differ based on the implementation.
This section describes the Stellaris® implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 44. As
noted in the ARM® Cortex™-M3 Technical Reference Manual, several Cortex-M3 components are
flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested
Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

June 02, 200844
Preliminary

ARM Cortex-M3 Processor Core

2.2.1 Serial Wire and JTAG Debug
Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight™-compliant
Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, “Debug Port,” of the
ARM® Cortex™-M3 Technical Reference Manual does not apply to Stellaris® devices.

The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the
CoreSight™ Design Kit Technical Reference Manual for details on SWJ-DP.

2.2.2 Embedded Trace Macrocell (ETM)
ETM was not implemented in the Stellaris® devices. This means Chapters 15 and 16 of the ARM®
Cortex™-M3 Technical Reference Manual can be ignored.

2.2.3 Trace Port Interface Unit (TPIU)
The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace
Port Analyzer. The Stellaris® devices have implemented TPIU as shown in Figure 2-2 on page 45.
This is similar to the non-ETM version described in the ARM® Cortex™-M3 Technical Reference
Manual, however, SWJ-DP only provides SWV output for the TPIU.

Figure 2-2. TPIU Block Diagram

ATB
Interface

Asynchronous FIFO

APB
Interface

Trace Out
(serializer)

Debug
ATB
Slave
Port

APB
Slave
Port

Serial Wire
Trace Port
(SWO)

2.2.4 ROM Table
The default ROM table was implemented as described in the ARM® Cortex™-M3 Technical
Reference Manual.

2.2.5 Memory Protection Unit (MPU)
TheMemory Protection Unit (MPU) is included on the LM3S5747 controller and supports the standard
ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for
protection regions, overlapping protection regions, access permissions, and exporting memory
attributes to the system.

45June 02, 2008
Preliminary

LM3S5747 Microcontroller

2.2.6 Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC):

■ Facilitates low-latency exception and interrupt handling

■ Controls power management

■ Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of
priority. The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts. The NVICmaintains knowledge
of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode
if you enable the Configuration Control Register (see the ARM® Cortex™-M3 Technical Reference
Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

2.2.6.1 Interrupts
The ARM®Cortex™-M3 Technical Reference Manual describes the maximum number of interrupts
and interrupt priorities. The LM3S5747 microcontroller supports 30 interrupts with eight priority
levels.

In addition to the peripheral interrupts, the system also provides for a non-maskable interrupt. The
NMI is generally used in safety critical applications where the immediate execution of an interrupt
handler is required. The NMI signal is available as an external signal so that it may be generated
by external circuitry The NMI is also used internally as part of the main oscillator verification circuitry.
More information on the non-maskable interrupt is located in “Non-Maskable Interrupt” on page 70.

2.2.6.2 System Timer (SysTick)
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter
can be used in several different ways, for example:

■ An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a
SysTick routine.

■ A high-speed alarm timer using the system clock.

■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock
used and the dynamic range of the counter.

■ A simple counter. Software can use this to measure time to completion and time used.

■ An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field
in the control and status register can be used to determine if an action completed within a set
duration, as part of a dynamic clock management control loop.

Functional Description

The timer consists of three registers:

June 02, 200846
Preliminary

ARM Cortex-M3 Processor Core

■ A control and status counter to configure its clock, enable the counter, enable the SysTick
interrupt, and determine counter status.

■ The reload value for the counter, used to provide the counter's wrap value.

■ The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris® devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value
in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks.
Writing a value of zero to the Reload Value register disables the counter on the next wrap. When
the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write
does not trigger the SysTick exception logic. On a read, the current value is the value of the register
at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect
to a reference clock. The reference clock can be the core clock or an external clock source.

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is
0x0000.0000.

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

0ROreserved31:17

Count Flag

Returns 1 if timer counted to 0 since last time this was read. Clears on read by
application. If read by the debugger using the DAP, this bit is cleared on read-only
if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the
COUNTFLAG bit is not changed by the debugger read.

0R/WCOUNTFLAG16

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

0ROreserved15:3

Clock Source

DescriptionValue

External reference clock. (Not implemented for Stellaris microcontrollers.)0

Core clock1

If no reference clock is provided, it is held at 1 and so gives the same time as the
core clock. The core clock must be at least 2.5 times faster than the reference clock.
If it is not, the count values are unpredictable.

0R/WCLKSOURCE2

Tick Interrupt

DescriptionValue

Counting down to 0 does not generate the interrupt request to the NVIC.
Software can use the COUNTFLAG to determine if ever counted to 0.

0

Counting down to 0 pends the SysTick handler.1

0R/WTICKINT1

47June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Enable

DescriptionValue

Counter disabled.0

Counter operates in a multi-shot way. That is, counter loads with the Reload
value and then begins counting down. On reaching 0, it sets the
COUNTFLAG to 1 and optionally pends the SysTick handler, based on
TICKINT. It then loads the Reload value again, and begins counting.

1

0R/WENABLE0

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value
register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value
of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated
when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is
any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99
must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single
shot, then the actual count down must be written. For example, if a tick is next required after 400
clock pulses, 400 must be written into the RELOAD.

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a read-modify-write
operation.

0ROreserved31:24

Reload

Value to load into the SysTick Current Value Register when the counter reaches 0.

-W1CRELOAD23:0

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

0ROreserved31:24

Current Value

Current value at the time the register is accessed. No read-modify-write protection is
provided, so change with care.

This register is write-clear. Writing to it with any value clears the register to 0. Clearing
this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

-W1CCURRENT23:0

SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

June 02, 200848
Preliminary

ARM Cortex-M3 Processor Core

3 Memory Map
The memory map for the LM3S5747 controller is provided in Table 3-1 on page 49.

In this manual, register addresses are given as a hexadecimal increment, relative to the module’s
base address as shown in the memory map. See also Chapter 4, “Memory Map” in the ARM®
Cortex™-M3 Technical Reference Manual.

Table 3-1. Memory Mapa

For details on
registers, see
page ...

DescriptionEndStart

Memory

160On-chip flash b0x0001.FFFF0x0000.0000

-Reserved0x00FF.FFFF0x0002.0000

159On-chip ROM0x0100.2BFF0x0100.0000

-Reserved0x1FFF.FFFF0x0100.2C00

160Bit-banded on-chip SRAMc0x2000.FFFF0x2000.0000

-Reserved0x21FF.FFFF0x2001.0000

154Bit-band alias of 0x2000.0000 through 0x200F.FFFF0x221F.FFFF0x2200.0000

-Reserved0x3FFF.FFFF0x2220.0000

FiRM Peripherals

327Watchdog timer0x4000.0FFF0x4000.0000

-Reserved0x4000.3FFF0x4000.1000

252GPIO Port A0x4000.4FFF0x4000.4000

252GPIO Port B0x4000.5FFF0x4000.5000

252GPIO Port C0x4000.6FFF0x4000.6000

252GPIO Port D0x4000.7FFF0x4000.7000

435SSI00x4000.8FFF0x4000.8000

-Reserved0x4000.BFFF0x4000.9000

388UART00x4000.CFFF0x4000.C000

-Reserved0x4001.FFFF0x4000.D000

Peripherals

475I2C Master 00x4002.07FF0x4002.0000

488I2C Slave 00x4002.0FFF0x4002.0800

-Reserved0x4002.3FFF0x4002.1000

252GPIO Port E0x4002.4FFF0x4002.4000

252GPIO Port F0x4002.5FFF0x4002.5000

252GPIO Port G0x4002.6FFF0x4002.6000

252GPIO Port H0x4002.7FFF0x4002.7000

634PWM0x4002.8FFF0x4002.8000

-Reserved0x4002.FFFF0x4002.9000

302Timer00x4003.0FFF0x4003.0000

302Timer10x4003.1FFF0x4003.1000

302Timer20x4003.2FFF0x4003.2000

49June 02, 2008
Preliminary

LM3S5747 Microcontroller

For details on
registers, see
page ...

DescriptionEndStart

-Reserved0x4003.7FFF0x4003.3000

355ADC0x4003.8FFF0x4003.8000

-Reserved0x4003.FFFF0x4003.9000

509CAN0 Controller0x4004.0FFF0x4004.0000

-Reserved0x4004.FFFF0x4004.1000

552USB0x4005.0FFF0x4005.0000

-Reserved0x4005.7FFF0x4005.1000

252GPIO Port A (AHB aperture)0x4005.8FFF0x4005.8000

252GPIO Port B (AHB aperture)0x4005.9FFF0x4005.9000

252GPIO Port C (AHB aperture)0x4005.AFFF0x4005.A000

252GPIO Port D (AHB aperture)0x4005.BFFF0x4005.B000

252GPIO Port E (AHB aperture)0x4005.CFFF0x4005.C000

252GPIO Port F (AHB aperture)0x4005.DFFF0x4005.D000

252GPIO Port G (AHB aperture)0x4005.EFFF0x4005.E000

252GPIO Port H (AHB aperture)0x4005.FFFF0x4005.F000

-Reserved0x400F.BFFF0x4006.0000

140Hibernation Module0x400F.CFFF0x400F.C000

160Flash control0x400F.DFFF0x400F.D000

77System control0x400F.EFFF0x400F.E000

203uDMA0x400F.FFFF0x400F.F000

-Reserved0x41FF.FFFF0x4010.0000

-Bit-banded alias of 0x4000.0000 through 0x400F.FFFF0x43FF.FFFF0x4200.0000

-Reserved0xDFFF.FFFF0x4400.0000

Private Peripheral Bus

ARM®
Cortex™-M3
Technical
Reference
Manual

Instrumentation Trace Macrocell (ITM)0xE000.0FFF0xE000.0000

ARM®
Cortex™-M3
Technical
Reference
Manual

Data Watchpoint and Trace (DWT)0xE000.1FFF0xE000.1000

ARM®
Cortex™-M3
Technical
Reference
Manual

Flash Patch and Breakpoint (FPB)0xE000.2FFF0xE000.2000

-Reserved0xE000.DFFF0xE000.3000

ARM®
Cortex™-M3
Technical
Reference
Manual

Nested Vectored Interrupt Controller (NVIC)0xE000.EFFF0xE000.E000

-Reserved0xE003.FFFF0xE000.F000

June 02, 200850
Preliminary

Memory Map

For details on
registers, see
page ...

DescriptionEndStart

ARM®
Cortex™-M3
Technical
Reference
Manual

Trace Port Interface Unit (TPIU)0xE004.0FFF0xE004.0000

-Reserved0xFFFF.FFFF0xE004.1000

a. All reserved space returns a bus fault when read or written.
b. The unavailable flash will bus fault throughout this range.
c. The unavailable SRAM will bus fault throughout this range.

51June 02, 2008
Preliminary

LM3S5747 Microcontroller

4 Interrupts
The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and
handle all exceptions. All exceptions are handled in Handler Mode. The processor state is
automatically stored to the stack on an exception, and automatically restored from the stack at the
end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which
enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back
interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 52 lists all exception types. Software can set eight priority levels on seven of
these exceptions (system handlers) as well as on 30 interrupts (listed in Table 4-2 on page 53).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts
are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt
Priority registers. You also can group priorities by splitting priority levels into pre-emption priorities
and subpriorities. All of the interrupt registers are described in Chapter 8, “Nested Vectored Interrupt
Controller” in the ARM® Cortex™-M3 Technical Reference Manual.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and
a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower
position number) determines the order in which the processor activates them. For example, if both
GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

See Chapter 5, “Exceptions” and Chapter 8, “Nested Vectored Interrupt Controller” in the ARM®
Cortex™-M3 Technical Reference Manual for more information on exceptions and interrupts.

Table 4-1. Exception Types

DescriptionPriorityaVector
Number

Exception Type

Stack top is loaded from first entry of vector table on reset.-0-

Invoked on power up and warm reset. On first instruction, drops to lowest
priority (and then is called the base level of activation). This is
asynchronous.

-3 (highest)1Reset

Cannot be stopped or preempted by any exception but reset. This is
asynchronous.

-22Non-Maskable Interrupt
(NMI)

All classes of Fault, when the fault cannot activate due to priority or the
configurable fault handler has been disabled. This is synchronous.

-13Hard Fault

MPU mismatch, including access violation and no match. This is
synchronous.

The priority of this exception can be changed.

settable4Memory Management

Pre-fetch fault, memory access fault, and other address/memory related
faults. This is synchronous when precise and asynchronous when
imprecise.

You can enable or disable this fault.

settable5Bus Fault

Usage fault, such as undefined instruction executed or illegal state
transition attempt. This is synchronous.

settable6Usage Fault

Reserved.-7-10-

System service call with SVC instruction. This is synchronous.settable11SVCall

Debug monitor (when not halting). This is synchronous, but only active
when enabled. It does not activate if lower priority than the current
activation.

settable12Debug Monitor

June 02, 200852
Preliminary

Interrupts

DescriptionPriorityaVector
Number

Exception Type

Reserved.-13-

Pendable request for system service. This is asynchronous and only
pended by software.

settable14PendSV

System tick timer has fired. This is asynchronous.settable15SysTick

Asserted from outside the ARM Cortex-M3 core and fed through the
NVIC (prioritized). These are all asynchronous. Table 4-2 on page 53
lists the interrupts on the LM3S5747 controller.

settable16 and
above

Interrupts

a. 0 is the default priority for all the settable priorities.

Table 4-2. Interrupts

DescriptionInterrupt Number (Bit in
Interrupt Registers)

Vector Number

Processor exceptions-0-15

GPIO Port A016

GPIO Port B117

GPIO Port C218

GPIO Port D319

GPIO Port E420

UART0521

Reserved622

SSI0723

I2C0824

PWM Fault925

PWM Generator 01026

PWM Generator 11127

PWM Generator 21228

Reserved1329

ADC Sequence 01430

ADC Sequence 11531

ADC Sequence 21632

ADC Sequence 31733

Watchdog timer1834

Timer0 A1935

Timer0 B2036

Timer1 A2137

Timer1 B2238

Timer2 A2339

Timer2 B2440

Reserved25-2741-43

System Control2844

Flash Control2945

GPIO Port F3046

GPIO Port G3147

GPIO Port H3248

53June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionInterrupt Number (Bit in
Interrupt Registers)

Vector Number

Reserved33-3849-54

CAN03955

Reserved40-4256-58

Hibernation Module4359

USB4460

Reserved4561

uDMA Software4662

uDMA Error4763

June 02, 200854
Preliminary

Interrupts

5 JTAG Interface
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing
information on the components. The JTAG Port also provides a means of accessing and controlling
design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of four pins: TCK, TMS, TDI, and TDO. Data is transmitted serially into
the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent
on the current state of the TAP controller. For detailed information on the operation of the JTAG
port and TAP controller, please refer to the IEEE Standard 1149.1-Test Access Port and
Boundary-Scan Architecture.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3
core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG
instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary
Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has
comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

The JTAG module has the following features:

■ IEEE 1149.1-1990 compatible Test Access Port (TAP) controller

■ Four-bit Instruction Register (IR) chain for storing JTAG instructions

■ IEEE standard instructions:

– BYPASS instruction

– IDCODE instruction

– SAMPLE/PRELOAD instruction

– EXTEST instruction

– INTEST instruction

■ ARM additional instructions:

– APACC instruction

– DPACC instruction

– ABORT instruction

■ Integrated ARM Serial Wire Debug (SWD)

See the ARM® Cortex™-M3 Technical Reference Manual for more information on the ARM JTAG
controller.

55June 02, 2008
Preliminary

LM3S5747 Microcontroller

5.1 Block Diagram

Figure 5-1. JTAG Module Block Diagram

Instruction Register (IR)

TAP Controller

BYPASS Data Register

Boundary Scan Data Register

IDCODE Data Register

ABORT Data Register

DPACC Data Register

APACC Data Register

TCK
TMS

TDI

TDO

Cortex-M3
Debug
Port

5.2 Functional Description
A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 56. The JTAG
module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel
update registers. The TAP controller is a simple state machine controlled by the TCK and TMS inputs.
The current state of the TAP controller depends on the sequence of values captured on TMS at the
rising edge of TCK. The TAP controller determines when the serial shift chains capture new data,
shift data from TDI towards TDO, and update the parallel load registers. The current state of the
TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register
(DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR)
chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load
register determines which DR chain is captured, shifted, or updated during the sequencing of the
TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not
capture, shift, or update any of the chains. Instructions that are not implemented decode to the
BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see
Table 5-2 on page 62 for a list of implemented instructions).

See “JTAG and Boundary Scan” on page 688 for JTAG timing diagrams.

June 02, 200856
Preliminary

JTAG Interface

5.2.1 JTAG Interface Pins
The JTAG interface consists of four standard pins: TCK, TMS, TDI, and TDO. These pins and their
associated reset state are given in Table 5-1 on page 57. Detailed information on each pin follows.

Table 5-1. JTAG Port Pins Reset State

Drive ValueDrive StrengthInternal Pull-DownInternal Pull-UpData DirectionPin Name

N/AN/ADisabledEnabledInputTCK

N/AN/ADisabledEnabledInputTMS

N/AN/ADisabledEnabledInputTDI

High-Z2-mA driverDisabledEnabledOutputTDO

5.2.1.1 Test Clock Input (TCK)
The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate
independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers
that are daisy-chained together can synchronously communicate serial test data between
components. During normal operation, TCK is driven by a free-running clock with a nominal 50%
duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK
is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction
and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no
clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down
resistors can be turned off to save internal power as long as the TCK pin is constantly being driven
by an external source.

5.2.1.2 Test Mode Select (TMS)
The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge
of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered.
Because the TMS pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the
value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the
Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG
module and associated registers are reset to their default values. This procedure should be performed
to initialize the JTAG controller. The JTAG Test Access Port state machine can be seen in its entirety
in Figure 5-2 on page 59.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled
on PC1/TMS; otherwise JTAG communication could be lost.

5.2.1.3 Test Data Input (TDI)
The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is
sampled on the rising edge of TCK and, depending on the current TAP state and the current
instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on
the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDI to change on the falling
edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled
on PC2/TDI; otherwise JTAG communication could be lost.

57June 02, 2008
Preliminary

LM3S5747 Microcontroller

5.2.1.4 Test Data Output (TDO)
The TDO pin provides an output stream of serial information from the IR chain or the DR chains.
The value of TDO depends on the current TAP state, the current instruction, and the data in the
chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin
is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected
to the TDI of another controller in a daisy-chain configuration, the IEEE Standard 1149.1 expects
the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the
pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and
pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable
during certain TAP controller states.

5.2.2 JTAG TAP Controller
The JTAG TAP controller state machine is shown in Figure 5-2 on page 59. The TAP controller
state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR).
Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions,
shift in data, or idle during extended testing sequences. For detailed information on the function of
the TAP controller and the operations that occur in each state, please refer to IEEE Standard 1149.1.

June 02, 200858
Preliminary

JTAG Interface

Figure 5-2. Test Access Port State Machine

Test Logic Reset

Run Test Idle Select DR Scan Select IR Scan

Capture DR Capture IR

Shift DR Shift IR

Exit 1 DR Exit 1 IR

Exit 2 DR Exit 2 IR

Pause DR Pause IR

Update DR Update IR

1 11

1 1

1

1 1

1 1

1 1

1 1

1 10 0

00

00

0 0

0 0

0 0

00

0

0

5.2.3 Shift Registers
The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift
register chain samples specific information during the TAP controller’s CAPTURE states and allows
this information to be shifted out of TDO during the TAP controller’s SHIFT states. While the sampled
data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register
on TDI. This new data is stored in the parallel load register during the TAP controller’s UPDATE
states. Each of the shift registers is discussed in detail in “Register Descriptions” on page 62.

5.2.4 Operational Considerations
There are certain operational considerations when using the JTAGmodule. Because the JTAG pins
can be programmed to be GPIOs, board configuration and reset conditions on these pins must be
considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the
method for switching between these two operational modes is described below.

59June 02, 2008
Preliminary

LM3S5747 Microcontroller

5.2.4.1 GPIO Functionality
When the controller is reset with either a POR or RST, the JTAG/SWD port pins default to their
JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting
GPIODEN to 1), enabling the pull-up resistors (setting GPIOPUR to 1), and enabling the alternate
hardware function (setting GPIOAFSEL to 1) for the PC[3:0] JTAG/SWD pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PC[3:0] in
the GPIOAFSEL register. If the user does not require the JTAG/SWD port for debugging or
board-level testing, this provides four more GPIOs for use in the design.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the
controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This
can be avoidedwith a software routine that restores JTAG functionality based on an external or software
trigger.

The commit control registers provide a layer of protection against accidental programming of critical
hardware peripherals. Writes to protected bits of theGPIOAlternate Function Select (GPIOAFSEL)
register (see page 263),GPIO Pull-Up Select (GPIOPUR) register (see page 269), andGPIODigital
Enable (GPIODEN) register (see page 272) are not committed to storage unless the GPIO Lock
(GPIOLOCK) register (see page 274) has been unlocked and the appropriate bits of the GPIO
Commit (GPIOCR) register (see page 275) have been set to 1.

Recovering a "Locked" Device

Note: Performing the below sequence will cause the nonvolatile registers discussed in “Nonvolatile
Register Programming” on page 157 to be restored to their factory default values. Themass
erase of the flash memory caused by the below sequence occurs prior to the nonvolatile
registers being restored.

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate
with the debugger, there is a debug sequence that can be used to recover the device. Performing
a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset
mass erases the flash memory. The sequence to recover the device is:

1. Assert and hold the RST signal.

2. Perform the JTAG-to-SWD switch sequence.

3. Perform the SWD-to-JTAG switch sequence.

4. Perform the JTAG-to-SWD switch sequence.

5. Perform the SWD-to-JTAG switch sequence.

6. Perform the JTAG-to-SWD switch sequence.

7. Perform the SWD-to-JTAG switch sequence.

8. Perform the JTAG-to-SWD switch sequence.

9. Perform the SWD-to-JTAG switch sequence.

10. Perform the JTAG-to-SWD switch sequence.

June 02, 200860
Preliminary

JTAG Interface

11. Perform the SWD-to-JTAG switch sequence.

12. Release the RST signal.

13. Wait 400 ms.

14. Power-cycle the device.

The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in “ARM Serial Wire Debug
(SWD)” on page 61. When performing switch sequences for the purpose of recovering the debug
capabilities of the device, only steps 1 and 2 of the switch sequence need to be performed.

5.2.4.2 ARM Serial Wire Debug (SWD)
In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire
debugger must be able to connect to the Cortex-M3 core without having to perform, or have any
knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the
SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DPmodule starts with the TAP controller
in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the
following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test
Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run
Test Idle, Select DR, Select IR, and Test Logic Reset states.

Stepping through this sequences of the TAP state machine enables the SWD interface and disables
the JTAG interface. For more information on this operation and the SWD interface, see the ARM®
Cortex™-M3 Technical Reference Manual and the ARM® CoreSight Technical Reference Manual.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG
TAP controller is not fully compliant to the IEEE Standard 1149.1. This is the only instance where
the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low
probability of this sequence occurring during normal operation of the TAP controller, it should not
affect normal performance of the JTAG interface.

JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the
external debug hardware must send a switch sequence to the device. The 16-bit switch sequence
for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also
be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should
consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and
SWD are in their reset/idle states.

2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.

3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was
already in SWD mode, before sending the switch sequence, the SWD goes into the line reset
state.

SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the
external debug hardware must send a switch sequence to the device. The 16-bit switch sequence
for switching to JTAG mode is defined as b1110011110011110, transmitted LSB first. This can also

61June 02, 2008
Preliminary

LM3S5747 Microcontroller

be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should
consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and
SWD are in their reset/idle states.

2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.

3. Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was
already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic
Reset state.

5.3 Initialization and Configuration
After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for
JTAG communication. No user-defined initialization or configuration is needed. However, if the user
application changes these pins to their GPIO function, they must be configured back to their JTAG
functionality before JTAG communication can be restored. This is done by enabling the four JTAG
pins (PC[3:0]) for their alternate function using the GPIOAFSEL register.

5.4 Register Descriptions
There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The
registers within the JTAG controller are all accessed serially through the TAP Controller. The registers
can be broken down into two main categories: Instruction Registers and Data Registers.

5.4.1 Instruction Register (IR)
The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register
connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct
states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the
chain and updated, they are interpreted as the current instruction. The decode of the Instruction
Register bits is shown in Table 5-2 on page 62. A detailed explanation of each instruction, along
with its associated Data Register, follows.

Table 5-2. JTAG Instruction Register Commands

DescriptionInstructionIR[3:0]

Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD
instruction onto the pads.

EXTEST0000

Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD
instruction into the controller.

INTEST0001

Captures the current I/O values and shifts the sampled values out of the Boundary Scan
Chain while new preload data is shifted in.

SAMPLE / PRELOAD0010

Shifts data into the ARM Debug Port Abort Register.ABORT1000

Shifts data into and out of the ARM DP Access Register.DPACC1010

Shifts data into and out of the ARM AC Access Register.APACC1011

Loads manufacturing information defined by the IEEE Standard 1149.1 into the IDCODE
chain and shifts it out.

IDCODE1110

Connects TDI to TDO through a single Shift Register chain.BYPASS1111

Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.ReservedAll Others

June 02, 200862
Preliminary

JTAG Interface

5.4.1.1 EXTEST Instruction
The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction
uses the data that has been preloaded into the Boundary Scan Data Register using the
SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register,
the preloaded data in the Boundary Scan Data Register associated with the outputs and output
enables are used to drive the GPIO pads rather than the signals coming from the core. This allows
tests to be developed that drive known values out of the controller, which can be used to verify
connectivity.

5.4.1.2 INTEST Instruction
The INTEST instruction does not have an associated Data Register chain. The INTEST instruction
uses the data that has been preloaded into the Boundary Scan Data Register using the
SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register,
the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive
the signals going into the core rather than the signals coming from the GPIO pads. This allows tests
to be developed that drive known values into the controller, which can be used for testing.

5.4.1.3 SAMPLE/PRELOAD Instruction
The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between
TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads
new test data. Each GPIO pad has an associated input, output, and output enable signal. When the
TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable
signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while
the TAP controller is in the Shift DR state and can be used for observation or comparison in various
tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary
Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI.
Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the
parallel load registers when the TAP controller enters the Update DR state. This update of the
parallel load register preloads data into the Boundary Scan Data Register that is associated with
each input, output, and output enable. This preloaded data can be used with the EXTEST and
INTEST instructions to drive data into or out of the controller. Please see “Boundary Scan Data
Register” on page 65 for more information.

5.4.1.4 ABORT Instruction
The ABORT instruction connects the associated ABORT Data Register chain between TDI and
TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates
a DAP abort of a previous request. Please see the “ABORT Data Register” on page 66 for more
information.

5.4.1.5 DPACC Instruction
The DPACC instruction connects the associated DPACC Data Register chain between TDI and
TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this register and reading the data output from this
register allows read and write access to the ARM debug and status registers. Please see “DPACC
Data Register” on page 65 for more information.

63June 02, 2008
Preliminary

LM3S5747 Microcontroller

5.4.1.6 APACC Instruction
The APACC instruction connects the associated APACC Data Register chain between TDI and
TDO. This instruction provides read and write access to the APACC Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this register and reading the data output from this
register allows read and write access to internal components and buses through the Debug Port.
Please see “APACC Data Register” on page 65 for more information.

5.4.1.7 IDCODE Instruction
The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and
TDO. This instruction provides information on the manufacturer, part number, and version of the
ARM core. This information can be used by testing equipment and debuggers to automatically
configure their input and output data streams. IDCODE is the default instruction that is loaded into
the JTAG Instruction Register when a power-on-reset (POR) is asserted, or the Test-Logic-Reset
state is entered. Please see “IDCODE Data Register” on page 64 for more information.

5.4.1.8 BYPASS Instruction
The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and
TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports.
The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by
allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain
by loading them with the BYPASS instruction. Please see “BYPASS Data Register” on page 65 for
more information.

5.4.2 Data Registers
The JTAGmodule contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan,
APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed
in the following sections.

5.4.2.1 IDCODE Data Register
The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 5-3 on page 64. The standard requires that every JTAG-compliant device implement either
the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE
Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB
of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program
development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE
instruction outputs a value of 0x3BA00477. This value indicates an ARM Cortex-M3, Version 1
processor. This allows the debuggers to automatically configure themselves to work correctly with
the Cortex-M3 during debug.

Figure 5-3. IDCODE Register Format

Version Part Number Manufacturer ID 1

31 28 27 12 11 1 0
TDOTDI

June 02, 200864
Preliminary

JTAG Interface

5.4.2.2 BYPASS Data Register
The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 5-4 on page 65. The standard requires that every JTAG-compliant device implement either
the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS
Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB
of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format

0 TDOTDI

0

5.4.2.3 Boundary Scan Data Register
The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 65. Each GPIO
pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data
Register. Each GPIO pin has three associated digital signals that are included in the chain. These
signals are input, output, and output enable, and are arranged in that order as can be seen in the
figure. In addition to the GPIO pins, the controller reset pin, RST, is included in the chain. Because
the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the
input, output, and output enable from each digital pad are sampled and then shifted out of the chain
to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR
state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain
in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with
the EXTEST and INTEST instructions. These instructions either force data out of the controller, with
the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 5-5. Boundary Scan Register Format

I
N

TDI

GPIO PB6

TDO...
O
U
T

O
E

I
N

GPIO m

O
U
T

O
E

I
N

GPIO m +1

O
U
T

O
E

... I
N

GPIO n

O
U
T

O
E

For detailed information on the order of the input, output, and output enable bits for each of the
GPIO ports, please refer to the Stellaris® Family Boundary Scan Description Language (BSDL) files,
downloadable from www.luminarymicro.com.

5.4.2.4 APACC Data Register
The format for the 35-bit APACC Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.

5.4.2.5 DPACC Data Register
The format for the 35-bit DPACC Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.

65June 02, 2008
Preliminary

LM3S5747 Microcontroller

5.4.2.6 ABORT Data Register
The format for the 35-bit ABORT Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.

June 02, 200866
Preliminary

JTAG Interface

6 System Control
System control determines the overall operation of the device. It provides information about the
device, controls the clocking to the core and individual peripherals, and handles reset detection and
reporting.

6.1 Functional Description
The System Control module provides the following capabilities:

■ Device identification, see “Device Identification” on page 67

■ Local control, such as reset (see “Reset Control” on page 67), power (see “Power
Control” on page 70) and clock control (see “Clock Control” on page 70)

■ System control (Run, Sleep, and Deep-Sleep modes), see “System Control” on page 74

6.1.1 Device Identification
Seven read-only registers provide software with information on the microcontroller, such as version,
part number, SRAM size, flash size, and other features. See theDID0,DID1, andDC0-DC7 registers.

6.1.2 Reset Control
This section discusses aspects of hardware functions during reset as well as system software
requirements following the reset sequence.

6.1.2.1 Reset Sources
The controller has six sources of reset:

1. External reset input pin (RST) assertion, see “RST Pin Assertion” on page 67.

2. Power-on reset (POR), see “Power-On Reset (POR)” on page 68.

3. Internal brown-out (BOR) detector, see “Brown-Out Reset (BOR)” on page 68.

4. Software-initiated reset (with the software reset registers), see “Software Reset” on page 69.

5. A watchdog timer reset condition violation, see “Watchdog Timer Reset” on page 69.

6. MOSC failure

After a reset, the Reset Cause (RESC) register is set with the reset cause. The bits in this register
are sticky and maintain their state across multiple reset sequences, except when an internal POR
is the cause, and then all the other bits in theRESC register are cleared except for the POR indicator.

6.1.2.2 RST Pin Assertion
The external reset pin (RST) resets the controller. This resets the core and all the peripherals except
the JTAG TAP controller (see “JTAG Interface” on page 55). The external reset sequence is as
follows:

1. The external reset pin (RST) is asserted and then de-asserted.

67June 02, 2008
Preliminary

LM3S5747 Microcontroller

2. The internal reset is released and the core loads from memory the initial stack pointer, the initial
program counter, the first instruction designated by the program counter, and begins execution.
A few clocks cycles from RST de-assertion to the start of the reset sequence is necessary for
synchronization.

The external reset timing is shown in Figure 23-9 on page 690.

6.1.2.3 Power-On Reset (POR)
The Power-On Reset (POR) circuit monitors the power supply voltage (VDD). The POR circuit
generates a reset signal to the internal logic when the power supply ramp reaches a threshold value
(VTH). If the application only uses the POR circuit, the RST input needs to be connected to the power
supply (VDD) through a pull-up resistor (1K to 10K Ω).

The device must be operating within the specified operating parameters at the point when the on-chip
power-on reset pulse is complete. The 3.3-V power supply to the device must reach 3.0 V within
10 msec of it crossing 2.0 V to guarantee proper operation. For applications that require the use of
an external reset to hold the device in reset longer than the internal POR, the RST input may be
used with the circuit as shown in Figure 6-1 on page 68.

Figure 6-1. External Circuitry to Extend Reset

R1

C1
R2

RST

Stellaris
D1

The R1 and C1 components define the power-on delay. The R2 resistor mitigates any leakage from
the RST input. The diode (D1) discharges C1 rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

1. The controller waits for the later of external reset (RST) or internal POR to go inactive.

2. The internal reset is released and the core loads from memory the initial stack pointer, the initial
program counter, the first instruction designated by the program counter, and begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing
is shown in Figure 23-10 on page 690.

Note: The power-on reset also resets the JTAG controller. An external reset does not.

6.1.2.4 Brown-Out Reset (BOR)
A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used
to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (VDD) drops
below a brown-out threshold voltage (VBTH). If a brown-out condition is detected, the system may
generate a controller interrupt or a system reset.

June 02, 200868
Preliminary

System Control

Brown-out resets are controlled with the Power-On and Brown-Out Reset Control (PBORCTL)
register. The BORIOR bit in the PBORCTL register must be set for a brown-out condition to trigger
a reset.

The brown-out reset is equivelent to an assertion of the external RST input and the reset is held
active until the proper VDD level is restored. TheRESC register can be examined in the reset interrupt
handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to
determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 23-11 on page 691.

6.1.2.5 Software Reset
Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each
peripheral (see the SRCRn registers). If the bit position corresponding to a peripheral is set and
subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with
the encoding of the clock gating control for peripherals and on-chip functions (see “System
Control” on page 74). Note that all reset signals for all clocks of the specified unit are asserted as
a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3
Application Interrupt and Reset Control register resets the entire system including the core. The
software-initiated system reset sequence is as follows:

1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3
Application Interrupt and Reset Control register.

2. An internal reset is asserted.

3. The internal reset is deasserted and the controller loads from memory the initial stack pointer,
the initial program counter, and the first instruction designated by the program counter, and
then begins execution.

The software-initiated system reset timing is shown in Figure 23-12 on page 691.

6.1.2.6 Watchdog Timer Reset
The watchdog timer module's function is to prevent system hangs. The watchdog timer can be
configured to generate an interrupt to the controller on its first time-out, and to generate a reset
signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of theWatchdog Timer
Load (WDTLOAD) register, and the timer resumes counting down from that value. If the timer counts
down to its zero state again before the first time-out interrupt is cleared, and the reset signal has
been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset
sequence is as follows:

1. The watchdog timer times out for the second time without being serviced.

2. An internal reset is asserted.

3. The internal reset is released and the controller loads from memory the initial stack pointer, the
initial program counter, the first instruction designated by the program counter, and begins
execution.

69June 02, 2008
Preliminary

LM3S5747 Microcontroller

The watchdog reset timing is shown in Figure 23-13 on page 691.

6.1.3 Non-Maskable Interrupt
The controller has two sources of non-maskable interrupt (NMI):

■ The assertion of the NMI signal.

■ A main oscillator verification error.

If both sources of NMI are enabled, software must check that the main oscillator verification is the
cause of the interrupt in order to distinguish between the two sources.

6.1.3.1 NMI Pin
The alternate function to GPIO port pin B7 is an NMI signal. The alternate function must be enabled
in the GPIO for the signal to be used as an interrupt, as described in “General-Purpose Input/Outputs
(GPIOs)” on page 244. Note that enabling the NMI alternate function requires the use of the GPIO
lock and commit function just like the GPIO port pins associated with JTAG/SWD functionality. The
active sense of the NMI signal is High; asserting the enabled NMI signal above VIH initiates the NMI
interrupt sequence.

6.1.3.2 Main Oscillator Verification Failure
The main oscillator verification circuit may generate a reset event and then, during the subsequent
POR, control is transferred to the NMI handler. The detection circuit is enabled using the CVAL bit
in theMain Oscillator Control (MOSCCTL) register. Themain oscillator verification error is indicated
in the main oscillator fail status bit (MOSCFAIL bit in the Reset Cause (RESC) register. The main
oscillator verification circuit action is described in more detail in “Clock Control” on page 70.

6.1.4 Power Control
The Stellaris® microcontroller provides an integrated LDO regulator that may be used to provide
power to the majority of the controller's internal logic. The LDO regulator provides software a
mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V
to 2.75 V (inclusive)—or 2.5 V ± 10%. The adjustment is made by changing the value of the VADJ
field in the LDO Power Control (LDOPCTL) register.

Note: On the printed circuit board, use the LDO output as the source of VDD25 input. In addition,
the LDO requires decoupling capacitors. See “On-Chip Low Drop-Out (LDO) Regulator
Characteristics” on page 681.

6.1.5 Clock Control
System control determines the control of clocks in this part.

6.1.5.1 Fundamental Clock Sources
There are four clock sources for use in the device:

■ Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require
the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%.
Applications that do not depend on accurate clock sources may use this clock source to reduce
system cost. The internal oscillator is the clock source the device uses during and following POR.
If the main oscillator is required, software must enable the main oscillator following reset and
allow the main oscillator to stabilize before changing the clock reference.

June 02, 200870
Preliminary

System Control

■ Main Oscillator (MOSC): The main oscillator provides a frequency-accurate clock source by
one of two means: an external single-ended clock source is connected to the OSC0 input pin, or
an external crystal is connected across the OSC0 input and OSC1 output pins. If the PLL is being
used, the crystal value must be one of the supported frequencies between 3.579545MHz through
16.384 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported
frequencies between 1 MHz and 16.384 MHz. The single-ended clock source range is from DC
through the specified speed of the device. The supported crystals are listed in the XTAL bit field
in the RCC register (see page 86).

■ Internal 30-kHz Oscillator: The internal 30-kHz oscillator is similar to the internal oscillator,
except that it provides an operational frequency of 30 kHz ± 50%. It is intended for use during
Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal
switching and also allows the main oscillator to be powered down.

■ External Real-Time Oscillator: The external real-time oscillator provides a low-frequency,
accurate clock reference. It is intended to provide the system with a real-time clock source. The
real-time oscillator is part of the Hibernation Module (“Hibernation Module” on page 131) and may
also provide an accurate source of Deep-Sleep or Hibernate mode power savings.

The internal system clock (SysClk), is derived from any of the four sources plus two others: the
output of the main internal PLL, and the internal oscillator divided by four (3 MHz ± 30%). The
frequency of the PLL clock reference must be in the range of 3.579545 MHz to 16.384 MHz
(inclusive).

The Run-Mode Clock Configuration (RCC) and Run-Mode Clock Configuration 2 (RCC2)
registers provide control for the system clock. The RCC2 register is provided to extend fields that
offer additional encodings over the RCC register. When used, the RCC2 register field values are
used by the logic over the corresponding field in the RCC register. In particular, RCC2 provides for
a larger assortment of clock configuration options.

Figure 6-2 on page 72 shows the logic for the main clock tree. The peripheral blocks are driven by
the system clock signal and can be programmatically enabled/disabled. The ADC clock signal is
automatically divided down to 16 MHz for proper ADC operation. The PWM clock signal is a
synchronous divide by of the system clock to provide the PWM circuit with more range.

71June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 6-2. Main Clock Tree

PLL
(240 MHz) ÷ 4

PLL
(400 MHz)Main OSC

Internal
OSC

(12 MHz)

Internal
OSC

(30 kHz)

÷ 4

Hibernation
Module

(32.768 kHz)

÷ 25

PWRDN

ADC Clock

System Clock

USB Clock

XTALa
USBPWRDNc

XTALa
PWRDN b

MOSCDIS a

IOSCDISa

OSCSRCb,d

BYPASS b,d

SYSDIVb,d

USESYSDIVa,d

PWMDW a

USEPWMDIV a

PWM Clock

a. Control provided by RCC register bit/field.
b. Control provided by RCC register bit/field or RCC2 register bit/field, if overridden with RCC2 register bit USERCC2.
c. Control provided by RCC2 register bit/field.
d. Also may be controlled by DSLPCLKCFG when in deep sleep mode.

Note: The figure above shows all features available on all Stellaris® DustDevil-class devices.

6.1.5.2 Crystal Configuration for the Main Oscillator (MOSC)
The main oscillator supports the use of a select number of crystals. If the main oscillator is used by
the PLL as a reference clock, the supported range of crystals is 3.579545 to 16.384 MHz, otherwise,
the range of supported crystals is 1 to 16.384 MHz.

The XTAL bit in the RCC register (see page 86) describes the available crystal choices and default
programming values.

June 02, 200872
Preliminary

System Control

Software configures the RCC register XTAL field with the crystal number. If the PLL is used in the
design, the XTAL field value is internally translated to the PLL settings.

6.1.5.3 Main PLL Frequency Configuration
The main PLL is disabled by default during power-on reset and is enabled later by software if
required. Software specifies the output divisor to set the system clock frequency, and enables the
main PLL to drive the output.

If the main oscillator provides the clock reference to the main PLL, the translation provided by
hardware and used to program the PLL is available for software in the XTAL to PLL Translation
(PLLCFG) register (see page 91). The internal translation provides a translation within ± 1% of the
targeted PLL VCO frequency.

The Crystal Value field (XTAL) on page 86 describes the available crystal choices and default
programming of the PLLCFG register. The crystal number is written into the XTAL field of the
Run-Mode Clock Configuration (RCC) register. Any time the XTAL field changes, the new settings
are translated and the internal PLL settings are updated.

6.1.5.4 USB PLL Frequency Configuration
The USB PLL is disabled by default during power-on reset and is enabled later by software. The
USB PLLmust be enabled and running for proper USB function. The main oscillator is the only clock
reference for the USB PLL. The USB PLL is enabled by clearing the USBPWRDN bit of the RCC2
register. The XTAL bit field (Crystal Value) of theRCC register describes the available crystal choices.
The main oscillator must be connected to one of the following crystal values in order to correctly
generate the USB clock: 4, 5, 6, 8, 10, 12, or 16 MHz. Only these crystals provide the necessary
USB PLL VCO frequency to conform with the USB timing specifications.

6.1.5.5 PLL Modes
Both PLLs have two modes of operation: Normal and Power-Down

■ Normal: The PLL multiplies the input clock reference and drives the output.

■ Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC/RCC2 register fields (see page 86 and page 94).

6.1.5.6 PLL Operation
If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks)
to the new setting. The time between the configuration change and relock is TREADY (see Table
23-8 on page 684) for the main PLL and TUSBREADY for the USB PLL. During the relock time, the
affected PLL is not usable as a clock reference.

Either PLL is changed by one of the following:

■ Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.

■ Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure both the TREADY and TUSBREADY requirements. The counter is
clocked by the main oscillator. The range of the main oscillator has been taken into account and
the down counter is set to 0x1200 (that is, ~600 μs at an 8.192 MHz external oscillator clock). When
the XTAL value is greater than 0x0f, the down counter is set to 0x2400 to maintain the required lock
time on higher frequency crystal inputs. Hardware is provided to keep the PLL from being used as

73June 02, 2008
Preliminary

LM3S5747 Microcontroller

a system clock until the TREADY condition is met after one of the two changes above. It is the user's
responsibility to have a stable clock source (like the main oscillator) before the RCC/RCC2 register
is switched to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system
control hardware continues to clock the controller from the oscillator selected by the RCC/RCC2
register until the main PLL is stable (TREADY time met), after which it changes to the PLL. Software
can use many methods to ensure that the system is clocked from the main PLL, including periodically
polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register, and enabling the PLL Lock
interrupt.

The USB PLL is not protected during the lock time (TUSBREADY) and software should ensure that
the USB PLL has locked before using the interface. Software can use many methods to ensure the
TUSBREADY period has passed, including periodically polling the the USBPLLLRIS bit in the Raw
Interrupt Status (RIS) register, and enabling the USB PLL Lock interrupt.

6.1.5.7 Main Oscillator Verification Circuit
A circuit is added to ensure that the main oscillator is running at the appropriate frequency. The
circuit monitors the main oscillator frequency and signals if the frequency is outside of the allowable
band of attached crystals.

The detection circuit is enabled using the CVAL bit in the Main Oscillator Control (MOSCCTL)
register. If this circuit is enabled and detects an error, the following sequence is performed by the
hardware:

1. The MOSCFAIL bit in the Reset Cause (RESC) register is set.

2. If the internal oscillator (IOSC) is disabled, it is enabled.

3. The system clock is switched from the main oscillator to the IOSC.

4. A system-wide reset is initiated that lasts for 32 IOSC periods.

5. Reset is de-asserted and the processor is directed to the NMI handler during the reset sequence.

6.1.6 System Control
For power-savings purposes, the RCGCn , SCGCn , and DCGCn registers control the clock gating
logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep
mode, respectively.

In Run mode, the processor executes code. In Sleep mode, the clock frequency of the active
peripherals is unchanged, but the processor is not clocked and therefore no longer executes code.
In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the
Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns
the device to Run mode from one of the sleep modes; the sleep modes are entered on request from
the code. Each mode is described in more detail below.

There are four levels of operation for the device defined as:

■ Run Mode. Run mode provides normal operation of the processor and all of the peripherals that
are currently enabled by the RCGCn registers. The system clock can be any of the available
clock sources including the PLL.

■ Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for
Interrupt) instruction. Any properly configured interrupt event in the system will bring the

June 02, 200874
Preliminary

System Control

processor back into Run mode. See the system control NVIC section of the ARM® Cortex™-M3
Technical Reference Manual for more details.

In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked.
Peripherals are clocked that are enabled in the SCGCn register when auto-clock gating is enabled
(see theRCC register) or theRCGCn register when the auto-clock gating is disabled. The system
clock has the same source and frequency as that during Run mode.

■ Deep-Sleep Mode. Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in
the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any
properly configured interrupt event in the system will bring the processor back into Run mode.
See the system control NVIC section of the ARM® Cortex™-M3 Technical Reference Manual
for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are
clocked that are enabled in theDCGCn register when auto-clock gating is enabled (see theRCC
register) or the RCGCn register when auto-clock gating is disabled. The system clock source is
the main oscillator by default or the internal oscillator specified in the DSLPCLKCFG register if
one is enabled. When the DSLPCLKCFG register is used, the internal oscillator is powered up,
if necessary, and the main oscillator is powered down. If the PLL is running at the time of the
WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active
RCC/RCC2 register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs,
hardware brings the system clock back to the source and frequency it had at the onset of
Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep
duration.

■ Hibernate Mode. In this mode, the power supplies are turned off to the main part of the device
and only the Hibernation module's circuitry is active. An external wake event or RTC event is
required to bring the device back to Runmode. The Cortex-M3 processor and peripherals outside
of the Hibernation module see a normal "power on" sequence and the processor starts running
code. It can determine that it has been restarted from Hibernate mode by inspecting the
Hibernation module registers.

6.2 Initialization and Configuration
The PLL is configured using direct register writes to the RCC/RCC2 register. If the RCC2 register
is being used, the USERCC2 bit must be set and the appropriate RCC2 bit/field is used. The steps
required to successfully change the PLL-based system clock are:

1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS
bit in the RCC register. This configures the system to run off a “raw” clock source (using the
main oscillator or internal oscillator) and allows for the new PLL configuration to be validated
before switching the system clock to the PLL.

2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in
RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the
appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.

3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The
SYSDIV field determines the system frequency for the microcontroller.

4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.

5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

75June 02, 2008
Preliminary

LM3S5747 Microcontroller

6.3 Register Map
Table 6-1 on page 76 lists the System Control registers, grouped by function. The offset listed is a
hexadecimal increment to the register’s address, relative to the System Control base address of
0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or
internal use by Luminary Micro, Inc. Software should not modify any reserved memory
address.

Note: Additional Flash and ROM registers defined in the System Control register space are
described in the “Internal Memory” on page 154.

Table 6-1. System Control Register Map

See
pageDescriptionResetTypeNameOffset

78Device Identification 0-RODID00x000

98Device Identification 1-RODID10x004

100Device Capabilities 00x00FF.003FRODC00x008

101Device Capabilities 10x0111.32FFRODC10x010

103Device Capabilities 20x0007.1011RODC20x014

104Device Capabilities 30x83FF.803FRODC30x018

106Device Capabilities 40x0000.30FFRODC40x01C

107Device Capabilities 50x0110.003FRODC50x020

108Device Capabilities 60x0000.0002RODC60x024

109Device Capabilities 70x0000.0F3FRODC70x028

80Brown-Out Reset Control0x0000.7FFDR/WPBORCTL0x030

81LDO Power Control0x0000.0000R/WLDOPCTL0x034

128Software Reset Control 00x00000000R/WSRCR00x040

129Software Reset Control 10x00000000R/WSRCR10x044

130Software Reset Control 20x00000000R/WSRCR20x048

82Raw Interrupt Status0x0000.0000RORIS0x050

83Interrupt Mask Control0x0000.0000R/WIMC0x054

84Masked Interrupt Status and Clear0x0000.0000R/W1CMISC0x058

85Reset Cause-R/WRESC0x05C

86Run-Mode Clock Configuration0x078E.3AD1R/WRCC0x060

91XTAL to PLL Translation-ROPLLCFG0x064

92GPIO High Speed Control0x0000.0000R/WGPIOHSCTL0x06C

94Run-Mode Clock Configuration 20x0780.6810R/WRCC20x070

96Main Oscillator Control0x0000.0000R/WMOSCCTL0x07C

June 02, 200876
Preliminary

System Control

See
pageDescriptionResetTypeNameOffset

110Run Mode Clock Gating Control Register 00x00000040R/WRCGC00x100

116Run Mode Clock Gating Control Register 10x00000000R/WRCGC10x104

122Run Mode Clock Gating Control Register 20x00000000R/WRCGC20x108

112Sleep Mode Clock Gating Control Register 00x00000040R/WSCGC00x110

118Sleep Mode Clock Gating Control Register 10x00000000R/WSCGC10x114

124Sleep Mode Clock Gating Control Register 20x00000000R/WSCGC20x118

114Deep Sleep Mode Clock Gating Control Register 00x00000040R/WDCGC00x120

120Deep Sleep Mode Clock Gating Control Register 10x00000000R/WDCGC10x124

126Deep Sleep Mode Clock Gating Control Register 20x00000000R/WDCGC20x128

97Deep Sleep Clock Configuration0x0780.0000R/WDSLPCLKCFG0x144

6.4 Register Descriptions
All addresses given are relative to the System Control base address of 0x400F.E000.

77June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 1: Device Identification 0 (DID0), offset 0x000
This register identifies the version of the device.

Device Identification 0 (DID0)
Base 0x400F.E000
Offset 0x000
Type RO, reset -

16171819202122232425262728293031

CLASSreservedVERreserved

ROROROROROROROROROROROROROROROROType
1100000000001000Reset

0123456789101112131415

MINORMAJOR

ROROROROROROROROROROROROROROROROType
----------------Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

DID0 Version

This field defines the DID0 register format version. The version number
is numeric. The value of the VER field is encoded as follows:

DescriptionValue

Second version of the DID0 register format.0x1

0x1ROVER30:28

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved27:24

Device Class

The CLASS field value identifies the internal design from which all mask
sets are generated for all devices in a particular product line. The CLASS
field value is changed for new product lines, for changes in fab process
(for example, a remap or shrink), or any case where the MAJOR or MINOR
fields require differentiation from prior devices. The value of the CLASS
field is encoded as follows (all other encodings are reserved):

DescriptionValue

Stellaris® DustDevil-class devices0x3

0x3ROCLASS23:16

June 02, 200878
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Major Revision

This field specifies the major revision number of the device. The major
revision reflects changes to base layers of the design. Themajor revision
number is indicated in the part number as a letter (A for first revision, B
for second, and so on). This field is encoded as follows:

DescriptionValue

Revision A (initial device)0x0

Revision B (first base layer revision)0x1

Revision C (second base layer revision)0x2

and so on.

-ROMAJOR15:8

Minor Revision

This field specifies the minor revision number of the device. The minor
revision reflects changes to the metal layers of the design. The MINOR
field value is reset when the MAJOR field is changed. This field is numeric
and is encoded as follows:

DescriptionValue

Initial device, or a major revision update.0x0

First metal layer change.0x1

Second metal layer change.0x2

and so on.

-ROMINOR7:0

79June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030
This register is responsible for controlling reset conditions after initial power-on reset.

Brown-Out Reset Control (PBORCTL)
Base 0x400F.E000
Offset 0x030
Type R/W, reset 0x0000.7FFD

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORIORreserved

ROR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:2

BOR Interrupt or Reset

This bit controls how a BOR event is signaled to the controller. If set, a
reset is signaled. Otherwise, an interrupt is signaled.

0R/WBORIOR1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

June 02, 200880
Preliminary

System Control

Register 3: LDO Power Control (LDOPCTL), offset 0x034
The VADJ field in this register adjusts the on-chip output voltage (VOUT).

LDO Power Control (LDOPCTL)
Base 0x400F.E000
Offset 0x034
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

VADJreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:6

LDO Output Voltage

This field sets the on-chip output voltage. The programming values for
the VADJ field are provided below.

VOUT (V)Value

2.500x00

2.450x01

2.400x02

2.350x03

2.300x04

2.250x05

Reserved0x06-0x3F

2.750x1B

2.700x1C

2.650x1D

2.600x1E

2.550x1F

0x0R/WVADJ5:0

81June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 4: Raw Interrupt Status (RIS), offset 0x050
Central location for system control raw interrupts. These are set and cleared by hardware.

Raw Interrupt Status (RIS)
Base 0x400F.E000
Offset 0x050
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORRISreservedPLLLRISUSBPLLLRISMOSCPUPRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:9

MOSC Power Up Raw Interrupt Status

This bit is set when the PLL TMOSCPUP Timer asserts.

0ROMOSCPUPRIS8

USB PLL Lock Raw Interrupt Status

This bit is set when the USB PLL TUSBREADY Timer asserts.

0ROUSBPLLLRIS7

PLL Lock Raw Interrupt Status

This bit is set when the PLL TREADY Timer asserts.

0ROPLLLRIS6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved5:2

Brown-Out Reset Raw Interrupt Status

This bit is the raw interrupt status for any brown-out conditions. If set,
a brown-out condition is currently active. This is an unregistered signal
from the brown-out detection circuit. An interrupt is reported if the BORIM
bit in the IMC register is set and the BORIOR bit in the PBORCTL register
is cleared.

0ROBORRIS1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

June 02, 200882
Preliminary

System Control

Register 5: Interrupt Mask Control (IMC), offset 0x054
Central location for system control interrupt masks.

Interrupt Mask Control (IMC)
Base 0x400F.E000
Offset 0x054
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORIMreservedPLLLIMUSBPLLLIMMOSCPUPIMreserved

ROR/WROROROROR/WR/WR/WROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:9

MOSC Power Up Interrupt Mask

This bit specifies whether a current limit detection is promoted to a
controller interrupt. If set, an interrupt is generated if MOSCPUPRIS in
RIS is set; otherwise, an interrupt is not generated.

0R/WMOSCPUPIM8

USB PLL Lock Interrupt Mask

This bit specifies whether a current limit detection is promoted to a
controller interrupt. If set, an interrupt is generated if USBPLLLRIS in
RIS is set; otherwise, an interrupt is not generated.

0R/WUSBPLLLIM7

PLL Lock Interrupt Mask

This bit specifies whether a current limit detection is promoted to a
controller interrupt. If set, an interrupt is generated if PLLLRIS in RIS
is set; otherwise, an interrupt is not generated.

0R/WPLLLIM6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved5:2

Brown-Out Reset Interrupt Mask

This bit specifies whether a brown-out condition is promoted to a
controller interrupt. If set, an interrupt is generated if BORRIS is set;
otherwise, an interrupt is not generated.

0R/WBORIM1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

83June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058
On a read, this register gives the current masked status value of the corresponding interrupt. All of
the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS register
(see page 82).

Masked Interrupt Status and Clear (MISC)
Base 0x400F.E000
Offset 0x058
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORMISreservedPLLLMISUSBPLLLMISMOSCPUPMISreserved

ROR/W1CROROROROR/W1CR/W1CR/W1CROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:9

MOSC Power Up Masked Interrupt Status

This bit is set when the TMOSCPUP timer asserts. The interrupt is cleared
by writing a 1 to this bit.

0R/W1CMOSCPUPMIS8

USB PLL Lock Masked Interrupt Status

This bit is set when the USB PLL TUSBREADY timer asserts. The interrupt
is cleared by writing a 1 to this bit.

0R/W1CUSBPLLLMIS7

PLL Lock Masked Interrupt Status

This bit is set when the PLL TREADY timer asserts. The interrupt is cleared
by writing a 1 to this bit.

0R/W1CPLLLMIS6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved5:2

BOR Masked Interrupt Status

The BORMIS is simply the BORRIS ANDed with the mask value, BORIM.

0R/W1CBORMIS1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

June 02, 200884
Preliminary

System Control

Register 7: Reset Cause (RESC), offset 0x05C
This register is set with the reset cause after reset. The bits in this register are sticky and maintain
their state across multiple reset sequences, except when an external reset is the cause, and then
all the other bits in the RESC register are cleared.

Reset Cause (RESC)
Base 0x400F.E000
Offset 0x05C
Type R/W, reset -

16171819202122232425262728293031

MOSCFAILreserved

R/WROROROROROROROROROROROROROROROType
-000000000000000Reset

0123456789101112131415

EXTPORBORWDTSWreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
-----00000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:17

MOSC Failure Reset

When set, indicates the MOSC circuit was enable for clock validation
and failed. This generated a reset event.

-R/WMOSCFAIL16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:5

Software Reset

When set, indicates a software reset is the cause of the reset event.

-R/WSW4

Watchdog Timer Reset

When set, indicates a watchdog reset is the cause of the reset event.

-R/WWDT3

Brown-Out Reset

When set, indicates a brown-out reset is the cause of the reset event.

-R/WBOR2

Power-On Reset

When set, indicates a power-on reset is the cause of the reset event.

-R/WPOR1

External Reset

When set, indicates an external reset (RST assertion) is the cause of
the reset event.

-R/WEXT0

85June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060
This register is defined to provide source control and frequency speed.

Run-Mode Clock Configuration (RCC)
Base 0x400F.E000
Offset 0x060
Type R/W, reset 0x078E.3AD1

16171819202122232425262728293031

reservedPWMDIVUSEPWMDIVreservedUSESYSDIVSYSDIVACGreserved

ROR/WR/WR/WR/WROR/WR/WR/WR/WR/WR/WROROROROType
0111000111100000Reset

0123456789101112131415

MOSCDISIOSCDISreservedOSCSRCXTALBYPASSreservedPWRDNreserved

R/WR/WROROR/WR/WR/WR/WR/WR/WR/WR/WROR/WROROType
1000101101011100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:28

Auto Clock Gating

This bit specifies whether the system uses the Sleep-Mode Clock
Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock
Gating Control (DCGCn) registers if the controller enters a Sleep or
Deep-Sleep mode (respectively). If set, the SCGCn orDCGCn registers
are used to control the clocks distributed to the peripherals when the
controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating
Control (RCGCn) registers are used when the controller enters a sleep
mode.

The RCGCn registers are always used to control the clocks in Run
mode.

This allows peripherals to consume less power when the controller is
in a sleep mode and the peripheral is unused.

0R/WACG27

June 02, 200886
Preliminary

System Control

DescriptionResetTypeNameBit/Field

System Clock Divisor

Specifies which divisor is used to generate the system clock from the
PLL output.

The PLL VCO frequency is 400 MHz.

Frequency (BYPASS=0)Divisor (BYPASS=1)Value

reservedreserved0x0

reserved/20x1

reserved/30x2

50 MHz/40x3

40 MHz/50x4

33.33 MHz/60x5

28.57 MHz/70x6

25 MHz/80x7

22.22 MHz/90x8

20 MHz/100x9

18.18 MHz/110xA

16.67 MHz/120xB

15.38 MHz/130xC

14.29 MHz/140xD

13.33 MHz/150xE

12.5 MHz (default)/160xF

When reading theRun-Mode Clock Configuration (RCC) register (see
page 86), the SYSDIV value is MINSYSDIV if a lower divider was
requested and the PLL is being used. This lower value is allowed to
divide a non-PLL source.

0xFR/WSYSDIV26:23

Enable System Clock Divider

Use the system clock divider as the source for the system clock. The
system clock divider is forced to be used when the PLL is selected as
the source.

0R/WUSESYSDIV22

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved21

Enable PWM Clock Divisor

Use the PWM clock divider as the source for the PWM clock.

0R/WUSEPWMDIV20

87June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

PWM Unit Clock Divisor

This field specifies the binary divisor used to predivide the system clock
down for use as the timing reference for the PWM module. This clock
is only power 2 divide and rising edge is synchronous without phase
shift from the system clock.

DivisorValue

/20x0

/40x1

/80x2

/160x3

/320x4

/640x5

/640x6

/64 (default)0x7

0x7R/WPWMDIV19:17

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved16:14

PLL Power Down

This bit connects to the PLL PWRDN input. The reset value of 1 powers
down the PLL.

1R/WPWRDN13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

1ROreserved12

PLL Bypass

Chooses whether the system clock is derived from the PLL output or
the OSC source. If set, the clock that drives the system is the OSC
source. Otherwise, the clock that drives the system is the PLL output
clock divided by the system divider.

Note: The ADC must be clocked from the PLL or directly from a
14-MHz to 18-MHz clock source to operate properly. While
the ADC works in a 14-18 MHz range, to maintain a 1 M
sample/second rate, the ADC must be provided a 16-MHz
clock source.

1R/WBYPASS11

June 02, 200888
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Crystal Value

This field specifies the crystal value attached to the main oscillator. The
encoding for this field is provided below.

Frequencies that may be used with the USB interface are indicated in
the table. To function within the clocking requirements of the USB
specification, a crystal of 4, 5, 6, 8, 10, 12, or 16 MHz must be used.

Crystal Frequency (MHz)
Using the PLL

Crystal Frequency (MHz)
Not Using the PLL

Value

reserved1.0000x00

reserved1.84320x01

reserved2.0000x02

reserved2.45760x03

3.579545 MHz0x04

3.6864 MHz0x05

4 MHz (USB)0x06

4.096 MHz0x07

4.9152 MHz0x08

5 MHz (USB)0x09

5.12 MHz0x0A

6 MHz (reset value)(USB)0x0B

6.144 MHz0x0C

7.3728 MHz0x0D

8 MHz (USB)0x0E

8.192 MHz0x0F

10.0 MHz (USB)0x10

12.0 MHz (USB)0x11

12.288 MHz0x12

13.56 MHz0x13

14.31818 MHz0x14

16.0 MHz (USB)0x15

16.384 MHz0x16

0xBR/WXTAL10:6

Oscillator Source

Picks among the four input sources for the OSC. The values are:

Input SourceValue

Main oscillator0x0

Internal oscillator (default)0x1

Internal oscillator / 4 (this is necessary if used as input to PLL)0x2

30 KHz internal oscillator0x3

0x1R/WOSCSRC5:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

89June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Internal Oscillator Disable

0: Internal oscillator (IOSC) is enabled.

1: Internal oscillator is disabled.

0R/WIOSCDIS1

Main Oscillator Disable

0: Main oscillator is enabled .

1: Main oscillator is disabled (default).

1R/WMOSCDIS0

June 02, 200890
Preliminary

System Control

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064
This register provides a means of translating external crystal frequencies into the appropriate PLL
settings. This register is initialized during the reset sequence and updated anytime that the XTAL
field changes in the Run-Mode Clock Configuration (RCC) register (see page 86).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * F / (R + 1)

XTAL to PLL Translation (PLLCFG)
Base 0x400F.E000
Offset 0x064
Type RO, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RFreserved

ROROROROROROROROROROROROROROROROType
--------------00Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:14

PLL F Value

This field specifies the value supplied to the PLL’s F input.

-ROF13:5

PLL R Value

This field specifies the value supplied to the PLL’s R input.

-ROR4:0

91June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 10: GPIO High Speed Control (GPIOHSCTL), offset 0x06C
This register provides the user the ability to change the GPIO ports to run on a single-cycle bus
equivalent to the processor clock instead of the legacy bus with two-cycle access. The address
aperture in the memory map will change for the ports that are enabled for high-speed access (see
Table 10-3 on page 251).

GPIO High Speed Control (GPIOHSCTL)
Base 0x400F.E000
Offset 0x06C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PORTAHSPORTBHSPORTCHSPORTDHSPORTEHSPORTFHSPORTGHSPORTHHSreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:8

Port H High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTHHS7

Port G High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTGHS6

Port F High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTFHS5

Port E High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTEHS4

Port D High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTDHS3

Port C High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTCHS2

Port B High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTBHS1

June 02, 200892
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Port A High-Speed

When set, the memory aperture for Port H is selected to be high speed
(single-cycle). Otherwise, the legacy aperture (two-cycle) is chosen.

0R/WPORTAHS0

93June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: Run-Mode Clock Configuration 2 (RCC2), offset 0x070
This register overrides the RCC equivalent register fields when the USERCC2 bit is set. This allows
RCC2 to be used to extend the capabilities, while also providing a means to be backward-compatible
to previous parts. The fields within the RCC2 register occupy the same bit positions as they do
within the RCC register as LSB-justified.

The SYSDIV2 field is wider so that additional larger divisors are possible. This allows a lower system
clock frequency for improved Deep Sleep power consumption.

Run-Mode Clock Configuration 2 (RCC2)
Base 0x400F.E000
Offset 0x070
Type R/W, reset 0x0780.6810

16171819202122232425262728293031

reservedSYSDIV2reservedUSERCC2

ROROROROROROROR/WR/WR/WR/WR/WR/WROROR/WType
0000000111100000Reset

0123456789101112131415

reservedOSCSRC2reservedBYPASS2reservedPWRDN2USBPWRDNreserved

ROROROROR/WR/WR/WROROROROR/WROR/WR/WROType
0000100000010110Reset

DescriptionResetTypeNameBit/Field

Use RCC2

When set, overrides the RCC register fields.

0R/WUSERCC231

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved30:29

System Clock Divisor

Specifies which divisor is used to generate the system clock from the
PLL output.

The PLL VCO frequency is 400 MHz.

This field is wider than theRCC register SYSDIV field in order to provide
additional divisor values. This permits the system clock to be run at
much lower frequencies during Deep Sleep mode. For example, where
the RCC register SYSDIV encoding of 1111 provides /16, the RCC2
register SYSDIV2 encoding of 111111 provides /64.

0x0FR/WSYSDIV228:23

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved22:15

Power-Down USB PLL

When set, powers down the USB PLL.

1R/WUSBPWRDN14

Power-Down PLL

When set, powers down the PLL.

1R/WPWRDN213

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12

June 02, 200894
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Bypass PLL

When set, bypasses the PLL for the clock source.

1R/WBYPASS211

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved10:7

Oscillator Source

Picks among the input sources for the OSC. The values are:

DescriptionValue

Main oscillator (MOSC)0x0

Internal oscillator (IOSC)0x1

Internal oscillator / 40x2

30 kHz internal oscillator0x3

32 kHz external oscillator0x7

0x1R/WOSCSRC26:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:0

95June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: Main Oscillator Control (MOSCCTL), offset 0x07C
This register provides control over the features of the main oscillator, including the ability to enable
the MOSC clock validation circuit. When enabled, this circuit monitors the energy on the MOSC
pins to provide a Clock Valid signal. If the clock goes invalid after being enabled, the part does a
hardware reset and reboots to the NMI handler.

Main Oscillator Control (MOSCCTL)
Base 0x400F.E000
Offset 0x07C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CVALreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:1

Clock Validation for MOSC

When set, the monitor circuit is enabled.

0R/WCVAL0

June 02, 200896
Preliminary

System Control

Register 13: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144
This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG)
Base 0x400F.E000
Offset 0x144
Type R/W, reset 0x0780.0000

16171819202122232425262728293031

reservedDSDIVORIDEreserved

ROROROROROROROR/WR/WR/WR/WR/WR/WROROROType
0000000111100000Reset

0123456789101112131415

reservedDSOSCSRCreserved

ROROROROR/WR/WR/WROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:29

Divider Field Override

6-bit system divider field to override when Deep-Sleep occurs with PLL
running.

0x0FR/WDSDIVORIDE28:23

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved22:7

Clock Source

Specifies the clock source during Deep-Sleep mode.

DescriptionValue

NOORIDE

No override to the oscillator clock source is done.

0x0

IOSC

Use internal 12 MHz oscillator as source.

0x1

30kHz

Use 30 kHz internal oscillator.

0x3

32kHz

Use 32 kHz external oscillator.

0x7

0x0R/WDSOSCSRC6:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:0

97June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 14: Device Identification 1 (DID1), offset 0x004
This register identifies the device family, part number, temperature range, and package type.

Device Identification 1 (DID1)
Base 0x400F.E000
Offset 0x004
Type RO, reset -

16171819202122232425262728293031

PARTNOFAMVER

ROROROROROROROROROROROROROROROROType
1001100100001000Reset

0123456789101112131415

QUALROHSPKGTEMPreservedPINCOUNT

ROROROROROROROROROROROROROROROROType
--1-----00000010Reset

DescriptionResetTypeNameBit/Field

DID1 Version

This field defines the DID1 register format version. The version number
is numeric. The value of the VER field is encoded as follows (all other
encodings are reserved):

DescriptionValue

Second version of the DID1 register format.0x1

0x1ROVER31:28

Family

This field provides the family identification of the device within the
Luminary Micro product portfolio. The value is encoded as follows (all
other encodings are reserved):

DescriptionValue

Stellaris family of microcontollers, that is, all devices with
external part numbers starting with LM3S.

0x0

0x0ROFAM27:24

Part Number

This field provides the part number of the device within the family. The
value is encoded as follows (all other encodings are reserved):

DescriptionValue

LM3S57470x99

0x99ROPARTNO23:16

Package Pin Count

This field specifies the number of pins on the device package. The value
is encoded as follows (all other encodings are reserved):

DescriptionValue

100-pin package0x2

0x2ROPINCOUNT15:13

June 02, 200898
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:8

Temperature Range

This field specifies the temperature rating of the device. The value is
encoded as follows (all other encodings are reserved):

DescriptionValue

Commercial temperature range (0°C to 70°C)0x0

Industrial temperature range (-40°C to 85°C)0x1

Extended temperature range (-40°C to 105°C)0x2

-ROTEMP7:5

Package Type

This field specifies the package type. The value is encoded as follows
(all other encodings are reserved):

DescriptionValue

SOIC package0x0

LQFP package0x1

BGA package0x2

-ROPKG4:3

RoHS-Compliance

This bit specifies whether the device is RoHS-compliant. A 1 indicates
the part is RoHS-compliant.

1ROROHS2

Qualification Status

This field specifies the qualification status of the device. The value is
encoded as follows (all other encodings are reserved):

DescriptionValue

Engineering Sample (unqualified)0x0

Pilot Production (unqualified)0x1

Fully Qualified0x2

-ROQUAL1:0

99June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 15: Device Capabilities 0 (DC0), offset 0x008
This register is predefined by the part and can be used to verify features.

Device Capabilities 0 (DC0)
Base 0x400F.E000
Offset 0x008
Type RO, reset 0x00FF.003F

16171819202122232425262728293031

SRAMSZ

ROROROROROROROROROROROROROROROROType
1111111100000000Reset

0123456789101112131415

FLASHSZ

ROROROROROROROROROROROROROROROROType
1111110000000000Reset

DescriptionResetTypeNameBit/Field

SRAM Size

Indicates the size of the on-chip SRAM memory.

DescriptionValue

64 KB of SRAM0x00FF

0x00FFROSRAMSZ31:16

Flash Size

Indicates the size of the on-chip flash memory.

DescriptionValue

128 KB of Flash0x003F

0x003FROFLASHSZ15:0

June 02, 2008100
Preliminary

System Control

Register 16: Device Capabilities 1 (DC1), offset 0x010
This register is predefined by the part and can be used to verify features. The PWM, SARADC0,
MAXADCSPD, WDT, SWO, SWD, and JTAG bits mask the RCGC0, SCGC0, and DCGC0 registers.
Other bits are passed as 0. MAXADCSPD is clipped to the maximum value specified in DC1.

Device Capabilities 1 (DC1)
Base 0x400F.E000
Offset 0x010
Type RO, reset 0x0111.32FF

16171819202122232425262728293031

ADCreservedPWMreservedCAN0reserved

ROROROROROROROROROROROROROROROROType
1000100010000000Reset

0123456789101112131415

JTAGSWDSWOWDTPLLTEMPSNSHIBMPUMAXADCSPDreservedMINSYSDIV

ROROROROROROROROROROROROROROROROType
1111111101001100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:25

CAN Module 0 Present

When set, indicates that CAN unit 0 is present.

1ROCAN024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Module Present

When set, indicates that the PWM module is present.

1ROPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:17

ADC Module Present. When set, indicates that the ADC module is
present.

1ROADC16

System Clock Divider. Minimum 4-bit divider value for system clock.
The reset value is hardware-dependent. See the RCC register for how
to change the system clock divisor using the SYSDIV bit.

DescriptionValue

Specifies a 50-MHz CPU clock with a PLL divider of 4.0x3

0x3ROMINSYSDIV15:12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:10

101June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Max ADC Speed. This field indicates the maximum rate at which the
ADC samples data.

DescriptionValue

500K samples/second0x2

0x2ROMAXADCSPD9:8

MPUPresent.When set, indicates that the Cortex-M3Memory Protection
Unit (MPU) module is present. See the ARM Cortex-M3 Technical
Reference Manual for details on the MPU.

1ROMPU7

Hibernation Module Present. When set, indicates that the Hibernation
module is present.

1ROHIB6

Temp Sensor Present. When set, indicates that the on-chip temperature
sensor is present.

1ROTEMPSNS5

PLL Present. When set, indicates that the on-chip Phase Locked Loop
(PLL) is present.

1ROPLL4

Watchdog Timer Present. When set, indicates that a watchdog timer is
present.

1ROWDT3

SWOTrace Port Present. When set, indicates that the Serial Wire Output
(SWO) trace port is present.

1ROSWO2

SWDPresent. When set, indicates that the Serial Wire Debugger (SWD)
is present.

1ROSWD1

JTAG Present. When set, indicates that the JTAG debugger interface
is present.

1ROJTAG0

June 02, 2008102
Preliminary

System Control

Register 17: Device Capabilities 2 (DC2), offset 0x014
This register is predefined by the part and can be used to verify features.

Device Capabilities 2 (DC2)
Base 0x400F.E000
Offset 0x014
Type RO, reset 0x0007.1011

16171819202122232425262728293031

TIMER0TIMER1TIMER2reserved

ROROROROROROROROROROROROROROROROType
1110000000000000Reset

0123456789101112131415

UART0reservedSSI0reservedI2C0reserved

ROROROROROROROROROROROROROROROROType
1000100000001000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:19

Timer 2 Present. When set, indicates that General-Purpose Timer
module 2 is present.

1ROTIMER218

Timer 1 Present. When set, indicates that General-Purpose Timer
module 1 is present.

1ROTIMER117

Timer 0 Present. When set, indicates that General-Purpose Timer
module 0 is present.

1ROTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:13

I2CModule 0 Present. When set, indicates that I2Cmodule 0 is present.1ROI2C012

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:5

SSI0 Present. When set, indicates that SSI module 0 is present.1ROSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:1

UART0 Present. When set, indicates that UART module 0 is present.1ROUART00

103June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 18: Device Capabilities 3 (DC3), offset 0x018
This register is predefined by the part and can be used to verify features.

Device Capabilities 3 (DC3)
Base 0x400F.E000
Offset 0x018
Type RO, reset 0x83FF.803F

16171819202122232425262728293031

ADC0ADC1ADC2ADC3ADC4ADC5ADC6ADC7CCP0CCP1reserved32KHZ

ROROROROROROROROROROROROROROROROType
1111111111000001Reset

0123456789101112131415

PWM0PWM1PWM2PWM3PWM4PWM5reservedPWMFAULT

ROROROROROROROROROROROROROROROROType
1111110000000001Reset

DescriptionResetTypeNameBit/Field

32KHz Input Clock Available. When set, indicates an even CCP pin is
present and can be used as a 32-KHz input clock.

1RO32KHZ31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved30:26

CCP1 Pin Present. When set, indicates that Capture/Compare/PWM
pin 1 is present.

1ROCCP125

CCP0 Pin Present. When set, indicates that Capture/Compare/PWM
pin 0 is present.

1ROCCP024

ADC7 Pin Present. When set, indicates that ADC pin 7 is present.1ROADC723

ADC6 Pin Present. When set, indicates that ADC pin 6 is present.1ROADC622

ADC5 Pin Present. When set, indicates that ADC pin 5 is present.1ROADC521

ADC4 Pin Present. When set, indicates that ADC pin 4 is present.1ROADC420

ADC3 Pin Present. When set, indicates that ADC pin 3 is present.1ROADC319

ADC2 Pin Present. When set, indicates that ADC pin 2 is present.1ROADC218

ADC1 Pin Present. When set, indicates that ADC pin 1 is present.1ROADC117

ADC0 Pin Present. When set, indicates that ADC pin 0 is present.1ROADC016

PWM Fault Pin Present. When set, indicates that a PWM Fault pin is
present. See DC5 for specific Fault pins on this device.

1ROPWMFAULT15

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved14:6

PWM5 Pin Present. When set, indicates that the PWM pin 5 is present.1ROPWM55

PWM4 Pin Present. When set, indicates that the PWM pin 4 is present.1ROPWM44

PWM3 Pin Present. When set, indicates that the PWM pin 3 is present.1ROPWM33

June 02, 2008104
Preliminary

System Control

DescriptionResetTypeNameBit/Field

PWM2 Pin Present. When set, indicates that the PWM pin 2 is present.1ROPWM22

PWM1 Pin Present. When set, indicates that the PWM pin 1 is present.1ROPWM11

PWM0 Pin Present. When set, indicates that the PWM pin 0 is present.1ROPWM00

105June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 19: Device Capabilities 4 (DC4), offset 0x01C
This register is predefined by the part and can be used to verify features.

Device Capabilities 4 (DC4)
Base 0x400F.E000
Offset 0x01C
Type RO, reset 0x0000.30FF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHreservedROMUDMAreserved

ROROROROROROROROROROROROROROROROType
1111111100001100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:14

Micro-DMA is present1ROUDMA13

Internal Code ROM is present1ROROM12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:8

GPIO Port H Present. When set, indicates that GPIO Port H is present.1ROGPIOH7

GPIO Port G Present. When set, indicates that GPIO Port G is present.1ROGPIOG6

GPIO Port F Present. When set, indicates that GPIO Port F is present.1ROGPIOF5

GPIO Port E Present. When set, indicates that GPIO Port E is present.1ROGPIOE4

GPIO Port D Present. When set, indicates that GPIO Port D is present.1ROGPIOD3

GPIO Port C Present. When set, indicates that GPIO Port C is present.1ROGPIOC2

GPIO Port B Present. When set, indicates that GPIO Port B is present.1ROGPIOB1

GPIO Port A Present. When set, indicates that GPIO Port A is present.1ROGPIOA0

June 02, 2008106
Preliminary

System Control

Register 20: Device Capabilities 5 (DC5), offset 0x020
This register is predefined by the part and can be used to verify features.

Device Capabilities 5 (DC5)
Base 0x400F.E000
Offset 0x020
Type RO, reset 0x0110.003F

16171819202122232425262728293031

reservedPWMESYNCreservedPWMFAULT0reserved

ROROROROROROROROROROROROROROROROType
0000100010000000Reset

0123456789101112131415

PWM0PWM1PWM2PWM3PWM4PWM5reserved

ROROROROROROROROROROROROROROROROType
1111110000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:25

PWM Fault 0 Pin Present. When set, indicates that the PWM Fault 0
pin is present.

1ROPWMFAULT024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Extended SYNC feature is active1ROPWMESYNC20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:6

PWM5 Pin Present. When set, indicates that the PWM pin 5 is present.1ROPWM55

PWM4 Pin Present. When set, indicates that the PWM pin 4 is present.1ROPWM44

PWM3 Pin Present. When set, indicates that the PWM pin 3 is present.1ROPWM33

PWM2 Pin Present. When set, indicates that the PWM pin 2 is present.1ROPWM22

PWM1 Pin Present. When set, indicates that the PWM pin 1 is present.1ROPWM11

PWM0 Pin Present. When set, indicates that the PWM pin 0 is present.1ROPWM00

107June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 21: Device Capabilities 6 (DC6), offset 0x024
This register is predefined by the part and can be used to verify features.

Device Capabilities 6 (DC6)
Base 0x400F.E000
Offset 0x024
Type RO, reset 0x0000.0002

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

USB0reserved

ROROROROROROROROROROROROROROROROType
0100000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:2

This specifies that USB0 is present and its capability

DescriptionValue

USB is Device or Host.0x2

0x2ROUSB01:0

June 02, 2008108
Preliminary

System Control

Register 22: Device Capabilities 7 (DC7), offset 0x028
This register is predefined by the part and can be used to verify uDMA channel features.

Device Capabilities 7 (DC7)
Base 0x400F.E000
Offset 0x028
Type RO, reset 0x0000.0F3F

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

USB_EP1_RXUSB_EP1_TXUSB_EP2_RXUSB_EP2_TXUSB_EP3_RXUSB_EP3_TXreservedUART0_RXUART0_TXSSI0_RXSSI0_TXreserved

ROROROROROROROROROROROROROROROROType
1111110011110000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:12

SSI0 TX on uDMA Ch11. When set, indicates uDMA channel 11 is
available and connected to the transmit path of SSI module 0.

1ROSSI0_TX11

SSI0 RX on uDMA Ch10. When set, indicates uDMA channel 10 is
available and connected to the receive path of SSI module 0.

1ROSSI0_RX10

UART0 TX on uDMA Ch9. When set, indicates uDMA channel 9 is
available and connected to the transmit path of UART module 0.

1ROUART0_TX9

UART0 RX on uDMA Ch8. When set, indicates uDMA channel 8 is
available and connected to the receive path of UART module 0.

1ROUART0_RX8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

USB EP3 TX on uDMA Ch5. When set, indicates uDMA channel 5 is
available and connected to the transmit path of USB endpoint 3.

1ROUSB_EP3_TX5

USB EP3 RX on uDMA Ch4. When set, indicates uDMA channel 4 is
available and connected to the receive path of USB endpoint 2.

1ROUSB_EP3_RX4

USB EP2 TX on uDMA Ch3. When set, indicates uDMA channel 3 is
available and connected to the transmit path of USB endpoint 2.

1ROUSB_EP2_TX3

USB EP2 RX on uDMA Ch2. When set, indicates uDMA channel 1 is
available and connected to the receive path of USB endpoint 2.

1ROUSB_EP2_RX2

USB EP1 TX on uDMA Ch1. When set, indicates uDMA channel 1 is
available and connected to the transmit path of USB endpoint 1.

1ROUSB_EP1_TX1

USB EP1 RX on uDMA Ch0. When set, indicates uDMA channel 0 is
available and connected to the receive path of USB endpoint 1.

1ROUSB_EP1_RX0

109June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 23: RunMode Clock Gating Control Register 0 (RCGC0), offset 0x100
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Run Mode Clock Gating Control Register 0 (RCGC0)
Base 0x400F.E000
Offset 0x100
Type R/W, reset 0x00000040

16171819202122232425262728293031

ADCreservedPWMreservedCAN0reserved

R/WROROROR/WROROROR/WROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedWDTreservedHIBreservedMAXADCSPDreserved

ROROROR/WROROR/WROR/WR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:25

CAN0 Clock Gating Control. This bit controls the clock gating for CAN
unit 0. If set, the unit receives a clock and functions. Otherwise, the unit
is unclocked and disabled.

0R/WCAN024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Clock Gating Control. This bit controls the clock gating for the
PWMmodule. If set, the unit receives a clock and functions. Otherwise,
the unit is unclocked and disabled. If the unit is unclocked, a read or
write to the unit generates a bus fault.

0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:17

ADC0 Clock Gating Control. This bit controls the clock gating for SAR
ADCmodule 0. If set, the unit receives a clock and functions. Otherwise,
the unit is unclocked and disabled. If the unit is unclocked, a read or
write to the unit generates a bus fault.

0R/WADC16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:10

June 02, 2008110
Preliminary

System Control

DescriptionResetTypeNameBit/Field

ADC Sample Speed. This field sets the rate at which the ADC samples
data. You cannot set the rate higher than the maximum rate. You can
set the sample rate by setting the MAXADCSPD bit as follows:

DescriptionValue

500K samples/second0x2

250K samples/second0x1

125K samples/second0x0

0R/WMAXADCSPD9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

HIB Clock Gating Control. This bit controls the clock gating for the
Hibernation module. If set, the unit receives a clock and functions.
Otherwise, the unit is unclocked and disabled.

0R/WHIB6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved5:4

WDT Clock Gating Control. This bit controls the clock gating for the
WDT module. If set, the unit receives a clock and functions. Otherwise,
the unit is unclocked and disabled. If the unit is unclocked, a read or
write to the unit generates a bus fault.

0R/WWDT3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

111June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 24: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset
0x110
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Sleep Mode Clock Gating Control Register 0 (SCGC0)
Base 0x400F.E000
Offset 0x110
Type R/W, reset 0x00000040

16171819202122232425262728293031

ADCreservedPWMreservedCAN0reserved

R/WROROROR/WROROROR/WROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedWDTreservedHIBreservedMAXADCSPDreserved

ROROROR/WROROR/WROR/WR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:25

CAN0 Clock Gating Control. This bit controls the clock gating for CAN
unit 0. If set, the unit receives a clock and functions. Otherwise, the unit
is unclocked and disabled.

0R/WCAN024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Clock Gating Control. This bit controls the clock gating for the
PWMmodule. If set, the unit receives a clock and functions. Otherwise,
the unit is unclocked and disabled. If the unit is unclocked, a read or
write to the unit generates a bus fault.

0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:17

ADC0 Clock Gating Control. This bit controls the clock gating for general
SAR ADC module 0. If set, the unit receives a clock and functions.
Otherwise, the unit is unclocked and disabled. If the unit is unclocked,
a read or write to the unit generates a bus fault.

0R/WADC16

June 02, 2008112
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:10

ADC Sample Speed. This field sets the rate at which the ADC samples
data. You cannot set the rate higher than the maximum rate.You can
set the sample rate by setting the MAXADCSPD bit as follows:

DescriptionValue

500K samples/second0x2

250K samples/second0x1

125K samples/second0x0

0R/WMAXADCSPD9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

HIB Clock Gating Control. This bit controls the clock gating for the
Hibernation module. If set, the unit receives a clock and functions.
Otherwise, the unit is unclocked and disabled.

0R/WHIB6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved5:4

WDT Clock Gating Control. This bit controls the clock gating for the
WDT module. If set, the unit receives a clock and functions. Otherwise,
the unit is unclocked and disabled. If the unit is unclocked, a read or
write to the unit generates a bus fault.

0R/WWDT3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

113June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 25: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0),
offset 0x120
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)
Base 0x400F.E000
Offset 0x120
Type R/W, reset 0x00000040

16171819202122232425262728293031

ADCreservedPWMreservedCAN0reserved

R/WROROROR/WROROROR/WROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedWDTreservedHIBreservedMAXADCSPDreserved

ROROROR/WROROR/WROR/WR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:25

CAN0 Clock Gating Control. This bit controls the clock gating for CAN
unit 0. If set, the unit receives a clock and functions. Otherwise, the unit
is unclocked and disabled.

0R/WCAN024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Clock Gating Control. This bit controls the clock gating for the
PWMmodule. If set, the unit receives a clock and functions. Otherwise,
the unit is unclocked and disabled. If the unit is unclocked, a read or
write to the unit generates a bus fault.

0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:17

ADC0 Clock Gating Control. This bit controls the clock gating for general
SAR ADC module 0. If set, the unit receives a clock and functions.
Otherwise, the unit is unclocked and disabled. If the unit is unclocked,
a read or write to the unit generates a bus fault.

0R/WADC16

June 02, 2008114
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:10

ADC Sample Speed. This field sets the rate at which the ADC samples
data. You cannot set the rate higher than the maximum rate. You can
set the sample rate by setting the MAXADCSPD bit as follows:

DescriptionValue

500K samples/second0x2

250K samples/second0x1

125K samples/second0x0

0R/WMAXADCSPD9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

HIB Clock Gating Control. This bit controls the clock gating for the
Hibernation module. If set, the unit receives a clock and functions.
Otherwise, the unit is unclocked and disabled.

0R/WHIB6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved5:4

WDT Clock Gating Control. This bit controls the clock gating for the
WDT module. If set, the unit receives a clock and functions. Otherwise,
the unit is unclocked and disabled. If the unit is unclocked, a read or
write to the unit generates a bus fault.

0R/WWDT3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

115June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 26: RunMode Clock Gating Control Register 1 (RCGC1), offset 0x104
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Run Mode Clock Gating Control Register 1 (RCGC1)
Base 0x400F.E000
Offset 0x104
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UART0reservedSSI0reservedI2C0reserved

R/WROROROR/WROROROROROROROR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:19

Timer 2 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 2. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER218

Timer 1 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 1. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER117

Timer 0 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 0. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:13

I2C0 Clock Gating Control. This bit controls the clock gating for I2C
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WI2C012

June 02, 2008116
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:5

SSI0 Clock Gating Control. This bit controls the clock gating for SSI
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:1

UART0 Clock Gating Control. This bit controls the clock gating for UART
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WUART00

117June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 27: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset
0x114
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Sleep Mode Clock Gating Control Register 1 (SCGC1)
Base 0x400F.E000
Offset 0x114
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UART0reservedSSI0reservedI2C0reserved

R/WROROROR/WROROROROROROROR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:19

Timer 2 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 2. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER218

Timer 1 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 1. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER117

Timer 0 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 0. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:13

I2C0 Clock Gating Control. This bit controls the clock gating for I2C
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WI2C012

June 02, 2008118
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:5

SSI0 Clock Gating Control. This bit controls the clock gating for SSI
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:1

UART0 Clock Gating Control. This bit controls the clock gating for UART
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WUART00

119June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 28: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1),
offset 0x124
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)
Base 0x400F.E000
Offset 0x124
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UART0reservedSSI0reservedI2C0reserved

R/WROROROR/WROROROROROROROR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:19

Timer 2 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 2. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER218

Timer 1 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 1. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER117

Timer 0 Clock Gating Control. This bit controls the clock gating for
General-Purpose Timer module 0. If set, the unit receives a clock and
functions. Otherwise, the unit is unclocked and disabled. If the unit is
unclocked, reads or writes to the unit will generate a bus fault.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:13

I2C0 Clock Gating Control. This bit controls the clock gating for I2C
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WI2C012

June 02, 2008120
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:5

SSI0 Clock Gating Control. This bit controls the clock gating for SSI
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:1

UART0 Clock Gating Control. This bit controls the clock gating for UART
module 0. If set, the unit receives a clock and functions. Otherwise, the
unit is unclocked and disabled. If the unit is unclocked, reads or writes
to the unit will generate a bus fault.

0R/WUART00

121June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 29: RunMode Clock Gating Control Register 2 (RCGC2), offset 0x108
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Run Mode Clock Gating Control Register 2 (RCGC2)
Base 0x400F.E000
Offset 0x108
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:17

USB0 Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

UDMA Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WUDMA13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:8

Port H Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOH7

June 02, 2008122
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Port G Clock Gating Control. This bit controls the clock gating for Port
G. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOG6

Port F Clock Gating Control. This bit controls the clock gating for Port
F. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOF5

Port E Clock Gating Control. This bit controls the clock gating for Port
E. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOE4

Port D Clock Gating Control. This bit controls the clock gating for Port
D. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOD3

Port C Clock Gating Control. This bit controls the clock gating for Port
C. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOC2

Port B Clock Gating Control. This bit controls the clock gating for Port
B. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOB1

Port A Clock Gating Control. This bit controls the clock gating for Port
A. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOA0

123June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 30: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset
0x118
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Sleep Mode Clock Gating Control Register 2 (SCGC2)
Base 0x400F.E000
Offset 0x118
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:17

USB0 Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

UDMA Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WUDMA13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:8

Port H Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOH7

June 02, 2008124
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Port G Clock Gating Control. This bit controls the clock gating for Port
G. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOG6

Port F Clock Gating Control. This bit controls the clock gating for Port
F. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOF5

Port E Clock Gating Control. This bit controls the clock gating for Port
E. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOE4

Port D Clock Gating Control. This bit controls the clock gating for Port
D. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOD3

Port C Clock Gating Control. This bit controls the clock gating for Port
C. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOC2

Port B Clock Gating Control. This bit controls the clock gating for Port
B. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOB1

Port A Clock Gating Control. This bit controls the clock gating for Port
A. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOA0

125June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 31: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2),
offset 0x128
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)
Base 0x400F.E000
Offset 0x128
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:17

USB0 Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

UDMA Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WUDMA13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:8

Port H Clock Gating Control. This bit controls the clock gating for Port
H. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOH7

June 02, 2008126
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Port G Clock Gating Control. This bit controls the clock gating for Port
G. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOG6

Port F Clock Gating Control. This bit controls the clock gating for Port
F. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOF5

Port E Clock Gating Control. This bit controls the clock gating for Port
E. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOE4

Port D Clock Gating Control. This bit controls the clock gating for Port
D. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOD3

Port C Clock Gating Control. This bit controls the clock gating for Port
C. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOC2

Port B Clock Gating Control. This bit controls the clock gating for Port
B. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOB1

Port A Clock Gating Control. This bit controls the clock gating for Port
A. If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.

0R/WGPIOA0

127June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 32: Software Reset Control 0 (SRCR0), offset 0x040
Writes to this register are masked by the bits in the Device Capabilities 1 (DC1) register.

Software Reset Control 0 (SRCR0)
Base 0x400F.E000
Offset 0x040
Type R/W, reset 0x00000000

16171819202122232425262728293031

ADCreservedPWMreservedCAN0reserved

R/WROROROR/WROROROR/WROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedWDTreservedHIBreserved

ROROROR/WROROR/WROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:25

CAN0 Reset Control. Reset control for CAN unit 0.0R/WCAN024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Reset Control. Reset control for PWM module.0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:17

ADC0 Reset Control. Reset control for SAR ADC module 0.0R/WADC16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:7

HIB Reset Control. Reset control for the Hibernation module.0R/WHIB6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved5:4

WDT Reset Control. Reset control for Watchdog unit.0R/WWDT3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

June 02, 2008128
Preliminary

System Control

Register 33: Software Reset Control 1 (SRCR1), offset 0x044
Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Software Reset Control 1 (SRCR1)
Base 0x400F.E000
Offset 0x044
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UART0reservedSSI0reservedI2C0reserved

R/WROROROR/WROROROROROROROR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:19

Timer 2 Reset Control. Reset control for General-Purpose Timer module
2.

0R/WTIMER218

Timer 1 Reset Control. Reset control for General-Purpose Timer module
1.

0R/WTIMER117

Timer 0 Reset Control. Reset control for General-Purpose Timer module
0.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:13

I2C0 Reset Control. Reset control for I2C unit 0.0R/WI2C012

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:5

SSI0 Reset Control. Reset control for SSI unit 0.0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:1

UART0 Reset Control. Reset control for UART unit 0.0R/WUART00

129June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 34: Software Reset Control 2 (SRCR2), offset 0x048
Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2)
Base 0x400F.E000
Offset 0x048
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:17

USB0 Reset Control. Reset control for USB unit 0.0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

UDMA Reset Control. Reset control for uDMA unit.0R/WUDMA13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:8

Port H Reset Control. Reset control for GPIO Port H.0R/WGPIOH7

Port G Reset Control. Reset control for GPIO Port G.0R/WGPIOG6

Port F Reset Control. Reset control for GPIO Port F.0R/WGPIOF5

Port E Reset Control. Reset control for GPIO Port E.0R/WGPIOE4

Port D Reset Control. Reset control for GPIO Port D.0R/WGPIOD3

Port C Reset Control. Reset control for GPIO Port C.0R/WGPIOC2

Port B Reset Control. Reset control for GPIO Port B.0R/WGPIOB1

Port A Reset Control. Reset control for GPIO Port A.0R/WGPIOA0

June 02, 2008130
Preliminary

System Control

7 Hibernation Module
The Hibernation Module manages removal and restoration of power to the rest of the microcontroller
to provide a means for reducing power consumption. When the processor and peripherals are idle,
power can be completely removed with only the Hibernation Module remaining powered. Power
can be restored based on an external signal, or at a certain time using the built-in real-time clock
(RTC). The Hibernation module can be independently supplied from a battery or an auxiliary power
supply.

The Hibernation module has the following features:

■ Power-switching logic to discrete external regulator

■ Dedicated pin for waking from an external signal

■ Low-battery detection, signaling, and interrupt generation

■ 32-bit real-time counter (RTC)

■ Two 32-bit RTC match registers for timed wake-up and interrupt generation

■ Clock source from a 32.768-kHz external oscillator or a 4.194304-MHz crystal

■ RTC predivider trim for making fine adjustments to the clock rate

■ 64 32-bit words of non-volatile memory

■ Programmable interrupts for RTC match, external wake, and low battery events

131June 02, 2008
Preliminary

LM3S5747 Microcontroller

7.1 Block Diagram

Figure 7-1. Hibernation Module Block Diagram

HIBIM
HIBRIS
HIBMIS
HIBIC

HIBRTCT
Pre-Divider

/128

XOSC0
XOSC1

HIBCTL.CLK32EN

HIBCTL.CLKSEL

HIBRTCC
HIBRTCLD
HIBRTCM0
HIBRTCM1

RTC

Interrupts

Power
Sequence
Logic

MATCH0/1

WAKE

Interrupts
to CPU

Low Battery
Detect

LOWBAT

VDD

VBAT
HIB

HIBCTL.LOWBATEN HIBCTL.PWRCUT

HIBCTL.EXTWEN
HIBCTL.RTCWEN

HIBCTL.VABORT

Non-Volatile
Memory
HIBDATA

7.2 Functional Description
The Hibernation module controls the power to the processor with an enable signal (HIB) that signals
an external voltage regulator to turn off. The Hibernation module power is determined dynamically.
The supply voltage of the Hibernation module is the larger of the main voltage source (VDD) or the
battery/auxilliary voltage source (VBAT). A voting circuit indicates the larger and an internal power
switch selects the appropriate voltage source. The Hibernation module also has a separate clock
source to maintain a real-time clock (RTC). Once in hibernation, the module signals an external
voltage regulator to turn back on the power when an external pin (WAKE) is asserted, or when the
internal RTC reaches a certain value. The Hibernation module can also detect when the battery
voltage is low, and optionally prevent hibernation when this occurs.

Power-up from a power cut to code execution is defined as the regulator turn-on time (specified at
tHIB_TO_VDD maximum) plus the normal chip POR (see “Hibernation Module” on page 686).

7.2.1 Register Access Timing
Because the Hibernation module has an independent clocking domain, certain registers must be
written only with a timing gap between accesses. The delay time is tHIB_REG_WRITE, therefore software
must guarantee that a delay of tHIB_REG_WRITE is inserted between back-to-back writes to certain
Hibernation registers, or between a write followed by a read to those same registers. There is no

June 02, 2008132
Preliminary

Hibernation Module

restriction on timing for back-to-back reads from the Hibernation module. Software may make use
of the WRC bit in the HIBCTL register to ensure that the required timing gap has elapsed. This bit is
cleared on a write operation and set once the write completes, indicating to software that another
write or read may be started safely. Software should poll HIBCTL for WRC=1 prior to accessing any
affected register. The following registers are subject to this timing restriction:

■ Hibernation RTC Counter (HIBRTCC)

■ Hibernation RTC Match 0 (HIBRTCM0)

■ Hibernation RTC Match 1 (HIBRTCM1)

■ Hibernation RTC Load (HIBRTCLD)

■ Hibernation RTC Trim (HIBRTCT)

■ Hibernation Data (HIBDATA)

7.2.2 Clock Source
The Hibernation module must be clocked by an external source, even if the RTC feature will not be
used. An external oscillator or crystal can be used for this purpose. To use a crystal, a 4.194304-MHz
crystal is connected to the XOSC0 and XOSC1 pins. This clock signal is divided by 128 internally to
produce the 32.768-kHz clock reference. To use a more precise clock source, a 32.768-kHz oscillator
can be connected to the XOSC0 pin. See Figure 7-2 on page 134 and Figure 7-3 on page 135. Note
that these diagrams only show the connection to the Hibernation pins and not to the full system.
See “Hibernation Module” on page 686 for specific values.

The clock source is enabled by setting the CLK32EN bit of the HIBCTL register. The type of clock
source is selected by setting the CLKSEL bit to 0 for a 4.194304-MHz clock source, and to 1 for a
32.768-kHz clock source. If the bit is set to 0, the input clock is divided by 128, resulting in a
32.768-kHz clock source. If a crystal is used for the clock source, the software must leave a delay
of tXOSC_SETTLE after setting the CLK32EN bit and before any other accesses to the Hibernation
module registers. The delay allows the crystal to power up and stabilize. If an oscillator is used for
the clock source, no delay is needed.

133June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 7-2. Clock Source Using Crystal

Open drain
external wake

up circuit

3 V
Battery

GND

C2C1

RLX1

VBAT

EN

Input
Voltage

Regulator
or Switch

XOSC1

XOSC0

VDD

HIB

WAKE

OUTIN

Stellaris Microcontroller

RPU

Note: RTERM = Optional series termination resistor.

RPU = Pull-up resistor (1 M½).

See “Hibernation Module” on page 686 for specific parameter values.

June 02, 2008134
Preliminary

Hibernation Module

Figure 7-3. Clock Source Using Dedicated Oscillator

Open drain
external wake

up circuit

EN

3 V
Battery

GND

Stellaris Microcontroller

RTerm

Input
Voltage

Regulator
or Switch

Clock
Source

(fEXT_OSC)

N.C. XOSC1

XOSC0

VDD

HIB

WAKE VBAT

OUTIN

RPU

Note: X1 = Crystal frequency is fXOSC_XTAL.

RL = Load resistor is RXOSC_LOAD.

C1,2 = Capacitor value derived from crystal vendor load capacitance specifications.

RPU = Pull-up resistor (1 M½).

See “Hibernation Module” on page 686 for specific parameter values.

7.2.3 Battery Management
The Hibernation module can be independently powered by a battery or an auxiliary power source.
The module can monitor the voltage level of the battery and detect when the voltage drops below
2.35 V. When this happens, an interrupt can be generated. The module also can be configured so
that it will not go into Hibernate mode if the battery voltage drops below this threshold. Battery
voltage is not measured while in Hibernate mode.

Important: System level factors may affect the accuracy of the low battery detect circuit. The
designer should consider battery type, discharge characteristics, and a test load during
battery voltage measurements.

Note that the Hibernation module draws power from whichever source (VBAT or VDD) has the higher
voltage. Therefore, it is important to design the circuit to ensure that VDD is higher that VBAT under
nominal conditions or else the Hibernation module draws power from the battery even when VDD
is available.

The Hibernation module can be configured to detect a low battery condition by setting the LOWBATEN
bit of the HIBCTL register. In this configuration, the LOWBAT bit of the HIBRIS register will be set
when the battery level is low. If the VABORT bit is also set, then the module is prevented from entering
Hibernation mode when a low battery is detected. The module can also be configured to generate
an interrupt for the low-battery condition (see “Interrupts and Status” on page 137).

135June 02, 2008
Preliminary

LM3S5747 Microcontroller

7.2.4 Real-Time Clock
The Hibernation module includes a 32-bit counter that increments once per second with a proper
clock source and configuration (see “Clock Source” on page 133). The 32.768-kHz clock signal is
fed into a predivider register which counts down the 32.768-kHz clock ticks to achieve a once per
second clock rate for the RTC. The rate can be adjusted to compensate for inaccuracies in the clock
source by using the predivider trim register, HIBRTCT. This register has a nominal value of 0x7FFF,
and is used for one second out of every 64 seconds to divide the input clock. This allows the software
to make fine corrections to the clock rate by adjusting the predivider trim register up or down from
0x7FFF. The predivider trim should be adjusted up from 0x7FFF in order to slow down the RTC
rate, and down from 0x7FFF in order to speed up the RTC rate.

The Hibernation module includes two 32-bit match registers that are compared to the value of the
RTC counter. The match registers can be used to wake the processor from hibernation mode, or
to generate an interrupt to the processor if it is not in hibernation.

The RTC must be enabled with the RTCEN bit of the HIBCTL register. The value of the RTC can be
set at any time by writing to the HIBRTCLD register. The predivider trim can be adjusted by reading
and writing theHIBRTCT register. The predivider uses this register once every 64 seconds to adjust
the clock rate. The two match registers can be set by writing to the HIBRTCM0 and HIBRTCM1
registers. The RTC can be configured to generate interrupts by using the interrupt registers (see
“Interrupts and Status” on page 137).

7.2.5 Non-Volatile Memory
The Hibernation module contains 64 32-bit words of memory which are retained during hibernation.
This memory is powered from the battery or auxiliary power supply during hibernation. The processor
software can save state information in this memory prior to hibernation, and can then recover the
state upon waking. The non-volatile memory can be accessed through the HIBDATA registers.

7.2.6 Power Control

Important: The Hibernation Module requires special system implementation considerations since
it is intended to power-down all other sections of its host device. The system
power-supply distribution and interfaces of the system must be driven to 0 VDC or
powered down with the same regulator controlled by HIB. See “Hibernation
Module” on page 686 for more details.

The Hibernation module controls power to the processor through the use of the HIB pin, which is
intended to be connected to the enable signal of the external regulator(s) providing 3.3 V and/or
2.5 V to the microcontroller. When the HIB signal is asserted by the Hibernation module, the external
regulator is turned off and no longer powers the microcontroller. The Hibernation module remains
powered from the VBAT supply, which could be a battery or an auxiliary power source. Hibernation
mode is initiated by the microcontroller setting the HIBREQ bit of the HIBCTL register. Prior to doing
this, a wake-up condition must be configured, either from the external WAKE pin, or by using an RTC
match.

The Hibernation module is configured to wake from the external WAKE pin by setting the PINWEN
bit of theHIBCTL register. It is configured to wake from RTCmatch by setting the RTCWEN bit. Either
one or both of these bits can be set prior to going into hibernation. The WAKE pin includes a weak
internal pull-up. Note that both the HIB and WAKE pins use the Hibernation module's internal power
supply as the logic 1 reference.

When the Hibernation module wakes, the microcontroller will see a normal power-on reset. It can
detect that the power-on was due to a wake from hibernation by examining the raw interrupt status

June 02, 2008136
Preliminary

Hibernation Module

register (see “Interrupts and Status” on page 137) and by looking for state data in the non-volatile
memory (see “Non-Volatile Memory” on page 136).

When the HIB signal deasserts, enabling the external regulator, the external regulator must reach
the operating voltage within tHIB_TO_VDD.

7.2.7 Interrupts and Status
The Hibernation module can generate interrupts when the following conditions occur:

■ Assertion of WAKE pin

■ RTC match

■ Low battery detected

All of the interrupts are ORed together before being sent to the interrupt controller, so the Hibernate
module can only generate a single interrupt request to the controller at any given time. The software
interrupt handler can service multiple interrupt events by reading the HIBMIS register. Software can
also read the status of the Hibernation module at any time by reading the HIBRIS register which
shows all of the pending events. This register can be used at power-on to see if a wake condition
is pending, which indicates to the software that a hibernation wake occurred.

The events that can trigger an interrupt are configured by setting the appropriate bits in the HIBIM
register. Pending interrupts can be cleared by writing the corresponding bit in the HIBIC register.

7.3 Initialization and Configuration
The Hibernation module can be set in several different configurations. The following sections show
the recommended programming sequence for various scenarios. The examples below assume that
a 32.768-kHz oscillator is used, and thus always show bit 2 (CLKSEL) of the HIBCTL register set
to 1. If a 4.194304-MHz crystal is used instead, then the CLKSEL bit remains cleared. Because the
Hibernation module runs at 32 kHz and is asynchronous to the rest of the system, software must
allow a delay of tHIB_REG_WRITE after writes to certain registers (see “Register Access
Timing” on page 132). The registers that require a delay are listed in a note in “Register Map” on page
139 as well as in each register description.

7.3.1 Initialization
The clock source must be enabled first, even if the RTC will not be used. If a 4.194304-MHz crystal
is used, perform the following steps:

1. Write 0x40 to theHIBCTL register at offset 0x10 to enable the crystal and select the divide-by-128
input path.

2. Wait for a time of tXOSC_SETTLE for the crystal to power up and stabilize before performing any
other operations with the Hibernation module.

If a 32.678-kHz oscillator is used, then perform the following steps:

1. Write 0x44 to the HIBCTL register at offset 0x10 to enable the oscillator input.

2. No delay is necessary.

The above is only necessary when the entire system is initialized for the first time. If the processor
is powered due to a wake from hibernation, then the Hibernation module has already been powered

137June 02, 2008
Preliminary

LM3S5747 Microcontroller

up and the above steps are not necessary. The software can detect that the Hibernation module
and clock are already powered by examining the CLK32EN bit of the HIBCTL register.

7.3.2 RTC Match Functionality (No Hibernation)
Use the following steps to implement the RTC match functionality of the Hibernation module:

1. Write the required RTCmatch value to one of theHIBRTCMn registers at offset 0x004 or 0x008.

2. Write the required RTC load value to the HIBRTCLD register at offset 0x00C.

3. Set the required RTC match interrupt mask in the RTCALT0 and RTCALT1 bits (bits 1:0) in the
HIBIM register at offset 0x014.

4. Write 0x0000.0041 to the HIBCTL register at offset 0x010 to enable the RTC to begin counting.

7.3.3 RTC Match/Wake-Up from Hibernation
Use the following steps to implement the RTC match and wake-up functionality of the Hibernation
module:

1. Write the required RTC match value to the HIBRTCMn registers at offset 0x004 or 0x008.

2. Write the required RTC load value to the HIBRTCLD register at offset 0x00C.

3. Write any data to be retained during power cut to theHIBDATA register at offsets 0x030-0x12C.

4. Set the RTC Match Wake-Up and start the hibernation sequence by writing 0x0000.004F to the
HIBCTL register at offset 0x010.

7.3.4 External Wake-Up from Hibernation
Use the following steps to implement the Hibernation module with the external WAKE pin as the
wake-up source for the microcontroller:

1. Write any data to be retained during power cut to theHIBDATA register at offsets 0x030-0x12C.

2. Enable the external wake and start the hibernation sequence by writing 0x0000.0056 to the
HIBCTL register at offset 0x010.

7.3.5 RTC/External Wake-Up from Hibernation

1. Write the required RTC match value to the HIBRTCMn registers at offset 0x004 or 0x008.

2. Write the required RTC load value to the HIBRTCLD register at offset 0x00C.

3. Write any data to be retained during power cut to theHIBDATA register at offsets 0x030-0x12C.

4. Set the RTCMatch/ExternalWake-Up and start the hibernation sequence by writing 0x0000.005F
to the HIBCTL register at offset 0x010.

7.3.6 Register Reset
The Hibernation module handles resets according to the following conditions:

■ Cold Reset

June 02, 2008138
Preliminary

Hibernation Module

When the hibernation module has no externally applied voltage and detects a change to either
VDD or VBAT, it resets all hibernation module registers to the value in Table 7-1 on page 139.

■ Reset During Hibernation Module Disable

When the module has either not been enabled or has been disabled by software, the reset is
passed through to the Hibernation module circuitry and the internal state of the module is reset.

■ Reset While HIB Module is in Hibernation Mode

While in Hibernation mode, or while transitioning from Hibernation mode to run mode (leaving
the power cut), the reset generated by the POR circuitry of the device is suppressed, and the
state of the Hibernation module's registers is unaffected.

■ Reset While HIB Module is in Normal Mode

While in normal mode (not hibernating), any reset is suppressed, and the content/state of the
control and data registers is unaffected.

Software must initialize any control or data registers in this condition. Therefore, software is the
only mechanism to enable or disable the oscillator and real-time clock operation, or to clear
contents of the data memory. The only state that must be cleared by a reset operation while not
in Hibernation mode is any state that prevents software from managing the interface.

7.4 Register Map
Table 7-1 on page 139 lists the Hibernation registers. All addresses given are relative to the Hibernation
Module base address at 0x400F.C000.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the
Hibernation module clock domain and require a delay of tHIB_REG_WRITE between write
accesses. See “Register Access Timing” on page 132.

Table 7-1. Hibernation Module Register Map

See
pageDescriptionResetTypeNameOffset

141Hibernation RTC Counter0x0000.0000ROHIBRTCC0x000

142Hibernation RTC Match 00xFFFF.FFFFR/WHIBRTCM00x004

143Hibernation RTC Match 10xFFFF.FFFFR/WHIBRTCM10x008

144Hibernation RTC Load0xFFFF.FFFFR/WHIBRTCLD0x00C

145Hibernation Control0x0000.0000R/WHIBCTL0x010

148Hibernation Interrupt Mask0x0000.0000R/WHIBIM0x014

149Hibernation Raw Interrupt Status0x0000.0000ROHIBRIS0x018

150Hibernation Masked Interrupt Status0x0000.0000ROHIBMIS0x01C

151Hibernation Interrupt Clear0x0000.0000R/W1CHIBIC0x020

152Hibernation RTC Trim0x0000.7FFFR/WHIBRTCT0x024

153Hibernation Data0x0000.0000R/WHIBDATA0x030-
0x12C

139June 02, 2008
Preliminary

LM3S5747 Microcontroller

7.5 Register Descriptions
The remainder of this section lists and describes the Hibernation module registers, in numerical
order by address offset.

June 02, 2008140
Preliminary

Hibernation Module

Register 1: Hibernation RTC Counter (HIBRTCC), offset 0x000
This register is the current 32-bit value of the RTC counter.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the
Hibernation module clock domain and require a delay of tHIB_REG_WRITE between write
accesses. See “Register Access Timing” on page 132.

Hibernation RTC Counter (HIBRTCC)
Base 0x400F.C000
Offset 0x000
Type RO, reset 0x0000.0000

16171819202122232425262728293031

RTCC

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RTCC

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

RTC Counter

A read returns the 32-bit counter value. This register is read-only. To
change the value, use the HIBRTCLD register.

0x0000.0000RORTCC31:0

141June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: Hibernation RTC Match 0 (HIBRTCM0), offset 0x004
This register is the 32-bit match 0 register for the RTC counter.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the
Hibernation module clock domain and require a delay of tHIB_REG_WRITE between write
accesses. See “Register Access Timing” on page 132.

Hibernation RTC Match 0 (HIBRTCM0)
Base 0x400F.C000
Offset 0x004
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

RTCM0

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

RTCM0

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

RTC Match 0

A write loads the value into the RTC match register.

A read returns the current match value.

0xFFFF.FFFFR/WRTCM031:0

June 02, 2008142
Preliminary

Hibernation Module

Register 3: Hibernation RTC Match 1 (HIBRTCM1), offset 0x008
This register is the 32-bit match 1 register for the RTC counter.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the
Hibernation module clock domain and require a delay of tHIB_REG_WRITE between write
accesses. See “Register Access Timing” on page 132.

Hibernation RTC Match 1 (HIBRTCM1)
Base 0x400F.C000
Offset 0x008
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

RTCM1

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

RTCM1

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

RTC Match 1

A write loads the value into the RTC match register.

A read returns the current match value.

0xFFFF.FFFFR/WRTCM131:0

143June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 4: Hibernation RTC Load (HIBRTCLD), offset 0x00C
This register is the 32-bit value loaded into the RTC counter.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the
Hibernation module clock domain and require a delay of tHIB_REG_WRITE between write
accesses. See “Register Access Timing” on page 132.

Hibernation RTC Load (HIBRTCLD)
Base 0x400F.C000
Offset 0x00C
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

RTCLD

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

RTCLD

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

RTC Load

A write loads the current value into the RTC counter (RTCC).

A read returns the 32-bit load value.

0xFFFF.FFFFR/WRTCLD31:0

June 02, 2008144
Preliminary

Hibernation Module

Register 5: Hibernation Control (HIBCTL), offset 0x010
This register is the control register for the Hibernation module.

Hibernation Control (HIBCTL)
Base 0x400F.C000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reservedWRC

ROROROROROROROROROROROROROROROROType
0000000000000001Reset

0123456789101112131415

RTCENHIBREQCLKSELRTCWENPINWENLOWBATENCLK32ENVABORTreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Write Complete/Capable

This bit indicates whether the hibernation module can receive a write
operation.

DescriptionValue

The interface is processing a prior write and is busy. Any write
operation that is attempted while WRC is 0 results in
undetermined behavior.

0

The interface is ready to accept a write.1

Software must poll this bit between write requests and defer writes until
WRC=1 to ensure proper operation.

This difference may be exploited by software at reset time to detect
which method of programming is appropriate: 0 = software delay loops
required; 1 = WRC paced available.

The bit name WRC means "Write Complete," which is the normal use
of the bit (between write accesses). However, because the bit is set
out-of-reset, the name can also mean "Write Capable" which simply
indicates that the interface may be written to by software. This meaning
also has more meaning to the out-of-reset sense.

1ROWRC31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved30:8

Power Cut Abort Enable

DescriptionValue

Power cut occurs during a low-battery alert.0

Power cut is aborted.1

0R/WVABORT7

145June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

32-kHz Oscillator Enable

DescriptionValue

Disabled0

Enabled1

This bit must be enabled to use the Hibernation module. If a crystal is
used, then software should wait 20 ms after setting this bit to allow the
crystal to power up and stabilize.

0R/WCLK32EN6

Low Battery Monitoring Enable

DescriptionValue

Disabled0

Enabled1

When set, low battery voltage detection is enabled (VBAT < 2.35 V).

0R/WLOWBATEN5

External WAKE Pin Enable

DescriptionValue

Disabled0

Enabled1

When set, an external event on the WAKE pin will re-power the device.

0R/WPINWEN4

RTC Wake-up Enable

DescriptionValue

Disabled0

Enabled1

When set, an RTC match event (RTCM0 or RTCM1) will re-power the
device based on the RTC counter value matching the corresponding
match register 0 or 1.

0R/WRTCWEN3

Hibernation Module Clock Select

DescriptionValue

Use Divide by 128 output. Use this value for a 4-MHz crystal.0

Use raw output. Use this value for a 32-kHz oscillator.1

0R/WCLKSEL2

Hibernation Request

DescriptionValue

Disabled0

Hibernation initiated1

After a wake-up event, this bit is cleared by hardware.

0R/WHIBREQ1

June 02, 2008146
Preliminary

Hibernation Module

DescriptionResetTypeNameBit/Field

RTC Timer Enable

DescriptionValue

Disabled0

Enabled1

0R/WRTCEN0

147June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: Hibernation Interrupt Mask (HIBIM), offset 0x014
This register is the interrupt mask register for the Hibernation module interrupt sources.

Hibernation Interrupt Mask (HIBIM)
Base 0x400F.C000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RTCALT0RTCALT1LOWBATEXTWreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.0000ROreserved31:4

External Wake-Up Interrupt Mask

DescriptionValue

Masked0

Unmasked1

0R/WEXTW3

Low Battery Voltage Interrupt Mask

DescriptionValue

Masked0

Unmasked1

0R/WLOWBAT2

RTC Alert1 Interrupt Mask

DescriptionValue

Masked0

Unmasked1

0R/WRTCALT11

RTC Alert0 Interrupt Mask

DescriptionValue

Masked0

Unmasked1

0R/WRTCALT00

June 02, 2008148
Preliminary

Hibernation Module

Register 7: Hibernation Raw Interrupt Status (HIBRIS), offset 0x018
This register is the raw interrupt status for the Hibernation module interrupt sources.

Hibernation Raw Interrupt Status (HIBRIS)
Base 0x400F.C000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RTCALT0RTCALT1LOWBATEXTWreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.0000ROreserved31:4

External Wake-Up Raw Interrupt Status0ROEXTW3

Low Battery Voltage Raw Interrupt Status0ROLOWBAT2

RTC Alert1 Raw Interrupt Status0RORTCALT11

RTC Alert0 Raw Interrupt Status0RORTCALT00

149June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C
This register is the masked interrupt status for the Hibernation module interrupt sources.

Hibernation Masked Interrupt Status (HIBMIS)
Base 0x400F.C000
Offset 0x01C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RTCALT0RTCALT1LOWBATEXTWreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.0000ROreserved31:4

External Wake-Up Masked Interrupt Status0ROEXTW3

Low Battery Voltage Masked Interrupt Status0ROLOWBAT2

RTC Alert1 Masked Interrupt Status0RORTCALT11

RTC Alert0 Masked Interrupt Status0RORTCALT00

June 02, 2008150
Preliminary

Hibernation Module

Register 9: Hibernation Interrupt Clear (HIBIC), offset 0x020
This register is the interrupt write-one-to-clear register for the Hibernation module interrupt sources.

Hibernation Interrupt Clear (HIBIC)
Base 0x400F.C000
Offset 0x020
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RTCALT0RTCALT1LOWBATEXTWreserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.0000ROreserved31:4

External Wake-Up Masked Interrupt Clear

Reads return an indeterminate value.

0R/W1CEXTW3

Low Battery Voltage Masked Interrupt Clear

Reads return an indeterminate value.

0R/W1CLOWBAT2

RTC Alert1 Masked Interrupt Clear

Reads return an indeterminate value.

0R/W1CRTCALT11

RTC Alert0 Masked Interrupt Clear

Reads return an indeterminate value.

0R/W1CRTCALT00

151June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024
This register contains the value that is used to trim the RTC clock predivider. It represents the
computed underflow value that is used during the trim cycle. It is represented as 0x7FFF ± N clock
cycles.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the
Hibernation module clock domain and require a delay of tHIB_REG_WRITE between write
accesses. See “Register Access Timing” on page 132.

Hibernation RTC Trim (HIBRTCT)
Base 0x400F.C000
Offset 0x024
Type R/W, reset 0x0000.7FFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TRIM

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111110Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

RTC Trim Value

This value is loaded into the RTC predivider every 64 seconds. It is used
to adjust the RTC rate to account for drift and inaccuracy in the clock
source. The compensation is made by software by adjusting the default
value of 0x7FFF up or down.

0x7FFFR/WTRIM15:0

June 02, 2008152
Preliminary

Hibernation Module

Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C
This address space is implemented as a 64x32-bit memory (256 bytes). It can be loaded by the
system processor in order to store any non-volatile state data and will not lose power during a power
cut operation.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the
Hibernation module clock domain and require a delay of tHIB_REG_WRITE between write
accesses. See “Register Access Timing” on page 132.

Hibernation Data (HIBDATA)
Base 0x400F.C000
Offset 0x030-0x12C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

RTD

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

RTD

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Hibernation Module NV Registers[63:0]0x0000.0000R/WRTD31:0

153June 02, 2008
Preliminary

LM3S5747 Microcontroller

8 Internal Memory
The LM3S5747microcontroller comes with 64 KB of bit-banded SRAM and 128 KB of flash memory.
The flash controller provides a user-friendly interface, making flash programming a simple task.
Flash protection can be applied to the flash memory on a 2-KB block basis.

8.1 Block Diagram
Figure 8-1 on page 154 illustrates the Flash functions. The dashed boxes in the figure indicate
registers residing in the System Control module rather than the Flash Control module.

Figure 8-1. Flash Block Diagram

Flash Protection

ROM Control

ROMCTL
ROM Array

Flash Control

FMA
FMD

FCIM
FCMISC

Flash Array

Cortex-M3

Bridge

SRAM Array

S
ys
te
m

B
us

Icode Bus

Dcode Bus

FMPREn
FMPPEn

Flash Timing

USECRL

User Registers

USER_DBG
USER_REG0
USER_REG1
USER_REG2
USER_REG3

FMC
FCRIS

8.2 Functional Description
This section describes the functionality of the SRAM, ROM, and Flash memories.

8.2.1 SRAM Memory
Note: The SRAM memory is implemented using two 32-bit wide SRAM banks (separate SRAM

arrays). The banks are partitioned so that one bank contains all even words (the even bank)
and the other contains all odd words (the odd bank). A write access that is followed
immediately by a read access to the same bank will incur a stall of a single clock cycle.
However, a write to one bank followed by a read of the other bank can occur in successive
clock cycles without incurring any delay.

June 02, 2008154
Preliminary

Internal Memory

The internal SRAM of the Stellaris® devices is located at address 0x2000.0000 of the device memory
map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has
introduced bit-banding technology in the Cortex-M3 processor. With a bit-band-enabled processor,
certain regions in thememory map (SRAM and peripheral space) can use address aliases to access
individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C
allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, “Memory Map” in the ARM® Cortex™-M3
Technical Reference Manual.

8.2.2 ROM Memory
The 16 KB of internal ROM of the Stellaris® device is located at address 0x0100.0000 of the device
memory map and contains the following components:

■ A copy of the Serial Flash Loader and vector table

■ A copy of the peripheral driver library (DriverLib) release for product-specific peripherals and
interfaces

■ Some pre-loaded code provided for manufacturing tests

8.2.3 Flash Memory
The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block
causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be
programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB
blocks that can be individually protected. The protection allows blocks to be marked as read-only
or execute-only, providing different levels of code protection. Read-only blocks cannot be erased
or programmed, protecting the contents of those blocks from being modified. Execute-only blocks
cannot be erased or programmed, and can only be read by the controller instruction fetchmechanism,
protecting the contents of those blocks from being read by either the controller or by a debugger.

8.2.3.1 Flash Memory Timing
The timing for the flash is automatically handled by the flash controller. However, in order to do so,
it must know the clock rate of the system in order to time its internal signals properly. The number
of clock cycles per microsecond must be provided to the flash controller for it to accomplish this
timing. It is software's responsibility to keep the flash controller updated with this information via the
USec Reload (USECRL) register.

On reset, theUSECRL register is loaded with a value that configures the flash timing so that it works
with the maximum clock rate of the part. If software changes the system operating frequency, the
new operating frequency minus 1 (in MHz) must be loaded into USECRL before any flash
modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value
of 0x13 (20-1) must be written to the USECRL register.

155June 02, 2008
Preliminary

LM3S5747 Microcontroller

8.2.3.2 Flash Memory Protection
The user is provided two forms of flash protection per 2-KB flash blocks in two pairs of 32-bit wide
registers. The protection policy for each form is controlled by individual bits (per policy per block)
in the FMPPEn and FMPREn registers.

■ Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed
(written) or erased. If cleared, the block may not be changed.

■ Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read
by software or debuggers. If cleared, the block may only be executed and contents of the memory
block are prohibited from being accessed as data.

The policies may be combined as shown in Table 8-1 on page 156.

Table 8-1. Flash Protection Policy Combinations

ProtectionFMPREnFMPPEn

Execute-only protection. The block may only be executed andmay not be written or erased. This mode
is used to protect code.

00

The block may be written, erased or executed, but not read. This combination is unlikely to be used.01

Read-only protection. The block may be read or executed but may not be written or erased. This mode
is used to lock the block from further modification while allowing any read or execute access.

10

No protection. The block may be written, erased, executed or read.11

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt
may be optionally generated (by setting the AMASK bit in the FIM register) to alert software developers
of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data
filled with all 0s. A controller interrupt may be optionally generated to alert software developers of
poorly behaving software during the development and debug phases.

The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented
banks. This implements a policy of open access and programmability. The register bits may be
changed by writing the specific register bit. The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. Details on
programming these bits are discussed in “Nonvolatile Register Programming” on page 157.

8.3 Flash Memory Initialization and Configuration

8.3.1 Flash Programming
The Stellaris® devices provide a user-friendly interface for flash programming. All erase/program
operations are handled via three registers: FMA, FMD, and FMC.

8.3.1.1 To program a 32-bit word

1. Write source data to the FMD register.

2. Write the target address to the FMA register.

3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.

June 02, 2008156
Preliminary

Internal Memory

4. Poll the FMC register until the WRITE bit is cleared.

8.3.1.2 To perform an erase of a 1-KB page

1. Write the page address to the FMA register.

2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.

3. Poll the FMC register until the ERASE bit is cleared.

8.3.1.3 To perform a mass erase of the flash

1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the FMC register.

2. Poll the FMC register until the MERASE bit is cleared.

8.3.2 Nonvolatile Register Programming
This section discusses how to update registers that are resident within the flash memory itself.
These registers exist in a separate space from the main flash array and are not affected by an
ERASE or MASS ERASE operation. These nonvolatile registers are updated by using the COMT bit
in the FMC register to activate a write operation. For the USER_DBG register, the data to be written
must be loaded into the FMD register before it is "committed". All other registers are R/W and can
have their operation tried before committing them to nonvolatile memory.

Important: These registers can only have bits changed from 1 to 0 by user programming, but can
be restored to their factory default values by performing the sequence described in the
section called “Recovering a "Locked" Device” on page 60. The mass erase of the main
flash array caused by the sequence is performed prior to restoring these registers.

In addition, the USER_REG0, USER_REG1, and USER_DBG use bit 31 (NW) of their respective
registers to indicate that they are available for user write. These three registers can only be written
once whereas the flash protection registers may be written multiple times. Table 8-2 on page 157
provides the FMA address required for commitment of each of the registers and the source of the
data to be written when the COMT bit of the FMC register is written with a value of 0xA442.0008.
After writing the COMT bit, the user may poll the FMC register to wait for the commit operation to
complete.

Table 8-2. Flash Resident Registersa

Data SourceFMA ValueRegister to be Committed

FMPRE00x0000.0000FMPRE0

FMPRE10x0000.0002FMPRE1

FMPRE20x0000.0004FMPRE2

FMPRE30x0000.0008FMPRE3

FMPPE00x0000.0001FMPPE0

FMPPE10x0000.0003FMPPE1

FMPPE20x0000.0005FMPPE2

FMPPE30x0000.0007FMPPE3

USER_REG00x8000.0000USER_REG0

USER_REG10x8000.0001USER_REG1

157June 02, 2008
Preliminary

LM3S5747 Microcontroller

Data SourceFMA ValueRegister to be Committed

FMD0x7510.0000USER_DBG

a. Which FMPREn and FMPPEn registers are available depend on the flash size of your particular Stellaris® device.

8.4 Register Map
Table 8-3 on page 158 lists the ROMController registers and the Flash memory and control registers.
The offset listed is a hexadecimal increment to the register's address. The ROMController registers
are relative to the System Control base address of 0x400F.E000. The FMA, FMD, FMC, FCRIS,
FCIM, and FCMISC registers are relative to the Flash control base address of 0x400F.D000. The
FMPREn, FMPPEn, USECRL, USER_DBG, and USER_REGn registers are relative to the System
Control base address of 0x400F.E000.

Table 8-3. Flash Register Map

See
pageDescriptionResetTypeNameOffset

ROM Registers (System Control Offset)

160ROM Control-R/W1CRMCTL0x0F0

Flash Registers (Flash Control Offset)

161Flash Memory Address0x0000.0000R/WFMA0x000

162Flash Memory Data0x0000.0000R/WFMD0x004

163Flash Memory Control0x0000.0000R/WFMC0x008

165Flash Controller Raw Interrupt Status0x0000.0000ROFCRIS0x00C

166Flash Controller Interrupt Mask0x0000.0000R/WFCIM0x010

167Flash Controller Masked Interrupt Status and Clear0x0000.0000R/W1CFCMISC0x014

Flash Registers (System Control Offset)

169ROM Version Register0x0000.0000RORMVER0x0F4

170Flash Memory Protection Read Enable 00xFFFF.FFFFR/WFMPRE00x130

170Flash Memory Protection Read Enable 00xFFFF.FFFFR/WFMPRE00x200

171Flash Memory Protection Program Enable 00xFFFF.FFFFR/WFMPPE00x134

171Flash Memory Protection Program Enable 00xFFFF.FFFFR/WFMPPE00x400

168USec Reload0x31R/WUSECRL0x140

172User Debug0xFFFF.FFFER/WUSER_DBG0x1D0

173User Register 00xFFFF.FFFFR/WUSER_REG00x1E0

174User Register 10xFFFF.FFFFR/WUSER_REG10x1E4

175User Register 20xFFFF.FFFFR/WUSER_REG20x1E8

176User Register 30xFFFF.FFFFR/WUSER_REG30x1EC

177Flash Memory Protection Read Enable 10xFFFF.FFFFR/WFMPRE10x204

178Flash Memory Protection Read Enable 20x0000.0000R/WFMPRE20x208

June 02, 2008158
Preliminary

Internal Memory

See
pageDescriptionResetTypeNameOffset

179Flash Memory Protection Read Enable 30x0000.0000R/WFMPRE30x20C

180Flash Memory Protection Program Enable 10xFFFF.FFFFR/WFMPPE10x404

181Flash Memory Protection Program Enable 20x0000.0000R/WFMPPE20x408

182Flash Memory Protection Program Enable 30x0000.0000R/WFMPPE30x40C

8.5 ROM Register Descriptions (System Control Offset)
This section lists and describes the ROM Controller registers, in numerical order by address offset.
Registers in this section are relative to the System Control base address of 0x400F.E000.

159June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 1: ROM Control (RMCTL), offset 0x0F0
This register provides control of the ROM controller state.

ROM Control (RMCTL)
Base 0x400F.E000
Offset 0x0F0
Type R/W1C, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BAreserved

R/W1CROROROROROROROROROROROROROROROType
-000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:1

Boot Alias

■ The device has ROM.

■ The first two words of the Flash memory contain 0xFFFF.FFFF.

This bit is cleared by writing a 1 to this bit position.

When the BA bit is set, the boot alias is in effect and the ROM appears
at address 0x0. When the BA bit is clear, the Flash appears at address
0x0.

-R/W1CBA0

8.6 Flash Register Descriptions (Flash Control Offset)
This section lists and describes the Flash Memory registers, in numerical order by address offset.
Registers in this section are relative to the Flash control base address of 0x400F.D000.

June 02, 2008160
Preliminary

Internal Memory

Register 2: Flash Memory Address (FMA), offset 0x000
During a write operation, this register contains a 4-byte-aligned address and specifies where the
data is written. During erase operations, this register contains a 1 KB-aligned address and specifies
which page is erased. Note that the alignment requirements must be met by software or the results
of the operation are unpredictable.

Flash Memory Address (FMA)
Base 0x400F.D000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

OFFSETreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

OFFSET

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:17

Address Offset

Address offset in flash where operation is performed, except for
nonvolatile registers (see “Nonvolatile Register Programming” on page
157 for details on values for this field).

0x0R/WOFFSET16:0

161June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 3: Flash Memory Data (FMD), offset 0x004
This register contains the data to be written during the programming cycle or read during the read
cycle. Note that the contents of this register are undefined for a read access of an execute-only
block. This register is not used during the erase cycles.

Flash Memory Data (FMD)
Base 0x400F.D000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Data Value

Data value for write operation.

0x0R/WDATA31:0

June 02, 2008162
Preliminary

Internal Memory

Register 4: Flash Memory Control (FMC), offset 0x008
When this register is written, the flash controller initiates the appropriate access cycle for the location
specified by the Flash Memory Address (FMA) register (see page 161). If the access is a write
access, the data contained in the Flash Memory Data (FMD) register (see page 162) is written.

This is the final register written and initiates the memory operation. There are four control bits in the
lower byte of this register that, when set, initiate the memory operation. The most used of these
register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are
unpredictable.

Flash Memory Control (FMC)
Base 0x400F.D000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

WRKEY

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

WRITEERASEMERASECOMTreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Write Key

This field contains a write key, which is used to minimize the incidence
of accidental flash writes. The value 0xA442 must be written into this
field for a write to occur. Writes to the FMC register without this WRKEY
value are ignored. A read of this field returns the value 0.

0x0WOWRKEY31:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved15:4

Commit Register Value

Commit (write) of register value to nonvolatile storage. A write of 0 has
no effect on the state of this bit.

If read, the state of the previous commit access is provided. If the
previous commit access is complete, a 0 is returned; otherwise, if the
commit access is not complete, a 1 is returned.

This can take up to 50 μs.

0R/WCOMT3

Mass Erase Flash Memory

If this bit is set, the flash main memory of the device is all erased. A
write of 0 has no effect on the state of this bit.

If read, the state of the previous mass erase access is provided. If the
previous mass erase access is complete, a 0 is returned; otherwise, if
the previous mass erase access is not complete, a 1 is returned.

This can take up to 250 ms.

0R/WMERASE2

163June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Erase a Page of Flash Memory

If this bit is set, the page of flash main memory as specified by the
contents of FMA is erased. A write of 0 has no effect on the state of this
bit.

If read, the state of the previous erase access is provided. If the previous
erase access is complete, a 0 is returned; otherwise, if the previous
erase access is not complete, a 1 is returned.

This can take up to 25 ms.

0R/WERASE1

Write a Word into Flash Memory

If this bit is set, the data stored in FMD is written into the location as
specified by the contents of FMA. A write of 0 has no effect on the state
of this bit.

If read, the state of the previous write update is provided. If the previous
write access is complete, a 0 is returned; otherwise, if the write access
is not complete, a 1 is returned.

This can take up to 50 µs.

0R/WWRITE0

June 02, 2008164
Preliminary

Internal Memory

Register 5: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C
This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled
if the corresponding FCIM register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)
Base 0x400F.D000
Offset 0x00C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ARISPRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:2

Programming Raw Interrupt Status

This bit indicates the current state of the programming cycle. If set, the
programming cycle completed; if cleared, the programming cycle has
not completed. Programming cycles are either write or erase actions
generated through the Flash Memory Control (FMC) register bits (see
page 163).

0ROPRIS1

Access Raw Interrupt Status

This bit indicates if the flash was improperly accessed. If set, the program
tried to access the flash counter to the policy as set in the FlashMemory
Protection Read Enable (FMPREn) and Flash Memory Protection
Program Enable (FMPPEn) registers. Otherwise, no access has tried
to improperly access the flash.

0ROARIS0

165June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: Flash Controller Interrupt Mask (FCIM), offset 0x010
This register controls whether the flash controller generates interrupts to the controller.

Flash Controller Interrupt Mask (FCIM)
Base 0x400F.D000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AMASKPMASKreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:2

Programming Interrupt Mask

This bit controls the reporting of the programming raw interrupt status
to the controller. If set, a programming-generated interrupt is promoted
to the controller. Otherwise, interrupts are recorded but suppressed from
the controller.

0R/WPMASK1

Access Interrupt Mask

This bit controls the reporting of the access raw interrupt status to the
controller. If set, an access-generated interrupt is promoted to the
controller. Otherwise, interrupts are recorded but suppressed from the
controller.

0R/WAMASK0

June 02, 2008166
Preliminary

Internal Memory

Register 7: Flash Controller Masked Interrupt Status and Clear (FCMISC),
offset 0x014
This register provides two functions. First, it reports the cause of an interrupt by indicating which
interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the
interrupt reporting.

Flash Controller Masked Interrupt Status and Clear (FCMISC)
Base 0x400F.D000
Offset 0x014
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AMISCPMISCreserved

R/W1CR/W1CROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:2

Programming Masked Interrupt Status and Clear

This bit indicates whether an interrupt was signaled because a
programming cycle completed and was not masked. This bit is cleared
by writing a 1. The PRIS bit in the FCRIS register (see page 165) is also
cleared when the PMISC bit is cleared.

0R/W1CPMISC1

Access Masked Interrupt Status and Clear

This bit indicates whether an interrupt was signaled because an improper
access was attempted and was not masked. This bit is cleared by writing
a 1. The ARIS bit in the FCRIS register is also cleared when the AMISC
bit is cleared.

0R/W1CAMISC0

8.7 Flash Register Descriptions (System Control Offset)
The remainder of this section lists and describes the Flash Memory registers, in numerical order by
address offset. Registers in this section are relative to the System Control base address of
0x400F.E000.

167June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: USec Reload (USECRL), offset 0x140
Note: Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-μs tick divider reload value for the flash controller.
The internal flash has specific minimum and maximum requirements on the length of time the high
voltage write pulse can be applied. It is required that this register contain the operating frequency
(in MHz -1) whenever the flash is being erased or programmed. The user is required to change this
value if the clocking conditions are changed for a flash erase/program operation.

USec Reload (USECRL)
Base 0x400F.E000
Offset 0x140
Type R/W, reset 0x31

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

USECreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
1000110000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:8

Microsecond Reload Value

MHz -1 of the controller clock when the flash is being erased or
programmed.

If the maximum system frequency is being used, USEC should be set to
0x31 (50 MHz) whenever the flash is being erased or programmed.

0x31R/WUSEC7:0

June 02, 2008168
Preliminary

Internal Memory

Register 9: ROM Version Register (RMVER), offset 0x0F4
Note: Offset is relative to System Control base address of 0x400FE000.

A 32-bit read-only register containing the ROM content version information.

ROM Version Register (RMVER)
Base 0x400F.E000
Offset 0x0F4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SIZECONT

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

REVVER

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

ROM Contents

This field specifies the contents of the ROM.

DescriptionValue

Stellaris Boot Loader & DriverLib0x0

0x0ROCONT31:24

ROM Size

This field encodes the size of the ROM.

DescriptionValue

11 KB0x0

0x0ROSIZE23:16

ROM Version0x0ROVER15:8

ROM Revision0x0ROREV7:0

169June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 10: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130
and 0x200
Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 0 (FMPRE0)
Base 0x400F.E000
Offset 0x130 and 0x200
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB flash blocks to be executed or read.
The policies may be combined as shown in the table “Flash Protection
Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0xFFFFFFFF

0xFFFFFFFFR/WREAD_ENABLE31:0

June 02, 2008170
Preliminary

Internal Memory

Register 11: Flash Memory Protection Program Enable 0 (FMPPE0), offset
0x134 and 0x400
Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 0 (FMPPE0)
Base 0x400F.E000
Offset 0x134 and 0x400
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable

Configures 2-KB flash blocks to be execute only. The policies may be
combined as shown in the table “Flash Protection Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0xFFFFFFFF

0xFFFFFFFFR/WPROG_ENABLE31:0

171June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: User Debug (USER_DBG), offset 0x1D0
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device
in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory
and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0
disables any external debugger access to the device permanently, starting with the next power-up
cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written
and is controlled through hardware to ensure that the register is only written once.

User Debug (USER_DBG)
Base 0x400F.E000
Offset 0x1D0
Type R/W, reset 0xFFFF.FFFE

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DBG0DBG1DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0111111111111111Reset

DescriptionResetTypeNameBit/Field

User Debug Not Written. Specifies that this 32-bit dword has not been
written.

1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x1FFFFFFFR/WDATA30:2

Debug Control 1. The DBG1 bit must be 1 and DBG0must be 0 for debug
to be available.

1R/WDBG11

Debug Control 0. The DBG1 bit must be 1 and DBG0must be 0 for debug
to be available.

0R/WDBG00

June 02, 2008172
Preliminary

Internal Memory

Register 13: User Register 0 (USER_REG0), offset 0x1E0
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 0 (USER_REG0)
Base 0x400F.E000
Offset 0x1E0
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. Specifies that this 32-bit dword has not been written.1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

173June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 14: User Register 1 (USER_REG1), offset 0x1E4
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 1 (USER_REG1)
Base 0x400F.E000
Offset 0x1E4
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. Specifies that this 32-bit dword has not been written.1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

June 02, 2008174
Preliminary

Internal Memory

Register 15: User Register 2 (USER_REG2), offset 0x1E8
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 2 (USER_REG2)
Base 0x400F.E000
Offset 0x1E8
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. Specifies that this 32-bit dword has not been written.1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

175June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 16: User Register 3 (USER_REG3), offset 0x1EC
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 3 (USER_REG3)
Base 0x400F.E000
Offset 0x1EC
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. Specifies that this 32-bit dword has not been written.1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

June 02, 2008176
Preliminary

Internal Memory

Register 17: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 1 (FMPRE1)
Base 0x400F.E000
Offset 0x204
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB flash blocks to be executed or read.
The policies may be combined as shown in the table “Flash Protection
Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0xFFFFFFFF

0xFFFFFFFFR/WREAD_ENABLE31:0

177June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 18: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 2 (FMPRE2)
Base 0x400F.E000
Offset 0x208
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB flash blocks to be executed or read.
The policies may be combined as shown in the table “Flash Protection
Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0x00000000

0x00000000R/WREAD_ENABLE31:0

June 02, 2008178
Preliminary

Internal Memory

Register 19: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 3 (FMPRE3)
Base 0x400F.E000
Offset 0x20C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB flash blocks to be executed or read.
The policies may be combined as shown in the table “Flash Protection
Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0x00000000

0x00000000R/WREAD_ENABLE31:0

179June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 20: Flash Memory Protection Program Enable 1 (FMPPE1), offset
0x404
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 1 (FMPPE1)
Base 0x400F.E000
Offset 0x404
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable. Configures 2-KB flash blocks to be execute
only. The policies may be combined as shown in the table “Flash
Protection Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0xFFFFFFFF

0xFFFFFFFFR/WPROG_ENABLE31:0

June 02, 2008180
Preliminary

Internal Memory

Register 21: Flash Memory Protection Program Enable 2 (FMPPE2), offset
0x408
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 2 (FMPPE2)
Base 0x400F.E000
Offset 0x408
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable. Configures 2-KB flash blocks to be execute
only. The policies may be combined as shown in the table “Flash
Protection Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0x00000000

0x00000000R/WPROG_ENABLE31:0

181June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 22: Flash Memory Protection Program Enable 3 (FMPPE3), offset
0x40C
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 3 (FMPPE3)
Base 0x400F.E000
Offset 0x40C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable. Configures 2-KB flash blocks to be execute
only. The policies may be combined as shown in the table “Flash
Protection Policy Combinations”.

DescriptionValue

Enables 128 KB of flash.0x00000000

0x00000000R/WPROG_ENABLE31:0

June 02, 2008182
Preliminary

Internal Memory

9 Micro Direct Memory Access (μDMA)
The LM3S5747 microcontroller includes a Direct Memory Access (DMA) controller, known as
micro-DMA (μDMA). The μDMA controller provides a way to offload data transfer tasks from the
Cortex-M3 processor, allowing for more effecient use of the processor and the expanded available
bus bandwidth. The μDMA controller can perform transfers between memory and peripherals. It
has dedicated channels for each supported peripheral and can be programmed to automatically
perform transfers between peripherals and memory as the peripheral is ready to transfer more data.
The μDMA controller also supports sophisticated transfer modes such as ping-pong and
scatter-gather, which allows the processor to set up a list of transfer tasks for the controller.

The μDMA controller has the following features:

■ ARM PrimeCell® 32-channel configurable µDMA controller

■ Support for multiple transfer modes:

– Basic, for simple transfer scenarios

– Ping-pong, for continuous data flow to/from peripherals

– Scatter-gather, from a programmable list of arbitrary transfers initiated from a single request

■ Dedicated channels for supported peripherals

■ One channel each for receive and transmit path for bidirectional peripherals

■ Dedicated channel for software-initiated transfers

■ Independently configured and operated channels

■ Per-channel configurable bus arbitration scheme

■ Two levels of priority

■ Design optimizations for improved bus access performance between µDMA controller and the
processor core:

– µDMA controller access is subordinate to core access

– RAM striping

– Peripheral bus segmentation

■ Data sizes of 8, 16, and 32 bits

■ Source and destination address increment size of byte, half-word, word, or no increment

■ Maskable device requests

■ Optional software initiated requests for any channel

■ Interrupt on transfer completion, with a separate interrupt per channel

183June 02, 2008
Preliminary

LM3S5747 Microcontroller

9.1 Block Diagram

Figure 9-1. μDMA Block Diagram

System Memory

CH Control Table

Transfer Buffers
Used by uDMA

uDMA
Controller

•
•
•

DMASRCENDP
DMADSTENDP
DMACHCTRL

DMASRCENDP
DMADSTENDP
DMACHCTRL

DMA error

Peripheral
DMA Channel 0

Peripheral
DMA Channel N-1

•
•
•

DMASTAT
DMACFG

DMACTLBASE
DMAALTBASE
DMAWAITSTAT
DMASWREQ

DMAUSEBURSTSET
DMAUSEBURSTCLR
DMAREQMASKSET
DMAREQMASKCLR

DMAENASET
DMAENACLR
DMAALTSET
DMAALTCLR
DMAPRIOSET
DMAPRIOCLR
DMAERRCLR

request

done

request

done

General
Peripheral N
Registers

Nested
Vectored
Interrupt
Controller
(NVIC)

ARM
Cortex-M3

IRQ request

done

9.2 Functional Description
The μDMA controller is a flexible and highly configurable DMA controller designed to work effeciently
with the microcontroller's Cortex-M3 processor core. It supports multiple data sizes and address
increment schemes, multiple levels of priority among DMA channels, and several transfer modes
to allow for sophisticated programmed data transfers. The DMA controller's usage of the bus is
always subordinate to the processor core, and so it will never hold up a bus transaction by the
processor. Because the μDMA controller is only using otherwise-idle bus cycles, the data transfer
bandwidth it provides is essentially free, with no impact on the rest of the system. The bus architecture
has been optimized to greatly reduce contention between the processor core and the μDMA controller,
thus improving performance. The optimizations include RAM striping and peripheral bus segmentation,
which in many cases allows both the processor core and the μDMA controller to access the bus
and perform simultaneous data transfers.

Each peripheral function that is supported has a dedicated channel on the μDMA controller that can
be configured independently.

The μDMA controller makes use of a unique configuration method by using channel control structures
that are maintained in systemmemory by the processor. While simple transfer modes are supported,
it is also possible to build up sophisticated "task" lists in memory that allow the controller to perform
arbitrary-sized transfers to and from arbitrary locations as part of a single transfer request. The
controller also supports the use of ping-pong buffering to accomodate constant streaming of data
to or from a peripheral.

Each channel also has a configurable arbitration size. The arbitration size is the number of items
that will be transferred in a burst before the controller rearbitrates for channel priority. Using the
arbitration size, it is possible to control exactly howmany items are transferred to or from a peripheral
each time it makes a DMA service request.

June 02, 2008184
Preliminary

Micro Direct Memory Access (μDMA)

9.2.1 Channel Assigments
μDMA channels 0-31 are assigned to peripherals according to the following table.

Note: Channels that are not listed in the table may be assigned to peripherals in the future.
However, they are currently available for software use.

Table 9-1. DMA Channel Assignments

Peripheral AssignedDMA Channel

USB Endpoint 1 Receive0

USB Endpoint 1 Transmit1

USB Endpoint 2 Receive2

USB Endpoint 2 Transmit3

USB Endpoint 3 Receive4

USB Endpoint 3 Transmit5

UART0 Receive8

UART0 Transmit9

SSI0 Receive10

SSI0 Transmit11

Dedicated for software use30

9.2.2 Priority
The μDMA controller assigns priority to each channel based on the channel number and the priority
level bit for the channel. Channel number 0 has the highest priority and as the channel number
increases, the priority of a channel decreases. Each channel has a priority level bit to provide two
levels of priority: default priority and high priority. If the priority level bit is set, then that channel has
higher priority than all other channels at default priority. If multiple channels are set for high priority,
then the channel number is used to determine relative priority among all the high priority channels.

The priority bit for a channel can be set using the DMA Channel Priority Set (DMAPRIOSET)
register, and cleared with the DMA Channel Priority Clear (DMAPRIOCLR) register.

9.2.3 Arbitration Size
When a μDMA channel requests a transfer, the μDMA controller arbitrates between all the channels
making a request and services the DMA channel with the highest priority. Once a transfer begins,
it continues for a selectable number of transfers before rearbitrating among the requesting channels
again. The arbitration size can be configured for each channel, ranging from 1 to 1024 item transfers.
After the μDMA controller transfers the number of items specified by the arbitration size, it then
checks among all the channels making a request and services the channel with the highest priority.

If a lower priority DMA channel uses a large arbitration size, the latency for higher priority channels
will be increased because the μDMA controller will complete the lower priority burst before checking
for higher priority requests. Therefore, lower priority channels should not use a large arbitration size
for best response on high priority channels.

The arbitration size can also be thought of as a burst size. It is the maximum number of items that
will be transferred at any one time in a burst. Here, the term arbitration refers to determination of
DMA channel priority, not arbitration for the bus. When the μDMA controller arbitrates for the bus,
the processor always takes priority. Furthermore, the μDMA controller will be held off whenever the
processor needs to perform a bus transaction on the same bus, even in the middle of a burst transfer.

185June 02, 2008
Preliminary

LM3S5747 Microcontroller

9.2.4 Request Types
The μDMA controller responds to two types of requests from a peripheral: single or burst. Each
peripheral may support either or both types of requests. A single request means that the peripheral
is ready to transfer one item, while a burst request means that the peripheral is ready to transfer
multiple items.

The μDMA controller responds differently depending on whether the peripheral is making a single
request or a burst request. If both are asserted and the μDMA channel has been set up for a burst
transfer, then the burst request takes precedence. See Table 9-2 on page 186, which shows how
each peripheral supports the two request types.

Table 9-2. Request Type Support

Burst Request SignalSingle Request SignalPeripheral

FIFO TXRDYNoneUSB TX

FIFO RXRDYNoneUSB RX

TX FIFO Level (configurable)TX FIFO Not FullUART TX

RX FIFO Level (configurable)RX FIFO Not EmptyUART RX

TX FIFO Level (fixed at 4)TX FIFO Not FullSSI TX

RX FIFO Level (fixed at 4)RX FIFO Not EmptySSI RX

9.2.4.1 Single Request
When a single request is detected, and not a burst request, the μDMA controller will transfer one
item, and then stop and wait for another request.

9.2.4.2 Burst Request
When a burst request is detected, the μDMA controller will transfer the number of items that is the
lesser of the arbitration size or the number of items remaining in the transfer. Therefore, the arbitration
size should be the same as the number of data items that the peripheral can accomodate when
making a burst request. For example, the UART will generate a burst request based on the FIFO
trigger level. In this case, the arbitration size should be set to the amount of data that the FIFO can
transfer when the trigger level is reached.

It may be desirable to use only burst transfers and not allow single transfers. For example, perhaps
the nature of the data is such that it only makes sense when transferred together as a single unit
rather than one piece at a time. The single request can be disabled by using the DMA Channel
Useburst Set (DMAUSEBURSTSET) register. By setting the bit for a channel in this register, the
μDMA controller will only respond to burst requests for that channel.

9.2.5 Channel Configuration
The μDMA controller uses an area of system memory to store a set of channel control structures
in a table. The control table may have one or two entries for each DMA channel. Each entry in the
table structure contains source and destination pointers, transfer size, and transfer mode. The
control table can be located anywhere in system memory, but it must be contiguous and aligned on
a 1024-byte boundary.

Table 9-3 on page 187 shows the layout in memory of the channel control table. Each channel may
have one or two control structures in the contol table: a primary control structure and an optional
alternate control structure. The table is organized so that all of the primary entries are in the first
half of the table and all the alternate structures are in the second half of the table. The primary entry
is used for simple transfer modes where transfers can be reconfigured and restarted after each

June 02, 2008186
Preliminary

Micro Direct Memory Access (μDMA)

transfer is complete. In this case, the alternate control structures are not used and therefore only
the first half of the table needs to be allocated in memory. The second half of the control table is
not needed and that memory can be used for something else. If a more complex transfer mode is
used such as ping-pong or scatter-gather, then the alternate control structure is also used and
memory space should be allocated for the entire table.

Any unused memory in the control table may be used by the application. This includes the control
structures for any channels that are unused by the application as well as the unused control word
for each channel.

Table 9-3. Control Structure Memory Map

ChannelOffset

0, Primary0x0

1, Primary0x10

......

31, Primary0x1F0

0, Alternate0x200

1, Alternate0x210

......

31, Alternate0x3F0

Table 9-4 on page 187 shows an individual control structure entry in the control table. Each entry
has a source and destination end pointer. These pointers point to the ending address of the transfer
and are inclusive. If the source or destination is non-incrementing (as for a peripheral register), then
the pointer should point to the transfer address.

Table 9-4. Channel Control Structure

DescriptionOffset

Source End Pointer0x000

Destination End Pointer0x004

Control Word0x008

Unused0x00C

The remaining part of the control structure is the control word. The control word contains the following
fields:

■ Source and destination data sizes

■ Source and destination address increment size

■ Number of transfers before bus arbitration

■ Total number of items to transfer

■ Useburst flag

■ Transfer mode

The control word and each field are described in detail in “μDMA Channel Control
Structure” on page 204. The μDMA controller updates the transfer size and transfer mode fields as
the transfer is performed. At the end of a transfer, the transfer size will indicate 0, and the transfer

187June 02, 2008
Preliminary

LM3S5747 Microcontroller

mode will indicate "stopped". Since the control word is modified by the μDMA controller, it must be
reconfigured before each new transfer. The source and destination end pointers are not modified
so they can be left unchanged if the source or destination addresses remain the same.

Prior to starting a transfer, a μDMA channel must be enabled by setting the appropriate bit in the
DMA Channel Enable Set ((DMAENASET) register. A channel can be disabled by setting the
channel bit in the DMA Channel Enable Clear (DMAENACLR) register. At the end of a complete
DMA transfer, the controller will automatically disable the channel.

9.2.6 Transfer Modes
The μDMA controller supports several transfer modes. Two of the modes support simple one-time
transfers. There are several complex modes that are meant to support a continuous flow of data.

9.2.6.1 Stop Mode
While Stop is not actually a transfer mode, it is a valid value for the mode field of the control word.
When the mode field has this value, the μDMA controller will not perform a transfer and will disable
the channel if it is enabled. At the end of a transfer, the μDMA controller will update the control word
to set the mode to Stop.

9.2.6.2 Basic Mode
In Basic mode, the μDMA controller will perform transfers as long as there are more items to transfer
and a transfer request is present. This mode is used with peripherals that assert a DMA request
signal whenever the peripheral is ready for a data transfer. Basic mode should not be used in any
situation where the request is momentary but the entire transfer should be completed. For example,
for a software initiated transfer, the request is momentary, and if Basic mode is used then only one
item will be transferred on a software request.

When all of the items have been transferred using Basic mode, the μDMA controller will set the
mode for that channel to Stop.

9.2.6.3 Auto Mode
Auto mode is similar to Basic mode, except that once a transfer request is received the transfer will
run to completion, even if the DMA request is removed. This mode is suitable for software-triggered
transfers. Generally, you would not use Auto mode with a peripheral.

When all the items have been transferred using Auto mode, the μDMA controller will set the mode
for that channel to Stop.

9.2.6.4 Ping-Pong
Ping-Pongmode is used to support a continuous data flow to or from a peripheral. To use Ping-Pong
mode, both the primary and alternate data structures are used. Both are set up by the processor
for data transfer between memory and a peripheral. Then the transfer is started using the primary
control structure. When the transfer using the primary control structure is complete, the μDMA
controller will then read the alternate control structure for that channel to continue the transfer. Each
time this happens, an interrupt is generated and the processor can reload the control structure for
the just-completed transfer. Data flow can continue indefinitely this way, using the primary and
alternate control structures to switch back and forth between buffers as the data flows to or from
the peripheral.

Refer to Figure 9-2 on page 189 for an example showing operation in Ping-Pong mode.

June 02, 2008188
Preliminary

Micro Direct Memory Access (μDMA)

Figure 9-2. Example of Ping-Pong DMA Transaction

Alternate Structure

Primary Structure

Primary Structure

Alternate Structure

tra
ns
fe
rc
on
tin
ue
s
us
in
g
al
te
rn
at
e

SOURCE
DEST BUFFER B

SOURCE
DEST BUFFER A

Process data in BUFFER A
Reload primary structure

transfers using BUFFER A
SOURCE
DEST BUFFER A

transfers using BUFFER A

transfers using BUFFER B

tra
ns
fe
rc
on
tin
ue
s
us
in
g
al
te
rn
at
e

tra
ns
fe
rc
on
tin
ue
s
us
in
g
pr
im
ar
y

SOURCE
DEST BUFFER B

transfers using BUFFER B

Peripheral/uDMA Interrupt

Process data in BUFFER B
Reload alternate structure

Process data in BUFFER B
Reload alternate structure

uDMA Controller Cortex-M3 Processor

Ti
m
e

Peripheral/uDMA Interrupt

Peripheral/uDMA Interrupt

9.2.6.5 Memory Scatter-Gather
Memory Scatter-Gather mode is a complex mode used when data needs to be transferred to or
from varied locations in memory instead of a set of contiguous locations in a memory buffer. For
example, a gather DMA operation could be used to selectively read the payload of several stored
packets of a communication protocol, and store them together in sequence in a memory buffer.

189June 02, 2008
Preliminary

LM3S5747 Microcontroller

In Memory Scatter-Gather mode, the primary control structure is used to program the alternate
control structure from a table in memory. The table is set up by the processor software and contains
a list of control structures, each containing the source and destination end pointers, and the control
word for a specific transfer. The mode of each control word must be set to Scatter-Gather mode.
Each entry in the table is copied in turn to the alternate structure where it is then executed. The
μDMA controller alternates between using the primary control structure to copy the next transfer
instruction from the list, and then executing the new transfer instruction. The end of the list is marked
by setting the control word for the last entry to use Basic transfer mode. Once the last transfer is
performed using Basic mode, the μDMA controller will stop. A completion interrupt will only be
generated after the last transfer. It is possible to loop the list by having the last entry copy the primary
control structure to point back to the beginning of the list (or to a new list). It is also possible to trigger
a set of other channels to perform a transfer, either directly by programming a write to the software
trigger for another channel, or indirectly by causing a peripheral action that will result in a μDMA
request.

By programming the μDMA controller using this method, a set of arbitrary transfers can be performed
based on a single DMA request.

Refer to Figure 9-3 on page 191 and Figure 9-4 on page 192, which show an example of operation
in Memory Scatter-Gather mode. This example shows a gather operation, where data in three
separate buffers in memory will be copied together into one buffer. Figure 9-3 on page 191 shows
how the application sets up a μDMA task list in memory that is used by the controller to perform
three sets of copy operations from different locations in memory. The primary control structure for
the channel that will be used for the operation is configured to copy from the task list to the alternate
control structure.

Figure 9-4 on page 192 shows the sequence as the μDMA controller peforms the three sets of copy
operations. First, using the primary control structure, the μDMA controller loads the alternate control
structure with task A. It then peforms the copy operation specified by task A, copying the data from
the source buffer A to the destination buffer. Next, the μDMA controller again uses the primary
control structure to load task B into the alternate control structure, and then performs the B operation
with the alternate control structure. The process is repeated for task C.

June 02, 2008190
Preliminary

Micro Direct Memory Access (μDMA)

Figure 9-3. Memory Scatter-Gather, Setup and Configuration

NOTES:
1. Application has a need to copy data items from three separate location in memory into one combined buffer.
2. Application sets up uDMA “task list” in memory, which contains the pointers and control configuration for three

uDMA copy “tasks.”
3. Application sets up the channel primary control structure to copy each task configuration, one at a time, to the

alternate control structure, where it will be executed by the uDMA controller.

C

4 WORDS (SRC A)

16 WORDS (SRC B)

SRC

DST

ITEMS=4

SRC

DST

ITEMS=16

SRC

DST

ITEMS=1

1 WORD (SRC C)

4 (DEST A)

16 (DEST B)

1 (DEST C)

A

B

“TASK” A

“TASK” B

“TASK” C

SRC

DST

ITEMS=12

SRC

DST

ITEMS=n

Task List in Memory

21 3

Source and Destination
Buffer in Memory

Channel Control
Table in Memory

Channel Primary
Control Structure

Channel Alternate
Control Structure

191June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 9-4. Memory Scatter-Gather, μDMA Copy Sequence

SRC

DST

COPIED

SRC

DST

COPIED

PRI

ALT

SRC

DST

COPIED

SRC

DST

COPIED

SRC

DST

COPIED

SRC

DST
COPIED

Task List
in Memory

uDMA Control Table
in Memory

Buffers
in Memory

TASK B

TASK C

PRI

ALT

SRC B

SRC C

DEST B

DEST C

Using the channel’s primary control structure, the uDMA
controller copies task A configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
uDMA controller copies data from the source buffer A to
the destination buffer.

Task List
in Memory

uDMA Control Table
in Memory

Buffers
in Memory

Using the channel’s primary control structure, the uDMA
controller copies task B configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
uDMA controller copies data from the source buffer B to
the destination buffer.

uDMA Control Table
in Memory

Buffers
in Memory

Using the channel’s primary control structure, the uDMA
controller copies task C configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
uDMA controller copies data from the source buffer C to
the destination buffer.

PRI

ALT

Task List
in Memory

TASK A

TASK B

TASK A

TASK C

SRC A

SRC C

DEST A

DEST C

SRC A

SRC B

DEST A

DEST B

TASK A

TASK B

SRC A

TASK C

SRC C

DEST C

SRC B

DEST B

DEST A

June 02, 2008192
Preliminary

Micro Direct Memory Access (μDMA)

9.2.6.6 Peripheral Scatter-Gather
Peripheral Scatter-Gather mode is very similar to Memory Scatter-Gather, except that the transfers
are controlled by a peripheral making a DMA request. Upon detecting a DMA request from the
peripheral, the μDMA controller will use the primary control structure to copy one entry from the list
to the alternate control structure, and then perform the transfer. At the end of this transfer, the next
transfer will only be started if the peripheral again asserts a DMA request. The μDMA controller will
continue to perform transfers from the list only when the peripheral is making a request, until the
last transfer is complete. A completion interrupt will only be generated after the last transfer.

By programming the μDMA controller using this method, data can be transferred to or from a
peripheral from a set of arbitrary locations whenever the peripheral is ready to transfer data.

Refer to Figure 9-5 on page 194 and Figure 9-6 on page 195, which show an example of operation
in Peripheral Scatter-Gather mode. This example shows a gather operation, where data from three
separate buffers in memory will be copied to a single peripheral data register. Figure 9-5 on page
194 shows how the application sets up a µDMA task list in memory that is used by the controller to
perform three sets of copy operations from different locations in memory. The primary control
structure for the channel that will be used for the operation is configured to copy from the task list
to the alternate control structure.

Figure 9-6 on page 195 shows the sequence as the µDMA controller peforms the three sets of copy
operations. First, using the primary control structure, the µDMA controller loads the alternate control
structure with task A. It then peforms the copy operation specified by task A, copying the data from
the source buffer A to the peripheral data register. Next, the µDMA controller again uses the primary
control structure to load task B into the alternate control structure, and then performs the B operation
with the alternate control structure. The process is repeated for task C.

193June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 9-5. Peripheral Scatter-Gather, Setup and Configuration

NOTES:
1. Application has a need to copy data items from three separate location in memory into a peripheral data

register.
2. Application sets up uDMA “task list” in memory, which contains the pointers and control configuration for three

uDMA copy “tasks.”
3. Application sets up the channel primary control structure to copy each task configuration, one at a time, to the

alternate control structure, where it will be executed by the uDMA controller.

C

4 WORDS (SRC A)

16 WORDS (SRC B)

SRC

DST

ITEMS=4

SRC

DST

ITEMS=16

SRC

DST

ITEMS=1

1 WORD (SRC C)

A

B

“TASK” A

“TASK” B

“TASK” C

SRC

DST

ITEMS=12

SRC

DST

ITEMS=n

Task List in Memory

21 3

Source Buffer
in Memory

Channel Control
Table in Memory

Channel Primary
Control Structure

Channel Alternate
Control Structure

DEST

Peripheral Data
Register

June 02, 2008194
Preliminary

Micro Direct Memory Access (μDMA)

Figure 9-6. Peripheral Scatter-Gather, μDMA Copy Sequence

SRC C

TASK A

SRC

DST

COPIED

SRC

DST

COPIED

PRI

ALT

SRC

DST

COPIED

SRC

DST

COPIED

SRC

DST

COPIED

SRC

DST
COPIED

Task List
in Memory

uDMA Control Table
in Memory

Buffers
in Memory

TASK B

TASK C

PRI

ALT

Using the channel’s primary control structure, the uDMA
controller copies task A configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
uDMA controller copies data from the source buffer A to
the peripheral data register.

Task List
in Memory

uDMA Control Table
in Memory

Buffers
in Memory

Using the channel’s primary control structure, the uDMA
controller copies task B configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
uDMA controller copies data from the source buffer B to
the peripheral data register.

uDMA Control Table
in Memory

Buffers
in Memory

Using the channel’s primary control structure, the uDMA
controller copies task C configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
uDMA controller copies data from the source buffer C to
the peripheral data register.

PRI

ALT

Task List
in Memory

TASK A

TASK B

TASK A

TASK C

Peripheral
Data

Register

SRC B

SRC C

Peripheral
Data

Register

SRC A

SRC C

Peripheral
Data

Register

SRC A

SRC B

TASK B

TASK C

SRC B

SRC A

195June 02, 2008
Preliminary

LM3S5747 Microcontroller

9.2.7 Transfer Size and Increment
The μDMA controller supports transfer data sizes of 8, 16, or 32 bits. The source and destination
data size must be the same for any given transfer. The source and destination address can be
auto-incremented by bytes, half-words, or words, or can be set to no increment. The source and
destination address increment values can be set independently, and it is not necessary for the
address increment to match the data size as long as the increment is the same or larger than the
data size. For example, it is possible to perform a transfer using 8-bit data size, but using an address
increment of full words (4 bytes). The data to be transferred must be aligned in memory according
to the data size (8, 16, or 32 bits).

Table 9-5 on page 196 shows the configuration to read from a peripheral that supplies 8-bit data.

Table 9-5. μDMA Read Example: 8-Bit Peripheral

ConfigurationField

8 bitsSource data size

8 bitsDestination data size

No incrementSource address increment

ByteDestination address increment

Peripheral read FIFO registerSource end pointer

End of the data buffer in memoryDestination end pointer

9.2.8 Peripheral Interface
Each peripheral that supports μDMA has a DMA single request and/or burst request signal that is
asserted when the device is ready to transfer data. The request signal can be disabled or enabled
by using theDMAChannel RequestMask Set (DMAREQMASKSET) andDMAChannel Request
Mask Clear (DMAREQMASKCLR) registers. The DMA request signal is disabled, or masked, when
the channel request mask bit is set. When the request is not masked, the DMA channel is configured
correctly and enabled, and the peripheral asserts the DMA request signal, the μDMA controller will
begin the transfer.

When a DMA transfer is complete, the μDMA controller asserts a DMA Done signal, which is routed
through the interrupt vector of the peripheral. Therefore, if DMA is used to transfer data for a
peripheral and interrupts are used, then the interrupt handler for that peripheral must be designed
to handle the μDMA transfer completion interrupt. When DMA is enabled for a peripheral, the μDMA
controller will mask the normal interrupts for a peripheral. This means that when a large amount of
data is transferred using DMA, instead of receiving multiple interrupts from the peripheral as data
flows, the processor will only receive one interrupt when the transfer is complete.

The interrupt request from the μDMA controller is automatically cleared when the interrupt handler
is activated.

9.2.9 Software Request
There is a dedicated μDMA channel for software-initiated transfers. This channel also has a dedicated
interrupt to signal completion of a DMA transfer. A transfer is initiated by software by first configuring
and enabling the transfer, and then issuing a software request using the DMA Channel Software
Request (DMASWREQ) register. For software-based transfers, the Auto transfer mode should be
used.

It is possible to initiate a transfer on any channel using the DMASWREQ register. If a request is
initiated by software using a peripheral DMA channel, then the completion interrupt will occur on
the interrupt vector for the peripheral instead of the software interrupt vector. This means that any

June 02, 2008196
Preliminary

Micro Direct Memory Access (μDMA)

channel may be used for software requests as long as the corresponding peripheral is not using
μDMA.

9.2.10 Interrupts and Errors
When a DMA transfer is complete, the μDMA controller will generate a completion interrupt on the
interrupt vector of the peripheral. If the transfer uses the software DMA channel, then the completion
interrupt will occur on the dedicated software DMA interrupt vector.

If the μDMA controller encounters a bus or memory protection error as it attempts to perform a data
transfer, it will disable the DMA channel that caused the error, and generate an interrupt on the
μDMA Error interrupt vector. The processor can read the DMA Bus Error Clear (DMAERRCLR)
register to determine if an error is pending. The ERRCLR bit will be set if an error occurred. The error
can be cleared by writing a 1 to the ERRCLR bit.

Table 9-6 on page 197 shows the dedicated interrupt assignments for the μDMA controller.

Table 9-6. μDMA Interrupt Assignments

AssignmentInterrupt

μDMA Software Channel Transfer46

μDMA Error47

9.3 Initialization and Configuration

9.3.1 Module Initialization
Before the μDMA controller can be used, it must be enabled in the System Control block and in the
peripheral. The location of the channel control structure must also be programmed.

The following steps should be performed one time during system initialization:

1. The μDMA peripheral must be enabled in the System Control block. To do this, set the UDMA
bit of the System Control RCGC2 register.

2. Enable the μDMA controller by setting the MASTEREN bit of theDMAConfiguration (DMACFG)
register.

3. Program the location of the channel control table by writing the base address of the table to the
DMA Channel Control Base Pointer (DMACTLBASE) register. The base address must be
aligned on a 1024-byte boundary.

9.3.2 Configuring a Memory-to-Memory Transfer
μDMA channel 30 is dedicated for software-initiated transfers. However, any channel can be used
for software-initiated, memory-to-memory transfer if the associated peripheral is not being used.

9.3.2.1 Configure the Channel Attributes
First, configure the channel attributes:

1. Set bit 30 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority Clear
(DMAPRIOCLR) registers to set the channel to High priority or Default priority.

2. Set bit 30 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the
primary channel control structure for this transfer.

197June 02, 2008
Preliminary

LM3S5747 Microcontroller

3. Set bit 30 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the
μDMA controller to respond to single and burst requests.

4. Set bit 30 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow
the μDMA controller to recognize requests for this channel.

9.3.2.2 Configure the Channel Control Structure
Now the channel control structure must be configured.

This example will transfer 256 32-bit words from one memory buffer to another. Channel 30 is used
for a software transfer, and the control structure for channel 30 is at offset 0x1E0 of the channel
control table. The channel control structure for channel 30 is located at the offsets shown in Table
9-7 on page 198.

Table 9-7. Channel Control Structure Offsets for Channel 30

DescriptionOffset

Channel 30 Source End PointerControl Table Base + 0x1E0

Channel 30 Destination End PointerControl Table Base + 0x1E4

Channel 30 Control WordControl Table Base + 0x1E8

Configure the Source and Destination

The source and destination end pointers must be set to the last address for the transfer (inclusive).

1. Set the source end pointer at offset 0x1E0 to the address of the source buffer + 0x3FC.

2. Set the destination end pointer at offset 0x1E4 to the address of the destination buffer + 0x3FC.

The control word at offset 0x1E8 must be programmed according to Table 9-8 on page 198.

Table 9-8. Channel Control Word Configuration for Memory Transfer Example

DescriptionValueBitsField in DMACHCTL

32-bit destination address increment231:30DSTINC

32-bit destination data size229:28DSTSIZE

32-bit source address increment227:26SRCINC

32-bit source data size225:24SRCSIZE

Reserved023:18reserved

Arbitrates after 8 transfers317:14ARBSIZE

Transfer 256 items25513:4XFERSIZE

N/A for this transfer type03NXTUSEBURST

Use Auto-request transfer mode22:0XFERMODE

9.3.2.3 Start the Transfer
Now the channel is configured and is ready to start.

1. Enable the channel by setting bit 30 of the DMA Channel Enable Set (DMAENASET) register.

2. Issue a transfer request by setting bit 30 of theDMAChannel Software Request (DMASWREQ)
register.

June 02, 2008198
Preliminary

Micro Direct Memory Access (μDMA)

The DMA transfer will now take place. If the interrupt is enabled, then the processor will be notified
by interrupt when the transfer is complete. If needed, the status can be checked by reading bit 30
of the DMAENASET register. This bit will be automatically cleared when the transfer is complete.
The status can also be checked by reading the XFERMODE field of the channel control word at offset
0x1E8. This field will automatically be set to 0 at the end of the transfer.

9.3.3 Configuring a Peripheral for Simple Transmit
This example will set up the μDMA controller to transmit a buffer of data to a peripheral. The peripheral
has a transmit FIFO with a trigger level of 4. The example peripheral will use μDMA channel 7.

9.3.3.1 Configure the Channel Attributes
First, configure the channel attributes:

1. Set bit 7 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority Clear
(DMAPRIOCLR) registers to set the channel to High priority or Default priority.

2. Set bit 7 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the
primary channel control structure for this transfer.

3. Set bit 7 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the
μDMA controller to respond to single and burst requests.

4. Set bit 7 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow
the μDMA controller to recognize requests for this channel.

9.3.3.2 Configure the Channel Control Structure
Now the channel control structure must be configured. This example will transfer 64 8-bit bytes from
a memory buffer to the peripheral's transmit FIFO register. This example uses μDMA channel 7,
and the control structure for channel 7 is at offset 0x070 of the channel control table. The channel
control structure for channel 7 is located at the offsets shown in Table 9-9 on page 199.

Table 9-9. Channel Control Structure Offsets for Channel 7

DescriptionOffset

Channel 7 Source End PointerControl Table Base + 0x070

Channel 7 Destination End PointerControl Table Base + 0x074

Channel 7 Control WordControl Table Base + 0x078

Configure the Source and Destination

The source and destination end pointers must be set to the last address for the transfer (inclusive).
Since the peripheral pointer does not change, it simply points to the peripheral's data register.

1. Set the source end pointer at offset 0x070 to the address of the source buffer + 0x3F.

2. Set the destination end pointer at offset 0x074 to the address of the peripheral's transmit FIFO
register.

The control word at offset 0x078 must be programmed according to Table 9-10 on page 200.

199June 02, 2008
Preliminary

LM3S5747 Microcontroller

Table 9-10. Channel Control Word Configuration for Peripheral Transmit Example

DescriptionValueBitsField in DMACHCTL

Destination address does not increment331:30DSTINC

8-bit destination data size029:28DSTSIZE

8-bit source address increment027:26SRCINC

8-bit source data size025:24SRCSIZE

Reserved023:18reserved

Arbitrates after 4 transfers217:14ARBSIZE

Transfer 64 items6313:4XFERSIZE

N/A for this transfer type03NXTUSEBURST

Use Basic transfer mode12:0XFERMODE

Note: In this example, it is not important if the peripheral makes a single request or a burst request.
Since the peripheral has a FIFO that will trigger at a level of 4, the arbitration size is set to
4. If the peripheral does make a burst request, then 4 bytes will be transferred, which is
what the FIFO can accomodate. If the peripheral makes a single request (if there is any
space in the FIFO), then one byte will be transferred at a time. If it is important to the
application that transfers only be made in bursts, then the channel useburst SET[n] bit
should be set by writing a 1 to bit 7 of the DMA Channel Useburst Set
(DMAUSEBURSTSET) register.

9.3.3.3 Start the Transfer
Now the channel is configured and is ready to start.

1. Enable the channel by setting bit 7 of the DMA Channel Enable Set (DMAENASET) register.

The μDMA controller is now configured for transfer on channel 7. The controller will make transfers
to the peripheral whenever the peripheral asserts a DMA request. The transfers will continue until
the entire buffer of 64 bytes has been transferred. When that happens, the μDMA controller will
disable the channel and set the XFERMODE field of the channel control word to 0 (Stopped). The
status of the transfer can be checked by reading bit 7 of the DMA Channel Enable Set
(DMAENASET) register. This bit will be automatically cleared when the transfer is complete. The
status can also be checked by reading the XFERMODE field of the channel control word at offset
0x078. This field will automatically be set to 0 at the end of the transfer.

If peripheral interrupts were enabled, then the peripheral interrupt handler would receive an interrupt
when the entire transfer was complete.

9.3.4 Configuring a Peripheral for Ping-Pong Receive
This example will set up the μDMA controller to continuously receive 8-bit data from a peripheral
into a pair of 64 byte buffers. The peripheral has a receive FIFO with a trigger level of 8. The example
peripheral will use μDMA channel 8.

9.3.4.1 Configure the Channel Attributes
First, configure the channel attributes:

1. Set bit 7 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority Clear
(DMAPRIOCLR) registers to set the channel to High priority or Default priority.

June 02, 2008200
Preliminary

Micro Direct Memory Access (μDMA)

2. Set bit 7 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the
primary channel control structure for this transfer.

3. Set bit 7 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the
μDMA controller to respond to single and burst requests.

4. Set bit 7 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow
the μDMA controller to recognize requests for this channel.

9.3.4.2 Configure the Channel Control Structure
Now the channel control structure must be configured. This example will transfer 8-bit bytes from
the peripheral's receive FIFO register into two memory buffers of 64 bytes each. As data is received,
when one buffer is full, the μDMA controller switches to use the other.

To use Ping-Pong buffering, both primary and alternate channel control structures must be used.
The primary control structure for channel 8 is at offset 0x080 of the channel control table, and the
alternate channel control structure is at offset 0x280. The channel control structures for channel 8
are located at the offsets shown in Table 9-11 on page 201.

Table 9-11. Primary and Alternate Channel Control Structure Offsets for Channel 8

DescriptionOffset

Channel 8 Primary Source End PointerControl Table Base + 0x080

Channel 8 Primary Destination End PointerControl Table Base + 0x084

Channel 8 Primary Control WordControl Table Base + 0x088

Channel 8 Alternate Source End PointerControl Table Base + 0x280

Channel 8 Alternate Destination End PointerControl Table Base + 0x284

Channel 8 Alternate Control WordControl Table Base + 0x288

Configure the Source and Destination

The source and destination end pointers must be set to the last address for the transfer (inclusive).
Since the peripheral pointer does not change, it simply points to the peripheral's data register. Both
the primary and alternate sets of pointers must be configured.

1. Set the primary source end pointer at offset 0x080 to the address of the peripheral's receive
buffer.

2. Set the primary destination end pointer at offset 0x084 to the address of ping-pong buffer A +
0x3F.

3. Set the alternate source end pointer at offset 0x280 to the address of the peripheral's receive
buffer.

4. Set the alternate destination end pointer at offset 0x284 to the address of ping-pong buffer B +
0x3F.

The primary control word at offset 0x088, and the alternate control word at offset 0x288 must be
programmed according to Table 9-10 on page 200. Both control words are initially programmed the
same way.

1. Program the primary channel control word at offset 0x088 according to Table 9-12 on page 202.

2. Program the alternate channel control word at offset 0x288 according to Table 9-12 on page 202.

201June 02, 2008
Preliminary

LM3S5747 Microcontroller

Table 9-12. Channel Control Word Configuration for Peripheral Ping-Pong Receive Example

DescriptionValueBitsField in DMACHCTL

8-bit destination address increment031:30DSTINC

8-bit destination data size029:28DSTSIZE

Source address does not increment327:26SRCINC

8-bit source data size025:24SRCSIZE

Reserved023:18reserved

Arbitrates after 8 transfers317:14ARBSIZE

Transfer 64 items6313:4XFERSIZE

N/A for this transfer type03NXTUSEBURST

Use Ping-Pong transfer mode32:0XFERMODE

Note: In this example, it is not important if the peripheral makes a single request or a burst request.
Since the peripheral has a FIFO that will trigger at a level of 8, the arbitration size is set to
8. If the peripheral does make a burst request, then 8 bytes will be transferred, which is
what the FIFO can accomodate. If the peripheral makes a single request (if there is any
data in the FIFO), then one byte will be transferred at a time. If it is important to the
application that transfers only be made in bursts, then the channel useburst SET[n] bit
should be set by writing a 1 to bit 8 of the DMA Channel Useburst Set
(DMAUSEBURSTSET) register.

9.3.4.3 Configure the Peripheral Interrupt
In order to use μDMA Ping-Pong mode, it is best to use an interrupt handler. (It is also possible to
use ping-pong mode without interrupts by polling). The interrupt handler will be triggered after each
buffer is complete.

1. Configure and enable an interrupt handler for the peripheral.

9.3.4.4 Enable the μDMA Channel
Now the channel is configured and is ready to start.

1. Enable the channel by setting bit 8 of the DMA Channel Enable Set (DMAENASET) register.

9.3.4.5 Process Interrupts
The μDMA controller is now configured and enabled for transfer on channel 8. When the peripheral
asserts the DMA request signal, the μDMA controller will make transfers into buffer A using the
primary channel control structure. When the primary transfer to buffer A is complete, it will switch
to the alternate channel control structure and make transfers into buffer B. At the same time, the
primary channel control word mode field will be set to indicate Stopped, and an interrupt will be
triggered.

When an interrupt is triggered, the interrupt handler must determine which buffer is complete and
process the data, or set a flag that the data needs to be processed by non-interrupt buffer processing
code. Then the next buffer transfer must be set up.

In the interrupt handler:

1. Read the primary channel control word at offset 0x088 and check the XFERMODE field. If the
field is 0, this means buffer A is complete. If buffer A is complete, then:

June 02, 2008202
Preliminary

Micro Direct Memory Access (μDMA)

a. Process the newly received data in buffer A, or signal the buffer processing code that buffer
A has data available.

b. Reprogram the primary channel control word at offset 0x88 according to Table
9-12 on page 202.

2. Read the alternate channel control word at offset 0x288 and check the XFERMODE field. If the
field is 0, this means buffer B is complete. If buffer B is complete, then:

a. Process the newly received data in buffer B, or signal the buffer processing code that buffer
B has data available.

b. Reprogram the alternate channel control word at offset 0x288 according to Table
9-12 on page 202.

9.4 Register Map
Table 9-13 on page 203 lists the μDMA channel control structures and registers. The channel control
structure shows the layout of one entry in the channel control table. The channel control table is
located in system memory, and the location is determined by the application, that is, the base
address is n/a (not applicable). In the table below, the offset for the channel control structures is the
offset from the entry in the channel control table. See “Channel Configuration” on page 186 and Table
9-3 on page 187 for a description of how the entries in the channel control table are located in memory.
The μDMA register addresses are given as a hexadecimal increment, relative to the μDMA base
address of 0x400F.F000.

Table 9-13. μDMA Register Map

See
pageDescriptionResetTypeNameOffset

μDMA Channel Control Structure

205DMA Channel Source Address End Pointer-R/WDMASRCENDP0x000

206DMA Channel Destination Address End Pointer-R/WDMADSTENDP0x004

207DMA Channel Control Word-R/WDMACHCTL0x008

μDMA Registers

211DMA Status0x001F.0000RODMASTAT0x000

213DMA Configuration-WODMACFG0x004

214DMA Channel Control Base Pointer0x0000.0000R/WDMACTLBASE0x008

215DMA Alternate Channel Control Base Pointer0x0000.0200RODMAALTBASE0x00C

216DMA Channel Wait on Request Status0x0000.0000RODMAWAITSTAT0x010

217DMA Channel Software Request-WODMASWREQ0x014

218DMA Channel Useburst Set0x0000.0000R/WDMAUSEBURSTSET0x018

220DMA Channel Useburst Clear-WODMAUSEBURSTCLR0x01C

221DMA Channel Request Mask Set0x0000.0000R/WDMAREQMASKSET0x020

223DMA Channel Request Mask Clear-WODMAREQMASKCLR0x024

203June 02, 2008
Preliminary

LM3S5747 Microcontroller

See
pageDescriptionResetTypeNameOffset

224DMA Channel Enable Set0x0000.0000R/WDMAENASET0x028

226DMA Channel Enable Clear-WODMAENACLR0x02C

227DMA Channel Primary Alternate Set0x0000.0000R/WDMAALTSET0x030

229DMA Channel Primary Alternate Clear-WODMAALTCLR0x034

230DMA Channel Priority Set0x0000.0000R/WDMAPRIOSET0x038

232DMA Channel Priority Clear-WODMAPRIOCLR0x03C

233DMA Bus Error Clear0x0000.0000R/WDMAERRCLR0x04C

239DMA Peripheral Identification 40x0000.0004RODMAPeriphID40xFD0

235DMA Peripheral Identification 00x0000.0030RODMAPeriphID00xFE0

236DMA Peripheral Identification 10x0000.00B2RODMAPeriphID10xFE4

237DMA Peripheral Identification 20x0000.000BRODMAPeriphID20xFE8

238DMA Peripheral Identification 30x0000.0000RODMAPeriphID30xFEC

240DMA PrimeCell Identification 00x0000.000DRODMAPCellID00xFF0

241DMA PrimeCell Identification 10x0000.00F0RODMAPCellID10xFF4

242DMA PrimeCell Identification 20x0000.0005RODMAPCellID20xFF8

243DMA PrimeCell Identification 30x0000.00B1RODMAPCellID30xFFC

9.5 μDMA Channel Control Structure
The μDMA Channel Control Structure holds the DMA transfer settings for a DMA channel. Each
channel has two control structures, which are located in a table in systemmemory. Refer to “Channel
Configuration” on page 186 for an explanation of the Channel Control Table and the Channel Control
Structure.

The channel control structure is one entry in the channel control table. There is a primary and
alternate structure for each channel. The primary control structures are located at offsets 0x0, 0x10,
0x20 and so on. The alternate control structures are located at offsets 0x200, 0x210, 0x220, and
so on.

June 02, 2008204
Preliminary

Micro Direct Memory Access (μDMA)

Register 1: DMAChannel Source Address End Pointer (DMASRCENDP), offset
0x000
DMA Channel Source Address End Pointer (DMASRCENDP) is part of the Channel Control
Structure, and is used to specify the source address for a DMA transfer.

DMA Channel Source Address End Pointer (DMASRCENDP)
Base n/a
Offset 0x000
Type R/W, reset -

16171819202122232425262728293031

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

DescriptionResetTypeNameBit/Field

Source Address End Pointer

Points to the last address of the DMA transfer source (inclusive). If the
source address is not incrementing, then this points at the source
location itself (such as a peripheral data register).

-R/WADDR31:0

205June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: DMA Channel Destination Address End Pointer (DMADSTENDP),
offset 0x004
DMA Channel Destination Address End Pointer (DMADSTENDP) is part of the Channel Control
Structure, and is used to specify the destination address for a DMA transfer.

DMA Channel Destination Address End Pointer (DMADSTENDP)
Base n/a
Offset 0x004
Type R/W, reset -

16171819202122232425262728293031

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

DescriptionResetTypeNameBit/Field

Destination Address End Pointer

Points to the last address of the DMA transfer destination (inclusive). If
the destination address is not incrementing, then this points at the
destination location itself (such as a peripheral data register).

-R/WADDR31:0

June 02, 2008206
Preliminary

Micro Direct Memory Access (μDMA)

Register 3: DMA Channel Control Word (DMACHCTL), offset 0x008
DMA Channel Control Word (DMACHCTL) is part of the Channel Control Structure, and is used
to specify parameters of a DMA transfer.

DMA Channel Control Word (DMACHCTL)
Base n/a
Offset 0x008
Type R/W, reset -

16171819202122232425262728293031

ARBSIZEreservedSRCSIZESRCINCDSTSIZEDSTINC

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

XFERMODENXTUSEBURSTXFERSIZEARBSIZE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

DescriptionResetTypeNameBit/Field

Destination Address Increment

Sets the bits to control the destination address increment.

The address increment value must be equal or greater than the value
of the destination size (DSTSIZE).

DescriptionValue

Byte

Increment by 8-bit locations.

0x0

Half-word

Increment by 16-bit locations.

0x1

Word

Increment by 32-bit locations.

0x2

No increment

Address remains set to the value of the Destination Address
End Pointer (DMADSTENDP) for the channel.

0x3

-R/WDSTINC31:30

Destination Data Size

Sets the destination item data size.

Note: You must set DSTSIZE to be the same as SRCSIZE.

DescriptionValue

Byte

8-bit data size.

0x0

Half-word

16-bit data size.

0x1

Word

32-bit data size.

0x2

Reserved0x3

-R/WDSTSIZE29:28

207June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Source Address Increment

Sets the bits to control the source address increment.

The address increment value must be equal or greater than the value
of the source size (SRCSIZE).

DescriptionValue

Byte

Increment by 8-bit locations.

0x0

Half-word

Increment by 16-bit locations.

0x1

Word

Increment by 32-bit locations.

0x2

No increment

Address remains set to the value of the Source Address End
Pointer (DMASRCENDP) for the channel.

0x3

-R/WSRCINC27:26

Source Data Size

Sets the source item data size.

Note: You must set DSTSIZE to be the same as SRCSIZE.

DescriptionValue

Byte

8-bit data size.

0x0

Half-word

16-bit data size.

0x1

Word

32-bit data size.

0x2

Reserved0x3

-R/WSRCSIZE25:24

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

-R/Wreserved23:18

June 02, 2008208
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Arbitration Size

Sets the number of DMA transfers that can occur before the controller
re-arbitrates. The possible arbitration rate settings represent powers of
2 and are shown below.

DescriptionValue

1 Transfer

Arbitrates after each DMA transfer.

0x0

2 Transfers0x1

4 Transfers0x2

8 Transfers0x3

16 Transfers0x4

32 Transfers0x5

64 Transfers0x6

128 Transfers0x7

256 Transfers0x8

512 Transfers0x9

1024 Transfers

This means that no arbitration occurs during the DMA transfer
because the maximum transfer size is 1024.

0xA-0xF

-R/WARBSIZE17:14

Transfer Size (minus 1)

Sets the total number of items to transfer. The value of this field is 1
less than the number to transfer (value 0 means transfer 1 item). The
maximum value for this 10-bit field is 1023 which represents a transfer
size of 1024 items.

The transfer size is the number of items, not the number of bytes. If the
data size is 32 bits, then this value is the number of 32-bit words to
transfer.

The controller updates this field immediately prior to it entering the
arbitration process, so it contains the number of outstanding DMA items
that are necessary to complete the DMA cycle.

-R/WXFERSIZE13:4

Next Useburst

Controls whether the useburst SET[n] bit is automatically set for the
last transfer of a peripheral scatter-gather operation. Normally, for the
last transfer, if the number of remaining items to transfer is less than
the arbitration size, the controller will use single transfers to complete
the transaction. If this bit is set, then the controller will only use a burst
transfer to complete the last transfer.

-R/WNXTUSEBURST3

209June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

DMA Transfer Mode

Since this register is in system RAM, it has no reset value. Therefore,
this field should be initialized to 0 before the channel is enabled.

The operating mode of the DMA cycle. Refer to “Transfer
Modes” on page 188 for a detailed explanation of transfer modes.

DescriptionValue

Stop

Channel is stopped, or configuration data is invalid.

0x0

Basic

The controller must receive a new request, prior to it entering
the arbitration process, to enable the DMA cycle to complete.

0x1

Auto-Request

The initial request (software- or peripheral-initiated) is sufficient
to complete the entire transfer of XFERSIZE items without any
further requests.

0x2

Ping-Pong

The controller performs a DMA cycle using one of the channel
control structures. After the DMA cycle completes, it performs
a DMA cycle using the other channel control structure. After the
next DMA cycle completes (and provided that the host processor
has updated the original channel control data structure), it
performs a DMA cycle using the original channel control data
structure. The controller continues to perform DMA cycles until
it either reads an invalid data structure or the host processor
changes this field to 0x1 or 0x2. See “Ping-Pong” on page 188.

0x3

Memory Scatter-Gather

When the controller operates in Memory Scatter-Gather mode,
you must only use this value in the primary channel control data
structure. See “Memory Scatter-Gather” on page 189.

0x4

Alternate Memory Scatter-Gather

When the controller operates in Memory Scatter-Gather mode,
you must only use this value in the alternate channel control
data structure.

0x5

Peripheral Scatter-Gather

When the controller operates in Peripheral Scatter-Gather mode,
you must only use this value in the primary channel control data
structure. See “Peripheral Scatter-Gather” on page 193.

0x6

Alternate Peripheral Scatter-Gather

When the controller operates in Peripheral Scatter-Gather mode,
you must only use this value in the alternate channel control
data structure.

0x7

-R/WXFERMODE2:0

9.6 μDMA Register Descriptions
The register addresses given are relative to the μDMA base address of 0x400F.F000.

June 02, 2008210
Preliminary

Micro Direct Memory Access (μDMA)

Register 4: DMA Status (DMASTAT), offset 0x000
The DMA Status (DMASTAT) register returns the status of the controller. You cannot read this
register when the controller is in the reset state.

DMA Status (DMASTAT)
Base 0x400F.F000
Offset 0x000
Type RO, reset 0x001F.0000

16171819202122232425262728293031

DMACHANSreserved

ROROROROROROROROROROROROROROROROType
1111100000000000Reset

0123456789101112131415

MASTENreservedSTATEreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:21

Available DMA Channels Minus 1

This bit contains a value equal to the number of DMA channels the
controller is configured to use, minus one. That is, 32 DMA channels.

0x1FRODMACHANS20:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:8

211June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Control State Machine State

Current state of the control state machine. State can be one of the
following.

DescriptionValue

Idle0x0

Read Chan Control Data

Reading channel controller data.

0x1

Read Source End Ptr

Reading source end pointer.

0x2

Read Dest End Ptr

Reading destination end pointer.

0x3

Read Source Data

Reading source data.

0x4

Write Dest Data

Writing destination data.

0x5

Wait for Req Clear

Waiting for DMA request to clear.

0x6

Write Chan Control Data

Writing channel controller data.

0x7

Stalled0x8

Done0x9

Undefined0xA-0xF

0x00ROSTATE7:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:1

Master Enable

Returns status of the controller.

DescriptionValue

Disabled0

Enabled1

0x00ROMASTEN0

June 02, 2008212
Preliminary

Micro Direct Memory Access (μDMA)

Register 5: DMA Configuration (DMACFG), offset 0x004
The DMACFG register controls the configuration of the controller.

DMA Configuration (DMACFG)
Base 0x400F.F000
Offset 0x004
Type WO, reset -

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

MASTENreserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

-WOreserved31:1

Controller Master Enable

Enables the controller.

DescriptionValue

Disables0

Enables1

-WOMASTEN0

213June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: DMA Channel Control Base Pointer (DMACTLBASE), offset 0x008
The DMACTLBASE register must be configured so that the base pointer points to a location in
system memory.

The amount of system memory that you must assign to the controller depends on the number of
DMA channels used and whether you configure it to use the alternate channel control data structure.
See “Channel Configuration” on page 186 for details about the Channel Control Table. The base
address must be aligned on a 1024-byte boundary. You cannot read this register when the controller
is in the reset state.

DMA Channel Control Base Pointer (DMACTLBASE)
Base 0x400F.F000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

reservedADDR

ROROROROROROROROROROR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel Control Base Address

Pointer to the base address of the channel control table. The base
address must be 1024-byte aligned.

0x00R/WADDR31:10

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved9:0

June 02, 2008214
Preliminary

Micro Direct Memory Access (μDMA)

Register 7: DMA Alternate Channel Control Base Pointer (DMAALTBASE),
offset 0x00C
The DMAALTBASE register returns the base address of the alternate channel control data. This
register removes the necessity for application software to calculate the base address of the alternate
channel control structures. You cannot read this register when the controller is in the reset state.

DMA Alternate Channel Control Base Pointer (DMAALTBASE)
Base 0x400F.F000
Offset 0x00C
Type RO, reset 0x0000.0200

16171819202122232425262728293031

ADDR

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ADDR

ROROROROROROROROROROROROROROROROType
0000000001000000Reset

DescriptionResetTypeNameBit/Field

Alternate Channel Address Pointer

Provides the base address of the alternate channel control structures.

0x200ROADDR31:0

215June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: DMA Channel Wait on Request Status (DMAWAITSTAT), offset
0x010
This read-only register indicates that the μDMA channel is waiting on a request. A peripheral can
pull this Low to hold off the μDMA from performing a single request until the peripheral is ready for
a burst request. The use of this feature is dependent on the design of the peripheral and is used to
enhance performance of the μDMA with that peripheral. You cannot read this register when the
controller is in the reset state.

DMA Channel Wait on Request Status (DMAWAITSTAT)
Base 0x400F.F000
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

WAITREQ[n]

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

WAITREQ[n]

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Wait Status

Channel wait on request status. For each channel 0 through 31, a 1 in
the corresponding bit field indicates that the channel is waiting on a
request.

0x00ROWAITREQ[n]31:0

June 02, 2008216
Preliminary

Micro Direct Memory Access (μDMA)

Register 9: DMA Channel Software Request (DMASWREQ), offset 0x014
Each bit of the DMASWREQ register represents the corresponding DMA channel. When you set a
bit, it generates a request for the specified DMA channel.

DMA Channel Software Request (DMASWREQ)
Base 0x400F.F000
Offset 0x014
Type WO, reset -

16171819202122232425262728293031

SWREQ[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

SWREQ[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Software Request

For each channel 0 through 31, write a 1 to the corresponding bit field
to generate a software DMA request for that DMA channel. Writing a 0
does not create a DMA request for the corresponding channel.

-WOSWREQ[n]31:0

217June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 10: DMA Channel Useburst Set (DMAUSEBURSTSET), offset 0x018
Each bit of the DMAUSEBURSTSET register represents the corresponding DMA channel. Writing
a 1 disables the peripheral's single request input from generating requests, and therefore only the
peripheral's burst request generates requests. Reading the register returns the status of useburst.

When there are fewer items remaining to transfer than the arbitration (burst) size, the controller
automatically clears the useburst bit to 0. This enables the remaining items to transfer using single
requests. This bit should not be set for a peripheral's channel that does not support the burst request
model.

Refer to “Request Types” on page 186 for more details about request types.

DMAUSEBURSTSET Reads

DMA Channel Useburst Set (DMAUSEBURSTSET)
Base 0x400F.F000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Useburst Set

Returns the useburst status of channel [n].

DescriptionValue

Single and Burst

DMA channel [n] responds to single or burst requests.

0

Burst Only

DMA channel [n] responds only to burst requests.

1

0x00RSET[n]31:0

June 02, 2008218
Preliminary

Micro Direct Memory Access (μDMA)

DMAUSEBURSTSET Writes

DMA Channel Useburst Set (DMAUSEBURSTSET)
Base 0x400F.F000
Offset 0x018
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Useburst Set

Sets useburst bit on channel [n].

DescriptionValue

No Effect

Use the DMAUSEBURSTCLR register to clear bit [n] to 0.

0

Burst Only

DMA channel [n] responds only to burst requests.

1

0x00WSET[n]31:0

219June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: DMAChannel Useburst Clear (DMAUSEBURSTCLR), offset 0x01C
Each bit of the DMAUSEBURSTCLR register represents the corresponding DMA channel. Writing
a 1 enables dma_sreq[n] to generate requests.

DMA Channel Useburst Clear (DMAUSEBURSTCLR)
Base 0x400F.F000
Offset 0x01C
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Useburst Clear

Clears useburst bit on channel [n].

DescriptionValue

No Effect

Use the DMAUSEBURSTSET to set bit [n] to 1.

0

Single and Burst

DMA channel [n] responds to single and burst requests.

1

-WOCLR[n]31:0

June 02, 2008220
Preliminary

Micro Direct Memory Access (μDMA)

Register 12: DMA Channel Request Mask Set (DMAREQMASKSET), offset
0x020
Each bit of the DMAREQMASKSET register represents the corresponding DMA channel. Writing
a 1 disables DMA requests for the channel. Reading the register returns the request mask status.
When a μDMA channel's request is masked, that means the peripheral can no longer request μDMA
transfers. The channel can then be used for software-initiated transfers.

DMAREQMASKSET Reads

DMA Channel Request Mask Set (DMAREQMASKSET)
Base 0x400F.F000
Offset 0x020
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Request Mask Set

Returns the channel request mask status.

DescriptionValue

Enabled

External requests are not masked for channel [n].

0

Masked

External requests are masked for channel [n].

1

0x00RSET[n]31:0

DMAREQMASKSET Writes

DMA Channel Request Mask Set (DMAREQMASKSET)
Base 0x400F.F000
Offset 0x020
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

221June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Channel [n] Request Mask Set

Masks (disables) the corresponding channel [n] from generating DMA
requests.

DescriptionValue

No Effect

Use theDMAREQMASKCLR register to clear the request mask.

0

Masked

Masks (disables) DMA requests on channel [n].

1

0x00WSET[n]31:0

June 02, 2008222
Preliminary

Micro Direct Memory Access (μDMA)

Register 13: DMA Channel Request Mask Clear (DMAREQMASKCLR), offset
0x024
Each bit of the DMAREQMASKCLR register represents the corresponding DMA channel. Writing
a 1 clears the request mask for the channel, and enables the channel to receive DMA requests.

DMA Channel Request Mask Clear (DMAREQMASKCLR)
Base 0x400F.F000
Offset 0x024
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Request Mask Clear

Set the appropriate bit to clear the DMA request mask for channel [n].
This will enable DMA requests for the channel.

DescriptionValue

No Effect

Use the DMAREQMASKSET register to set the request mask.

0

Clear Mask

Clears the request mask for the DMA channel. This enables
DMA requests for the channel.

1

-WOCLR[n]31:0

223June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 14: DMA Channel Enable Set (DMAENASET), offset 0x028
Each bit of the DMAENASET register represents the corresponding DMA channel. Writing a 1
enables the DMA channel. Reading the register returns the enable status of the channels. If a
channel is enabled but the request mask is set (DMAREQMASKSET), then the channel can be
used for software-initiated transfers.

DMAENASET Reads

DMA Channel Enable Set (DMAENASET)
Base 0x400F.F000
Offset 0x028
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Enable Set

Returns the enable status of the channels.

DescriptionValue

Disabled0

Enabled1

0x00RSET[n]31:0

DMAENASET Writes

DMA Channel Enable Set (DMAENASET)
Base 0x400F.F000
Offset 0x028
Type WO, reset 0x0000.0000

16171819202122232425262728293031

CHENSET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

CHENSET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

June 02, 2008224
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Channel [n] Enable Set

Enables the corresponding channels.

Note: The controller disables a channel when it completes the DMA
cycle.

DescriptionValue

No Effect

Use the DMAENACLR register to disable a channel.

0

Enable

Enables channel [n].

1

0x00WCHENSET[n]31:0

225June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 15: DMA Channel Enable Clear (DMAENACLR), offset 0x02C
Each bit of the DMAENACLR register represents the corresponding DMA channel. Writing a 1
disables the specified DMA channel.

DMA Channel Enable Clear (DMAENACLR)
Base 0x400F.F000
Offset 0x02C
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Clear Channel [n] Enable

Set the appropriate bit to disable the corresponding DMA channel.

Note: The controller disables a channel when it completes the DMA
cycle.

DescriptionValue

No Effect

Use the DMAENASET register to enable DMA channels.

0

Disable

Disables channel [n].

1

-WOCLR[n]31:0

June 02, 2008226
Preliminary

Micro Direct Memory Access (μDMA)

Register 16: DMA Channel Primary Alternate Set (DMAALTSET), offset 0x030
Each bit of the DMAALTSET register represents the corresponding DMA channel. Writing a 1
configures the DMA channel to use the alternate control data structure. Reading the register returns
the status of which control data structure is in use for the corresponding DMA channel.

DMAALTSET Reads

DMA Channel Primary Alternate Set (DMAALTSET)
Base 0x400F.F000
Offset 0x030
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Alternate Set

Returns the channel control data structure status.

DescriptionValue

Primary

DMA channel [n] is using the primary control structure.

0

Alternate

DMA channel [n] is using the alternate control structure.

1

0x00RSET[n]31:0

DMAALTSET Writes

DMA Channel Primary Alternate Set (DMAALTSET)
Base 0x400F.F000
Offset 0x030
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

227June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Channel [n] Alternate Set

Selects the alternate channel control data structure for the corresponding
DMA channel.

Note: For Ping-Pong and Scatter-Gather DMA cycle types, the
controller automatically sets these bits to select the alternate
channel control data structure.

DescriptionValue

No Effect

Use the DMAALTCLR register to set bit [n] to 0.

0

Alternate

Selects the alternate control data structure for channel [n].

1

0x00WSET[n]31:0

June 02, 2008228
Preliminary

Micro Direct Memory Access (μDMA)

Register 17: DMA Channel Primary Alternate Clear (DMAALTCLR), offset
0x034
Each bit of the DMAALTCLR register represents the corresponding DMA channel. Writing a 1
configures the DMA channel to use the primary control data structure.

DMA Channel Primary Alternate Clear (DMAALTCLR)
Base 0x400F.F000
Offset 0x034
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Alternate Clear

Set the appropriate bit to select the primary control data structure for
the corresponding DMA channel.

Note: For Ping-Pong and Scatter-Gather DMA cycle types, the
controller sets these bits to select the primary channel control
data structure.

DescriptionValue

No Effect

Use the DMAALTSET register to select the alternate control
data structure.

0

Primary

Selects the primary control data structure for channel [n].

1

-WOCLR[n]31:0

229June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 18: DMA Channel Priority Set (DMAPRIOSET), offset 0x038
Each bit of the the DMAPRIOSET register represents the corresponding DMA channel. Writing a
1 configures the DMA channel to have a high priority level. Reading the register returns the status
of the channel priority mask.

DMAPRIOSET Reads

DMA Channel Priority Set (DMAPRIOSET)
Base 0x400F.F000
Offset 0x038
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Priority Set

Returns the channel priority status.

DescriptionValue

Default Priority

DMA channel [n] is using the default priority level.

0

High Priority

DMA channel [n] is using a High Priority level.

1

0x00RSET[n]31:0

DMAPRIOSET Writes

DMA Channel Priority Set (DMAPRIOSET)
Base 0x400F.F000
Offset 0x038
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

June 02, 2008230
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Channel [n] Priority Set

Sets the channel priority to high.

DescriptionValue

No Effect

Use theDMAPRIOCLR register to set channel [n] to the default
priority level.

0

High Priority

Sets DMA channel [n] to a High Priority level.

1

0x00WSET[n]31:0

231June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 19: DMA Channel Priority Clear (DMAPRIOCLR), offset 0x03C
Each bit of the DMAPRIOCLR register represents the corresponding DMA channel. Writing a 1
configures the DMA channel to have the default priority level.

DMA Channel Priority Clear (DMAPRIOCLR)
Base 0x400F.F000
Offset 0x03C
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Priority Clear

Set the appropriate bit to clear the high priority level for the specified
DMA channel.

DescriptionValue

No Effect

Use the DMAPRIOSET register to set channel [n] to the High
priority level.

0

Default Priority

Sets DMA channel [n] to a Default priority level.

1

-WOCLR[n]31:0

June 02, 2008232
Preliminary

Micro Direct Memory Access (μDMA)

Register 20: DMA Bus Error Clear (DMAERRCLR), offset 0x04C
The DMAERRCLR register is used to read and clear the DMA bus error status. The error status
will be set if the μDMA controller encountered a bus error while performing a DMA transfer. If a bus
error occurs on a channel, that channel will be automatically disabled by the μDMA controller. The
other channels are unaffected.

DMAERRCLR Reads

DMA Bus Error Clear (DMAERRCLR)
Base 0x400F.F000
Offset 0x04C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERRCLRreserved

RROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

DMA Bus Error Status

DescriptionValue

Low

No bus error is pending.

0

High

Bus error is pending.

1

0RERRCLR0

DMAERRCLR Writes

DMA Bus Error Clear (DMAERRCLR)
Base 0x400F.F000
Offset 0x04C
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERRCLRreserved

WROROROROROROROROROROROROROROROType
0000000000000000Reset

233June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

DMA Bus Error Status

Clears the bus error.

DescriptionValue

No Effect

Bus error status is unchanged.

0

Clear

Clears a pending bus error.

1

0WERRCLR0

June 02, 2008234
Preliminary

Micro Direct Memory Access (μDMA)

Register 21: DMA Peripheral Identification 0 (DMAPeriphID0), offset 0xFE0
The DMAPeriphIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA Peripheral Identification 0 (DMAPeriphID0)
Base 0x400F.F000
Offset 0xFE0
Type RO, reset 0x0000.0030

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
0000110000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x30ROPID07:0

235June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 22: DMA Peripheral Identification 1 (DMAPeriphID1), offset 0xFE4
The DMAPeriphIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA Peripheral Identification 1 (DMAPeriphID1)
Base 0x400F.F000
Offset 0xFE4
Type RO, reset 0x0000.00B2

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0100110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0xB2ROPID17:0

June 02, 2008236
Preliminary

Micro Direct Memory Access (μDMA)

Register 23: DMA Peripheral Identification 2 (DMAPeriphID2), offset 0xFE8
The DMAPeriphIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA Peripheral Identification 2 (DMAPeriphID2)
Base 0x400F.F000
Offset 0xFE8
Type RO, reset 0x0000.000B

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
1101000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x0BROPID27:0

237June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 24: DMA Peripheral Identification 3 (DMAPeriphID3), offset 0xFEC
The DMAPeriphIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA Peripheral Identification 3 (DMAPeriphID3)
Base 0x400F.F000
Offset 0xFEC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x00ROPID37:0

June 02, 2008238
Preliminary

Micro Direct Memory Access (μDMA)

Register 25: DMA Peripheral Identification 4 (DMAPeriphID4), offset 0xFD0
The DMAPeriphIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA Peripheral Identification 4 (DMAPeriphID4)
Base 0x400F.F000
Offset 0xFD0
Type RO, reset 0x0000.0004

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA Peripheral ID Register

Can be used by software to identify the presence of this peripheral.

0x04ROPID47:0

239June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 26: DMA PrimeCell Identification 0 (DMAPCellID0), offset 0xFF0
The DMAPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 0 (DMAPCellID0)
Base 0x400F.F000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA PrimeCell ID Register[7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

June 02, 2008240
Preliminary

Micro Direct Memory Access (μDMA)

Register 27: DMA PrimeCell Identification 1 (DMAPCellID1), offset 0xFF4
The DMAPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 1 (DMAPCellID1)
Base 0x400F.F000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA PrimeCell ID Register[15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

241June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 28: DMA PrimeCell Identification 2 (DMAPCellID2), offset 0xFF8
The DMAPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 2 (DMAPCellID2)
Base 0x400F.F000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA PrimeCell ID Register[23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

June 02, 2008242
Preliminary

Micro Direct Memory Access (μDMA)

Register 29: DMA PrimeCell Identification 3 (DMAPCellID3), offset 0xFFC
The DMAPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 3 (DMAPCellID3)
Base 0x400F.F000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA PrimeCell ID Register[31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

243June 02, 2008
Preliminary

LM3S5747 Microcontroller

10 General-Purpose Input/Outputs (GPIOs)
The GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual
GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, and Port H). The GPIO module
supports 27-61 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

■ Two means of port access: either high speed (for single-cyle writes), or legacy for
backwards-compatibility with existing code

■ Programmable control for GPIO interrupts

– Interrupt generation masking

– Edge-triggered on rising, falling, or both

– Level-sensitive on High or Low values

■ 5-V-tolerant input/outputs

■ Bit masking in both read and write operations through address lines

■ Pins configured as digital inputs are Schmitt-triggered.

■ Programmable control for GPIO pad configuration:

– Weak pull-up or pull-down resistors

– 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured
with an 18-mA pad drive for high-current applications

– Slew rate control for the 8-mA drive

– Open drain enables

– Digital input enables

10.1 Functional Description
Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0,

and GPIOPUR=0), with the exception of the four JTAG/SWD pins (PC[3:0]). The
JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1,GPIODEN=1
and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins
back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block(see Figure
10-1 on page 245 and Figure 10-2 on page 246). The LM3S5747microcontroller contains eight ports
and thus eight of these physical GPIO blocks.

June 02, 2008244
Preliminary

General-Purpose Input/Outputs (GPIOs)

Figure 10-1. Digital I/O Pads

Pad
Control

Commit
Control

GPIOLOCK
GPIOCR

Mode
Control

GPIOAFSEL

Data
Control

GPIODATA
GPIODIR

Alternate Input

Alternate Output

Alternate Output Enable

GPIO Input

GPIO Output

GPIO Output Enable

Interrupt
Control

GPIOIS
GPIOIBE
GPIOIEV
GPIOIM
GPIORIS
GPIOMIS
GPIOICR

Interrupt
GPIODR2R
GPIODR4R
GPIODR8R
GPIOSLR
GPIOPUR
GPIOPDR
GPIOODR
GPIODEN

M
U
X

M
U
X

D
E
M
U
X

Digital
I/O Pad

Identification Registers

GPIOPeriphID0
GPIOPeriphID1
GPIOPeriphID2
GPIOPeriphID3

GPIOPeriphID4
GPIOPeriphID5
GPIOPeriphID6
GPIOPeriphID7

GPIOPCellID0
GPIOPCellID1
GPIOPCellID2
GPIOPCellID3

Pad Input

Pad Output

Pad Output Enable

Package I/O Pin

245June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 10-2. Analog/Digital I/O Pads

Pad
Control

Analog Circuitry

Commit
Control

GPIOLOCK
GPIOCR

Mode
Control

GPIOAFSEL

Data
Control

GPIODATA
GPIODIR

Alternate Input

Alternate Output

Alternate Output Enable

GPIO Input

GPIO Output

GPIO Output Enable

Interrupt
Control

GPIOIS
GPIOIBE
GPIOIEV
GPIOIM
GPIORIS
GPIOMIS
GPIOICR

Interrupt
GPIODR2R
GPIODR4R
GPIODR8R
GPIOSLR
GPIOPUR
GPIOPDR
GPIOODR
GPIODEN

M
U
X

M
U
X

D
E
M
U
X

GPIOAMSEL

Identification Registers

GPIOPeriphID0
GPIOPeriphID1
GPIOPeriphID2
GPIOPeriphID3

GPIOPeriphID4
GPIOPeriphID5
GPIOPeriphID6
GPIOPeriphID7

GPIOPCellID0
GPIOPCellID1
GPIOPCellID2
GPIOPCellID3

Pad Input

Pad Output

Pad Output Enable

Package I/O Pin

(for PortE4 – 7 and
PortD4 – 7 pins that
connect to the ADC

input MUX)

ADC
Isolation
Circuit

Analog/Digital
I/O Pad

10.1.1 Data Control
The data control registers allow software to configure the operational modes of the GPIOs. The data
direction register configures the GPIO as an input or an output while the data register either captures
incoming data or drives it out to the pads.

10.1.1.1 Data Direction Operation
The GPIO Direction (GPIODIR) register (see page 254) is used to configure each individual pin as
an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and
the corresponding data register bit will capture and store the value on the GPIO port. When the data
direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit
will be driven out on the GPIO port.

10.1.1.2 Data Register Operation
To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the
GPIO Data (GPIODATA) register (see page 253) by using bits [9:2] of the address bus as a mask.
This allows software drivers to modify individual GPIO pins in a single instruction, without affecting
the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write
operation to set or clear an individual GPIO pin. To accommodate this feature, the GPIODATA
register covers 256 locations in the memory map.

June 02, 2008246
Preliminary

General-Purpose Input/Outputs (GPIOs)

During a write, if the address bit associated with that data bit is set to 1, the value of the GPIODATA
register is altered. If it is cleared to 0, it is left unchanged.

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in
Figure 10-3 on page 247, where u is data unchanged by the write.

Figure 10-3. GPIODATA Write Example

0 10 0 1 10 0 1 0

u 1u u 0 1u u

9 8 7 6 5 4 3 2 1 0

1 11 0 0 11 1

7 6 5 4 3 2 1 0
GPIODATA

0xEB

0x098
ADDR[9:2]

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the
address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value.
For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 10-4 on page 247.

Figure 10-4. GPIODATA Read Example

0 10 1 0 00 1 0 0

0 10 1 0 00 0

9 8 7 6 5 4 3 2 1 0

0 11 1 1 11 0

7 6 5 4 3 2 1 0
Returned Value

GPIODATA

0x0C4
ADDR[9:2]

10.1.2 Interrupt Control
The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these
registers, it is possible to select the source of the interrupt, its polarity, and the edge properties.
When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt
controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt
to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source
holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

■ GPIO Interrupt Sense (GPIOIS) register (see page 255)

■ GPIO Interrupt Both Edges (GPIOIBE) register (see page 256)

■ GPIO Interrupt Event (GPIOIEV) register (see page 257)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 258).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations:
theGPIORaw Interrupt Status (GPIORIS) andGPIOMasked Interrupt Status (GPIOMIS) registers
(see page 259 and page 260). As the name implies, the GPIOMIS register only shows interrupt

247June 02, 2008
Preliminary

LM3S5747 Microcontroller

conditions that are allowed to be passed to the controller. The GPIORIS register indicates that a
GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC.
If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not
only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the ADC
Event Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC
conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored
Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts
and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt
handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC
interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC
registers until the conversion is completed.

Interrupts are cleared by writing a 1 to the appropriate bit of the GPIO Interrupt Clear (GPIOICR)
register (see page 262).

When programming the following interrupt control registers, the interrupts should bemasked (GPIOIM
set to 0). Writing any value to an interrupt control register (GPIOIS, GPIOIBE, or GPIOIEV) can
generate a spurious interrupt if the corresponding bits are enabled.

10.1.3 Mode Control
The GPIO pins can be controlled by either hardware or software. When hardware control is enabled
via the GPIO Alternate Function Select (GPIOAFSEL) register (see page 263), the pin state is
controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO
mode, where the GPIODATA register is used to read/write the corresponding pins.

Note: If any pin is to be used as an ADC input, the appropriate bit inGPIOAMSELmust be written
to 1 to disable the analog isolation circuit.

10.1.4 Commit Control
The commit control registers provide a layer of protection against accidental programming of critical
hardware peripherals. Writes to protected bits of theGPIOAlternate Function Select (GPIOAFSEL)
register (see page 263),GPIO Pull-Up Select (GPIOPUR) register (see page 269), andGPIODigital
Enable (GPIODEN) register (see page 272) are not committed to storage unless the GPIO Lock
(GPIOLOCK) register (see page 274) has been unlocked and the appropriate bits of the GPIO
Commit (GPIOCR) register (see page 275) have been set to 1.

10.1.5 Pad Control
The pad control registers allow for GPIO pad configuration by software based on the application
requirements. The pad control registers include theGPIODR2R,GPIODR4R,GPIODR8R,GPIOODR,
GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers. These registers control drive strength,
open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable.

For special high-current applications, the GPIO output buffers may be used with the following
restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may
be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is
specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only
a maximum of two per side of the physical package with the total number of high-current GPIO
outputs not exceeding four for the entire package.

June 02, 2008248
Preliminary

General-Purpose Input/Outputs (GPIOs)

10.1.6 Identification
The identification registers configured at reset allow software to detect and identify the module as
a GPIO block. The identification registers include theGPIOPeriphID0-GPIOPeriphID7 registers as
well as the GPIOPCellID0-GPIOPCellID3 registers.

10.2 Initialization and Configuration
The GPIO modules may be accessed via two different memory apertures. The legacy aperture is
backwards-compatible with previous Stellaris parts and offers two-cycle access time to all GPIO
registers. The high-speed aperture offers the same register map but provides single-cycle access
times. These apertures are mutually exclusive. The aperture enabled for a given GPIO port is
controlled by the appropriate bit in the GPIOHSCTL register (see page 92).

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit
field (GPIOn) in the RCGC2 register.

On reset, all GPIO pins (except for the four JTAG pins) are configured out of reset to be undriven
(tristate): GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0. Table 10-1 on page 249
shows all possible configurations of the GPIO pads and the control register settings required to
achieve them. Table 10-2 on page 250 shows how a rising edge interrupt would be configured for
pin 2 of a GPIO port.

Table 10-1. GPIO Pad Configuration Examples

GPIO Register Bit ValueaConfiguration

SLRDR8RDR4RDR2RPDRPURDENODRDIRAFSEL

XXXX??1000Digital Input (GPIO)

??????1010Digital Output (GPIO)

XXXXXX1100Open Drain Input
(GPIO)

????XX1110Open Drain Output
(GPIO)

????XX11X1Open Drain
Input/Output (I2C)

XXXX??10X1Digital Input (Timer
CCP)

??????10X1Digital Output (PWM)

??????10X1Digital Output (Timer
PWM)

??????10X1Digital Input/Output
(SSI)

??????10X1Digital Input/Output
(UART)

a. X=Ignored (don’t care bit)

?=Can be either 0 or 1, depending on the configuration

249June 02, 2008
Preliminary

LM3S5747 Microcontroller

Table 10-2. GPIO Interrupt Configuration Example

Pin 2 Bit ValueaDesired
Interrupt
Event
Trigger

Register

01234567

XX0XXXXX0=edge

1=level

GPIOIS

XX0XXXXX0=single
edge

1=both
edges

GPIOIBE

XX1XXXXX0=Low level,
or negative

edge

1=High level,
or positive
edge

GPIOIEV

001000000=masked

1=not
masked

GPIOIM

a. X=Ignored (don’t care bit)

10.3 Register Map
Table 10-3 on page 251 lists the GPIO registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that GPIO port’s base address:

■ GPIO Port A (legacy): 0x4000.4000

■ GPIO Port A (high-speed): 0x4005.8000

■ GPIO Port B (legacy): 0x4000.5000

■ GPIO Port B (high-speed): 0x4005.9000

■ GPIO Port C (legacy): 0x4000.6000

■ GPIO Port C (high-speed): 0x4005.A000

■ GPIO Port D (legacy): 0x4000.7000

■ GPIO Port D (high-speed): 0x4005.B000

■ GPIO Port E (legacy): 0x4002.4000

■ GPIO Port E (high-speed): 0x4005.C000

■ GPIO Port F (legacy): 0x4002.5000

■ GPIO Port F (high-speed): 0x4005.D000

■ GPIO Port G (legacy): 0x4002.6000

■ GPIO Port G (high-speed): 0x4005.E000

June 02, 2008250
Preliminary

General-Purpose Input/Outputs (GPIOs)

■ GPIO Port H (legacy): 0x4002.7000

■ GPIO Port H (high-speed): 0x4005.F000

Important: The GPIO registers in this chapter are duplicated in each GPIO block, however,
depending on the block, all eight bits may not be connected to a GPIO pad. In those
cases, writing to those unconnected bits has no effect and reading those unconnected
bits returns no meaningful data.

Note: The default reset value for the GPIOAFSEL, GPIOPUR, and GPIODEN registers are
0x0000.0000 for all GPIO pins, with the exception of the four JTAG/SWD pins (PC[3:0]).
These four pins default to JTAG/SWD functionality. Because of this, the default reset value
of these registers for Port C is 0x0000.000F.

The default register type for theGPIOCR register is RO for all GPIO pins, with the exception
of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). These five pins are
currently the only GPIOs that are protected by the GPIOCR register. Because of this, the
register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the
exception of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). To ensure that
the JTAG port is not accidentally programmed as a GPIO, these four pins default to
non-committable. To ensure that the NMI pin is not accidentally programmed as the
non-maskable interrupt pin, it defaults to non-committable. Because of this, the default reset
value of GPIOCR for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR
for Port C is 0x0000.00F0.

Table 10-3. GPIO Register Map

See
pageDescriptionResetTypeNameOffset

253GPIO Data0x0000.0000R/WGPIODATA0x000

254GPIO Direction0x0000.0000R/WGPIODIR0x400

255GPIO Interrupt Sense0x0000.0000R/WGPIOIS0x404

256GPIO Interrupt Both Edges0x0000.0000R/WGPIOIBE0x408

257GPIO Interrupt Event0x0000.0000R/WGPIOIEV0x40C

258GPIO Interrupt Mask0x0000.0000R/WGPIOIM0x410

259GPIO Raw Interrupt Status0x0000.0000ROGPIORIS0x414

260GPIO Masked Interrupt Status0x0000.0000ROGPIOMIS0x418

262GPIO Interrupt Clear0x0000.0000W1CGPIOICR0x41C

263GPIO Alternate Function Select-R/WGPIOAFSEL0x420

265GPIO 2-mA Drive Select0x0000.00FFR/WGPIODR2R0x500

266GPIO 4-mA Drive Select0x0000.0000R/WGPIODR4R0x504

267GPIO 8-mA Drive Select0x0000.0000R/WGPIODR8R0x508

268GPIO Open Drain Select0x0000.0000R/WGPIOODR0x50C

269GPIO Pull-Up Select-R/WGPIOPUR0x510

251June 02, 2008
Preliminary

LM3S5747 Microcontroller

See
pageDescriptionResetTypeNameOffset

270GPIO Pull-Down Select0x0000.0000R/WGPIOPDR0x514

271GPIO Slew Rate Control Select0x0000.0000R/WGPIOSLR0x518

272GPIO Digital Enable-R/WGPIODEN0x51C

274GPIO Lock0x0000.0001R/WGPIOLOCK0x520

275GPIO Commit--GPIOCR0x524

277GPIO Analog Mode Select0x0000.0000R/WGPIOAMSEL0x528

279GPIO Peripheral Identification 40x0000.0000ROGPIOPeriphID40xFD0

280GPIO Peripheral Identification 50x0000.0000ROGPIOPeriphID50xFD4

281GPIO Peripheral Identification 60x0000.0000ROGPIOPeriphID60xFD8

282GPIO Peripheral Identification 70x0000.0000ROGPIOPeriphID70xFDC

283GPIO Peripheral Identification 00x0000.0061ROGPIOPeriphID00xFE0

284GPIO Peripheral Identification 10x0000.0000ROGPIOPeriphID10xFE4

285GPIO Peripheral Identification 20x0000.0018ROGPIOPeriphID20xFE8

286GPIO Peripheral Identification 30x0000.0001ROGPIOPeriphID30xFEC

287GPIO PrimeCell Identification 00x0000.000DROGPIOPCellID00xFF0

288GPIO PrimeCell Identification 10x0000.00F0ROGPIOPCellID10xFF4

289GPIO PrimeCell Identification 20x0000.0005ROGPIOPCellID20xFF8

290GPIO PrimeCell Identification 30x0000.00B1ROGPIOPCellID30xFFC

10.4 Register Descriptions
The remainder of this section lists and describes the GPIO registers, in numerical order by address
offset.

June 02, 2008252
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 1: GPIO Data (GPIODATA), offset 0x000
The GPIODATA register is the data register. In software control mode, values written in the
GPIODATA register are transferred onto the GPIO port pins if the respective pins have been
configured as outputs through the GPIO Direction (GPIODIR) register (see page 254).

In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus
bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from
the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause
the corresponding bits in GPIODATA to be read, and bits that are 0 in the address mask cause the
corresponding bits in GPIODATA to be read as 0, regardless of their value.

A read from GPIODATA returns the last bit value written if the respective pins are configured as
outputs, or it returns the value on the corresponding input pin when these are configured as inputs.
All bits are cleared by a reset.

GPIO Data (GPIODATA)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Data

This register is virtually mapped to 256 locations in the address space.
To facilitate the reading and writing of data to these registers by
independent drivers, the data read from and the data written to the
registers are masked by the eight address lines ipaddr[9:2]. Reads
from this register return its current state. Writes to this register only affect
bits that are not masked by ipaddr[9:2] and are configured as
outputs. See “Data Register Operation” on page 246 for examples of
reads and writes.

0x00R/WDATA7:0

253June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: GPIO Direction (GPIODIR), offset 0x400
The GPIODIR register is the data direction register. Bits set to 1 in the GPIODIR register configure
the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are
cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x400
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DIRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Data Direction

The DIR values are defined as follows:

DescriptionValue

Pins are inputs.0

Pins are outputs.1

0x00R/WDIR7:0

June 02, 2008254
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404
The GPIOIS register is the interrupt sense register. Bits set to 1 in GPIOIS configure the
corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits
are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x404
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ISreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Interrupt Sense

The IS values are defined as follows:

DescriptionValue

Edge on corresponding pin is detected (edge-sensitive).0

Level on corresponding pin is detected (level-sensitive).1

0x00R/WIS7:0

255June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408
The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in the GPIO
Interrupt Sense (GPIOIS) register (see page 255) is set to detect edges, bits set to High inGPIOIBE
configure the corresponding pin to detect both rising and falling edges, regardless of the
corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 257). Clearing a bit
configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x408
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IBEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Interrupt Both Edges

The IBE values are defined as follows:

DescriptionValue

Interrupt generation is controlled by the GPIO Interrupt Event
(GPIOIEV) register (see page 257).

0

Both edges on the corresponding pin trigger an interrupt.1

Note: Single edge is determined by the corresponding bit
in GPIOIEV.

0x00R/WIBE7:0

June 02, 2008256
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C
The GPIOIEV register is the interrupt event register. Bits set to High in GPIOIEV configure the
corresponding pin to detect rising edges or high levels, depending on the corresponding bit value
in the GPIO Interrupt Sense (GPIOIS) register (see page 255). Clearing a bit configures the pin to
detect falling edges or low levels, depending on the corresponding bit value in GPIOIS. All bits are
cleared by a reset.

GPIO Interrupt Event (GPIOIEV)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x40C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IEVreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Interrupt Event

The IEV values are defined as follows:

DescriptionValue

Falling edge or Low levels on corresponding pins trigger
interrupts.

0

Rising edge or High levels on corresponding pins trigger
interrupts.

1

0x00R/WIEV7:0

257June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410
TheGPIOIM register is the interrupt mask register. Bits set to High inGPIOIM allow the corresponding
pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables
interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x410
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IMEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Interrupt Mask Enable

The IME values are defined as follows:

DescriptionValue

Corresponding pin interrupt is masked.0

Corresponding pin interrupt is not masked.1

0x00R/WIME7:0

June 02, 2008258
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414
The GPIORIS register is the raw interrupt status register. Bits read High in GPIORIS reflect the
status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the
requirements have been met, before they are finally allowed to trigger by the GPIO Interrupt Mask
(GPIOIM) register (see page 258). Bits read as zero indicate that corresponding input pins have not
initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x414
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Interrupt Raw Status

Reflects the status of interrupt trigger condition detection on pins (raw,
prior to masking).

The RIS values are defined as follows:

DescriptionValue

Corresponding pin interrupt requirements not met.0

Corresponding pin interrupt has met requirements.1

0x00RORIS7:0

259June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418
The GPIOMIS register is the masked interrupt status register. Bits read High in GPIOMIS reflect
the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has
been generated, or the interrupt is masked.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC.
If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not
only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the ADC
Event Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC
conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored
Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts
and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt
handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC
interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC
registers until the conversion is completed.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x418
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

June 02, 2008260
Preliminary

General-Purpose Input/Outputs (GPIOs)

DescriptionResetTypeNameBit/Field

GPIO Masked Interrupt Status

Masked value of interrupt due to corresponding pin.

The MIS values are defined as follows:

DescriptionValue

Corresponding GPIO line interrupt not active.0

Corresponding GPIO line asserting interrupt.1

0x00ROMIS7:0

261June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C
The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the
corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x41C
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ICreserved

W1CW1CW1CW1CW1CW1CW1CW1CROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Interrupt Clear

The IC values are defined as follows:

DescriptionValue

Corresponding interrupt is unaffected.0

Corresponding interrupt is cleared.1

0x00W1CIC7:0

June 02, 2008262
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420
The GPIOAFSEL register is the mode control select register. Writing a 1 to any bit in this register
selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore
no GPIO line is set to hardware control by default.

The commit control registers provide a layer of protection against accidental programming of critical
hardware peripherals. Writes to protected bits of theGPIOAlternate Function Select (GPIOAFSEL)
register (see page 263),GPIO Pull-Up Select (GPIOPUR) register (see page 269), andGPIODigital
Enable (GPIODEN) register (see page 272) are not committed to storage unless the GPIO Lock
(GPIOLOCK) register (see page 274) has been unlocked and the appropriate bits of the GPIO
Commit (GPIOCR) register (see page 275) have been set to 1.

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0,
and GPIOPUR=0), with the exception of the four JTAG/SWD pins (PC[3:0]). The
JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1,GPIODEN=1
and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins
back to their default state.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the
controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This
can be avoidedwith a software routine that restores JTAG functionality based on an external or software
trigger.

GPIO Alternate Function Select (GPIOAFSEL)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x420
Type R/W, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AFSELreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
--------00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

263June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

GPIO Alternate Function Select

The AFSEL values are defined as follows:

DescriptionValue

Software control of corresponding GPIO line (GPIO mode).0

Hardware control of corresponding GPIO line (alternate
hardware function).

1

Note: The default reset value for the GPIOAFSEL,
GPIOPUR, andGPIODEN registers are 0x0000.0000
for all GPIO pins, with the exception of the four
JTAG/SWD pins (PC[3:0]). These four pins default
to JTAG/SWD functionality. Because of this, the
default reset value of these registers for Port C is
0x0000.000F.

-R/WAFSEL7:0

June 02, 2008264
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500
The GPIODR2R register is the 2-mA drive control register. It allows for each GPIO signal in the port
to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO
signal, the corresponding DRV4 bit in the GPIODR4R register and the DRV8 bit in the GPIODR8R
register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x500
Type R/W, reset 0x0000.00FF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DRV2reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
1111111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Output Pad 2-mA Drive Enable

A write of 1 to either GPIODR4[n] or GPIODR8[n] clears the
corresponding 2-mA enable bit. The change is effective on the second
clock cycle after the write if accessing GPIO via the legacy memory
aperture. If using high-speed access, the change is effective on the next
clock cycle.

0xFFR/WDRV27:0

265June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504
The GPIODR4R register is the 4-mA drive control register. It allows for each GPIO signal in the port
to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV8 bit in the GPIODR8R
register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x504
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DRV4reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Output Pad 4-mA Drive Enable

A write of 1 to either GPIODR2[n] or GPIODR8[n] clears the
corresponding 4-mA enable bit. The change is effective on the second
clock cycle after the write if accessing GPIO via the legacy memory
aperture. If using high-speed access, the change is effective on the next
clock cycle.

0x00R/WDRV47:0

June 02, 2008266
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508
The GPIODR8R register is the 8-mA drive control register. It allows for each GPIO signal in the port
to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV4 bit in the GPIODR4R
register are automatically cleared by hardware. The 8-mA setting is also used for high-current
operation.

Note: There is no configuration difference between 8-mA and high-current operation. The additional
current capacity results from a shift in the VOH/VOL levels. See “Recommended DCOperating
Conditions” on page 680 for further information.

GPIO 8-mA Drive Select (GPIODR8R)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x508
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DRV8reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Output Pad 8-mA Drive Enable

A write of 1 to either GPIODR2[n] or GPIODR4[n] clears the
corresponding 8-mA enable bit. The change is effective on the second
clock cycle after the write if accessing GPIO via the legacy memory
aperture. If using high-speed access, the change is effective on the next
clock cycle.

0x00R/WDRV87:0

267June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C
The GPIOODR register is the open drain control register. Setting a bit in this register enables the
open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the
corresponding bit should also be set in the GPIO Digital Input Enable (GPIODEN) register (see
page 272). Corresponding bits in the drive strength registers (GPIODR2R,GPIODR4R,GPIODR8R,
and GPIOSLR) can be set to achieve the desired rise and fall times. The GPIO acts as an open
drain input if the corresponding bit in the GPIODIR register is set to 0; and as an open drain output
when set to 1.

When using the I2C module, in addition to configuring the pin to open drain, the GPIO Alternate
Function Select (GPIOAFSEL) register bit for the I2C clock and data pins should be set to 1 (see
examples in “Initialization and Configuration” on page 249).

GPIO Open Drain Select (GPIOODR)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x50C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ODEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Output Pad Open Drain Enable

The ODE values are defined as follows:

DescriptionValue

Open drain configuration is disabled.0

Open drain configuration is enabled.1

0x00R/WODE7:0

June 02, 2008268
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510
TheGPIOPUR register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up
resistor on the corresponding GPIO signal. Setting a bit in GPIOPUR automatically clears the
corresponding bit in theGPIO Pull-Down Select (GPIOPDR) register (see page 270). Write access
to this register is protected with the GPIOCR register. Bits in GPIOCR that are set to 0 will prevent
writes to the equivalent bit in this register.

Note: The commit control registers provide a layer of protection against accidental programming
of critical hardware peripherals. Writes to protected bits of the GPIO Alternate Function
Select (GPIOAFSEL) register (see page 263), GPIO Pull-Up Select (GPIOPUR) register
(see page 269), and GPIO Digital Enable (GPIODEN) register (see page 272) are not
committed to storage unless theGPIO Lock (GPIOLOCK) register (see page 274) has been
unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 275)
have been set to 1.

GPIO Pull-Up Select (GPIOPUR)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x510
Type R/W, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PUEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
--------00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Pad Weak Pull-Up Enable

A write of 1 to GPIOPDR[n] clears the corresponding GPIOPUR[n]
enables. The change is effective on the second clock cycle after the
write.

Note: The default reset value for the GPIOAFSEL, GPIOPUR, and
GPIODEN registers are 0x0000.0000 for all GPIO pins, with
the exception of the four JTAG/SWD pins (PC[3:0]). These
four pins default to JTAG/SWD functionality. Because of this,
the default reset value of these registers for Port C is
0x0000.000F.

-R/WPUE7:0

269June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514
The GPIOPDR register is the pull-down control register. When a bit is set to 1, it enables a weak
pull-down resistor on the corresponding GPIO signal. Setting a bit inGPIOPDR automatically clears
the corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 269).

GPIO Pull-Down Select (GPIOPDR)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x514
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PDEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Pad Weak Pull-Down Enable

A write of 1 to GPIOPUR[n] clears the corresponding GPIOPDR[n]
enables. The change is effective on the second clock cycle after the
write.

0x00R/WPDE7:0

June 02, 2008270
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518
The GPIOSLR register is the slew rate control register. Slew rate control is only available when
using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see
page 267).

GPIO Slew Rate Control Select (GPIOSLR)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x518
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

SRLreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Slew Rate Limit Enable (8-mA drive only)

The SRL values are defined as follows:

DescriptionValue

Slew rate control disabled.0

Slew rate control enabled.1

0x00R/WSRL7:0

271June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C
Note: Pins configured as digital inputs are Schmitt-triggered.

The GPIODEN register is the digital enable register. By default, with the exception of the GPIO
signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven
(tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not
allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or
alternate function), the corresponding GPIODEN bit must be set.

Note: The commit control registers provide a layer of protection against accidental programming
of critical hardware peripherals. Writes to protected bits of the GPIO Alternate Function
Select (GPIOAFSEL) register (see page 263), GPIO Pull-Up Select (GPIOPUR) register
(see page 269), and GPIO Digital Enable (GPIODEN) register (see page 272) are not
committed to storage unless theGPIO Lock (GPIOLOCK) register (see page 274) has been
unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 275)
have been set to 1.

GPIO Digital Enable (GPIODEN)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x51C
Type R/W, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DENreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
--------00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

June 02, 2008272
Preliminary

General-Purpose Input/Outputs (GPIOs)

DescriptionResetTypeNameBit/Field

Digital Enable

The DEN values are defined as follows:

DescriptionValue

Digital functions disabled.0

Digital functions enabled.1

Note: The default reset value for the GPIOAFSEL,
GPIOPUR, andGPIODEN registers are 0x0000.0000
for all GPIO pins, with the exception of the four
JTAG/SWD pins (PC[3:0]). These four pins default
to JTAG/SWD functionality. Because of this, the
default reset value of these registers for Port C is
0x0000.000F.

-R/WDEN7:0

273June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 19: GPIO Lock (GPIOLOCK), offset 0x520
The GPIOLOCK register enables write access to the GPIOCR register (see page 275). Writing
0x0x4C4F.434B to theGPIOLOCK register will unlock theGPIOCR register. Writing any other value
to the GPIOLOCK register re-enables the locked state. Reading the GPIOLOCK register returns
the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses
are disabled, or locked, reading theGPIOLOCK register returns 0x00000001. When write accesses
are enabled, or unlocked, reading the GPIOLOCK register returns 0x00000000.

GPIO Lock (GPIOLOCK)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x520
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

LOCK

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

LOCK

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

GPIO Lock

A write of the value 0x4C4F.434B unlocks theGPIOCommit (GPIOCR)
register for write access.

A write of any other value or a write to the GPIOCR register reapplies
the lock, preventing any register updates. A read of this register returns
the following values:

DescriptionValue

locked0x0000.0001

unlocked0x0000.0000

0x0000.0001R/WLOCK31:0

June 02, 2008274
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 20: GPIO Commit (GPIOCR), offset 0x524
The GPIOCR register is the commit register. The value of the GPIOCR register determines which
bits of the GPIOAFSEL, GPIOPUR, and GPIODEN registers are committed when a write to these
registers is performed. If a bit in the GPIOCR register is zero, the data being written to the
corresponding bit in the GPIOAFSEL, GPIOPUR, or GPIODEN registers cannot be committed and
retains its previous value. If a bit in the GPIOCR register is set, the data being written to the
corresponding bit of theGPIOAFSEL,GPIOPUR, orGPIODEN registers is committed to the register
and reflects the new value.

The contents of the GPIOCR register can only be modified if the GPIOLOCK register is unlocked.
Writes to the GPIOCR register are ignored if the GPIOLOCK register is locked.

Important: This register is designed to prevent accidental programming of the registers that control
connectivity to the NMI and JTAG/SWD debug hardware. By initializing the bits of the
GPIOCR register to 0 for PB7 and PC[3:0], the NMI and JTAG/SWD debug port can
only be converted to GPIOs through a deliberate set of writes to the GPIOLOCK,
GPIOCR, and the corresponding registers.

Because this protection is currently only implemented on the NMI and JTAG/SWD pins
on PB7 and PC[3:0], all of the other bits in the GPIOCR registers cannot be written
with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit
new values to the GPIOAFSEL, GPIOPUR, or GPIODEN register bits of these other
pins.

GPIO Commit (GPIOCR)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x524
Type -, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CRreserved

--------ROROROROROROROROType
--------00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

275June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

GPIO Commit

On a bit-wise basis, any bit set allows the corresponding GPIOAFSEL
bit to be set to its alternate function.

Note: The default register type for the GPIOCR register is RO for
all GPIO pins, with the exception of the NMI pin and the four
JTAG/SWD pins (PB7 and PC[3:0]). These five pins are
currently the only GPIOs that are protected by the GPIOCR
register. Because of this, the register type for GPIO Port B7
and GPIO Port C[3:0] is R/W.

The default reset value for the GPIOCR register is
0x0000.00FF for all GPIO pins, with the exception of the NMI
pin and the four JTAG/SWD pins (PB7 and PC[3:0]). To
ensure that the JTAG port is not accidentally programmed as
a GPIO, these four pins default to non-committable. To ensure
that the NMI pin is not accidentally programmed as the
non-maskable interrupt pin, it defaults to non-committable.
Because of this, the default reset value of GPIOCR for GPIO
Port B is 0x0000.007F while the default reset value of
GPIOCR for Port C is 0x0000.00F0.

--CR7:0

June 02, 2008276
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 21: GPIO Analog Mode Select (GPIOAMSEL), offset 0x528
Note: If any pin is to be used as an ADC input, the appropriate bit inGPIOAMSELmust be written

to 1 to disable the analog isolation circuit.

TheGPIOAMSEL register controls isolation circuits to the analog side of a unified I/O pad. Because
the GPIOs may be driven by a 5V source and affect analog operation, analog circuitry requires
isolation from the pins when not used in their analog function.

Each bit of this register controls the isolation circuitry for circuits that share the same pin as the
GPIO bit lane.

Note: This register is only valid for ports D and E.

GPIO Analog Mode Select (GPIOAMSEL)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0x528
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedGPIOAMSELreserved

ROROROROR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Analog Mode Select

DescriptionValue

Analog function of the pin is disabled, the isolation is enabled,
and the pin is capable of digital functions as specified by the
other GPIO configuration registers.

0

Analog function of the pin is enabled, the isolation is disabled,
and the pin is capable of analog functions.

1

Note: This register and bits are required only for GPIO bit lanes that
share analog function through a unified I/O pad.

The reset state of this register is 0 for all bit lanes.

0x00R/WGPIOAMSEL7:4

277June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:0

June 02, 2008278
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 22: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[7:0]0x00ROPID47:0

279June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 23: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[15:8]0x00ROPID57:0

June 02, 2008280
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 24: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[23:16]0x00ROPID67:0

281June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 25: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[31:24]0x00ROPID77:0

June 02, 2008282
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 26: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFE0
Type RO, reset 0x0000.0061

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
1000011000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x61ROPID07:0

283June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 27: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFE4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID17:0

June 02, 2008284
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 28: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x18ROPID27:0

285June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 29: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x01ROPID37:0

June 02, 2008286
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 30: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO PrimeCell ID Register[7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

287June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 31: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO PrimeCell ID Register[15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

June 02, 2008288
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 32: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO PrimeCell ID Register[23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

289June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 33: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPIO PrimeCell ID Register[31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

June 02, 2008290
Preliminary

General-Purpose Input/Outputs (GPIOs)

11 General-Purpose Timers
Programmable timers can be used to count or time external events that drive the Timer input pins.
The Stellaris® General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1,
and Timer 2). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and
TimerB) that can be configured to operate independently as timers or event counters, or configured
to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to
trigger analog-to-digital (ADC) conversions. The trigger signals from all of the general-purpose timers
are ORed together before reaching the ADC module, so only one timer should be used to trigger
ADC events.

TheGeneral-Purpose Timer Module is one timing resource available on the Stellaris® microcontrollers.
Other timer resources include the System Timer (SysTick) (see “System Timer (SysTick)” on page 46)
and the PWM timer in the PWM module (see “PWM Timer” on page 627).

The following modes are supported:

■ 32-bit Timer modes

– Programmable one-shot timer

– Programmable periodic timer

– Real-Time Clock using 32.768-KHz input clock

– Software-controlled event stalling (excluding RTC mode)

■ 16-bit Timer modes

– General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)

– Programmable one-shot timer

– Programmable periodic timer

– Software-controlled event stalling

■ 16-bit Input Capture modes

– Input edge count capture

– Input edge time capture

■ 16-bit PWM mode

– Simple PWM mode with software-programmable output inversion of the PWM signal

11.1 Block Diagram
Note: In Figure 11-1 on page 292, the specific CCP pins available depend on the Stellaris® device.

See Table 11-1 on page 292 for the available CCPs.

291June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 11-1. GPTM Module Block Diagram

TA Comparator

TB Comparator

GPTMTBR

GPTMAR

Clock / Edge
Detect

RTC Divider

Clock / Edge
Detect

TimerA
Interrupt

TimerB
Interrupt

System
Clock

0x0000 (Down Counter Modes)

0x0000 (Down Counter Modes)

32 KHz or
Even CCP Pin

Odd CCP Pin

En

En

TimerA Control

GPTMTAILR

GPTMTAMATCHR

GPTMTAPR

GPTMTAMR

TimerB Control

GPTMTBILR

GPTMTBMATCHR

GPTMTBPR

GPTMTBMR

Interrupt / Config

GPTMCFG

GPTMRIS

GPTMICR

GPTMMIS

GPTMIMR

GPTMCTL

Table 11-1. Available CCP Pins

Odd CCP PinEven CCP Pin16-Bit Up/Down CounterTimer

-CCP0TimerATimer 0

CCP1-TimerB

--TimerATimer 1

--TimerB

--TimerATimer 2

--TimerB

11.2 Functional Description
The main components of each GPTM block are two free-running 16-bit up/down counters (referred
to as TimerA and TimerB), two 16-bit match registers, and two 16-bit load/initialization registers and
their associated control functions. The exact functionality of each GPTM is controlled by software
and configured through the register interface.

Software configures the GPTM using theGPTMConfiguration (GPTMCFG) register (see page 303),
the GPTM TimerA Mode (GPTMTAMR) register (see page 304), and the GPTM TimerB Mode
(GPTMTBMR) register (see page 306). When in one of the 32-bit modes, the timer can only act as
a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers
configured in any combination of the 16-bit modes.

11.2.1 GPTM Reset Conditions
After reset has been applied to the GPTM module, the module is in an inactive state, and all control
registers are cleared and in their default states. Counters TimerA and TimerB are initialized to
0xFFFF, along with their corresponding load registers: the GPTM TimerA Interval Load

June 02, 2008292
Preliminary

General-Purpose Timers

(GPTMTAILR) register (see page 317) and theGPTMTimerB Interval Load (GPTMTBILR) register
(see page 318). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale
(GPTMTAPR) register (see page 321) and theGPTMTimerB Prescale (GPTMTBPR) register (see
page 322).

11.2.2 32-Bit Timer Operating Modes
This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their
configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1
(RTCmode) to theGPTMConfiguration (GPTMCFG) register. In both configurations, certain GPTM
registers are concatenated to form pseudo 32-bit registers. These registers include:

■ GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 317

■ GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 318

■ GPTM TimerA (GPTMTAR) register [15:0], see page 323

■ GPTM TimerB (GPTMTBR) register [15:0], see page 324

In the 32-bit modes, the GPTM translates a 32-bit write access to GPTMTAILR into a write access
to both GPTMTAILR and GPTMTBILR. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

11.2.2.1 32-Bit One-Shot/Periodic Timer Mode
In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB
registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is
determined by the value written to the TAMR field of theGPTM TimerAMode (GPTMTAMR) register
(see page 304), and there is no need to write to the GPTM TimerB Mode (GPTMTBMR) register.

When software writes the TAEN bit in the GPTM Control (GPTMCTL) register (see page 308), the
timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the
timer reloads its start value from the concatenated GPTMTAILR on the next cycle. If configured to
be a one-shot timer, the timer stops counting and clears the TAEN bit in the GPTMCTL register. If
configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches
the 0x000.0000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status
(GPTMRIS) register (see page 313), and holds it until it is cleared by writing the GPTM Interrupt
Clear (GPTMICR) register (see page 315). If the time-out interrupt is enabled in theGPTM Interrupt
Mask (GPTIMR) register (see page 311), the GPTM also sets the TATOMIS bit in theGPTMMasked
Interrupt Status (GPTMMIS) register (see page 314). The trigger is enabled by setting the TAOTE
bit in GPTMCTL, and can trigger SoC-level events such as ADC conversions.

If software reloads theGPTMTAILR register while the counter is running, the counter loads the new
value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the GPTMCTL register is asserted, the timer freezes counting until the signal
is deasserted.

293June 02, 2008
Preliminary

LM3S5747 Microcontroller

11.2.2.2 32-Bit Real-Time Clock Timer Mode
In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers
are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is
loaded with a value of 0x0000.0001. All subsequent load values must be written to theGPTMTimerA
Match (GPTMTAMATCHR) register (see page 319) by the controller.

The input clock on the CCP0, CCP2, or CCP4 pins is required to be 32.768 KHz in RTC mode. The
clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit inthe GPTMCTL register, the counter starts counting up from its
preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the
GPTMTAMATCHR register, it rolls over to a value of 0x0000.0000 and continues counting until
either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs,
the GPTM asserts the RTCRIS bit in GPTMRIS. If the RTC interrupt is enabled in GPTIMR, the
GPTM also sets the RTCMIS bit in GPTMISR and generates a controller interrupt. The status flags
are cleared by writing the RTCCINT bit in GPTMICR.

If the TASTALL and/or TBSTALL bits in the GPTMCTL register are set, the timer does not freeze if
the RTCEN bit is set in GPTMCTL.

11.2.3 16-Bit Timer Operating Modes
The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the GPTM Configuration
(GPTMCFG) register (see page 303). This section describes each of the GPTM 16-bit modes of
operation. TimerA and TimerB have identical modes, so a single description is given using an n to
reference both.

11.2.3.1 16-Bit One-Shot/Periodic Timer Mode
In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with
an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The
selection of one-shot or periodic mode is determined by the value written to the TnMR field of the
GPTMTnMR register. The optional prescaler is loaded into theGPTMTimern Prescale (GPTMTnPR)
register.

When software writes the TnEN bit in the GPTMCTL register, the timer begins counting down from
its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from
GPTMTnILR andGPTMTnPR on the next cycle. If configured to be a one-shot timer, the timer stops
counting and clears the TnEN bit in the GPTMCTL register. If configured as a periodic timer, it
continues counting.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches
the 0x0000 state. The GPTM sets the TnTORIS bit in the GPTMRIS register, and holds it until it is
cleared by writing the GPTMICR register. If the time-out interrupt is enabled in GPTIMR, the GPTM
also sets the TnTOMIS bit in GPTMISR and generates a controller interrupt. The trigger is enabled
by setting the TnOTE bit in the GPTMCTL register, and can trigger SoC-level events such as ADC
conversions.

If software reloads theGPTMTAILR register while the counter is running, the counter loads the new
value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the GPTMCTL register is enabled, the timer freezes counting until the signal
is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using
the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).

June 02, 2008294
Preliminary

General-Purpose Timers

Table 11-2. 16-Bit Timer With Prescaler Configurations

UnitsMax Time#Clock (T c)aPrescale

mS1.3107100000000

mS2.6214200000001

mS3.9321300000010

mS332.922925411111100

mS334.233625511111110

mS335.544325611111111

a. Tc is the clock period.

11.2.3.2 16-Bit Input Edge Count Mode
Note: For rising-edge detection, the input signal must be High for at least two system clock periods

following the rising edge. Similarly, for falling-edge detection, the input signal must be Low
for at least two system clock periods following the falling edge. Based on this criteria, the
maximum input frequency for edge detection is 1/4 of the system frequency.

Note: The prescaler is not available in 16-Bit Input Edge Count mode.

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types
of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit
of the GPTMTnMR register must be set to 0. The type of edge that the timer counts is determined
by the TnEVENT fields of the GPTMCTL register. During initialization, the GPTM Timern Match
(GPTMTnMATCHR) register is configured so that the difference between the value in the
GPTMTnILR register and the GPTMTnMATCHR register equals the number of edge events that
must be counted.

When software writes the TnEN bit in the GPTM Control (GPTMCTL) register, the timer is enabled
for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count
matches GPTMTnMATCHR. When the counts match, the GPTM asserts the CnMRIS bit in the
GPTMRIS register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded
using the value in GPTMTnILR, and stopped since the GPTM automatically clears the TnEN bit in
the GPTMCTL register. Once the event count has been reached, all further events are ignored until
TnEN is re-enabled by software.

Figure 11-2 on page 296 shows how input edge count mode works. In this case, the timer start value
is set to GPTMnILR =0x000A and the match value is set to GPTMnMATCHR =0x0006 so that four
edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after
the current count matches the value in the GPTMnMR register.

295June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 11-2. 16-Bit Input Edge Count Mode Example

0x000A

0x0006
0x0007
0x0008
0x0009

Input Signal

Timer stops,
flags

asserted

Timer reload
on next cycle Ignored IgnoredCount

11.2.3.3 16-Bit Input Edge Time Mode
Note: For rising-edge detection, the input signal must be High for at least two system clock periods

following the rising edge. Similarly, for falling edge detection, the input signal must be Low
for at least two system clock periods following the falling edge. Based on this criteria, the
maximum input frequency for edge detection is 1/4 of the system frequency.

Note: The prescaler is not available in 16-Bit Input Edge Time mode.

In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value
loaded in the GPTMTnILR register (or 0xFFFF at reset). This mode allows for event capture of
either rising or falling edges, but not both. The timer is placed into Edge Time mode by setting the
TnCMR bit in the GPTMTnMR register, and the type of event that the timer captures is determined
by the TnEVENT fields of the GPTMCnTL register.

When software writes the TnEN bit in theGPTMCTL register, the timer is enabled for event capture.
When the selected input event is detected, the current Tn counter value is captured in theGPTMTnR
register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and
the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the
TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the
GPTMnILR register.

Figure 11-3 on page 297 shows how input edge timing mode works. In the diagram, it is assumed
that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture
rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the GPTMTnR
register, and is held there until another rising edge is detected (at which point the new count value
is loaded into GPTMTnR).

June 02, 2008296
Preliminary

General-Purpose Timers

Figure 11-3. 16-Bit Input Edge Time Mode Example

GPTMTnR=Y

Input Signal

Time

Count
GPTMTnR=X GPTMTnR=Z

Z

X

Y

0xFFFF

11.2.3.4 16-Bit PWM Mode
Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a
down-counter with a start value (and thus period) defined by GPTMTnILR. PWM mode is enabled
with the GPTMTnMR register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR
field to 0x2.

When software writes the TnEN bit in the GPTMCTL register, the counter begins counting down
until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from
GPTMTnILR and continues counting until disabled by software clearing the TnEN bit in theGPTMCTL
register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the GPTMTnILR register (its
start state), and is deasserted when the counter value equals the value in theGPTM Timern Match
Register (GPTMnMATCHR). Software has the capability of inverting the output PWM signal by
setting the TnPWML bit in the GPTMCTL register.

Figure 11-4 on page 298 shows how to generate an output PWMwith a 1-ms period and a 66% duty
cycle assuming a 50-MHz input clock and TnPWML =0 (duty cycle would be 33% for the TnPWML
=1 configuration). For this example, the start value is GPTMnIRL=0xC350 and the match value is
GPTMnMR=0x411A.

297June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 11-4. 16-Bit PWM Mode Example

Output
Signal

Time

Count GPTMTnR=GPTMnMR GPTMTnR=GPTMnMR

0xC350

0x411A

TnPWML = 0

TnPWML = 1

TnEN set

11.3 Initialization and Configuration
To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMER0,
TIMER1, and TIMER2 bits in the RCGC1 register.

This section shows module initialization and configuration examples for each of the supported timer
modes.

11.3.1 32-Bit One-Shot/Periodic Timer Mode
The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

1. Ensure the timer is disabled (the TAEN bit in the GPTMCTL register is cleared) before making
any changes.

2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.

3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):

a. Write a value of 0x1 for One-Shot mode.

b. Write a value of 0x2 for Periodic mode.

4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).

5. If interrupts are required, set the TATOIM bit in theGPTM Interrupt Mask Register (GPTMIMR).

6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

June 02, 2008298
Preliminary

General-Purpose Timers

7. Poll the TATORIS bit in theGPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM
Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 299. To re-enable the timer, repeat
the sequence. A timer configured in Periodic mode does not stop counting after it times out.

11.3.2 32-Bit Real-Time Clock (RTC) Mode
To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4
pins. To enable the RTC feature, follow these steps:

1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.

2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.

3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).

4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.

5. If interrupts are required, set the RTCIM bit in theGPTM Interrupt Mask Register (GPTMIMR).

6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the GPTMTAMATCHR register, the counter is re-loaded
with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

11.3.3 16-Bit One-Shot/Periodic Timer Mode
A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.

3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:

a. Write a value of 0x1 for One-Shot mode.

b. Write a value of 0x2 for Periodic mode.

4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register
(GPTMTnPR).

5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).

6. If interrupts are required, set the TnTOIM bit in theGPTM Interrupt Mask Register (GPTMIMR).

7. Set the TnEN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start
counting.

8. Poll the TnTORIS bit in theGPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM
Interrupt Clear Register (GPTMICR).

299June 02, 2008
Preliminary

LM3S5747 Microcontroller

In One-Shot mode, the timer stops counting after step 8 on page 299. To re-enable the timer, repeat
the sequence. A timer configured in Periodic mode does not stop counting after it times out.

11.3.4 16-Bit Input Edge Count Mode
A timer is configured to Input Edge Count mode by the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.

3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR
field to 0x3.

4. Configure the type of event(s) that the timer captures by writing the TnEVENT field of the GPTM
Control (GPTMCTL) register.

5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.

6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.

7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.

8. Set the TnEN bit in theGPTMCTL register to enable the timer and begin waiting for edge events.

9. Poll the CnMRIS bit in theGPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM
Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been
detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 300
through step 9 on page 300.

11.3.5 16-Bit Input Edge Timing Mode
A timer is configured to Input Edge Timing mode by the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.

3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR
field to 0x3.

4. Configure the type of event that the timer captures by writing the TnEVENT field of the GPTM
Control (GPTMCTL) register.

5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.

6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.

7. Set the TnEN bit in theGPTMControl (GPTMCTL) register to enable the timer and start counting.

8. Poll the CnERIS bit in theGPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM

June 02, 2008300
Preliminary

General-Purpose Timers

Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained
by reading the GPTM Timern (GPTMTnR) register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected,
but the timer interval can be changed at any time by writing the GPTMTnILR register. The change
takes effect at the next cycle after the write.

11.3.6 16-Bit PWM Mode
A timer is configured to PWM mode using the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.

3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to
0x0, and the TnMR field to 0x2.

4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnEVENT field
of the GPTM Control (GPTMCTL) register.

5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.

6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.

7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin
generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The
PWM period can be adjusted at any time by writing the GPTMTnILR register, and the change takes
effect at the next cycle after the write.

11.4 Register Map
Table 11-3 on page 301 lists the GPTM registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that timer’s base address:

■ Timer0: 0x4003.0000

■ Timer1: 0x4003.1000

■ Timer2: 0x4003.2000

Table 11-3. Timers Register Map

See
pageDescriptionResetTypeNameOffset

303GPTM Configuration0x0000.0000R/WGPTMCFG0x000

304GPTM TimerA Mode0x0000.0000R/WGPTMTAMR0x004

306GPTM TimerB Mode0x0000.0000R/WGPTMTBMR0x008

308GPTM Control0x0000.0000R/WGPTMCTL0x00C

311GPTM Interrupt Mask0x0000.0000R/WGPTMIMR0x018

301June 02, 2008
Preliminary

LM3S5747 Microcontroller

See
pageDescriptionResetTypeNameOffset

313GPTM Raw Interrupt Status0x0000.0000ROGPTMRIS0x01C

314GPTM Masked Interrupt Status0x0000.0000ROGPTMMIS0x020

315GPTM Interrupt Clear0x0000.0000W1CGPTMICR0x024

317GPTM TimerA Interval Load

0x0000.FFFF
(16-bit mode)
0xFFFF.FFFF
(32-bit mode)

R/WGPTMTAILR0x028

318GPTM TimerB Interval Load0x0000.FFFFR/WGPTMTBILR0x02C

319GPTM TimerA Match

0x0000.FFFF
(16-bit mode)
0xFFFF.FFFF
(32-bit mode)

R/WGPTMTAMATCHR0x030

320GPTM TimerB Match0x0000.FFFFR/WGPTMTBMATCHR0x034

321GPTM TimerA Prescale0x0000.0000R/WGPTMTAPR0x038

322GPTM TimerB Prescale0x0000.0000R/WGPTMTBPR0x03C

323GPTM TimerA

0x0000.FFFF
(16-bit mode)
0xFFFF.FFFF
(32-bit mode)

ROGPTMTAR0x048

324GPTM TimerB0x0000.FFFFROGPTMTBR0x04C

11.5 Register Descriptions
The remainder of this section lists and describes the GPTM registers, in numerical order by address
offset.

June 02, 2008302
Preliminary

General-Purpose Timers

Register 1: GPTM Configuration (GPTMCFG), offset 0x000
This register configures the global operation of the GPTM module. The value written to this register
determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GPTMCFGreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

GPTM Configuration

The GPTMCFG values are defined as follows:

DescriptionValue

32-bit timer configuration.0x0

32-bit real-time clock (RTC) counter configuration.0x1

Reserved0x2

Reserved0x3

16-bit timer configuration, function is controlled by bits 1:0 of
GPTMTAMR and GPTMTBMR.

0x4-0x7

0x0R/WGPTMCFG2:0

303June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004
This register configures the GPTM based on the configuration selected in the GPTMCFG register.
When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to
0x2.

GPTM TimerA Mode (GPTMTAMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TAMRTACMRTAAMSreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

GPTM TimerA Alternate Mode Select

The TAAMS values are defined as follows:

DescriptionValue

Capture mode is enabled.0

PWM mode is enabled.1

Note: To enable PWMmode, youmust also clear the TACMR
bit and set the TAMR field to 0x2.

0R/WTAAMS3

GPTM TimerA Capture Mode

The TACMR values are defined as follows:

DescriptionValue

Edge-Count mode0

Edge-Time mode1

0R/WTACMR2

June 02, 2008304
Preliminary

General-Purpose Timers

DescriptionResetTypeNameBit/Field

GPTM TimerA Mode

The TAMR values are defined as follows:

DescriptionValue

Reserved0x0

One-Shot Timer mode0x1

Periodic Timer mode0x2

Capture mode0x3

The Timer mode is based on the timer configuration defined by bits 2:0
in the GPTMCFG register (16-or 32-bit).

In 16-bit timer configuration, TAMR controls the 16-bit timer modes for
TimerA.

In 32-bit timer configuration, this register controls the mode and the
contents of GPTMTBMR are ignored.

0x0R/WTAMR1:0

305June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008
This register configures the GPTM based on the configuration selected in the GPTMCFG register.
When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to
0x2.

GPTM TimerB Mode (GPTMTBMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBMRTBCMRTBAMSreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

GPTM TimerB Alternate Mode Select

The TBAMS values are defined as follows:

DescriptionValue

Capture mode is enabled.0

PWM mode is enabled.1

Note: To enable PWMmode, youmust also clear the TBCMR
bit and set the TBMR field to 0x2.

0R/WTBAMS3

GPTM TimerB Capture Mode

The TBCMR values are defined as follows:

DescriptionValue

Edge-Count mode0

Edge-Time mode1

0R/WTBCMR2

June 02, 2008306
Preliminary

General-Purpose Timers

DescriptionResetTypeNameBit/Field

GPTM TimerB Mode

The TBMR values are defined as follows:

DescriptionValue

Reserved0x0

One-Shot Timer mode0x1

Periodic Timer mode0x2

Capture mode0x3

The timer mode is based on the timer configuration defined by bits 2:0
in the GPTMCFG register.

In 16-bit timer configuration, these bits control the 16-bit timer modes
for TimerB.

In 32-bit timer configuration, this register’s contents are ignored and
GPTMTAMR is used.

0x0R/WTBMR1:0

307June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 4: GPTM Control (GPTMCTL), offset 0x00C
This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer
configuration, and to enable other features such as timer stall and the output trigger. The output
trigger can be used to initiate transfers on the ADC module.

GPTM Control (GPTMCTL)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TAENTASTALLTAEVENTRTCENTAOTETAPWMLreservedTBENTBSTALLTBEVENTreservedTBOTETBPWMLreserved

R/WR/WR/WR/WR/WR/WR/WROR/WR/WR/WR/WROR/WR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:15

GPTM TimerB PWM Output Level

The TBPWML values are defined as follows:

DescriptionValue

Output is unaffected.0

Output is inverted.1

0R/WTBPWML14

GPTM TimerB Output Trigger Enable

The TBOTE values are defined as follows:

DescriptionValue

The output TimerB trigger is disabled.0

The output TimerB trigger is enabled.1

0R/WTBOTE13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12

June 02, 2008308
Preliminary

General-Purpose Timers

DescriptionResetTypeNameBit/Field

GPTM TimerB Event Mode

The TBEVENT values are defined as follows:

DescriptionValue

Positive edge0x0

Negative edge0x1

Reserved0x2

Both edges0x3

0x0R/WTBEVENT11:10

GPTM TimerB Stall Enable

The TBSTALL values are defined as follows:

DescriptionValue

TimerB stalling is disabled.0

TimerB stalling is enabled.1

0R/WTBSTALL9

GPTM TimerB Enable

The TBEN values are defined as follows:

DescriptionValue

TimerB is disabled.0

TimerB is enabled and begins counting or the capture logic is
enabled based on the GPTMCFG register.

1

0R/WTBEN8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

GPTM TimerA PWM Output Level

The TAPWML values are defined as follows:

DescriptionValue

Output is unaffected.0

Output is inverted.1

0R/WTAPWML6

GPTM TimerA Output Trigger Enable

The TAOTE values are defined as follows:

DescriptionValue

The output TimerA trigger is disabled.0

The output TimerA trigger is enabled.1

0R/WTAOTE5

309June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM RTC Enable

The RTCEN values are defined as follows:

DescriptionValue

RTC counting is disabled.0

RTC counting is enabled.1

0R/WRTCEN4

GPTM TimerA Event Mode

The TAEVENT values are defined as follows:

DescriptionValue

Positive edge0x0

Negative edge0x1

Reserved0x2

Both edges0x3

0x0R/WTAEVENT3:2

GPTM TimerA Stall Enable

The TASTALL values are defined as follows:

DescriptionValue

TimerA stalling is disabled.0

TimerA stalling is enabled.1

0R/WTASTALL1

GPTM TimerA Enable

The TAEN values are defined as follows:

DescriptionValue

TimerA is disabled.0

TimerA is enabled and begins counting or the capture logic is
enabled based on the GPTMCFG register.

1

0R/WTAEN0

June 02, 2008310
Preliminary

General-Purpose Timers

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018
This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables
the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x018
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATOIMCAMIMCAEIMRTCIMreservedTBTOIMCBMIMCBEIMreserved

R/WR/WR/WR/WROROROROR/WR/WR/WROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

GPTM CaptureB Event Interrupt Mask

The CBEIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCBEIM10

GPTM CaptureB Match Interrupt Mask

The CBMIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCBMIM9

GPTM TimerB Time-Out Interrupt Mask

The TBTOIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WTBTOIM8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:4

311June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM RTC Interrupt Mask

The RTCIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WRTCIM3

GPTM CaptureA Event Interrupt Mask

The CAEIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCAEIM2

GPTM CaptureA Match Interrupt Mask

The CAMIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCAMIM1

GPTM TimerA Time-Out Interrupt Mask

The TATOIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WTATOIM0

June 02, 2008312
Preliminary

General-Purpose Timers

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C
This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or
not the interrupt is masked in the GPTMIMR register. Each bit can be cleared by writing a 1 to its
corresponding bit in GPTMICR.

GPTM Raw Interrupt Status (GPTMRIS)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x01C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATORISCAMRISCAERISRTCRISreservedTBTORISCBMRISCBERISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

GPTM CaptureB Event Raw Interrupt

This is the CaptureB Event interrupt status prior to masking.

0ROCBERIS10

GPTM CaptureB Match Raw Interrupt

This is the CaptureB Match interrupt status prior to masking.

0ROCBMRIS9

GPTM TimerB Time-Out Raw Interrupt

This is the TimerB time-out interrupt status prior to masking.

0ROTBTORIS8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:4

GPTM RTC Raw Interrupt

This is the RTC Event interrupt status prior to masking.

0RORTCRIS3

GPTM CaptureA Event Raw Interrupt

This is the CaptureA Event interrupt status prior to masking.

0ROCAERIS2

GPTM CaptureA Match Raw Interrupt

This is the CaptureA Match interrupt status prior to masking.

0ROCAMRIS1

GPTM TimerA Time-Out Raw Interrupt

This the TimerA time-out interrupt status prior to masking.

0ROTATORIS0

313June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020
This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in
GPTMIMR, and there is an event that causes the interrupt to be asserted, the corresponding bit is
set in this register. All bits are cleared by writing a 1 to the corresponding bit in GPTMICR.

GPTM Masked Interrupt Status (GPTMMIS)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x020
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATOMISCAMMISCAEMISRTCMISreservedTBTOMISCBMMISCBEMISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

GPTM CaptureB Event Masked Interrupt

This is the CaptureB event interrupt status after masking.

0ROCBEMIS10

GPTM CaptureB Match Masked Interrupt

This is the CaptureB match interrupt status after masking.

0ROCBMMIS9

GPTM TimerB Time-Out Masked Interrupt

This is the TimerB time-out interrupt status after masking.

0ROTBTOMIS8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:4

GPTM RTC Masked Interrupt

This is the RTC event interrupt status after masking.

0RORTCMIS3

GPTM CaptureA Event Masked Interrupt

This is the CaptureA event interrupt status after masking.

0ROCAEMIS2

GPTM CaptureA Match Masked Interrupt

This is the CaptureA match interrupt status after masking.

0ROCAMMIS1

GPTM TimerA Time-Out Masked Interrupt

This is the TimerA time-out interrupt status after masking.

0ROTATOMIS0

June 02, 2008314
Preliminary

General-Purpose Timers

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024
This register is used to clear the status bits in the GPTMRIS and GPTMMIS registers. Writing a 1
to a bit clears the corresponding bit in the GPTMRIS and GPTMMIS registers.

GPTM Interrupt Clear (GPTMICR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x024
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATOCINTCAMCINTCAECINTRTCCINTreservedTBTOCINTCBMCINTCBECINTreserved

W1CW1CW1CW1CROROROROW1CW1CW1CROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

GPTM CaptureB Event Interrupt Clear

The CBECINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CCBECINT10

GPTM CaptureB Match Interrupt Clear

The CBMCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CCBMCINT9

GPTM TimerB Time-Out Interrupt Clear

The TBTOCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CTBTOCINT8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:4

315June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM RTC Interrupt Clear

The RTCCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CRTCCINT3

GPTM CaptureA Event Interrupt Clear

The CAECINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CCAECINT2

GPTM CaptureA Match Raw Interrupt

This is the CaptureA match interrupt status after masking.

0W1CCAMCINT1

GPTM TimerA Time-Out Raw Interrupt

The TATOCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CTATOCINT0

June 02, 2008316
Preliminary

General-Purpose Timers

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028
This register is used to load the starting count value into the timer. When GPTM is configured to
one of the 32-bit modes, GPTMTAILR appears as a 32-bit register (the upper 16-bits correspond
to the contents of the GPTM TimerB Interval Load (GPTMTBILR) register). In 16-bit mode, the
upper 16 bits of this register read as 0s and have no effect on the state of GPTMTBILR.

GPTM TimerA Interval Load (GPTMTAILR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x028
Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

16171819202122232425262728293031

TAILRH

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0111101111010110Reset

0123456789101112131415

TAILRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

GPTM TimerA Interval Load Register High

When configured for 32-bit mode via theGPTMCFG register, theGPTM
TimerB Interval Load (GPTMTBILR) register loads this value on a
write. A read returns the current value of GPTMTBILR.

In 16-bit mode, this field reads as 0 and does not have an effect on the
state of GPTMTBILR.

0xFFFF
(32-bit mode)
0x0000 (16-bit

mode)

R/WTAILRH31:16

GPTM TimerA Interval Load Register Low

For both 16- and 32-bit modes, writing this field loads the counter for
TimerA. A read returns the current value of GPTMTAILR.

0xFFFFR/WTAILRL15:0

317June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C
This register is used to load the starting count value into TimerB. When the GPTM is configured to
a 32-bit mode, GPTMTBILR returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x02C
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBILRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

GPTM TimerB Interval Load Register

When the GPTM is not configured as a 32-bit timer, a write to this field
updates GPTMTBILR. In 32-bit mode, writes are ignored, and reads
return the current value of GPTMTBILR.

0xFFFFR/WTBILRL15:0

June 02, 2008318
Preliminary

General-Purpose Timers

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

GPTM TimerA Match (GPTMTAMATCHR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x030
Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

16171819202122232425262728293031

TAMRH

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0111101111010110Reset

0123456789101112131415

TAMRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

GPTM TimerA Match Register High

When configured for 32-bit Real-Time Clock (RTC) mode via the
GPTMCFG register, this value is compared to the upper half of
GPTMTAR, to determine match events.

In 16-bit mode, this field reads as 0 and does not have an effect on the
state of GPTMTBMATCHR.

0xFFFF
(32-bit mode)
0x0000 (16-bit

mode)

R/WTAMRH31:16

GPTM TimerA Match Register Low

When configured for 32-bit Real-Time Clock (RTC) mode via the
GPTMCFG register, this value is compared to the lower half of
GPTMTAR, to determine match events.

When configured for PWM mode, this value along with GPTMTAILR,
determines the duty cycle of the output PWM signal.

When configured for Edge Count mode, this value along with
GPTMTAILR, determines howmany edge events are counted. The total
number of edge events counted is equal to the value in GPTMTAILR
minus this value.

0xFFFFR/WTAMRL15:0

319June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034
This register is used in 16-bit PWM and Input Edge Count modes.

GPTM TimerB Match (GPTMTBMATCHR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x034
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBMRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

GPTM TimerB Match Register Low

When configured for PWM mode, this value along with GPTMTBILR,
determines the duty cycle of the output PWM signal.

When configured for Edge Count mode, this value along with
GPTMTBILR, determines howmany edge events are counted. The total
number of edge events counted is equal to the value in GPTMTBILR
minus this value.

0xFFFFR/WTBMRL15:0

June 02, 2008320
Preliminary

General-Purpose Timers

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038
This register allows software to extend the range of the 16-bit timers when operating in one-shot or
periodic mode.

GPTM TimerA Prescale (GPTMTAPR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TAPSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPTM TimerA Prescale

The register loads this value on a write. A read returns the current value
of the register.

Refer to Table 11-2 on page 295 for more details and an example.

0x00R/WTAPSR7:0

321June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C
This register allows software to extend the range of the 16-bit timers when operating in one-shot or
periodic mode.

GPTM TimerB Prescale (GPTMTBPR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x03C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBPSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPTM TimerB Prescale

The register loads this value on a write. A read returns the current value
of this register.

Refer to Table 11-2 on page 295 for more details and an example.

0x00R/WTBPSR7:0

June 02, 2008322
Preliminary

General-Purpose Timers

Register 15: GPTM TimerA (GPTMTAR), offset 0x048
This register shows the current value of the TimerA counter in all cases except for Input Edge Count
mode. When in this mode, this register contains the time at which the last edge event took place.

GPTM TimerA (GPTMTAR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x048
Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

16171819202122232425262728293031

TARH

ROROROROROROROROROROROROROROROROType
0111101111010110Reset

0123456789101112131415

TARL

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

GPTM TimerA Register High

If the GPTMCFG is in a 32-bit mode, TimerB value is read. If the
GPTMCFG is in a 16-bit mode, this is read as zero.

0xFFFF
(32-bit mode)
0x0000 (16-bit

mode)

ROTARH31:16

GPTM TimerA Register Low

A read returns the current value of the GPTM TimerA Count Register,
except in Input Edge Count mode, when it returns the timestamp from
the last edge event.

0xFFFFROTARL15:0

323June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 16: GPTM TimerB (GPTMTBR), offset 0x04C
This register shows the current value of the TimerB counter in all cases except for Input Edge Count
mode. When in this mode, this register contains the time at which the last edge event took place.

GPTM TimerB (GPTMTBR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x04C
Type RO, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBRL

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

GPTM TimerB

A read returns the current value of the GPTM TimerB Count Register,
except in Input Edge Count mode, when it returns the timestamp from
the last edge event.

0xFFFFROTBRL15:0

June 02, 2008324
Preliminary

General-Purpose Timers

12 Watchdog Timer
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is
reached. The watchdog timer is used to regain control when a system has failed due to a software
error or due to the failure of an external device to respond in the expected way.

The Stellaris® Watchdog Timer module consists of a 32-bit down counter, a programmable load
register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,
and to generate a reset signal on its second time-out. Once theWatchdog Timer has been configured,
the lock register can be written to prevent the timer configuration from being inadvertently altered.

12.1 Block Diagram

Figure 12-1. WDT Module Block Diagram

Control / Clock /
Interrupt
Generation

WDTCTL

WDTICR

WDTRIS

WDTMIS

WDTLOCK

WDTTEST

WDTLOAD

WDTVALUE

Comparator

32-Bit Down
Counter

0x00000000

Interrupt

System Clock

Identification Registers

WDTPCellID0 WDTPeriphID0 WDTPeriphID4

WDTPCellID1 WDTPeriphID1 WDTPeriphID5

WDTPCellID2 WDTPeriphID2 WDTPeriphID6

WDTPCellID3 WDTPeriphID3 WDTPeriphID7

12.2 Functional Description
The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches
the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt.
After the first time-out event, the 32-bit counter is re-loaded with the value of theWatchdog Timer
Load (WDTLOAD) register, and the timer resumes counting down from that value. Once the

325June 02, 2008
Preliminary

LM3S5747 Microcontroller

Watchdog Timer has been configured, theWatchdog Timer Lock (WDTLOCK) register is written,
which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the
reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer
asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its
second time-out, the 32-bit counter is loaded with the value in theWDTLOAD register, and counting
resumes from that value.

IfWDTLOAD is written with a new value while the Watchdog Timer counter is counting, then the
counter is loaded with the new value and continues counting.

Writing toWDTLOAD does not clear an active interrupt. An interrupt must be specifically cleared
by writing to theWatchdog Interrupt Clear (WDTICR) register.

TheWatchdog module interrupt and reset generation can be enabled or disabled as required. When
the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its
last state.

12.3 Initialization and Configuration
To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the RCGC0 register.
The Watchdog Timer is configured using the following sequence:

1. Load theWDTLOAD register with the desired timer load value.

2. If theWatchdog is configured to trigger system resets, set the RESEN bit in theWDTCTL register.

3. Set the INTEN bit in theWDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can
be fully locked by writing any value to theWDTLOCK register. To unlock the Watchdog Timer, write
a value of 0x1ACC.E551.

12.4 Register Map
Table 12-1 on page 326 lists the Watchdog registers. The offset listed is a hexadecimal increment
to the register’s address, relative to the Watchdog Timer base address of 0x4000.0000.

Table 12-1. Watchdog Timer Register Map

See
pageDescriptionResetTypeNameOffset

328Watchdog Load0xFFFF.FFFFR/WWDTLOAD0x000

329Watchdog Value0xFFFF.FFFFROWDTVALUE0x004

330Watchdog Control0x0000.0000R/WWDTCTL0x008

331Watchdog Interrupt Clear-WOWDTICR0x00C

332Watchdog Raw Interrupt Status0x0000.0000ROWDTRIS0x010

333Watchdog Masked Interrupt Status0x0000.0000ROWDTMIS0x014

334Watchdog Test0x0000.0000R/WWDTTEST0x418

335Watchdog Lock0x0000.0000R/WWDTLOCK0xC00

June 02, 2008326
Preliminary

Watchdog Timer

See
pageDescriptionResetTypeNameOffset

336Watchdog Peripheral Identification 40x0000.0000ROWDTPeriphID40xFD0

337Watchdog Peripheral Identification 50x0000.0000ROWDTPeriphID50xFD4

338Watchdog Peripheral Identification 60x0000.0000ROWDTPeriphID60xFD8

339Watchdog Peripheral Identification 70x0000.0000ROWDTPeriphID70xFDC

340Watchdog Peripheral Identification 00x0000.0005ROWDTPeriphID00xFE0

341Watchdog Peripheral Identification 10x0000.0018ROWDTPeriphID10xFE4

342Watchdog Peripheral Identification 20x0000.0018ROWDTPeriphID20xFE8

343Watchdog Peripheral Identification 30x0000.0001ROWDTPeriphID30xFEC

344Watchdog PrimeCell Identification 00x0000.000DROWDTPCellID00xFF0

345Watchdog PrimeCell Identification 10x0000.00F0ROWDTPCellID10xFF4

346Watchdog PrimeCell Identification 20x0000.0005ROWDTPCellID20xFF8

347Watchdog PrimeCell Identification 30x0000.00B1ROWDTPCellID30xFFC

12.5 Register Descriptions
The remainder of this section lists and describes the WDT registers, in numerical order by address
offset.

327June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 1: Watchdog Load (WDTLOAD), offset 0x000
This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the
value is immediately loaded and the counter restarts counting down from the new value. If the
WDTLOAD register is loaded with 0x0000.0000, an interrupt is immediately generated.

Watchdog Load (WDTLOAD)
Base 0x4000.0000
Offset 0x000
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

WDTLoad

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

WDTLoad

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Watchdog Load Value0xFFFF.FFFFR/WWDTLoad31:0

June 02, 2008328
Preliminary

Watchdog Timer

Register 2: Watchdog Value (WDTVALUE), offset 0x004
This register contains the current count value of the timer.

Watchdog Value (WDTVALUE)
Base 0x4000.0000
Offset 0x004
Type RO, reset 0xFFFF.FFFF

16171819202122232425262728293031

WDTValue

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

0123456789101112131415

WDTValue

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Watchdog Value

Current value of the 32-bit down counter.

0xFFFF.FFFFROWDTValue31:0

329June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 3: Watchdog Control (WDTCTL), offset 0x008
This register is the watchdog control register. The watchdog timer can be configured to generate a
reset signal (on second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are
ignored. The only mechanism that can re-enable writes is a hardware reset.

Watchdog Control (WDTCTL)
Base 0x4000.0000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

INTENRESENreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:2

Watchdog Reset Enable

The RESEN values are defined as follows:

DescriptionValue

Disabled.0

Enable the Watchdog module reset output.1

0R/WRESEN1

Watchdog Interrupt Enable

The INTEN values are defined as follows:

DescriptionValue

Interrupt event disabled (once this bit is set, it can only be
cleared by a hardware reset).

0

Interrupt event enabled. Once enabled, all writes are ignored.1

0R/WINTEN0

June 02, 2008330
Preliminary

Watchdog Timer

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C
This register is the interrupt clear register. A write of any value to this register clears the Watchdog
interrupt and reloads the 32-bit counter from theWDTLOAD register. Value for a read or reset is
indeterminate.

Watchdog Interrupt Clear (WDTICR)
Base 0x4000.0000
Offset 0x00C
Type WO, reset -

16171819202122232425262728293031

WDTIntClr

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

WDTIntClr

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Watchdog Interrupt Clear-WOWDTIntClr31:0

331June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010
This register is the raw interrupt status register. Watchdog interrupt events can be monitored via
this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)
Base 0x4000.0000
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

WDTRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Watchdog Raw Interrupt Status

Gives the raw interrupt state (prior to masking) ofWDTINTR.

0ROWDTRIS0

June 02, 2008332
Preliminary

Watchdog Timer

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014
This register is the masked interrupt status register. The value of this register is the logical AND of
the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)
Base 0x4000.0000
Offset 0x014
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

WDTMISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Watchdog Masked Interrupt Status

Gives the masked interrupt state (after masking) of theWDTINTR
interrupt.

0ROWDTMIS0

333June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 7: Watchdog Test (WDTTEST), offset 0x418
This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag
during debug.

Watchdog Test (WDTTEST)
Base 0x4000.0000
Offset 0x418
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedSTALLreserved

ROROROROROROROROR/WROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:9

Watchdog Stall Enable

When set to 1, if the Stellaris® microcontroller is stopped with a
debugger, the watchdog timer stops counting. Once the microcontroller
is restarted, the watchdog timer resumes counting.

0R/WSTALL8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:0

June 02, 2008334
Preliminary

Watchdog Timer

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00
Writing 0x1ACC.E551 to theWDTLOCK register enables write access to all other registers. Writing
any other value to theWDTLOCK register re-enables the locked state for register writes to all the
other registers. Reading theWDTLOCK register returns the lock status rather than the 32-bit value
written. Therefore, when write accesses are disabled, reading theWDTLOCK register returns
0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

Watchdog Lock (WDTLOCK)
Base 0x4000.0000
Offset 0xC00
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

WDTLock

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

WDTLock

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Watchdog Lock

A write of the value 0x1ACC.E551 unlocks the watchdog registers for
write access. A write of any other value reapplies the lock, preventing
any register updates.

A read of this register returns the following values:

DescriptionValue

Locked0x0000.0001

Unlocked0x0000.0000

0x0000R/WWDTLock31:0

335June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 9:Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)
Base 0x4000.0000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register[7:0]0x00ROPID47:0

June 02, 2008336
Preliminary

Watchdog Timer

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset
0xFD4
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)
Base 0x4000.0000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register[15:8]0x00ROPID57:0

337June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset
0xFD8
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)
Base 0x4000.0000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register[23:16]0x00ROPID67:0

June 02, 2008338
Preliminary

Watchdog Timer

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset
0xFDC
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)
Base 0x4000.0000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register[31:24]0x00ROPID77:0

339June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset
0xFE0
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)
Base 0x4000.0000
Offset 0xFE0
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register[7:0]0x05ROPID07:0

June 02, 2008340
Preliminary

Watchdog Timer

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset
0xFE4
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)
Base 0x4000.0000
Offset 0xFE4
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register[15:8]0x18ROPID17:0

341June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset
0xFE8
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)
Base 0x4000.0000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register[23:16]0x18ROPID27:0

June 02, 2008342
Preliminary

Watchdog Timer

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset
0xFEC
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)
Base 0x4000.0000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register[31:24]0x01ROPID37:0

343June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)
Base 0x4000.0000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register[7:0]0x0DROCID07:0

June 02, 2008344
Preliminary

Watchdog Timer

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)
Base 0x4000.0000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register[15:8]0xF0ROCID17:0

345June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 2 (WDTPCellID2)
Base 0x4000.0000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register[23:16]0x05ROCID27:0

June 02, 2008346
Preliminary

Watchdog Timer

Register 20:Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)
Base 0x4000.0000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register[31:24]0xB1ROCID37:0

347June 02, 2008
Preliminary

LM3S5747 Microcontroller

13 Analog-to-Digital Converter (ADC)
An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a
discrete digital number.

The Stellaris® ADCmodule features 10-bit conversion resolution and supports eight input channels,
plus an internal temperature sensor. The ADC module contains a programmable sequencer which
allows for the sampling of multiple analog input sources without controller intervention. Each sample
sequence provides flexible programming with fully configurable input source, trigger events, interrupt
generation, and sequence priority.

The Stellaris® ADC provides the following features:

■ Eight analog input channels

■ Single-ended and differential-input configurations

■ Internal temperature sensor

■ Sample rate of 500 thousand samples/second

■ Four programmable sample conversion sequences from one to eight entries long, with
corresponding conversion result FIFOs

■ Flexible trigger control

– Controller (software)

– Timers

– PWM

– GPIO

■ Hardware averaging of up to 64 samples for improved accuracy

■ An internal 3-V reference is used by the converter.

■ Power and ground for the analog circuitry is separate from the digital power and ground.

June 02, 2008348
Preliminary

Analog-to-Digital Converter (ADC)

13.1 Block Diagram

Figure 13-1. ADC Module Block Diagram

Analog-to-Digital
Converter

ADCSSFSTAT0

ADCSSCTL0

ADCSSMUX0

Sample
Sequencer 0

ADCSSFSTAT1

ADCSSCTL1

ADCSSMUX1

Sample
Sequencer 1

ADCSSFSTAT2

ADCSSCTL2

ADCSSMUX2

Sample
Sequencer 2

ADCSSFSTAT3

ADCSSCTL3

ADCSSMUX3

Sample
Sequencer 3

ADCUSTAT

ADCOSTAT

ADCACTSS

Control/Status

ADCSSPRI

ADCISC

ADCRIS

ADCIM

Interrupt Control

Analog Inputs

ADCEMUX

ADCPSSI

SS0 Interrupt

Trigger Events

SS1 Interrupt
SS2 Interrupt
SS3 Interrupt

SS0

SS1

SS2

SS3

Comparator
GPIO (PB4)

Timer
PWM

Comparator
GPIO (PB4)

Timer
PWM

Comparator
GPIO (PB4)

Timer
PWM

Comparator
GPIO (PB4)

Timer
PWM

ADCSSFIFO0

ADCSSFIFO1

ADCSSFIFO2

ADCSSFIFO3

FIFO Block

Hardware Averager

ADCSAC

13.2 Functional Description
The Stellaris® ADC collects sample data by using a programmable sequence-based approach
instead of the traditional single or double-sampling approach found on many ADC modules. Each
sample sequence is a fully programmed series of consecutive (back-to-back) samples, allowing the
ADC to collect data from multiple input sources without having to be re-configured or serviced by
the controller. The programming of each sample in the sample sequence includes parameters such
as the input source and mode (differential versus single-ended input), interrupt generation on sample
completion, and the indicator for the last sample in the sequence.

13.2.1 Sample Sequencers
The sampling control and data capture is handled by the Sample Sequencers. All of the sequencers
are identical in implementation except for the number of samples that can be captured and the depth
of the FIFO. Table 13-1 on page 349 shows the maximum number of samples that each Sequencer
can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit
word, with the lower 10 bits containing the conversion result.

Table 13-1. Samples and FIFO Depth of Sequencers

Depth of FIFONumber of SamplesSequencer

11SS3

44SS2

44SS1

88SS0

349June 02, 2008
Preliminary

LM3S5747 Microcontroller

For a given sample sequence, each sample is defined by two 4-bit nibbles in the ADC Sample
Sequence Input Multiplexer Select (ADCSSMUXn) and ADC Sample Sequence Control
(ADCSSCTLn) registers, where "n" corresponds to the sequence number. The ADCSSMUXn
nibbles select the input pin, while the ADCSSCTLn nibbles contain the sample control bits
corresponding to parameters such as temperature sensor selection, interrupt enable, end of
sequence, and differential input mode. Sample Sequencers are enabled by setting the respective
ASENn bit in the ADC Active Sample Sequencer (ADCACTSS) register, but can be configured
before being enabled.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence
is allowed. In the ADCSSCTLn register, the Interrupt Enable (IE) bits can be set for any
combination of samples, allowing interrupts to be generated after every sample in the sequence if
necessary. Also, the END bit can be set at any point within a sample sequence. For example, if
Sequencer 0 is used, the END bit can be set in the nibble associated with the fifth sample, allowing
Sequencer 0 to complete execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the ADC
Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers
that read a single address to "pop" result data. For software debug purposes, the positions of the
FIFO head and tail pointers are visible in theADCSample Sequence FIFOStatus (ADCSSFSTATn)
registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored
using the ADCOSTAT and ADCUSTAT registers.

13.2.2 Module Control
Outside of the Sample Sequencers, the remainder of the control logic is responsible for tasks such
as interrupt generation, sequence prioritization, and trigger configuration.

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider
is configured automatically by hardware when the system XTAL is selected. The automatic clock
divider configuration targets 16.667 MHz operation for all Stellaris® devices.

13.2.2.1 Interrupts
The Sample Sequencers dictate the events that cause interrupts, but they don't have control over
whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signal
is controlled by the state of the MASK bits in the ADC Interrupt Mask (ADCIM) register. Interrupt
status can be viewed at two locations: the ADC Raw Interrupt Status (ADCRIS) register, which
shows the raw status of a Sample Sequencer's interrupt signal, and the ADC Interrupt Status and
Clear (ADCISC) register, which shows the logical AND of the ADCRIS register’s INR bit and the
ADCIM register’s MASK bits. Interrupts are cleared by writing a 1 to the corresponding IN bit in
ADCISC.

13.2.2.2 Prioritization
When sampling events (triggers) happen concurrently, they are prioritized for processing by the
values in the ADC Sample Sequencer Priority (ADCSSPRI) register. Valid priority values are in
the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active Sample
Sequencer units with the same priority do not provide consistent results, so software must ensure
that all active Sample Sequencer units have a unique priority value.

13.2.2.3 Sampling Events
Sample triggering for each Sample Sequencer is defined in the ADC Event Multiplexer Select
(ADCEMUX) register. The external peripheral triggering sources vary by Stellaris® family member,

June 02, 2008350
Preliminary

Analog-to-Digital Converter (ADC)

but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by setting
the CH bits in the ADC Processor Sample Sequence Initiate (ADCPSSI) register.

When using the "Always" trigger, care must be taken. If a sequence's priority is too high, it is possible
to starve other lower priority sequences.

13.2.3 Hardware Sample Averaging Circuit
Higher precision results can be generated using the hardware averaging circuit, however, the
improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged
to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the
number of samples in the averaging calculation. For example, if the averaging circuit is configured
to average 16 samples, the throughput is decreased by a factor of 16.

By default the averaging circuit is off and all data from the converter passes through to the sequencer
FIFO. The averaging hardware is controlled by the ADC Sample Averaging Control (ADCSAC)
register (see page 367). There is a single averaging circuit and all input channels receive the same
amount of averaging whether they are single-ended or differential.

13.2.4 Analog-to-Digital Converter
The converter itself generates a 10-bit output value for selected analog input. Special analog pads
are used to minimize the distortion on the input. An internal 3 V reference is used by the converter
resulting in sample values ranging from 0x000 at 0 V input to 0x3FF at 3 V input when in single-ended
input mode.

13.2.5 Differential Sampling
In addition to traditional single-ended sampling, the ADC module supports differential sampling of
two analog input channels. To enable differential sampling, software must set the D bit (in the
ADCSSCTL0 register) in a step's configuration nibble.

When a sequence step is configured for differential sampling, its corresponding value in the
ADCSSMUX register must be set to one of the four differential pairs, numbered 0-3. Differential pair
0 samples analog inputs 0 and 1; differential pair 1 samples analog inputs 2 and 3; and so on (see
Table 13-2 on page 351). The ADC does not support other differential pairings such as analog input
0 with analog input 3. The number of differential pairs supported is dependent on the number of
analog inputs (see Table 13-2 on page 351).

Table 13-2. Differential Sampling Pairs

Analog InputsDifferential Pair

0 and 10

2 and 31

4 and 52

6 and 73

The voltage sampled in differential mode is the difference between the odd and even channels:

∆V (differential voltage) = VIN_EVEN (even channels) – VIN_ODD (odd channels), therefore:

■ If ∆V = 0, then the conversion result = 0x1FF

■ If ∆V > 0, then the conversion result > 0x1FF (range is 0x1FF–0x3FF)

■ If ∆V < 0, then the conversion result < 0x1FF (range is 0–0x1FF)

351June 02, 2008
Preliminary

LM3S5747 Microcontroller

The differential pairs assign polarities to the analog inputs: the even-numbered input is always
positive, and the odd-numbered input is always negative. In order for a valid conversion result to
appear, the negative input must be in the range of ± 1.5 V of the positive input. If an analog input
is greater than 3 V or less than 0 V (the valid range for analog inputs), the input voltage is clipped,
meaning it appears as either 3 V or 0 V, respectively, to the ADC.

Figure 13-2 on page 352 shows an example of the negative input centered at 1.5 V. In this
configuration, the differential range spans from -1.5 V to 1.5 V. Figure 13-3 on page 352 shows an
example where the negative input is centered at -0.75 V, meaning inputs on the positive input
saturate past a differential voltage of -0.75 V since the input voltage is less than 0 V. Figure
13-4 on page 353 shows an example of the negative input centered at 2.25 V, where inputs on the
positive channel saturate past a differential voltage of 0.75 V since the input voltage would be greater
than 3 V.

Figure 13-2. Differential Sampling Range, VIN_ODD = 1.5 V

0 V 1.5 V 3.0 V
-1.5 V 0 V 1.5 V

VIN_EVEN

V
VIN_ODD = 1.5 V

0x3FF

0x1FF

ADC Conversion Result

- Input Saturation

Figure 13-3. Differential Sampling Range, VIN_ODD = 0.75 V

ADC Conversion Result

0x3FF

0x1FF

0x0FF

0 V +0.75 V +2.25 V VIN_EVEN

V-1.5 V -0.75 V +1.5 V

- Input Saturation

June 02, 2008352
Preliminary

Analog-to-Digital Converter (ADC)

Figure 13-4. Differential Sampling Range, VIN_ODD = 2.25 V

ADC Conversion Result

0x3FF

0x2FF

0x1FF

0.75 V 2.25 V 3.0 V VIN_EVEN

V-1.5 V 0.75 V 1.5 V

- Input Saturation

13.2.6 Internal Temperature Sensor
The internal temperature sensor provides an analog temperature reading as well as a reference
voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 13-5 on page 353.

Figure 13-5. Internal Temperature Sensor Characteristic

13.3 Initialization and Configuration
In order for the ADC module to be used, the PLL must be enabled and using a supported crystal
frequency (see the RCC register). Using unsupported frequencies can cause faulty operation in the
ADC module.

353June 02, 2008
Preliminary

LM3S5747 Microcontroller

13.3.1 Module Initialization
Initialization of the ADC module is a simple process with very few steps. The main steps include
enabling the clock to the ADC, disabling the analog isolation circuit associated with all inputs that
are to be used, and reconfiguring the Sample Sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

1. Enable the ADC clock by writing a value of 0x0001.0000 to the RCGC1 register (see page 116).

2. Disable the analog isolation circuit for all ADC input pins that are to be used by writing a 1 to
the appropriate bits of the GPIOAMSEL register (see page 277) in the associated GPIO block.

3. If required by the application, reconfigure the Sample Sequencer priorities in the ADCSSPRI
register. The default configuration has Sample Sequencer 0 with the highest priority, and Sample
Sequencer 3 as the lowest priority.

13.3.2 Sample Sequencer Configuration
Configuration of the Sample Sequencers is slightly more complex than the module initialization
since each sample sequence is completely programmable.

The configuration for each Sample Sequencer should be as follows:

1. Ensure that the Sample Sequencer is disabled by writing a 0 to the corresponding ASEN bit in
the ADCACTSS register. Programming of the Sample Sequencers is allowed without having
them enabled. Disabling the Sequencer during programming prevents erroneous execution if
a trigger event were to occur during the configuration process.

2. Configure the trigger event for the Sample Sequencer in the ADCEMUX register.

3. For each sample in the sample sequence, configure the corresponding input source in the
ADCSSMUXn register.

4. For each sample in the sample sequence, configure the sample control bits in the corresponding
nibble in the ADCSSCTLn register. When programming the last nibble, ensure that the END bit
is set. Failure to set the END bit causes unpredictable behavior.

5. If interrupts are to be used, write a 1 to the corresponding MASK bit in the ADCIM register.

6. Enable the Sample Sequencer logic by writing a 1 to the corresponding ASEN bit in the
ADCACTSS register.

13.4 Register Map
Table 13-3 on page 354 lists the ADC registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the ADC base address of 0x4003.8000.

Table 13-3. ADC Register Map

See
pageDescriptionResetTypeNameOffset

356ADC Active Sample Sequencer0x0000.0000R/WADCACTSS0x000

357ADC Raw Interrupt Status0x0000.0000ROADCRIS0x004

June 02, 2008354
Preliminary

Analog-to-Digital Converter (ADC)

See
pageDescriptionResetTypeNameOffset

358ADC Interrupt Mask0x0000.0000R/WADCIM0x008

359ADC Interrupt Status and Clear0x0000.0000R/W1CADCISC0x00C

360ADC Overflow Status0x0000.0000R/W1CADCOSTAT0x010

361ADC Event Multiplexer Select0x0000.0000R/WADCEMUX0x014

364ADC Underflow Status0x0000.0000R/W1CADCUSTAT0x018

365ADC Sample Sequencer Priority0x0000.3210R/WADCSSPRI0x020

366ADC Processor Sample Sequence Initiate-WOADCPSSI0x028

367ADC Sample Averaging Control0x0000.0000R/WADCSAC0x030

368ADC Sample Sequence Input Multiplexer Select 00x0000.0000R/WADCSSMUX00x040

370ADC Sample Sequence Control 00x0000.0000R/WADCSSCTL00x044

373ADC Sample Sequence Result FIFO 00x0000.0000ROADCSSFIFO00x048

374ADC Sample Sequence FIFO 0 Status0x0000.0100ROADCSSFSTAT00x04C

375ADC Sample Sequence Input Multiplexer Select 10x0000.0000R/WADCSSMUX10x060

376ADC Sample Sequence Control 10x0000.0000R/WADCSSCTL10x064

373ADC Sample Sequence Result FIFO 10x0000.0000ROADCSSFIFO10x068

374ADC Sample Sequence FIFO 1 Status0x0000.0100ROADCSSFSTAT10x06C

375ADC Sample Sequence Input Multiplexer Select 20x0000.0000R/WADCSSMUX20x080

376ADC Sample Sequence Control 20x0000.0000R/WADCSSCTL20x084

373ADC Sample Sequence Result FIFO 20x0000.0000ROADCSSFIFO20x088

374ADC Sample Sequence FIFO 2 Status0x0000.0100ROADCSSFSTAT20x08C

378ADC Sample Sequence Input Multiplexer Select 30x0000.0000R/WADCSSMUX30x0A0

379ADC Sample Sequence Control 30x0000.0002R/WADCSSCTL30x0A4

373ADC Sample Sequence Result FIFO 30x0000.0000ROADCSSFIFO30x0A8

374ADC Sample Sequence FIFO 3 Status0x0000.0100ROADCSSFSTAT30x0AC

13.5 Register Descriptions
The remainder of this section lists and describes the ADC registers, in numerical order by address
offset.

355June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000
This register controls the activation of the Sample Sequencers. Each Sample Sequencer can be
enabled/disabled independently.

ADC Active Sample Sequencer (ADCACTSS)
Base 0x4003.8000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ASEN0ASEN1ASEN2ASEN3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

ADC SS3 Enable

Specifies whether Sample Sequencer 3 is enabled. If set, the sample
sequence logic for Sequencer 3 is active. Otherwise, the Sequencer is
inactive.

0R/WASEN33

ADC SS2 Enable

Specifies whether Sample Sequencer 2 is enabled. If set, the sample
sequence logic for Sequencer 2 is active. Otherwise, the Sequencer is
inactive.

0R/WASEN22

ADC SS1 Enable

Specifies whether Sample Sequencer 1 is enabled. If set, the sample
sequence logic for Sequencer 1 is active. Otherwise, the Sequencer is
inactive.

0R/WASEN11

ADC SS0 Enable

Specifies whether Sample Sequencer 0 is enabled. If set, the sample
sequence logic for Sequencer 0 is active. Otherwise, the Sequencer is
inactive.

0R/WASEN00

June 02, 2008356
Preliminary

Analog-to-Digital Converter (ADC)

Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004
This register shows the status of the raw interrupt signal of each Sample Sequencer. These bits
may be polled by software to look for interrupt conditions without having to generate controller
interrupts.

ADC Raw Interrupt Status (ADCRIS)
Base 0x4003.8000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

INR0INR1INR2INR3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SS3 Raw Interrupt Status

Set by hardware when a sample with its respective ADCSSCTL3 IE bit
has completed conversion. This bit is cleared by writing a 1 to the
ADCISC IN3 bit.

0ROINR33

SS2 Raw Interrupt Status

Set by hardware when a sample with its respective ADCSSCTL2 IE bit
has completed conversion. This bit is cleared by writing a 1 to the
ADCISC IN2 bit.

0ROINR22

SS1 Raw Interrupt Status

Set by hardware when a sample with its respective ADCSSCTL1 IE bit
has completed conversion. This bit is cleared by writing a 1 to the
ADCISC IN1 bit.

0ROINR11

SS0 Raw Interrupt Status

Set by hardware when a sample with its respective ADCSSCTL0 IE bit
has completed conversion. This bit is cleared by writing a 1 to the
ADCISC IN0 bit.

0ROINR00

357June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 3: ADC Interrupt Mask (ADCIM), offset 0x008
This register controls whether the Sample Sequencer raw interrupt signals are promoted to controller
interrupts. The raw interrupt signal for each Sample Sequencer can be masked independently.

ADC Interrupt Mask (ADCIM)
Base 0x4003.8000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MASK0MASK1MASK2MASK3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SS3 Interrupt Mask

Specifies whether the raw interrupt signal from Sample Sequencer 3
(ADCRIS register INR3 bit) is promoted to a controller interrupt. If set,
the raw interrupt signal is promoted to a controller interrupt. Otherwise,
it is not.

0R/WMASK33

SS2 Interrupt Mask

Specifies whether the raw interrupt signal from Sample Sequencer 2
(ADCRIS register INR2 bit) is promoted to a controller interrupt. If set,
the raw interrupt signal is promoted to a controller interrupt. Otherwise,
it is not.

0R/WMASK22

SS1 Interrupt Mask

Specifies whether the raw interrupt signal from Sample Sequencer 1
(ADCRIS register INR1 bit) is promoted to a controller interrupt. If set,
the raw interrupt signal is promoted to a controller interrupt. Otherwise,
it is not.

0R/WMASK11

SS0 Interrupt Mask

Specifies whether the raw interrupt signal from Sample Sequencer 0
(ADCRIS register INR0 bit) is promoted to a controller interrupt. If set,
the raw interrupt signal is promoted to a controller interrupt. Otherwise,
it is not.

0R/WMASK00

June 02, 2008358
Preliminary

Analog-to-Digital Converter (ADC)

Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C
This register provides the mechanism for clearing interrupt conditions, and shows the status of
controller interrupts generated by the Sample Sequencers. When read, each bit field is the logical
AND of the respective INR and MASK bits. Interrupts are cleared by writing a 1 to the corresponding
bit position. If software is polling the ADCRIS instead of generating interrupts, the INR bits are still
cleared via the ADCISC register, even if the IN bit is not set.

ADC Interrupt Status and Clear (ADCISC)
Base 0x4003.8000
Offset 0x00C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IN0IN1IN2IN3reserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SS3 Interrupt Status and Clear

This bit is set by hardware when the MASK3 and INR3 bits are both 1,
providing a level-based interrupt to the controller. It is cleared by writing
a 1, and also clears the INR3 bit.

0R/W1CIN33

SS2 Interrupt Status and Clear

This bit is set by hardware when the MASK2 and INR2 bits are both 1,
providing a level based interrupt to the controller. It is cleared by writing
a 1, and also clears the INR2 bit.

0R/W1CIN22

SS1 Interrupt Status and Clear

This bit is set by hardware when the MASK1 and INR1 bits are both 1,
providing a level based interrupt to the controller. It is cleared by writing
a 1, and also clears the INR1 bit.

0R/W1CIN11

SS0 Interrupt Status and Clear

This bit is set by hardware when the MASK0 and INR0 bits are both 1,
providing a level based interrupt to the controller. It is cleared by writing
a 1, and also clears the INR0 bit.

0R/W1CIN00

359June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010
This register indicates overflow conditions in the Sample Sequencer FIFOs. Once the overflow
condition has been handled by software, the condition can be cleared by writing a 1 to the
corresponding bit position.

ADC Overflow Status (ADCOSTAT)
Base 0x4003.8000
Offset 0x010
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

OV0OV1OV2OV3reserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SS3 FIFO Overflow

This bit specifies that the FIFO for Sample Sequencer 3 has hit an
overflow condition where the FIFO is full and a write was requested.
When an overflow is detected, the most recent write is dropped and this
bit is set by hardware to indicate the occurrence of dropped data. This
bit is cleared by writing a 1.

0R/W1COV33

SS2 FIFO Overflow

This bit specifies that the FIFO for Sample Sequencer 2 has hit an
overflow condition where the FIFO is full and a write was requested.
When an overflow is detected, the most recent write is dropped and this
bit is set by hardware to indicate the occurrence of dropped data. This
bit is cleared by writing a 1.

0R/W1COV22

SS1 FIFO Overflow

This bit specifies that the FIFO for Sample Sequencer 1 has hit an
overflow condition where the FIFO is full and a write was requested.
When an overflow is detected, the most recent write is dropped and this
bit is set by hardware to indicate the occurrence of dropped data. This
bit is cleared by writing a 1.

0R/W1COV11

SS0 FIFO Overflow

This bit specifies that the FIFO for Sample Sequencer 0 has hit an
overflow condition where the FIFO is full and a write was requested.
When an overflow is detected, the most recent write is dropped and this
bit is set by hardware to indicate the occurrence of dropped data. This
bit is cleared by writing a 1.

0R/W1COV00

June 02, 2008360
Preliminary

Analog-to-Digital Converter (ADC)

Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014
The ADCEMUX selects the event (trigger) that initiates sampling for each Sample Sequencer. Each
Sample Sequencer can be configured with a unique trigger source.

ADC Event Multiplexer Select (ADCEMUX)
Base 0x4003.8000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

EM0EM1EM2EM3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

SS3 Trigger Select

This field selects the trigger source for Sample Sequencer 3.

The valid configurations for this field are:

EventValue

Controller (default)0x0

Reserved0x1

Reserved0x2

Reserved0x3

External (GPIO PB4)0x4

Timer0x5

PWM00x6

PWM10x7

PWM20x8

reserved0x9-0xE

Always (continuously sample)0xF

0x00R/WEM315:12

361June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

SS2 Trigger Select

This field selects the trigger source for Sample Sequencer 2.

The valid configurations for this field are:

EventValue

Controller (default)0x0

Reserved0x1

Reserved0x2

Reserved0x3

External (GPIO PB4)0x4

Timer0x5

PWM00x6

PWM10x7

PWM20x8

reserved0x9-0xE

Always (continuously sample)0xF

0x00R/WEM211:8

SS1 Trigger Select

This field selects the trigger source for Sample Sequencer 1.

The valid configurations for this field are:

EventValue

Controller (default)0x0

Reserved0x1

Reserved0x2

Reserved0x3

External (GPIO PB4)0x4

Timer0x5

PWM00x6

PWM10x7

PWM20x8

reserved0x9-0xE

Always (continuously sample)0xF

0x00R/WEM17:4

June 02, 2008362
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

SS0 Trigger Select

This field selects the trigger source for Sample Sequencer 0.

The valid configurations for this field are:

EventValue

Controller (default)0x0

Reserved0x1

Reserved0x2

Reserved0x3

External (GPIO PB4)0x4

Timer0x5

PWM00x6

PWM10x7

PWM20x8

reserved0x9-0xE

Always (continuously sample)0xF

0x00R/WEM03:0

363June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018
This register indicates underflow conditions in the Sample Sequencer FIFOs. The corresponding
underflow condition can be cleared by writing a 1 to the relevant bit position.

ADC Underflow Status (ADCUSTAT)
Base 0x4003.8000
Offset 0x018
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UV0UV1UV2UV3reserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SS3 FIFO Underflow

This bit specifies that the FIFO for Sample Sequencer 3 has hit an
underflow condition where the FIFO is empty and a read was requested.
The problematic read does not move the FIFO pointers, and 0s are
returned. This bit is cleared by writing a 1.

0R/W1CUV33

SS2 FIFO Underflow

This bit specifies that the FIFO for Sample Sequencer 2 has hit an
underflow condition where the FIFO is empty and a read was requested.
The problematic read does not move the FIFO pointers, and 0s are
returned. This bit is cleared by writing a 1.

0R/W1CUV22

SS1 FIFO Underflow

This bit specifies that the FIFO for Sample Sequencer 1 has hit an
underflow condition where the FIFO is empty and a read was requested.
The problematic read does not move the FIFO pointers, and 0s are
returned. This bit is cleared by writing a 1.

0R/W1CUV11

SS0 FIFO Underflow

This bit specifies that the FIFO for Sample Sequencer 0 has hit an
underflow condition where the FIFO is empty and a read was requested.
The problematic read does not move the FIFO pointers, and 0s are
returned. This bit is cleared by writing a 1.

0R/W1CUV00

June 02, 2008364
Preliminary

Analog-to-Digital Converter (ADC)

Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020
This register sets the priority for each of the Sample Sequencers. Out of reset, Sequencer 0 has
the highest priority, and sample sequence 3 has the lowest priority. When reconfiguring sequence
priorities, each sequence must have a unique priority or the ADC behavior is inconsistent.

ADC Sample Sequencer Priority (ADCSSPRI)
Base 0x4003.8000
Offset 0x020
Type R/W, reset 0x0000.3210

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

SS0reservedSS1reservedSS2reservedSS3reserved

R/WR/WROROR/WR/WROROR/WR/WROROR/WR/WROROType
0000100001001100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:14

SS3 Priority

The SS3 field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 3. A priority encoding of 0 is highest
and 3 is lowest. The priorities assigned to the Sequencers must be
uniquely mapped. ADC behavior is not consistent if two or more fields
are equal.

0x3R/WSS313:12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved11:10

SS2 Priority

The SS2 field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 2.

0x2R/WSS29:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:6

SS1 Priority

The SS1 field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 1.

0x1R/WSS15:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

SS0 Priority

The SS0 field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 0.

0x0R/WSS01:0

365June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028
This register provides a mechanism for application software to initiate sampling in the Sample
Sequencers. Sample sequences can be initiated individually or in any combination. When multiple
sequences are triggered simultaneously, the priority encodings in ADCSSPRI dictate execution
order.

ADC Processor Sample Sequence Initiate (ADCPSSI)
Base 0x4003.8000
Offset 0x028
Type WO, reset -

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

SS0SS1SS2SS3reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

-WOreserved31:4

SS3 Initiate

Only a write by software is valid; a read of the register returns no
meaningful data. When set by software, sampling is triggered on Sample
Sequencer 3, assuming the Sequencer is enabled in the ADCACTSS
register.

-WOSS33

SS2 Initiate

Only a write by software is valid; a read of the register returns no
meaningful data. When set by software, sampling is triggered on Sample
Sequencer 2, assuming the Sequencer is enabled in the ADCACTSS
register.

-WOSS22

SS1 Initiate

Only a write by software is valid; a read of the register returns no
meaningful data. When set by software, sampling is triggered on Sample
Sequencer 1, assuming the Sequencer is enabled in the ADCACTSS
register.

-WOSS11

SS0 Initiate

Only a write by software is valid; a read of the register returns no
meaningful data. When set by software, sampling is triggered on Sample
Sequencer 0, assuming the Sequencer is enabled in the ADCACTSS
register.

-WOSS00

June 02, 2008366
Preliminary

Analog-to-Digital Converter (ADC)

Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030
This register controls the amount of hardware averaging applied to conversion results. The final
conversion result stored in the FIFO is averaged from 2AVG consecutive ADC samples at the specified
ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG=6,
then 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An
AVG = 7 provides unpredictable results.

ADC Sample Averaging Control (ADCSAC)
Base 0x4003.8000
Offset 0x030
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AVGreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Hardware Averaging Control

Specifies the amount of hardware averaging that will be applied to ADC
samples. The AVG field can be any value between 0 and 6. Entering a
value of 7 creates unpredictable results.

DescriptionValue

No hardware oversampling0x0

2x hardware oversampling0x1

4x hardware oversampling0x2

8x hardware oversampling0x3

16x hardware oversampling0x4

32x hardware oversampling0x5

64x hardware oversampling0x6

Reserved0x7

0x0R/WAVG2:0

367June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: ADCSample Sequence InputMultiplexer Select 0 (ADCSSMUX0),
offset 0x040
This register defines the analog input configuration for each sample in a sequence executed with
Sample Sequencer 0.

This register is 32-bits wide and contains information for eight possible samples.

ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0)
Base 0x4003.8000
Offset 0x040
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

MUX4reservedMUX5reservedMUX6reservedMUX7reserved

R/WR/WR/WROR/WR/WR/WROR/WR/WR/WROR/WR/WR/WROType
0000000000000000Reset

0123456789101112131415

MUX0reservedMUX1reservedMUX2reservedMUX3reserved

R/WR/WR/WROR/WR/WR/WROR/WR/WR/WROR/WR/WR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

8th Sample Input Select

The MUX7 field is used during the eighth sample of a sequence executed
with the Sample Sequencer. It specifies which of the analog inputs is
sampled for the analog-to-digital conversion. The value set here indicates
the corresponding pin, for example, a value of 1 indicates the input is
ADC1.

0R/WMUX730:28

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27

7th Sample Input Select

The MUX6 field is used during the seventh sample of a sequence
executed with the Sample Sequencer and specifies which of the analog
inputs is sampled for the analog-to-digital conversion.

0R/WMUX626:24

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23

6th Sample Input Select

The MUX5 field is used during the sixth sample of a sequence executed
with the Sample Sequencer and specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0R/WMUX522:20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19

June 02, 2008368
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

5th Sample Input Select

The MUX4 field is used during the fifth sample of a sequence executed
with the Sample Sequencer and specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0R/WMUX418:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15

4th Sample Input Select

The MUX3 field is used during the fourth sample of a sequence executed
with the Sample Sequencer and specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0R/WMUX314:12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11

3rd Sample Input Select

The MUX2 field is used during the third sample of a sequence executed
with the Sample Sequencer and specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0R/WMUX210:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

2nd Sample Input Select

The MUX1 field is used during the second sample of a sequence
executed with the Sample Sequencer and specifies which of the analog
inputs is sampled for the analog-to-digital conversion.

0R/WMUX16:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

1st Sample Input Select

The MUX0 field is used during the first sample of a sequence executed
with the Sample Sequencer and specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0R/WMUX02:0

369June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044
This register contains the configuration information for each sample for a sequence executed with
Sample Sequencer 0. When configuring a sample sequence, the END bit must be set at some point,
whether it be after the first sample, last sample, or any sample in between.

This register is 32-bits wide and contains information for eight possible samples.

ADC Sample Sequence Control 0 (ADCSSCTL0)
Base 0x4003.8000
Offset 0x044
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

D4END4IE4TS4D5END5IE5TS5D6END6IE6TS6D7END7IE7TS7

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

8th Sample Temp Sensor Select

The TS7 bit is used during the eighth sample of the sample sequence
and specifies the input source of the sample. If set, the temperature
sensor is read. Otherwise, the input pin specified by the ADCSSMUX
register is read.

0R/WTS731

8th Sample Interrupt Enable

The IE7 bit is used during the eighth sample of the sample sequence
and specifies whether the raw interrupt signal (INR0 bit) is asserted at
the end of the sample's conversion. If the MASK0 bit in the ADCIM
register is set, the interrupt is promoted to a controller-level interrupt.
When this bit is set, the raw interrupt is asserted, otherwise it is not. It
is legal to have multiple samples within a sequence generate interrupts.

0R/WIE730

8th Sample is End of Sequence

The END7 bit indicates that this is the last sample of the sequence. It is
possible to end the sequence on any sample position. Samples defined
after the sample containing a set END are not requested for conversion
even though the fields may be non-zero. It is required that software write
the END bit somewhere within the sequence. (Sample Sequencer 3,
which only has a single sample in the sequence, is hardwired to have
the END0 bit set.)

Setting this bit indicates that this sample is the last in the sequence.

0R/WEND729

8th Sample Diff Input Select

The D7 bit indicates that the analog input is to be differentially sampled.
The correspondingADCSSMUXx nibble must be set to the pair number
"i", where the paired inputs are "2i and 2i+1". The temperature sensor
does not have a differential option. When set, the analog inputs are
differentially sampled.

0R/WD728

7th Sample Temp Sensor Select

Same definition as TS7 but used during the seventh sample.

0R/WTS627

June 02, 2008370
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

7th Sample Interrupt Enable

Same definition as IE7 but used during the seventh sample.

0R/WIE626

7th Sample is End of Sequence

Same definition as END7 but used during the seventh sample.

0R/WEND625

7th Sample Diff Input Select

Same definition as D7 but used during the seventh sample.

0R/WD624

6th Sample Temp Sensor Select

Same definition as TS7 but used during the sixth sample.

0R/WTS523

6th Sample Interrupt Enable

Same definition as IE7 but used during the sixth sample.

0R/WIE522

6th Sample is End of Sequence

Same definition as END7 but used during the sixth sample.

0R/WEND521

6th Sample Diff Input Select

Same definition as D7 but used during the sixth sample.

0R/WD520

5th Sample Temp Sensor Select

Same definition as TS7 but used during the fifth sample.

0R/WTS419

5th Sample Interrupt Enable

Same definition as IE7 but used during the fifth sample.

0R/WIE418

5th Sample is End of Sequence

Same definition as END7 but used during the fifth sample.

0R/WEND417

5th Sample Diff Input Select

Same definition as D7 but used during the fifth sample.

0R/WD416

4th Sample Temp Sensor Select

Same definition as TS7 but used during the fourth sample.

0R/WTS315

4th Sample Interrupt Enable

Same definition as IE7 but used during the fourth sample.

0R/WIE314

4th Sample is End of Sequence

Same definition as END7 but used during the fourth sample.

0R/WEND313

4th Sample Diff Input Select

Same definition as D7 but used during the fourth sample.

0R/WD312

3rd Sample Temp Sensor Select

Same definition as TS7 but used during the third sample.

0R/WTS211

371June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

3rd Sample Interrupt Enable

Same definition as IE7 but used during the third sample.

0R/WIE210

3rd Sample is End of Sequence

Same definition as END7 but used during the third sample.

0R/WEND29

3rd Sample Diff Input Select

Same definition as D7 but used during the third sample.

0R/WD28

2nd Sample Temp Sensor Select

Same definition as TS7 but used during the second sample.

0R/WTS17

2nd Sample Interrupt Enable

Same definition as IE7 but used during the second sample.

0R/WIE16

2nd Sample is End of Sequence

Same definition as END7 but used during the second sample.

0R/WEND15

2nd Sample Diff Input Select

Same definition as D7 but used during the second sample.

0R/WD14

1st Sample Temp Sensor Select

Same definition as TS7 but used during the first sample.

0R/WTS03

1st Sample Interrupt Enable

Same definition as IE7 but used during the first sample.

0R/WIE02

1st Sample is End of Sequence

Same definition as END7 but used during the first sample.

Since this sequencer has only one entry, this bit must be set.

0R/WEND01

1st Sample Diff Input Select

Same definition as D7 but used during the first sample.

0R/WD00

June 02, 2008372
Preliminary

Analog-to-Digital Converter (ADC)

Register 13: ADCSample SequenceResult FIFO 0 (ADCSSFIFO0), offset 0x048
Register 14: ADCSample SequenceResult FIFO 1 (ADCSSFIFO1), offset 0x068
Register 15: ADCSample SequenceResult FIFO 2 (ADCSSFIFO2), offset 0x088
Register 16: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset
0x0A8
This register contains the conversion results for samples collected with the Sample Sequencer (the
ADCSSFIFO0 register is used for Sample Sequencer 0, ADCSSFIFO1 for Sequencer 1,
ADCSSFIFO2 for Sequencer 2, and ADCSSFIFO3 for Sequencer 3). Reads of this register return
conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the
FIFO is not properly handled by software, overflow and underflow conditions are registered in the
ADCOSTAT and ADCUSTAT registers.

ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0)
Base 0x4003.8000
Offset 0x048
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:10

Conversion Result Data0x00RODATA9:0

373June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 17: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset
0x04C
Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset
0x06C
Register 19: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset
0x08C
Register 20: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset
0x0AC
This register provides a window into the Sample Sequencer, providing full/empty status information
as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty
FIFO. The ADCSSFSTAT0 register provides status on FIF0, ADCSSFSTAT1 on FIFO1,
ADCSSFSTAT2 on FIFO2, and ADCSSFSTAT3 on FIFO3.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)
Base 0x4003.8000
Offset 0x04C
Type RO, reset 0x0000.0100

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TPTRHPTREMPTYreservedFULLreserved

ROROROROROROROROROROROROROROROROType
0000000010000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:13

FIFO Full

When set, indicates that the FIFO is currently full.

0ROFULL12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved11:9

FIFO Empty

When set, indicates that the FIFO is currently empty.

1ROEMPTY8

FIFO Head Pointer

This field contains the current "head" pointer index for the FIFO, that is,
the next entry to be written.

0x00ROHPTR7:4

FIFO Tail Pointer

This field contains the current "tail" pointer index for the FIFO, that is,
the next entry to be read.

0x00ROTPTR3:0

June 02, 2008374
Preliminary

Analog-to-Digital Converter (ADC)

Register 21: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1),
offset 0x060
Register 22: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2),
offset 0x080
This register defines the analog input configuration for each sample in a sequence executed with
Sample Sequencer 1 or 2. These registers are 16-bits wide and contain information for four possible
samples. See the ADCSSMUX0 register on page 368 for detailed bit descriptions.

ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1)
Base 0x4003.8000
Offset 0x060
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MUX0reservedMUX1reservedMUX2reservedMUX3reserved

R/WR/WR/WROR/WR/WR/WROR/WR/WR/WROR/WR/WR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:15

4th Sample Input Select0R/WMUX314:12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11

3rd Sample Input Select0R/WMUX210:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

2nd Sample Input Select0R/WMUX16:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

1st Sample Input Select0R/WMUX02:0

375June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 23: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064
Register 24: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084
These registers contain the configuration information for each sample for a sequence executed with
Sample Sequencer 1 or 2. When configuring a sample sequence, the END bit must be set at some
point, whether it be after the first sample, last sample, or any sample in between. This register is
16-bits wide and contains information for four possible samples. See the ADCSSCTL0 register on
page 370 for detailed bit descriptions.

ADC Sample Sequence Control 1 (ADCSSCTL1)
Base 0x4003.8000
Offset 0x064
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

4th Sample Temp Sensor Select

Same definition as TS7 but used during the fourth sample.

0R/WTS315

4th Sample Interrupt Enable

Same definition as IE7 but used during the fourth sample.

0R/WIE314

4th Sample is End of Sequence

Same definition as END7 but used during the fourth sample.

0R/WEND313

4th Sample Diff Input Select

Same definition as D7 but used during the fourth sample.

0R/WD312

3rd Sample Temp Sensor Select

Same definition as TS7 but used during the third sample.

0R/WTS211

3rd Sample Interrupt Enable

Same definition as IE7 but used during the third sample.

0R/WIE210

3rd Sample is End of Sequence

Same definition as END7 but used during the third sample.

0R/WEND29

3rd Sample Diff Input Select

Same definition as D7 but used during the third sample.

0R/WD28

June 02, 2008376
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

2nd Sample Temp Sensor Select

Same definition as TS7 but used during the second sample.

0R/WTS17

2nd Sample Interrupt Enable

Same definition as IE7 but used during the second sample.

0R/WIE16

2nd Sample is End of Sequence

Same definition as END7 but used during the second sample.

0R/WEND15

2nd Sample Diff Input Select

Same definition as D7 but used during the second sample.

0R/WD14

1st Sample Temp Sensor Select

Same definition as TS7 but used during the first sample.

0R/WTS03

1st Sample Interrupt Enable

Same definition as IE7 but used during the first sample.

0R/WIE02

1st Sample is End of Sequence

Same definition as END7 but used during the first sample.

Since this sequencer has only one entry, this bit must be set.

0R/WEND01

1st Sample Diff Input Select

Same definition as D7 but used during the first sample.

0R/WD00

377June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 25: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3),
offset 0x0A0
This register defines the analog input configuration for each sample in a sequence executed with
Sample Sequencer 3. This register is 4-bits wide and contains information for one possible sample.
See the ADCSSMUX0 register on page 368 for detailed bit descriptions.

ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3)
Base 0x4003.8000
Offset 0x0A0
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MUX0reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

1st Sample Input Select0R/WMUX02:0

June 02, 2008378
Preliminary

Analog-to-Digital Converter (ADC)

Register 26: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4
This register contains the configuration information for each sample for a sequence executed with
Sample Sequencer 3. The END bit is always set since there is only one sample in this sequencer.
This register is 4-bits wide and contains information for one possible sample. See the ADCSSCTL0
register on page 370 for detailed bit descriptions.

ADC Sample Sequence Control 3 (ADCSSCTL3)
Base 0x4003.8000
Offset 0x0A4
Type R/W, reset 0x0000.0002

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

D0END0IE0TS0reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0100000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

1st Sample Temp Sensor Select

Same definition as TS7 but used during the first sample.

0R/WTS03

1st Sample Interrupt Enable

Same definition as IE7 but used during the first sample.

0R/WIE02

1st Sample is End of Sequence

Same definition as END7 but used during the first sample.

Since this sequencer has only one entry, this bit must be set.

1R/WEND01

1st Sample Diff Input Select

Same definition as D7 but used during the first sample.

0R/WD00

379June 02, 2008
Preliminary

LM3S5747 Microcontroller

14 Universal Asynchronous Receivers/Transmitters
(UARTs)
The Stellaris® Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable,
16C550-type serial interface characteristics. The LM3S5747 controller is equipped with one UART
module.

The UART has the following features:

■ Separate transmit and receive FIFOs

■ Programmable FIFO length, including 1-byte deep operation providing conventional
double-buffered interface

■ FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8

■ Programmable baud-rate generator allowing rates up to 3.125 Mbps

■ Standard asynchronous communication bits for start, stop, and parity

■ False start bit detection

■ Line-break generation and detection

■ Fully programmable serial interface characteristics:

– 5, 6, 7, or 8 data bits

– Even, odd, stick, or no-parity bit generation/detection

– 1 or 2 stop bit generation

■ IrDA serial-IR (SIR) encoder/decoder providing:

– Programmable use of IrDA Serial Infrared (SIR) or UART input/output

– Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex

– Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations

– Programmable internal clock generator enabling division of reference clock by 1 to 256 for
low-power mode bit duration

■ Dedicated DMA transmit and receive channels

June 02, 2008380
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

14.1 Block Diagram

Figure 14-1. UART Module Block Diagram

TxFIFO
16 x 8

.

.

.

RxFIFO
16 x 8

.

.

.

DMA Control

UARTDMACTL

DMA Request

Identification
Registers

UARTPCellID0
UARTPCellID1
UARTPCellID2
UARTPCellID3
UARTPeriphID0
UARTPeriphID1
UARTPeriphID2
UARTPeriphID3
UARTPeriphID4
UARTPeriphID5
UARTPeriphID6
UARTPeriphID7

Interrupt Control

UARTIFLS
UARTIM
UARTMIS
UARTRIS
UARTICR

UARTDR

Control/Status

UARTRSR/ECR
UARTFR

UARTLCRH
UARTCTL
UARTILPR

Transmitter
(with SIR
Transmit
Encoder)

Baud Rate
Generator
UARTIBRD
UARTFBRD Receiver

(with SIR
Receive
Decoder)

UnTx

UnRx

System Clock

Interrupt

14.2 Functional Description
Each Stellaris® UART performs the functions of parallel-to-serial and serial-to-parallel conversions.
It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the UART Control
(UARTCTL) register (see page 400). Transmit and receive are both enabled out of reset. Before any
control registers are programmed, the UART must be disabled by clearing the UARTEN bit in
UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is completed
prior to the UART stopping.

The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected
to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed
using the UARTCTL register.

14.2.1 Transmit/Receive Logic
The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.
The control logic outputs the serial bit stream beginning with a start bit, and followed by the data
bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control
registers. See Figure 14-2 on page 382 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start
pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also
performed, and their status accompanies the data that is written to the receive FIFO.

381June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 14-2. UART Character Frame

1
0 5-8 data bits

LSB MSB

Parity bit
if enabled

1-2
stop bits

UnTX

n

Start

14.2.2 Baud-Rate Generation
The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.
The number formed by these two values is used by the baud-rate generator to determine the bit
period. Having a fractional baud-rate divider allows the UART to generate all the standard baud
rates.

The 16-bit integer is loaded through the UART Integer Baud-Rate Divisor (UARTIBRD) register
(see page 396) and the 6-bit fractional part is loaded with the UART Fractional Baud-Rate Divisor
(UARTFBRD) register (see page 397). The baud-rate divisor (BRD) has the following relationship
to the system clock (where BRDI is the integer part of the BRD and BRDF is the fractional part,
separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)

where UARTSysClk is the system clock connected to the UART.

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in theUARTFBRD register)
can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and
adding 0.5 to account for rounding errors:

UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as
Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error
detection during receive operations.

Along with theUARTLineControl, HighByte (UARTLCRH) register (see page 398), theUARTIBRD
and UARTFBRD registers form an internal 30-bit register. This internal register is only updated
when a write operation to UARTLCRH is performed, so any changes to the baud-rate divisor must
be followed by a write to the UARTLCRH register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

■ UARTIBRD write, UARTFBRD write, and UARTLCRH write

■ UARTFBRD write, UARTIBRD write, and UARTLCRH write

■ UARTIBRD write and UARTLCRH write

■ UARTFBRD write and UARTLCRH write

14.2.3 Data Transmission
Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra
four bits per character for status information. For transmission, data is written into the transmit FIFO.
If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated
in the UARTLCRH register. Data continues to be transmitted until there is no data left in the transmit

June 02, 2008382
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

FIFO. The BUSY bit in the UART Flag (UARTFR) register (see page 393) is asserted as soon as
data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while
data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the
last character has been transmitted from the shift register, including the stop bits. The UART can
indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has
been received), the receive counter begins running and data is sampled on the eighth cycle of
Baud16 (described in “Transmit/Receive Logic” on page 381).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is
detected and it is ignored. Start bit errors can be viewed in the UART Receive Status (UARTRSR)
register (see page 391). If the start bit was valid, successive data bits are sampled on every 16th
cycle of Baud16 (that is, one bit period later) according to the programmed length of the data
characters. The parity bit is then checked if parity mode was enabled. Data length and parity are
defined in the UARTLCRH register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When
a full word is received, the data is stored in the receive FIFO, with any error bits associated with
that word.

14.2.4 Serial IR (SIR)
The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block
provides functionality that converts between an asynchronous UART data stream, and half-duplex
serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to
provide a digital encoded output, and decoded input to the UART. The UART signal pins can be
connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block
has two modes of operation:

■ In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the
selected baud rate bit period on the output pin, while logic one levels are transmitted as a static
LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light
for each zero. On the reception side, the incoming light pulses energize the photo transistor base
of the receiver, pulling its output LOW. This drives the UART input pin LOW.

■ In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the
period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz
frequency) by changing the appropriate bit in the UARTCR register. See page 395 for more
information on IrDA low-power pulse-duration configuration.

Figure 14-3 on page 384 shows the UART transmit and receive signals, with and without IrDA
modulation.

383June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 14-3. IrDA Data Modulation

10 10 0 0 1 1 0 1

Data bits

10 10 0 0 1 1 0 1

Data bitsStart
bit

Start Stop

Bit period Bit period
3
16

UnTx

UnTx with IrDA

UnRx with IrDA

UnRx

Stop
bit

In both normal and low-power IrDA modes:

■ During transmission, the UART data bit is used as the base for encoding

■ During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay
between transmission and reception. This delay must be generated by software because it is not
automatically supported by the UART. The delay is required because the infrared receiver electronics
might become biased, or even saturated from the optical power coupled from the adjacent transmitter
LED. This delay is known as latency, or receiver setup time.

14.2.5 FIFO Operation
The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed
via the UART Data (UARTDR) register (see page 389). Read operations of the UARTDR register
return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data
in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are
enabled by setting the FEN bit in UARTLCRH (page 398).

FIFO status can be monitored via the UART Flag (UARTFR) register (see page 393) and the UART
Receive Status (UARTRSR) register. Hardware monitors empty, full and overrun conditions. The
UARTFR register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the
UARTRSR register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the UART Interrupt FIFO
Level Select (UARTIFLS) register (see page 402). Both FIFOs can be individually configured to
trigger interrupts at different levels. Available configurations include 1/8, ¼, ½, ¾, and 7/8. For
example, if the ¼ option is selected for the receive FIFO, the UART generates a receive interrupt
after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the
½ mark.

14.2.6 Interrupts
The UART can generate interrupts when the following conditions are observed:

■ Overrun Error

■ Break Error

June 02, 2008384
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

■ Parity Error

■ Framing Error

■ Receive Timeout

■ Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)

■ Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the
UART can only generate a single interrupt request to the controller at any given time. Software can
service multiple interrupt events in a single interrupt service routine by reading the UART Masked
Interrupt Status (UARTMIS) register (see page 407).

The interrupt events that can trigger a controller-level interrupt are defined in the UART Interrupt
Mask (UARTIM) register (see page 404) by setting the corresponding IM bit to 1. If interrupts are
not used, the raw interrupt status is always visible via the UART Raw Interrupt Status (UARTRIS)
register (see page 406).

Interrupts are always cleared (for both the UARTMIS and UARTRIS registers) by setting the
corresponding bit in the UART Interrupt Clear (UARTICR) register (see page 408).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data
is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO
becomes empty through reading all the data (or by reading the holding register), or when a 1 is
written to the corresponding bit in the UARTICR register.

14.2.7 Loopback Operation
The UART can be placed into an internal loopback mode for diagnostic or debug work. This is
accomplished by setting the LBE bit in the UARTCTL register (see page 400). In loopback mode,
data transmitted on UnTx is received on the UnRx input.

14.2.8 DMA Operation
The UART provides an interface connected to the μDMA controller. The DMA operation of the UART
is enabled through the UART DMA Control (UARTDMACTL) register. When DMA operation is
enabled, the UART will assert a DMA request on the receive or transmit channel when the associated
FIFO can transfer data. For the receive channel, a single transfer request is asserted whenever
there is any data in the receive FIFO. A burst transfer request is asserted whenever the amount of
data in the receive FIFO is at or above the FIFO trigger level. For the transmit channel, a single
transfer request is asserted whenever there is at least one empty location in the transmit FIFO. The
burst request is asserted whenever the transmit FIFO contains fewer characters than the FIFO
trigger level. The single and burst DMA transfer requests are handled automatically by the μDMA
controller depending how the DMA channel is configured.

To enable DMA operation for the receive channel, the RXDMAE bit of the DMA Control
(UARTDMACTL) register should be set. To enable DMA operation for the transmit channel, the
TXDMAE bit of UARTDMACTL should be set. The UART can also be configured to stop using DMA
for the receive channel if a receive error occurs. If the DMAERR bit of UARTDMACR is set, then
when a receive error occurs, the DMA receive requests will be automatically disabled. This error
condition can be cleared by clearing the UART error interrupt.

If DMA is enabled, then the μDMA controller will trigger an interrupt when a transfer is complete.
The interrupt will occur on the UART interrupt vector. Therefore, if interrupts are used for UART

385June 02, 2008
Preliminary

LM3S5747 Microcontroller

operation and DMA is enabled, the UART interrupt handler must be designed to handle the μDMA
completion interrupt.

See “Micro Direct Memory Access (μDMA)” on page 183 for more details about programming the
μDMA controller.

14.2.9 IrDA SIR block
The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the
SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR
transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same
time. Transmission must be stopped before data can be received. The IrDA SIR physical layer
specifies a minimum 10-ms delay between transmission and reception.

14.3 Initialization and Configuration
To use the UART, the peripheral clock must be enabled by setting the UART0 bit in the RCGC1
register.

This section discusses the steps that are required to use a UART module. For this example, the
UART clock is assumed to be 20 MHz and the desired UART configuration is:

■ 115200 baud rate

■ Data length of 8 bits

■ One stop bit

■ No parity

■ FIFOs disabled

■ No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the
UARTIBRD and UARTFBRD registers must be written before the UARTLCRH register. Using the
equation described in “Baud-Rate Generation” on page 382, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the UARTIBRD register (see page 396) should be set to 10.
The value to be loaded into the UARTFBRD register (see page 397) is calculated by the equation:

UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54

With the BRD values in hand, the UART configuration is written to the module in the following order:

1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.

2. Write the integer portion of the BRD to the UARTIBRD register.

3. Write the fractional portion of the BRD to the UARTFBRD register.

4. Write the desired serial parameters to the UARTLCRH register (in this case, a value of
0x0000.0060).

June 02, 2008386
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

5. Optionally, configure the uDMA channel (see “Micro Direct Memory Access (μDMA)” on page 183)
and enable the DMA option(s) in the UARTDMACTL register.

6. Enable the UART by setting the UARTEN bit in the UARTCTL register.

14.4 Register Map
Table 14-1 on page 387 lists the UART registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that UART’s base address:

■ UART0: 0x4000.C000

Note: The UART must be disabled (see the UARTEN bit in the UARTCTL register on page 400)
before any of the control registers are reprogrammed. When the UART is disabled during
a TX or RX operation, the current transaction is completed prior to the UART stopping.

Table 14-1. UART Register Map

See
pageDescriptionResetTypeNameOffset

389UART Data0x0000.0000R/WUARTDR0x000

391UART Receive Status/Error Clear0x0000.0000R/WUARTRSR/UARTECR0x004

393UART Flag0x0000.0090ROUARTFR0x018

395UART IrDA Low-Power Register0x0000.0000R/WUARTILPR0x020

396UART Integer Baud-Rate Divisor0x0000.0000R/WUARTIBRD0x024

397UART Fractional Baud-Rate Divisor0x0000.0000R/WUARTFBRD0x028

398UART Line Control0x0000.0000R/WUARTLCRH0x02C

400UART Control0x0000.0300R/WUARTCTL0x030

402UART Interrupt FIFO Level Select0x0000.0012R/WUARTIFLS0x034

404UART Interrupt Mask0x0000.0000R/WUARTIM0x038

406UART Raw Interrupt Status0x0000.000FROUARTRIS0x03C

407UART Masked Interrupt Status0x0000.0000ROUARTMIS0x040

408UART Interrupt Clear0x0000.0000W1CUARTICR0x044

410UART DMA Control0x0000.0000R/WUARTDMACTL0x048

411UART Peripheral Identification 40x0000.0000ROUARTPeriphID40xFD0

412UART Peripheral Identification 50x0000.0000ROUARTPeriphID50xFD4

413UART Peripheral Identification 60x0000.0000ROUARTPeriphID60xFD8

414UART Peripheral Identification 70x0000.0000ROUARTPeriphID70xFDC

415UART Peripheral Identification 00x0000.0011ROUARTPeriphID00xFE0

416UART Peripheral Identification 10x0000.0000ROUARTPeriphID10xFE4

417UART Peripheral Identification 20x0000.0018ROUARTPeriphID20xFE8

418UART Peripheral Identification 30x0000.0001ROUARTPeriphID30xFEC

387June 02, 2008
Preliminary

LM3S5747 Microcontroller

See
pageDescriptionResetTypeNameOffset

419UART PrimeCell Identification 00x0000.000DROUARTPCellID00xFF0

420UART PrimeCell Identification 10x0000.00F0ROUARTPCellID10xFF4

421UART PrimeCell Identification 20x0000.0005ROUARTPCellID20xFF8

422UART PrimeCell Identification 30x0000.00B1ROUARTPCellID30xFFC

14.5 Register Descriptions
The remainder of this section lists and describes the UART registers, in numerical order by address
offset.

June 02, 2008388
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 1: UART Data (UARTDR), offset 0x000
This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs
are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO).
A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity,
and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and
status are stored in the receiving holding register (the bottom word of the receive FIFO). The received
data can be retrieved by reading this register.

UART Data (UARTDR)
UART0 base: 0x4000.C000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAFEPEBEOEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:12

UART Overrun Error

The OE values are defined as follows:

DescriptionValue

There has been no data loss due to a FIFO overrun.0

New data was received when the FIFO was full, resulting in
data loss.

1

0ROOE11

UART Break Error

This bit is set to 1 when a break condition is detected, indicating that
the receive data input was held Low for longer than a full-word
transmission time (defined as start, data, parity, and stop bits).

In FIFO mode, this error is associated with the character at the top of
the FIFO. When a break occurs, only one 0 character is loaded into the
FIFO. The next character is only enabled after the received data input
goes to a 1 (marking state) and the next valid start bit is received.

0ROBE10

UART Parity Error

This bit is set to 1 when the parity of the received data character does
not match the parity defined by bits 2 and 7 of the UARTLCRH register.

In FIFO mode, this error is associated with the character at the top of
the FIFO.

0ROPE9

389June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

UART Framing Error

This bit is set to 1 when the received character does not have a valid
stop bit (a valid stop bit is 1).

0ROFE8

Data Transmitted or Received

When written, the data that is to be transmitted via the UART. When
read, the data that was received by the UART.

0R/WDATA7:0

June 02, 2008390
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset
0x004
The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the UARTDR register, receive status can also be read from the UARTRSR register.
If the status is read from this register, then the status information corresponds to the entry read from
UARTDR prior to reading UARTRSR. The status information for overrun is set immediately when
an overrun condition occurs.

The UARTRSR register cannot be written.

A write of any value to the UARTECR register clears the framing, parity, break, and overrun errors.
All the bits are cleared to 0 on reset.

Read-Only Receive Status (UARTRSR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)
UART0 base: 0x4000.C000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FEPEBEOEreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:4

UART Overrun Error

When this bit is set to 1, data is received and the FIFO is already full.
This bit is cleared to 0 by a write to UARTECR.

The FIFO contents remain valid since no further data is written when
the FIFO is full, only the contents of the shift register are overwritten.
The CPU must now read the data in order to empty the FIFO.

0ROOE3

UART Break Error

This bit is set to 1 when a break condition is detected, indicating that
the received data input was held Low for longer than a full-word
transmission time (defined as start, data, parity, and stop bits).

This bit is cleared to 0 by a write to UARTECR.

In FIFO mode, this error is associated with the character at the top of
the FIFO. When a break occurs, only one 0 character is loaded into the
FIFO. The next character is only enabled after the receive data input
goes to a 1 (marking state) and the next valid start bit is received.

0ROBE2

391June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

UART Parity Error

This bit is set to 1 when the parity of the received data character does
not match the parity defined by bits 2 and 7 of the UARTLCRH register.

This bit is cleared to 0 by a write to UARTECR.

0ROPE1

UART Framing Error

This bit is set to 1 when the received character does not have a valid
stop bit (a valid stop bit is 1).

This bit is cleared to 0 by a write to UARTECR.

In FIFO mode, this error is associated with the character at the top of
the FIFO.

0ROFE0

Write-Only Error Clear (UARTECR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)
UART0 base: 0x4000.C000
Offset 0x004
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

DATAreserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0WOreserved31:8

Error Clear

A write to this register of any data clears the framing, parity, break, and
overrun flags.

0WODATA7:0

June 02, 2008392
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 3: UART Flag (UARTFR), offset 0x018
The UARTFR register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and
TXFE and RXFE bits are 1.

UART Flag (UARTFR)
UART0 base: 0x4000.C000
Offset 0x018
Type RO, reset 0x0000.0090

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBUSYRXFETXFFRXFFTXFEreserved

ROROROROROROROROROROROROROROROROType
0000100100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

UART Transmit FIFO Empty

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled (FEN is 0), this bit is set when the transmit holding
register is empty.

If the FIFO is enabled (FEN is 1), this bit is set when the transmit FIFO
is empty.

1ROTXFE7

UART Receive FIFO Full

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled, this bit is set when the receive holding register
is full.

If the FIFO is enabled, this bit is set when the receive FIFO is full.

0RORXFF6

UART Transmit FIFO Full

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled, this bit is set when the transmit holding register
is full.

If the FIFO is enabled, this bit is set when the transmit FIFO is full.

0ROTXFF5

UART Receive FIFO Empty

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled, this bit is set when the receive holding register
is empty.

If the FIFO is enabled, this bit is set when the receive FIFO is empty.

1RORXFE4

393June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

UART Busy

When this bit is 1, the UART is busy transmitting data. This bit remains
set until the complete byte, including all stop bits, has been sent from
the shift register.

This bit is set as soon as the transmit FIFO becomes non-empty
(regardless of whether UART is enabled).

0ROBUSY3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

June 02, 2008394
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020
The UARTILPR register is an 8-bit read/write register that stores the low-power counter divisor
value used to derive the low-power SIR pulse width clock by dividing down the system clock (SysClk).
All the bits are cleared to 0 when reset.

The internal IrLPBaud16 clock is generated by dividing down SysClk according to the low-power
divisor value written to UARTILPR. The duration of SIR pulses generated when low-power mode
is enabled is three times the period of the IrLPBaud16 clock. The low-power divisor value is
calculated as follows:

ILPDVSR = SysClk / FIrLPBaud16

where FIrLPBaud16 is nominally 1.8432 MHz.

Youmust choose the divisor so that 1.42 MHz < FIrLPBaud16 < 2.12 MHz, which results in a low-power
pulse duration of 1.41–2.11 μs (three times the period of IrLPBaud16). The minimum frequency
of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that
pulses greater than 1.4 μs are accepted as valid pulses.

Note: Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being
generated.

UART IrDA Low-Power Register (UARTILPR)
UART0 base: 0x4000.C000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ILPDVSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

IrDA Low-Power Divisor

This is an 8-bit low-power divisor value.

0x00R/WILPDVSR7:0

395June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024
The UARTIBRD register is the integer part of the baud-rate divisor value. All the bits are cleared
on reset. Theminimum possible divide ratio is 1 (whenUARTIBRD=0), in which case theUARTFBRD
register is ignored. When changing the UARTIBRD register, the new value does not take effect until
transmission/reception of the current character is complete. Any changes to the baud-rate divisor
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 382
for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)
UART0 base: 0x4000.C000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DIVINT

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:16

Integer Baud-Rate Divisor0x0000R/WDIVINT15:0

June 02, 2008396
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028
The UARTFBRD register is the fractional part of the baud-rate divisor value. All the bits are cleared
on reset. When changing the UARTFBRD register, the new value does not take effect until
transmission/reception of the current character is complete. Any changes to the baud-rate divisor
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 382
for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)
UART0 base: 0x4000.C000
Offset 0x028
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DIVFRACreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Fractional Baud-Rate Divisor0x000R/WDIVFRAC5:0

397June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 7: UART Line Control (UARTLCRH), offset 0x02C
The UARTLCRH register is the line control register. Serial parameters such as data length, parity,
and stop bit selection are implemented in this register.

When updating the baud-rate divisor (UARTIBRD and/or UARTIFRD), the UARTLCRH register
must also be written. The write strobe for the baud-rate divisor registers is tied to the UARTLCRH
register.

UART Line Control (UARTLCRH)
UART0 base: 0x4000.C000
Offset 0x02C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BRKPENEPSSTP2FENWLENSPSreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

UART Stick Parity Select

When bits 1, 2, and 7 ofUARTLCRH are set, the parity bit is transmitted
and checked as a 0. When bits 1 and 7 are set and 2 is cleared, the
parity bit is transmitted and checked as a 1.

When this bit is cleared, stick parity is disabled.

0R/WSPS7

UART Word Length

The bits indicate the number of data bits transmitted or received in a
frame as follows:

DescriptionValue

8 bits0x3

7 bits0x2

6 bits0x1

5 bits (default)0x0

0R/WWLEN6:5

UART Enable FIFOs

If this bit is set to 1, transmit and receive FIFO buffers are enabled (FIFO
mode).

When cleared to 0, FIFOs are disabled (Character mode). The FIFOs
become 1-byte-deep holding registers.

0R/WFEN4

UART Two Stop Bits Select

If this bit is set to 1, two stop bits are transmitted at the end of a frame.
The receive logic does not check for two stop bits being received.

0R/WSTP23

June 02, 2008398
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Even Parity Select

If this bit is set to 1, even parity generation and checking is performed
during transmission and reception, which checks for an even number
of 1s in data and parity bits.

When cleared to 0, then odd parity is performed, which checks for an
odd number of 1s.

This bit has no effect when parity is disabled by the PEN bit.

0R/WEPS2

UART Parity Enable

If this bit is set to 1, parity checking and generation is enabled; otherwise,
parity is disabled and no parity bit is added to the data frame.

0R/WPEN1

UART Send Break

If this bit is set to 1, a Low level is continually output on the UnTX output,
after completing transmission of the current character. For the proper
execution of the break command, the software must set this bit for at
least two frames (character periods). For normal use, this bit must be
cleared to 0.

0R/WBRK0

399June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: UART Control (UARTCTL), offset 0x030
The UARTCTL register is the control register. All the bits are cleared on reset except for the
Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration
change in the module, the UARTEN bit must be cleared before the configuration changes are written.
If the UART is disabled during a transmit or receive operation, the current transaction is completed
prior to the UART stopping.

Note: TheUARTCTL register should not be changed while the UART is enabled or else the results
are unpredictable. The following sequence is recommended for making changes to the
UARTCTL register.

1. Disable the UART.

2. Wait for the end of transmission or reception of the current character.

3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).

4. Reprogram the control register.

5. Enable the UART.

UART Control (UARTCTL)
UART0 base: 0x4000.C000
Offset 0x030
Type R/W, reset 0x0000.0300

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UARTENSIRENSIRLPreservedLBETXERXEreserved

R/WR/WR/WROROROROR/WR/WR/WROROROROROROType
0000000011000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:10

UART Receive Enable

If this bit is set to 1, the receive section of the UART is enabled. When
the UART is disabled in the middle of a receive, it completes the current
character before stopping.

Note: To enable reception, the UARTEN bit must also be set.

1R/WRXE9

UART Transmit Enable

If this bit is set to 1, the transmit section of the UART is enabled. When
the UART is disabled in the middle of a transmission, it completes the
current character before stopping.

Note: To enable transmission, the UARTEN bit must also be set.

1R/WTXE8

June 02, 2008400
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Loop Back Enable

If this bit is set to 1, the UnTX path is fed through the UnRX path.

0R/WLBE7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved6:3

UART SIR Low Power Mode

This bit selects the IrDA encoding mode. If this bit is cleared to 0,
low-level bits are transmitted as an active High pulse with a width of
3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted
with a pulse width which is 3 times the period of the IrLPBaud16 input
signal, regardless of the selected bit rate. Setting this bit uses less power,
but might reduce transmission distances. See page 395 for more
information.

0R/WSIRLP2

UART SIR Enable

If this bit is set to 1, the IrDA SIR block is enabled, and the UART will
transmit and receive data using SIR protocol.

0R/WSIREN1

UART Enable

If this bit is set to 1, the UART is enabled. When the UART is disabled
in the middle of transmission or reception, it completes the current
character before stopping.

0R/WUARTEN0

401June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034
The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define
the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the
level. That is, the interrupts are generated when the fill level progresses through the trigger level.
For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the
module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt
at the half-way mark.

UART Interrupt FIFO Level Select (UARTIFLS)
UART0 base: 0x4000.C000
Offset 0x034
Type R/W, reset 0x0000.0012

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXIFLSELRXIFLSELreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0100100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

UART Receive Interrupt FIFO Level Select

The trigger points for the receive interrupt are as follows:

DescriptionValue

RX FIFO ≥ 1/8 full0x0

RX FIFO ≥ ¼ full0x1

RX FIFO ≥ ½ full (default)0x2

RX FIFO ≥ ¾ full0x3

RX FIFO ≥ 7/8 full0x4

Reserved0x5-0x7

0x2R/WRXIFLSEL5:3

June 02, 2008402
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Transmit Interrupt FIFO Level Select

The trigger points for the transmit interrupt are as follows:

DescriptionValue

TX FIFO ≤ 1/8 full0x0

TX FIFO ≤ ¼ full0x1

TX FIFO ≤ ½ full (default)0x2

TX FIFO ≤ ¾ full0x3

TX FIFO ≤ 7/8 full0x4

Reserved0x5-0x7

0x2R/WTXIFLSEL2:0

403June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 10: UART Interrupt Mask (UARTIM), offset 0x038
The UARTIM register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to
a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a
0 prevents the raw interrupt signal from being sent to the interrupt controller.

UART Interrupt Mask (UARTIM)
UART0 base: 0x4000.C000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXIMTXIMRTIMFEIMPEIMBEIMOEIMreserved

ROROROROR/WR/WR/WR/WR/WR/WR/WROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

UART Overrun Error Interrupt Mask

On a read, the current mask for the OEIM interrupt is returned.

Setting this bit to 1 promotes the OEIM interrupt to the interrupt controller.

0R/WOEIM10

UART Break Error Interrupt Mask

On a read, the current mask for the BEIM interrupt is returned.

Setting this bit to 1 promotes the BEIM interrupt to the interrupt controller.

0R/WBEIM9

UART Parity Error Interrupt Mask

On a read, the current mask for the PEIM interrupt is returned.

Setting this bit to 1 promotes the PEIM interrupt to the interrupt controller.

0R/WPEIM8

UART Framing Error Interrupt Mask

On a read, the current mask for the FEIM interrupt is returned.

Setting this bit to 1 promotes the FEIM interrupt to the interrupt controller.

0R/WFEIM7

UART Receive Time-Out Interrupt Mask

On a read, the current mask for the RTIM interrupt is returned.

Setting this bit to 1 promotes the RTIM interrupt to the interrupt controller.

0R/WRTIM6

UART Transmit Interrupt Mask

On a read, the current mask for the TXIM interrupt is returned.

Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.

0R/WTXIM5

June 02, 2008404
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Receive Interrupt Mask

On a read, the current mask for the RXIM interrupt is returned.

Setting this bit to 1 promotes the RXIM interrupt to the interrupt controller.

0R/WRXIM4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:0

405June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C
The UARTRIS register is the raw interrupt status register. On a read, this register gives the current
raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)
UART0 base: 0x4000.C000
Offset 0x03C
Type RO, reset 0x0000.000F

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXRISTXRISRTRISFERISPERISBERISOERISreserved

ROROROROROROROROROROROROROROROROType
1111000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

UART Overrun Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROOERIS10

UART Break Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROBERIS9

UART Parity Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROPERIS8

UART Framing Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROFERIS7

UART Receive Time-Out Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0RORTRIS6

UART Transmit Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROTXRIS5

UART Receive Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0RORXRIS4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0xFROreserved3:0

June 02, 2008406
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040
The UARTMIS register is the masked interrupt status register. On a read, this register gives the
current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)
UART0 base: 0x4000.C000
Offset 0x040
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXMISTXMISRTMISFEMISPEMISBEMISOEMISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

UART Overrun Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROOEMIS10

UART Break Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROBEMIS9

UART Parity Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROPEMIS8

UART Framing Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROFEMIS7

UART Receive Time-Out Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0RORTMIS6

UART Transmit Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROTXMIS5

UART Receive Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0RORXMIS4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:0

407June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 13: UART Interrupt Clear (UARTICR), offset 0x044
The UARTICR register is the interrupt clear register. On a write of 1, the corresponding interrupt
(both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UART Interrupt Clear (UARTICR)
UART0 base: 0x4000.C000
Offset 0x044
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXICTXICRTICFEICPEICBEICOEICreserved

ROROROROW1CW1CW1CW1CW1CW1CW1CROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

Overrun Error Interrupt Clear

The OEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1COEIC10

Break Error Interrupt Clear

The BEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CBEIC9

Parity Error Interrupt Clear

The PEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CPEIC8

Framing Error Interrupt Clear

The FEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CFEIC7

June 02, 2008408
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

Receive Time-Out Interrupt Clear

The RTIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CRTIC6

Transmit Interrupt Clear

The TXIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CTXIC5

Receive Interrupt Clear

The RXIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CRXIC4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:0

409June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 14: UART DMA Control (UARTDMACTL), offset 0x048
The UARTDMACTL register is the DMA control register.

UART DMA Control (UARTDMACTL)
UART0 base: 0x4000.C000
Offset 0x048
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXDMAETXDMAEDMAERRreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

DMA on Error

If this bit is set to 1, DMA receive requests are automatically disabled
when a receive error occurs.

0R/WDMAERR2

Transmit DMA Enable

If this bit is set to 1, DMA for the transmit FIFO is enabled.

0R/WTXDMAE1

Receive DMA Enable

If this bit is set to 1, DMA for the receive FIFO is enabled.

0R/WRXDMAE0

June 02, 2008410
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 15: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 4 (UARTPeriphID4)
UART0 base: 0x4000.C000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x0000ROPID47:0

411June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 16: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 5 (UARTPeriphID5)
UART0 base: 0x4000.C000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0x0000ROPID57:0

June 02, 2008412
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 17: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 6 (UARTPeriphID6)
UART0 base: 0x4000.C000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x0000ROPID67:0

413June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 18: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 7 (UARTPeriphID7)
UART0 base: 0x4000.C000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

UART Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x0000ROPID77:0

June 02, 2008414
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 19: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 0 (UARTPeriphID0)
UART0 base: 0x4000.C000
Offset 0xFE0
Type RO, reset 0x0000.0011

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
1000100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x11ROPID07:0

415June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 20: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 1 (UARTPeriphID1)
UART0 base: 0x4000.C000
Offset 0xFE4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID17:0

June 02, 2008416
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 21: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 2 (UARTPeriphID2)
UART0 base: 0x4000.C000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x18ROPID27:0

417June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 22: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 3 (UARTPeriphID3)
UART0 base: 0x4000.C000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x01ROPID37:0

June 02, 2008418
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 23: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 0 (UARTPCellID0)
UART0 base: 0x4000.C000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART PrimeCell ID Register[7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

419June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 24: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 1 (UARTPCellID1)
UART0 base: 0x4000.C000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART PrimeCell ID Register[15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

June 02, 2008420
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 25: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 2 (UARTPCellID2)
UART0 base: 0x4000.C000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART PrimeCell ID Register[23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

421June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 26: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 3 (UARTPCellID3)
UART0 base: 0x4000.C000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

UART PrimeCell ID Register[31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

June 02, 2008422
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

15 Synchronous Serial Interface (SSI)
The Stellaris® Synchronous Serial Interface (SSI) is a master or slave interface for synchronous
serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas
Instruments synchronous serial interfaces.

The Stellaris® SSI module has the following features:

■ Master or slave operation

■ Support for Direct Memory Access (DMA)

■ Programmable clock bit rate and prescale

■ Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep

■ Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments
synchronous serial interfaces

■ Programmable data frame size from 4 to 16 bits

■ Internal loopback test mode for diagnostic/debug testing

15.1 Block Diagram

Figure 15-1. SSI Module Block Diagram

Identification Registers

SSIPCellID0
SSIPCellID1
SSIPCellID2
SSIPCellID3

SSIPeriphID0
SSIPeriphID1
SSIPeriphID2
SSIPeriphID3

SSIPeriphID4
SSIPeriphID5
SSIPeriphID6
SSIPeriphID7

Clock Prescaler

SSICPSR

Control/Status

SSISR
SSICR1
SSICR0

Interrupt Control

SSIRIS
SSIMIS
SSIIM

SSIICR

SSIDR

TxFIFO
8 x 16

.

.

.

RxFIFO
8 x 16

.

.

.

Transmit/
Receive
Logic

SSITx

SSIRx

SSIClk

SSIFss

DMA Control

SSIDMACTL

DMA Request

Interrupt

System Clock

423June 02, 2008
Preliminary

LM3S5747 Microcontroller

15.2 Functional Description
The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU
accesses data, control, and status information. The transmit and receive paths are buffered with
internal FIFOmemories allowing up to eight 16-bit values to be stored independently in both transmit
and receive modes. The SSI also supports the DMA interface. The transmit and receive FIFOs can
be programmed as destination/source addresses in the DMA module. DMA operation is enabled
by setting the appropriate bit(s) in the SSIDMACTL register (see page 449).

15.2.1 Bit Rate Generation
The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output
clock. Bit rates are supported to MHz and higher, although maximum bit rate is determined by
peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided
by an even prescale value CPSDVSR from 2 to 254, which is programmed in the SSI Clock Prescale
(SSICPSR) register (see page 443). The clock is further divided by a value from 1 to 256, which is
1 + SCR, where SCR is the value programmed in the SSI Control0 (SSICR0) register (see page 436).

The frequency of the output clock SSIClk is defined by:

SSIClk = FSysClk / (CPSDVSR * (1 + SCR))

Note: Although the SSIClk transmit clock can theoretically be 25 MHz, the module may not be
able to operate at that speed. For master mode, the system clock must be at least two times
faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster
than the SSIClk.

See “Synchronous Serial Interface (SSI)” on page 687 to view SSI timing parameters.

15.2.2 FIFO Operation

15.2.2.1 Transmit FIFO
The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The
CPU writes data to the FIFO by writing the SSI Data (SSIDR) register (see page 440), and data is
stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial
conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

15.2.2.2 Receive FIFO
The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.
Received data from the serial interface is stored in the buffer until read out by the CPU, which
accesses the read FIFO by reading the SSIDR register.

When configured as a master or slave, serial data received through the SSIRx pin is registered
prior to parallel loading into the attached slave or master receive FIFO, respectively.

15.2.3 Interrupts
The SSI can generate interrupts when the following conditions are observed:

■ Transmit FIFO service

■ Receive FIFO service

June 02, 2008424
Preliminary

Synchronous Serial Interface (SSI)

■ Receive FIFO time-out

■ Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI
can only generate a single interrupt request to the controller at any given time. You can mask each
of the four individual maskable interrupts by setting the appropriate bits in the SSI Interrupt Mask
(SSIIM) register (see page 444). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a
global interrupt service routine, or modular device drivers to handle interrupts. The transmit and
receive dynamic dataflow interrupts have been separated from the status interrupts so that data
can be read or written in response to the FIFO trigger levels. The status of the individual interrupt
sources can be read from the SSI Raw Interrupt Status (SSIRIS) and SSI Masked Interrupt Status
(SSIMIS) registers (see page 446 and page 447, respectively).

15.2.4 Frame Formats
Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is
transmitted starting with the MSB. There are three basic frame types that can be selected:

■ Texas Instruments synchronous serial

■ Freescale SPI

■ MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk
transitions at the programmed frequency only during active transmission or reception of data. The
idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive
FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFss) pin is active Low,
and is asserted (pulled down) during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSIFss pin is pulsed for one serial
clock period starting at its rising edge, prior to the transmission of each frame. For this frame format,
both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and
latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a
special master-slave messaging technique, which operates at half-duplex. In this mode, when a
frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no
incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes
it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent,
responds with the requested data. The returned data can be 4 to 16 bits in length, making the total
frame length anywhere from 13 to 25 bits.

15.2.4.1 Texas Instruments Synchronous Serial Frame Format
Figure 15-2 on page 426 shows the Texas Instruments synchronous serial frame format for a single
transmitted frame.

425June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 15-2. TI Synchronous Serial Frame Format (Single Transfer)

SSIClk

4 to 16 bits

SSIFss

SSITx/SSIRx MSB LSB

In this mode, SSIClk and SSIFss are forced Low, and the transmit data line SSITx is tristated
whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFss is
pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit
FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB
of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data
is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on
the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive
FIFO on the first rising edge of SSIClk after the LSB has been latched.

Figure 15-3 on page 426 shows the Texas Instruments synchronous serial frame format when
back-to-back frames are transmitted.

Figure 15-3. TI Synchronous Serial Frame Format (Continuous Transfer)

MSB LSB

4 to 16 bits

SSIClk

SSIFss

SSITx/SSIRx

15.2.4.2 Freescale SPI Frame Format
The Freescale SPI interface is a four-wire interface where the SSIFss signal behaves as a slave
select. The main feature of the Freescale SPI format is that the inactive state and phase of the
SSIClk signal are programmable through the SPO and SPH bits within the SSISCR0 control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk
pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not
being transferred.

SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state.
It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition
before the first data capture edge. When the SPH phase control bit is Low, data is captured on the
first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

June 02, 2008426
Preliminary

Synchronous Serial Interface (SSI)

15.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0
Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and
SPH=0 are shown in Figure 15-4 on page 427 and Figure 15-5 on page 427.

Figure 15-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

4 to 16 bits

SSIClk

SSIFss

SSIRx Q

SSITx
MSB

MSB

LSB

LSB

Note: Q is undefined.

Figure 15-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0

SSIClk

SSIFss

SSIRx LSB

SSITx MSB LSB

4 to 16 bits

LSB MSB

MSB

MSB

LSB

In this configuration, during idle periods:

■ SSIClk is forced Low

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto
the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the
master and slave data have been set, the SSIClk master clock pin goes High after one further half
SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the
SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed
High between each data word transfer. This is because the slave select pin freezes the data in its

427June 02, 2008
Preliminary

LM3S5747 Microcontroller

serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,
the master device must raise the SSIFss pin of the slave device between each data transfer to
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin
is returned to its idle state one SSIClk period after the last bit has been captured.

15.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1
The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure
15-6 on page 428, which covers both single and continuous transfers.

Figure 15-6. Freescale SPI Frame Format with SPO=0 and SPH=1

4 to 16 bits

SSIClk

SSIFss

SSIRx

SSITx

Q

MSB

Q MSB

LSB

LSB

Note: Q is undefined.

In this configuration, during idle periods:

■ SSIClk is forced Low

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After
a further one half SSIClk period, both master and slave valid data is enabled onto their respective
transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transfer, after all bits have been transferred, the SSIFss line is returned
to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words
and termination is the same as that of the single word transfer.

15.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0
Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and
SPH=0 are shown in Figure 15-7 on page 429 and Figure 15-8 on page 429.

June 02, 2008428
Preliminary

Synchronous Serial Interface (SSI)

Figure 15-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0

4 to 16 bits

SSIClk

SSIFss

SSIRx

SSITx

QMSB

MSB LSB

LSB

Note: Q is undefined.

Figure 15-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

SSIClk

SSIFss

SSITx/SSIRx MSB LSB

4 to 16 bits

LSB MSB

In this configuration, during idle periods:

■ SSIClk is forced High

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low, which causes slave data to be immediately
transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master
and slave data have been set, the SSIClk master clock pin becomes Low after one further half
SSIClk period. This means that data is captured on the falling edges and propagated on the rising
edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFss
line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed
High between each data word transfer. This is because the slave select pin freezes the data in its
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,
the master device must raise the SSIFss pin of the slave device between each data transfer to
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin
is returned to its idle state one SSIClk period after the last bit has been captured.

429June 02, 2008
Preliminary

LM3S5747 Microcontroller

15.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1
The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure
15-9 on page 430, which covers both single and continuous transfers.

Figure 15-9. Freescale SPI Frame Format with SPO=1 and SPH=1

4 to 16 bits

SSIClk

SSIFss

SSIRx

SSITx

Q Q

MSB

MSB

LSB

LSB

Note: Q is undefined.

In this configuration, during idle periods:

■ SSIClk is forced High

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled.
After a further one-half SSIClk period, both master and slave data are enabled onto their respective
transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then
captured on the rising edges and propagated on the falling edges of the SSIClk signal.

After all bits have been transferred, in the case of a single word transmission, the SSIFss line is
returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFss pin remains in its active Low state, until
the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words
and termination is the same as that of the single word transfer.

15.2.4.7 MICROWIRE Frame Format
Figure 15-10 on page 431 shows the MICROWIRE frame format, again for a single frame. Figure
15-11 on page 432 shows the same format when back-to-back frames are transmitted.

June 02, 2008430
Preliminary

Synchronous Serial Interface (SSI)

Figure 15-10. MICROWIRE Frame Format (Single Frame)

SSIClk

SSIFss

LSBMSBSSIRx

4 to 16 bits
output data

0

SSITx MSB LSB

8-bit control

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of
full-duplex, using a master-slave message passing technique. Each serial transmission begins with
an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this
transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip
slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has
been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the
total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

■ SSIClk is forced Low

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFss
causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial
shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the
SSITx pin. SSIFss remains Low for the duration of the frame transmission. The SSIRx pin remains
tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of
each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a
one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven
onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising
edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one
clock period after the last bit has been latched in the receive serial shifter, which causes the data
to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk
after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the samemanner as a single transfer.
However, the SSIFss line is continuously asserted (held Low) and transmission of data occurs
back-to-back. The control byte of the next frame follows directly after the LSB of the received data
from the current frame. Each of the received values is transferred from the receive shifter on the
falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.

431June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 15-11. MICROWIRE Frame Format (Continuous Transfer)

8-bit control

SSIClk

SSIFss

LSBMSBSSIRx

4 to 16 bits
output data

0

SSITx MSB LSBLSB

MSB

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of
SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that
the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 15-12 on page 432 illustrates these setup and hold time requirements. With respect to the
SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss
must have a setup of at least two times the period of SSIClk on which the SSI operates. With
respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one
SSIClk period.

Figure 15-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements

SSIClk

SSIFss

SSIRx

First RX data to be
sampled by SSI slave

tSetup=(2*tSSIClk)

tHold=tSSIClk

15.2.5 DMA Operation
The SSI peripheral provides an interface connected to the μDMA controller. The DMA operation of
the SSI is enabled through the SSI DMA Control (SSIDMACTL) register. When DMA operation is
enabled, the SSI will assert a DMA request on the receive or transmit channel when the associated
FIFO can transfer data. For the receive channel, a single transfer request is asserted whenever
there is any data in the receive FIFO. A burst transfer request is asserted whenever the amount of
data in the receive FIFO is 4 or more items. For the transmit channel, a single transfer request is
asserted whenever there is at least one empty location in the transmit FIFO. The burst request is
asserted whenever the transmit FIFO has 4 or more empty slots. The single and burst DMA transfer
requests are handled automatically by the μDMA controller depending how the DMA channel is
configured. To enable DMA operation for the receive channel, the RXDMAE bit of the DMA Control
(SSIDMACTL) register should be set. To enable DMA operation for the transmit channel, the TXDMAE
bit of SSIDMACTL should be set. If DMA is enabled, then the μDMA controller will trigger an interrupt
when a transfer is complete. The interrupt will occur on the SSI interrupt vector. Therefore, if interrupts

June 02, 2008432
Preliminary

Synchronous Serial Interface (SSI)

are used for SSI operation and DMA is enabled, the SSI interrupt handler must be designed to
handle the μDMA completion interrupt.

See “Micro Direct Memory Access (μDMA)” on page 183 for more details about programming the
μDMA controller.

15.3 Initialization and Configuration
To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

1. Ensure that the SSE bit in the SSICR1 register is disabled before making any configuration
changes.

2. Select whether the SSI is a master or slave:

a. For master operations, set the SSICR1 register to 0x0000.0000.

b. For slave mode (output enabled), set the SSICR1 register to 0x0000.0004.

c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.

3. Configure the clock prescale divisor by writing the SSICPSR register.

4. Write the SSICR0 register with the following configuration:

■ Serial clock rate (SCR)

■ Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)

■ The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)

■ The data size (DSS)

5. Optionally, configure the uDMA channel (see “Micro Direct Memory Access (μDMA)” on page 183)
and enable the DMA option(s) in the SSIDMACTL register.

6. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

■ Master operation

■ Freescale SPI mode (SPO=1, SPH=1)

■ 1 Mbps bit rate

■ 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))

In this case, if CPSDVSR=2, SCR must be 9.

433June 02, 2008
Preliminary

LM3S5747 Microcontroller

The configuration sequence would be as follows:

1. Ensure that the SSE bit in the SSICR1 register is disabled.

2. Write the SSICR1 register with a value of 0x0000.0000.

3. Write the SSICPSR register with a value of 0x0000.0002.

4. Write the SSICR0 register with a value of 0x0000.09C7.

5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

15.4 Register Map
Table 15-1 on page 434 lists the SSI registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that SSI module’s base address:

■ SSI0: 0x4000.8000

Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control
registers are reprogrammed.

Table 15-1. SSI Register Map

See
pageDescriptionResetTypeNameOffset

436SSI Control 00x0000.0000R/WSSICR00x000

438SSI Control 10x0000.0000R/WSSICR10x004

440SSI Data0x0000.0000R/WSSIDR0x008

441SSI Status0x0000.0003ROSSISR0x00C

443SSI Clock Prescale0x0000.0000R/WSSICPSR0x010

444SSI Interrupt Mask0x0000.0000R/WSSIIM0x014

446SSI Raw Interrupt Status0x0000.0008ROSSIRIS0x018

447SSI Masked Interrupt Status0x0000.0000ROSSIMIS0x01C

448SSI Interrupt Clear0x0000.0000W1CSSIICR0x020

449SSI DMA Control0x0000.0000R/WSSIDMACTL0x024

450SSI Peripheral Identification 40x0000.0000ROSSIPeriphID40xFD0

451SSI Peripheral Identification 50x0000.0000ROSSIPeriphID50xFD4

452SSI Peripheral Identification 60x0000.0000ROSSIPeriphID60xFD8

453SSI Peripheral Identification 70x0000.0000ROSSIPeriphID70xFDC

454SSI Peripheral Identification 00x0000.0022ROSSIPeriphID00xFE0

455SSI Peripheral Identification 10x0000.0000ROSSIPeriphID10xFE4

456SSI Peripheral Identification 20x0000.0018ROSSIPeriphID20xFE8

457SSI Peripheral Identification 30x0000.0001ROSSIPeriphID30xFEC

June 02, 2008434
Preliminary

Synchronous Serial Interface (SSI)

See
pageDescriptionResetTypeNameOffset

458SSI PrimeCell Identification 00x0000.000DROSSIPCellID00xFF0

459SSI PrimeCell Identification 10x0000.00F0ROSSIPCellID10xFF4

460SSI PrimeCell Identification 20x0000.0005ROSSIPCellID20xFF8

461SSI PrimeCell Identification 30x0000.00B1ROSSIPCellID30xFFC

15.5 Register Descriptions
The remainder of this section lists and describes the SSI registers, in numerical order by address
offset.

435June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 1: SSI Control 0 (SSICR0), offset 0x000
SSICR0 is control register 0 and contains bit fields that control various functions within the SSI
module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI Control 0 (SSICR0)
SSI0 base: 0x4000.8000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DSSFRFSPOSPHSCR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

SSI Serial Clock Rate

The value SCR is used to generate the transmit and receive bit rate of
the SSI. The bit rate is:

BR=FSSIClk/(CPSDVSR * (1 + SCR))

where CPSDVSR is an even value from 2-254 programmed in the
SSICPSR register, and SCR is a value from 0-255.

0x0000R/WSCR15:8

SSI Serial Clock Phase

This bit is only applicable to the Freescale SPI Format.

The SPH control bit selects the clock edge that captures data and allows
it to change state. It has the most impact on the first bit transmitted by
either allowing or not allowing a clock transition before the first data
capture edge.

When the SPH bit is 0, data is captured on the first clock edge transition.
If SPH is 1, data is captured on the second clock edge transition.

0R/WSPH7

SSI Serial Clock Polarity

This bit is only applicable to the Freescale SPI Format.

When the SPO bit is 0, it produces a steady state Low value on the
SSIClk pin. If SPO is 1, a steady state High value is placed on the
SSIClk pin when data is not being transferred.

0R/WSPO6

June 02, 2008436
Preliminary

Synchronous Serial Interface (SSI)

DescriptionResetTypeNameBit/Field

SSI Frame Format Select

The FRF values are defined as follows:

Frame FormatValue

Freescale SPI Frame Format0x0

Texas Intruments Synchronous Serial Frame Format0x1

MICROWIRE Frame Format0x2

Reserved0x3

0x0R/WFRF5:4

SSI Data Size Select

The DSS values are defined as follows:

Data SizeValue

Reserved0x0-0x2

4-bit data0x3

5-bit data0x4

6-bit data0x5

7-bit data0x6

8-bit data0x7

9-bit data0x8

10-bit data0x9

11-bit data0xA

12-bit data0xB

13-bit data0xC

14-bit data0xD

15-bit data0xE

16-bit data0xF

0x00R/WDSS3:0

437June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: SSI Control 1 (SSICR1), offset 0x004
SSICR1 is control register 1 and contains bit fields that control various functions within the SSI
module. Master and slave mode functionality is controlled by this register.

SSI Control 1 (SSICR1)
SSI0 base: 0x4000.8000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LBMSSEMSSODreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SSI Slave Mode Output Disable

This bit is relevant only in the Slave mode (MS=1). In multiple-slave
systems, it is possible for the SSI master to broadcast a message to all
slaves in the system while ensuring that only one slave drives data onto
the serial output line. In such systems, the TXD lines frommultiple slaves
could be tied together. To operate in such a system, the SOD bit can be
configured so that the SSI slave does not drive the SSITx pin.

The SOD values are defined as follows:

DescriptionValue

SSI can drive SSITx output in Slave Output mode.0

SSI must not drive the SSITx output in Slave mode.1

0R/WSOD3

SSI Master/Slave Select

This bit selects Master or Slave mode and can be modified only when
SSI is disabled (SSE=0).

The MS values are defined as follows:

DescriptionValue

Device configured as a master.0

Device configured as a slave.1

0R/WMS2

June 02, 2008438
Preliminary

Synchronous Serial Interface (SSI)

DescriptionResetTypeNameBit/Field

SSI Synchronous Serial Port Enable

Setting this bit enables SSI operation.

The SSE values are defined as follows:

DescriptionValue

SSI operation disabled.0

SSI operation enabled.1

Note: This bit must be set to 0 before any control registers
are reprogrammed.

0R/WSSE1

SSI Loopback Mode

Setting this bit enables Loopback Test mode.

The LBM values are defined as follows:

DescriptionValue

Normal serial port operation enabled.0

Output of the transmit serial shift register is connected internally
to the input of the receive serial shift register.

1

0R/WLBM0

439June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 3: SSI Data (SSIDR), offset 0x008
SSIDR is the data register and is 16-bits wide. When SSIDR is read, the entry in the receive FIFO
(pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI
receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed
to by the current FIFO write pointer).

When SSIDR is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written
to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is
loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed
bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the
transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is
automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is
eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer.
The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the SSICR1
register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR)
SSI0 base: 0x4000.8000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

SSI Receive/Transmit Data

A read operation reads the receive FIFO. A write operation writes the
transmit FIFO.

Software must right-justify data when the SSI is programmed for a data
size that is less than 16 bits. Unused bits at the top are ignored by the
transmit logic. The receive logic automatically right-justifies the data.

0x0000R/WDATA15:0

June 02, 2008440
Preliminary

Synchronous Serial Interface (SSI)

Register 4: SSI Status (SSISR), offset 0x00C
SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI Status (SSISR)
SSI0 base: 0x4000.8000
Offset 0x00C
Type RO, reset 0x0000.0003

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TFETNFRNERFFBSYreserved

R0ROROROROROROROROROROROROROROROType
1100000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:5

SSI Busy Bit

The BSY values are defined as follows:

DescriptionValue

SSI is idle.0

SSI is currently transmitting and/or receiving a frame, or the
transmit FIFO is not empty.

1

0ROBSY4

SSI Receive FIFO Full

The RFF values are defined as follows:

DescriptionValue

Receive FIFO is not full.0

Receive FIFO is full.1

0RORFF3

SSI Receive FIFO Not Empty

The RNE values are defined as follows:

DescriptionValue

Receive FIFO is empty.0

Receive FIFO is not empty.1

0RORNE2

SSI Transmit FIFO Not Full

The TNF values are defined as follows:

DescriptionValue

Transmit FIFO is full.0

Transmit FIFO is not full.1

1ROTNF1

441June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

SSI Transmit FIFO Empty

The TFE values are defined as follows:

DescriptionValue

Transmit FIFO is not empty.0

Transmit FIFO is empty.1

1R0TFE0

June 02, 2008442
Preliminary

Synchronous Serial Interface (SSI)

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010
SSICPSR is the clock prescale register and specifies the division factor by which the system clock
must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The
least-significant bit of the programmed number is hard-coded to zero. If an odd number is written
to this register, data read back from this register has the least-significant bit as zero.

SSI Clock Prescale (SSICPSR)
SSI0 base: 0x4000.8000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CPSDVSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Clock Prescale Divisor

This value must be an even number from 2 to 254, depending on the
frequency of SSIClk. The LSB always returns 0 on reads.

0x00R/WCPSDVSR7:0

443June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014
The SSIIM register is the interrupt mask set or clear register. It is a read/write register and all bits
are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to
the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding
mask.

SSI Interrupt Mask (SSIIM)
SSI0 base: 0x4000.8000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORIMRTIMRXIMTXIMreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SSI Transmit FIFO Interrupt Mask

The TXIM values are defined as follows:

DescriptionValue

TX FIFO half-full or less condition interrupt is masked.0

TX FIFO half-full or less condition interrupt is not masked.1

0R/WTXIM3

SSI Receive FIFO Interrupt Mask

The RXIM values are defined as follows:

DescriptionValue

RX FIFO half-full or more condition interrupt is masked.0

RX FIFO half-full or more condition interrupt is not masked.1

0R/WRXIM2

SSI Receive Time-Out Interrupt Mask

The RTIM values are defined as follows:

DescriptionValue

RX FIFO time-out interrupt is masked.0

RX FIFO time-out interrupt is not masked.1

0R/WRTIM1

June 02, 2008444
Preliminary

Synchronous Serial Interface (SSI)

DescriptionResetTypeNameBit/Field

SSI Receive Overrun Interrupt Mask

The RORIM values are defined as follows:

DescriptionValue

RX FIFO overrun interrupt is masked.0

RX FIFO overrun interrupt is not masked.1

0R/WRORIM0

445June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018
The SSIRIS register is the raw interrupt status register. On a read, this register gives the current
raw status value of the corresponding interrupt prior to masking. A write has no effect.

SSI Raw Interrupt Status (SSIRIS)
SSI0 base: 0x4000.8000
Offset 0x018
Type RO, reset 0x0000.0008

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORRISRTRISRXRISTXRISreserved

ROROROROROROROROROROROROROROROROType
0001000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SSI Transmit FIFO Raw Interrupt Status

Indicates that the transmit FIFO is half full or less, when set.

1ROTXRIS3

SSI Receive FIFO Raw Interrupt Status

Indicates that the receive FIFO is half full or more, when set.

0RORXRIS2

SSI Receive Time-Out Raw Interrupt Status

Indicates that the receive time-out has occurred, when set.

0RORTRIS1

SSI Receive Overrun Raw Interrupt Status

Indicates that the receive FIFO has overflowed, when set.

0RORORRIS0

June 02, 2008446
Preliminary

Synchronous Serial Interface (SSI)

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C
The SSIMIS register is the masked interrupt status register. On a read, this register gives the current
masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)
SSI0 base: 0x4000.8000
Offset 0x01C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORMISRTMISRXMISTXMISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:4

SSI Transmit FIFO Masked Interrupt Status

Indicates that the transmit FIFO is half full or less, when set.

0ROTXMIS3

SSI Receive FIFO Masked Interrupt Status

Indicates that the receive FIFO is half full or more, when set.

0RORXMIS2

SSI Receive Time-Out Masked Interrupt Status

Indicates that the receive time-out has occurred, when set.

0RORTMIS1

SSI Receive Overrun Masked Interrupt Status

Indicates that the receive FIFO has overflowed, when set.

0RORORMIS0

447June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020
The SSIICR register is the interrupt clear register. On a write of 1, the corresponding interrupt is
cleared. A write of 0 has no effect.

SSI Interrupt Clear (SSIICR)
SSI0 base: 0x4000.8000
Offset 0x020
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORICRTICreserved

W1CW1CROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:2

SSI Receive Time-Out Interrupt Clear

The RTIC values are defined as follows:

DescriptionValue

No effect on interrupt.0

Clears interrupt.1

0W1CRTIC1

SSI Receive Overrun Interrupt Clear

The RORIC values are defined as follows:

DescriptionValue

No effect on interrupt.0

Clears interrupt.1

0W1CRORIC0

June 02, 2008448
Preliminary

Synchronous Serial Interface (SSI)

Register 10: SSI DMA Control (SSIDMACTL), offset 0x024
The SSIDMACTL register is the DMA control register.

SSI DMA Control (SSIDMACTL)
SSI0 base: 0x4000.8000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXDMAETXDMAEreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:2

Transmit DMA Enable

If this bit is set to 1, DMA for the transmit FIFO is enabled.

0R/WTXDMAE1

Receive DMA Enable

If this bit is set to 1, DMA for the receive FIFO is enabled.

0R/WRXDMAE0

449June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 4 (SSIPeriphID4)
SSI0 base: 0x4000.8000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x00ROPID47:0

June 02, 2008450
Preliminary

Synchronous Serial Interface (SSI)

Register 12: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 5 (SSIPeriphID5)
SSI0 base: 0x4000.8000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID57:0

451June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 13: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 6 (SSIPeriphID6)
SSI0 base: 0x4000.8000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x00ROPID67:0

June 02, 2008452
Preliminary

Synchronous Serial Interface (SSI)

Register 14: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 7 (SSIPeriphID7)
SSI0 base: 0x4000.8000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x00ROPID77:0

453June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 15: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 0 (SSIPeriphID0)
SSI0 base: 0x4000.8000
Offset 0xFE0
Type RO, reset 0x0000.0022

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
0100010000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

SSI Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x22ROPID07:0

June 02, 2008454
Preliminary

Synchronous Serial Interface (SSI)

Register 16: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 1 (SSIPeriphID1)
SSI0 base: 0x4000.8000
Offset 0xFE4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register [15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID17:0

455June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 17: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 2 (SSIPeriphID2)
SSI0 base: 0x4000.8000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register [23:16]

Can be used by software to identify the presence of this peripheral.

0x18ROPID27:0

June 02, 2008456
Preliminary

Synchronous Serial Interface (SSI)

Register 18: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 3 (SSIPeriphID3)
SSI0 base: 0x4000.8000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register [31:24]

Can be used by software to identify the presence of this peripheral.

0x01ROPID37:0

457June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 19: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI PrimeCell Identification 0 (SSIPCellID0)
SSI0 base: 0x4000.8000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

June 02, 2008458
Preliminary

Synchronous Serial Interface (SSI)

Register 20: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI PrimeCell Identification 1 (SSIPCellID1)
SSI0 base: 0x4000.8000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

459June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 21: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI PrimeCell Identification 2 (SSIPCellID2)
SSI0 base: 0x4000.8000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

June 02, 2008460
Preliminary

Synchronous Serial Interface (SSI)

Register 22: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI PrimeCell Identification 3 (SSIPCellID3)
SSI0 base: 0x4000.8000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

461June 02, 2008
Preliminary

LM3S5747 Microcontroller

16 Inter-Integrated Circuit (I2C) Interface
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design
(a serial data line SDA and a serial clock line SCL), and interfaces to external I2C devices such as
serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I2C
bus may also be used for system testing and diagnostic purposes in product development and
manufacture. The LM3S5747microcontroller includes one I2Cmodule, providing the ability to interact
(both send and receive) with other I2C devices on the bus.

Devices on the I2C bus can be designated as either a master or a slave. The Stellaris® I2C module
supports both sending and receiving data as either a master or a slave, and also supports the
simultaneous operation as both a master and a slave. There are a total of four I2C modes: Master
Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris® I2C module can
operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I2C master and slave can generate interrupts; the I2C master generates interrupts when
a transmit or receive operation completes (or aborts due to an error) and the I2C slave generates
interrupts when data has been sent or requested by a master.

16.1 Block Diagram

Figure 16-1. I2C Block Diagram

I2C I/O Select

I2C Master Core

Interrupt

I2C Slave Core

I2CSCL

I2CSDA

I2CSDA

I2CSCL

I2CSDA

I2CSCL

I2CMSA

I2CMCS

I2CMDR

I2CMTPR

I2CMIMR

I2CMRIS

I2CMICR

I2CMCR

I2CSOAR

I2CSCSR

I2CSDR

I2CSIM

I2CSRIS

I2CSMIS

I2CSICRI2CMMIS

I2C Control

16.2 Functional Description
The I2Cmodule is comprised of both master and slave functions which are implemented as separate
peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional
open-drain pads. A typical I2C bus configuration is shown in Figure 16-2 on page 463.

See “I2C” on page 685 for I2C timing diagrams.

June 02, 2008462
Preliminary

Inter-Integrated Circuit (I2C) Interface

Figure 16-2. I2C Bus Configuration

RPUP

StellarisTM

I2CSCL I2CSDA

RPUP

3rd Party Device
with I2C Interface

SCL SDA

I2C Bus
SCL
SDA

3rd Party Device
with I2C Interface

SCL SDA

16.2.1 I2C Bus Functional Overview
The I2C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris®

microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock
line. The bus is considered idle when both lines are high.

Every transaction on the I2C bus is nine bits long, consisting of eight data bits and a single
acknowledge bit. The number of bytes per transfer (defined as the time between a valid START
and STOP condition, described in “START and STOP Conditions” on page 463) is unrestricted, but
each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When
a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the
transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

16.2.1.1 START and STOP Conditions
The protocol of the I2C bus defines two states to begin and end a transaction: START and STOP.
A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and
a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus
is considered busy after a START condition and free after a STOP condition. See Figure
16-3 on page 463.

Figure 16-3. START and STOP Conditions

START
condition

SDA

SCL
STOP

condition

SDA

SCL

When operating in slave mode, two bits in the I2CRIS register indicate detection of start and stop
conditions on the bus; while two bits in the I2CSMIS register allow start and stop conditions to be
promoted to controller interrupts (when interrupts are enabled).

16.2.1.2 Data Format with 7-Bit Address
Data transfers follow the format shown in Figure 16-4 on page 464. After the START condition, a
slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction
bit (R/S bit in the I2CMSA register). A zero indicates a transmit operation (send), and a one indicates
a request for data (receive). A data transfer is always terminated by a STOP condition generated
by the master, however, a master can initiate communications with another device on the bus by
generating a repeated START condition and addressing another slave without first generating a

463June 02, 2008
Preliminary

LM3S5747 Microcontroller

STOP condition. Various combinations of receive/send formats are then possible within a single
transfer.

Figure 16-4. Complete Data Transfer with a 7-Bit Address

DataSlave address

ACKLSBMSBACKR/SLSBMSBSDA

SCL 1 2 7 8 9 1 2 7 8 9

The first seven bits of the first byte make up the slave address (see Figure 16-5 on page 464). The
eighth bit determines the direction of the message. A zero in the R/S position of the first byte means
that the master will write (send) data to the selected slave, and a one in this position means that
the master will receive data from the slave.

Figure 16-5. R/S Bit in First Byte

R/S

LSB

Slave address

MSB

16.2.1.3 Data Validity
The data on the SDA line must be stable during the high period of the clock, and the data line can
only change when SCL is low (see Figure 16-6 on page 464).

Figure 16-6. Data Validity During Bit Transfer on the I2C Bus

Change
of data
allowed

Dataline
stable

SDA

SCL

16.2.1.4 Acknowledge
All bus transactions have a required acknowledge clock cycle that is generated by the master. During
the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line.
To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock
cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data
validity requirements described in “Data Validity” on page 464.

When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave
so that the master can generate a STOP condition and abort the current transfer. If the master
device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer
made by the slave. Since the master controls the number of bytes in the transfer, it signals the end
of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave
transmitter must then release SDA to allow the master to generate the STOP or a repeated START
condition.

June 02, 2008464
Preliminary

Inter-Integrated Circuit (I2C) Interface

16.2.1.5 Arbitration
A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate
a START condition within minimum hold time of the START condition. In these situations, an
arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the
competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low)
will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if
both masters are trying to address the same device, arbitration continues on to the comparison of
data bits.

16.2.2 Available Speed Modes
The I2C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

CLK_PRD is the system clock period

SCL_LP is the low phase of SCL (fixed at 6)

SCL_HP is the high phase of SCL (fixed at 4)

TIMER_PRD is the programmed value in the I2C Master Timer Period (I2CMTPR) register (see
page 482).

The I2C clock period is calculated as follows:

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

For example:

CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4

yields a SCL frequency of:

1/T = 333 Khz

Table 16-1 on page 465 gives examples of timer period, system clock, and speed mode (Standard
or Fast).

Table 16-1. Examples of I2C Master Timer Period versus Speed Mode

Fast ModeTimer PeriodStandard ModeTimer PeriodSystem Clock

--100 Kbps0x014 Mhz

--100 Kbps0x026 Mhz

312 Kbps0x0189 Kbps0x0612.5 Mhz

278 Kbps0x0293 Kbps0x0816.7 Mhz

333 Kbps0x02100 Kbps0x0920 Mhz

312 Kbps0x0396.2 Kbps0x0C25 Mhz

330 Kbps0x0497.1 Kbps0x1033Mhz

400 Kbps0x04100 Kbps0x1340Mhz

465June 02, 2008
Preliminary

LM3S5747 Microcontroller

Fast ModeTimer PeriodStandard ModeTimer PeriodSystem Clock

357 Kbps0x06100 Kbps0x1850Mhz

16.2.3 Interrupts
The I2C can generate interrupts when the following conditions are observed:

■ Master transaction completed

■ Master transaction error

■ Slave transaction received

■ Slave transaction requested

■ Stop condition on bus detected

■ Start condition on bus detected

There is a separate interrupt signal for the I2C master and I2C slave modules. While both modules
can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt
controller.

16.2.3.1 I2C Master Interrupts
The I2C master module generates an interrupt when a transaction completes (either transmit or
receive), or when an error occurs during a transaction. To enable the I2C master interrupt, software
must write a '1' to the I2C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition
is met, software must check the ERROR bit in the I2C Master Control/Status (I2CMCS) register to
verify that an error didn't occur during the last transaction. An error condition is asserted if the last
transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of
the bus due to a lost arbitration round with another master. If an error is not detected, the application
can proceed with the transfer. The interrupt is cleared by writing a '1' to the I2C Master Interrupt
Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via
the I2C Master Raw Interrupt Status (I2CMRIS) register.

16.2.3.2 I2C Slave Interrupts
The slave module generates interrupts as it receives data and transmit requests from an I2Cmaster.
The slave module also generates interrupts when a start and stop condition is detected. To enable
an I2C slave interrupt, write a '1' to the appropriate bit in the I2C Slave Interrupt Mask (I2CSIMR)
register. Software determines whether the module should write (transmit) or read (receive) data
from the I2C Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I2C Slave
Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a
transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a
'1' to the I2C Slave Interrupt Clear (I2CSICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via
the I2C Slave Raw Interrupt Status (I2CSRIS) register.

June 02, 2008466
Preliminary

Inter-Integrated Circuit (I2C) Interface

16.2.4 Loopback Operation
The I2C modules can be placed into an internal loopback mode for diagnostic or debug work. This
is accomplished by setting the LPBK bit in the I2C Master Configuration (I2CMCR) register. In
loopback mode, the SDA and SCL signals from the master and slave modules are tied together.

16.2.5 Command Sequence Flow Charts
This section details the steps required to perform the various I2C transfer types in both master and
slave mode.

16.2.5.1 I2C Master Command Sequences
The figures that follow show the command sequences available for the I2C master.

Figure 16-7. Master Single SEND

Idle

Write Slave
Address to
I2CMSA

Write data to
I2CMDR

Read I2CMCS

Sequence
may be

omitted in a
Single Master

system

BUSBSY bit=0?NO

Write ---0-111 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0?

ERROR bit=0?

YES

Error Service

Idle

YES

NO

NO

467June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 16-8. Master Single RECEIVE

Idle

Write Slave
Address to
I2CMSA

Read I2CMCS

Sequence may be
omitted in a Single
Master system

BUSBSY bit=0?NO

Write ---00111 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0?

ERROR bit=0?

YES

Error Service

Idle

NO

NO

Read data from
I2CMDR

YES

June 02, 2008468
Preliminary

Inter-Integrated Circuit (I2C) Interface

Figure 16-9. Master Burst SEND

Idle

Write Slave
Address to
I2CMSA

Write data to
I2CMDR

Read I2CMCS

BUSBSY bit=0?

YES

Write ---0-011 to
I2CMCS

NO

Read I2CMCS

BUSY bit=0?

YES

ERROR bit=0?

YES

ARBLST bit=1?Write data to
I2CMDR

Write ---0-100 to
I2CMCSIndex=n?

NO

Error Service

Idle

YES

Write ---0-001 to
I2CMCS

Write ---0-101 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0?

ERROR bit=0?

YES

NO

Idle

YES

Error Service NO

NO

NO

NO

Sequence
may be

omitted in a
Single Master

system

469June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 16-10. Master Burst RECEIVE

Idle

Write Slave
Address to
I2CMSA

Read I2CMCS

BUSBSY bit=0?NO

Write ---01011 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0? NO

ERROR bit=0?

YES

ARBLST bit=1?

Write ---0-100 to
I2CMCS

NO

Error Service

YES

Idle

Read data from
I2CMDR

Index=m-1?

Write ---00101 to
I2CMCS

YES

Idle

Read data from
I2CMDRError Service

ERROR bit=0?

YES

Write ---01001 to
I2CMCS

Read I2CMCS

BUSY bit=0? NO

YES

Sequence
may be

omitted in a
Single Master

system

NO

NO

NO

June 02, 2008470
Preliminary

Inter-Integrated Circuit (I2C) Interface

Figure 16-11. Master Burst RECEIVE after Burst SEND

Idle

Master operates in
Master Transmit mode

STOP condition is not
generated

Write Slave
Address to
I2CMSA

Write ---01011 to
I2CMCS

Master operates in
Master Receive mode

Idle

Repeated START
condition is generated
with changing data

direction

471June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 16-12. Master Burst SEND after Burst RECEIVE

Idle

Master operates in
Master Receive mode

STOP condition is not
generated

Write Slave
Address to
I2CMSA

Write ---0-011 to
I2CMCS

Master operates in
Master Transmit mode

Idle

Repeated START
condition is generated
with changing data

direction

16.2.5.2 I2C Slave Command Sequences
Figure 16-13 on page 473 presents the command sequence available for the I2C slave.

June 02, 2008472
Preliminary

Inter-Integrated Circuit (I2C) Interface

Figure 16-13. Slave Command Sequence

Idle

Write OWN Slave
Address to
I2CSOAR

Write -------1 to
I2CSCSR

Read I2CSCSR

RREQ bit=1?

Read data from
I2CSDR

YES

TREQ bit=1? NO

Write data to
I2CSDR

YES

NO

FBR is
also valid

16.3 Initialization and Configuration
The following example shows how to configure the I2C module to send a single byte as a master.
This assumes the system clock is 20 MHz.

1. Enable the I2C clock by writing a value of 0x0000.1000 to the RCGC1 register in the System
Control module.

2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module.

3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register. Also, be sure to enable the same pins for Open Drain operation.

4. Initialize the I2C Master by writing the I2CMCR register with a value of 0x0000.0020.

5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct
value. The value written to the I2CMTPR register represents the number of system clock periods
in one SCL clock period. The TPR value is determined by the following equation:

473June 02, 2008
Preliminary

LM3S5747 Microcontroller

TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;
TPR = 9

Write the I2CMTPR register with the value of 0x0000.0009.

6. Specify the slave address of the master and that the next operation will be a Send by writing
the I2CMSA register with a value of 0x0000.0076. This sets the slave address to 0x3B.

7. Place data (byte) to be sent in the data register by writing the I2CMDR register with the desired
data.

8. Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with
a value of 0x0000.0007 (STOP, START, RUN).

9. Wait until the transmission completes by polling the I2CMCS register’s BUSBSY bit until it has
been cleared.

16.4 I2C Register Map
Table 16-2 on page 474 lists the I2C registers. All addresses given are relative to the I2C base
addresses for the master and slave:

■ I2C Master 0: 0x4002.0000

■ I2C Slave 0: 0x4002.0800

Table 16-2. Inter-Integrated Circuit (I2C) Interface Register Map

See
pageDescriptionResetTypeNameOffset

I2C Master

476I2C Master Slave Address0x0000.0000R/WI2CMSA0x000

477I2C Master Control/Status0x0000.0000R/WI2CMCS0x004

481I2C Master Data0x0000.0000R/WI2CMDR0x008

482I2C Master Timer Period0x0000.0001R/WI2CMTPR0x00C

483I2C Master Interrupt Mask0x0000.0000R/WI2CMIMR0x010

484I2C Master Raw Interrupt Status0x0000.0000ROI2CMRIS0x014

485I2C Master Masked Interrupt Status0x0000.0000ROI2CMMIS0x018

486I2C Master Interrupt Clear0x0000.0000WOI2CMICR0x01C

487I2C Master Configuration0x0000.0000R/WI2CMCR0x020

I2C Slave

489I2C Slave Own Address0x0000.0000R/WI2CSOAR0x000

490I2C Slave Control/Status0x0000.0000ROI2CSCSR0x004

492I2C Slave Data0x0000.0000R/WI2CSDR0x008

493I2C Slave Interrupt Mask0x0000.0000R/WI2CSIMR0x00C

June 02, 2008474
Preliminary

Inter-Integrated Circuit (I2C) Interface

See
pageDescriptionResetTypeNameOffset

494I2C Slave Raw Interrupt Status0x0000.0000ROI2CSRIS0x010

495I2C Slave Masked Interrupt Status0x0000.0000ROI2CSMIS0x014

496I2C Slave Interrupt Clear0x0000.0000WOI2CSICR0x018

16.5 Register Descriptions (I2C Master)
The remainder of this section lists and describes the I2C master registers, in numerical order by
address offset. See also “Register Descriptions (I2C Slave)” on page 488.

475June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 1: I2C Master Slave Address (I2CMSA), offset 0x000
This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which
determines if the next operation is a Receive (High), or Send (Low).

I2C Master Slave Address (I2CMSA)
I2C Master 0 base: 0x4002.0000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

R/SSAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

I2C Slave Address

This field specifies bits A6 through A0 of the slave address.

0R/WSA7:1

Receive/Send

The R/S bit specifies if the next operation is a Receive (High) or Send
(Low).

DescriptionValue

Send.0

Receive.1

0R/WR/S0

June 02, 2008476
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 2: I2C Master Control/Status (I2CMCS), offset 0x004
This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I2C bus
controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes
the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst.
To generate a single send cycle, the I2C Master Slave Address (I2CMSA) register is written with
the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1),
STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed
(or aborted due an error), the interrupt pin becomes active and the data may be read from the
I2CMDR register. When the I2C module operates in Master receiver mode, the ACK bit must be set
normally to logic 1. This causes the I2C bus controller to send an acknowledge automatically after
each byte. This bit must be reset when the I2C bus controller requires no further data to be sent
from the slave transmitter.

Read-Only Status Register

I2C Master Control/Status (I2CMCS)
I2C Master 0 base: 0x4002.0000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BUSYERRORADRACKDATACKARBLSTIDLEBUSBSYreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:7

Bus Busy

This bit specifies the state of the I2C bus. If set, the bus is busy;
otherwise, the bus is idle. The bit changes based on the START and
STOP conditions.

0ROBUSBSY6

I2C Idle

This bit specifies the I2C controller state. If set, the controller is idle;
otherwise the controller is not idle.

0ROIDLE5

Arbitration Lost

This bit specifies the result of bus arbitration. If set, the controller lost
arbitration; otherwise, the controller won arbitration.

0ROARBLST4

477June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Acknowledge Data

This bit specifies the result of the last data operation. If set, the
transmitted data was not acknowledged; otherwise, the data was
acknowledged.

0RODATACK3

Acknowledge Address

This bit specifies the result of the last address operation. If set, the
transmitted address was not acknowledged; otherwise, the address was
acknowledged.

0ROADRACK2

Error

This bit specifies the result of the last bus operation. If set, an error
occurred on the last operation; otherwise, no error was detected. The
error can be from the slave address not being acknowledged, the
transmit data not being acknowledged, or because the controller lost
arbitration.

0ROERROR1

I2C Busy

This bit specifies the state of the controller. If set, the controller is busy;
otherwise, the controller is idle. When the BUSY bit is set, the other status
bits are not valid.

0ROBUSY0

Write-Only Control Register

I2C Master Control/Status (I2CMCS)
I2C Master 0 base: 0x4002.0000
Offset 0x004
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

RUNSTARTSTOPACKreserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00WOreserved31:4

Data Acknowledge Enable

When set, causes received data byte to be acknowledged automatically
by the master. See field decoding in Table 16-3 on page 479.

0WOACK3

Generate STOP

When set, causes the generation of the STOP condition. See field
decoding in Table 16-3 on page 479.

0WOSTOP2

June 02, 2008478
Preliminary

Inter-Integrated Circuit (I2C) Interface

DescriptionResetTypeNameBit/Field

Generate START

When set, causes the generation of a START or repeated START
condition. See field decoding in Table 16-3 on page 479.

0WOSTART1

I2C Master Enable

When set, allows the master to send or receive data. See field decoding
in Table 16-3 on page 479.

0WORUN0

Table 16-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

DescriptionI2CMCS[3:0]I2CMSA[0]Current
State RUNSTARTSTOPACKR/S

START condition followed by SEND (master goes to the
Master Transmit state).

110Xa0Idle

START condition followed by a SEND and STOP
condition (master remains in Idle state).

111X0

START condition followed by RECEIVE operation with
negative ACK (master goes to the Master Receive state).

11001

START condition followed by RECEIVE and STOP
condition (master remains in Idle state).

11101

START condition followed by RECEIVE (master goes to
the Master Receive state).

11011

Illegal.11111

NOP.All other combinations not listed are non-operations.

SEND operation (master remains in Master Transmit
state).

100XXMaster
Transmit

STOP condition (master goes to Idle state).001XX

SEND followed by STOP condition (master goes to Idle
state).

101XX

Repeated START condition followed by a SEND (master
remains in Master Transmit state).

110X0

Repeated START condition followed by SEND and STOP
condition (master goes to Idle state).

111X0

Repeated START condition followed by a RECEIVE
operation with a negative ACK (master goes to Master
Receive state).

11001

Repeated START condition followed by a SEND and
STOP condition (master goes to Idle state).

11101

Repeated START condition followed by RECEIVE (master
goes to Master Receive state).

11011

Illegal.11111

NOP.All other combinations not listed are non-operations.

479June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionI2CMCS[3:0]I2CMSA[0]Current
State RUNSTARTSTOPACKR/S

RECEIVE operation with negative ACK (master remains
in Master Receive state).

1000XMaster
Receive

STOP condition (master goes to Idle state).b001XX

RECEIVE followed by STOP condition (master goes to
Idle state).

1010X

RECEIVE operation (master remains in Master Receive
state).

1001X

Illegal.1011X

Repeated START condition followed by RECEIVE
operation with a negative ACK (master remains in Master
Receive state).

11001

Repeated START condition followed by RECEIVE and
STOP condition (master goes to Idle state).

11101

Repeated START condition followed by RECEIVE (master
remains in Master Receive state).

11011

Repeated START condition followed by SEND (master
goes to Master Transmit state).

110X0

Repeated START condition followed by SEND and STOP
condition (master goes to Idle state).

111X0

NOP.All other combinations not listed are non-operations.

a. An X in a table cell indicates the bit can be 0 or 1.
b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by

the master or an Address Negative Acknowledge executed by the slave.

June 02, 2008480
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 3: I2C Master Data (I2CMDR), offset 0x008
This register contains the data to be transmitted when in the Master Transmit state, and the data
received when in the Master Receive state.

I2C Master Data (I2CMDR)
I2C Master 0 base: 0x4002.0000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Data Transferred

Data transferred during transaction.

0x00R/WDATA7:0

481June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C
This register specifies the period of the SCL clock.

I2C Master Timer Period (I2CMTPR)
I2C Master 0 base: 0x4002.0000
Offset 0x00C
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TPRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SCL Clock Period

This field specifies the period of the SCL clock.

SCL_PRD = 2*(1 + TPR)*(SCL_LP + SCL_HP)*CLK_PRD

where:

SCL_PRD is the SCL line period (I2C clock).

TPR is the Timer Period register value (range of 1 to 255).

SCL_LP is the SCL Low period (fixed at 6).

SCL_HP is the SCL High period (fixed at 4).

0x1R/WTPR7:0

June 02, 2008482
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010
This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Master Interrupt Mask (I2CMIMR)
I2C Master 0 base: 0x4002.0000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IMreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Interrupt Mask

This bit controls whether a raw interrupt is promoted to a controller
interrupt. If set, the interrupt is not masked and the interrupt is promoted;
otherwise, the interrupt is masked.

0R/WIM0

483June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014
This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)
I2C Master 0 base: 0x4002.0000
Offset 0x014
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Raw Interrupt Status

This bit specifies the raw interrupt state (prior to masking) of the I2C
master block. If set, an interrupt is pending; otherwise, an interrupt is
not pending.

0RORIS0

June 02, 2008484
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018
This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CMMIS)
I2C Master 0 base: 0x4002.0000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Masked Interrupt Status

This bit specifies the raw interrupt state (after masking) of the I2Cmaster
block. If set, an interrupt was signaled; otherwise, an interrupt has not
been generated since the bit was last cleared.

0ROMIS0

485June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C
This register clears the raw interrupt.

I2C Master Interrupt Clear (I2CMICR)
I2C Master 0 base: 0x4002.0000
Offset 0x01C
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ICreserved

WOROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Interrupt Clear

This bit controls the clearing of the raw interrupt. A write of 1 clears the
interrupt; otherwise, a write of 0 has no affect on the interrupt state. A
read of this register returns no meaningful data.

0WOIC0

June 02, 2008486
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 9: I2C Master Configuration (I2CMCR), offset 0x020
This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

I2C Master Configuration (I2CMCR)
I2C Master 0 base: 0x4002.0000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LPBKreservedMFESFEreserved

R/WROROROR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

I2C Slave Function Enable

This bit specifies whether the interface may operate in Slave mode. If
set, Slave mode is enabled; otherwise, Slave mode is disabled.

0R/WSFE5

I2C Master Function Enable

This bit specifies whether the interface may operate in Master mode. If
set, Master mode is enabled; otherwise, Master mode is disabled and
the interface clock is disabled.

0R/WMFE4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:1

I2C Loopback

This bit specifies whether the interface is operating normally or in
Loopback mode. If set, the device is put in a test mode loopback
configuration; otherwise, the device operates normally.

0R/WLPBK0

487June 02, 2008
Preliminary

LM3S5747 Microcontroller

16.6 Register Descriptions (I2C Slave)
The remainder of this section lists and describes the I2C slave registers, in numerical order by
address offset. See also “Register Descriptions (I2C Master)” on page 475.

June 02, 2008488
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000
This register consists of seven address bits that identify the Stellaris® I2C device on the I2C bus.

I2C Slave Own Address (I2CSOAR)
I2C Slave 0 base: 0x4002.0800
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

OARreserved

R/WR/WR/WR/WR/WR/WR/WROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:7

I2C Slave Own Address

This field specifies bits A6 through A0 of the slave address.

0x00R/WOAR6:0

489June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004
This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First
Byte Received (FBR) bit is set only after the Stellaris® device detects its own slave address
and receives the first data byte from the I2C master. The Receive Request (RREQ) bit indicates
that the Stellaris® I2C device has received a data byte from an I2C master. Read one data byte from
the I2C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit
indicates that the Stellaris® I2C device is addressed as a Slave Transmitter. Write one data byte
into the I2C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the
Stellaris® I2C slave operation.

Read-Only Status Register

I2C Slave Control/Status (I2CSCSR)
I2C Slave 0 base: 0x4002.0800
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RREQTREQFBRreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

First Byte Received

Indicates that the first byte following the slave’s own address is received.
This bit is only valid when the RREQ bit is set, and is automatically cleared
when data has been read from the I2CSDR register.

Note: This bit is not used for slave transmit operations.

0ROFBR2

Transmit Request

This bit specifies the state of the I2C slave with regards to outstanding
transmit requests. If set, the I2C unit has been addressed as a slave
transmitter and uses clock stretching to delay the master until data has
been written to the I2CSDR register. Otherwise, there is no outstanding
transmit request.

0ROTREQ1

June 02, 2008490
Preliminary

Inter-Integrated Circuit (I2C) Interface

DescriptionResetTypeNameBit/Field

Receive Request

This bit specifies the status of the I2C slave with regards to outstanding
receive requests. If set, the I2C unit has outstanding receive data from
the I2C master and uses clock stretching to delay the master until the
data has been read from the I2CSDR register. Otherwise, no receive
data is outstanding.

0RORREQ0

Write-Only Control Register

I2C Slave Control/Status (I2CSCSR)
I2C Slave 0 base: 0x4002.0800
Offset 0x004
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DAreserved

WOROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Device Active

DescriptionValue

Disables the I2C slave operation.0

Enables the I2C slave operation.1

0WODA0

491June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: I2C Slave Data (I2CSDR), offset 0x008
This register contains the data to be transmitted when in the Slave Transmit state, and the data
received when in the Slave Receive state.

I2C Slave Data (I2CSDR)
I2C Slave 0 base: 0x4002.0800
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Data for Transfer

This field contains the data for transfer during a slave receive or transmit
operation.

0x0R/WDATA7:0

June 02, 2008492
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C
This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Slave Interrupt Mask (I2CSIMR)
I2C Slave 0 base: 0x4002.0800
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAIMSTARTIMSTOPIMreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Interrupt Mask

This bit controls whether the raw interrupt for detection of a stop condition
on the I2C bus is promoted to a controller interrupt. If set, the interrupt
is not masked and the interrupt is promoted; otherwise, the interrupt is
masked.

0ROSTOPIM2

Start Condition Interrupt Mask

This bit controls whether the raw interrupt for detection of a start condition
on the I2C bus is promoted to a controller interrupt. If set, the interrupt
is not masked and the interrupt is promoted; otherwise, the interrupt is
masked.

0ROSTARTIM1

Data Interrupt Mask

This bit controls whether the raw interrupt for data received and data
requested is promoted to a controller interrupt. If set, the interrupt is not
masked and the interrupt is promoted; otherwise, the interrupt is masked.

0R/WDATAIM0

493June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010
This register specifies whether an interrupt is pending.

I2C Slave Raw Interrupt Status (I2CSRIS)
I2C Slave 0 base: 0x4002.0800
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATARISSTARTRISSTOPRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Raw Interrupt Status

This bit specifies the raw interrupt state for stop condition detect (prior
to masking) of the I2C slave block. If set, an interrupt is pending;
otherwise, an interrupt is not pending.

0ROSTOPRIS2

Start Condition Raw Interrupt Status

This bit specifies the raw interrupt state for start condition detect (prior
to masking) of the I2C slave block. If set, an interrupt is pending;
otherwise, an interrupt is not pending.

0ROSTARTRIS1

Data Raw Interrupt Status

This bit specifies the raw interrupt state for data received and data
requested (prior to masking) of the I2C slave block. If set, an interrupt
is pending; otherwise, an interrupt is not pending.

0RODATARIS0

June 02, 2008494
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014
This register specifies whether an interrupt was signaled.

I2C Slave Masked Interrupt Status (I2CSMIS)
I2C Slave 0 base: 0x4002.0800
Offset 0x014
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAMISSTARTMISSTOPMISreserved

RORWRWROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Masked Interrupt Status

This bit specifies the interrupt state for stop condition detect (after
masking) of the I2C slave block. If set, an interrupt was signaled;
otherwise, an interrupt has not been generated since the bit was last
cleared.

0RWSTOPMIS2

Start Condition Masked Interrupt Status

This bit specifies the interrupt state for start condition detect (after
masking) of the I2C slave block. If set, an interrupt was signaled;
otherwise, an interrupt has not been generated since the bit was last
cleared.

0RWSTARTMIS1

Data Masked Interrupt Status

This bit specifies the interrupt state for data received and data requested
(after masking) of the I2C slave block. If set, an interrupt was signaled;
otherwise, an interrupt has not been generated since the bit was last
cleared.

0RODATAMIS0

495June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018
This register clears the raw interrupt. A read of this register returns no meaningful data.

I2C Slave Interrupt Clear (I2CSICR)
I2C Slave 0 base: 0x4002.0800
Offset 0x018
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAICSTARTICSTOPICreserved

WOWOWOROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Interrupt Clear

This bit controls the clearing of the raw interrupt for stop condition detect.
When set, it clears the STOPRIS interrupt bit; otherwise, it has no effect
on the STOPRIS bit value.

0WOSTOPIC2

Start Condition Interrupt Clear

This bit controls the clearing of the raw interrupt for start condition detect.
When set, it clears the STARTRIS interrupt bit; otherwise, it has no effect
on the STARTRIS bit value.

0WOSTARTIC1

Data Interrupt Clear

This bit controls the clearing of the raw interrupt for data received and
data requested. When set, it clears the DATARIS interrupt bit; otherwise,
it has no effect on the DATARIS bit value.

0WODATAIC0

June 02, 2008496
Preliminary

Inter-Integrated Circuit (I2C) Interface

17 Controller Area Network (CAN) Module
17.1 Controller Area Network Overview

Controller Area Network (CAN) is a multicast shared serial bus standard for connecting electronic
control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy
environments and can utilize a differential balanced line like RS-485 or a more robust twisted-pair
wire. Originally created for automotive purposes, it is also used in many embedded control
applications (such as industrial and medical). Bit rates up to 1 Mbps are possible at network lengths
below 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kbps at
500 m).

17.2 Controller Area Network Features
The Stellaris® CAN module supports the following features:

■ CAN protocol version 2.0 part A/B
■ Bit rates up to 1 Mbps
■ 32 message objects
■ Each message object has its own identifier mask
■ Maskable interrupt
■ Disable Automatic Retransmission mode for Time Triggered CAN (TTCAN) applications
■ Programmable Loopback mode for self-test operation
■ Programmable FIFO mode
■ Gluelessly attachable to an external CAN PHY through the CAN0Tx and CAN0Rx pins

497June 02, 2008
Preliminary

LM3S5747 Microcontroller

17.3 Controller Area Network Block Diagram

Figure 17-1. CAN Module Block Diagram

APB
Interface CAN Core

CANCTL
CANSTS
CANBIT
CANINT
CANTST
CANBRPE

CANIF1CRQ
CANIF1CMSK
CANIF1MSK1
CANIF1MSK2
CANIF1ARB1
CANIF1ARB2
CANIF1MCTL
CANIF1DA1
CANIF1DA2
CANIF1DB1
CANIF1DB2

CANIF2CRQ
CANIF2CMSK
CANIF2MSK1
CANIF2MSK2
CANIF2ARB1
CANIF2ARB2
CANIF2MCTL
CANIF2DA1
CANIF2DA2
CANIF2DB1
CANIF2DB2

ABP Pins CAN Tx/Rx

Message RAM
32 Message Objects

17.4 Controller Area Network Functional Description
The CAN module conforms to the CAN protocol version 2.0 (parts A and B). Message transfers that
include data, remote, error, and overload frames with an 11-bit identifier (standard) or a 29-bit
identifier (extended) are supported. Transfer rates can be programmed up to 1 Mbps.

The CAN module consists of three major parts:

■ CAN protocol controller and message handler
■ Message memory
■ CAN register interface

The protocol controller transfers and receives the serial data from the CAN bus and passes the data
on to the message handler. The message handler then loads this information into the appropriate
message object based on the current filtering and identifiers in the message object memory. The
message handler is also responsible for generating interrupts based on events on the CAN bus.

June 02, 2008498
Preliminary

Controller Area Network (CAN) Module

Themessage object memory is a set of 32 identical memory blocks that hold the current configuration,
status, and actual data for each message object. These are accessed via the CAN message object
register interface. The message memory is not directly accessable in the Stellaris® memory map,
so the Stellaris® CAN controller provides an interface to communicate with the message memory.

The CAN message object register interface provides two register sets for communicating with the
message objects. Since there is no direct access to the message object memory, these two interfaces
must be used to read or write to each message object. The two message object interfaces allow
parallel access to the CAN controller message objects when multiple objects may have new
information that needs to be processed.

17.4.1 Initialization
The software initialization is started by setting the INIT bit in the CAN Control (CANCTL) register
(with software or by a hardware reset) or by going bus-off, which occurs when the transmitter's error
counter exceeds a count of 255. While INIT is set, all message transfers to and from the CAN bus
are stopped and the status of the CAN transmit output is recessive (High). Entering the initialization
state does not change the configuration of the CAN controller, the message objects, or the error
counters. However, some configuration registers are only accessible when in the initialization state.

To initialize the CAN controller, set the CAN Bit Timing (CANBIT) register and configure each
message object. If a message object is not needed, it is sufficient to set it as not valid by clearing
the MsgVal bit in the CANIFnARB2 register. Otherwise, the whole message object has to be
initialized, as the fields of the message object may not have valid information, causing unexpected
results. Access to the CAN Bit Timing (CANBIT) register and to the CAN Baud Rate Prescalar
Extension (CANBRPE) register to configure the bit timing is enabled when both the INIT and CCE
bits in the CANCTL register are set. To leave the initialization state, the INIT bit must be cleared.
Afterwards, the internal Bit Stream Processor (BSP) synchronizes itself to the data transfer on the
CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus Idle)
before it takes part in bus activities and starts message transfers. The initialization of the message
objects is independent of being in the initialization state and can be done on the fly, but message
objects should all be configured to particular identifiers or set to not valid before the BSP starts the
message transfer. To change the configuration of a message object during normal operation, set
the MsgVal bit in the CANIFnARB2 register to 0 (not valid). When the configuration is completed,
MsgVal is set to 1 again (valid).

17.4.2 Operation
Once the CAN module is initialized and the INIT bit in the CANCTL register is reset to 0, the CAN
module synchronizes itself to the CAN bus and starts the message transfer. As messages are
received, they are stored in their appropriate message objects if they pass the message handler's
filtering. The whole message (including all arbitration bits, data-length code, and eight data bytes)
is stored in the message object. If the Identifier Mask (the Msk bits in the CANIFnMSKn registers)
is used, the arbitration bits that are masked to "don't care" may be overwritten in the message object.

The CPUmay read or write eachmessage at any time via the CAN Interface Registers (CANIFnCRQ,
CANIFnCMSK, CANIFnMSKn, CANIFnARBn, CANIFnMCTL, CANIFnDAn, and CANIFnDBn).
The message handler guarantees data consistency in case of concurrent accesses.

The transmission of message objects is under the control of the software that is managing the CAN
hardware. These can be message objects used for one-time data transfers, or permanent message
objects used to respond in a more periodic manner. Permanent message objects have all arbitration
and control set up, and only the data bytes are updated. To start the transmission, the TxRqst bit
in theCANTXRQn register and the NewDat bit in theCANNWDAn register are set. If several transmit
messages are assigned to the same message object (when the number of message objects is not

499June 02, 2008
Preliminary

LM3S5747 Microcontroller

sufficient), the whole message object has to be configured before the transmission of this message
is requested.

The transmission of any number of message objects may be requested at the same time; they are
transmitted according to their internal priority, which is based on the message identifier for the
message object. Messages may be updated or set to not valid any time, even when their requested
transmission is still pending. The old data is discarded when amessage is updated before its pending
transmission has started. Depending on the configuration of the message object, the transmission
of a message may be requested autonomously by the reception of a remote frame with a matching
identifier.

There are two sets of CAN Interface Registers (CANIF1x and CANIF2x), which are used to access
the Message Objects in the Message RAM. The CAN controller coordinates transfers to and from
the Message RAM to and from the registers. The function of the two sets are independent and
identical and can be used to queue transactions.

17.4.3 Transmitting Message Objects
If the internal transmit shift register of the CAN module is ready for loading, and if there is no data
transfer between the CAN Interface Registers and message RAM, the valid message object with
the highest priority that has a pending transmission request is loaded into the transmit shift register
by the message handler and the transmission is started. The message object's NewDat bit is reset
and can be viewed in the CANNWDAn register. After a successful transmission, and if no new data
was written to the message object since the start of the transmission, the TxRqst bit in the
CANIFnCMSK register is reset. If the TxIE bit in the CANIFnMCTL register is set, the IntPnd bit
in the CANIFnMCTL register is set after a successful transmission. If the CAN module has lost the
arbitration or if an error occurred during the transmission, the message is re-transmitted as soon
as the CAN bus is free again. If, meanwhile, the transmission of a message with higher priority has
been requested, the messages are transmitted in the order of their priority.

17.4.4 Configuring a Transmit Message Object
Table 17-1 on page 500 specifies the bit settings for a transmit message object.

Table 17-1. Transmit Message Object Bit Settings

CANIFnMCTLCANIFnARB2CANIFnMCTLCANIFnCMSKCANIFnARB2Register

TxRqstRmtEnIntPndTxIERxIEMsgLstNewDatDirEoBMaskDataArbMsgValBit

0appl0appl00011applapplappl1Value

The Xtd and ID bit fields in the CANIFnARBn registers are set by an application. They define the
identifier and type of the outgoing message. If an 11-bit Identifier (Standard Frame) is used, it is
programmed to bits [12:2] of CANIFnARB2, and the remaining identifier bits are not used by the
CAN controller.

If the TxIE bit is set, the IntPnd bit is set after a successful transmission of the message object.

When the RmtEn bit is set, a matching received remote frame causes the TxRqst bit to be set and
the message object automatically transfers the message object's data or generates an interrupt
indicating a remote frame was requested. This can be strictly a single message identifier or it can
be a range of values specified in the message object. The CAN mask registers, CANIFnMSKn,
configure which groups of frames are identified as remote frame requests. The UMask bit in the
CANIFnMCTL register enables the Msk bits in the CANIFnMSKn register to filter which frames are
identified as a remote frame request. The MXtd bit should be set if only 29-bit extended identifiers
should trigger a remote frame request.

June 02, 2008500
Preliminary

Controller Area Network (CAN) Module

The DLC bit in the CANIFnMCTL register is set to the number of bytes to transfer to the message
object. TxRqst and RmtEn should not be set before the data is valid, as the current data in the
message object can be transmitted as soon as these bits are set.

17.4.5 Updating a Transmit Message Object
The CPU may update the data bytes of a Transmit Message Object any time via the CAN Interface
Registers and neither the MsgVal nor the TxRqst bits have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding
CANIFnDAn orCANIFnDBn register have to be valid before the content of that register is transferred
to the message object. Either the CPU has to write all four bytes into theCANIFnDAn orCANIFnDBn
register or the message object is transferred to the CANIFnDAn or CANIFnDBn register before the
CPU writes the new data bytes.

In order to only update the data in a message object, the WR, NewDat, DataA, and DataB bits are
written to the CAN IFn Command Mask (CANIFnMSKn) register, followed by writing the CAN IFn
Data registers, and then the number of the message object is written to the CAN IFn Command
Request (CANIFnCRQ) register, to update the data bytes and the TxRqst bit at the same time.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress while
the data is updated, NewDat has to be set together with TxRqst. When NewDat is set together
with TxRqst, NewDat is reset as soon as the new transmission has started.

17.4.6 Accepting Received Message Objects
When the arbitration and control field (ID + Xtd + RmtEn + DLC) of an incoming message is
completely shifted into the CAN module, the message handling capability of the module starts
scanning the message RAM for a matching valid message object. To scan the message RAM for
a matching message object, the Acceptance Filtering unit is loaded with the arbitration bits from the
core. Then the arbitration and mask fields (including MsgVal, UMask, NewDat, and EoB) of message
object 1 are loaded into the Acceptance Filtering unit and compared with the arbitration field from
the shift register. This is repeated with each following message object until a matching message
object is found or until the end of the message RAM is reached. If a match occurs, the scanning is
stopped and the message handler proceeds depending on the type of frame received.

17.4.7 Receiving a Data Frame
The message handler stores the message from the CAN module receive shift register into the
respective message object in the message RAM. It stores the data bytes, all arbitration bits, and
the Data Length Code into the corresponding message object. This is implemented to keep the data
bytes connected with the identifier even if arbitration mask registers are used. The NewDat bit of
theCANIFnMCTL register is set to indicate that new data has been received. The CPU should reset
this bit when it reads the message object to indicate to the controller that the message has been
received and the buffer is free to receive more messages. If the CAN controller receives a message
and the NewDat bit was already set, the MsgLst bit is set to indicate that the previous data was
lost. If the RxIE bit of the CANIFnMCTL register is set, the IntPnd bit of the same register is set,
causing the CANINT interrupt register to point to the message object that just received a message.
The TxRqst bit of this message object should be cleared to prevent the transmission of a remote
frame.

17.4.8 Receiving a Remote Frame
When a remote frame is received, three different configurations of the matching message object
have to be considered:

501June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionConfiguration

At the reception of a matching remote frame, the TxRqst bit of this message object is set.
The rest of the message object remains unchanged, and the controller will transfer the data
in the message object.

Dir = 1 (direction = transmit)

RmtEn = 1

UMask = 1 or 0

At the reception of a matching remote frame, the TxRqst bit of this message object remains
unchanged; the remote frame is ignored. This remote frame is disabled and will not
automatically respond or indicate that the remote frame ever happened.

Dir = 1 (direction = transmit)

RmtEn = 0

UMask = 0

At the reception of a matching remote frame, the TxRqst bit of this message object is reset.
The arbitration and control field (ID + Xtd + RmtEn + DLC) from the shift register is stored
into the message object in the message RAM and the NewDat bit of this message object is
set. The data field of the message object remains unchanged; the remote frame is treated
similar to a received data frame. This is useful for a remote data request from another CAN
device for which the Stellaris® controller does not have readily available data. The software
must fill the data and answer the frame manually.

Dir = 1 (direction = transmit)

RmtEn = 0

UMask = 1

17.4.9 Receive/Transmit Priority
The receive/transmit priority for the message objects is controlled by the message number. Message
object 1 has the highest priority, while message object 32 has the lowest priority. If more than one
transmission request is pending, the message objects are transmitted in order based on the message
object with the lowest message number. This should not be confused with the message identifier
as that priority is enforced by the CAN bus. This means that if message object 1 andmessage object
2 both have valid messages that need to be transmitted, message object 1 will always be transmitted
first regardless of the message identifier in the message object itself.

17.4.10 Configuring a Receive Message Object
Table 17-2 on page 502 specifies the bit settings for a transmit message object.

Table 17-2. Receive Message Object Bit Settings

CANIFnMCTLCANIFnARB2CANIFnMCTLCANIFnCMSKCANIFnARB2Register

TxRqstRmtEnIntPndTxIERxIEMsgLstNewDatDirEoBMaskDataArbMsgValBit

0000appl0001applapplappl1Value

The Xtd and ID bit fields in the CANIFnARBn registers are set by an application. They define the
identifier and type of accepted received messages. If an 11-bit Identifier (Standard Frame) is used,
it is programmed to bits [12:2] of CANIFnARB2, and the remaining identifier bits are ignored by the
CAN controller. When a data frame with an 11-bit Identifier is received, only bits 12:2 ofCANIFnARB2
are valid and the rest are set to 0.

If the RxIE bit is set, the IntPnd bit is set when a received data frame is accepted and stored in
the message object.

When the message handler stores a data frame in the message object, it stores the received Data
Length Code and eight data bytes. If the Data Length Code is less than 8, the remaining bytes of
the message object are overwritten by nonspecified values.

The CAN mask registers can be used to allow groups of data frames to be received by a message
object. The CAN mask registers, CANIFnMSKn, configure which groups of frames are received by
a message object. The UMask bit in the CANIFnMCTL register enables the Msk bits in the
CANIFnMSKn register to filter which frames are received. The MXtd bit should be set if only 29-bit
extended identifiers should be received by this message object.

June 02, 2008502
Preliminary

Controller Area Network (CAN) Module

17.4.11 Handling of Received Message Objects
The CPU may read a received message any time via the CAN Interface registers because the data
consistency is guaranteed by the message handler state machine.

Typically, the CPU first writes 0x007F to the CAN IFn Command Mask (CANIFnCMSK) register
and then writes the number of the message object to the CAN IFn Command Request
(CANIFnCRQ) register. That combination transfers the whole received message from the message
RAM into the Message Buffer registers (CANIFnMSKn, CANIFnARBn, and CANIFnMCTL).
Additionally, the NewDat and IntPnd bits are cleared in the message RAM, acknowledging that
the message has been read and clearing the pending interrupt being generated by this message
object.

If the message object uses masks for acceptance filtering, the arbitration bits show which of the
matching messages has been received.

The actual value of NewDat shows whether a new message has been received since the last time
this message object was read. The actual value of MsgLst shows whether more than one message
has been received since the last time this message object was read. MsgLst is not automatically
reset.

Using a remote frame, the CPU may request new data from another CAN node on the CAN bus.
Setting the TxRqst bit of a receive object causes the transmission of a remote frame with the receive
object's identifier. This remote frame triggers the other CAN node to start the transmission of the
matching data frame. If the matching data frame is received before the remote frame could be
transmitted, the TxRqst bit is automatically reset. This prevents the possible loss of data when the
other device on the CAN bus has already transmitted the data slightly earlier than expected.

17.4.12 Handling of Interrupts
If several interrupts are pending, theCAN Interrupt (CANINT) register points to the pending interrupt
with the highest priority, disregarding their chronological order. An interrupt remains pending until
the CPU has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, the message object's
interrupt priority decreases with increasing message number. A message interrupt is cleared by
clearing the message object's IntPnd bit. The Status Interrupt is cleared by reading theCAN Status
(CANSTS) register.

The interrupt identifier IntId in the CANINT register indicates the cause of the interrupt. When no
interrupt is pending, the register holds the value to 0. If the value of CANINT is different from 0, then
there is an interrupt pending. If the IE bit is set in the CANCTL register, the interrupt line to the CPU
is active. The interrupt line remains active untilCANINT is 0, all interrupt sources have been cleared
(the cause of the interrupt is reset), or until IE is reset, which disables interrupts from the CAN
controller.

The value 0x8000 in the CANINT register indicates that an interrupt is pending because the CAN
module has updated, but not necessarily changed, the CANSTS register (Error Interrupt or Status
Interrupt). This indicates that there is either a new Error Interrupt or a new Status Interrupt. A write
access can clear the RxOK, TxOK, and LEC flags in the CANSTS register, however, only a read
access to the CANSTS register will clear the source of the Status Interrupt.

IntId points to the pending message interrupt with the highest interrupt priority. The SIE bit in the
CANCTL register controls whether a change of the status register may cause an interrupt. The EIE
bit in theCANCTL register controls whether any interrupt from the CAN controller actually generates
an interrupt to the microcontroller's interrupt controller. The CANINT interrupt register is updated
even when the IE bit is set to zero.

503June 02, 2008
Preliminary

LM3S5747 Microcontroller

There are two possibilities when handling the source of a message interrupt. The first is to read the
IntId bit in the CANINT interrupt register to determine the highest priority interrupt that is pending,
and the second is to read the CAN Message Interrupt Pending (CANMSGnINT) register to see
all of the message objects that have pending interrupts.

An interrupt service routine reading the message that is the source of the interrupt may read the
message and reset the message object's IntPnd at the same time by setting the ClrIntPnd bit
in the CAN IFn Command Mask (CANIFnCMSK) register. When the IntPnd bit is cleared, the
CANINT register will contain the message number for the next message object with a pending
interrupt.

17.4.13 Bit Timing Configuration Error Considerations
Even if minor errors in the configuration of the CAN bit timing do not result in immediate failure, the
performance of a CAN network can be reduced significantly. In many cases, the CAN bit
synchronization amends a faulty configuration of the CAN bit timing to such a degree that only
occasionally an error frame is generated. In the case of arbitration, however, when two or more
CAN nodes simultaneously try to transmit a frame, a misplaced sample point may cause one of the
transmitters to become error passive. The analysis of such sporadic errors requires a detailed
knowledge of the CAN bit synchronization inside a CAN node and of the CAN nodes' interaction on
the CAN bus.

17.4.14 Bit Time and Bit Rate
The CAN system supports bit rates in the range of lower than 1 Kbps up to 1000 Kbps. Each member
of the CAN network has its own clock generator. The timing parameter of the bit time can be
configured individually for each CAN node, creating a common bit rate even though the CAN nodes'
oscillator periods may be different.

Because of small variations in frequency caused by changes in temperature or voltage and by
deteriorating components, these oscillators are not absolutely stable. As long as the variations
remain inside a specific oscillator's tolerance range, the CAN nodes are able to compensate for the
different bit rates by periodically resynchronizing to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see Figure
17-2 on page 505): the Synchronization Segment, the Propagation Time Segment, the Phase Buffer
Segment 1, and the Phase Buffer Segment 2. Each segment consists of a specific, programmable
number of time quanta (see Table 17-3 on page 505). The length of the time quantum (tq), which is
the basic time unit of the bit time, is defined by the CAN controller's system clock (fsys) and the
Baud Rate Prescaler (BRP):

tq = BRP / fsys

The CAN module's system clock fsys is the frequency of its CAN module clock input.

The Synchronization Segment Sync_Seg is that part of the bit time where edges of the CAN bus
level are expected to occur; the distance between an edge that occurs outside of Sync_Seg and
the Sync_Seg is called the phase error of that edge.

The Propagation Time Segment Prop_Seg is intended to compensate for the physical delay times
within the CAN network.

The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point.

The (Re-)Synchronization Jump Width (SJW) defines how far a resynchronization may move the
Sample Point inside the limits defined by the Phase Buffer Segments to compensate for edge phase
errors.

June 02, 2008504
Preliminary

Controller Area Network (CAN) Module

A given bit rate may be met by different bit-time configurations, but for the proper function of the
CAN network, the physical delay times and the oscillator's tolerance range have to be considered.

Figure 17-2. CAN Bit Time

Sync_
Seg Prop_Seg Phase_Seg2

Sample
Point

1 Time
Quantum
(t q)q

Nominal CAN Bit Time

a. tSeg1 = Prop_Seg + Phase_Seg1
b. tSeg2 = Phase_Seg2
c. Phase_Seg1 = Phase_Seg2 or Phase_Seg1 + 1 = Phase_Seg2

tSeg1
a

tSeg2
b

Phase_Seg1c

Table 17-3. CAN Protocol Rangesa

RemarkRangeParameter

Defines the length of the time quantum tq[1 .. 32]BRP

Fixed length, synchronization of bus input to system clock1 tqSync_Seg

Compensates for the physical delay times[1 .. 8] tqProp_Seg

May be lengthened temporarily by synchronization[1 .. 8] tqPhase_Seg1

May be shortened temporarily by synchronization[1 .. 8] tqPhase_Seg2

May not be longer than either Phase Buffer Segment[1 .. 4] tqSJW

a. This table describes the minimum programmable ranges required by the CAN protocol.

The bit timing configuration is programmed in two register bytes in the CANBIT register. The sum
of Prop_Seg and Phase_Seg1 (as TSEG1) is combined with Phase_Seg2 (as TSEG2) in one byte,
and SJW and BRP are combined in the other byte.

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be
programmed to a numerical value that is one less than its functional value; so instead of values in
the range of [1..n], values in the range of [0..n-1] are programmed. That way, for example, SJW
(functional range of [1..4]) is represented by only two bits. Therefore, the length of the bit time is
(programmed values):

[TSEG1 + TSEG2 + 3] × tq

or (functional values):

[Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] × tq

The data in the bit timing registers are the configuration input of the CAN protocol controller. The
Baud Rate Prescalar (configured by BRP) defines the length of the time quantum, the basic time
unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW) defines the number
of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and occasional
synchronizations are controlled by the CAN controller and are evaluated once per time quantum.

505June 02, 2008
Preliminary

LM3S5747 Microcontroller

The CAN controller translates messages to and from frames. It generates and discards the enclosing
fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC code, performs the
error management, and decides which type of synchronization is to be used. It is evaluated at the
Sample Point and processes the sampled bus input bit. The time after the Sample Point that is
needed to calculate the next bit to be sent (that is, the data bit, CRC bit, stuff bit, error flag, or idle)
is called the Information Processing Time (IPT).

The IPT is application-specific but may not be longer than 2 tq; the CAN's IPT is 0 tq. Its length is
the lower limit of the programmed length of Phase_Seg2. In case of synchronization, Phase_Seg2
may be shortened to a value less than IPT, which does not affect bus timing.

17.4.15 Calculating the Bit Timing Parameters
Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. The
resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta. Several combinations may lead to the desired bit
time, allowing iterations of the following steps.

The first part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times
measured in the system. Amaximum bus length as well as a maximum node delay has to be defined
for expandable CAN bus systems. The resulting time for Prop_Seg is converted into time quanta
(rounded up to the nearest integer multiple of tq).

The Sync_Seg is 1 tq long (fixed), which leaves (bit time - Prop_Seg - 1) tq for the two Phase Buffer
Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same length,
that is, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may not
be shorter than the CAN controller's Information Processing Time, which is, depending on the actual
implementation, in the range of [0..2] tq.

The length of the Synchronization Jump Width is set to its maximum value, which is the minimum
of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the formula
given below:

(1 -df) x fnom <= fosc <= (1+ df) × fnom

where:

■ df = Maximum tolerance of oscillator frequency

■ fosc = Actual oscillator frequency

■ fnom = Nominal oscillator frequency

Maximum frequency tolerance must take into account the following formulas:

df <= (Phase_Seg1,Phase_Seg2)min/ 2 × (13 × tbit - Phase_Seg2)
dfmax = 2 × df × fnom

where:

■ Phase_Seg1 and Phase_Seg2 are from Table 17-3 on page 505

June 02, 2008506
Preliminary

Controller Area Network (CAN) Module

■ tbit = Bit Time

■ dfmax = Maximum difference between two oscillators

If more than one configuration is possible, that configuration allowing the highest oscillator tolerance
range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same bit
rate. The calculation of the propagation time in the CAN network, based on the nodes with the
longest delay times, is done once for the whole network.

The CAN system's oscillator tolerance range is limited by the node with the lowest tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the oscillator
frequencies' stability has to be increased in order to find a protocol-compliant configuration of the
CAN bit timing.

The resulting configuration is written into the CAN Bit Timing (CANBIT) register :

(Phase_Seg2-1)&(Phase_Seg1+Prop_Seg-1)&(SynchronizationJumpWidth-1)&(Prescaler-1)

17.4.15.1 Example for Bit Timing at High Baud Rate
In this example, the frequency of CAN clock is 25 MHz, BRP is 0, and the bit rate is 1 Mbps.

tq 40 ns = 1/((BRP + 1) × CAN Clock)
delay of bus driver 50 ns
delay of receiver circuit 30 ns
delay of bus line (40m) 220 ns
tProp 640 ns = 16 × tq

tSJW 160 ns = 4 × tq

tTSeg1 800 ns = tProp + tSJW
tTSeg2 160 ns = Information Processing Time + 4 × tq

tSync-Seg 40 ns = 1 × tq

bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2
tolerance for CAN_CLK 0.39 % =

min(PB1,PB2)/ 2 × (13 x bit time - PB2) =
0.1us/ 2 x (13x 1us - 2us)

In the above example, the parameters for the CANBIT register are: TSeg2=3, TSeg1=15, SJW =3
and BRP=0. This makes the final value programmed into the CANBIT register, 0x3FC0.

17.4.15.2 Example for Bit Timing at Low Baud Rate
In this example, the frequency of CAN clock is 50 MHz, BRP is 25, and the bit rate is 100 Kbps.

tq 500 ns = 1/((BRP + 1) × CAN clock)
delay of bus driver 200 ns
delay of receiver circuit 80 ns
delay of bus line (40m) 220 ns
tProp 4.5 ms = 9 × tq

tSJW 2 ms = 4 × tq

tTSeg1 6.5 ms = tProp + tSJW
tTSeg2 3 ms = Information Processing Time + 6 × tq

tSync-Seg 500 ns = 1 × tq

bit time 10 ms = tSync-Seg + tTSeg1 + tTSeg2

507June 02, 2008
Preliminary

LM3S5747 Microcontroller

tolerance for CAN_CLK 1.58 % =
min(PB1,PB2)/ 2 x (13 x bit time - PB2) =
4us/ 2 x (13 x 10us - 4us)

In this example, the concatenated bit time parameters are (4-1)3&(5-1)4&(4-1)2&(2-1)6, andCANBIT
is programmed to 0x34C1.

In the above example, the parameters for the CANBIT register are: TSeg2=5, TSeg1=12, SJW =3
and BRP=24. This makes the final value programmed into the CANBIT register, 0x5CD8.

17.5 Controller Area Network Register Map
Table 17-4 on page 508 lists the registers. All addresses given are relative to the CAN base address
of:

■ CAN0: 0x4004.0000

Table 17-4. CAN Register Map

See
pageDescriptionResetTypeNameOffset

510CAN Control0x0000.0001R/WCANCTL0x000

512CAN Status0x0000.0000R/WCANSTS0x004

515CAN Error Counter0x0000.0000ROCANERR0x008

516CAN Bit Timing0x0000.2301R/WCANBIT0x00C

518CAN Interrupt0x0000.0000ROCANINT0x010

519CAN Test0x0000.0000R/WCANTST0x014

521CAN Baud Rate Prescalar Extension0x0000.0000R/WCANBRPE0x018

522CAN IF1 Command Request0x0000.0001R/WCANIF1CRQ0x020

523CAN IF1 Command Mask0x0000.0000R/WCANIF1CMSK0x024

526CAN IF1 Mask 10x0000.FFFFR/WCANIF1MSK10x028

527CAN IF1 Mask 20x0000.FFFFR/WCANIF1MSK20x02C

528CAN IF1 Arbitration 10x0000.0000R/WCANIF1ARB10x030

529CAN IF1 Arbitration 20x0000.0000R/WCANIF1ARB20x034

531CAN IF1 Message Control0x0000.0000R/WCANIF1MCTL0x038

533CAN IF1 Data A10x0000.0000R/WCANIF1DA10x03C

533CAN IF1 Data A20x0000.0000R/WCANIF1DA20x040

533CAN IF1 Data B10x0000.0000R/WCANIF1DB10x044

533CAN IF1 Data B20x0000.0000R/WCANIF1DB20x048

522CAN IF2 Command Request0x0000.0001R/WCANIF2CRQ0x080

523CAN IF2 Command Mask0x0000.0000R/WCANIF2CMSK0x084

526CAN IF2 Mask 10x0000.FFFFR/WCANIF2MSK10x088

June 02, 2008508
Preliminary

Controller Area Network (CAN) Module

See
pageDescriptionResetTypeNameOffset

527CAN IF2 Mask 20x0000.FFFFR/WCANIF2MSK20x08C

528CAN IF2 Arbitration 10x0000.0000R/WCANIF2ARB10x090

529CAN IF2 Arbitration 20x0000.0000R/WCANIF2ARB20x094

531CAN IF2 Message Control0x0000.0000R/WCANIF2MCTL0x098

533CAN IF2 Data A10x0000.0000R/WCANIF2DA10x09C

533CAN IF2 Data A20x0000.0000R/WCANIF2DA20x0A0

533CAN IF2 Data B10x0000.0000R/WCANIF2DB10x0A4

533CAN IF2 Data B20x0000.0000R/WCANIF2DB20x0A8

534CAN Transmission Request 10x0000.0000ROCANTXRQ10x100

534CAN Transmission Request 20x0000.0000ROCANTXRQ20x104

535CAN New Data 10x0000.0000ROCANNWDA10x120

535CAN New Data 20x0000.0000ROCANNWDA20x124

536CAN Message 1 Interrupt Pending0x0000.0000ROCANMSG1INT0x140

536CAN Message 2 Interrupt Pending0x0000.0000ROCANMSG2INT0x144

537CAN Message 1 Valid0x0000.0000ROCANMSG1VAL0x160

537CAN Message 2 Valid0x0000.0000ROCANMSG2VAL0x164

17.6 Register Descriptions
The remainder of this section lists and describes the CAN registers, in numerical order by address
offset. There are two sets of Interface Registers that are used to access the Message Objects in
the Message RAM: CANIF1x and CANIF2x. The function of the two sets are identical and are used
to queue transactions.

509June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 1: CAN Control (CANCTL), offset 0x000
This control register initializes the module and enables test mode and interrupts.

The bus-off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by setting
or resetting INIT. If the device goes bus-off, it sets INIT, stopping all bus activities. Once INIT
has been cleared by the CPU, the device then waits for 129 occurrences of Bus Idle (129 * 11
consecutive High bits) before resuming normal operations. At the end of the bus-off recovery
sequence, the Error Management Counters are reset.

During the waiting time after INIT is reset, each time a sequence of 11 High bits has beenmonitored,
a Bit0Error code is written to the CANSTS status register, enabling the CPU to readily check
whether the CAN bus is stuck Low or continuously disturbed, and to monitor the proceeding of the
bus-off recovery sequence.

CAN Control (CANCTL)
CAN0 base: 0x4004.0000
Offset 0x000
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

INITIESIEEIEreservedDARCCETestreserved

R/WR/WR/WR/WROR/WR/WR/WROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:8

Test Mode Enable

0: Normal Operation

1: Test Mode

0R/WTest7

Configuration Change Enable

0: Do not allow write access to the CANBIT register.

1: Allow write access to the CANBIT register if the INIT bit is 1.

0R/WCCE6

Disable Automatic Retransmission

0: Auto retransmission of disturbed messages is enabled.

1: Auto retransmission is disabled.

0R/WDAR5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved4

Error Interrupt Enable

0: Disabled. No Error Status interrupt is generated.

1: Enabled. A change in the Boff or EWarn bits in theCANSTS register
generates an interrupt.

0R/WEIE3

June 02, 2008510
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Status Interrupt Enable

0: Disabled. No Status interrupt is generated.

1: Enabled. An interrupt is generated when a message has successfully
been transmitted or received, or a CAN bus error has been detected. A
change in the TxOK, RxOK or LEC bits in theCANSTS register generates
an interrupt.

0R/WSIE2

CAN Interrupt Enable

0: Interrupts disabled.

1: Interrupts enabled.

0R/WIE1

Initialization

0: Normal operation.

1: Initialization started.

1R/WINIT0

511June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: CAN Status (CANSTS), offset 0x004
The status register contains information for interrupt servicing such as Bus-Off, error count threshold,
and error types.

The LEC field holds the code that indicates the type of the last error to occur on the CAN bus. This
field is cleared to 0 when a message has been transferred (reception or transmission) without error.
The unused error code 7 may be written by the CPU to manually set this field to an invalid error so
that it can be checked for a change later.

An Error Interrupt is generated by the BOff and EWarn bits and a Status Interrupt is generated by
the RxOK, TxOK, and LEC bits, assuming that the corresponding enable bits in the CAN Control
(CANCTL) register are set. A change of the EPass bit or a write to the RxOK, TxOK, or LEC bits
does not generate an interrupt.

Reading the CAN Status (CANSTS) register clears the CAN Interrupt (CANINT) register, if it is
pending.

CAN Status (CANSTS)
CAN0 base: 0x4004.0000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LECTxOKRxOKEPassEWarnBOffreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:8

Bus-Off Status

0: Module is not in bus-off state.

1: Module is in bus-off state.

0ROBOff7

Warning Status

0: Both error counters are below the error warning limit of 96.

1: At least one of the error counters has reached the error warning limit
of 96.

0ROEWarn6

Error Passive

0: The CAN module is in the Error Active state, that is, the receive or
transmit error count is less than or equal to 127.

1: The CAN module is in the Error Passive state, that is, the receive or
transmit error count is greater than 127.

0ROEPass5

June 02, 2008512
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Received a Message Successfully

0: Since this bit was last reset to 0, no message has been successfully
received.

1: Since this bit was last reset to 0, a message has been successfully
received, independent of the result of the acceptance filtering.

This bit is never reset by the CAN module.

0R/WRxOK4

Transmitted a Message Successfully

0: Since this bit was last reset to 0, no message has been successfully
transmitted.

1: Since this bit was last reset to 0, a message has been successfully
transmitted error-free and acknowledged by at least one other node.

This bit is never reset by the CAN module.

0R/WTxOK3

513June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Last Error Code

This is the type of the last error to occur on the CAN bus.

DefinitionValue

No Error0x0

Stuff Error

More than 5 equal bits in a sequence have occurred in a part
of a received message where this is not allowed.

0x1

Format Error

A fixed format part of the received frame has the wrong format.

0x2

ACK Error

The message transmitted was not acknowledged by another
node.

0x3

Bit 1 Error

When a message is transmitted, the CAN controller monitors
the data lines to detect any conflicts. When the arbitration field
is transmitted, data conflicts are a part of the arbitration protocol.
When other frame fields are transmitted, data conflicts are
considered errors.

A Bit 1 Error indicates that the device wanted to send a High
level (logical 1) but the monitored bus value was Low (logical
0).

0x4

Bit 0 Error

A Bit 0 Error indicates that the device wanted to send a Low
level (logical 0), but the monitored bus value was High (logical
1).

During bus-off recovery, this status is set each time a sequence
of 11 High bits has been monitored. This enables the CPU to
monitor the proceeding of the bus-off recovery sequence without
any disturbances to the bus.

0x5

CRC Error

The CRC checksum was incorrect in the received message,
indicating that the calculated value received did not match the
calculated CRC of the data.

0x6

Unused

When the LEC bit shows this value, no CAN bus event was
detected since the CPU wrote this value to LEC.

0x7

0x0R/WLEC2:0

June 02, 2008514
Preliminary

Controller Area Network (CAN) Module

Register 3: CAN Error Counter (CANERR), offset 0x008
This register contains the error counter values, which can be used to analyze the cause of an error.

CAN Error Counter (CANERR)
CAN0 base: 0x4004.0000
Offset 0x008
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TECRECRP

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Received Error Passive

0: The Receive Error counter is below the Error Passive level (127 or
less).

1: The Receive Error counter has reached the Error Passive level (128
or greater).

0RORP15

Receive Error Counter

State of the receiver error counter (0 to 127).

0x0ROREC14:8

Transmit Error Counter

State of the transmit error counter (0 to 255).

0x0ROTEC7:0

515June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 4: CAN Bit Timing (CANBIT), offset 0x00C
This register is used to program the bit width and bit quantum. Values are to be programmed to the
system clock frequency. This register is write-enabled by the CCE and INIT bits in the CANCTL
register. See “Bit Time and Bit Rate” on page 504 for more information.

CAN Bit Timing (CANBIT)
CAN0 base: 0x4004.0000
Offset 0x00C
Type R/W, reset 0x0000.2301

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BRPSJWTSeg1TSeg2reserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROType
1000000011000100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:15

Time Segment after Sample Point

0x00-0x07: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

So, for example, a reset value of 0x2 defines that there is 3(2+1) bit
time quanta defined for Phase_Seg2 (see Figure 17-2 on page 505).
The bit time quanta is defined by BRP.

0x2R/WTSeg214:12

Time Segment Before Sample Point

0x00-0x0F: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

So, for example, the reset value of 0x3 defines that there is 4(3+1) bit
time quanta defined for Phase_Seg1 (see Figure 17-2 on page 505).
The bit time quanta is define by BRP.

0x3R/WTSeg111:8

(Re)Synchronization Jump Width

0x00-0x03: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

During the start of frame (SOF), if the CAN controller detects a phase
error (misalignment), it can adjust the length of TSeg2 or TSeg1 by the
value in SJW. So the reset value of 0 adjusts the length by 1 bit time
quanta.

0x0R/WSJW7:6

June 02, 2008516
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Baud Rate Prescalar

The value by which the oscillator frequency is divided for generating the
bit time quanta. The bit time is built up from a multiple of this quantum.

0x00-0x03F: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

BRP defines the number of CAN clock periods that make up 1 bit time
quanta, so the reset value is 2 bit time quanta (1+1).

The CANBRPE register can be used to further divide the bit time.

0x1R/WBRP5:0

517June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 5: CAN Interrupt (CANINT), offset 0x010
This register indicates the source of the interrupt.

If several interrupts are pending, theCAN Interrupt (CANINT) register points to the pending interrupt
with the highest priority, disregarding their chronological order. An interrupt remains pending until
the CPU has cleared it. If the IntId bit is not 0x0000 (the default) and the IE bit in the CANCTL
register is set, the interrupt is active. The interrupt line remains active until the IntId bit is set back
to 0x0000 when the cause of all interrupts are reset, or until IE is reset.

Note: Reading the CAN Status (CANSTS) register clears the CAN Interrupt (CANINT) register,
if it is pending.

CAN Interrupt (CANINT)
CAN0 base: 0x4004.0000
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntId

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Interrupt Identifier

The number in this field indicates the source of the interrupt.

DefinitionValue

No interrupt pending0x0000

Number of the message object that caused the
interrupt

0x0001-0x0020

Unused0x0021-0x7FFF

Status Interrupt0x8000

Unused0x8001-0xFFFF

0x0000ROIntId15:0

June 02, 2008518
Preliminary

Controller Area Network (CAN) Module

Register 6: CAN Test (CANTST), offset 0x014
This is the test mode register for self-test and external pin access. It is write-enabled by the Test
bit in the CANCTL register. Different test functions may be combined, however, CAN transfers will
be affected if the Tx bits in this register are not zero.

CAN Test (CANTST)
CAN0 base: 0x4004.0000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBasicSilentLBackTxRxreserved

ROROR/WR/WR/WR/WR/WROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:8

Receive Observation

Displays the value on the CANnRx pin.

0RORx7

Transmit Control

Overrides control of the CANnTx pin.

DescriptionValue

CANnTx is controlled by the CAN module0x0

Sample Point signal driven on the CANnTx pin0x1

CANnTx drives a Low value0x2

CANnTx drives a High value0x3

0x0R/WTx6:5

Loopback Mode

0: Disabled.

1: Enabled.

0R/WLBack4

Silent Mode

Do not transmit data; monitor the bus. Also known as Bus Monitor mode.

0: Disabled.

1: Enabled.

0R/WSilent3

Basic Mode

0: Disabled.

1: Use CANIF1 registers as transmit buffer, and use CANIF2 registers
as receive buffer.

0R/WBasic2

519June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved1:0

June 02, 2008520
Preliminary

Controller Area Network (CAN) Module

Register 7: CAN Baud Rate Prescalar Extension (CANBRPE), offset 0x018
This register is used to further divide the bit time set with the BRP bit in the CANBIT register. It is
write-enabled with the CCE bit in the CANCTL register.

CAN Baud Rate Prescalar Extension (CANBRPE)
CAN0 base: 0x4004.0000
Offset 0x018
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BRPEreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:4

Baud Rate Prescalar Extension

0x00-0x0F: Extend the BRP bit in the CANBIT register to values up to
1023. The actual interpretation by the hardware is one more than the
value programmed by BRPE (MSBs) and BRP (LSBs).

0x0R/WBRPE3:0

521June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: CAN IF1 Command Request (CANIF1CRQ), offset 0x020
Register 9: CAN IF2 Command Request (CANIF2CRQ), offset 0x080
This register is used to start a transfer when its MNUM bit field is updated. Its Busy bit indicates that
the information is transferring from the CAN Interface Registers to the internal message RAM.

A message transfer is started as soon as there is a write of the message object number with the
MNUM bit. With this write operation, the Busy bit is automatically set to 1 to indicate that a transfer
is in progress. After a wait time of 3 to 6 CAN_CLK periods, the transfer between the interface register
and the message RAM completes, which then sets the Busy bit back to 0.

CAN IF1 Command Request (CANIF1CRQ)
CAN0 base: 0x4004.0000
Offset 0x020
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MNUMreservedBusy

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Busy Flag

0: Reset when read/write action has finished.

1: Set when a write occurs to the message number in this register.

0x0ROBusy15

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved14:6

Message Number

Selects one of the 32 message objects in the message RAM for data
transfer. The message objects are numbered from 1 to 32.

DescriptionValue

0 is not a valid message number; it is interpreted as 0x20,
or object 32.

0x00

Indicates specified message object 1 to 32.0x01-0x20

Not a valid message number; values are shifted and it is
interpreted as 0x01-0x1F.

0x21-0x3F

0x01R/WMNUM5:0

June 02, 2008522
Preliminary

Controller Area Network (CAN) Module

Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024
Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084
The Command Mask registers specify the transfer direction and select which buffer registers are
the source or target of the data transfer.

Read-Only CANIFnCMSK Register

CAN IF1 Command Mask (CANIF1CMSK)
CAN0 base: 0x4004.0000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DataBDataANewDatClrIntPndControlArbMaskWRNRDreserved

RRRRRRRRROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:8

Write, Not Read

Transfer the message object address specified by the CAN Command
Request (CANIFnCRQ) register to the CAN message buffer registers
(CANIFnMSK1, CANIFnMSK2, CANIFnARB1, CANIFnARB2,
CANIFnCTL, CANIFnDA1, CANIFnDA2, CANIFnDB1, and
CANIFnDB2).

0RWRNRD7

Access Mask Bits

0: Mask bits unchanged.

1: Transfer IDMask + Dir + MXtd of the message object into the
Interface registers.

0RMask6

Access Arbitration Bits

0: Arbitration bits unchanged.

1: Transfer ID + Dir + Xtd + MsgVal of the message object into the
Interface registers.

0RArb5

Access Control Bits

0: Control bits unchanged.

1: Transfer control bits into Interface registers.

0RControl4

Clear Interrupt Pending Bit

0: IntPnd bit in CANIFnMCTL register remains unchanged.

1: Clear IntPnd bit in theCANIFnMCTL register in the message object.

0RClrIntPnd3

523June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Access New Data

0: NewDat bit unchanged.

1: Clear NewDat bit in the message object.

Note: A read access to a message object can be combined with the
reset of the control bits IntPdn and NewDat. The values of
these bits that are transferred to the CANIFnMCTL register
always reflect the status before resetting these bits.

0RNewDat2

Access Data Byte 0 to 3

0: Data bytes 0-3 are unchanged.

1: Transfer data bytes 0-3 in message object to CANIFnDA1 and
CANIFnDA2.

0RDataA1

Access Data Byte 4 to 7

0: Data bytes 4-7 unchanged.

1: Transfer data bytes 4-7 in message object to CANIFnDB1 and
CANIFnDB2.

0RDataB0

Write-Only CANIFnCMSK Register

CAN IF1 Command Mask (CANIF1CMSK)
CAN0 base: 0x4004.0000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DataBDataATxRqstreservedControlArbMaskWRNRDreserved

WWWROWWWWROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:8

Write, Not Read

0: Read.

1: Write. Transfer data from the message buffer registers to the message
object address specified by the CANIFnCRQ register.

0WWRNRD7

Access Mask Bits

0: Mask bits unchanged.

1: Transfer IDMask + Dir + MXtd to message object.

0WMask6

June 02, 2008524
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Access Arbitration Bits

0: Arbitration bits unchanged.

1: Transfer ID + Dir + Xtd + MsgVal to message object.

0WArb5

Access Control Bits

0: Control bits unchanged.

1: Transfer control bits to message object.

0WControl4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

Access Transmission Request Bit

0: TxRqst bit unchanged.

1: Set TxRqst bit

Note: If a transmission is requested by programming this TxRqst
bit, the parallel TxRqst in the CANIFnMCTL register is
ignored.

0WTxRqst2

Access Data Byte 0 to 3

0: Data bytes 0-3 are unchanged.

1: Transfer data bytes 0-3 (CANIFnDA1 and CANIFnDA2) to message
object.

0WDataA1

Access Data Byte 4 to 7

0: Data bytes 4-7 unchanged.

1: Transfer data bytes 4-7 (CANIFnDB1 and CANIFnDB2) to message
object.

0WDataB0

525June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028
Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088
The mask information provided in this register accompanies the data (CANIFnDAn), arbitration
information (CANIFnARBn), and control information (CANIFnMCTL) to the message object in the
message RAM. The mask is used with the ID bit in the CANIFnARBn register for acceptance
filtering. Additional mask information is contained in the CANIFnMSK2 register.

CAN IF1 Mask 1 (CANIF1MSK1)
CAN0 base: 0x4004.0000
Offset 0x028
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Msk

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Identifier Mask

0: The corresponding identifier bit (ID) in the message object cannot
inhibit the match in acceptance filtering.

1: The corresponding identifier bit (ID) is used for acceptance filtering.

0xFFR/WMsk15:0

June 02, 2008526
Preliminary

Controller Area Network (CAN) Module

Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C
Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C
This register holds extended mask information that accompanies the CANIFnMSK1 register.

CAN IF1 Mask 2 (CANIF1MSK2)
CAN0 base: 0x4004.0000
Offset 0x02C
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MskreservedMDirMXtd

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROR/WR/WType
1111111100000111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Mask Extended Identifier

0: The extended identifier bit (Xtd in the CANIFnARB2 register) has
no effect on the acceptance filtering.

1: The extended identifier bit Xtd is used for acceptance filtering.

0x1R/WMXtd15

Mask Message Direction

0: The message direction bit (Dir in the CANIFnARB2 register) has
no effect for acceptance filtering.

1: The message direction bit Dir is used for acceptance filtering.

0x1R/WMDir14

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x1ROreserved13

Identifier Mask

0: The corresponding identifier bit (ID) in the message object cannot
inhibit the match in acceptance filtering.

1: The corresponding identifier bit (ID) is used for acceptance filtering.

0xFFR/WMsk12:0

527June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030
Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090
These registers hold the identifiers for acceptance filtering.

CAN IF1 Arbitration 1 (CANIF1ARB1)
CAN0 base: 0x4004.0000
Offset 0x030
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ID

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Message Identifier

This bit field is used with the ID field in the CANIFnARB2 register to
create the message identifier.

Bits 15:0 of the CANIFnARB1 register are [15:0] of the ID, while bits
12:0 of the CANIFnARB2 register are [28:16] of the ID.

If an 11-bit ID (Standard Frame) is used, ID[28:18] is used and ID[17:0]
is disregarded (bits 15:0 ofCANIFnARB1 and bits 1:0 ofCANIFnARB2).

0x00R/WID15:0

June 02, 2008528
Preliminary

Controller Area Network (CAN) Module

Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034
Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094
These registers hold information for acceptance filtering.

CAN IF1 Arbitration 2 (CANIF1ARB2)
CAN0 base: 0x4004.0000
Offset 0x034
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IDDirXtdMsgVal

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Message Valid

0: The message object is ignored by the message handler.

1: The message object is configured and will be considered by the
message handler within the CAN controller.

All unused message objects should have this bit cleared during
initialization and before clearing the Init bit in the CANCTL register.
The MsgVal bit must also be cleared before any of the following bits
are modified or if the message object is no longer required: the ID bit
fields in the CANIFnARBn registers, the Xtd and Dir bits in the
CANIFnARB2 register, or the DLC bits in the CANIFnMCTL register.

0x0R/WMsgVal15

Extended Identifier

0: The 11-bit Standard Identifier will be used for this message object.

1: The 29-bit Extended Identifier will be used for this message object.

0x0R/WXtd14

Message Direction

0: Receive. On TxRqst, a remote frame with the identifier of this
message object is transmitted. On reception of a data frame with
matching identifier, that message is stored in this message object.

1: Transmit. On TxRqst, the respective message object is transmitted
as a data frame. On reception of a remote frame with matching identifier,
TxRqst bit of this message object is set (if RmtEn=1).

0x0R/WDir13

529June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Message Identifier

This bit field is used with the ID field in the CANIFnARB2 register to
create the message identifier.

Bits 15:0 of the CANIFnARB1 register are [15:0] of the ID, while bits
12:0 of the CANIFnARB2 register are [28:16] of the ID.

If an 11-bit ID (Standard Frame) is used, ID[28:18] is used and ID[17:0]
is disregarded (bits 15:0 ofCANIFnARB1 and bits 1:0 ofCANIFnARB2).

0x0R/WID12:0

June 02, 2008530
Preliminary

Controller Area Network (CAN) Module

Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038
Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098
This register holds the control information associated with the message object to be sent to the
Message RAM.

CAN IF1 Message Control (CANIF1MCTL)
CAN0 base: 0x4004.0000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DLCreservedEoBTxRqstRmtEnRxIETxIEUMaskIntPndMsgLstNewDat

R/WR/WR/WR/WROROROR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

New Data

0: No new data has been written into the data portion of this message
object by the message handler since the last time this flag was cleared
by the CPU.

1: The message handler or the CPU has written new data into the data
portion of this message object.

0x0R/WNewDat15

Message Lost

0 : No message was lost since the last time this bit was reset by the
CPU.

1: The message handler stored a new message into this object when
NewDat was set; the CPU has lost a message.

This bit is only valid for message objects with the Dir bit in the
CANIFnARB2 register set to 0 (receive).

0x0R/WMsgLst14

Interrupt Pending

0: This message object is not the source of an interrupt.

1: This message object is the source of an interrupt. The interrupt
identifier in the CAN Interrupt (CANINT) register will point to this
message object if there is not another interrupt source with a higher
priority.

0x0R/WIntPnd13

Use Acceptance Mask

0: Mask ignored.

1: Use mask (Msk, MXtd, and MDir) for acceptance filtering.

0x0R/WUMask12

531June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Transmit Interrupt Enable

0: The IntPnd bit in the CANIFnMCTL register is unchanged after a
successful transmission of a frame.

1: The IntPnd bit in theCANIFnMCTL register is set after a successful
transmission of a frame.

0x0R/WTxIE11

Receive Interrupt Enable

0: The IntPnd bit in the CANIFnMCTL register is unchanged after a
successful reception of a frame.

1: The IntPnd bit in theCANIFnMCTL register is set after a successful
reception of a frame.

0x0R/WRxIE10

Remote Enable

0: At the reception of a remote frame, the TxRqst bit in the
CANIFnMCTL register is left unchanged.

1: At the reception of a remote frame, the TxRqst bit in the
CANIFnMCTL register is set.

0x0R/WRmtEn9

Transmit Request

0: This message object is not waiting for transmission.

1: The transmission of this message object is requested and is not yet
done.

0x0R/WTxRqst8

End of Buffer

0: Message object belongs to a FIFO Buffer and is not the last message
object of that FIFO Buffer.

1: Single message object or last message object of a FIFO Buffer.

This bit is used to concatenate two or more message objects (up to 32)
to build a FIFO buffer. For a single message object (thus not belonging
to a FIFO buffer), this bit must be set to 1.

0x0R/WEoB7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved6:4

Data Length Code

DescriptionValue

Specifies the number of bytes in the data frame.0x0-0x8

Defaults to a data frame with 8 bytes.0x9-0xF

The DLC bit in the CANIFnMCTL register of a message object must be
defined the same as in all the corresponding objects with the same
identifier at other nodes.When themessage handler stores a data frame,
it writes DLC to the value given by the received message.

0x0R/WDLC3:0

June 02, 2008532
Preliminary

Controller Area Network (CAN) Module

Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C
Register 23: CAN IF1 Data A2 (CANIF1DA2), offset 0x040
Register 24: CAN IF1 Data B1 (CANIF1DB1), offset 0x044
Register 25: CAN IF1 Data B2 (CANIF1DB2), offset 0x048
Register 26: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C
Register 27: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0
Register 28: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4
Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8
These registers contain the data to be sent or that has been received. In a CAN data frame, data
byte 0 is the first byte to be transmitted or received and data byte 7 is the last byte to be transmitted
or received. In CAN's serial bit stream, the MSB of each byte is transmitted first.

CAN IF1 Data A1 (CANIF1DA1)
CAN0 base: 0x4004.0000
Offset 0x03C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Data

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Data

The CANIFnDA1 registers contain data bytes 1 and 0; CANIFnDA2
data bytes 3 and 2; CANIFnDB1 data bytes 5 and 4; and CANIFnDB2
data bytes 7 and 6.

0x00R/WData15:0

533June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100
Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104
The CANTXRQ1 and CANTXRQ2 registers hold the TxRqst bits of the 32 message objects. By
reading out these bits, the CPU can check whichmessage object has a transmission request pending.
The TxRqst bit of a specific message object can be changed by three sources: (1) the CPU via the
CAN IFn Message Control (CANIFnMCTL) register, (2) the message handler state machine after
the reception of a remote frame, or (3) the message handler state machine after a successful
transmission.

The CANTXRQ1 register contains the TxRqst bit of the first 16 message objects in the message
RAM; the CANTXRQ2 register contains the TxRqst bit of the second 16 message objects.

CAN Transmission Request 1 (CANTXRQ1)
CAN0 base: 0x4004.0000
Offset 0x100
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TxRqst

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Transmission Request Bits

(of all message objects)

0: The message object is not waiting for transmission.

1: The transmission of the message object is requested and is not yet
done.

0x00ROTxRqst15:0

June 02, 2008534
Preliminary

Controller Area Network (CAN) Module

Register 32: CAN New Data 1 (CANNWDA1), offset 0x120
Register 33: CAN New Data 2 (CANNWDA2), offset 0x124
The CANNWDA1 and CANNWDA2 registers hold the NewDat bits of the 32 message objects. By
reading these bits, the CPU can check which message object has its data portion updated. The
NewDat bit of a specific message object can be changed by three sources: (1) the CPU via the
CAN IFn Message Control (CANIFnMCTL) register, (2) the message handler state machine after
the reception of a data frame, or (3) the message handler state machine after a successful
transmission.

The CANNWDA1 register contains the NewDat bit of the first 16 message objects in the message
RAM; the CANNWDA2 register contains the NewDat bit of the second 16 message objects.

CAN New Data 1 (CANNWDA1)
CAN0 base: 0x4004.0000
Offset 0x120
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

NewDat

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

New Data Bits

(of all message objects)

0: No new data has been written into the data portion of this message
object by the message handler since the last time this flag was cleared
by the CPU.

1: The message handler or the CPU has written new data into the data
portion of this message object.

0x00RONewDat15:0

535June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140
Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144
The CANMSG1INT and CANMSG2INT registers hold the IntPnd bits of the 32 message objects.
By reading these bits, the CPU can check which message object has an interrupt pending. The
IntPnd bit of a specific message object can be changed through two sources: (1) the CPU via the
CAN IFn Message Control (CANIFnMCTL) register, or (2) the message handler state machine
after the reception or transmission of a frame.

This field is also encoded in the CAN Interrupt (CANINT) register.

The CANMSG1INT register contains the IntPnd bit of the first 16 message objects in the message
RAM; the CANMSG2INT register contains the IntPnd bit of the second 16 message objects.

CAN Message 1 Interrupt Pending (CANMSG1INT)
CAN0 base: 0x4004.0000
Offset 0x140
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntPnd

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Interrupt Pending Bits

(of all message objects)

0: This message object is not the source of an interrupt.

1: This message object is the source of an interrupt.

0x00ROIntPnd15:0

June 02, 2008536
Preliminary

Controller Area Network (CAN) Module

Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160
Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164
The CANMSG1VAL and CANMSG2VAL registers hold the MsgVal bits of the 32 message objects.
By reading these bits, the CPU can check which message object is valid. The message value of a
specific message object can be changed with the CAN IFn Message Control (CANIFnMCTL)
register.

TheCANMSG1VAL register contains the MsgVal bit of the first 16 message objects in the message
RAM; the CANMSG2VAL register contains the MsgVal bit of the second 16 message objects in
the message RAM.

CAN Message 1 Valid (CANMSG1VAL)
CAN0 base: 0x4004.0000
Offset 0x160
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MsgVal

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Message Valid Bits

(of all message objects)

0: This message object is not configured and is ignored by the message
handler.

1: This message object is configured and should be considered by the
message handler.

0x00ROMsgVal15:0

537June 02, 2008
Preliminary

LM3S5747 Microcontroller

18 Univeral Serial Bus (USB) Controller
The Stellaris® USB controller operates as a function controller for a full-speed or low-speed host or
device in point-to-point or multipoint (hub) communications with USB functions. The controller
complies with the USB 2.0 standard, which includes suspend and resume signaling. Three
configurable endpoints (1-3) with a dynamic sizable FIFO support multiple packet queueing. DMA
access to the FIFO allowsminimal interference from system software. The controller has the capability
to access an external power regulator through a power enable pad output (USB0EPEN) and power
fault detect pad input (USB0PFLT).

The Stellaris® USB module has the following features:

■ Standards-based

■ USB 2.0 full-speed (12 Mbps) and low-speed (1.5 Mbps) operation

■ USB Host mode

■ Integrated PHY

■ 4 transfer types: control, interrupt, bulk, and isochronous

■ 1 dedicated bi-directional control endpoint

■ 3 receive and 3 transmit configurable endpoints

■ 4 KB dedicated endpoint memory

– Direct Memory Access

– One endpoint may be defined for double-buffered 1023-byte isochronous packet size

18.1 Block Diagram

Figure 18-1. USB Module Block Diagram

CPU Interface

Packet
Encode/Decode

Endpoint Control

EP0 – 3
Control

Transmit

Receive

Combine
Endpoints

Host
Transaction
Scheduler

Packet Encode

Packet Decode

CRC Gen/Check

FIFO RAM
Controller

Cycle Control

Rx
Buff

Rx
Buff

Tx
Buff

Tx
Buff

USB FS/LS
PHY

USB PHY

USB Data Lines
D+ and D-

Interrupt
Control

EP Reg.
Decoder

Common
Regs

Cycle
Control

FIFO
Decoder

Interrupts

DMA
Requests

AHB bus –
Slave mode

UTM
Synchronization

Data Sync

Timers

June 02, 2008538
Preliminary

Univeral Serial Bus (USB) Controller

18.2 Functional Description
The Stellaris® USB controller provides the ability for the controller to switch from host controller to
device controller functionality. The USB controller requires both A and B connectors in the system
to provide host or device connectivity. If both connectors are present, the controller provides external
signals to enable or disable power to the USB0VBUS pin on the USB connector when not in use.
The controller can only be used in host or device mode and cannot be used in both modes
simultaneously. However, the controller can be manually switched at run time if the system requires
both host and device functionality.

18.2.1 Operation as a Device
This section describes the Stellaris® USB controller's actions when it is being used as a USB device.
IN endpoints, OUT endpoints, entry into and exit from Suspend mode, and recognition of Start of
Frame (SOF) are all described.

When in device mode, IN transactions are controlled by an endpoint’s transmit interface and use
the transmit endpoint registers for the given endpoint. OUT transactions are handled with an
endpoint's receive interface and use the receive endpoint registers for the given endpoint.

When configuring the size of the FIFOs for endpoints, take into account the maximum packet size
for an endpoint.

■ Bulk. Bulk endpoints should be sized to be multiples of the maximum packet size (up to 64
bytes). For instance, if maximum packet size is 64 bytes, the FIFO should be configured to a
multiple of 64-byte packets (64, 128, 192, or 256 bytes). This allows for efficient use of double
buffering or packet splitting (described further in the following sections).

■ Interrupt. Interrupt endpoints should be the size of the maximum packet (up to 64 bytes) or
twice the maximum packet size if double buffering is used.

■ Isochronous. Isochronous endpoints are more flexible and can be up to 1023 bytes.

■ Control. It is also possible to specify a separate control endpoint for a USB device. However,
in most cases the USB device should use the dedicated control endpoint on the USB controller’s
endpoint 0.

18.2.1.1 Endpoints
When operating as a device, there is a single dedicated bidirectional control endpoint on endpoint
0 and three additional endpoints that can be used for both IN and OUT communications with a host
controller. The endpoint number associated with an endpoint is directly related to its register
designation. For example, when the host is communicating with endpoint 1, all events will occur in
the endpoint 1 register interface.

Endpoint 0 is a dedicated control endpoint used for all control transactions to endpoint 0 during
enumeration or when any other control requests are made to endpoint 0. Endpoint 0 uses the first
64 bytes of the USB controller's FIFO RAM as a shared memory for both IN and OUT transactions.

The remaining three endpoints can be configured as control, bulk, interrupt or isochronous endpoints.
They should be treated as three OUT and three IN endpoints with endpoint numbers 1, 2, and 3.
The endpoints are not required to have the same type for their IN and OUT endpoint configuration.
For example, the OUT portion of an endpoint could be a bulk endpoint, while the IN portion could
be an interrupt endpoint. The address and size of the FIFOs attached to each endpoint can be
modified to fit the application's needs.

539June 02, 2008
Preliminary

LM3S5747 Microcontroller

18.2.1.2 IN Transactions
When operating as a USB device, data for IN transactions is handled through the FIFOs attached
to transmit endpoints. The sizes of the FIFOs for endpoints 1 to 3 are determined by the
USBTXFIFOADD register. The maximum size of a data packet that may be placed in a transmit
endpoint’s FIFO for transmission is programmable and is determined by the value written to the
USBTXMAXPn register for that endpoint. The endpoint’s FIFO can also be configured to use
double-packet or single-packet buffering. When double-packet buffering is enabled, two data packets
can be buffered in the FIFO, which also requires that the FIFO is at least two packets in size. When
double-packet buffering is disabled, only one packet can be buffered, even if the packet size is less
than half the FIFO size. The USB controller also supports a special mode for bulk endpoints that
allows automatic splitting of a larger FIFO into multiple packets that are maximum packet size
transfers.

Note: The maximum packet size set for any endpoint must not exceed the FIFO size. The
USBTXMAXPn register should not be written to while there is data in the FIFO as unexpected
results may occur.

Single-Packet Buffering

If the size of the transmit endpoint's FIFO is less than twice the maximum packet size for this endpoint
(as set in theUSBTXFIFOSZ register), only one packet can be buffered in the FIFO and single-packet
buffering is required. When each packet is completely loaded into the transmit FIFO, the TXRDY bit
in the USBTXCSRLn register needs to be set. If the AUTOSET bit in the USBTXCSRHn register is
set, the TXRDY bit is automatically set when a maximum sized packet is loaded into the FIFO. For
packet sizes less than the maximum, the TXRDY bit must be set manually. When the TXRDY bit is
set, either manually or automatically, the packet is ready to be sent. When the packet has been
successfully sent, both TXRDY and FIFONE are cleared and the appropriate transmit endpoint
interrupt signaled. At this point, the next packet can be loaded into the FIFO.

Double-Packet Buffering

If the size of the transmit endpoint's FIFO is at least twice the maximum packet size for this endpoint,
two packets can be buffered in the FIFO and double-packet buffering is allowed. As each packet is
loaded into the transmit FIFO, the TXRDY bit in in the USBTXCSRLn register needs to be set. If the
AUTOSET bit in theUSBTXCSRHn register is set, the TXRDY bit is automatically set when amaximum
sized packet is loaded into the FIFO. For packet sizes less than the maximum, TXRDY must be set
manually. When the TXRDY bit is set, either manually or automatically, the packet is ready to be
sent. After the first packet is loaded, TXRDY is immediately cleared and an interrupt is generated.
A second packet can now be loaded into the transmit FIFO and TXRDY set again (either manually
or automatically if the packet is the maximum size). At this point, both packets are ready to be sent.
After each packet has been successfully sent, TXRDY is cleared and the appropriate transmit endpoint
interrupt signaled to indicate that another packet can now be loaded into the transmit FIFO. The
state of the FIFONE bit at this point indicates how many packets may be loaded. If the FIFONE bit
is set, then there is another packet in the FIFO and only one more packet can be loaded. If the
FIFONE bit is clear, then there are no packets in the FIFO and two more packets can be loaded.

Note: Double-packet buffering is disabled if an endpoint’s corresponding EPn bit is set in the
USBTXDPKTBUFDIS register. This bit is set by default, so it must be cleared to enable
double-packet buffering.

Special Bulk Handling

The packets transferred in bulk operations are defined by the USB specification to be 8, 16, 32 or
64 bytes in size. For some system designs, however, it may be more convenient for the application

June 02, 2008540
Preliminary

Univeral Serial Bus (USB) Controller

software to write larger amounts of data to an endpoint in a single operation than can be transferred
in a single USB operation.

To simplify this case, the Stellaris® USB controller includes a packet-splitting feature that allows
larger data packets to be written to bulk transmit endpoints, which are then split into packets of an
appropriate size for transfer across the USB bus. With this option, the USBTXMAXPn register uses
the bottom 11 bits to define the payload for each individual transfer, while the top 5 bits define a
multiplier. The application software can then write data packets of size multiplier × payload to the
FIFO, which the USB controller then splits into individual packets of the stated payload for
transmission over the USB bus. From the application software’s point-of-view, the resulting operation
does not differ from the transmission of a single USB packet except in the size of the packet written.

Note: Packet-splitting can only be used with bulk endpoints and, in accordance with the USB
specification, the payload must be 8, 16, 32, or 64. The payload recorded in the
USBTXMAXPn register must also match the wMaxPacketSize field of the Standard
Endpoint Descriptor for the endpoint (see chapter 9 of the USB specification). The associated
FIFO must also be large enough to accommodate the data packet prior to being split.

18.2.1.3 OUT Transactions as a Device
When in device mode, OUT transactions are handled through the USB controller receive FIFOs.
The sizes of the receive FIFOs for endpoints 1-3 are determined by the USBRXFIFOADD register.
The maximum amount of data received by an endpoint in any packet is determined by the value
written to the USBRXMAXPn register for that endpoint. When double-packet buffering is enabled,
two data packets can be buffered in the FIFO. When double-packet buffering is disabled, only one
packet can be buffered even if the packet is less than half the FIFO size. The Stellaris® USB controller
also supports a special mode for bulk endpoints that allows automatic splitting of a larger FIFO into
multiple maximum packet size transfers.

Note: In all cases, the maximum packet size must not exceed the FIFO size.

Single-Packet Buffering

If the size of the receive endpoint FIFO is less than twice the maximum packet size for an endpoint,
only one data packet can be buffered in the FIFO and single-packet buffering is required. When a
packet is received and placed in the receive FIFO, the RXRDY and FULL bits in the USBRXCSRLn
register are set and the appropriate receive endpoint is signaled, indicating that a packet can now
be unloaded from the FIFO. After the packet has been unloaded, the RXRDY bit needs to be cleared
in order to allow further packets to be received. This action also generates the acknowledge signaling
to the host controller. If the AUTOCL bit in the USBRXCSRHn register is set and a maximum-sized
packet is unloaded from the FIFO, the RXRDY and FULL bits are cleared automatically. For packet
sizes less than the maximum, RXRDY must be cleared manually.

Double-Packet Buffering

If the size of the receive endpoint FIFO is at least twice the maximum packet size for the endpoint,
two data packets can be buffered and double-packet buffering can be used. When the first packet
is received and loaded into the receive FIFO, the RXRDY bit in the USBRXCSRLn register is set
and the appropriate receive endpoint interrupt is signaled to indicate that a packet can now be
unloaded from the FIFO.

Note: The FULL bit in USBRXCSRLn is not set when the first packet is received. It is only set if
a second packet is received and loaded into the receive FIFO.

After each packet has been unloaded, the RXRDY bit needs to be cleared in order to allow further
packets to be received. If the AUTOCL bit in theUSBRXCSRHn register is set and a maximum-sized

541June 02, 2008
Preliminary

LM3S5747 Microcontroller

packet is unloaded from the FIFO, the RXRDY bit is cleared automatically. For packet sizes less than
the maximum, RXRDY must be cleared manually. If the FULL bit was set when RXRDY is cleared,
the USB controller first clears the FULL bit. It then sets RXRDY again to indicate that there is another
packet waiting in the FIFO to be unloaded.

Note: Double-packet buffering is disabled if an endpoint’s corresponding EPn bit is set in the
USBRXDPKTBUFDIS register. This bit is set by default, so it must be cleared to enable
double-packet buffering.

Special Bulk Handling

The packets transferred in bulk operations are defined by the USB specification to be 8, 16, 32, or
64 bytes in size. For some system designs, however, it may be more convenient for the application
software to read larger amounts of data from an endpoint in a single operation than can be transferred
in a single USB operation.

To simplify this case, the Stellaris® USB controller includes a packet-combining feature that combines
the packets received across the USB bus into larger data packets prior to being read by the
application software. With this option, the USBRXMAXPn register uses the bottom 11 bits to define
the payload for each individual transfer, while the top 5 bits define a multiplier. The USB controller
then combines the appropriate number of USB packets it receives into a single data packet of size
multiplier × payload within the FIFO before asserting RXRDY to alert the application software that a
packet in the FIFO is ready to be read. The size of the resulting packet is reported in the
USBRXCOUNTn register. From the application software’s point-of-view, the resulting operation
does not differ from the receipt of a single USB packet except in the size of the packet read.

Note: Packet-combining can only be used with bulk endpoints. The payload recorded in the
USBRXMAXPn register must also match the wMaxPacketSize field of the Standard
Endpoint Descriptor for the endpoint (see chapter 9 of the USB specification). The associated
FIFO must also be large enough to accommodate the combined data packet.

The RXRDY bit is only set when either the specified number of packets have been received or a
“short” USB packet is received (that is, a packet of less than the specified payload for the endpoint).
If a protocol is being used in which the endpoint receives bulk transfers that are a multiple of the
recorded payload size with no short packet to terminate it, the USBRXMAXPn register should not
be programmed to expect more packets than there are in the transfer (otherwise, the software will
not be interrupted at the end of the transfer).

18.2.1.4 Scheduling
The device has no control over the scheduling of transactions as this is determined by the host
controller. The Stellaris® USB controller can set up a transaction at any time. The USB controller
will wait for the request from the host controller and generate an interrupt when the transaction is
complete or if it was terminated due to some error. If the host controller makes a request and the
device controller is not ready, the USB controller sends a busy response (NAK) to all requests until
it is ready.

18.2.1.5 Additional Actions
The USB controller responds automatically to certain conditions on the USB bus or actions by the
host controller: when the USB controller automatically stalls a control transfer and unexpected zero
length OUT data packets.

Stalled Control Transfer

The USB controller automatically issues a STALL handshake to a control transfer under the following
conditions:

June 02, 2008542
Preliminary

Univeral Serial Bus (USB) Controller

1. The host sends more data during an OUT data phase of a control transfer than was specified
in the device request during the SETUP phase. This condition is detected by the USB controller
when the host sends an OUT token (instead of an IN token) after the last OUT packet has been
unloaded and the DATAEND bit in the USBCSRL0 register has been set.

2. The host requests more data during an IN data phase of a control transfer than was specified
in the device request during the SETUP phase. This condition is detected by the USB controller
when the host sends an IN token (instead of an OUT token) after the CPU has cleared TXRDY
and set DATAEND in response to the ACK issued by the host to what should have been the last
packet.

3. The host sends more than USBRXMAXPn bytes of data with an OUT data token.

4. The host sends more than a zero length data packet for the OUT status phase.

Zero Length OUT Data Packets

A zero-length OUT data packet is used to indicate the end of a control transfer. In normal operation,
such packets should only be received after the entire length of the device request has been
transferred.

However, if the host sends a zero-length OUT data packet before the entire length of device request
has been transferred, it is signaling the premature end of the transfer. In this case, the USB controller
automatically flushes any IN token ready for the data phase from the FIFO and sets the SETUP bit
in the USBCSRL0 register.

18.2.1.6 Device Mode Suspend
When no activity has occurred on the USB bus for 3 ms, the USB controller automatically enters
Suspend mode. If the Suspend interrupt has been enabled, an interrupt is generated at this time.
When in Suspendmode, the PHY also goes into Suspendmode.WhenResume signaling is detected,
the USB controller exits Suspend mode and takes the PHY out of Suspend. If the Resume interrupt
is enabled, an interrupt is generated. The USB controller can also be forced to exit Suspend mode
by setting the RESUME bit in the USBPOWER register. When this bit is set, the USB controller exits
Suspend mode and drives Resume signaling onto the bus. The RESUME bit is cleared after 10 ms
(a maximum of 15 ms) to end Resume signaling.

Tomeet USB power requirements, the controller can be put into Deep Sleep. This keeps the controller
in a static state. The USB controller is not able to Hibernate since this will cause all the internal
states to be lost.

18.2.1.7 Start-of-Frame
When the USB controller is operating in device mode, it receives a Start-Of-Frame packet from the
host once every millisecond. When the SOF packet is received, the 11-bit frame number contained
in the packet is written into the USBFRAME register and an SOF interrupt is also signaled and can
be handled by the application. Once the USB controller has started to receive SOF packets, it
expects one every millisecond. If no SOF packet is received after 1.00358 ms, it is assumed that
the packet has been lost and theUSBFRAME register is not updated. The USB controller continues
and resynchronizes these pulses to the received SOF packets when these packets are successfully
received again.

18.2.1.8 USB Reset
When the USB controller is in device mode and a reset condition is detected on the USB bus, the
USB controller automatically performs the following actions:

543June 02, 2008
Preliminary

LM3S5747 Microcontroller

■ Clears the USBFADDR register.

■ Clears the USBEPIDX register.

■ Flushes all endpoint FIFOs.

■ Clears all control/status registers.

■ Enables all endpoint interrupts.

■ Generates a reset interrupt.

When the application software driving the USB controller receives a reset interrupt, it closes any
open pipes and waits for bus enumeration to begin.

18.2.1.9 Connect/Disconnect
The USB controller connection to the USB bus is controlled by software. The USB PHY can be
switched between normal mode and non-driving mode by setting or clearing the SOFTCONN bit of
the USBPOWER register. When this SOFTCONN bit is set, the PHY is placed in its normal mode
and the USB0DP/USB0DM lines of the USB bus are enabled. At the same time, the USB controller
is placed into a state, in which it will not respond to any USB signaling except a USB reset.

When the SOFTCONN bit is cleared, the PHY is put into non-driving mode, USB0DP and USB0DM are
tristated, and the USB controller appears to other devices on the USB bus as if it has been
disconnected. This is the default so the USB controller appears disconnected until the SOFTCONN
bit has been set. The application software can then choose when to set the PHY into its normal
mode. Systems with a lengthy initialization procedure may use this to ensure that initialization is
complete and the system is ready to perform enumeration before connecting to the USB. Once the
SOFTCONN bit has been set, the USB controller can be disconnected by clearing this bit.

Note: The USB controller does not generate an interrupt when the device is connected to the
host. However, an interrupt is generated when the host terminates a session.

18.2.2 Operation as a Host
When the Stellaris® USB controller is operating in host mode, it can either be used for point-to-point
communications with another USB device or, when attached to a hub, for communication with
multiple devices. Full-speed and low-speed USB devices are supported, both for point-to-point
communication and for operation through a hub. The USB controller automatically carries out the
necessary transaction translation needed to allow a low-speed or full-speed device to be used with
a USB 2.0 hub. Control, bulk, isochronous and interrupt transactions are supported. This section
describes the USB host controller’s actions with regards to transmit endpoints, receive endpoints,
transaction scheduling, entry into and exit from Suspend mode, and reset.

When in host mode, IN transactions are controlled by an endpoint’s receive interface. All IN
transactions use the receive endpoint registers and all OUT endpoints use the transmit endpoint
registers for a given endpoint. As in device mode, the FIFOs for endpoints should take into account
the maximum packet size for an endpoint.

■ Bulk. Bulk endpoints should be sized to be multiples of the maximum packet size (up to 64
bytes). For instance, if maximum packet size is 64 bytes, the FIFO should be configured to a
multiple of 64-byte packets (64, 128, 192, or 256 bytes). This allows for efficient use of double
buffering or packet splitting (described further in the following sections).

June 02, 2008544
Preliminary

Univeral Serial Bus (USB) Controller

■ Interrupt. Interrupt endpoints should be the size of the maximum packet (up to 64 bytes) or
twice the maximum packet size if double buffering is used.

■ Isochronous. Isochronous endpoints are more flexible and can be up to 1023 bytes.

■ Control. It is also possible to specify a separate control endpoint to communicate with a device.
However, in most cases the USB controller should use the dedicated control endpoint to
communicate with a device’s endpoint 0.

18.2.2.1 Endpoints
The endpoint registers are used to control the USB endpoint interfaces used to communicate with
device(s) that are connected. There is a dedicated bidirectional control IN/OUT interface, three
configurable OUT interfaces, and three configurable IN interfaces.

The dedicated control interface can only be used for control transactions to endpoint 0 of devices.
These control transactions are used during enumeration or other control functions that communicate
using endpoint 0 of devices. This control endpoint shares the first 64 bytes of the USB controller’s
FIFO RAM for IN and OUT transactions. The remaining IN and OUT interfaces can be configured
to communicate with control, bulk, interrupt, or isochronous device endpoints.

These USB interfaces can be used to simultaneously schedule as many as three independent OUT
and three independent IN transactions to any endpoints on any device. The IN and OUT controls
are paired in three sets of registers. However, they can be configured to communicate with different
types of endpoints and different endpoints on devices. For example, the first pair of endpoint controls
can be split so that the OUT portion is communicating with a device’s bulk OUT endpoint 1, while
the IN portion is communicating with a device’s interrupt IN endpoint 2.

Before accessing any device, whether for point-to-point communications or for communications via
a hub, the relevantUSBRXFUNCADDRn orUSBTXFUNCADDRn registers need to be set for each
receive or transmit endpoint to record the address of the device being accessed.

The USB controller also supports connections to devices through a USB hub by providing a register
that specifies the hub address and port of each USB transfer. The FIFO address and size are
customizable and can be specified for each USB IN and OUT transfer. This includes allowing one
FIFO per transaction, sharing a FIFO across transactions, and allowing for double-buffered FIFOs.

18.2.2.2 IN Transactions as a Host
IN transactions are handled in a similar manner to the way in which OUT transactions are handled
when the USB controller is in Device mode except that the transaction first needs to be initiated by
setting the REQPKT bit in USBCSRL0. This indicates to the transaction scheduler that there is an
active transaction on this endpoint. The transaction scheduler then sends an IN token to the target
device. When the packet is received and placed in the receive FIFO, the RXRDY bit in USBCSRL0
is set and the appropriate receive endpoint interrupt is signaled to indicate that a packet can now
be unloaded from the FIFO.

When the packet has been unloaded, RXRDY should be cleared. The AUTOCL bit in the
USBRXCSRHn register can be used to have RXRDY automatically cleared when a maximum-sized
packet has been unloaded from the FIFO. There is also an AUTORQ bit in USBRXCSRHn which
causes the REQPKT bit to be automatically set when the RXRDY bit is cleared. The AUTOCL and
AUTORQ bits can be used with DMA accesses to perform complete bulk transfers without main
processor intervention. When the RXRDY bit is cleared, the controller will send an acknowledge to
the device. When there is a known number of packets to be transferred, the USBRQPKTCOUNTn
register associated with the endpoint should be set to the number of packets to be transferred. The
USB controller decrements the value in the USBRQPKTCOUNTn register following each request.

545June 02, 2008
Preliminary

LM3S5747 Microcontroller

When the USBRQPKTCOUNTn value decrements to 0, the AUTORQ bit is cleared to prevent any
further transactions being attempted. For cases where the size of the transfer is unknown,
USBRQPKTCOUNTn should be left set to zero. AUTORQ then remains set until cleared by the
reception of a short packet (that is, less than MaxP) such as may occur at the end of a bulk transfer.

If the device responds to a bulk or interrupt IN token with a NAK, the USB host controller keeps
retrying the transaction until any NAK Limit that has been set has been reached. If the target device
responds with a STALL, however, the USB host controller does not retry the transaction but interrupts
the CPU with the STALLED bit in the USBCSRL0 register set. If the target device does not respond
to the IN token within the required time, or there was a CRC or bit-stuff error in the packet, the USB
host controller retries the transaction. If after three attempts the target device has still not responded,
the USB host controller clears the REQPKT bit and interrupts the CPU by setting the ERROR bit in
the USBCSRL0 register.

18.2.2.3 Out Transactions as a Host
OUT transactions are handled in a similar manner to the way in which IN transactions are handled
when the USB controller is in Device mode. The TXRDY bit in the USBTXCSRLn register needs to
be set as each packet is loaded into the transmit FIFO. Again, setting the AUTOSET bit in the
USBTXCSRHn register automatically sets TXRDY when a maximum-sized packet has been loaded
into the FIFO. Furthermore, AUTOSET can be used with a DMA controller to perform complete bulk
transfers without software intervention.

If the target device responds to the OUT token with a NAK, the USB host controller keeps retrying
the transaction until the NAK Limit that has been set has been reached. However, if the target device
responds with a STALL, the USB controller does not retry the transaction but interrupts the main
processor by setting the STALLED bit in the USBTXCSRLn register. If the target device does not
respond to the OUT token within the required time, or there was a CRC or bit-stuff error in the packet,
the USB host controller retries the transaction. If after three attempts the target device has still not
responded, the USB controller flushes the FIFO and interrupts the main processor by setting the
ERROR bit in the USBTXCSRLn register.

18.2.2.4 Transaction Scheduling
Scheduling of transactions is handled automatically by the USB host controller. The host controller
allows configuration of the endpoint communication scheduling based on the type of endpoint
transaction. Interrupt transactions can be scheduled to occur in the range of every frame to every
255 frames in 1 frame increments. Bulk endpoints do not allow scheduling parameters, but do allow
for a NAK timeout in the event an endpoint on a device is not responding. Isochronous endpoints
can be scheduled from every frame to every 216 frames, in powers of 2.

The USB controller maintains a frame counter. If the target device is a full-speed device, the USB
controller automatically sends an SOF packet at the start of each frame and increments the frame
counter. If the target device is a low-speed device, a ‘K’ state is transmitted on the bus to act as a
“keep-alive” to stop the low-speed device from going into Suspend mode.

After the SOF packet has been transmitted, the USB host controller cycles through all the configured
endpoints looking for active transactions. An active transaction is defined as a receive endpoint for
which the REQPKT bit is set or a transmit endpoint for which the TXRDY bit and/or the FIFONE bit is
set.

An active isochronous or interrupt transaction starts only if it is found on the first transaction scheduler
cycle of a frame and if the interval counter for that endpoint has counted down to zero. This ensures
that only one interrupt or isochronous transaction occurs per endpoint every n frames, where n is
the interval set via the USBTXINTERVALn or USBRXINTERVALn register for that endpoint.

June 02, 2008546
Preliminary

Univeral Serial Bus (USB) Controller

An active bulk transaction starts immediately, provided there is sufficient time left in the frame to
complete the transaction before the next SOF packet is due. If the transaction needs to be retried
(for example, because a NAKwas received or the target device did not respond), then the transaction
is not retried until the transaction scheduler has first checked all the other endpoints for active
transactions. This ensures that an endpoint that is sending a lot of NAKs does not block other
transactions on the bus. The core also allows the user to specify a limit to the length of time for
NAKs to be received from a target device before the endpoint times out.

18.2.2.5 USB Hubs
The following setup requirements apply to the USB host controller only if it is used with a USB hub.
When a full- or low-speed device is connected to the USB controller via a USB 2.0 hub, details of
the hub address and the hub port also need to be recorded in the correspondingUSBRXHUBADDRn
andUSBRXHUBPORTn or theUSBTXHUBADDRn andUSBTXHUBPORTn registers. In addition,
the speed at which the device operates (full or low) needs to be recorded in theUSBTYPE0 (endpoint
0), USBTXTYPEn, or USBRXTYPEn registers for each endpoint that is accessed by the device.

For hub communications, the settings in these registers record the current allocation of the endpoints
to the attached USB devices. To maximize the number of devices supported, the USB host controller
allows this allocation to be changed dynamically by simply updating the address and speed
information recorded in these registers. Any changes in the allocation of endpoints to device functions
need to be made following the completion of any on-going transactions on the endpoints affected.

18.2.2.6 Babble
The USB host controller does not start a transaction until the bus has been inactive for at least the
minimum inter-packet delay. It also does not start a transaction unless it can be finished before the
end of the frame. If the bus is still active at the end of a frame, then the USB host controller assumes
that the target device to which it is connected has malfunctioned and the USB controller suspends
all transactions and generates a babble interrupt.

18.2.2.7 Host Suspend
If the SUSPEND bit in the USBPOWER register is set, the USB host controller completes the current
transaction then stops the transaction scheduler and frame counter. No further transactions are
started and no SOF packets are generated.

To exit Suspend mode, the RESUME bit is set and the SUSPEND bit is cleared. While the RESUME bit
is High, the USB host controller generates Resume signaling on the bus. After 20 ms, the RESUME
bit should be cleared, at which point the frame counter and transaction scheduler start. However,
if remote wake-up is to be supported, power to the PHYwill be maintained so that the USB controller
can detect Resume signaling on the bus.

18.2.2.8 USB Reset
If the RESET bit in the USBPOWER register is set, the USB host controller generates USB Reset
signaling on the bus. The RESET bit should be set for at least 20 ms to ensure correct resetting of
the target device. After the CPU has cleared the bit, the USB host controller starts its frame counter
and transaction scheduler.

18.2.2.9 Connect/Disconnect
A session is started by setting the SESSION bit in the USBDEVCTL register. This enables the USB
controller to wait for a device to be connected. When a device is detected, a connect interrupt is
generated. The speed of the device that has been connected can be determined by reading the
USBDEVCTL register where the FSDEV bit is High for a full-speed device and the LSDEV bit is High
for a low-speed device. The USB controller should generate a reset to the device and then the USB

547June 02, 2008
Preliminary

LM3S5747 Microcontroller

host controller can begin device enumeration. If the device is disconnected while a session is in
progress, a disconnect interrupt is generated.

18.3 Initialization and Configuration
The initial configuration in all cases requires that the processor enable the USB controller before
setting any registers. The next step is to enable the USB PLL so that the correct clocking is provided
to the USB controller’s physical layer interface (PHY). To ensure that voltage is not supplied to the
bus incorrectly, the external power control signal, USB0EPEN, should be de-asserted on start up.
This requires setting the USB0EPEN and USB0PFLT pins to be controlled by the USB controller and
not have their default GPIO behavior.

The USB controller provides a method to set the current operating mode of the USB controller. This
register should be written with the desired default mode so that the controller can respond to external
USB events.

18.3.1 Pin Configuration
When using the device controller portion of the USB controller in a system that also provides host
functionality, the power to VBUS must be disabled to allow the external host controller to supply
power. Usually, the USB0EPEN signal is used to control the external regulator and should be
de-asserted to avoid having two devices driving the USB0VBUS power pin on the USB connector.

When the USB controller is acting as a host, it is in control of two signals that are attached to an
external voltage supply that provides power to VBUS. The host controller uses the USB0EPEN signal
to enable or disable power to the USB0VBUS pin on the USB connector. There is also an input pin,
USB0PFLT, which provides feedback when there has been a power fault on VBUS. The USB0PFLT
signal can be configured to either automatically de-assert the USB0EPEN signal to disable power,
and/or it can generate an interrupt to the main processor to allow it to handle the power fault condition.
The polarity and actions related to both USB0EPEN and USB0PFLT are fully configurable in the USB
controller. The controller also provides interrupts on device insertion and removal to allow the host
controller code to respond to these external events.

18.3.2 Endpoint Configuration
In order to start communication on host or device mode, the endpoint registers must first be
configured. In Host mode, this provides a connection between an endpoint register and an endpoint
on a device. In Device mode, this provides the setup for a given endpoint before enumerating to
the host controller.

In both cases, the endpoint 0 configuration is limited as this is a fixed function, fixed FIFO size
endpoint. In Device and Host modes, the endpoint requires little setup but does require a
software-based state machine to progress through the setup, data, and status phases of a standard
control transaction. In Device mode, the configuration of the remaining endpoints is done once
before enumerating and then only changed if an alternate configuration is selected by the host
controller. In Host mode, the endpoints must be configured to operate as control, bulk, interrupt or
isochronous mode. Once the type of endpoint is configured, a FIFO area must be assigned to each
endpoint. In the case of bulk, control and interrupt endpoints, each has a maximum of 64 bytes per
transaction. Isochronous endpoints can have packets with up to 1023 bytes per packet. In either
mode, the maximum packet size for the given endpoint must be set prior to sending or receiving
data.

Configuring each endpoint’s FIFO involves reserving a portion of the overall USB FIFO RAM to
each endpoint. The total FIFO RAM available is 4 bytes with the first 64 bytes in use by endpoint
0. The endpoint’s FIFO does not have to be the same size as the maximum packet size in all cases

June 02, 2008548
Preliminary

Univeral Serial Bus (USB) Controller

as the controller can automatically split for bulk transactions if the FIFO is larger than the maximum
packet size. The FIFO can also be configured as a double-buffered FIFO so that interrupts occur
at the end of each packet and allow filling the other half of the FIFO.

If operating as a device, the USB device controllers' soft connect should be enabled when the device
is ready to start communications. This indicates to the host controller that the device is ready to
start the enumeration process. If operating as a host controller, the device soft connect should be
disabled and power should be provided to VBUS via the USB0EPEN signal.

18.4 Register Map
Table 18-1 on page 549 lists the registers. All addresses given are relative to the USB base address
of 0x4005.0000.

Table 18-1. Univeral Serial Bus (USB) Controller Register Map

See
pageDescriptionResetTypeNameOffset

553USB Device Functional Address0x00R/WUSBFADDR0x000

554USB Power0x20R/WUSBPOWER0x001

556USB Transmit Interrupt Status0x0000ROUSBTXIS0x002

557USB Receive Interrupt Status0x0000ROUSBRXIS0x004

558USB Transmit Interrupt Enable0x000FR/WUSBTXIE0x006

559USB Receive Interrupt Enable0x000ER/WUSBRXIE0x008

560USB General Interrupt Status0x00ROUSBIS0x00A

562USB Interrupt Enable0x06R/WUSBIE0x00B

564USB Frame Value0x0000ROUSBFRAME0x00C

566USB Test Mode0x00R/WUSBTEST0x00F

568USB FIFO Endpoint 00x0000.0000R/WUSBFIFO00x020

568USB FIFO Endpoint 10x0000.0000R/WUSBFIFO10x024

568USB FIFO Endpoint 20x0000.0000R/WUSBFIFO20x028

568USB FIFO Endpoint 30x0000.0000R/WUSBFIFO30x02C

569USB Device Control0x80R/WUSBDEVCTL0x060

571USB Transmit Dynamic FIFO Sizing0x00R/WUSBTXFIFOSZ0x062

571USB Receive Dynamic FIFO Sizing0x00R/WUSBRXFIFOSZ0x063

572USB Transmit FIFO Start Address0x0000R/WUSBTXFIFOADD0x064

572USB Receive FIFO Start Address0x0000R/WUSBRXFIFOADD0x066

573USB Connect Timing0x5CR/WUSBCONTIM0x07A

574USB Full-Speed Last Transaction to End of Frame Timing0x77R/WUSBFSEOF0x07D

575USB Low-Speed Last Transaction to End of Frame
Timing0x72R/WUSBLSEOF0x07E

576USB Transmit Functional Address Endpoint 00x00R/WUSBTXFUNCADDR00x080

549June 02, 2008
Preliminary

LM3S5747 Microcontroller

See
pageDescriptionResetTypeNameOffset

577USB Transmit Hub Address Endpoint 00x00R/WUSBTXHUBADDR00x082

578USB Transmit Hub Port Endpoint 00x00R/WUSBTXHUBPORT00x083

576USB Transmit Functional Address Endpoint 10x00R/WUSBTXFUNCADDR10x088

577USB Transmit Hub Address Endpoint 10x00R/WUSBTXHUBADDR10x08A

578USB Transmit Hub Port Endpoint 10x00R/WUSBTXHUBPORT10x08B

579USB Receive Functional Address Endpoint 10x00R/WUSBRXFUNCADDR10x08C

580USB Receive Hub Address Endpoint 10x00R/WUSBRXHUBADDR10x08E

581USB Receive Hub Port Endpoint 10x00R/WUSBRXHUBPORT10x08F

576USB Transmit Functional Address Endpoint 20x00R/WUSBTXFUNCADDR20x090

577USB Transmit Hub Address Endpoint 20x00R/WUSBTXHUBADDR20x092

578USB Transmit Hub Port Endpoint 20x00R/WUSBTXHUBPORT20x093

579USB Receive Functional Address Endpoint 20x00R/WUSBRXFUNCADDR20x094

580USB Receive Hub Address Endpoint 20x00R/WUSBRXHUBADDR20x096

581USB Receive Hub Port Endpoint 20x00R/WUSBRXHUBPORT20x097

576USB Transmit Functional Address Endpoint 30x00R/WUSBTXFUNCADDR30x098

577USB Transmit Hub Address Endpoint 30x00R/WUSBTXHUBADDR30x09A

578USB Transmit Hub Port Endpoint 30x00R/WUSBTXHUBPORT30x09B

579USB Receive Functional Address Endpoint 30x00R/WUSBRXFUNCADDR30x09C

580USB Receive Hub Address Endpoint 30x00R/WUSBRXHUBADDR30x09E

581USB Receive Hub Port Endpoint 30x00R/WUSBRXHUBPORT30x09F

565USB Endpoint Index0x0000R/WUSBEPIDX0x0E

583USB Control and Status Endpoint 0 Low0x00W1CUSBCSRL00x102

586USB Control and Status Endpoint 0 High0x00W1CUSBCSRH00x103

588USB Receive Byte Count Endpoint 00x00ROUSBCOUNT00x108

589USB Type Endpoint 00x00R/WUSBTYPE00x10A

590USB NAK Limit0x00R/WUSBNAKLMT0x10B

582USB Maximum Transmit Data Endpoint 10x0000R/WUSBTXMAXP10x110

591USB Transmit Control and Status Endpoint 1 Low0x00R/WUSBTXCSRL10x112

594USB Transmit Control and Status Endpoint 1 High0x00R/WUSBTXCSRH10x113

597USB Maximum Receive Data Endpoint 10x0000R/WUSBRXMAXP10x114

598USB Receive Control and Status Endpoint 1 Low0x00R/WUSBRXCSRL10x116

601USB Receive Control and Status Endpoint 1 High0x00R/WUSBRXCSRH10x117

606USB Receive Byte Count Endpoint 10x0000ROUSBRXCOUNT10x118

June 02, 2008550
Preliminary

Univeral Serial Bus (USB) Controller

See
pageDescriptionResetTypeNameOffset

607USB Host Transmit Configure Type Endpoint 10x00R/WUSBTXTYPE10x11A

609USB Host Transmit Interval Endpoint 10x00R/WUSBTXINTERVAL10x11B

610USB Host Configure Receive Type Endpoint 10x00R/WUSBRXTYPE10x11C

612USB Host Receive Polling Interval Endpoint 10x00R/WUSBRXINTERVAL10x11D

582USB Maximum Transmit Data Endpoint 20x0000R/WUSBTXMAXP20x120

591USB Transmit Control and Status Endpoint 2 Low0x00R/WUSBTXCSRL20x122

594USB Transmit Control and Status Endpoint 2 High0x00R/WUSBTXCSRH20x123

597USB Maximum Receive Data Endpoint 20x0000R/WUSBRXMAXP20x124

598USB Receive Control and Status Endpoint 2 Low0x00R/WUSBRXCSRL20x126

601USB Receive Control and Status Endpoint 2 High0x00R/WUSBRXCSRH20x127

606USB Receive Byte Count Endpoint 20x0000ROUSBRXCOUNT20x128

607USB Host Transmit Configure Type Endpoint 20x00R/WUSBTXTYPE20x12A

609USB Host Transmit Interval Endpoint 20x00R/WUSBTXINTERVAL20x12B

610USB Host Configure Receive Type Endpoint 20x00R/WUSBRXTYPE20x12C

612USB Host Receive Polling Interval Endpoint 20x00R/WUSBRXINTERVAL20x12D

582USB Maximum Transmit Data Endpoint 30x0000R/WUSBTXMAXP30x130

591USB Transmit Control and Status Endpoint 3 Low0x00R/WUSBTXCSRL30x132

594USB Transmit Control and Status Endpoint 3 High0x00R/WUSBTXCSRH30x133

597USB Maximum Receive Data Endpoint 30x0000R/WUSBRXMAXP30x134

598USB Receive Control and Status Endpoint 3 Low0x00R/WUSBRXCSRL30x136

601USB Receive Control and Status Endpoint 3 High0x00R/WUSBRXCSRH30x137

606USB Receive Byte Count Endpoint 30x0000ROUSBRXCOUNT30x138

607USB Host Transmit Configure Type Endpoint 30x00R/WUSBTXTYPE30x13A

609USB Host Transmit Interval Endpoint 30x00R/WUSBTXINTERVAL30x13B

610USB Host Configure Receive Type Endpoint 30x00R/WUSBRXTYPE30x13C

612USB Host Receive Polling Interval Endpoint 30x00R/WUSBRXINTERVAL30x13D

613USB Request Packet Count in Block Transfer Endpoint
10x0000R/WUSBRQPKTCOUNT10x304

613USB Request Packet Count in Block Transfer Endpoint
20x0000R/WUSBRQPKTCOUNT20x308

613USB Request Packet Count in Block Transfer Endpoint
30x0000R/WUSBRQPKTCOUNT30x30C

614USB Receive Double Packet Buffer Disable0x0000R/WUSBRXDPKTBUFDIS0x340

615USB Transmit Double Packet Buffer Disable0x0000R/WUSBTXDPKTBUFDIS0x342

551June 02, 2008
Preliminary

LM3S5747 Microcontroller

See
pageDescriptionResetTypeNameOffset

616USB External Power Control0x0000.0000R/WUSBEPC0x400

619USB External Power Control Raw Interrupt Status0x0000.0000ROUSBEPCRIS0x404

620USB External Power Control Interrupt Mask0x0000.0000R/WUSBEPCIM0x408

621USB External Power Control Interrupt Status and Clear0x0000.0000R/WUSBEPCISC0x40C

622USB Device Resume Raw Interrupt Status0x0000.0000ROUSBDRRIS0x410

623USB Device Resume Interrupt Mask0x0000.0000R/WUSBDRIM0x414

624USB Device Resume Interrupt Status and Clear0x0000.0000W1CUSBDRISC0x418

625USB General-Purpose Control and Status0x0000.0000R/WUSBGPCS0x41C

18.5 Register Descriptions
The LM3S5747 USB controller is configured to the communication mode specified in the USB0 bit
field in the DC6 register:

■ Host or device (USB0 set to 0x2)

June 02, 2008552
Preliminary

Univeral Serial Bus (USB) Controller

Register 1: USB Device Functional Address (USBFADDR), offset 0x000

Device
USBFADDR is an 8-bit register that should be written with the 7-bit address of the device part of
the transaction.

When the USB controller is being used in Device mode (HOST bit in USBDEVCTL register is 0),
this register should be written with the address received through a SET_ADDRESS command,
which is then used for decoding the function address in subsequent token packets.

USB Device Functional Address (USBFADDR)
Base 0x4005.0000
Offset 0x000
Type R/W, reset 0x00

01234567

FUNCADDRreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Function Address

Function Address of Device as received through SET_ADDRESS.

0x00R/WFUNCADDR6:0

553June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: USB Power (USBPOWER), offset 0x001

Host

Device

USBPOWER is an 8-bit register that is used for controlling Suspend and Resume signaling, and
some basic operational aspects of the USB controller.

USBPOWER Host Mode

USB Power (USBPOWER)
Base 0x4005.0000
Offset 0x001
Type R/W, reset 0x20

01234567

PWRDNPHYSUSPENDRESUMERESETreserved

R/WR/W1SR/WR/WROROROROType
00000100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x02ROreserved7:4

Reset

This bit is set to enable Reset signaling on the bus and cleared to end
Reset signaling on the bus.

0R/WRESET3

Resume Signaling

Set by the CPU to generate Resume signaling when the device is in
Suspend mode. The CPU should clear this bit after 20 ms.

0R/WRESUME2

Suspend Mode

This bit is written to 1 by the CPU to enter Suspend mode. Writing a 0
does nothing.

0R/W1SSUSPEND1

Power Down PHY

Set by the CPU to power down the internal USB PHY.

0R/WPWRDNPHY0

USBPOWER Device Mode

USB Power (USBPOWER)
Base 0x4005.0000
Offset 0x001
Type R/W, reset 0x20

01234567

PWRDNPHYSUSPENDRESUMERESETreservedSOFTCONNISOUP

R/WROR/WROROROR/WR/WType
00000100Reset

June 02, 2008554
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

ISO Update

When set by the CPU, the USB controller waits for an SOF token from
the time TXRDY is set before sending the packet. If an IN token is
received before an SOF token, then a zero-length data packet is sent.

Note: Only valid for isochronous transfers.

0R/WISOUP7

Soft Connect/Disconnect

The USB D+/D- lines are enabled when this bit is set by the CPU, and
tri-stated when this bit is cleared by the CPU.

0R/WSOFTCONN6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x2ROreserved5:4

Reset

This bit is set when Reset signaling is present on the bus.

0RORESET3

Resume Signaling

Set by the CPU to generate Resume signaling when the device is in
Suspend mode. The CPU should clear this bit after 10 ms (a maximum
of 15 ms) to end Resume signaling.

0R/WRESUME2

Suspend Mode

This bit is set on entry into Suspend mode. It is cleared when the CPU
reads the interrupt register or sets the RESUME bit above.

0ROSUSPEND1

Power Down PHY

Set by the CPU to power down the internal USB PHY.

0R/WPWRDNPHY0

555June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 3: USB Transmit Interrupt Status (USBTXIS), offset 0x002

Host

Device

USBTXIS is a 16-bit read-only register that indicates which interrupts are currently active for endpoint
0 and the transmit endpoints 1–3.

Note: Bits relating to endpoints that have not been configured always return 0. Note also that all
active interrupts are cleared when this register is read.

USB Transmit Interrupt Status (USBTXIS)
Base 0x4005.0000
Offset 0x002
Type RO, reset 0x0000

0123456789101112131415

EP0EP1EP2EP3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

TX Endpoint 3 Interrupt0ROEP33

TX Endpoint 2 Interrupt0ROEP22

TX Endpoint 1 Interrupt0ROEP11

TX and RX Endpoint 0 Interrupt0ROEP00

June 02, 2008556
Preliminary

Univeral Serial Bus (USB) Controller

Register 4: USB Receive Interrupt Status (USBRXIS), offset 0x004

Host

Device

USBRXIS is a 16-bit read-only register that indicates which of the interrupts for receive endpoints
1–3 are currently active.

Note: Bits relating to endpoints that have not been configured always return 0. Note also that all
active interrupts are cleared when this register is read.

USB Receive Interrupt Status (USBRXIS)
Base 0x4005.0000
Offset 0x004
Type RO, reset 0x0000

0123456789101112131415

reservedEP1EP2EP3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

RX Endpoint 3 Interrupt0ROEP33

RX Endpoint 2 Interrupt0ROEP22

RX Endpoint 1 Interrupt0ROEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

557June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 5: USB Transmit Interrupt Enable (USBTXIE), offset 0x006

Host

Device

USBTXIE is a 16-bit register that provides interrupt enable bits for the interrupts in USBTXIS. When
a bit in USBTXIE is set to 1, the USB interrupt to the processor is asserted when the corresponding
interrupt bit in the USBTXIS register is set. When a bit is cleared to 0, the interrupt in USBTXIS is
still set but the USB interrupt to the processor is not asserted. On reset, the bits corresponding to
endpoint 0 and transmit endpoints 1-3 are set to 1, while the remaining bits are set to 0.

USB Transmit Interrupt Enable (USBTXIE)
Base 0x4005.0000
Offset 0x006
Type R/W, reset 0x000F

0123456789101112131415

EP0EP1EP2EP3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
1111000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

TX Endpoint 3 Interrupt Enable1R/WEP33

TX Endpoint 2 Interrupt Enable1R/WEP22

TX Endpoint 1 Interrupt Enable1R/WEP11

TX and RX Endpoint 0 Interrupt Enable1R/WEP00

June 02, 2008558
Preliminary

Univeral Serial Bus (USB) Controller

Register 6: USB Receive Interrupt Enable (USBRXIE), offset 0x008

Host

Device

USBRXIE is a 16-bit register that provides interrupt enable bits for the interrupts inUSBRXIS. When
a bit in USBRXIE is set to 1, the USB interrupt to the processor is asserted when the corresponding
interrupt bit in the USBRXIS register is set. When a bit is cleared to 0, the interrupt in USBRXIS is
still set but the USB interrupt to the processor is not asserted. On reset, the bits corresponding to
receive endpoints 1-3 are set to 1, while the remaining bits are set to 0.

USB Receive Interrupt Enable (USBRXIE)
Base 0x4005.0000
Offset 0x008
Type R/W, reset 0x000E

0123456789101112131415

reservedEP1EP2EP3reserved

ROR/WR/WR/WROROROROROROROROROROROROType
0111000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

RX Endpoint 3 Interrupt Enable1R/WEP33

RX Endpoint 2 Interrupt Enable1R/WEP22

RX Endpoint 1 Interrupt Enable1R/WEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

559June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 7: USB General Interrupt Status (USBIS), offset 0x00A

Host

Device

USBIS is an 8-bit read-only register that indicates which USB interrupts are currently active. All
active interrupts are cleared when this register is read.

USBIS Host Mode

USB General Interrupt Status (USBIS)
Base 0x4005.0000
Offset 0x00A
Type RO, reset 0x00

01234567

reservedRESUMEBABBLESOFCONNDISCONreserved

ROROROROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

Session Disconnect

Set when a device disconnect is detected.

0RODISCON5

Session Connect

Set when a device connection is detected.

0ROCONN4

Start of Frame

Set when a new frame starts.

0ROSOF3

Babble Detected

Set when babble is detected. Only active after first SOF has been sent.

0ROBABBLE2

Resume Signal Detected

Set when Resume signaling is detected on the bus while the USB
controller is in Suspend mode.

This can only be used if the USB's system clock is enabled. If the user
disables the clock programming, the USBDRCRIS, USBDRCIM, and
USBISC registers should be used.

0RORESUME1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

June 02, 2008560
Preliminary

Univeral Serial Bus (USB) Controller

USBIS Device Mode

USB General Interrupt Status (USBIS)
Base 0x4005.0000
Offset 0x00A
Type RO, reset 0x00

01234567

SUSPENDRESUMERESETSOFreservedDISCONreserved

ROROROROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

Session Disconnect

Set when a session ends. Valid at all transaction speeds.

0RODISCON5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved4

Start of Frame

Set when a new frame starts.

0ROSOF3

Reset Signal Detected

Set when Reset signaling is detected on the bus.

0RORESET2

Resume Signal Detected

Set when Resume signaling is detected on the bus while the USB
controller is in Suspend mode.

This can only be used if the USB's system clock is enabled. If the user
disables the clock programming, the USBDRCRIS, USBDRCIM, and
USBISC registers should be used.

0RORESUME1

Suspend Signal Detected

Set when Suspend signaling is detected on the bus.

0ROSUSPEND0

561June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: USB Interrupt Enable (USBIE), offset 0x00B

Host

Device

USBIE is an 8-bit register that provides interrupt enable bits for each of the interrupts in USBIS. By
default, interrupt 1 and 2 are enabled.

USBIE Host Mode

USB Interrupt Enable (USBIE)
Base 0x4005.0000
Offset 0x00B
Type R/W, reset 0x06

01234567

SUSPNDRESUMERESETSOFCONNDISCONreserved

R/WR/WR/WR/WR/WR/WROROType
01100000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

Enable Disconnect Interrupt

Set by CPU to enable DISCON in USBIS.

0R/WDISCON5

Enable Connect Interrupt

Set by CPU to enable CONN in USBIS.

0R/WCONN4

Enable Start-of-Frame Interrupt

Set by CPU to enable SOF in USBIS.

0R/WSOF3

Enable Reset Interrupt

Set by CPU to enable RESET in USBIS.

1R/WRESET2

Enable Resume Interrupt

Set by CPU to enable RESUME in USBIS.

1R/WRESUME1

Enable Suspend Interrupt

Set by CPU to enable SUSPEND in USBIS.

0R/WSUSPND0

USBIE Device Mode

USB Interrupt Enable (USBIE)
Base 0x4005.0000
Offset 0x00B
Type R/W, reset 0x06

01234567

SUSPNDRESUMEBABBLESOFCONNDISCONreserved

R/WR/WR/WR/WR/WR/WROROType
01100000Reset

June 02, 2008562
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

Enable Disconnect Interrupt

Set by CPU to enable DISCON in USBIS.

0R/WDISCON5

Enable Connect Interrupt

Set by CPU to enable CONN in USBIS.

0R/WCONN4

Enable Start-of-Frame Interrupt

Set by CPU to enable SOF in USBIS.

0R/WSOF3

Enable Babble Interrupt

Set by CPU to enable BABBLE in USBIS.

1R/WBABBLE2

Enable Resume Interrupt

Set by CPU to enable RESUME in USBIS.

1R/WRESUME1

Enable Suspend Interrupt

Set by CPU to enable SUSPEND in USBIS.

0R/WSUSPND0

563June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 9: USB Frame Value (USBFRAME), offset 0x00C

Host

Device

USBFRAME is a 16-bit read-only register that holds the last received frame number.

USB Frame Value (USBFRAME)
Base 0x4005.0000
Offset 0x00C
Type RO, reset 0x0000

0123456789101112131415

Framereserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:11

Frame Number0x00ROFrame10:0

June 02, 2008564
Preliminary

Univeral Serial Bus (USB) Controller

Register 10: USB Endpoint Index (USBEPIDX), offset 0x0E

Host

Device

Each endpoint's buffer can be accessed by configuring a FIFO size and starting address. The
USBEPIDX 16-bit register is used with the USBTXFIFOSZ, USBRXFIFOSZ, USBTXFIFOADD,
and USBRXFIFOADD registers.

USB Endpoint Index (USBEPIDX)
Base 0x4005.0000

Offset 0x0E
Type R/W, reset 0x0000

0123456789101112131415

EPIDXreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

Endpoint Index

This sets which endpoint is accessed when reading or writing to one of
the USB controller's indexed registers.

0x00R/WEPIDX3:0

565June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 11: USB Test Mode (USBTEST), offset 0x00F

Host

Device

USBTESTMODE is an 8-bit register that is primarily used to put the USB controller into one of the
four test modes for operation described in theUSB 2.0 specification, in response to a SET FEATURE:
USBTESTMODE command. It is not used in normal operation.

Note: Only one of these bits should be set at any time.

USBTEST Host Mode

USB Test Mode (USBTEST)
Base 0x4005.0000
Offset 0x00F
Type R/W, reset 0x00

01234567

reservedFORCEFSFIFOACCFORCEH

ROROROROROR/WR/W1SR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Force Host Mode

The CPU sets this bit to instruct the core to enter Host mode when the
Session bit is set, regardless of whether it is connected to any peripheral.
The state of the USBD+ and USBD- are ignored. The core then remains
in Host mode until the SESSION bit is cleared, even if a device is
disconnected, and if the FORCEH bit remains set, re-enters Host mode
the next time the SESSION bit is set.

While in this mode, status of the bus connection may be read from the
DEV bit of theUSBDEVCTL register. The operating speed is determined
from the FORCEFS bit.

0R/WFORCEH7

FIFO Access

The CPU sets this bit to transfer the packet in the endpoint 0 transmit
FIFO to the endpoint 0 receive FIFO. It is cleared automatically.

0R/W1SFIFOACC6

Force Full-Speed Mode

The CPU sets this bit to force the USB controller into Full-Speed mode
when it receives a USB reset. When 0, the USB controller operates at
Low Speed.

0R/WFORCEFS5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved4:0

USBTEST Device Mode

USB Test Mode (USBTEST)
Base 0x4005.0000
Offset 0x00F
Type R/W, reset 0x00

01234567

reservedFORCEFSFIFOACCreserved

ROROROROROR/WR/W1SROType
00000000Reset

June 02, 2008566
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

FIFO Access

The CPU sets this bit to transfer the packet in the endpoint 0 transmit
FIFO to the endpoint 0 receive FIFO. It is cleared automatically.

0R/W1SFIFOACC6

Force Full Speed

The CPU sets this bit to force the USB controller into Full-Speed mode
when it receives a USB reset. When 0, the USB controller operates at
Low Speed.

0R/WFORCEFS5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved4:0

567June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 12: USB FIFO Endpoint 0 (USBFIFO0), offset 0x020
Register 13: USB FIFO Endpoint 1 (USBFIFO1), offset 0x024
Register 14: USB FIFO Endpoint 2 (USBFIFO2), offset 0x028
Register 15: USB FIFO Endpoint 3 (USBFIFO3), offset 0x02C

Host

Device

These 32-bit registers provide an address for CPU access to the FIFOs for each endpoint. Writing
to these addresses loads data into the Transmit FIFO for the corresponding endpoint. Reading from
these addresses unloads data from the Receive FIFO for the corresponding endpoint.

Transfers to and from FIFOs may be 8-bit, 16-bit or 32-bit as required, and any combination of
access is allowed provided the data accessed is contiguous. All transfers associated with one packet
must be of the same width so that the data is consistently byte-, word- or double-word-aligned.
However, the last transfer may contain fewer bytes than the previous transfers in order to complete
an odd-byte or odd-word transfer.

Depending on the size of the FIFO and the expected maximum packet size, the FIFOs support
either single-packet or double-packet buffering. Burst writing of multiple packets is not supported
as flags need to be set after each packet is written.

Following a STALL response or a transmit error on endpoint 1–3, the associated FIFO is completely
flushed.

USB FIFO Endpoint 0 (USBFIFO0)
Base 0x4005.0000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

EPDATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

EPDATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Endpoint Data

Writing to this register loads the data into the Transmit FIFO and reading
unloads data from the Receive FIFO.

0x00R/WEPDATA31:0

June 02, 2008568
Preliminary

Univeral Serial Bus (USB) Controller

Register 16: USB Device Control (USBDEVCTL), offset 0x060

Host

Device

USBDEVCTL provides the status information for the current operating mode (host or device) of the
USB controller. If the USB controller is in host mode, this register also indicates if a full- or low-speed
device has been connected.

USBDEVCTL Host

USB Device Control (USBDEVCTL)
Base 0x4005.0000
Offset 0x060
Type R/W, reset 0x80

01234567

reservedHOSTreservedLSDEVFSDEVDEV

ROROROROROROROROType
00000001Reset

DescriptionResetTypeNameBit/Field

Device Mode

When set, this bit indicates the controller is operating as a device.

Note: This value is only valid while a session is in progress.

1RODEV7

Full-Speed Device Detected

This read-only bit is set when a full-speed device has been detected on
the port.

0ROFSDEV6

Low-Speed Device Detected

This read-only bit is set when a low-speed device has been detected
on the port.

0ROLSDEV5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved4:3

Host Mode

This read-only bit is set when the USB controller is acting as a Host.

0ROHOST2

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved1:0

USBDEVCTL Device Mode

USB Device Control (USBDEVCTL)
Base 0x4005.0000
Offset 0x060
Type R/W, reset 0x80

01234567

reservedDEV

ROROROROROROROROType
00000001Reset

569June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Device Mode

When set, this bit indicates the controller is operating as a device.

Note: This value is only valid while a session is in progress.

1RODEV7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved6:0

June 02, 2008570
Preliminary

Univeral Serial Bus (USB) Controller

Register 17: USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ), offset 0x062
Register 18: USBReceive Dynamic FIFOSizing (USBRXFIFOSZ), offset 0x063

Host

Device

These 8-bit registers allow the selected TX/RX endpoint FIFOs to be dynamically sized.USBEPIDX
is used to configure each transmit endpoint's FIFO size.

USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ)
Base 0x4005.0000
Offset 0x062

Type R/W, reset 0x00

01234567

SIZEDPBreserved

R/WR/WR/WR/WR/WROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:5

Double Packet Buffer Support

Defines whether double-packet buffering is supported. When 1,
double-packet buffering is supported. When 0, only single-packet
buffering is supported.

0R/WDPB4

Max Packet Size

Maximum packet size to be allowed for (before any splitting within the
FIFO of bulk/high-bandwidth packets prior to transmission.

If DPB = 0, the FIFO also is this size; if DPB = 1, the FIFO is twice this
size.

Packet Size (Bytes)Value

80x0

160x1

320x2

640x3

1280x4

2560x5

5120x6

10240x7

20480x8

Reserved0x9-0xF

0x0R/WSIZE3:0

571June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 19: USB Transmit FIFO Start Address (USBTXFIFOADD), offset 0x064
Register 20: USBReceive FIFOStart Address (USBRXFIFOADD), offset 0x066

Host

Device

USBTXFIFOADD is a 16-bit register that controls the start address of the selected transmit endpoint
FIFO. USBRXFIFOADD is a 14-bit register that controls the start address of the selected receive
endpoint FIFO.

USB Transmit FIFO Start Address (USBTXFIFOADD)
Base 0x4005.0000

Offset 0x064
Type R/W, reset 0x0000

0123456789101112131415

ADDRreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:13

Transmit/Receive Start Address

Start address of the endpoint FIFO in units of 8 bytes.

Start AddressValue

00x0

80x1

160x2

320x3

640x4

1280x5

2560x6

5120x7

10240x8

20480x9

Reserved0xA-0x1FFF

0x00R/WADDR12:0

June 02, 2008572
Preliminary

Univeral Serial Bus (USB) Controller

Register 21: USB Connect Timing (USBCONTIM), offset 0x07A

Host

Device

This 8-bit configuration register allows some delays to be specified.

USB Connect Timing (USBCONTIM)
Base 0x4005.0000
Offset 0x07A
Type R/W, reset 0x5C

01234567

reservedWTCON

ROROROROR/WR/WR/WR/WType
00001010Reset

DescriptionResetTypeNameBit/Field

Connect Wait

Sets the wait to be applied to allow for the user’s connect/disconnect
filter, in units of 533.3 ns. (The default setting corresponds to 2.667µs.)

0x5R/WWTCON7:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:0

573June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 22: USB Full-Speed Last Transaction to End of Frame Timing
(USBFSEOF), offset 0x07D

Host

Device

This 8-bit configuration register sets the minimum time gap that is to be allowed between the start
of the last transaction and the EOF for full-speed transactions.

USB Full-Speed Last Transaction to End of Frame Timing (USBFSEOF)
Base 0x4005.0000
Offset 0x07D

Type R/W, reset 0x77

01234567

FSEOFG

R/WR/WR/WR/WR/WR/WR/WR/WType
11101110Reset

DescriptionResetTypeNameBit/Field

Full-Speed End-of-Frame Gap

Used during full-speed transactions, to set the gap between the last
transaction and the End-of-Frame (EOF), in units of 533.3 ns. The default
corresponds to 63.46 µs.

0x77R/WFSEOFG7:0

June 02, 2008574
Preliminary

Univeral Serial Bus (USB) Controller

Register 23: USB Low-Speed Last Transaction to End of Frame Timing
(USBLSEOF), offset 0x07E

Host

Device

This 8-bit configuration register sets the minimum time gap that is to be allowed between the start
of the last transaction and the EOF for low-speed transactions.

USB Low-Speed Last Transaction to End of Frame Timing (USBLSEOF)
Base 0x4005.0000
Offset 0x07E

Type R/W, reset 0x72

01234567

LSEOFG

R/WR/WR/WR/WR/WR/WR/WR/WType
01001110Reset

DescriptionResetTypeNameBit/Field

Low-Speed End-of-Frame Gap

Used during low-speed transactions, to set the gap between the last
transaction and the End-of-Frame (EOF), in units of 1.067 µs. The default
corresponds to 121.6 µs.

0x72R/WLSEOFG7:0

575June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 24: USB Transmit Functional Address Endpoint 0
(USBTXFUNCADDR0), offset 0x080
Register 25: USB Transmit Functional Address Endpoint 1
(USBTXFUNCADDR1), offset 0x088
Register 26: USB Transmit Functional Address Endpoint 2
(USBTXFUNCADDR2), offset 0x090
Register 27: USB Transmit Functional Address Endpoint 3
(USBTXFUNCADDR3), offset 0x098

Host
USBTXFUNCADDRn is an 8-bit read/write register that records the address of the target function
that is to be accessed through the associated endpoint (EPn). USBTXFUNCADDRn needs to be
defined for each transmit endpoint that is used.

Note: USBTXFUNCADDR0 is used for both receive and transmit for endpoint 0.

USB Transmit Functional Address Endpoint 0 (USBTXFUNCADDR0)
Base 0x4005.0000
Offset 0x080
Type R/W, reset 0x00

01234567

ADDRreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Device Address

USB bus address for the target device.

0x00R/WADDR6:0

June 02, 2008576
Preliminary

Univeral Serial Bus (USB) Controller

Register 28: USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0),
offset 0x082
Register 29: USB Transmit Hub Address Endpoint 1 (USBTXHUBADDR1),
offset 0x08A
Register 30: USB Transmit Hub Address Endpoint 2 (USBTXHUBADDR2),
offset 0x092
Register 31: USB Transmit Hub Address Endpoint 3 (USBTXHUBADDR3),
offset 0x09A

Host
USBTXHUBADDRn is an 8-bit read/write register that, like USBTXHUBPORTn, only needs to be
written when a full- or low-speed device is connected to transmit endpoint EPn via a high-speed
USB 2.0 hub. This register provides the necessary transaction translation to convert between
high-speed transmission and full-/low-speed transmission. This register records the address of that
USB 2.0 hub through which the target associated with the endpoint is accessed. This information,
together with the hub port in USBTXHUBPORTn, allows the USB controller to support split
transactions.

Note: USBTXHUBADDR0 is used for both receive and transmit for endpoint 0.

USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0)
Base 0x4005.0000
Offset 0x082
Type R/W, reset 0x00

01234567

ADDRMULTTRAN

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Multiple Translators

Indicates whether the hub has multiple transaction translators. Clear to
0 if single transaction translator; set to 1 if multiple transaction translators.

0R/WMULTTRAN7

Hub Address

USB bus address for the USB 2.0 hub.

0x00R/WADDR6:0

577June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 32: USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0), offset
0x083
Register 33: USB Transmit Hub Port Endpoint 1 (USBTXHUBPORT1), offset
0x08B
Register 34: USB Transmit Hub Port Endpoint 2 (USBTXHUBPORT2), offset
0x093
Register 35: USB Transmit Hub Port Endpoint 3 (USBTXHUBPORT3), offset
0x09B

Host
USBTXHUBPORTn is an 8-bit read/write register that, like USBTXHUBADDRn, only needs to be
written when a full- or low-speed device is connected to transmit endpoint EPn via a high-speed
USB 2.0 hub. This register provides the necessary transaction translation to convert between
high-speed transmission and full-/low-speed transmission. This register records the port of that USB
2.0 hub through which the target associated with the endpoint is accessed. This information, together
with the hub address inUSBTXHUBADDRn, allows the USB controller to support split transactions.

Note: USBTXHUBPORT0 is used for both receive and transmit for endpoint 0.

USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0)
Base 0x4005.0000
Offset 0x083
Type R/W, reset 0x00

01234567

PORTreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Hub Port

USB hub port number.

0x00R/WPORT6:0

June 02, 2008578
Preliminary

Univeral Serial Bus (USB) Controller

Register 36: USB Receive Functional Address Endpoint 1
(USBRXFUNCADDR1), offset 0x08C
Register 37: USB Receive Functional Address Endpoint 2
(USBRXFUNCADDR2), offset 0x094
Register 38: USB Receive Functional Address Endpoint 3
(USBRXFUNCADDR3), offset 0x09C

Host
USBRXFUNCADDRn is an 8-bit read/write register that records the address of the target function
that is to be accessed through the associated endpoint (EPn). USBRXFUNCADDRn needs to be
defined for each receive endpoint that is used.

Note: USBTXFUNCADDR0 is used for both receive and transmit for endpoint 0.

USB Receive Functional Address Endpoint 1 (USBRXFUNCADDR1)
Base 0x4005.0000
Offset 0x08C
Type R/W, reset 0x00

01234567

ADDRreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Device Address

USB bus address for the target device.

0x00R/WADDR6:0

579June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 39: USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1),
offset 0x08E
Register 40: USB Receive Hub Address Endpoint 2 (USBRXHUBADDR2),
offset 0x096
Register 41: USB Receive Hub Address Endpoint 3 (USBRXHUBADDR3),
offset 0x09E

Host
USBRXHUBADDRn is an 8-bit read/write register that, like USBRXHUBPORTn, only needs to be
written when a full- or low-speed device is connected to receive endpoint EPn via a high-speed USB
2.0 hub. This register provides the necessary transaction translation to convert between high-speed
transmission and full-/low-speed transmission. This register records the address of that USB 2.0
hub through which the target associated with the endpoint is accessed. This information, together
with the hub port in USBRXHUBPORTn, allows the USB controller to support split transactions.

Note: USBTXHUBADDR0 is used for both receive and transmit for endpoint 0.

USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1)
Base 0x4005.0000
Offset 0x08E
Type R/W, reset 0x00

01234567

ADDRMULTTRAN

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Multiple Translators

Indicates whether the hub has multiple transaction translators. Clear to
0 if single transaction translator; set to 1 if multiple transaction translators.

0R/WMULTTRAN7

Hub Address

USB bus address for the USB 2.0 hub.

0x00R/WADDR6:0

June 02, 2008580
Preliminary

Univeral Serial Bus (USB) Controller

Register 42: USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1), offset
0x08F
Register 43: USB Receive Hub Port Endpoint 2 (USBRXHUBPORT2), offset
0x097
Register 44: USB Receive Hub Port Endpoint 3 (USBRXHUBPORT3), offset
0x09F

Host
USBRXHUBPORTn is an 8-bit read/write register that, like USBRXHUBADDRn, only needs to be
written when a full- or low-speed device is connected to receive endpoint EPn via a high-speed USB
2.0 hub. This register provides the necessary transaction translation to convert between high-speed
transmission and full-/low-speed transmission. This register records the port of that USB 2.0 hub
through which the target associated with the endpoint is accessed. This information, together with
the hub address in USBTXHUBADDRn, allows the USB controller to support split transactions.

Note: USBTXHUBPORT0 is used for both receive and transmit for endpoint 0.

USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1)
Base 0x4005.0000
Offset 0x08F
Type R/W, reset 0x00

01234567

PORTreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Hub Port

USB hub port number.

0x00R/WPORT6:0

581June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 45: USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1), offset
0x110
Register 46: USB Maximum Transmit Data Endpoint 2 (USBTXMAXP2), offset
0x120
Register 47: USB Maximum Transmit Data Endpoint 3 (USBTXMAXP3), offset
0x130

Host

Device

The USBTXMAXPn 16-bit register defines the maximum amount of data that can be transferred
through the transmit endpoint in a single operation.

Bits 10:0 define (in bytes) the maximum payload transmitted in a single transaction. The value set
can be up to 1024 bytes but is subject to the constraints placed by the USB Specification on packet
sizes for bulk, interrupt and isochronous transfers in full-speed operation.

The MULT bit field contains the multiplication factor for the number of bytes in a given transaction.
For a single 64-byte bulk transfer, the multiplication factor is 1 so MULT should be written with 0. If
packet splitting is used, the multiplication factor allows for more than one transfer to be loaded into
the FIFO. A multiplication factor of 2 (MULT written to 1) allows two 64-byte packets to be written in
this endpoint's FIFO.

The total amount of data represented by the value written to this register (specified payload × m)
must not exceed the FIFO size for the transmit endpoint, and should not exceed half the FIFO size
if double-buffering is required.

If this register is changed after packets have been sent from the endpoint, the transmit endpoint
FIFO should be completely flushed (using the FLUSH bit in USBTXCSRL1n) after writing the new
value to this register.

Note: USBTXMAXPn must be set to an even number of bytes for proper interrupt generation in
DMA Mode 1.

USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1)
Base 0x4005.0000
Offset 0x110
Type R/W, reset 0x0000

0123456789101112131415

MAXLOADMULT

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Multiplier

Defines the maximum number of USB packets (that is, packets for
transmission over the USB) of the specified payload into which a single
data packet placed in the FIFO should be split, prior to transfer. The
value written to this register is one less than the desired multiplier. For
example, a value of 0 is a multiplier of 1.

0x00R/WMULT15:11

Maximum Payload

The maximum payload in bytes per transaction.

0x00R/WMAXLOAD10:0

June 02, 2008582
Preliminary

Univeral Serial Bus (USB) Controller

Register 48: USB Control and Status Endpoint 0 Low (USBCSRL0), offset
0x102

Host

Device

USBCSRL0 is an 8-bit register that provides control and status bits for endpoint 0.

USBCSRL0 Host Mode

USB Control and Status Endpoint 0 Low (USBCSRL0)
Base 0x4005.0000
Offset 0x102
Type W1C, reset 0x00

01234567

RXRDYTXRDYSTALLEDSETUPERRORREQPKTSTATUSNAKTO

R/W0CR/W1SR/W0CR/W1SR/W0CR/WR/WR/W0CType
00000000Reset

DescriptionResetTypeNameBit/Field

NAK Timeout

This bit is set by the USB controller when endpoint 0 is halted following
the receipt of NAK responses for longer than the time set by the
USBNAKLMT register. The CPU should clear this bit by writing a 0 to
it to allow the endpoint to continue.

0R/W0CNAKTO7

Status Packet

The CPU sets this bit at the same time as the TXRDY or REQPKT bit is
set, to perform a status stage transaction. Setting this bit ensures DT is
set to 1 so that a DATA1 packet is used for the Status Stage transaction.

0R/WSTATUS6

Request Packet

The CPU sets this bit to request an IN transaction. It is cleared when
RXRDY is set.

0R/WREQPKT5

Error

This bit is set by the USB controller when three attempts have been
made to perform a transaction with no response from the peripheral.
The CPU should clear this bit. An interrupt is generated when this bit is
set.

0R/W0CERROR4

Setup Packet

The CPU sets this bit, at the same time as the TXRDY bit is set, to send
a SETUP token instead of an OUT token for the transaction. This always
resets the data toggle and sends a DATA0 packet.

0R/W1SSETUP3

Endpoint Stalled

This bit is set when a STALL handshake is received. The CPU should
clear this bit.

0R/W0CSTALLED2

583June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Transmit Packet Ready

The CPU sets this bit after loading a data packet into the FIFO. It is
cleared automatically when a data packet has been transmitted. An
interrupt is also generated at this point.

0R/W1STXRDY1

Receive Packet Ready

This bit is set when a data packet has been received. An interrupt is
generated when this bit is set. The CPU should clear this bit, by writing
a 0 when the packet has been read from the FIFO. This acknowledges
that data has been read from the FIFO.

0R/W0CRXRDY0

USBCSRL0 Device Mode

USB Control and Status Endpoint 0 Low (USBCSRL0)
Base 0x4005.0000
Offset 0x102
Type W1C, reset 0x00

01234567

RXRDYTXRDYSTALLEDDATAENDSETENDSTALLRXRDYCSETENDC

ROR/W1SR/W0CW1CROW1CW1CW1CType
00000000Reset

DescriptionResetTypeNameBit/Field

Setup End Clear

The CPU writes a 1 to this bit to clear the SETEND bit.

0W1CSETENDC7

RXRDY Clear

The CPU writes a 1 to this bit to clear the RXRDY bit.

0W1CRXRDYC6

Send Stall

The CPU writes a 1 to this bit to terminate the current transaction. The
STALL handshake is transmitted, and then this bit is cleared
automatically.

0W1CSTALL5

Setup End

This bit is set when a control transaction ends before the DataEnd bit
has been set. An interrupt is generated and the FIFO flushed at this
time. The bit is cleared by the CPU writing a 1 to the SETENDC bit.

0ROSETEND4

Data End

The CPU sets this bit:

■ When setting TXRDY for the last data packet

■ When clearing RXRDY after unloading the last data packet

■ When setting TXRDY for a zero-length data packet

It is cleared automatically.

0W1CDATAEND3

June 02, 2008584
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Endpoint Stalled

This bit is set when a STALL handshake is transmitted. The CPU should
clear this bit by writing a 0. This bit can only be cleared. Setting this bit
does nothing.

0R/W0CSTALLED2

Transmit Packet Ready

The CPU writes a 1 to this bit after loading a data packet into the FIFO.
It is cleared automatically when the data packet has been transmitted.
An interrupt is also generated at this point.

0R/W1STXRDY1

Receive Packet Ready

This bit is set when a data packet has been received. An interrupt is
generated when this bit is set. The CPU clears this bit by setting the
RXRDYC bit.

0RORXRDY0

585June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 49: USB Control and Status Endpoint 0 High (USBCSRH0), offset
0x103

Host

Device

USBSR0H is an 8-bit register that provides control and status bits for endpoint 0.

USBCSRH0 Host

USB Control and Status Endpoint 0 High (USBCSRH0)
Base 0x4005.0000
Offset 0x103
Type W1C, reset 0x00

01234567

FLUSHDTDTWEreserved

W1CR/WW1SROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:3

Data Toggle Write Enable

The CPU writes a 1 to this bit to enable the current state of the endpoint
0 data toggle to be written (see DT bit). This bit is automatically cleared
once the new value is written.

0W1SDTWE2

Data Toggle

When read, this bit indicates the current state of the endpoint 0 data
toggle. If DTWE is High, this bit may be written with the required setting
of the data toggle. If DTWE is Low, this cannot be written.

0R/WDT1

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be
transmitted/read from the endpoint 0 FIFO. The FIFO pointer is reset
and the TXRDY/RXRDY bit is cleared.

Important: FLUSH should only be used when TXRDY/RXRDY is set.
At other times, it may cause data to be corrupted.

0W1CFLUSH0

USBCSRH0 Device Mode

USB Control and Status Endpoint 0 High (USBCSRH0)
Base 0x4005.0000
Offset 0x103
Type W1C, reset 0x00

01234567

FLUSHreserved

W1SROROROROROROROType
00000000Reset

June 02, 2008586
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:1

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be
transmitted/read from the endpoint 0 FIFO. The FIFO pointer is reset
and the TXRDY/RXRDY bit is cleared.

Important: FLUSH should only be used when TXRDY/RXRDY is set.
At other times, it may cause data to be corrupted.

0W1SFLUSH0

587June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 50: USBReceive Byte Count Endpoint 0 (USBCOUNT0), offset 0x108

Host

Device

USBCOUNT0 is an 8-bit read-only register that indicates the number of received data bytes in the
endpoint 0 FIFO. The value returned changes as the contents of the FIFO change and is only valid
while RXRDY is set.

USB Receive Byte Count Endpoint 0 (USBCOUNT0)
Base 0x4005.0000

Offset 0x108
Type RO, reset 0x00

01234567

COUNTreserved

ROROROROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Count

Count is a read-only value that indicates the number of received data
bytes in the endpoint 0 FIFO.

0x00ROCOUNT6:0

June 02, 2008588
Preliminary

Univeral Serial Bus (USB) Controller

Register 51: USB Type Endpoint 0 (USBTYPE0), offset 0x10A

Host
This is an 8-bit register that should be written with the operating speed of the targeted device being
communicated with using endpoint 0.

USB Type Endpoint 0 (USBTYPE0)
Base 0x4005.0000
Offset 0x10A
Type R/W, reset 0x00

01234567

reservedSPEED

ROROROROROROR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Operating Speed

Operating speed of the target device. If selected, the target is assumed
to have the same connection speed as the core.

DescriptionValue

Reserved00

Reserved01

Full10

Low11

0x00R/WSPEED7:6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved5:0

589June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 52: USB NAK Limit (USBNAKLMT), offset 0x10B

Host
USBNAKLMT is an 8-bit register that sets the number of frames after which endpoint 0 should time
out on receiving a stream of NAK responses. (Equivalent settings for other endpoints can be made
through their USBTXINTERVALn and USBRXINTERVALn registers.)

The number of frames selected is 2(m-1) (where m is the value set in the register, with valid values
of 2–16). If the host receives NAK responses from the target for more frames than the number
represented by the limit set in this register, the endpoint is halted.

Note: A value of 0 or 1 disables the NAK timeout function.

USB NAK Limit (USBNAKLMT)
Base 0x4005.0000
Offset 0x10B
Type R/W, reset 0x00

01234567

NAKLMTreserved

R/WR/WR/WR/WR/WROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:5

EP0 NAK Limit

Number of frames after receiving a stream of NAK responses.

0x00R/WNAKLMT4:0

June 02, 2008590
Preliminary

Univeral Serial Bus (USB) Controller

Register 53: USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1),
offset 0x112
Register 54: USB Transmit Control and Status Endpoint 2 Low (USBTXCSRL2),
offset 0x122
Register 55: USB Transmit Control and Status Endpoint 3 Low (USBTXCSRL3),
offset 0x132

Host

Device

USBTXCSRLn is an 8-bit register that provides control and status bits for transfers through the
currently selected transmit endpoint.

USBTXCSRL1 Host Mode

USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1)
Base 0x4005.0000
Offset 0x112
Type R/W, reset 0x00

01234567

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDTNAKTO /
INCTX

R/W0CR/W0CR/W0CW1CR/WR/W0CW1SR/W0CType
00000000Reset

DescriptionResetTypeNameBit/Field

NAK Timeout / Incomplete TX

Bulk endpoints only: This bit is set when the transmit endpoint is halted
following the receipt of NAK responses for longer than the time set as
the NAK Limit by the USBTXINTERVALn register. The CPU should
clear this bit to allow the endpoint to continue.

High-bandwidth interrupt endpoints only: This bit is set if no response
is received from the device to which the packet is being sent.

0R/W0CNAKTO / INCTX7

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT6

Endpoint Stalled

This bit is set when a STALL handshake is received. When this bit is
set, any DMA request that is in progress is stopped, the FIFO is
completely flushed, and the TXRDY bit is cleared. The CPU should clear
this bit.

0R/W0CSTALLED5

Setup Packet

The CPU sets this bit, at the same time as the TXRDY bit is set, to send
a SETUP token instead of an OUT token for the transaction.

Note: Setting this bit also clears DT.

0R/WSETUP4

591June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Flush FIFO

The CPUwrites a 1 to this bit to flush the latest packet from the endpoint
transmit FIFO. The FIFO pointer is reset, the TXRDY bit is cleared, and
an interrupt is generated. FLUSHmay be set simultaneously with TXRDY
to abort the packet that is currently being loaded into the FIFO.

Note: FLUSH should only be used when TXRDY is set. At other times,
it may cause data to be corrupted. Also note that, if the FIFO
is double-buffered, FLUSH may need to be set twice to
completely clear the FIFO.

0W1CFLUSH3

Error

The USB sets this bit when three attempts have been made to send a
packet and no handshake packet has been received. When the bit is
set, an interrupt is generated, TXRDY is cleared, and the FIFO is
completely flushed. The CPU should clear this bit.

Note: This is valid only when the endpoint is operating in Bulk or
Interrupt mode.

0R/W0CERROR2

FIFO Not Empty

The USB controller sets this bit when there is at least one packet in the
transmit FIFO.

0R/W0CFIFONE1

Transmit Packet Ready

The CPU sets this bit after loading a data packet into the FIFO. It is
cleared automatically when a data packet has been transmitted. An
interrupt is generated at this point. TXRDY is also automatically cleared
prior to loading a second packet into a double-buffered FIFO.

0R/W0CTXRDY0

USBTXCSRL1 Device Mode

USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1)
Base 0x4005.0000
Offset 0x112
Type R/W, reset 0x00

01234567

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

R/W1SR/W0CR/W0CW1CR/WR/W0CW1SR/W0CType
00000000Reset

DescriptionResetTypeNameBit/Field

Incomplete Transmit

When the endpoint is being used for high-bandwidth isochronous
transfers, this bit is set to indicate where a large packet has been split
into 2 or 3 packets for transmission but insufficient IN tokens have been
received to send all the parts.

Note: Only valid for isochronous transfers.

0R/W0CINCTX7

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT6

June 02, 2008592
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Endpoint Stalled

This bit is set when a STALL handshake is transmitted. The FIFO is
flushed and the TXRDY bit is cleared. The CPU should clear this bit.

0R/W0CSTALLED5

Send Stall

The CPU writes a 1 to this bit to issue a STALL handshake to an IN
token. The CPU clears this bit to terminate the stall condition.

Note: This bit has no effect in isochronous transfers.

0R/WSTALL4

Flush FIFO

The CPUwrites a 1 to this bit to flush the latest packet from the endpoint
transmit FIFO. The FIFO pointer is reset, the TXRDY bit is cleared, and
an interrupt is generated. This bit may be set simultaneously with TXRDY
to abort the packet that is currently being loaded into the FIFO.

Note: FLUSH should only be used when TXRDY is set. At other times,
it may cause data to be corrupted. Also note that, if the FIFO
is double-buffered, FLUSH may need to be set twice to
completely clear the FIFO.

0W1CFLUSH3

Underrun

The USB controller sets this bit if an IN token is received when TXRDY
is not set. The CPU should clear this bit.

0R/W0CUNDRN2

FIFO Not Empty

The USB controller sets this bit when there is at least 1 packet in the
transmit FIFO.

0R/W0CFIFONE1

Transmit Packet Ready

The CPU sets this bit after loading a data packet into the FIFO. It is
cleared automatically when a data packet has been transmitted. An
interrupt is generated at this point. TXRDY is also automatically cleared
prior to loading a second packet into a double-buffered FIFO.

0R/W1STXRDY0

593June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 56: USBTransmit Control andStatus Endpoint 1 High (USBTXCSRH1),
offset 0x113
Register 57: USBTransmit Control andStatus Endpoint 2 High (USBTXCSRH2),
offset 0x123
Register 58: USBTransmit Control andStatus Endpoint 3 High (USBTXCSRH3),
offset 0x133

Host

Device

USBTXCSRHn is an 8-bit register that provides additional control for transfers through the currently
selected transmit endpoint.

USBTXCSRHn Host Mode

USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1)
Base 0x4005.0000
Offset 0x113
Type R/W, reset 0x00

01234567

DTDTWEDMAMODFDTDMAENMODEreservedAUTOSET

R/WW1SR/WR/WR/WR/WROR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Auto Set

If the CPU sets this bit, TXRDY is automatically set when data of the
maximum packet size (value in USBTXMAXPn) is loaded into the
transmit FIFO. If a packet of less than the maximum packet size is
loaded, then TXRDY must be set manually.

Note: This bit should not be set for either high-bandwidth
isochronous or high-bandwidth interrupt endpoints.

0R/WAUTOSET7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved6

Mode

The CPU sets this bit to enable the endpoint direction as TX, and clears
it to enable the endpoint direction as RX.

Note: This bit only has an effect when the same endpoint FIFO is
used for both transmit and receive transactions.

0R/WMODE5

DMA Request Enable

The CPU sets this bit to enable the DMA request for the transmit
endpoint.

0R/WDMAEN4

June 02, 2008594
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Force Data Toggle

The CPU sets this bit to force the endpoint data toggle to switch and
the data packet to be cleared from the FIFO, regardless of whether an
ACK was received. This can be used by interrupt transmit endpoints
that are used to communicate rate feedback for isochronous endpoints.

0R/WFDT3

DMA Request Mode

The CPU sets this bit to select DMA Request Mode 1 and clears it to
select DMA Request Mode 0.

Note: This bit must not be cleared either before or in the same cycle
as the above DMAEN bit is cleared.

0R/WDMAMOD2

Data Toggle Write Enable

The CPU writes a 1 to this bit to enable the current state of the transmit
endpoint data toggle to be written (see DT). This bit is automatically
cleared once the new value is written.

0W1SDTWE1

Data Toggle

When read, this bit indicates the current state of the transmit endpoint
data toggle. If DTWE is High, this bit may be written with the required
setting of the data toggle. If DTWE is Low, any value written to this bit is
ignored.

0R/WDT0

USBTXCSRHn Device Mode

USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1)
Base 0x4005.0000
Offset 0x113
Type R/W, reset 0x00

01234567

reservedDMAMODFDTDMAENMODEISOAUTOSET

ROROR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Auto Set

If the CPU sets this bit, TXRDY is automatically set when data of the
maximum packet size (value in USBTXMAXPn) is loaded into the
transmit FIFO. If a packet of less than the maximum packet size is
loaded, then TXRDY must be set manually.

Note: This bit should not be set for either high-bandwidth
isochronous or high-bandwidth interrupt endpoints.

0R/WAUTOSET7

ISO

The CPU sets this bit to enable the transmit endpoint for isochronous
transfers, and clears it to enable the transmit endpoint for bulk or interrupt
transfers.

0R/WISO6

595June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Mode

The CPU sets this bit to enable the endpoint direction as TX, and clears
the bit to enable it as RX.

Note: This bit only has an effect where the same endpoint FIFO is
used for both transmit and receive transactions.

0R/WMODE5

DMA Request Enable

The CPU sets this bit to enable the DMA request for the transmit
endpoint.

0R/WDMAEN4

Force Data Toggle

The CPU sets this bit to force the endpoint data toggle to switch and
the data packet to be cleared from the FIFO, regardless of whether an
ACK was received. This can be used by interrupt transmit endpoints
that are used to communicate rate feedback for isochronous endpoints.

0R/WFDT3

DMA Request Mode

The CPU sets this bit to select DMA Request Mode 1 and clears it to
select DMA Request Mode 0.

Note: This bit must not be cleared either before or in the same cycle
as the above DMAEN bit is cleared.

0R/WDMAMOD2

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved1:0

June 02, 2008596
Preliminary

Univeral Serial Bus (USB) Controller

Register 59: USB Maximum Receive Data Endpoint 1 (USBRXMAXP1), offset
0x114
Register 60: USB Maximum Receive Data Endpoint 2 (USBRXMAXP2), offset
0x124
Register 61: USB Maximum Receive Data Endpoint 3 (USBRXMAXP3), offset
0x134

Host

Device

The USBRXMAXPn 16-bit register defines the maximum amount of data that can be transferred
through the selected receive endpoint in a single operation.

Bits 10:0 define (in bytes) the maximum payload transmitted in a single transaction. The value set
can be up to 1024 bytes but is subject to the constraints placed by the USB Specification on packet
sizes for bulk, interrupt and isochronous transfers in full-speed operations.

The MULT bit field is for the multiplication factor for the number of bytes in a given transaction. For
a single 64-byte bulk transfer, the multiplication factor is 1 so MULT should be written with 0. If packet
splitting is used, the multiplication factor allows for more than one transfer to be loaded into the
FIFO. A multiplication factor of 2 (MULT written to 1) allows two 64-byte packets to be written in this
endpoint's FIFO.

The total amount of data represented by the value written to this register (specified payload × m)
must not exceed the FIFO size for the receive endpoint, and should not exceed half the FIFO size
if double-buffering is required.

Note: USBRXMAXPn must be set to an even number of bytes for proper interrupt generation in
DMA Mode 1.

USB Maximum Receive Data Endpoint 1 (USBRXMAXP1)
Base 0x4005.0000
Offset 0x114
Type R/W, reset 0x0000

0123456789101112131415

MAXLOADMULT

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Multiplier

Defines the maximum number of USB packets (that is, packets for
transmission over the USB) of the specified payload into which a single
data packet placed in the FIFO should be split, prior to transfer. The
value written to this register is one less than the desired multiplier. For
example, a value of 0 is a multiplier of 1.

0x00R/WMULT15:11

Maximum Payload

The maximum payload in bytes per transaction.

0x00R/WMAXLOAD10:0

597June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 62: USBReceive Control and Status Endpoint 1 Low (USBRXCSRL1),
offset 0x116
Register 63: USBReceive Control and Status Endpoint 2 Low (USBRXCSRL2),
offset 0x126
Register 64: USBReceive Control and Status Endpoint 3 Low (USBRXCSRL3),
offset 0x136

Host

Device

USBRXCSRLn is an 8-bit register that provides control and status bits for transfers through the
currently selected receive endpoint.

USBRXCSRLn Host Mode

USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1)
Base 0x4005.0000
Offset 0x116
Type R/W, reset 0x00

01234567

RXRDYFULLERRORDATAERR /
NAKTOFLUSHREQPKTSTALLEDCLRDT

R/W0CROR/W0CR/W0CW1SR/WR/W0CW1SType
00000000Reset

DescriptionResetTypeNameBit/Field

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT7

Endpoint Stalled

When a STALL handshake is received, this bit is set and an interrupt is
generated. The CPU should clear this bit.

0R/W0CSTALLED6

Request Packet

The CPU writes a 1 to this bit to request an IN transaction. It is cleared
when RXRDY is set.

0R/WREQPKT5

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be read from
the endpoint receive FIFO. The FIFO pointer is reset and the RXRDY bit
is cleared.

Note: FLUSH should only be used when RXRDY is set. At other times,
it may cause data to be corrupted. Also note that, if the FIFO
is double-buffered, FLUSH may need to be set twice to
completely clear the FIFO.

0W1SFLUSH4

June 02, 2008598
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Data Error / NAK Timeout

When operating in ISO mode, this bit is set when RXRDY is set if the
data packet has a CRC or bit-stuff error and cleared when RXRDY is
cleared. In Bulk mode, this bit is set when the receive endpoint is halted
following the receipt of NAK responses for longer than the time set as
the NAK Limit by the USBRXINTERVALn register. The CPU should
clear this bit to allow the endpoint to continue.

0R/W0CDATAERR / NAKTO3

Error

The USB sets this bit when three attempts have been made to receive
a packet and no data packet has been received. The CPU should clear
this bit. An interrupt is generated when the bit is set.

Note: This bit is only valid when the receive endpoint is operating
in Bulk or Interrupt mode. In ISOmode, it always returns zero.

0R/W0CERROR2

FIFO Full

This bit is set when no more packets can be loaded into the receive
FIFO.

0ROFULL1

Receive Packet Ready

This bit is set when a data packet has been received. The CPU should
clear this bit when the packet has been unloaded from the receive FIFO.
An interrupt is generated when the bit is set.

0R/W0CRXRDY0

USBRXCSRLn Device Mode

USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1)
Base 0x4005.0000
Offset 0x116
Type R/W, reset 0x00

01234567

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

R/W0CROR/W0CROW1SR/WR/W0CW1SType
00000000Reset

DescriptionResetTypeNameBit/Field

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT7

Endpoint Stalled

This bit is set when a STALL handshake is transmitted. The CPU should
clear this bit.

0R/W0CSTALLED6

Send Stall

The CPU writes a 1 to this bit to issue a STALL handshake. The CPU
clears this bit to terminate the stall condition.

Note: This bit has no effect where the endpoint is being used for
isochronous transfers.

0R/WSTALL5

599June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be read from
the endpoint receive FIFO. The FIFO pointer is reset and the RXRDY bit
is cleared.

Note: The FLUSH bit should only be used when RXRDY is set. At
other times, it may cause data to be corrupted. Also note that,
if the FIFO is double-buffered, FLUSH may need to be set
twice to completely clear the FIFO.

0W1SFLUSH4

Data Error

This bit is set when RXRDY is set if the data packet has a CRC or bit-stuff
error. It is cleared when RXRDY is cleared.

Note: This bit is only valid when the endpoint is operating in ISO
mode. In Bulk mode, it always returns zero.

0RODATAERR3

Overrun

This bit is set if an OUT packet cannot be loaded into the receive FIFO.
The CPU should clear this bit.

Note: This bit is only valid when the endpoint is operating in ISO
mode. In Bulk mode, it always returns zero.

0R/W0COVER2

FIFO Full

This bit is set when no more packets can be loaded into the receive
FIFO.

0ROFULL1

Receive Packet Ready

This bit is set when a data packet has been received. The CPU should
clear this bit when the packet has been unloaded from the receive FIFO.
An interrupt is generated when the bit is set.

0R/W0CRXRDY0

June 02, 2008600
Preliminary

Univeral Serial Bus (USB) Controller

Register 65: USBReceive Control and Status Endpoint 1 High (USBRXCSRH1),
offset 0x117
Register 66: USBReceive Control and Status Endpoint 2 High (USBRXCSRH2),
offset 0x127
Register 67: USBReceive Control and Status Endpoint 3 High (USBRXCSRH3),
offset 0x137

Host

Device

USBRXCSRHn is an 8-bit register that provides additional control and status bits for transfers
through the currently selected receive endpoint.

USBRXCSRHn Host Mode

USB Receive Control and Status Endpoint 1 High (USBRXCSRH1)
Base 0x4005.0000
Offset 0x117
Type R/W, reset 0x00

01234567

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

R/W0CROROR/WROR/WR/WR/WType
00000000Reset

601June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Auto Clear

If the CPU sets this bit, then the RXRDY bit is automatically cleared when
a packet of USBRXMAXPn bytes has been unloaded from the receive
FIFO.When packets of less than themaximum packet size are unloaded,
RXRDY must be cleared manually. When using a DMA to unload the
receive FIFO, data is read from the receive FIFO in 4 byte chunks
regardless of the RxMaxP. Therefore, the RXRDY bit is cleared as follows.

Remainder (RxMaxP/4)

DescriptionValue

RXMaxP = 64 bytes0

RXMaxP = 61 bytes1

RXMaxP = 62 bytes2

RXMaxP = 63 bytes3

Actual Bytes Read

DescriptionValue

RXMAXP0

RXMAXP+31

RXMAXP+22

RXMAXP+13

Packet Sizes that will clear RXRDY

DescriptionValue

RXMAXP, RXMAXP-1, RXMAXP-2, RXMAXP-30

RXMAXP1

RXMAXP, RXMAXP-12

RXMAXP, RXMAXP-1, RXMAXP-23

Note: This bit should not be set for high-bandwidth isochronous
endpoints.

0R/WAUTOCL7

Auto Request

If the CPU sets this bit, the ReqPkt bit is automatically set when the
RXRDY bit is cleared.

Note: This bit is automatically cleared when a short packet is
received.

0R/WAUTORQ6

DMA Request Enable

The CPU sets this bit to enable the DMA request for the receive endpoint.

0R/WDMAEN5

PID Error

For ISO transactions, the core sets this bit to indicate a PID error in the
received packet. This bit is ignored in bulk or interrupt transactions.

0ROPIDERR4

DMA Request Mode

The CPU sets this bit to select DMA Request Mode 1 and clears it to
select DMA Request Mode 0.

0R/WDMAMOD3

June 02, 2008602
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Data Toggle Write Enable

The CPU writes a 1 to this bit to enable the current state of the endpoint
0 data toggle to be written (see DT). This bit is automatically cleared
once the new value is written.

0RODTWE2

Data Toggle

When read, this bit indicates the current state of the endpoint 0 data
toggle. If DTWE is High, this bit may be written with the required setting
of the data toggle. If DTWE is Low, any value written to this bit is ignored.

0RODT1

Incomplete Receive

This bit is set in a high-bandwidth isochronous or interrupt transfer if the
packet received is incomplete. It is cleared when RXRDY is cleared.

Note: If USB protocols are followed correctly, this bit should never
be set. The bit becoming set indicates a failure of the
associated peripheral device to behave correctly. (In anything
other than isochronous transfer, this bit always returns 0.)

0R/W0CINCRX0

USBRXCSRHn Device Mode

USB Receive Control and Status Endpoint 1 High (USBRXCSRH1)
Base 0x4005.0000
Offset 0x117
Type R/W, reset 0x00

01234567

INCRXreservedDMAMODDISNYET/PIDERRDMAENISOAUTOCL

R/W0CROROR/WR/WR/WR/WR/WType
00000000Reset

603June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Auto Clear

If the CPU sets this bit, then the RXRDY bit is automatically cleared when
a packet of RXMaxP bytes has been unloaded from the receive FIFO.
When packets of less than the maximum packet size are unloaded,
RXRDY must be cleared manually. When using a DMA to unload the
receive FIFO, data is read from the receive FIFO in 4-byte chunks,
regardless of the RxMaxP. Therefore, the RXRDY bit is cleared as follows:

Remainder (RxMaxP/4)

DescriptionValue

RXMaxP = 64 bytes0

RXMaxP = 61 bytes1

RXMaxP = 62 bytes2

RXMaxP = 63 bytes3

Actual Bytes Read

DescriptionValue

RXMAXP0

RXMAXP+31

RXMAXP+22

RXMAXP+13

Packet Sizes that will clear RXPKTRDY.

DescriptionValue

RXMAXP, RXMAXP-1, RXMAXP-2, RXMAXP-30

RXMAXP1

RXMAXP, RXMAXP-12

RXMAXP, RXMAXP-1, RXMAXP-23

Note: This bit should not be set for high-bandwidth isochronous
endpoints.

0R/WAUTOCL7

ISO

The CPU sets this bit to enable the receive endpoint for isochronous
transfers, and clears it to enable the receive endpoint for bulk/interrupt
transfers.

0R/WISO6

DMA Request Enable

The CPU sets this bit to enable the DMA request for the receive endpoint.

0R/WDMAEN5

Disable NYET / PID Error

For bulk or interrupt transactions, the CPU sets this bit to disable the
sending of NYET handshakes. When set, all successfully received
packets are acknowledged, including at the point at which the FIFO
becomes full.

For ISO transactions, the core sets this bit to indicate a PID error in the
received packet.

0R/WDISNYET/PIDERR4

June 02, 2008604
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

DMA Request Mode

The CPU sets this bit to select DMA Request Mode 1 and clears it to
select DMA Request Mode 0.

0R/WDMAMOD3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved2:1

Incomplete Receive

This bit is set in a high-bandwidth isochronous/interrupt transfer if the
packet in the receive FIFO is incomplete because parts of the data were
not received. It is cleared when RXRDY is cleared.

Note: Only valid for isochronous transfers.

0R/W0CINCRX0

605June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 68: USB Receive Byte Count Endpoint 1 (USBRXCOUNT1), offset
0x118
Register 69: USB Receive Byte Count Endpoint 2 (USBRXCOUNT2), offset
0x128
Register 70: USB Receive Byte Count Endpoint 3 (USBRXCOUNT3), offset
0x138

Host

Device

Note: The value returned changes as the FIFO is unloaded and is only valid while the RXRDY bit
in the USBRXCSRLn register is set.

USBRXCount1 is a 16-bit read-only register that holds the number of data bytes in the packet
currently in line to be read from the receive FIFO. If the packet is transmitted as multiple bulk packets,
the number given is for the combined packet.

USB Receive Byte Count Endpoint 1 (USBRXCOUNT1)
Base 0x4005.0000
Offset 0x118
Type RO, reset 0x0000

0123456789101112131415

COUNTreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:13

Receive Packet Count

Number of bytes in the receive packet.

0x00ROCOUNT12:0

June 02, 2008606
Preliminary

Univeral Serial Bus (USB) Controller

Register 71: USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1),
offset 0x11A
Register 72: USB Host Transmit Configure Type Endpoint 2 (USBTXTYPE2),
offset 0x12A
Register 73: USB Host Transmit Configure Type Endpoint 3 (USBTXTYPE3),
offset 0x13A

Host
USBTXTYPE1 is an 8-bit register that should be written with the endpoint number to be targeted
by the endpoint, the transaction protocol to use for the currently selected transmit endpoint, and its
operating speed.

USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1)
Base 0x4005.0000
Offset 0x11A
Type R/W, reset 0x00

01234567

TEPPROTOSPEED

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Operating Speed

Operating speed of the target device when the core is configured with
the hub option:

DescriptionValue

Default

The target is assumed to be using the same connection speed
as the core.

00

Reserved01

Full10

Low

When the core is not configured with the hub option, these bits
should not be accessed

11

0x00R/WSPEED7:6

Protocol

The CPU should set this to select the required protocol for the transmit
endpoint:

DescriptionValue

Control00

Isochronous01

Bulk10

Interrupt11

0x00R/WPROTO5:4

607June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Target Endpoint Number

The CPU should set this value to the endpoint number contained in the
transmit endpoint descriptor returned to the USB controller during device
enumeration.

0x00R/WTEP3:0

June 02, 2008608
Preliminary

Univeral Serial Bus (USB) Controller

Register 74: USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1),
offset 0x11B
Register 75: USB Host Transmit Interval Endpoint 2 (USBTXINTERVAL2),
offset 0x12B
Register 76: USB Host Transmit Interval Endpoint 3 (USBTXINTERVAL3),
offset 0x13B

Host
USBTXINTERVALn is an 8-bit register that, for interrupt and isochronous transfers, defines the
polling interval for the currently selected transmit endpoint. For bulk endpoints, this register sets the
number of frames after which the endpoint should time out on receiving a stream of NAK responses.

The USBTXINTERVALn register value defines a number of frames, as follows:

InterpretationValid values (m)SpeedTransfer Type

Polling interval is m frames.1 – 255Low-Speed or Full-SpeedInterrupt

Polling interval is 2(m-1) frames.1 – 16Full-SpeedIsochronous

NAK Limit is 2(m-1) frames. A value of 0 or 1 disables the NAK
timeout function.

2 – 16Full-SpeedBulk

USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1)
Base 0x4005.0000
Offset 0x11B
Type R/W, reset 0x00

01234567

TXPOLL/NAKLMT

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

TX Polling / NAK Limit

Polling interval for interrupt/isochronous transfers; NAK limit for bulk
transfers.

0x00R/WTXPOLL/NAKLMT7:0

609June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 77: USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1),
offset 0x11C
Register 78: USB Host Configure Receive Type Endpoint 2 (USBRXTYPE2),
offset 0x12C
Register 79: USB Host Configure Receive Type Endpoint 3 (USBRXTYPE3),
offset 0x13C

Host
USBRXTYPE1 is an 8-bit register that should be written with the endpoint number to be targeted
by the endpoint, the transaction protocol to use for the currently selected receive endpoint, and its
operating speed.

USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1)
Base 0x4005.0000
Offset 0x11C
Type R/W, reset 0x00

01234567

TEPPROTOSPEED

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Operating Speed

Operating speed of the target device when the core is configured with
the hub option.

DescriptionValue

Default

The target is assumed to be using the same connection speed
as the core.

00

Reserved01

Full10

Low

When the core is not configured with the hub option, these bits
should not be accessed.

11

0x00R/WSPEED7:6

Protocol

The CPU should set this to select the required protocol for the receive
endpoint:

DescriptionValue

Control00

Isochronous01

Bulk10

Interrupt11

0x00R/WPROTO5:4

June 02, 2008610
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Target Endpoint Number

The CPU should set this value to the endpoint number contained in the
receive endpoint descriptor returned to the USB controller during device
enumeration.

0x00R/WTEP3:0

611June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 80: USB Host Receive Polling Interval Endpoint 1
(USBRXINTERVAL1), offset 0x11D
Register 81: USB Host Receive Polling Interval Endpoint 2
(USBRXINTERVAL2), offset 0x12D
Register 82: USB Host Receive Polling Interval Endpoint 3
(USBRXINTERVAL3), offset 0x13D

Host
USBRXINTERVAL1 is an 8-bit register that, for interrupt and isochronous transfers, defines the
polling interval for the currently selected receive endpoint. For bulk endpoints, this register sets the
number of frames after which the endpoint should time out on receiving a stream of NAK responses.
The value that is set defines the number of frames, as follows:

InterpretationValid values (m)SpeedTransfer Type

Polling interval is m frames.1 – 255Low-Speed or Full-SpeedInterrupt

Polling interval is 2(m-1) frames.1 – 16Full-SpeedIsochronous

NAK Limit is 2(m-1) frames.

Note: A value of 0 or 1 disables the NAK timeout
function.

2 – 16Full-SpeedBulk

USB Host Receive Polling Interval Endpoint 1 (USBRXINTERVAL1)
Base 0x4005.0000
Offset 0x11D
Type R/W, reset 0x00

01234567

TXPOLL/NAKLMT

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

RX Polling/NAK Limit

Polling interval for interrupt/isochronous transfers; NAK limit for bulk
transfers.

0x00R/WTXPOLL/NAKLMT7:0

June 02, 2008612
Preliminary

Univeral Serial Bus (USB) Controller

Register 83: USB Request Packet Count in Block Transfer Endpoint 1
(USBRQPKTCOUNT1), offset 0x304
Register 84: USB Request Packet Count in Block Transfer Endpoint 2
(USBRQPKTCOUNT2), offset 0x308
Register 85: USB Request Packet Count in Block Transfer Endpoint 3
(USBRQPKTCOUNT3), offset 0x30C

Host
This 16-bit read/write register is used in Host mode to specify the number of packets that are to be
transferred in a block transfer of one or more bulk packets to receive endpoint n. The core uses the
value recorded in this register to determine the number of requests to issue where the AUTORQ bit
in the USBRXCSRHn register has been set. See “IN Transactions as a Host” on page 545.

Note: Multiple packets combined into a single bulk packet within the FIFO count as one packet.

USB Request Packet Count in Block Transfer Endpoint 1 (USBRQPKTCOUNT1)
Base 0x4005.0000
Offset 0x304
Type R/W, reset 0x0000

0123456789101112131415

COUNT

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Block Transfer Packet Count

Sets the number of packets of size MaxP that are to be transferred in
a block transfer.

Note: This is only used in Host mode when AUTORQ is set. The bit
has no effect in Device mode or when AUTORQ is not set.

0x00R/WCOUNT15:0

613June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 86: USBReceiveDouble Packet Buffer Disable (USBRXDPKTBUFDIS),
offset 0x340

Host

Device

USBRXDPKTBUFDIS is a 16-bit register that indicates which of the receive endpoints have disabled
the double-packet buffer functionality (see the section called “Double-Packet Buffering” on page 541).

Note: Bits relating to endpoints that have not been configured may be asserted by writing a 1 to
their respective register; however the disable bit will have no observable effect.

USB Receive Double Packet Buffer Disable (USBRXDPKTBUFDIS)
Base 0x4005.0000
Offset 0x340
Type R/W, reset 0x0000

0123456789101112131415

reservedEP1EP2EP3reserved

ROR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

EP3 RX Double-Packet Buffer Disable0R/WEP33

EP2 RX Double-Packet Buffer Disable0R/WEP22

EP1 RX Double-Packet Buffer Disable0R/WEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

June 02, 2008614
Preliminary

Univeral Serial Bus (USB) Controller

Register 87: USB Transmit Double Packet Buffer Disable
(USBTXDPKTBUFDIS), offset 0x342

Host

Device

USBTXDPKTBUFDIS is a 16-bit register that indicates which of the transmit endpoints have disabled
the double-packet buffer functionality (see the section called “Double-Packet Buffering” on page 540).

Note: Bits relating to endpoints that have not been configured may be asserted by writing a 1 their
respective register; however, the disable bit will have no observable effect.

USB Transmit Double Packet Buffer Disable (USBTXDPKTBUFDIS)
Base 0x4005.0000
Offset 0x342
Type R/W, reset 0x0000

0123456789101112131415

reservedEP1EP2EP3reserved

ROR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

EP3 TX Double-Packet Buffer Disable0R/WEP33

EP2 TX Double-Packet Buffer Disable0R/WEP22

EP1 TX Double-Packet Buffer Disable0R/WEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

615June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 88: USB External Power Control (USBEPC), offset 0x400

Host
USBEPC is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This 32-bit
register specifies the function of the two-pin external power interface (USB0EPEN and USB0PFLT).
The assertion of the power fault input may generate an automatic action, as controlled by the
hardware configuration registers. The automatic action is necessary since the fault condition may
require a response faster than one provided by firmware.

USB External Power Control (USBEPC)
Base 0x4005.0000
Offset 0x400
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

EPENEPENDEreservedPFLTENPFLTSENPFLTAENreservedPFLTACTreserved

R/WR/WR/WROR/WR/WR/WROR/WR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:10

Power Fault Action

Specifies how the USB0EPEN signal is changed when detecting a USB
power fault.

DescriptionValue

Unchanged

USB0EPEN is controlled by the combination of the EPEN and
EPENDE bits.

0x0

Tristate

USB0EPEN is undriven (tristate).

0x1

Low

USB0EPEN driven Low.

0x2

High

USB0EPEN driven High.

0x3

0x00R/WPFLTACT9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

June 02, 2008616
Preliminary

Univeral Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Power Fault Action Enable

Specifies whether a USB power fault triggers any automatic corrective
action regarding the driven state of the USB0EPEN signal.

DescriptionValue

Disabled

USB0EPEN is controlled by the combination of the EPEN and
EPENDE bits.

0

Enabled

The USB0EPEN output is automatically changed to the state as
specified in the PFLTACT field.

1

0R/WPFLTAEN6

Power Fault Sense

Specifies the logical sense of the USB0PFLT input signal that indicates
an error condition.

The complementary state is the inactive state.

DescriptionValue

Low Fault

If USB0PFLT is driven Low, the power fault is signaled internally
(if enabled).

0

High Fault

If USB0PFLT is driven High, the power fault is signaled internally
(if enabled).

1

0R/WPFLTSEN5

Power Fault Input Enable

Specifies whether the USB0PFLT input signal is used in internal logic.

DescriptionValue

Not Used

The USB0PFLT signal is ignored.

0

Used

The USB0PFLT signal is used internally.

1

0R/WPFLTEN4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

617June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

EPEN Drive Enable

Specifies whether the USB0EPEN signal is driven or undriven (tristate).
When driven, the signal value is specified by the EPEN bit. When not
driven, the EPEN bit is ignored and the USB0EPEN signal is placed in a
high-impedance state.

DescriptionValue

Not Driven

The USB0EPEN signal is high impedance.

0

Driven

The USB0EPEN signal is driven to the logical value specified by
the EPEN bit value.

1

The USB0EPEN is undriven at reset since the sense of the external power
supply enable is unknown. By adding high-impedance state, system
designers may bias the power supply enable to the disabled state using
a large resistor (100 kΩ) and later configure and drive the output signal
to enable the power supply.

0R/WEPENDE2

External Power Supply Enable Configuration

Specifies and controls the logical value driven on the USB0EPEN signal.

DescriptionValue

Power Enable Active Low

The USB0EPEN signal is driven Low if EPENDE is 1.

0x0

Power Enable Active High

The USB0EPEN signal is driven High if EPENDE is 1.

0x1

Reserved0x2-0x3

0x00R/WEPEN1:0

June 02, 2008618
Preliminary

Univeral Serial Bus (USB) Controller

Register 89: USB External Power Control Raw Interrupt Status (USBEPCRIS),
offset 0x404

Host

Device

USBEPCRIS is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This
32-bit register specifies the unmasked interrupt status of the two-pin external power interface.

USB External Power Control Raw Interrupt Status (USBEPCRIS)
Base 0x4005.0000
Offset 0x404

Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PFreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

USB Power Fault Interrupt Status

Specifies the unmasked state of the power fault status. This bit is cleared
by writing a 1 to the PF bit in the USBEPCISC register.

DescriptionValue

The hardware has not detected a power fault.0

The hardware has detected a power fault.1

0ROPF0

619June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 90: USB External Power Control Interrupt Mask (USBEPCIM), offset
0x408

Host

Device

USBEPCIM is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This 32-bit
register specifies the interrupt mask of the two-pin external power interface.

USB External Power Control Interrupt Mask (USBEPCIM)
Base 0x4005.0000
Offset 0x408

Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PFreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

USB Power Fault Interrupt Mask

Specifies whether a detected power fault generates an interrupt.

DescriptionValue

No Interrupt

The hardware does not generate an interrupt on detected power
fault.

0

Interrupt

The hardware generates an interrupt on detected power fault.

1

0R/WPF0

June 02, 2008620
Preliminary

Univeral Serial Bus (USB) Controller

Register 91: USB External Power Control Interrupt Status and Clear
(USBEPCISC), offset 0x40C

Host

Device

USBEPCISC is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This
32-bit register specifies the masked interrupt status of the two-pin external power interface. It also
provides a method to clear the interrupt state.

USB External Power Control Interrupt Status and Clear (USBEPCISC)
Base 0x4005.0000

Offset 0x40C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PFreserved

R/W1CROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

USB Power Fault Interrupt Status and Clear

Specifies whether a detected power fault has generated an interrupt.

DescriptionValue

No Interrupt

The hardware has not generated an interrupt for a detected
power fault condition.

0

Interrupt

The hardware has generated an interrupt for a detected power
fault condition.

1

Writing a 1 to this bit clears it and the USBEPCRIS PF bit. This bit is
set if the USBEPCRIS PF bit is set (by hardware) and the USBEPCIM
PF bit is set.

0R/W1CPF0

621June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 92: USB Device Resume Raw Interrupt Status (USBDRRIS), offset
0x410

Device
The USBDRRIS 32-bit register is the raw interrupt status register. On a read, this register gives the
current raw status value of the corresponding interrupt prior to masking. A write has no effect.

USB Device Resume Raw Interrupt Status (USBDRRIS)
Base 0x4005.0000
Offset 0x410
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RESUMEreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Resume Interrupt Status

Specifies the unmasked state of the resume status. This bit is cleared
by writing a 1 to the RESUME bit in the USBDRISC register.

DescriptionValue

The hardware has not detected a Resume.0

The hardware has detected a Resume.1

0RORESUME0

June 02, 2008622
Preliminary

Univeral Serial Bus (USB) Controller

Register 93: USB Device Resume Interrupt Mask (USBDRIM), offset 0x414

Device
The USBDRIM 32-bit register is the masked interrupt status register. On a read, this register gives
the current masked status value of the corresponding interrupt. A write has no effect.

USB Device Resume Interrupt Mask (USBDRIM)
Base 0x4005.0000
Offset 0x414
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RESUMEreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Resume Interrupt Mask

Specifies whether a detected Resume generates an interrupt.

DescriptionValue

No Interrupt

The hardware does not generate an interrupt on detected
Resume.

0

Interrupt

The hardware generates an interrupt on detected Resume. This
should only be enabled when a suspend has been detected
(Suspend bit in USBIS register).

1

0R/WRESUME0

623June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 94: USB Device Resume Interrupt Status and Clear (USBDRISC),
offset 0x418

Device
The USBDRISC 32-bit register is the interrupt clear register. On a write of 1, the corresponding
interrupt is cleared. A write of 0 has no effect.

USB Device Resume Interrupt Status and Clear (USBDRISC)
Base 0x4005.0000
Offset 0x418
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RESUMEreserved

R/W1CROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Resume Interrupt Status and Clear

Specifies whether a detected Resume has generated an interrupt.

DescriptionValue

No Interrupt

The hardware has not generated an interrupt for a detected
Resume.

0

Interrupt

The hardware has generated an interrupt for a detected
Resume.

1

Writing a 1 to this bit clears it and the USBDRRIS RESUME bit. This bit
is set if the USBDRRIS RESUME bit is set (by hardware) and the
USBEDRIM RESUME bit is set.

0R/W1CRESUME0

June 02, 2008624
Preliminary

Univeral Serial Bus (USB) Controller

Register 95: USB General-Purpose Control and Status (USBGPCS), offset
0x41C

Host

Device

USBGPCS provides the state of the internal ID signal. Set to force to Device mode. Clear to force
to Host mode.

USB General-Purpose Control and Status (USBGPCS)
Base 0x4005.0000
Offset 0x41C

Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DEVMODreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Device Mode

This bit is used to control the state of the internal ID signal.

In Device mode this bit is ignored (assumed set).

DescriptionValue

Host mode0

Device mode1

0R/WDEVMOD0

625June 02, 2008
Preliminary

LM3S5747 Microcontroller

19 Pulse Width Modulator (PWM)
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.
High-resolution counters are used to generate a square wave, and the duty cycle of the square
wave is modulated to encode an analog signal. Typical applications include switching power supplies
and motor control.

The Stellaris® PWM module consists of three PWM generator blocks and a control block. Each
PWM generator block contains one timer (16-bit down or up/down counter), two PWM comparators,
a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control
block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals
(other than being based on the same timer and therefore having the same frequency) or a single
pair of complementary signals with dead-band delays inserted. The output of the PWM generation
blocks are managed by the output control block before being passed to the device pins.

The Stellaris® PWMmodule provides a great deal of flexibility. It can generate simple PWM signals,
such as those required by a simple charge pump. It can also generate paired PWM signals with
dead-band delays, such as those required by a half-H bridge driver. Three generator blocks can
also generate the full six channels of gate controls required by a 3-phase inverter bridge.

19.1 Block Diagram
Figure 19-1 on page 626 provides the Stellaris® PWMmodule unit diagram and Figure 19-2 on page
627 provides a more detailed diagram of a Stellaris® PWM generator. The LM3S5747 controller
contains three generator blocks (PWM0, PWM1, and PWM2) and generates six independent PWM
signals or three paired PWM signals with dead-band delays inserted.

Figure 19-1. PWM Unit Diagram

PWMINTEN

Interrupt

PWMRIS
PWMISC

PWMCTL

Control and
Status

PWMSYNC
PWMSTATUS

PWM
Generator 0

PWM
Generator 1

PWM
Generator 2

PWM 0

PWM 1

PWM 2

PWM 3

PWM 4

PWM 5

PWM

Output

Control

Logic

PWM Clock

System Clock

Interrupts

Triggers

PWM0_A

PWM0_B

PWM1_A

PWM1_B

PWM2_A

PWM2_B

PWM0_Fault

PWM1_Fault

PWM2_Fault

Faults

PWMENABLE

Output

PWMINVERT
PWMFAULT

PWMFAULTVAL

June 02, 2008626
Preliminary

Pulse Width Modulator (PWM)

Figure 19-2. PWM Module Block Diagram

PWMnCMPA
PWMnCMPB

PWMnLOAD
PWMnCOUNT

PWMnDBCTL
PWMnDBRISE
PWMnDBFALL

PWMnCTL

PWM Clock

PWM Generator Block

PWMnGENA
PWMnGENB

PWMnINTEN

Interrupt and
Trigger

Generator

PWMnRIS
PWMnISC

PWMn_A

PWMn_B

Interrupts /
Triggers

cmp A
cmp B

zero
load
dir

PWMn_Fault

Fault

19.2 Functional Description

19.2.1 PWM Timer
The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/Down
mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load
value, and continues counting down. In Count-Up/Down mode, the timer counts from zero up to the
load value, back down to zero, back up to the load value, and so on. Generally, Count-Down mode
is used for generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used
for generating center-aligned PWM signals.

The timers output three signals that are used in the PWM generation process: the direction signal
(this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down
mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width
High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero
pulse is immediately followed by the load pulse.

19.2.2 PWM Comparators
There are two comparators in each PWM generator that monitor the value of the counter; when
either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/Down
mode, these comparators match both when counting up and when counting down; they are therefore
qualified by the counter direction signal. These qualified pulses are used in the PWM generation
process. If either comparator match value is greater than the counter load value, then that comparator
never outputs a High pulse.

Figure 19-3 on page 628 shows the behavior of the counter and the relationship of these pulses
when the counter is in Count-Downmode. Figure 19-4 on page 628 shows the behavior of the counter
and the relationship of these pulses when the counter is in Count-Up/Down mode.

627June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 19-3. PWM Count-Down Mode

Load

Zero

CompB

CompA

Load

Zero

B

A

Dir

ADown
BDown

Figure 19-4. PWM Count-Up/Down Mode

Load

Zero

CompB

CompA

Load

Zero

B

A

Dir

BUp
AUp ADown

BDown

19.2.3 PWM Signal Generator
The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM
signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load,
match A down, and match B down. In Count-Up/Down mode, there are six events that can affect
the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match

June 02, 2008628
Preliminary

Pulse Width Modulator (PWM)

A or match B events are ignored when they coincide with the zero or load events. If the match A
and match B events coincide, the first signal, PWMA, is generated based only on the match A event,
and the second signal, PWMB, is generated based only on the match B event.

For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring
the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be
used to generate a pair of PWM signals of various positions and duty cycles, which do or do not
overlap. Figure 19-5 on page 629 shows the use of Count-Up/Down mode to generate a pair of
center-aligned, overlapped PWM signals that have different duty cycles.

Figure 19-5. PWM Generation Example In Count-Up/Down Mode

Load

Zero

CompB

CompA

PWMB

PWMA

In this example, the first generator is set to drive High on match A up, drive Low on match A down,
and ignore the other four events. The second generator is set to drive High on match B up, drive
Low on match B down, and ignore the other four events. Changing the value of comparator A
changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the
duty cycle of the PWMB signal.

19.2.4 Dead-Band Generator
The two PWM signals produced by the PWM generator are passed to the dead-band generator. If
disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is
lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal
is the input signal with the rising edge delayed by a programmable amount. The second output
PWM signal is the inversion of the input signal with a programmable delay added between the falling
edge of the input signal and the rising edge of this new signal.

This is therefore a pair of active High signals where one is always High, except for a programmable
amount of time at transitions where both are Low. These signals are therefore suitable for driving
a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the
power electronics. Figure 19-6 on page 629 shows the effect of the dead-band generator on an input
PWM signal.

Figure 19-6. PWM Dead-Band Generator

Input

PWMA

PWMB

Rising Edge
Delay

Falling Edge
Delay

629June 02, 2008
Preliminary

LM3S5747 Microcontroller

19.2.5 Interrupt/ADC-Trigger Selector
The PWM generator also takes the same four (or six) counter events and uses them to generate
an interrupt or an ADC trigger. Any of these events or a set of these events can be selected as a
source for an interrupt; when any of the selected events occur, an interrupt is generated. Additionally,
the same event, a different event, the same set of events, or a different set of events can be selected
as a source for an ADC trigger; when any of these selected events occur, an ADC trigger pulse is
generated. The selection of events allows the interrupt or ADC trigger to occur at a specific position
within the PWM signal. Note that interrupts and ADC triggers are based on the raw events; delays
in the PWM signal edges caused by the dead-band generator are not taken into account.

19.2.6 Synchronization Methods
The PWM unit provides three PWM generators providing six PWM outputs that may be used in a
wide variety of applications. Generally speaking, this falls into combinations of two categories of
operation:

■ Unsynchronized: The PWM generator and its two output signals are used by itself, independent
of other PWM generators.

■ Synchronized: The PWMgenerator and its two outputs signals are used in conjunction with other
PWM generators using a common, unified time base.

If multiple PWM generators are configured with the same counter load value, this can be used to
guarantee that they also have the same count value (this does imply that the PWM generators must
be configured before they are synchronized). With this, more than two PWM signals can be produced
with a known relationship between the edges of those signals since the counters always have the
same values. Other states in the unit provide mechanisms to maintain the common time base and
mutual synchronization.

The counter in a PWM unit generator can be reset to zero by writing the PWM Time Base Sync
(PWMSYNC) register and setting the Sync bit associated with the generator. Multiple PWM
generators can be synchronized together by setting all necessary Sync bits in one access. For
example, setting the Sync0 and Sync1 bits in the PWMSYNC register causes the counters in PWM
generators 0 and 1 to reset together.

Additionally, the state of a PWM unit is affected by writing to the registers of the PWM unit and the
PWMunits' generators, which has an effect on the synchronization betweenmultiple PWMgenerators.
Depending on the register accessed, the register state is updated in one of the following three ways:

■ Immediately: The write value has immediate effect, and the hardware reacts immediately.

■ Locally Synchronized: The write value does not affect the logic until the counter reaches the
value zero. In this case, the effect of the write is deferred until the end of the PWM cycle (when
the counter reaches zero). By waiting for the counter to reach zero, a guaranteed behavior is
defined, and overly short or overly long output PWM pulses are prevented.

■ Globally Synchronized: The write value does not affect the logic until two sequential events have
occurred: (1) the global synchronization bit applicable to the generator is set, and (2) the counter
reaches zero. In this case, the effect of the write is deferred until the end of the PWM cycle (when
the counter reaches zero) following the end of all updates. This mode allows multiple items in
multiple PWM generators to be updated simultaneously without odd effects during the update;
everything runs from the old values until a point at which they all run from the new values. The
Update mode of the load and comparator match values can be individually configured in each
PWM generator block. It typically makes sense to use the synchronous update mechanism

June 02, 2008630
Preliminary

Pulse Width Modulator (PWM)

across PWM generator blocks when the timers in those blocks are synchronized, although this
is not required in order for this mechanism to function properly.

The following registers provide either local or global synchronization based on the state of the
PWMnCTL register Update bit value:

■ Generator Registers: PWMnLOAD, PWMnCMPA, and PWMnCMPB

The following registers are provided with the optional functionality of synchronously updating rather
than having all updates take immediate effect. The default update mode is immediate.

■ Module-Level Register: PWMENABLE

■ Generator Register: PWMnGENA, PWMnGENB, PWMnDBCTL, PWMnDBRISE, and
PWMnDBFALL.

All other registers are considered statically provisioned for the execution of an application or are
used dynamically for purposes unrelated to maintaining synchronization, and therefore, do not need
synchronous update functionality.

19.2.7 Fault Conditions
There are two external conditions that affect the PWM block; the signal input on the Fault pin and
the stalling of the controller by a debugger. There are two mechanisms available to handle such
conditions: the output signals can be forced into an inactive state and/or the PWM timers can be
stopped.

Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal
to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an
extended period of time, this keeps the output signal from driving the outside world in a dangerous
manner during the fault condition. A fault condition can also generate a controller interrupt.

Each PWM generator can also be configured to stop counting during a stall condition. The user can
select for the counters to run until they reach zero then stop, or to continue counting and reloading.
A stall condition does not generate a controller interrupt.

19.2.8 Output Control Block
With each PWM generator block producing two raw PWM signals, the output control block takes
care of the final conditioning of the PWM signals before they go to the pins. Via a single register,
the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for
example, to perform commutation of a brushless DC motor with a single register write (and without
modifying the individual PWM generators, which are modified by the feedback control loop). Similarly,
fault control can disable any of the PWM signals as well. A final inversion can be applied to any of
the PWM signals, making them active Low instead of the default active High.

19.3 Initialization and Configuration
The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and
with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes
the system clock is 20 MHz.

1. Enable the PWM clock by writing a value of 0x0010.0000 to the RCGC0 register in the System
Control module.

631June 02, 2008
Preliminary

LM3S5747 Microcontroller

2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module.

3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register.

4. Configure the Run-Mode Clock Configuration (RCC) register in the System Control module
to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).

5. Configure the PWM generator for countdown mode with immediate updates to the parameters.

■ Write the PWM0CTL register with a value of 0x0000.0000.

■ Write the PWM0GENA register with a value of 0x0000.008C.

■ Write the PWM0GENB register with a value of 0x0000.080C.

6. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM
clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per
period. Use this value to set the PWM0LOAD register. In Count-Down mode, set the Load field
in the PWM0LOAD register to the requested period minus one.

■ Write the PWM0LOAD register with a value of 0x0000.018F.

7. Set the pulse width of the PWM0 pin for a 25% duty cycle.

■ Write the PWM0CMPA register with a value of 0x0000.012B.

8. Set the pulse width of the PWM1 pin for a 75% duty cycle.

■ Write the PWM0CMPB register with a value of 0x0000.0063.

9. Start the timers in PWM generator 0.

■ Write the PWM0CTL register with a value of 0x0000.0001.

10. Enable PWM outputs.

■ Write the PWMENABLE register with a value of 0x0000.0003.

19.4 Register Map
Table 19-1 on page 632 lists the PWM registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the PWM base address of 0x4002.8000.

Table 19-1. PWM Register Map

See
pageDescriptionResetTypeNameOffset

635PWM Master Control0x0000.0000R/WPWMCTL0x000

636PWM Time Base Sync0x0000.0000R/WPWMSYNC0x004

637PWM Output Enable0x0000.0000R/WPWMENABLE0x008

638PWM Output Inversion0x0000.0000R/WPWMINVERT0x00C

June 02, 2008632
Preliminary

Pulse Width Modulator (PWM)

See
pageDescriptionResetTypeNameOffset

639PWM Output Fault0x0000.0000R/WPWMFAULT0x010

640PWM Interrupt Enable0x0000.0000R/WPWMINTEN0x014

641PWM Raw Interrupt Status0x0000.0000ROPWMRIS0x018

642PWM Interrupt Status and Clear0x0000.0000R/W1CPWMISC0x01C

643PWM Status0x0000.0000ROPWMSTATUS0x020

644PWM0 Control0x0000.0000R/WPWM0CTL0x040

648PWM0 Interrupt and Trigger Enable0x0000.0000R/WPWM0INTEN0x044

650PWM0 Raw Interrupt Status0x0000.0000ROPWM0RIS0x048

651PWM0 Interrupt Status and Clear0x0000.0000R/W1CPWM0ISC0x04C

652PWM0 Load0x0000.0000R/WPWM0LOAD0x050

653PWM0 Counter0x0000.0000ROPWM0COUNT0x054

654PWM0 Compare A0x0000.0000R/WPWM0CMPA0x058

655PWM0 Compare B0x0000.0000R/WPWM0CMPB0x05C

656PWM0 Generator A Control0x0000.0000R/WPWM0GENA0x060

659PWM0 Generator B Control0x0000.0000R/WPWM0GENB0x064

662PWM0 Dead-Band Control0x0000.0000R/WPWM0DBCTL0x068

663PWM0 Dead-Band Rising-Edge Delay0x0000.0000R/WPWM0DBRISE0x06C

664PWM0 Dead-Band Falling-Edge-Delay0x0000.0000R/WPWM0DBFALL0x070

644PWM1 Control0x0000.0000R/WPWM1CTL0x080

648PWM1 Interrupt and Trigger Enable0x0000.0000R/WPWM1INTEN0x084

650PWM1 Raw Interrupt Status0x0000.0000ROPWM1RIS0x088

651PWM1 Interrupt Status and Clear0x0000.0000R/W1CPWM1ISC0x08C

652PWM1 Load0x0000.0000R/WPWM1LOAD0x090

653PWM1 Counter0x0000.0000ROPWM1COUNT0x094

654PWM1 Compare A0x0000.0000R/WPWM1CMPA0x098

655PWM1 Compare B0x0000.0000R/WPWM1CMPB0x09C

656PWM1 Generator A Control0x0000.0000R/WPWM1GENA0x0A0

659PWM1 Generator B Control0x0000.0000R/WPWM1GENB0x0A4

662PWM1 Dead-Band Control0x0000.0000R/WPWM1DBCTL0x0A8

663PWM1 Dead-Band Rising-Edge Delay0x0000.0000R/WPWM1DBRISE0x0AC

664PWM1 Dead-Band Falling-Edge-Delay0x0000.0000R/WPWM1DBFALL0x0B0

644PWM2 Control0x0000.0000R/WPWM2CTL0x0C0

648PWM2 Interrupt and Trigger Enable0x0000.0000R/WPWM2INTEN0x0C4

633June 02, 2008
Preliminary

LM3S5747 Microcontroller

See
pageDescriptionResetTypeNameOffset

650PWM2 Raw Interrupt Status0x0000.0000ROPWM2RIS0x0C8

651PWM2 Interrupt Status and Clear0x0000.0000R/W1CPWM2ISC0x0CC

652PWM2 Load0x0000.0000R/WPWM2LOAD0x0D0

653PWM2 Counter0x0000.0000ROPWM2COUNT0x0D4

654PWM2 Compare A0x0000.0000R/WPWM2CMPA0x0D8

655PWM2 Compare B0x0000.0000R/WPWM2CMPB0x0DC

656PWM2 Generator A Control0x0000.0000R/WPWM2GENA0x0E0

659PWM2 Generator B Control0x0000.0000R/WPWM2GENB0x0E4

662PWM2 Dead-Band Control0x0000.0000R/WPWM2DBCTL0x0E8

663PWM2 Dead-Band Rising-Edge Delay0x0000.0000R/WPWM2DBRISE0x0EC

664PWM2 Dead-Band Falling-Edge-Delay0x0000.0000R/WPWM2DBFALL0x0F0

19.5 Register Descriptions
The remainder of this section lists and describes the PWM registers, in numerical order by address
offset.

June 02, 2008634
Preliminary

Pulse Width Modulator (PWM)

Register 1: PWM Master Control (PWMCTL), offset 0x000
This register provides master control over the PWM generation blocks.

PWM Master Control (PWMCTL)
Base 0x4002.8000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GlobalSync0GlobalSync1GlobalSync2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Update PWM Generator 2

Same as GlobalSync0 but for PWM generator 2.

0R/WGlobalSync22

Update PWM Generator 1

Same as GlobalSync0 but for PWM generator 1.

0R/WGlobalSync11

Update PWM Generator 0

Setting this bit causes any queued update to a load or comparator
register in PWM generator 0 to be applied the next time the
corresponding counter becomes zero. This bit automatically clears when
the updates have completed; it cannot be cleared by software.

0R/WGlobalSync00

635June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004
This register provides a method to perform synchronization of the counters in the PWM generation
blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing
multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred;
reading them back as zero indicates that the synchronization has completed.

PWM Time Base Sync (PWMSYNC)
Base 0x4002.8000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Sync0Sync1Sync2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Reset Generator 2 Counter

Performs a reset of the PWM generator 2 counter.

0R/WSync22

Reset Generator 1 Counter

Performs a reset of the PWM generator 1 counter.

0R/WSync11

Reset Generator 0 Counter

Performs a reset of the PWM generator 0 counter.

0R/WSync00

June 02, 2008636
Preliminary

Pulse Width Modulator (PWM)

Register 3: PWM Output Enable (PWMENABLE), offset 0x008
This register provides a master control of which generated PWM signals are output to device pins.
By disabling a PWM output, the generation process can continue (for example, when the time bases
are synchronized) without driving PWM signals to the pins. When bits in this register are set, the
corresponding PWM signal is passed through to the output stage, which is controlled by the
PWMINVERT register. When bits are not set, the PWM signal is replaced by a zero value which is
also passed to the output stage.

PWM Output Enable (PWMENABLE)
Base 0x4002.8000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PWM0EnPWM1EnPWM2EnPWM3EnPWM4EnPWM5Enreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

PWM5 Output Enable

When set, allows the generated PWM5 signal to be passed to the device
pin.

0R/WPWM5En5

PWM4 Output Enable

When set, allows the generated PWM4 signal to be passed to the device
pin.

0R/WPWM4En4

PWM3 Output Enable

When set, allows the generated PWM3 signal to be passed to the device
pin.

0R/WPWM3En3

PWM2 Output Enable

When set, allows the generated PWM2 signal to be passed to the device
pin.

0R/WPWM2En2

PWM1 Output Enable

When set, allows the generated PWM1 signal to be passed to the device
pin.

0R/WPWM1En1

PWM0 Output Enable

When set, allows the generated PWM0 signal to be passed to the device
pin.

0R/WPWM0En0

637June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C
This register provides a master control of the polarity of the PWM signals on the device pins. The
PWM signals generated by the PWM generator are active High; they can optionally be made active
Low via this register. Disabled PWM channels are also passed through the output inverter (if so
configured) so that inactive channels maintain the correct polarity.

PWM Output Inversion (PWMINVERT)
Base 0x4002.8000
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PWM0InvPWM1InvPWM2InvPWM3InvPWM4InvPWM5Invreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Invert PWM5 Signal

When set, the generated PWM5 signal is inverted.

0R/WPWM5Inv5

Invert PWM4 Signal

When set, the generated PWM4 signal is inverted.

0R/WPWM4Inv4

Invert PWM3 Signal

When set, the generated PWM3 signal is inverted.

0R/WPWM3Inv3

Invert PWM2 Signal

When set, the generated PWM2 signal is inverted.

0R/WPWM2Inv2

Invert PWM1 Signal

When set, the generated PWM1 signal is inverted.

0R/WPWM1Inv1

Invert PWM0 Signal

When set, the generated PWM0 signal is inverted.

0R/WPWM0Inv0

June 02, 2008638
Preliminary

Pulse Width Modulator (PWM)

Register 5: PWM Output Fault (PWMFAULT), offset 0x010
This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the
fault inputs and debug events are considered fault conditions. On a fault condition, each PWM signal
can be passed through unmodified or driven to a specified value. For outputs that are configured
for pass-through, the debug event handling on the corresponding PWM generator also determines
if the PWM signal continues to be generated.

Fault condition control occurs before the output inverter, so PWM signals driven to a specified value
on fault are inverted if the channel is configured for inversion (therefore, the pin is driven to the
logical complement of the specified value on a fault condition).

PWM Output Fault (PWMFAULT)
Base 0x4002.8000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Fault0Fault1Fault2Fault3Fault4Fault5reserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

PWM5 Fault

When set, the PWM5 output signal is driven to a specified value on a
fault condition.

0R/WFault55

PWM4 Fault

When set, the PWM4 output signal is driven to a specified value on a
fault condition.

0R/WFault44

PWM3 Fault

When set, the PWM3 output signal is driven to a specified value on a
fault condition.

0R/WFault33

PWM2 Fault

When set, the PWM2 output signal is driven to a specified value on a
fault condition.

0R/WFault22

PWM1 Fault

When set, the PWM1 output signal is driven to a specified value on a
fault condition.

0R/WFault11

PWM0 Fault

When set, the PWM0 output signal is driven to a specified value on a
fault condition.

0R/WFault00

639June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014
This register controls the global interrupt generation capabilities of the PWM module. The events
that can cause an interrupt are the fault input and the individual interrupts from the PWM generators.

PWM Interrupt Enable (PWMINTEN)
Base 0x4002.8000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

IntFault0reserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntPWM0IntPWM1IntPWM2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:17

Interrupt Fault 0

When set, an interrupt occurs when the FAULT0 input is asserted or the
fault condition for PWM generator 0 is asserted.

0R/WIntFault016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:3

PWM2 Interrupt Enable

When set, an interrupt occurs when the PWM generator 2 block asserts
an interrupt.

0R/WIntPWM22

PWM1 Interrupt Enable

When set, an interrupt occurs when the PWM generator 1 block asserts
an interrupt.

0R/WIntPWM11

PWM0 Interrupt Enable

When set, an interrupt occurs when the PWM generator 0 block asserts
an interrupt.

0R/WIntPWM00

June 02, 2008640
Preliminary

Pulse Width Modulator (PWM)

Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018
This register provides the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection;
it must be cleared through the PWM Interrupt Status and Clear (PWMISC) register (see page 642).
The PWM generator interrupts simply reflect the status of the PWM generators; they are cleared
via the interrupt status register in the PWM generator blocks. Bits set to 1 indicate the events that
are active; zero bits indicate that the event in question is not active.

PWM Raw Interrupt Status (PWMRIS)
Base 0x4002.8000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

IntFault0reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntPWM0IntPWM1IntPWM2reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:17

Interrupt Fault PWM 0

Indicates that the FAULT0 input is asserting or the fault condition for
PWM generator 0 is asserting.

0ROIntFault016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:3

PWM2 Interrupt Asserted

Indicates that the PWM generator 2 block is asserting its interrupt.

0ROIntPWM22

PWM1 Interrupt Asserted

Indicates that the PWM generator 1 block is asserting its interrupt.

0ROIntPWM11

PWM0 Interrupt Asserted

Indicates that the PWM generator 0 block is asserting its interrupt.

0ROIntPWM00

641June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C
This register provides a summary of the interrupt status of the individual PWM generator blocks. A
bit set to 1 indicates that the corresponding generator block is asserting an interrupt. The individual
interrupt status registers in each block must be consulted to determine the reason for the interrupt,
and used to clear the interrupt. For the fault interrupt, a write of 1 to that bit position clears the latched
interrupt status.

PWM Interrupt Status and Clear (PWMISC)
Base 0x4002.8000
Offset 0x01C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

IntFault0reserved

R/W1CROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntPWM0IntPWM1IntPWM2reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:17

FAULT0 Interrupt Asserted

Indicates that the FAULT0 input is asserting or the fault condition for
generator 0 is assertng a fault.

0R/W1CIntFault016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:3

PWM2 Interrupt Status

Indicates if the PWM generator 2 block is asserting an interrupt.

0ROIntPWM22

PWM1 Interrupt Status

Indicates if the PWM generator 1 block is asserting an interrupt.

0ROIntPWM11

PWM0 Interrupt Status

Indicates if the PWM generator 0 block is asserting an interrupt.

0ROIntPWM00

June 02, 2008642
Preliminary

Pulse Width Modulator (PWM)

Register 9: PWM Status (PWMSTATUS), offset 0x020
This register provides the status of the FAULT0 through FAULT3 input signals.

PWM Status (PWMSTATUS)
Base 0x4002.8000
Offset 0x020
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Fault0reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Fault0 Interrupt Status

When set, indicates the FAULT0 input is asserted, or that the fault
condition for PWM generator 0 is asserted.

0ROFault00

643June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 10: PWM0 Control (PWM0CTL), offset 0x040
Register 11: PWM1 Control (PWM1CTL), offset 0x080
Register 12: PWM2 Control (PWM2CTL), offset 0x0C0
These registers configure the PWM signal generation blocks (PWM0CTL controls the PWMgenerator
0 block, and so on). The Register Update mode, Debug mode, Counting mode, and Block Enable
mode are all controlled via these registers. The blocks produce the PWM signals, which can be
either two independent PWM signals (from the same counter), or a paired set of PWM signals with
dead-band delays added.

The PWM0 block produces the PWM0 and PWM1 outputs, the PWM1 block produces the PWM2 and
PWM3 outputs, and the PWM2 block produces the PWM4 and PWM5 outputs.

PWM0 Control (PWM0CTL)
Base 0x4002.8000
Offset 0x040
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

PWMnDBFALL Update Mode

Specifies the update mode for the PWMnDBFALL register.

DescriptionValue

Immediate

The PWMnDBFALL register value is immediately updated on
a write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WDBFallUpd15:14

June 02, 2008644
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

PWMnDBRISE Update Mode

Specifies the update mode for the PWMnDBRISE register.

DescriptionValue

Immediate

The PWMnDBRISE register value is immediately updated on
a write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WDBRiseUpd13:12

PWMnDBCTL Update Mode

Specifies the update mode for the PWMnDBCTL register.

DescriptionValue

Immediate

The PWMnDBCTL register value is immediately updated on a
write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WDBCtlUpd11:10

645June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

PWMnGENB Update Mode

Specifies the update mode for the PWMnGENB register.

DescriptionValue

Immediate

The PWMnGENB register value is immediately updated on a
write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WGenBUpd9:8

PWMnGENA Update Mode

Specifies the update mode for the PWMnGENA register.

DescriptionValue

Immediate

The PWMnGENA register value is immediately updated on a
write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WGenAUpd7:6

Comparator B Update Mode

Same as CmpAUpd but for the comparator B register.

0R/WCmpBUpd5

Comparator A Update Mode

The Update mode for the comparator A register. When not set, updates
to the register are reflected to the comparator the next time the counter
is 0. When set, updates to the register are delayed until the next time
the counter is 0 after a synchronous update has been requested through
the PWM Master Control (PWMCTL) register (see page 635).

0R/WCmpAUpd4

Load Register Update Mode

The Update mode for the load register. When not set, updates to the
register are reflected to the counter the next time the counter is 0. When
set, updates to the register are delayed until the next time the counter
is 0 after a synchronous update has been requested through the PWM
Master Control (PWMCTL) register.

0R/WLoadUpd3

June 02, 2008646
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Debug Mode

The behavior of the counter in Debug mode. When not set, the counter
stops running when it next reaches 0, and continues running again when
no longer in Debug mode. When set, the counter always runs.

0R/WDebug2

Counter Mode

The mode for the counter. When not set, the counter counts down from
the load value to 0 and then wraps back to the load value (Count-Down
mode). When set, the counter counts up from 0 to the load value, back
down to 0, and then repeats (Count-Up/Down mode).

0R/WMode1

PWM Block Enable

Master enable for the PWM generation block. When not set, the entire
block is disabled and not clocked. When set, the block is enabled and
produces PWM signals.

0R/WEnable0

647June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 13: PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044
Register 14: PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084
Register 15: PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4
These registers control the interrupt and ADC trigger generation capabilities of the PWM generators
(PWM0INTEN controls the PWM generator 0 block, and so on). The events that can cause an
interrupt or an ADC trigger are:

■ The counter being equal to the load register

■ The counter being equal to zero

■ The counter being equal to the comparator A register while counting up

■ The counter being equal to the comparator A register while counting down

■ The counter being equal to the comparator B register while counting up

■ The counter being equal to the comparator B register while counting down

Any combination of these events can generate either an interrupt, or an ADC trigger; though no
determination can be made as to the actual event that caused an ADC trigger if more than one is
specified.

PWM0 Interrupt and Trigger Enable (PWM0INTEN)
Base 0x4002.8000
Offset 0x044
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDreservedTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBDreserved

R/WR/WR/WR/WR/WR/WROROR/WR/WR/WR/WR/WR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:14

Trigger for Counter=Comparator B Down

When 1, a trigger pulse is output when the counter matches the
comparator B value and the counter is counting down.

0R/WTrCmpBD13

Trigger for Counter=Comparator B Up

When 1, a trigger pulse is output when the counter matches the
comparator B value and the counter is counting up.

0R/WTrCmpBU12

Trigger for Counter=Comparator A Down

When 1, a trigger pulse is output when the counter matches the
comparator A value and the counter is counting down.

0R/WTrCmpAD11

June 02, 2008648
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Trigger for Counter=Comparator A Up

When 1, a trigger pulse is output when the counter matches the
comparator A value and the counter is counting up.

0R/WTrCmpAU10

Trigger for Counter=Load

When 1, a trigger pulse is output when the counter matches the
PWMnLOAD register.

0R/WTrCntLoad9

Trigger for Counter=0

When 1, a trigger pulse is output when the counter is 0.

0R/WTrCntZero8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:6

Interrupt for Counter=Comparator B Down

When 1, an interrupt occurs when the counter matches the comparator B
value and the counter is counting down.

0R/WIntCmpBD5

Interrupt for Counter=Comparator B Up

When 1, an interrupt occurs when the counter matches the comparator B
value and the counter is counting up.

0R/WIntCmpBU4

Interrupt for Counter=Comparator A Down

When 1, an interrupt occurs when the counter matches the comparator A
value and the counter is counting down.

0R/WIntCmpAD3

Interrupt for Counter=Comparator A Up

When 1, an interrupt occurs when the counter matches the comparator A
value and the counter is counting up.

0R/WIntCmpAU2

Interrupt for Counter=Load

When 1, an interrupt occurs when the counter matches the PWMnLOAD
register.

0R/WIntCntLoad1

Interrupt for Counter=0

When 1, an interrupt occurs when the counter is 0.

0R/WIntCntZero0

649June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 16: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048
Register 17: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088
Register 18: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8
These registers provide the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller (PWM0RIS controls the PWM generator 0
block, and so on). Bits set to 1 indicate the latched events that have occurred; bits set to 0 indicate
that the event in question has not occurred.

PWM0 Raw Interrupt Status (PWM0RIS)
Base 0x4002.8000
Offset 0x048
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Comparator B Down Interrupt Status

Indicates that the counter has matched the comparator B value while
counting down.

0ROIntCmpBD5

Comparator B Up Interrupt Status

Indicates that the counter has matched the comparator B value while
counting up.

0ROIntCmpBU4

Comparator A Down Interrupt Status

Indicates that the counter has matched the comparator A value while
counting down.

0ROIntCmpAD3

Comparator A Up Interrupt Status

Indicates that the counter has matched the comparator A value while
counting up.

0ROIntCmpAU2

Counter=Load Interrupt Status

Indicates that the counter has matched the PWMnLOAD register.

0ROIntCntLoad1

Counter=0 Interrupt Status

Indicates that the counter has matched 0.

0ROIntCntZero0

June 02, 2008650
Preliminary

Pulse Width Modulator (PWM)

Register 19: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C
Register 20: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C
Register 21: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC
These registers provide the current set of interrupt sources that are asserted to the controller
(PWM0ISC controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events
that have occurred; bits set to 0 indicate that the event in question has not occurred. These are
R/W1C registers; writing a 1 to a bit position clears the corresponding interrupt reason.

PWM0 Interrupt Status and Clear (PWM0ISC)
Base 0x4002.8000
Offset 0x04C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDreserved

R/W1CR/W1CR/W1CR/W1CR/W1CR/W1CROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Comparator B Down Interrupt

Indicates that the counter has matched the comparator B value while
counting down.

0R/W1CIntCmpBD5

Comparator B Up Interrupt

Indicates that the counter has matched the comparator B value while
counting up.

0R/W1CIntCmpBU4

Comparator A Down Interrupt

Indicates that the counter has matched the comparator A value while
counting down.

0R/W1CIntCmpAD3

Comparator A Up Interrupt

Indicates that the counter has matched the comparator A value while
counting up.

0R/W1CIntCmpAU2

Counter=Load Interrupt

Indicates that the counter has matched the PWMnLOAD register.

0R/W1CIntCntLoad1

Counter=0 Interrupt

Indicates that the counter has matched 0.

0R/W1CIntCntZero0

651June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 22: PWM0 Load (PWM0LOAD), offset 0x050
Register 23: PWM1 Load (PWM1LOAD), offset 0x090
Register 24: PWM2 Load (PWM2LOAD), offset 0x0D0
These registers contain the load value for the PWM counter (PWM0LOAD controls the PWM
generator 0 block, and so on). Based on the counter mode, either this value is loaded into the counter
after it reaches zero, or it is the limit of up-counting after which the counter decrements back to zero.

If the Load Value Update mode is immediate, this value is used the next time the counter reaches
zero; if the mode is synchronous, it is used the next time the counter reaches zero after a synchronous
update has been requested through the PWMMaster Control (PWMCTL) register (see page 635).
If this register is re-written before the actual update occurs, the previous value is never used and is
lost.

PWM0 Load (PWM0LOAD)
Base 0x4002.8000
Offset 0x050
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Load

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Counter Load Value

The counter load value.

0R/WLoad15:0

June 02, 2008652
Preliminary

Pulse Width Modulator (PWM)

Register 25: PWM0 Counter (PWM0COUNT), offset 0x054
Register 26: PWM1 Counter (PWM1COUNT), offset 0x094
Register 27: PWM2 Counter (PWM2COUNT), offset 0x0D4
These registers contain the current value of the PWM counter (PWM0COUNT is the value of the
PWM generator 0 block, and so on). When this value matches the load register, a pulse is output;
this can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers, see
page 656 and page 659) or drive an interrupt or ADC trigger (via the PWMnINTEN register, see
page 648). A pulse with the same capabilities is generated when this value is zero.

PWM0 Counter (PWM0COUNT)
Base 0x4002.8000
Offset 0x054
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Count

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Counter Value

The current value of the counter.

0x00ROCount15:0

653June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 28: PWM0 Compare A (PWM0CMPA), offset 0x058
Register 29: PWM1 Compare A (PWM1CMPA), offset 0x098
Register 30: PWM2 Compare A (PWM2CMPA), offset 0x0D8
These registers contain a value to be compared against the counter (PWM0CMPA controls the
PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this
can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers) or drive an
interrupt or ADC trigger (via the PWMnINTEN register). If the value of this register is greater than
the PWMnLOAD register (see page 652), then no pulse is ever output.

If the comparator A update mode is immediate (based on the CmpAUpd bit in the PWMnCTL register),
this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is
synchronous, it is used the next time the counter reaches zero after a synchronous update has been
requested through the PWM Master Control (PWMCTL) register (see page 635). If this register is
rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Compare A (PWM0CMPA)
Base 0x4002.8000
Offset 0x058
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CompA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Comparator A Value

The value to be compared against the counter.

0x00R/WCompA15:0

June 02, 2008654
Preliminary

Pulse Width Modulator (PWM)

Register 31: PWM0 Compare B (PWM0CMPB), offset 0x05C
Register 32: PWM1 Compare B (PWM1CMPB), offset 0x09C
Register 33: PWM2 Compare B (PWM2CMPB), offset 0x0DC
These registers contain a value to be compared against the counter (PWM0CMPB controls the
PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this
can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers) or drive an
interrupt or ADC trigger (via the PWMnINTEN register). If the value of this register is greater than
the PWMnLOAD register, no pulse is ever output.

If the comparator B update mode is immediate (based on the CmpBUpd bit in the PWMnCTL register),
this 16-bit CompB value is used the next time the counter reaches zero. If the update mode is
synchronous, it is used the next time the counter reaches zero after a synchronous update has been
requested through the PWM Master Control (PWMCTL) register (see page 635). If this register is
rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Compare B (PWM0CMPB)
Base 0x4002.8000
Offset 0x05C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CompB

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Comparator B Value

The value to be compared against the counter.

0x00R/WCompB15:0

655June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 34: PWM0 Generator A Control (PWM0GENA), offset 0x060
Register 35: PWM1 Generator A Control (PWM1GENA), offset 0x0A0
Register 36: PWM2 Generator A Control (PWM2GENA), offset 0x0E0
These registers control the generation of the PWMnA signal based on the load and zero output pulses
from the counter, as well as the compare A and compare B pulses from the comparators
(PWM0GENA controls the PWM generator 0 block, and so on). When the counter is running in
Count-Down mode, only four of these events occur; when running in Count-Up/Down mode, all six
occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that
is produced.

The PWM0GENA register controls generation of the PWM0A signal; PWM1GENA, the PWM1A signal;
and PWM2GENA, the PWM2A signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is
taken and the compare A or compare B action is ignored. If a compare A event coincides with a
compare B event, the compare A action is taken and the compare B action is ignored.

If the Generator A updatemode is immediate (based on the GenAUpd field encoding in thePWMnCTL
register), this 16-bit GenAUpd value is used the next time the counter reaches zero. If the update
mode is synchronous, it is used the next time the counter reaches zero after a synchronous update
has been requested through the PWM Master Control (PWMCTL) register (see page 635). If this
register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Generator A Control (PWM0GENA)
Base 0x4002.8000
Offset 0x060
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBDreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

Action for Comparator B Down

The action to be taken when the counter matches comparator B while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBD11:10

June 02, 2008656
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Action for Comparator B Up

The action to be taken when the counter matches comparator B while
counting up. Occurs only when the Mode bit in the PWMnCTL register
(see page 644) is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBU9:8

Action for Comparator A Down

The action to be taken when the counter matches comparator A while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAD7:6

Action for Comparator A Up

The action to be taken when the counter matches comparator A while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAU5:4

Action for Counter=Load

The action to be taken when the counter matches the load value.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActLoad3:2

657June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Action for Counter=0

The action to be taken when the counter is zero.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActZero1:0

June 02, 2008658
Preliminary

Pulse Width Modulator (PWM)

Register 37: PWM0 Generator B Control (PWM0GENB), offset 0x064
Register 38: PWM1 Generator B Control (PWM1GENB), offset 0x0A4
Register 39: PWM2 Generator B Control (PWM2GENB), offset 0x0E4
These registers control the generation of the PWMnB signal based on the load and zero output pulses
from the counter, as well as the compare A and compare B pulses from the comparators
(PWM0GENB controls the PWM generator 0 block, and so on). When the counter is running in
Down mode, only four of these events occur; when running in Up/Down mode, all six occur. These
events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The PWM0GENB register controls generation of the PWM0B signal; PWM1GENB, the PWM1B signal;
and PWM2GENB, the PWM2B signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is
taken and the compare A or compare B action is ignored. If a compare A event coincides with a
compare B event, the compare B action is taken and the compare A action is ignored.

If the Generator B updatemode is immediate (based on the GenBUpd field encoding in thePWMnCTL
register), this 16-bit GenBUpd value is used the next time the counter reaches zero. If the update
mode is synchronous, it is used the next time the counter reaches zero after a synchronous update
has been requested through the PWM Master Control (PWMCTL) register (see page 635). If this
register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Generator B Control (PWM0GENB)
Base 0x4002.8000
Offset 0x064
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBDreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

Action for Comparator B Down

The action to be taken when the counter matches comparator B while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBD11:10

659June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionResetTypeNameBit/Field

Action for Comparator B Up

The action to be taken when the counter matches comparator B while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBU9:8

Action for Comparator A Down

The action to be taken when the counter matches comparator A while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAD7:6

Action for Comparator A Up

The action to be taken when the counter matches comparator A while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAU5:4

Action for Counter=Load

The action to be taken when the counter matches the load value.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActLoad3:2

June 02, 2008660
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Action for Counter=0

The action to be taken when the counter is 0.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActZero1:0

661June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 40: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068
Register 41: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8
Register 42: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8
The PWM0DBCTL register controls the dead-band generator, which produces the PWM0 and PWM1
signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through
to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled and
inverting the resulting waveform, the PWM0B signal is ignored; the PWM0 signal is generated by
delaying the rising edge(s) of the PWM0A signal by the value in the PWM0DBRISE register (see
page 663), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by
the value in the PWM0DBFALL register (see page 664). In a similar manner, PWM2 and PWM3 are
produced from the PWM1A and PWM1B signals, and PWM4 and PWM5 are produced from the PWM2A
and PWM2B signals.

If the Dead-Band Control mode is immediate (based on the DBCtlUpd field encoding in the
PWMnCTL register), this 16-bit DBCtlUpd value is used the next time the counter reaches zero. If
the updatemode is synchronous, it is used the next time the counter reaches zero after a synchronous
update has been requested through the PWMMaster Control (PWMCTL) register (see page 635).
If this register is rewritten before the actual update occurs, the previous value is never used and is
lost.

PWM0 Dead-Band Control (PWM0DBCTL)
Base 0x4002.8000
Offset 0x068
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Enablereserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Dead-Band Generator Enable

When set, the dead-band generator inserts dead bands into the output
signals; when clear, it simply passes the PWM signals through.

0R/WEnable0

June 02, 2008662
Preliminary

Pulse Width Modulator (PWM)

Register 43: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset
0x06C
Register 44: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset
0x0AC
Register 45: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset
0x0EC
The PWM0DBRISE register contains the number of clock ticks to delay the rising edge of the PWM0A
signal when generating the PWM0 signal. If the dead-band generator is disabled through the
PWMnDBCTL register, the PWM0DBRISE register is ignored. If the value of this register is larger
than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire
High time of the signal, resulting in no High time on the output. Care must be taken to ensure that
the input High time always exceeds the rising-edge delay. In a similar manner, PWM2 is generated
from PWM1A with its rising edge delayed and PWM4 is produced from PWM2A with its rising edge
delayed.

If the Dead-Band Rising-Edge Delay mode is immediate (based on the DBRiseUpd field encoding
in the PWMnCTL register), this 16-bit DBRiseUpd value is used the next time the counter reaches
zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a
synchronous update has been requested through the PWM Master Control (PWMCTL) register
(see page 635). If this register is rewritten before the actual update occurs, the previous value is
never used and is lost.

PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE)
Base 0x4002.8000
Offset 0x06C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RiseDelayreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

Dead-Band Rise Delay

The number of clock ticks to delay the rising edge.

0R/WRiseDelay11:0

663June 02, 2008
Preliminary

LM3S5747 Microcontroller

Register 46: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset
0x070
Register 47: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset
0x0B0
Register 48: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset
0x0F0
The PWM0DBFALL register contains the number of clock ticks to delay the falling edge of the
PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register
is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM
signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time
on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge
delay. In a similar manner, PWM3 is generated from PWM1A with its falling edge delayed and PWM5
is produced from PWM2A with its falling edge delayed.

If the Dead-Band Falling-Edge-Delay mode is immediate (based on the DBFallUp field encoding
in the PWMnCTL register), this 16-bit DBFallUp value is used the next time the counter reaches
zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a
synchronous update has been requested through the PWM Master Control (PWMCTL) register
(see page 635). If this register is rewritten before the actual update occurs, the previous value is
never used and is lost.

PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL)
Base 0x4002.8000
Offset 0x070
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FallDelayreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

Dead-Band Fall Delay

The number of clock ticks to delay the falling edge.

0x00R/WFallDelay11:0

June 02, 2008664
Preliminary

Pulse Width Modulator (PWM)

20 Pin Diagram
The LM3S5747 microcontroller pin diagram is shown below.

Figure 20-1. 100-Pin LQFP Package Pin Diagram

665June 02, 2008
Preliminary

LM3S5747 Microcontroller

21 Signal Tables
The following tables list the signals available for each pin. Functionality is enabled by software with
the GPIOAFSEL register.

Important: All multiplexed pins are GPIOs by default, with the exception of the four JTAG pins
(PC[3:0]) which default to the JTAG functionality.

Table 21-1 on page 666 shows the pin-to-signal-name mapping, including functional characteristics
of the signals. Table 21-2 on page 670 lists the signals in alphabetical order by signal name.

Table 21-3 on page 674 groups the signals by functionality, except for GPIOs. Table 21-4 on page
676 lists the GPIO pins and their alternate functionality.

Table 21-1. Signals by Pin Number

DescriptionBuffer TypePin TypePin NamePin Number

GPIO port E bit 7AnalogI/OPE71

ADC 0 inputAnalogIADC0

GPIO port E bit 6AnalogI/OPE62

ADC 1 inputAnalogIADC1

The positive supply (3.3 V) for the analog
circuits (ADC, Analog Comparators, etc.).
These are separated from VDD to minimize
the electrical noise contained on VDD from
affecting the analog functions.

Power-VDDA3

The ground reference for the analog circuits
(ADC, Analog Comparators, etc.). These are
separated fromGND tominimize the electrical
noise contained on VDD from affecting the
analog functions.

Power-GNDA4

GPIO port E bit 5AnalogI/OPE55

ADC 2 inputAnalogIADC2

GPIO port E bit 4AnalogI/OPE46

ADC 3 inputAnalogIADC3

Low drop-out regulator output voltage. This
pin requires an external capacitor between
the pin and GND of 1 µF or greater. The LDO
pin must also be connected to the VDD25 pins
at the board level in addition to the decoupling
capacitor(s).

Power-LDO7

Positive supply for I/O and some logic.Power-VDD8

Ground reference for logic and I/O pins.Power-GND9

GPIO port D bit 0TTLI/OPD010

PWM 0TTLOPWM0

GPIO port D bit 1TTLI/OPD111

PWM 1TTLOPWM1

GPIO port D bit 2TTLI/OPD212

PWM 2TTLOPWM2

GPIO port D bit 3TTLI/OPD313

PWM 3TTLOPWM3

June 02, 2008666
Preliminary

Signal Tables

DescriptionBuffer TypePin TypePin NamePin Number

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-VDD2514

Ground reference for logic and I/O pins.Power-GND15

GPIO port G bit 3TTLI/OPG316

GPIO port G bit 2TTLI/OPG217

GPIO port G bit 1TTLI/OPG118

GPIO port G bit 0TTLI/OPG019

Positive supply for I/O and some logic.Power-VDD20

Ground reference for logic and I/O pins.Power-GND21

GPIO port C bit 7TTLI/OPC722

GPIO port C bit 6TTLI/OPC623

Used in Host mode by an external power
source to indicate an error state by that power
source.

TTLIUSB0PFLT

GPIO port C bit 5TTLI/OPC524

Used in Host mode to control an external
power source to supply power to the USB bus.

TTLOUSB0EPEN

GPIO port C bit 4TTLI/OPC425

GPIO port A bit 0TTLI/OPA026

UARTmodule 0 receive. When in IrDA mode,
this signal has IrDA modulation.

TTLIU0Rx

GPIO port A bit 1TTLI/OPA127

UARTmodule 0 transmit. When in IrDAmode,
this signal has IrDA modulation.

TTLOU0Tx

GPIO port A bit 2TTLI/OPA228

SSI module 0 clockTTLI/OSSI0Clk

GPIO port A bit 3TTLI/OPA329

SSI module 0 frameTTLI/OSSI0Fss

GPIO port A bit 4TTLI/OPA430

SSI module 0 receiveTTLISSI0Rx

GPIO port A bit 5TTLI/OPA531

SSI module 0 transmitTTLOSSI0Tx

Positive supply for I/O and some logic.Power-VDD32

Ground reference for logic and I/O pins.Power-GND33

GPIO port A bit 6TTLI/OPA634

Capture/Compare/PWM 1TTLI/OCCP1

GPIO port A bit 7TTLI/OPA735

GPIO port G bit 7TTLI/OPG736

GPIO port G bit 6TTLI/OPG637

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-VDD2538

Ground reference for logic and I/O pins.Power-GND39

GPIO port G bit 5TTLI/OPG540

667June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionBuffer TypePin TypePin NamePin Number

GPIO port G bit 4TTLI/OPG441

GPIO port F bit 7TTLI/OPF742

GPIO port F bit 6TTLI/OPF643

Positive supply for I/O and some logic.Power-VDD44

Ground reference for logic and I/O pins.Power-GND45

GPIO port F bit 5TTLI/OPF546

GPIO port F bit 0TTLI/OPF047

Main oscillator crystal input or an external
clock reference input.

AnalogIOSC048

Main oscillator crystal output.AnalogOOSC149

An external input that brings the processor out
of hibernate mode when asserted.

-IWAKE50

An output that indicates the processor is in
hibernate mode.

ODOHIB51

Hibernation Module oscillator crystal input or
an external clock reference input. Note that
this is either a 4.19-MHz crystal or a
32.768-kHz oscillator for the Hibernation
Module RTC. See the CLKSEL bit in the
HIBCTL register.

AnalogIXOSC052

Hibernation Module oscillator crystal output.AnalogOXOSC153

Ground reference for logic and I/O pins.Power-GND54

Power source for the Hibernation Module. It
is normally connected to the positive terminal
of a battery and serves as the battery
backup/Hibernation Module power-source
supply.

Power-VBAT55

Positive supply for I/O and some logic.Power-VDD56

Ground reference for logic and I/O pins.Power-GND57

GPIO port F bit 4TTLI/OPF458

GPIO port F bit 3TTLI/OPF359

PWM 5TTLOPWM5

GPIO port F bit 2TTLI/OPF260

PWM 4TTLOPWM4

GPIO port F bit 1TTLI/OPF161

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-VDD2562

Ground reference for logic and I/O pins.Power-GND63

System reset input.TTLI/ORST64

GPIO port B bit 3TTLI/OPB365

I2C module 0 dataODI/OI2C0SDA

GPIO port B bit 0TTLI/OPB066

Capture/Compare/PWM 0TTLI/OCCP0

GPIO port B bit 1TTLI/OPB167

Positive supply for I/O and some logic.Power-VDD68

Ground reference for logic and I/O pins.Power-GND69

June 02, 2008668
Preliminary

Signal Tables

DescriptionBuffer TypePin TypePin NamePin Number

Bidirectional differential data pin (D- per USB
specification).

AnalogI/OUSB0DM70

Bidirectional differential data pin (D+ per USB
specification).

AnalogI/OUSB0DP71

GPIO port B bit 2TTLI/OPB272

I2C module 0 clockODI/OI2C0SCL

9.1 KOhm resistor (1% precision) used
internally for USB analog circuitry.

AnalogIUSB0RBIAS73

GPIO port E bit 0TTLI/OPE074

GPIO port E bit 1TTLI/OPE175

PWM Fault 0TTLIFault0

GPIO port H bit 4TTLI/OPH476

GPIO port C bit 3TTLI/OPC377

JTAG TDO and SWOTTLOTDO

JTAG TDO and SWOTTLOSWO

GPIO port C bit 2TTLI/OPC278

JTAG TDITTLITDI

GPIO port C bit 1TTLI/OPC179

JTAG TMS and SWDIOTTLI/OTMS

JTAG TMS and SWDIOTTLI/OSWDIO

GPIO port C bit 0TTLI/OPC080

JTAG/SWD CLKTTLITCK

JTAG/SWD CLKTTLISWCLK

Positive supply for I/O and some logic.Power-VDD81

Ground reference for logic and I/O pins.Power-GND82

GPIO port H bit 3TTLI/OPH383

GPIO port H bit 2TTLI/OPH284

GPIO port H bit 1TTLI/OPH185

GPIO port H bit 0TTLI/OPH086

Ground reference for logic and I/O pins.Power-GND87

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-VDD2588

GPIO port B bit 7TTLI/OPB789

Non maskable interruptTTLINMI

GPIO port B bit 6TTLI/OPB690

GPIO port B bit 5TTLI/OPB591

CAN 0 transmitTTLOCAN0Tx

GPIO port B bit 4TTLI/OPB492

CAN 0 receiveTTLICAN0Rx

Positive supply for I/O and some logic.Power-VDD93

Ground reference for logic and I/O pins.Power-GND94

GPIO port E bit 2TTLI/OPE295

GPIO port E bit 3TTLI/OPE396

669June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionBuffer TypePin TypePin NamePin Number

GPIO port D bit 4AnalogI/OPD497

ADC 7 inputAnalogIADC7

GPIO port D bit 5AnalogI/OPD598

ADC 6 inputAnalogIADC6

GPIO port D bit 6AnalogI/OPD699

ADC 5 inputAnalogIADC5

GPIO port D bit 7AnalogI/OPD7100

ADC 4 inputAnalogIADC4

Table 21-2. Signals by Signal Name

DescriptionBuffer TypePin TypePin NumberPin Name

ADC 0 inputAnalogI1ADC0

ADC 1 inputAnalogI2ADC1

ADC 2 inputAnalogI5ADC2

ADC 3 inputAnalogI6ADC3

ADC 4 inputAnalogI100ADC4

ADC 5 inputAnalogI99ADC5

ADC 6 inputAnalogI98ADC6

ADC 7 inputAnalogI97ADC7

CAN 0 receiveTTLI92CAN0Rx

CAN 0 transmitTTLO91CAN0Tx

Capture/Compare/PWM 0TTLI/O66CCP0

Capture/Compare/PWM 1TTLI/O34CCP1

PWM Fault 0TTLI75Fault0

Ground reference for logic and I/O pins.Power-9GND

Ground reference for logic and I/O pins.Power-15GND

Ground reference for logic and I/O pins.Power-21GND

Ground reference for logic and I/O pins.Power-33GND

Ground reference for logic and I/O pins.Power-39GND

Ground reference for logic and I/O pins.Power-45GND

Ground reference for logic and I/O pins.Power-54GND

Ground reference for logic and I/O pins.Power-57GND

Ground reference for logic and I/O pins.Power-63GND

Ground reference for logic and I/O pins.Power-69GND

Ground reference for logic and I/O pins.Power-82GND

Ground reference for logic and I/O pins.Power-87GND

Ground reference for logic and I/O pins.Power-94GND

The ground reference for the analog circuits
(ADC, Analog Comparators, etc.). These are
separated fromGND tominimize the electrical
noise contained on VDD from affecting the
analog functions.

Power-4GNDA

An output that indicates the processor is in
hibernate mode.

ODO51HIB

June 02, 2008670
Preliminary

Signal Tables

DescriptionBuffer TypePin TypePin NumberPin Name

I2C module 0 clockODI/O72I2C0SCL

I2C module 0 dataODI/O65I2C0SDA

Low drop-out regulator output voltage. This
pin requires an external capacitor between
the pin and GND of 1 µF or greater. The LDO
pin must also be connected to the VDD25 pins
at the board level in addition to the decoupling
capacitor(s).

Power-7LDO

Non maskable interruptTTLI89NMI

Main oscillator crystal input or an external
clock reference input.

AnalogI48OSC0

Main oscillator crystal output.AnalogO49OSC1

GPIO port A bit 0TTLI/O26PA0

GPIO port A bit 1TTLI/O27PA1

GPIO port A bit 2TTLI/O28PA2

GPIO port A bit 3TTLI/O29PA3

GPIO port A bit 4TTLI/O30PA4

GPIO port A bit 5TTLI/O31PA5

GPIO port A bit 6TTLI/O34PA6

GPIO port A bit 7TTLI/O35PA7

GPIO port B bit 0TTLI/O66PB0

GPIO port B bit 1TTLI/O67PB1

GPIO port B bit 2TTLI/O72PB2

GPIO port B bit 3TTLI/O65PB3

GPIO port B bit 4TTLI/O92PB4

GPIO port B bit 5TTLI/O91PB5

GPIO port B bit 6TTLI/O90PB6

GPIO port B bit 7TTLI/O89PB7

GPIO port C bit 0TTLI/O80PC0

GPIO port C bit 1TTLI/O79PC1

GPIO port C bit 2TTLI/O78PC2

GPIO port C bit 3TTLI/O77PC3

GPIO port C bit 4TTLI/O25PC4

GPIO port C bit 5TTLI/O24PC5

GPIO port C bit 6TTLI/O23PC6

GPIO port C bit 7TTLI/O22PC7

GPIO port D bit 0TTLI/O10PD0

GPIO port D bit 1TTLI/O11PD1

GPIO port D bit 2TTLI/O12PD2

GPIO port D bit 3TTLI/O13PD3

GPIO port D bit 4AnalogI/O97PD4

GPIO port D bit 5AnalogI/O98PD5

GPIO port D bit 6AnalogI/O99PD6

GPIO port D bit 7AnalogI/O100PD7

671June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionBuffer TypePin TypePin NumberPin Name

GPIO port E bit 0TTLI/O74PE0

GPIO port E bit 1TTLI/O75PE1

GPIO port E bit 2TTLI/O95PE2

GPIO port E bit 3TTLI/O96PE3

GPIO port E bit 4AnalogI/O6PE4

GPIO port E bit 5AnalogI/O5PE5

GPIO port E bit 6AnalogI/O2PE6

GPIO port E bit 7AnalogI/O1PE7

GPIO port F bit 0TTLI/O47PF0

GPIO port F bit 1TTLI/O61PF1

GPIO port F bit 2TTLI/O60PF2

GPIO port F bit 3TTLI/O59PF3

GPIO port F bit 4TTLI/O58PF4

GPIO port F bit 5TTLI/O46PF5

GPIO port F bit 6TTLI/O43PF6

GPIO port F bit 7TTLI/O42PF7

GPIO port G bit 0TTLI/O19PG0

GPIO port G bit 1TTLI/O18PG1

GPIO port G bit 2TTLI/O17PG2

GPIO port G bit 3TTLI/O16PG3

GPIO port G bit 4TTLI/O41PG4

GPIO port G bit 5TTLI/O40PG5

GPIO port G bit 6TTLI/O37PG6

GPIO port G bit 7TTLI/O36PG7

GPIO port H bit 0TTLI/O86PH0

GPIO port H bit 1TTLI/O85PH1

GPIO port H bit 2TTLI/O84PH2

GPIO port H bit 3TTLI/O83PH3

GPIO port H bit 4TTLI/O76PH4

PWM 0TTLO10PWM0

PWM 1TTLO11PWM1

PWM 2TTLO12PWM2

PWM 3TTLO13PWM3

PWM 4TTLO60PWM4

PWM 5TTLO59PWM5

System reset input.TTLI/O64RST

SSI module 0 clockTTLI/O28SSI0Clk

SSI module 0 frameTTLI/O29SSI0Fss

SSI module 0 receiveTTLI30SSI0Rx

SSI module 0 transmitTTLO31SSI0Tx

JTAG/SWD CLKTTLI80SWCLK

JTAG TMS and SWDIOTTLI/O79SWDIO

June 02, 2008672
Preliminary

Signal Tables

DescriptionBuffer TypePin TypePin NumberPin Name

JTAG TDO and SWOTTLO77SWO

JTAG/SWD CLKTTLI80TCK

JTAG TDITTLI78TDI

JTAG TDO and SWOTTLO77TDO

JTAG TMS and SWDIOTTLI/O79TMS

UARTmodule 0 receive. When in IrDA mode,
this signal has IrDA modulation.

TTLI26U0Rx

UARTmodule 0 transmit. When in IrDAmode,
this signal has IrDA modulation.

TTLO27U0Tx

Bidirectional differential data pin (D- per USB
specification).

AnalogI/O70USB0DM

Bidirectional differential data pin (D+ per USB
specification).

AnalogI/O71USB0DP

Used in Host mode to control an external
power source to supply power to the USB bus.

TTLO24USB0EPEN

Used in Host mode by an external power
source to indicate an error state by that power
source.

TTLI23USB0PFLT

9.1 KOhm resistor (1% precision) used
internally for USB analog circuitry.

AnalogI73USB0RBIAS

Power source for the Hibernation Module. It
is normally connected to the positive terminal
of a battery and serves as the battery
backup/Hibernation Module power-source
supply.

Power-55VBAT

Positive supply for I/O and some logic.Power-8VDD

Positive supply for I/O and some logic.Power-20VDD

Positive supply for I/O and some logic.Power-32VDD

Positive supply for I/O and some logic.Power-44VDD

Positive supply for I/O and some logic.Power-56VDD

Positive supply for I/O and some logic.Power-68VDD

Positive supply for I/O and some logic.Power-81VDD

Positive supply for I/O and some logic.Power-93VDD

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-14VDD25

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-38VDD25

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-62VDD25

Positive supply for most of the logic function,
including the processor core and most
peripherals.

Power-88VDD25

The positive supply (3.3 V) for the analog
circuits (ADC, Analog Comparators, etc.).
These are separated from VDD to minimize
the electrical noise contained on VDD from
affecting the analog functions.

Power-3VDDA

673June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionBuffer TypePin TypePin NumberPin Name

An external input that brings the processor out
of hibernate mode when asserted.

-I50WAKE

Hibernation Module oscillator crystal input or
an external clock reference input. Note that
this is either a 4.19-MHz crystal or a
32.768-kHz oscillator for the Hibernation
Module RTC. See the CLKSEL bit in the
HIBCTL register.

AnalogI52XOSC0

Hibernation Module oscillator crystal output.AnalogO53XOSC1

Table 21-3. Signals by Function, Except for GPIO

DescriptionBuffer
Type

Pin TypePin
Number

Pin NameFunction

ADC 0 inputAnalogI1ADC0ADC

ADC 1 inputAnalogI2ADC1

ADC 2 inputAnalogI5ADC2

ADC 3 inputAnalogI6ADC3

ADC 4 inputAnalogI100ADC4

ADC 5 inputAnalogI99ADC5

ADC 6 inputAnalogI98ADC6

ADC 7 inputAnalogI97ADC7

CAN 0 receiveTTLI92CAN0RxController Area
Network CAN 0 transmitTTLO91CAN0Tx

Capture/Compare/PWM 0TTLI/O66CCP0General-Purpose
Timers Capture/Compare/PWM 1TTLI/O34CCP1

I2C module 0 clockODI/O72I2C0SCLI2C

I2C module 0 dataODI/O65I2C0SDA

JTAG/SWD CLKTTLI80SWCLKJTAG/SWD/SWO

JTAG TMS and SWDIOTTLI/O79SWDIO

JTAG TDO and SWOTTLO77SWO

JTAG/SWD CLKTTLI80TCK

JTAG TDITTLI78TDI

JTAG TDO and SWOTTLO77TDO

JTAG TMS and SWDIOTTLI/O79TMS

PWM Fault 0TTLI75Fault0PWM

PWM 0TTLO10PWM0

PWM 1TTLO11PWM1

PWM 2TTLO12PWM2

PWM 3TTLO13PWM3

PWM 4TTLO60PWM4

PWM 5TTLO59PWM5

Ground reference for logic and I/O pins.Power-9GNDPower

Ground reference for logic and I/O pins.Power-15GND

Ground reference for logic and I/O pins.Power-21GND

Ground reference for logic and I/O pins.Power-33GND

June 02, 2008674
Preliminary

Signal Tables

DescriptionBuffer
Type

Pin TypePin
Number

Pin NameFunction

Ground reference for logic and I/O pins.Power-39GND

Ground reference for logic and I/O pins.Power-45GND

Ground reference for logic and I/O pins.Power-54GND

Ground reference for logic and I/O pins.Power-57GND

Ground reference for logic and I/O pins.Power-63GND

Ground reference for logic and I/O pins.Power-69GND

Ground reference for logic and I/O pins.Power-82GND

Ground reference for logic and I/O pins.Power-87GND

Ground reference for logic and I/O pins.Power-94GND

The ground reference for the analog circuits (ADC,
Analog Comparators, etc.). These are separated

Power-4GNDA

fromGND tominimize the electrical noise contained
on VDD from affecting the analog functions.

An output that indicates the processor is in
hibernate mode.

ODO51HIB

Low drop-out regulator output voltage. This pin
requires an external capacitor between the pin and

Power-7LDO

GND of 1 µF or greater. The LDO pin must also be
connected to the VDD25 pins at the board level in
addition to the decoupling capacitor(s).

Power source for the Hibernation Module. It is
normally connected to the positive terminal of a

Power-55VBAT

battery and serves as the battery
backup/Hibernation Module power-source supply.

Positive supply for I/O and some logic.Power-8VDD

Positive supply for I/O and some logic.Power-20VDD

Positive supply for I/O and some logic.Power-32VDD

Positive supply for I/O and some logic.Power-44VDD

Positive supply for I/O and some logic.Power-56VDD

Positive supply for I/O and some logic.Power-68VDD

Positive supply for I/O and some logic.Power-81VDD

Positive supply for I/O and some logic.Power-93VDD

Positive supply for most of the logic function,
including the processor core and most peripherals.

Power-14VDD25

Positive supply for most of the logic function,
including the processor core and most peripherals.

Power-38VDD25

Positive supply for most of the logic function,
including the processor core and most peripherals.

Power-62VDD25

Positive supply for most of the logic function,
including the processor core and most peripherals.

Power-88VDD25

The positive supply (3.3 V) for the analog circuits
(ADC, Analog Comparators, etc.). These are

Power-3VDDA

separated fromVDD tominimize the electrical noise
contained on VDD from affecting the analog
functions.

An external input that brings the processor out of
hibernate mode when asserted.

-I50WAKE

SSI module 0 clockTTLI/O28SSI0ClkSSI

675June 02, 2008
Preliminary

LM3S5747 Microcontroller

DescriptionBuffer
Type

Pin TypePin
Number

Pin NameFunction

SSI module 0 frameTTLI/O29SSI0Fss

SSI module 0 receiveTTLI30SSI0Rx

SSI module 0 transmitTTLO31SSI0Tx

Non maskable interruptTTLI89NMISystem Control &
Clocks Main oscillator crystal input or an external clock

reference input.
AnalogI48OSC0

Main oscillator crystal output.AnalogO49OSC1

System reset input.TTLI/O64RST

Bidirectional differential data pin (D- per USB
specification).

AnalogI/O70USB0DM

Bidirectional differential data pin (D+ per USB
specification).

AnalogI/O71USB0DP

9.1 KOhm resistor (1% precision) used internally
for USB analog circuitry.

AnalogI73USB0RBIAS

Hibernation Module oscillator crystal input or an
external clock reference input. Note that this is

AnalogI52XOSC0

either a 4.19-MHz crystal or a 32.768-kHz oscillator
for the Hibernation Module RTC. See the CLKSEL
bit in the HIBCTL register.

Hibernation Module oscillator crystal output.AnalogO53XOSC1

UART module 0 receive. When in IrDA mode, this
signal has IrDA modulation.

TTLI26U0RxUART

UART module 0 transmit. When in IrDA mode, this
signal has IrDA modulation.

TTLO27U0Tx

Used in Host mode to control an external power
source to supply power to the USB bus.

TTLO24USB0EPENUSB

Used in Host mode by an external power source
to indicate an error state by that power source.

TTLI23USB0PFLT

Table 21-4. GPIO Pins and Alternate Functions

Multiplexed FunctionMultiplexed FunctionPin NumberGPIO Pin

U0Rx26PA0

U0Tx27PA1

SSI0Clk28PA2

SSI0Fss29PA3

SSI0Rx30PA4

SSI0Tx31PA5

CCP134PA6

35PA7

CCP066PB0

67PB1

I2C0SCL72PB2

I2C0SDA65PB3

CAN0Rx92PB4

CAN0Tx91PB5

June 02, 2008676
Preliminary

Signal Tables

Multiplexed FunctionMultiplexed FunctionPin NumberGPIO Pin

90PB6

NMI89PB7

SWCLKTCK80PC0

SWDIOTMS79PC1

TDI78PC2

SWOTDO77PC3

25PC4

USB0EPEN24PC5

USB0PFLT23PC6

22PC7

PWM010PD0

PWM111PD1

PWM212PD2

PWM313PD3

ADC797PD4

ADC698PD5

ADC599PD6

ADC4100PD7

74PE0

Fault075PE1

95PE2

96PE3

ADC36PE4

ADC25PE5

ADC12PE6

ADC01PE7

47PF0

61PF1

PWM460PF2

PWM559PF3

58PF4

46PF5

43PF6

42PF7

19PG0

18PG1

17PG2

16PG3

41PG4

40PG5

37PG6

36PG7

677June 02, 2008
Preliminary

LM3S5747 Microcontroller

Multiplexed FunctionMultiplexed FunctionPin NumberGPIO Pin

86PH0

85PH1

84PH2

83PH3

76PH4

June 02, 2008678
Preliminary

Signal Tables

22 Operating Characteristics
Table 22-1. Temperature Characteristics

UnitValueSymbolCharacteristica

°C-40 to +85TAIndustrial operating temperature range

a. Maximum storage temperature is 150°C.

Table 22-2. Thermal Characteristics

UnitValueSymbolCharacteristic

°C/W32ΘJAThermal resistance (junction to ambient)a

°CTA + (PAVG • ΘJA)TJAverage junction temperatureb

a. Junction to ambient thermal resistance θJA numbers are determined by a package simulator.
b. Power dissipation is a function of temperature.

679June 02, 2008
Preliminary

LM3S5747 Microcontroller

23 Electrical Characteristics
23.1 DC Characteristics

23.1.1 Maximum Ratings
The maximum ratings are the limits to which the device can be subjected without permanently
damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Table 23-1. Maximum Ratings

UnitValueSymbolCharacteristic
a

MaxMin

V40VDDI/O supply voltage (VDD)

V30VDD25Core supply voltage (VDD25)

V40VDDAAnalog supply voltage (VDDA)

V40VBATBattery supply voltage (VBAT)

V5.5-0.3VINInput voltage

mA25-IMaximum current per output pins

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static
voltages or electric fields; however, it is advised that normal precautions be taken to
avoid application of any voltage higher than maximum-rated voltages to this
high-impedance circuit. Reliability of operation is enhanced if unused inputs are
connected to an appropriate logic voltage level (for example, either GND or VDD).

23.1.2 Recommended DC Operating Conditions
For special high-current applications, the GPIO output buffers may be used with the following
restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may
be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is
specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only
a maximum of two per side of the physical package with the total number of high-current GPIO
outputs not exceeding four for the entire package.

Table 23-2. Recommended DC Operating Conditions

UnitMaxNomMinParameter NameParameter

V3.63.33.0I/O supply voltageVDD
V2.752.52.25Core supply voltageVDD25
V3.63.33.0Analog supply voltageVDDA
V3.63.02.3Battery supply voltageVBAT
V5.0-2.0High-level input voltageVIH
V1.3--0.3Low-level input voltageVIL
VVDD-0.8 * VDDHigh-level input voltage for Schmitt trigger inputsVSIH
V0.2 * VDD-0Low-level input voltage for Schmitt trigger inputsVSIL

June 02, 2008680
Preliminary

Electrical Characteristics

UnitMaxNomMinParameter NameParameter

V--2.4High-level output voltageVOH
a

V0.4--Low-level output voltageVOLa

High-level source current, VOH=2.4 VIOH
mA--2.02-mA Drive

mA--4.04-mA Drive

mA--8.08-mA Drive

Low-level sink current, VOL=0.4 VIOL
mA--2.02-mA Drive

mA--4.04-mA Drive

mA--8.08-mA Drive

a. VOL and VOH shift to 1.2 V when using high-current GPIOs.

23.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Table 23-3. LDO Regulator Characteristics

UnitMaxNomMinParameter NameParameter

V2.752.52.25Programmable internal (logic) power supply output valueVLDOOUT
%-2%-Output voltage accuracy

µs100--Power-on timetPON
µs200--Time ontON
µs100--Time offtOFF
mV-50-Step programming incremental voltageVSTEP
µF3.0-1.0External filter capacitor size for internal power supplyCLDO

23.1.4 Power Specifications
The power measurements specified in the tables that follow are run on the core processor using
SRAM with the following specifications (except as noted):

■ VDD = 3.3 V

■ VDD25 = 2.50 V

■ VBAT = 3.0 V

■ VDDA = 3.3 V

■ Temperature = 25°C

■ Clock Source (MOSC) =3.579545 MHz Crystal Oscillator

■ Main oscillator (MOSC) = enabled

■ Internal oscillator (IOSC) = disabled

681June 02, 2008
Preliminary

LM3S5747 Microcontroller

Table 23-4. Detailed Power Specifications

Unit3.0 V VBAT2.5 V VDD253.3 V VDD, VDDAConditionsParameter
Name

Parameter

MaxNomMaxNomMaxNom

mApendinga0pendinga108pendinga9.5VDD25 = 2.50 V

Code= while(1){} executed in
Flash

Peripherals = All ON

System Clock = 50 MHz (with
PLL)

Run mode 1
(Flash loop)

IDD_RUN

mApendinga0pendinga53pendinga<0.001VDD25 = 2.50 V

Code= while(1){} executed in
Flash

Peripherals = All OFF

System Clock = 50 MHz (with
PLL)

Run mode 2
(Flash loop)

mApendinga0pendinga102pendinga9.5VDD25 = 2.50 V

Code= while(1){} executed in
SRAM

Peripherals = All ON

System Clock = 50 MHz (with
PLL)

Run mode 1
(SRAM loop)

mApendinga0pendinga47pendinga<0.001VDD25 = 2.50 V

Code= while(1){} executed in
SRAM

Peripherals = All OFF

System Clock = 50 MHz (with
PLL)

Run mode 2
(SRAM loop)

mApendinga0pendinga17pendinga<0.001VDD25 = 2.50 V

Peripherals = All OFF

System Clock = 50 MHz (with
PLL)

Sleep modeIDD_SLEEP

mApendinga0pendinga0.18pendinga0.14LDO = 2.25 V

Peripherals = All OFF

System Clock = IOSC30KHZ/64

Deep-Sleep
mode

IDD_DEEPSLEEP

µApendinga160000VBAT = 3.0 V

VDD = 0 V

VDD25 = 0 V

VDDA = 0 V

VDDPHY = 0 V

Peripherals = All OFF

System Clock = OFF

Hibernate Module = 32 kHz

Hibernate
mode

IDD_HIBERNATE

a. Pending characterization completion.

June 02, 2008682
Preliminary

Electrical Characteristics

23.1.5 Flash Memory Characteristics

Table 23-5. Flash Memory Characteristics

UnitMaxNomMinParameter NameParameter

cycles-100,00010,000Number of guaranteed program/erase cycles before failureaPECYC
years--10Data retention at average operating temperature of 85˚CTRET
µs--20Word program timeTPROG
ms--20Page erase timeTERASE
ms--200Mass erase timeTME

a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

23.1.6 Hibernation

Table 23-6. Hibernation Module DC Characteristics

UnitValueParameter NameParameter

V2.35Low battery detect voltageVLOWBAT

23.1.7 USB
The Stellaris® USB controller DC electrical specifications are compliant with the “Universal Serial
Bus Specification Rev. 2.0” (full-speed and low-speed support). Some components of the USB
system are integrated within the LM3S5747 microcontroller and specific to the Stellaris®

microcontroller design. These components are specified in Table 23-7 on page 683.

Table 23-7. USB Controller DC Electricals

UnitValueParameter NameParameter

Ω9.1K ± 1 %Value of the pull-down resistor on the USBRBIAS pinRBIAS

23.2 AC Characteristics

23.2.1 Load Conditions
Unless otherwise specified, the following conditions are true for all timing measurements. Timing
measurements are for 4-mA drive strength.

Figure 23-1. Load Conditions

CL = 50 pF

GND

pin

683June 02, 2008
Preliminary

LM3S5747 Microcontroller

23.2.2 Clocks

Table 23-8. Phase Locked Loop (PLL) Characteristics

UnitMaxNomMinParameter NameParameter

MHz16.384-3.579545Crystal referenceafref_crystal
MHz16.384-3.579545External clock referenceafref_ext
MHz-400-PLL frequencybfpll
ms0.5--PLL lock timeTREADY

a. The exact value is determined by the crystal value programmed into the XTAL field of theRun-Mode Clock Configuration
(RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Table 23-9. Clock Characteristics

UnitMaxNomMinParameter NameParameter

MHz15.6128.4Internal 12 MHz oscillator frequencyfIOSC
KHz393021Internal 30 KHz oscillator frequencyfIOSC30KHZ
MHz-4.194304-Hibernation module oscillator frequencyfXOSC
MHz-4.194304-Crystal reference for hibernation oscillatorfXOSC_XTAL
KHz-32.768-External clock reference for hibernation modulefXOSC_EXT
MHz16.384-1Main oscillator frequencyfMOSC
ns1000-61Main oscillator periodtMOSC_per
MHz16.384-1Crystal reference using the main oscillator (PLL in BYPASS mode)

a
fref_crystal_bypass

MHz50-0External clock reference (PLL in BYPASS mode)afref_ext_bypass
MHz50-0System clockfsystem_clock

a. The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.

Table 23-10. Crystal Characteristics

UnitsValueParameter Name

MHz3.54681216Frequency

ppm±50±50±50±50±50±50Frequency tolerance

ppm/yr±5±5±5±5±5±5Aging

-ParallelParallelParallelParallelParallelParallelOscillation mode

ppm±25±25±25±25±25±25Temperature stability (-40°C to 85°C)

pF63.555.637.027.818.513.9Motional capacitance (typ)

mH32.728.619.114.39.57.15Motional inductance (typ)

Ω22020016012010080Equivalent series resistance (max)

pF101010101010Shunt capacitance (max)

pF161616161616Load capacitance (typ)

µW100100100100100100Drive level (typ)

June 02, 2008684
Preliminary

Electrical Characteristics

23.2.3 Analog-to-Digital Converter

Table 23-11. ADC Characteristicsa

UnitMaxNomMinParameter NameParameter

V3.0--Maximum single-ended, full-scale analog input voltageVADCIN
V0--Minimum single-ended, full-scale analog input voltage

V1.5--Maximum differential, full-scale analog input voltage

V-1.5--Minimum differential, full-scale analog input voltage

pF-1-Equivalent input capacitanceCADCIN

bits-10-ResolutionN

MHz987ADC internal clock frequencyfADC
tADCcycles

b16--Conversion timetADCCONV
k samples/s563500438Conversion ratef ADCCONV
LSB±1--Integral nonlinearityINL

LSB±1--Differential nonlinearityDNL

LSB±1--OffsetOFF

LSB±1--GainGAIN

a. The ADC reference voltage is 3.0 V. This reference voltage is internally generated from the 3.3 VDDA supply by a band
gap circuit.

b. tADC= 1/fADC clock

23.2.4 I2C

Table 23-12. I2C Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

system clocks--36Start condition hold timetSCHI1a

system clocks--36Clock Low periodtLPI2a

ns(see note b)--I2CSCL/I2CSDA rise time (VIL =0.5 V to V IH =2.4 V)tSRTI3b

system clocks--2Data hold timetDHI4a

ns109-I2CSCL/I2CSDA fall time (VIH =2.4 V to V IL =0.5 V)tSFTI5c

system clocks--24Clock High timetHTI6a

system clocks--18Data setup timetDSI7a

system clocks--36Start condition setup time (for repeated start condition
only)

tSCSRI8a

system clocks--24Stop condition setup timetSCSI9a

a. Values depend on the value programmed into the TPR bit in the I2C Master Timer Period (I2CMTPR) register; a TPR
programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table
above. The I 2C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low
period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above
values are minimum values.

b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time
I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

c. Specified at a nominal 50 pF load.

685June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 23-2. I2C Timing

I2CSCL

I2CSDA

I1

I2

I4

I6

I7 I8

I5

I3 I9

23.2.5 Hibernation Module
The Hibernation Module requires special system implementation considerations since it is intended
to power-down all other sections of its host device. The system power-supply distribution and
interfaces to the device must be driven to 0 VDC or powered down with the same external voltage
regulator controlled by HIB.

The external voltage regulators controlled by HIB must have a settling time of 250 μs or less.

Table 23-13. Hibernation Module AC Characteristics

UnitMaxNomMinParameter NameParameterParameter No

μs-200-Internal 32.768 KHz clock reference rising edge to /HIB assertedtHIB_LOWH1

μs-30-Internal 32.768 KHz clock reference rising edge to /HIB deassertedtHIB_HIGHH2

μs--62/WAKE assertion timetWAKE_ASSERTH3

μs124-62/WAKE assert to /HIB desasserttWAKETOHIBH4

ms--20XOSC settling timeatXOSC_SETTLEH5

μs--92Time for a write to non-volatile registers in HIB module to completetHIB_REG_WRITEH6

μs250--HIB deassert to VDD and VDD25 at minimum operational leveltHIB_TO_VDDH7

kΩ-200-WAKE internal pull-up resistorRWAKEPUH8

a. This parameter is highly sensitive to PCB layout and trace lengths, which may make this parameter time longer. Care
must be taken in PCB design to minimize trace lengths and RLC (resistance, inductance, capacitance).

Figure 23-3. Hibernation Module Timing

32.768 KHz
(internal)

/HIB

H4

H1

/WAKE

H2

H3

June 02, 2008686
Preliminary

Electrical Characteristics

23.2.6 Synchronous Serial Interface (SSI)

Table 23-14. SSI Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

system clocks65024-2SSIClk cycle timetclk_perS1

t clk_per-1/2-SSIClk high timetclk_highS2

t clk_per-1/2-SSIClk low timetclk_lowS3

ns267.4-SSIClk rise/fall timetclkrfS4

ns20-0Data from master valid delay timetDMdS5

ns--20Data from master setup timetDMsS6

ns--40Data from master hold timetDMhS7

ns--20Data from slave setup timetDSsS8

ns--40Data from slave hold timetDShS9

Figure 23-4. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

SSIClk

SSIFss

SSITx
SSIRx MSB LSB

S2

S3

S1

S4

4 to 16 bits

Figure 23-5. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer

0

SSIClk

SSIFss

SSITx

SSIRx

MSB LSB

MSB LSB

S2

S3

S1

8-bit control

4 to 16 bits output data

687June 02, 2008
Preliminary

LM3S5747 Microcontroller

Figure 23-6. SSI Timing for SPI Frame Format (FRF=00), with SPH=1

SSIClk
(SPO=1)

SSITx
(master)

SSIRx
(slave) LSB

SSIClk
(SPO=0)

S2

S1

S4

SSIFss

LSB

S3

MSB

S5

S6 S7

S9S8

MSB

23.2.7 JTAG and Boundary Scan

Table 23-15. JTAG Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

MHz10-0TCK operational clock frequencyfTCKJ1

ns--100TCK operational clock periodtTCKJ2

ns-tTCK-TCK clock Low timetTCK_LOWJ3

ns-tTCK-TCK clock High timetTCK_HIGHJ4

ns10-0TCK rise timetTCK_RJ5

ns10-0TCK fall timetTCK_FJ6

ns--20TMS setup time to TCK risetTMS_SUJ7

ns--20TMS hold time from TCK risetTMS_HLDJ8

ns--25TDI setup time to TCK risetTDI_SUJ9

ns--25TDI hold time from TCK risetTDI_HLDJ10

ns3523-2-mA driveTCK fall to Data Valid from High-ZJ11

t TDO_ZDV ns26154-mA drive

ns25148-mA drive

ns29188-mA drive with slew rate control

ns3521-2-mA driveTCK fall to Data Valid from Data ValidJ12

t TDO_DV ns25144-mA drive

ns24138-mA drive

ns28188-mA drive with slew rate control

June 02, 2008688
Preliminary

Electrical Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

ns119-2-mA driveTCK fall to High-Z from Data ValidJ13

t TDO_DVZ ns974-mA drive

ns868-mA drive

ns978-mA drive with slew rate control

Figure 23-7. JTAG Test Clock Input Timing

TCK

J6 J5

J3 J4

J2

Figure 23-8. JTAG Test Access Port (TAP) Timing

TDO Output Valid

TCK

TDO Output Valid

J12

TDO

TDI

TMS

TDI Input Valid TDI Input Valid

J13

J9 J10

TMS Input Valid

J9 J10

TMS Input Valid

J11

J7 J8J8J7

23.2.8 General-Purpose I/O
Note: All GPIOs are 5 V-tolerant.

Table 23-16. GPIO Characteristics

UnitMaxNomMinConditionParameter NameParameter

ns2617-2-mA driveGPIO Rise Time (from 20% to 80% of VDD)tGPIOR
ns1394-mA drive

ns968-mA drive

ns12108-mA drive with slew rate control

ns2517-2-mA driveGPIO Fall Time (from 80% to 20% of VDD)tGPIOF
ns1284-mA drive

ns1068-mA drive

ns13118-mA drive with slew rate control

kΩ110-50Pull-up enabledGPIO internal pull-up resistorRGPIOPU

689June 02, 2008
Preliminary

LM3S5747 Microcontroller

UnitMaxNomMinConditionParameter NameParameter

kΩ180-55Pull-down enabledGPIO internal pull-down resistorRGPIOPD

23.2.9 Reset

Table 23-17. Reset Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

V-2.0-Reset thresholdVTHR1

V2.952.92.85Brown-Out thresholdVBTHR2

ms-10-Power-On Reset timeoutTPORR3

µs-500-Brown-Out timeoutTBORR4

ms11-6Internal reset timeout after PORTIRPORR5

µs1-0Internal reset timeout after BORaTIRBORR6

ms1-0Internal reset timeout after hardware reset (RST pin)TIRHWRR7

µs20-2.5Internal reset timeout after software-initiated system reset aTIRSWRR8

µs20-2.5Internal reset timeout after watchdog resetaTIRWDRR9

ms250--Supply voltage (VDD) rise time (0V-3.3V)TVDDRISER10

µs--2Minimum RST pulse widthTMINR11

a. 20 * t MOSC_per

Figure 23-9. External Reset Timing (RST)

RST

/Reset
(Internal)

R7R11

Figure 23-10. Power-On Reset Timing

VDD

/POR
(Internal)

/Reset
(Internal)

R3

R1

R5

June 02, 2008690
Preliminary

Electrical Characteristics

Figure 23-11. Brown-Out Reset Timing

VDD

/BOR
(Internal)

/Reset
(Internal)

R2

R4

R6

Figure 23-12. Software Reset Timing

R8

SW Reset

/Reset
(Internal)

Figure 23-13. Watchdog Reset Timing

WDOG
Reset

(Internal)

/Reset
(Internal)

R9

23.2.10 USB
The Stellaris® USB controller AC electrical specifications are compliant with the “Universal Serial
Bus Specification Rev. 2.0” (full-speed and low-speed support).

691June 02, 2008
Preliminary

LM3S5747 Microcontroller

24 Package Information
Figure 24-1. 100-Pin LQFP Package

Note: The following notes apply to the package drawing.

1. All dimensions shown in mm.

2. Dimensions shown are nominal with tolerances indicated.

3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.

June 02, 2008692
Preliminary

Package Information

Body +2.00 mm Footprint, 1.4 mm package thickness

100LLeadsSymbols

1.60Max.A

0.05 Min./0.15 Max.-A1
1.40±0.05A2
16.00±0.20D

14.00±0.05D1

16.00±0.20E

14.00±0.05E1
0.60+0.15/-0.10L

0.50Basice

0.22+0.05b

0˚-7˚-θ

0.08Max.ddd

0.08Max.ccc

MS-026JEDEC Reference Drawing

BEDVariation Designator

693June 02, 2008
Preliminary

LM3S5747 Microcontroller

A Boot Loader
A.1 Boot Loader

The Stellaris® boot loader is executed from the ROM when flash is empty and is used to download
code to the flash memory of a device without the use of a debug interface. The boot loader uses a
simple packet interface to provide synchronous communication with the device. The boot loader
runs off the internal oscillator and does not enable the PLL, so its speed is determined by the speed
of the internal oscillator. The UART0 , SSI0 and I2C0 serial interfaces can be used. For simplicity,
both the data format and communication protocol are identical for all serial interfaces.

A.2 Interfaces
Once communication with the boot loader is established via one of the serial interfaces, that interface
is used until the boot loader is reset or new code takes over. For example, once you start
communicating using the SSI port, communications with the boot loader via the UART are disabled
until the device is reset.

A.2.1 UART
The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial
format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is
automatically detected by the boot loader and can be any valid baud rate supported by the host and
the device. The auto detection sequence requires that the baud rate should be no more than 1/32
the internal oscillator frequency of the board that is running the boot loader (which is at least 8.4
MHz, providing support for up to 262,500 baud). This is actually the same as the hardware limitation
for the maximum baud rate for any UART on a Stellaris® device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the boot loader needs to determine the relationship between
the internal oscillator and the baud rate. This is enough information for the boot loader to configure
its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to
use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the boot
loader two bytes that are both 0x55. This generates a series of pulses to the boot loader that it can
use to calculate the ratios needed to program the UART to match the host’s baud rate. After the
host sends the pattern, it attempts to read back one byte of data from the UART. The boot loader
returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received
after at least twice the time required to transfer the two bytes, the host can resend another pattern
of 0x55, 0x55, and wait for the 0xCC byte again until the boot loader acknowledges that it has
received a synchronization pattern correctly. For example, the time to wait for data back from the
boot loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate
of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI
The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications,
with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See “Frame
Formats” on page 425 in the SSI chapter for more information on formats for this transfer protocol.
Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI
clock can run. This allows the SSI clock to be at most 1/12 the the internal oscillator frequency of

June 02, 2008694
Preliminary

Boot Loader

the board running the boot loader (which is at least 8.4 MHz, providing support for up to 700 KHz)..
Since the host device is the master, the SSI on the boot loader device does not need to determine
the clock as it is provided directly by the host.

A.2.3 I2C
The Inter-Integrated Circuit (I2C) port operates in slave mode with a slave address of 0x42. The I2C
port will work at both 100 Khz and 400 KHz I2C clock frequency. Since the host device is the master,
the I2C on the boot loader device does not need to determine the clock as it is provided directly by
the host.

A.3 Packet Handling
All communications, with the exception of the UART auto-baud, are done via defined packets that
are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same
format for receiving and sending packets, including the method used to acknowledge successful or
unsuccessful reception of a packet.

A.3.1 Packet Format
All packets sent and received from the device use the following byte-packed format.

struct
{

unsigned char ucSize;
unsigned char ucCheckSum;
unsigned char Data[];

};

ucSize The first byte received holds the total size of the transfer including
the size and checksum bytes.

ucChecksum This holds a simple checksum of the bytes in the data buffer only.
The algorithm is Data[0]+Data[1]+…+ Data[ucSize-3].

Data This is the raw data intended for the device, which is formatted in
some form of command interface. There should be ucSize–2
bytes of data provided in this buffer to or from the device.

A.3.2 Sending Packets
The actual bytes of the packet can be sent individually or all at once; the only limitation is that
commands that cause flash memory access should limit the download sizes to prevent losing bytes
during flash programming. This limitation is discussed further in the section that describes the boot
loader command, COMMAND_SEND_DATA (see “COMMAND_SEND_DATA (0x24)” on page 697).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or
SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data
returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte
from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK).
This does not indicate that the actual contents of the command issued in the data portion of the
packet were valid, just that the packet was received correctly.

695June 02, 2008
Preliminary

LM3S5747 Microcontroller

A.3.3 Receiving Packets
The boot loader sends a packet of data in the same format that it receives a packet. The boot loader
may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte
is the size of the packet followed by a checksum byte, and finally followed by the data itself. There
is no break in the data after the first non-zero byte is sent from the boot loader. Once the device
communicating with the boot loader receives all the bytes, it must either ACK or NAK the packet to
indicate that the transmission was successful. The appropriate response after sending a NAK to
the boot loader is to resend the command that failed and request the data again. If needed, the host
may send leading zeros before sending down the ACK/NAK signal to the boot loader, as the boot
loader only accepts the first non-zero data as a valid response. This zero padding is needed by the
SSI interface in order to receive data to or from the boot loader.

A.4 Commands
The next section defines the list of commands that can be sent to the boot loader. The first byte of
the data should always be one of the defined commands, followed by data or parameters as
determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)
This command simply accepts the command and sets the global status to success. The format of
the packet is as follows:

Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one
byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status,
the receipt of an ACK can be interpreted as a successful ping to the boot loader.

A.4.2 COMMAND_GET_STATUS (0x23)
This command returns the status of the last command that was issued. Typically, this command
should be sent after every command to ensure that the previous command was successful or to
properly respond to a failure. The command requires one byte in the data of the packet and should
be followed by reading a packet with one byte of data that contains a status code. The last step is
to ACK or NAK the received data so the boot loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS

A.4.3 COMMAND_DOWNLOAD (0x21)
This command is sent to the boot loader to indicate where to store data and how many bytes will
be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit
values that are both transferred MSB first. The first 32-bit value is the address to start programming
data into, while the second is the 32-bit size of the data that will be sent. This command also triggers
an erase of the full area to be programmed so this command takes longer than other commands.
This results in a longer time to receive the ACK/NAK back from the board. This command should
be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size
are valid for the device running the boot loader.

June 02, 2008696
Preliminary

Boot Loader

The format of the packet to send this command is a follows:

Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]

A.4.4 COMMAND_SEND_DATA (0x24)
This command should only follow a COMMAND_DOWNLOAD command or another
COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands
automatically increment address and continue programming from the previous location. For packets
which do not contain the final portion of the downloaded data, a multiple of four bytes should always
be transferred. The command terminates programming once the number of bytes indicated by the
COMMAND_DOWNLOAD command has been received. Each time this function is called it should be
followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into
the flash. If the boot loader sends a NAK to this command, the boot loader does not increment the
current address to allow retransmission of the previous data. The following example shows a
COMMAND_SEND_DATA packet with 8 bytes of packet data:

Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]

A.4.5 COMMAND_RUN (0x22)
This command is used to tell the boot loader to execute from the address passed as the parameter
in this command. This command consists of a single 32-bit value that is interpreted as the address
to execute. The 32-bit value is transmitted MSB first and the boot loader responds with an ACK
signal back to the host device before actually executing the code at the given address. This allows
the host to know that the command was received successfully and the code is now running.

Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]

697June 02, 2008
Preliminary

LM3S5747 Microcontroller

A.4.6 COMMAND_RESET (0x25)
This command is used to tell the boot loader device to reset. Unlike the COMMAND_RUN command,
this allows the initial stack pointer to be read by the hardware and set up for the new code. It can
also be used to reset the boot loader if a critical error occurs and the host device wants to restart
communication with the boot loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The boot loader responds with an ACK signal back to the host device before actually executing the
software reset to the device running the boot loader. This allows the host to know that the command
was received successfully and the part will be reset.

June 02, 2008698
Preliminary

Boot Loader

B ROM DriverLib Functions
B.1 DriverLib Functions Included in the Integrated ROM

The Peripheral Driver Library (DriverLib) APIs that are available in the integrated ROM of the Stellaris®

family of devices are listed below. The detailed description of each function is available in the
Stellaris® ROM User’s Guide.

ROM_ADCHardwareOversampleConfigure
// Configures the hardware oversampling factor of the ADC.

ROM_ADCIntClear
// Clears sample sequence interrupt source.

ROM_ADCIntDisable
// Disables a sample sequence interrupt.

ROM_ADCIntEnable
// Enables a sample sequence interrupt.

ROM_ADCIntStatus
// Gets the current interrupt status.

ROM_ADCProcessorTrigger
// Causes a processor trigger for a sample sequence.

ROM_ADCSequenceConfigure
// Configures the trigger source and priority of a sample sequence.

ROM_ADCSequenceDataGet
// Gets the captured data for a sample sequence.

ROM_ADCSequenceDisable
// Disables a sample sequence.

ROM_ADCSequenceEnable
// Enables a sample sequence.

ROM_ADCSequenceOverflow
// Determines if a sample sequence overflow occurred.

ROM_ADCSequenceOverflowClear
// Clears the overflow condition on a sample sequence.

ROM_ADCSequenceStepConfigure
// Configure a step of the sample sequencer.

ROM_ADCSequenceUnderflow
// Determines if a sample sequence underflow occurred.

ROM_ADCSequenceUnderflowClear
// Clears the underflow condition on a sample sequence.

699June 02, 2008
Preliminary

LM3S5747 Microcontroller

ROM_FlashErase
// Erases a block of flash.

ROM_FlashIntClear
// Clears flash controller interrupt sources.

ROM_FlashIntDisable
// Disables individual flash controller interrupt sources.

ROM_FlashIntEnable
// Enables individual flash controller interrupt sources.

ROM_FlashIntGetStatus
// Gets the current interrupt status.

ROM_FlashProgram
// Programs flash.

ROM_FlashProtectGet
// Gets the protection setting for a block of flash.

ROM_FlashProtectSave
// Saves the flash protection settings.

ROM_FlashProtectSet
// Sets the protection setting for a block of flash.

ROM_FlashUsecGet
// Gets the number of processor clocks per micro-second.

ROM_FlashUsecSet
// Sets the number of processor clocks per micro-second.

ROM_FlashUserGet
// Gets the User Registers

ROM_FlashUserSave
// Saves the User Registers

ROM_FlashUserSet
// Sets the User Registers

ROM_GPIODirModeGet
// Gets the direction and mode of a pin.

ROM_GPIODirModeSet
// Sets the direction and mode of the specified pin(s).

ROM_GPIOIntTypeGet
// Gets the interrupt type for a pin.

ROM_GPIOIntTypeSet
// Sets the interrupt type for the specified pin(s).

June 02, 2008700
Preliminary

ROM DriverLib Functions

ROM_GPIOPadConfigGet
// Gets the pad configuration for a pin.

ROM_GPIOPadConfigSet
// Sets the pad configuration for the specified pin(s).

ROM_GPIOPinIntClear
// Clears the interrupt for the specified pin(s).

ROM_GPIOPinIntDisable
// Disables interrupts for the specified pin(s).

ROM_GPIOPinIntEnable
// Enables interrupts for the specified pin(s).

ROM_GPIOPinIntStatus
// Gets interrupt status for the specified GPIO port.

ROM_GPIOPinRead
// Reads the values present of the specified pin(s).

ROM_GPIOPinTypeCAN
// Configures pin(s) for use as a CAN device.

ROM_GPIOPinTypeGPIOInput
// Configures pin(s) for use as GPIO inputs.

ROM_GPIOPinTypeGPIOOutput
// Configures pin(s) for use as GPIO outputs.

ROM_GPIOPinTypeGPIOOutputOD
// Configures pin(s) for use as GPIO open drain outputs.

ROM_GPIOPinTypeI2C
// Configures pin(s) for use by the I2C peripheral.

ROM_GPIOPinTypePWM
// Configures pin(s) for use by the PWM peripheral.

ROM_GPIOPinTypeSSI
// Configures pin(s) for use by the SSI peripheral.

ROM_GPIOPinTypeTimer
// Configures pin(s) for use by the Timer peripheral.

ROM_GPIOPinTypeUART
// Configures pin(s) for use by the UART peripheral.

ROM_GPIOPinWrite
// Writes a value to the specified pin(s).

ROM_I2CMasterBusBusy
// Indicates whether or not the I2C bus is busy.

701June 02, 2008
Preliminary

LM3S5747 Microcontroller

ROM_I2CMasterBusy
// Indicates whether or not the I2C Master is busy.

ROM_I2CMasterControl
// Controls the state of the I2C Master module.

ROM_I2CMasterDataGet
// Receives a byte that has been sent to the I2C Master.

ROM_I2CMasterDataPut
// Transmits a byte from the I2C Master.

ROM_I2CMasterDisable
// Disables the I2C master block.

ROM_I2CMasterEnable
// Enables the I2C Master block.

ROM_I2CMasterErr
// Gets the error status of the I2C Master module.

ROM_I2CMasterInitExpClk
// Initializes the I2C Master block.

ROM_I2CMasterIntClear
// Clears I2C Master interrupt sources.

ROM_I2CMasterIntDisable
// Disables the I2C Master interrupt.

ROM_I2CMasterIntEnable
// Enables the I2C Master interrupt.

ROM_I2CMasterIntStatus
// Gets the current I2C Master interrupt status.

ROM_I2CMasterSlaveAddrSet
// Sets the address that the I2C Master will place on the bus.

ROM_I2CSlaveDataGet
// Receives a byte that has been sent to the I2C Slave.

ROM_I2CSlaveDataPut
// Transmits a byte from the I2C Slave.

ROM_I2CSlaveDisable
// Disables the I2C slave block.

ROM_I2CSlaveEnable
// Enables the I2C Slave block.

ROM_I2CSlaveInit
// Initializes the I2C Slave block.

June 02, 2008702
Preliminary

ROM DriverLib Functions

ROM_I2CSlaveIntClear
// Clears I2C Slave interrupt sources.

ROM_I2CSlaveIntDisable
// Disables the I2C Slave interrupt.

ROM_I2CSlaveIntEnable
// Enables the I2C Slave interrupt.

ROM_I2CSlaveIntStatus
// Gets the current I2C Slave interrupt status.

ROM_I2CSlaveStatus
// Gets the I2C Slave module status.

ROM_IntDisable
// Disables an interrupt.

ROM_IntEnable
// Enables an interrupt.

ROM_IntMasterDisable
// Disables the processor interrupt.

ROM_IntMasterEnable
// Enables the processor interrupt.

ROM_IntPriorityGet
// Gets the priority of an interrupt.

ROM_IntPriorityGroupingGet
// Gets the priority grouping of the interrupt controller.

ROM_IntPriorityGroupingSet
// Sets the priority grouping of the interrupt controller.

ROM_IntPrioritySet
// Sets the priority of an interrupt.

ROM_PWMDeadBandDisable
// Disables the PWM dead band output.

ROM_PWMDeadBandEnable
// Enables the PWM dead band output, and sets the dead band delays.

ROM_PWMFaultIntClear
// Clears the fault interrupt for a PWM module.

ROM_PWMGenConfigure
// Configures a PWM generator.

ROM_PWMGenDisable
// Disables the timer/counter for a PWM generator block.

703June 02, 2008
Preliminary

LM3S5747 Microcontroller

ROM_PWMGenEnable
// Enables the timer/counter for a PWM generator block.

ROM_PWMGenIntClear
// Clears the specified interrupt(s) for the specified PWM generator block.

ROM_PWMGenIntStatus
// Gets interrupt status for the specified PWM generator block.

ROM_PWMGenIntTrigDisable
// Disables interrupts for the specified PWM generator block.

ROM_PWMGenIntTrigEnable
// Enables interrupts and triggers for the specified PWM generator block.

ROM_PWMGenPeriodGet
// Gets the period of a PWM generator block.

ROM_PWMGenPeriodSet
// Set the period of a PWM generator.

ROM_PWMIntDisable
// Disables generator and fault interrupts for a PWM module.

ROM_PWMIntEnable
// Enables generator and fault interrupts for a PWM module.

ROM_PWMIntStatus
// Gets the interrupt status for a PWM module.

ROM_PWMOutputFault
// Specifies the state of PWM outputs in response to a fault condition.

ROM_PWMOutputInvert
// Selects the inversion mode for PWM outputs.

ROM_PWMOutputState
// Enables or disables PWM outputs.

ROM_PWMPulseWidthGet
// Gets the pulse width of a PWM output.

ROM_PWMPulseWidthSet
// Sets the pulse width for the specified PWM output.

ROM_PWMSyncTimeBase
// Synchronizes the counters in one or multiple PWM generator blocks.

ROM_PWMSyncUpdate
// Synchronizes all pending updates.

ROM_SSIConfigSetExpClk
// Configures the synchronous serial interface.

June 02, 2008704
Preliminary

ROM DriverLib Functions

ROM_SSIDataGet
// Gets a data element from the SSI receive FIFO.

ROM_SSIDataGetNonBlocking
// Gets a data element from the SSI receive FIFO.

ROM_SSIDataPut
// Puts a data element into the SSI transmit FIFO.

ROM_SSIDataPutNonBlocking
// Puts a data element into the SSI transmit FIFO.

ROM_SSIDisable
// Disables the synchronous serial interface.

ROM_SSIEnable
// Enables the synchronous serial interface.

ROM_SSIIntClear
// Clears SSI interrupt sources.

ROM_SSIIntDisable
// Disables individual SSI interrupt sources.

ROM_SSIIntEnable
// Enables individual SSI interrupt sources.

ROM_SSIIntStatus
// Gets the current interrupt status.

ROM_SysCtlADCSpeedGet
// Gets the sample rate of the ADC.

ROM_SysCtlADCSpeedSet
// Sets the sample rate of the ADC.

ROM_SysCtlClockGet
// Gets the processor clock rate.

ROM_SysCtlClockSet
// Sets the clocking of the device.

ROM_SysCtlDeepSleep
// Puts the processor into deep-sleep mode.

ROM_SysCtlFlashSizeGet
// Gets the size of the flash.

ROM_SysCtlGPIOAHBDisable
// Disables a GPIO peripheral for access from the high speed bus.

ROM_SysCtlGPIOAHBEnable
// Enables a GPIO peripheral for access from the high speed bus.

705June 02, 2008
Preliminary

LM3S5747 Microcontroller

ROM_SysCtlIntClear
// Clears system control interrupt sources.

ROM_SysCtlIntDisable
// Disables individual system control interrupt sources.

ROM_SysCtlIntEnable
// Enables individual system control interrupt sources.

ROM_SysCtlIntStatus
// Gets the current interrupt status.

ROM_SysCtlLDOGet
// Gets the output voltage of the LDO.

ROM_SysCtlLDOSet
// Sets the output voltage of the LDO.

ROM_SysCtlPeripheralClockGating
// Controls peripheral clock gating in sleep and deep-sleep mode.

ROM_SysCtlPeripheralDeepSleepDisable
// Disables a peripheral in deep-sleep mode.

ROM_SysCtlPeripheralDeepSleepEnable
// Enables a peripheral in deep-sleep mode.

ROM_SysCtlPeripheralDisable
// Disables a peripheral.

ROM_SysCtlPeripheralEnable
// Enables a peripheral.

ROM_SysCtlPeripheralPresent
// Determines if a peripheral is present.

ROM_SysCtlPeripheralReset
// Performs a software reset of a peripheral.

ROM_SysCtlPeripheralSleepDisable
// Disables a peripheral in sleep mode.

ROM_SysCtlPeripheralSleepEnable
// Enables a peripheral in sleep mode.

ROM_SysCtlPinPresent
// Determines if a pin is present.

ROM_SysCtlPWMClockGet
// Gets the current PWM clock configuration.

ROM_SysCtlPWMClockSet
// Sets the PWM clock configuration.

June 02, 2008706
Preliminary

ROM DriverLib Functions

ROM_SysCtlReset
// Resets the device.

ROM_SysCtlResetCauseClear
// Clears reset reasons.

ROM_SysCtlResetCauseGet
// Gets the reason for a reset.

ROM_SysCtlSleep
// Puts the processor into sleep mode.

ROM_SysCtlSRAMSizeGet
// Gets the size of the SRAM.

ROM_SysTickDisable
// Disables the SysTick counter.

ROM_SysTickEnable
// Enables the SysTick counter.

ROM_SysTickIntDisable
// Disables the SysTick interrupt.

ROM_SysTickIntEnable
// Enables the SysTick interrupt.

ROM_SysTickPeriodGet
// Gets the period of the SysTick counter.

ROM_SysTickPeriodSet
// Sets the period of the SysTick counter.

ROM_SysTickValueGet
// Gets the current value of the SysTick counter.

ROM_TimerConfigure
// Configures the timer(s).

ROM_TimerControlEvent
// Controls the event type.

ROM_TimerControlLevel
// Controls the output level.

ROM_TimerControlStall
// Controls the stall handling.

ROM_TimerControlTrigger
// Enables or disables the trigger output.

ROM_TimerDisable
// Disables the timer(s).

707June 02, 2008
Preliminary

LM3S5747 Microcontroller

ROM_TimerEnable
// Enables the timer(s).

ROM_TimerIntClear
// Clears timer interrupt sources.

ROM_TimerIntDisable
// Disables individual timer interrupt sources.

ROM_TimerIntEnable
// Enables individual timer interrupt sources.

ROM_TimerIntStatus
// Gets the current interrupt status.

ROM_TimerLoadGet
// Gets the timer load value.

ROM_TimerLoadSet
// Sets the timer load value.

ROM_TimerMatchGet
// Gets the timer match value.

ROM_TimerMatchSet
// Sets the timer match value.

ROM_TimerPrescaleGet
// Get the timer prescale value.

ROM_TimerPrescaleMatchGet
// Get the timer prescale match value.

ROM_TimerPrescaleMatchSet
// Set the timer prescale match value.

ROM_TimerPrescaleSet
// Set the timer prescale value.

ROM_TimerRTCDisable
// Disable RTC counting.

ROM_TimerRTCEnable
// Enable RTC counting.

ROM_TimerValueGet
// Gets the current timer value.

ROM_UARTBreakCtl
// Causes a BREAK to be sent.

ROM_UARTCharGet
// Waits for a character from the specified port.

June 02, 2008708
Preliminary

ROM DriverLib Functions

ROM_UARTCharGetNonBlocking
// Receives a character from the specified port.

ROM_UARTCharPut
// Waits to send a character from the specified port.

ROM_UARTCharPutNonBlocking
// Sends a character to the specified port.

ROM_UARTCharsAvail
// Determines if there are any characters in the receive FIFO.

ROM_UARTConfigGetExpClk
// Gets the current configuration of a UART.

ROM_UARTConfigSetExpClk
// Sets the configuration of a UART.

ROM_UARTDisable
// Disables transmitting and receiving.

ROM_UARTDisableSIR
// Disables SIR (IrDA) mode on the specified UART.

ROM_UARTEnable
// Enables transmitting and receiving.

ROM_UARTEnableSIR
// Enables SIR (IrDA) mode on specified UART.

ROM_UARTFIFOLevelGet
// Gets the FIFO level at which interrupts are generated.

ROM_UARTFIFOLevelSet
// Sets the FIFO level at which interrupts are generated.

ROM_UARTIntClear
// Clears UART interrupt sources.

ROM_UARTIntDisable
// Disables individual UART interrupt sources.

ROM_UARTIntEnable
// Enables individual UART interrupt sources.

ROM_UARTIntStatus
// Gets the current interrupt status.

ROM_UARTParityModeGet
// Gets the type of parity currently being used.

ROM_UARTParityModeSet
// Sets the type of parity.

709June 02, 2008
Preliminary

LM3S5747 Microcontroller

ROM_UARTSpaceAvail
// Determines if there is any space in the transmit FIFO.

ROM_UpdateI2C
// Starts an update over the I2C0 interface.

ROM_UpdateSSI
// Starts an update over the SSI0 interface.

ROM_UpdateUART
// Starts an update over the UART0 interface.

ROM_WatchdogEnable
// Enables the watchdog timer.

ROM_WatchdogIntClear
// Clears the watchdog timer interrupt.

ROM_WatchdogIntEnable
// Enables the watchdog timer interrupt.

ROM_WatchdogIntStatus
// Gets the current watchdog timer interrupt status.

ROM_WatchdogLock
// Enables the watchdog timer lock mechanism.

ROM_WatchdogLockState
// Gets the state of the watchdog timer lock mechanism.

ROM_WatchdogReloadGet
// Gets the watchdog timer reload value.

ROM_WatchdogReloadSet
// Sets the watchdog timer reload value.

ROM_WatchdogResetDisable
// Disables the watchdog timer reset.

ROM_WatchdogResetEnable
// Enables the watchdog timer reset.

ROM_WatchdogRunning
// Determines if the watchdog timer is enabled.

ROM_WatchdogStallDisable
// Disables stalling of the watchdog timer during debug events.

ROM_WatchdogStallEnable
// Enables stalling of the watchdog timer during debug events.

ROM_WatchdogUnlock
// Disables the watchdog timer lock mechanism.

June 02, 2008710
Preliminary

ROM DriverLib Functions

ROM_WatchdogValueGet
// Gets the current watchdog timer value.

711June 02, 2008
Preliminary

LM3S5747 Microcontroller

C Register Quick Reference
16171819202122232425262728293031

0123456789101112131415

System Control
Base 0x400F.E000

DID0, type RO, offset 0x000, reset -

CLASSVER

MINORMAJOR

PBORCTL, type R/W, offset 0x030, reset 0x0000.7FFD

BORIOR

LDOPCTL, type R/W, offset 0x034, reset 0x0000.0000

VADJ

RIS, type RO, offset 0x050, reset 0x0000.0000

BORRISPLLLRISUSBPLLLRISMOSCPUPRIS

IMC, type R/W, offset 0x054, reset 0x0000.0000

BORIMPLLLIMUSBPLLLIMMOSCPUPIM

MISC, type R/W1C, offset 0x058, reset 0x0000.0000

BORMISPLLLMISUSBPLLLMISMOSCPUPMIS

RESC, type R/W, offset 0x05C, reset -

MOSCFAIL

EXTPORBORWDTSW

RCC, type R/W, offset 0x060, reset 0x078E.3AD1

PWMDIVUSEPWMDIVUSESYSDIVSYSDIVACG

MOSCDISIOSCDISOSCSRCXTALBYPASSPWRDN

PLLCFG, type RO, offset 0x064, reset -

RF

GPIOHSCTL, type R/W, offset 0x06C, reset 0x0000.0000

PORTAHSPORTBHSPORTCHSPORTDHSPORTEHSPORTFHSPORTGHSPORTHHS

RCC2, type R/W, offset 0x070, reset 0x0780.6810

SYSDIV2USERCC2

OSCSRC2BYPASS2PWRDN2USBPWRDN

MOSCCTL, type R/W, offset 0x07C, reset 0x0000.0000

CVAL

DSLPCLKCFG, type R/W, offset 0x144, reset 0x0780.0000

DSDIVORIDE

DSOSCSRC

DID1, type RO, offset 0x004, reset -

PARTNOFAMVER

QUALROHSPKGTEMPPINCOUNT

DC0, type RO, offset 0x008, reset 0x00FF.003F

SRAMSZ

FLASHSZ

DC1, type RO, offset 0x010, reset 0x0111.32FF

ADCPWMCAN0

JTAGSWDSWOWDTPLLTEMPSNSHIBMPUMAXADCSPDMINSYSDIV

June 02, 2008712
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

DC2, type RO, offset 0x014, reset 0x0007.1011

TIMER0TIMER1TIMER2

UART0SSI0I2C0

DC3, type RO, offset 0x018, reset 0x83FF.803F

ADC0ADC1ADC2ADC3ADC4ADC5ADC6ADC7CCP0CCP132KHZ

PWM0PWM1PWM2PWM3PWM4PWM5PWMFAULT

DC4, type RO, offset 0x01C, reset 0x0000.30FF

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHROMUDMA

DC5, type RO, offset 0x020, reset 0x0110.003F

PWMESYNCPWMFAULT0

PWM0PWM1PWM2PWM3PWM4PWM5

DC6, type RO, offset 0x024, reset 0x0000.0002

USB0

DC7, type RO, offset 0x028, reset 0x0000.0F3F

USB_EP1_RXUSB_EP1_TXUSB_EP2_RXUSB_EP2_TXUSB_EP3_RXUSB_EP3_TXUART0_RXUART0_TXSSI0_RXSSI0_TX

RCGC0, type R/W, offset 0x100, reset 0x00000040

ADCPWMCAN0

WDTHIBMAXADCSPD

SCGC0, type R/W, offset 0x110, reset 0x00000040

ADCPWMCAN0

WDTHIBMAXADCSPD

DCGC0, type R/W, offset 0x120, reset 0x00000040

ADCPWMCAN0

WDTHIBMAXADCSPD

RCGC1, type R/W, offset 0x104, reset 0x00000000

TIMER0TIMER1TIMER2

UART0SSI0I2C0

SCGC1, type R/W, offset 0x114, reset 0x00000000

TIMER0TIMER1TIMER2

UART0SSI0I2C0

DCGC1, type R/W, offset 0x124, reset 0x00000000

TIMER0TIMER1TIMER2

UART0SSI0I2C0

RCGC2, type R/W, offset 0x108, reset 0x00000000

USB0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHUDMA

SCGC2, type R/W, offset 0x118, reset 0x00000000

USB0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHUDMA

DCGC2, type R/W, offset 0x128, reset 0x00000000

USB0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHUDMA

SRCR0, type R/W, offset 0x040, reset 0x00000000

ADCPWMCAN0

WDTHIB

SRCR1, type R/W, offset 0x044, reset 0x00000000

TIMER0TIMER1TIMER2

UART0SSI0I2C0

713June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

SRCR2, type R/W, offset 0x048, reset 0x00000000

USB0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHUDMA

Hibernation Module
Base 0x400F.C000

HIBRTCC, type RO, offset 0x000, reset 0x0000.0000

RTCC

RTCC

HIBRTCM0, type R/W, offset 0x004, reset 0xFFFF.FFFF

RTCM0

RTCM0

HIBRTCM1, type R/W, offset 0x008, reset 0xFFFF.FFFF

RTCM1

RTCM1

HIBRTCLD, type R/W, offset 0x00C, reset 0xFFFF.FFFF

RTCLD

RTCLD

HIBCTL, type R/W, offset 0x010, reset 0x0000.0000

WRC

RTCENHIBREQCLKSELRTCWENPINWENLOWBATENCLK32ENVABORT

HIBIM, type R/W, offset 0x014, reset 0x0000.0000

RTCALT0RTCALT1LOWBATEXTW

HIBRIS, type RO, offset 0x018, reset 0x0000.0000

RTCALT0RTCALT1LOWBATEXTW

HIBMIS, type RO, offset 0x01C, reset 0x0000.0000

RTCALT0RTCALT1LOWBATEXTW

HIBIC, type R/W1C, offset 0x020, reset 0x0000.0000

RTCALT0RTCALT1LOWBATEXTW

HIBRTCT, type R/W, offset 0x024, reset 0x0000.7FFF

TRIM

HIBDATA, type R/W, offset 0x030-0x12C, reset 0x0000.0000

RTD

RTD

Internal Memory
ROM Registers (System Control Offset)
Base 0x400F.E000

RMCTL, type R/W1C, offset 0x0F0, reset -

BA

Internal Memory
Flash Registers (Flash Control Offset)
Base 0x400F.D000

FMA, type R/W, offset 0x000, reset 0x0000.0000

OFFSET

OFFSET

June 02, 2008714
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

FMD, type R/W, offset 0x004, reset 0x0000.0000

DATA

DATA

FMC, type R/W, offset 0x008, reset 0x0000.0000

WRKEY

WRITEERASEMERASECOMT

FCRIS, type RO, offset 0x00C, reset 0x0000.0000

ARISPRIS

FCIM, type R/W, offset 0x010, reset 0x0000.0000

AMASKPMASK

FCMISC, type R/W1C, offset 0x014, reset 0x0000.0000

AMISCPMISC

Internal Memory
Flash Registers (System Control Offset)
Base 0x400F.E000

USECRL, type R/W, offset 0x140, reset 0x31

USEC

RMVER, type RO, offset 0x0F4, reset 0x0000.0000

SIZECONT

REVVER

FMPRE0, type R/W, offset 0x130 and 0x200, reset 0xFFFF.FFFF

READ_ENABLE

READ_ENABLE

FMPPE0, type R/W, offset 0x134 and 0x400, reset 0xFFFF.FFFF

PROG_ENABLE

PROG_ENABLE

USER_DBG, type R/W, offset 0x1D0, reset 0xFFFF.FFFE

DATANW

DBG0DBG1DATA

USER_REG0, type R/W, offset 0x1E0, reset 0xFFFF.FFFF

DATANW

DATA

USER_REG1, type R/W, offset 0x1E4, reset 0xFFFF.FFFF

DATANW

DATA

USER_REG2, type R/W, offset 0x1E8, reset 0xFFFF.FFFF

DATANW

DATA

USER_REG3, type R/W, offset 0x1EC, reset 0xFFFF.FFFF

DATANW

DATA

FMPRE1, type R/W, offset 0x204, reset 0xFFFF.FFFF

READ_ENABLE

READ_ENABLE

FMPRE2, type R/W, offset 0x208, reset 0x0000.0000

READ_ENABLE

READ_ENABLE

715June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

FMPRE3, type R/W, offset 0x20C, reset 0x0000.0000

READ_ENABLE

READ_ENABLE

FMPPE1, type R/W, offset 0x404, reset 0xFFFF.FFFF

PROG_ENABLE

PROG_ENABLE

FMPPE2, type R/W, offset 0x408, reset 0x0000.0000

PROG_ENABLE

PROG_ENABLE

FMPPE3, type R/W, offset 0x40C, reset 0x0000.0000

PROG_ENABLE

PROG_ENABLE

Micro Direct Memory Access (μDMA)
μDMA Channel Control Structure
Base n/a

DMASRCENDP, type R/W, offset 0x000, reset -

ADDR

ADDR

DMADSTENDP, type R/W, offset 0x004, reset -

ADDR

ADDR

DMACHCTL, type R/W, offset 0x008, reset -

ARBSIZESRCSIZESRCINCDSTSIZEDSTINC

XFERMODENXTUSEBURSTXFERSIZEARBSIZE

Micro Direct Memory Access (μDMA)
μDMA Registers
Base 0x400F.F000

DMASTAT, type RO, offset 0x000, reset 0x001F.0000

DMACHANS

MASTENSTATE

DMACFG, type WO, offset 0x004, reset -

MASTEN

DMACTLBASE, type R/W, offset 0x008, reset 0x0000.0000

ADDR

ADDR

DMAALTBASE, type RO, offset 0x00C, reset 0x0000.0200

ADDR

ADDR

DMAWAITSTAT, type RO, offset 0x010, reset 0x0000.0000

WAITREQ[n]

WAITREQ[n]

DMASWREQ, type WO, offset 0x014, reset -

SWREQ[n]

SWREQ[n]

DMAUSEBURSTSET, type RO, offset 0x018, reset 0x0000.0000

SET[n]

SET[n]

DMAUSEBURSTSET, type WO, offset 0x018, reset 0x0000.0000

SET[n]

SET[n]

June 02, 2008716
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

DMAUSEBURSTCLR, type WO, offset 0x01C, reset -

CLR[n]

CLR[n]

DMAREQMASKSET, type RO, offset 0x020, reset 0x0000.0000

SET[n]

SET[n]

DMAREQMASKSET, type WO, offset 0x020, reset 0x0000.0000

SET[n]

SET[n]

DMAREQMASKCLR, type WO, offset 0x024, reset -

CLR[n]

CLR[n]

DMAENASET, type RO, offset 0x028, reset 0x0000.0000

SET[n]

SET[n]

DMAENASET, type WO, offset 0x028, reset 0x0000.0000

CHENSET[n]

CHENSET[n]

DMAENACLR, type WO, offset 0x02C, reset -

CLR[n]

CLR[n]

DMAALTSET, type RO, offset 0x030, reset 0x0000.0000

SET[n]

SET[n]

DMAALTSET, type WO, offset 0x030, reset 0x0000.0000

SET[n]

SET[n]

DMAALTCLR, type WO, offset 0x034, reset -

CLR[n]

CLR[n]

DMAPRIOSET, type RO, offset 0x038, reset 0x0000.0000

SET[n]

SET[n]

DMAPRIOSET, type WO, offset 0x038, reset 0x0000.0000

SET[n]

SET[n]

DMAPRIOCLR, type WO, offset 0x03C, reset -

CLR[n]

CLR[n]

DMAERRCLR, type RO, offset 0x04C, reset 0x0000.0000

ERRCLR

DMAERRCLR, type WO, offset 0x04C, reset 0x0000.0000

ERRCLR

DMAPeriphID0, type RO, offset 0xFE0, reset 0x0000.0030

PID0

DMAPeriphID1, type RO, offset 0xFE4, reset 0x0000.00B2

PID1

717June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

DMAPeriphID2, type RO, offset 0xFE8, reset 0x0000.000B

PID2

DMAPeriphID3, type RO, offset 0xFEC, reset 0x0000.0000

PID3

DMAPeriphID4, type RO, offset 0xFD0, reset 0x0000.0004

PID4

DMAPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

DMAPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

DMAPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

DMAPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

General-Purpose Input/Outputs (GPIOs)
GPIO Port A (legacy) base: 0x4000.4000
GPIO Port A (high-speed) base: 0x4005.8000
GPIO Port B (legacy) base: 0x4000.5000
GPIO Port B (high-speed) base: 0x4005.9000
GPIO Port C (legacy) base: 0x4000.6000
GPIO Port C (high-speed) base: 0x4005.A000
GPIO Port D (legacy) base: 0x4000.7000
GPIO Port D (high-speed) base: 0x4005.B000
GPIO Port E (legacy) base: 0x4002.4000
GPIO Port E (high-speed) base: 0x4005.C000
GPIO Port F (legacy) base: 0x4002.5000
GPIO Port F (high-speed) base: 0x4005.D000
GPIO Port G (legacy) base: 0x4002.6000
GPIO Port G (high-speed) base: 0x4005.E000
GPIO Port H (legacy) base: 0x4002.7000
GPIO Port H (high-speed) base: 0x4005.F000

GPIODATA, type R/W, offset 0x000, reset 0x0000.0000

DATA

GPIODIR, type R/W, offset 0x400, reset 0x0000.0000

DIR

GPIOIS, type R/W, offset 0x404, reset 0x0000.0000

IS

GPIOIBE, type R/W, offset 0x408, reset 0x0000.0000

IBE

GPIOIEV, type R/W, offset 0x40C, reset 0x0000.0000

IEV

GPIOIM, type R/W, offset 0x410, reset 0x0000.0000

IME

June 02, 2008718
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

GPIORIS, type RO, offset 0x414, reset 0x0000.0000

RIS

GPIOMIS, type RO, offset 0x418, reset 0x0000.0000

MIS

GPIOICR, type W1C, offset 0x41C, reset 0x0000.0000

IC

GPIOAFSEL, type R/W, offset 0x420, reset -

AFSEL

GPIODR2R, type R/W, offset 0x500, reset 0x0000.00FF

DRV2

GPIODR4R, type R/W, offset 0x504, reset 0x0000.0000

DRV4

GPIODR8R, type R/W, offset 0x508, reset 0x0000.0000

DRV8

GPIOODR, type R/W, offset 0x50C, reset 0x0000.0000

ODE

GPIOPUR, type R/W, offset 0x510, reset -

PUE

GPIOPDR, type R/W, offset 0x514, reset 0x0000.0000

PDE

GPIOSLR, type R/W, offset 0x518, reset 0x0000.0000

SRL

GPIODEN, type R/W, offset 0x51C, reset -

DEN

GPIOLOCK, type R/W, offset 0x520, reset 0x0000.0001

LOCK

LOCK

GPIOCR, type -, offset 0x524, reset -

CR

GPIOAMSEL, type R/W, offset 0x528, reset 0x0000.0000

GPIOAMSEL

GPIOPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

GPIOPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

719June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

GPIOPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

GPIOPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

GPIOPeriphID0, type RO, offset 0xFE0, reset 0x0000.0061

PID0

GPIOPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000

PID1

GPIOPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

GPIOPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

GPIOPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

GPIOPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

GPIOPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

GPIOPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

General-Purpose Timers
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000

GPTMCFG, type R/W, offset 0x000, reset 0x0000.0000

GPTMCFG

GPTMTAMR, type R/W, offset 0x004, reset 0x0000.0000

TAMRTACMRTAAMS

GPTMTBMR, type R/W, offset 0x008, reset 0x0000.0000

TBMRTBCMRTBAMS

GPTMCTL, type R/W, offset 0x00C, reset 0x0000.0000

TAENTASTALLTAEVENTRTCENTAOTETAPWMLTBENTBSTALLTBEVENTTBOTETBPWML

GPTMIMR, type R/W, offset 0x018, reset 0x0000.0000

TATOIMCAMIMCAEIMRTCIMTBTOIMCBMIMCBEIM

GPTMRIS, type RO, offset 0x01C, reset 0x0000.0000

TATORISCAMRISCAERISRTCRISTBTORISCBMRISCBERIS

June 02, 2008720
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

GPTMMIS, type RO, offset 0x020, reset 0x0000.0000

TATOMISCAMMISCAEMISRTCMISTBTOMISCBMMISCBEMIS

GPTMICR, type W1C, offset 0x024, reset 0x0000.0000

TATOCINTCAMCINTCAECINTRTCCINTTBTOCINTCBMCINTCBECINT

GPTMTAILR, type R/W, offset 0x028, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

TAILRH

TAILRL

GPTMTBILR, type R/W, offset 0x02C, reset 0x0000.FFFF

TBILRL

GPTMTAMATCHR, type R/W, offset 0x030, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

TAMRH

TAMRL

GPTMTBMATCHR, type R/W, offset 0x034, reset 0x0000.FFFF

TBMRL

GPTMTAPR, type R/W, offset 0x038, reset 0x0000.0000

TAPSR

GPTMTBPR, type R/W, offset 0x03C, reset 0x0000.0000

TBPSR

GPTMTAR, type RO, offset 0x048, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

TARH

TARL

GPTMTBR, type RO, offset 0x04C, reset 0x0000.FFFF

TBRL

Watchdog Timer
Base 0x4000.0000

WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF

WDTLoad

WDTLoad

WDTVALUE, type RO, offset 0x004, reset 0xFFFF.FFFF

WDTValue

WDTValue

WDTCTL, type R/W, offset 0x008, reset 0x0000.0000

INTENRESEN

WDTICR, type WO, offset 0x00C, reset -

WDTIntClr

WDTIntClr

WDTRIS, type RO, offset 0x010, reset 0x0000.0000

WDTRIS

WDTMIS, type RO, offset 0x014, reset 0x0000.0000

WDTMIS

WDTTEST, type R/W, offset 0x418, reset 0x0000.0000

STALL

721June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000

WDTLock

WDTLock

WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

WDTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

WDTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

WDTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0005

PID0

WDTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0018

PID1

WDTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

WDTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

WDTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

WDTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

WDTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

WDTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

Analog-to-Digital Converter (ADC)
Base 0x4003.8000

ADCACTSS, type R/W, offset 0x000, reset 0x0000.0000

ASEN0ASEN1ASEN2ASEN3

ADCRIS, type RO, offset 0x004, reset 0x0000.0000

INR0INR1INR2INR3

ADCIM, type R/W, offset 0x008, reset 0x0000.0000

MASK0MASK1MASK2MASK3

ADCISC, type R/W1C, offset 0x00C, reset 0x0000.0000

IN0IN1IN2IN3

June 02, 2008722
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

ADCOSTAT, type R/W1C, offset 0x010, reset 0x0000.0000

OV0OV1OV2OV3

ADCEMUX, type R/W, offset 0x014, reset 0x0000.0000

EM0EM1EM2EM3

ADCUSTAT, type R/W1C, offset 0x018, reset 0x0000.0000

UV0UV1UV2UV3

ADCSSPRI, type R/W, offset 0x020, reset 0x0000.3210

SS0SS1SS2SS3

ADCPSSI, type WO, offset 0x028, reset -

SS0SS1SS2SS3

ADCSAC, type R/W, offset 0x030, reset 0x0000.0000

AVG

ADCSSMUX0, type R/W, offset 0x040, reset 0x0000.0000

MUX4MUX5MUX6MUX7

MUX0MUX1MUX2MUX3

ADCSSCTL0, type R/W, offset 0x044, reset 0x0000.0000

D4END4IE4TS4D5END5IE5TS5D6END6IE6TS6D7END7IE7TS7

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

ADCSSFIFO0, type RO, offset 0x048, reset 0x0000.0000

DATA

ADCSSFIFO1, type RO, offset 0x068, reset 0x0000.0000

DATA

ADCSSFIFO2, type RO, offset 0x088, reset 0x0000.0000

DATA

ADCSSFIFO3, type RO, offset 0x0A8, reset 0x0000.0000

DATA

ADCSSFSTAT0, type RO, offset 0x04C, reset 0x0000.0100

TPTRHPTREMPTYFULL

ADCSSFSTAT1, type RO, offset 0x06C, reset 0x0000.0100

TPTRHPTREMPTYFULL

ADCSSFSTAT2, type RO, offset 0x08C, reset 0x0000.0100

TPTRHPTREMPTYFULL

ADCSSFSTAT3, type RO, offset 0x0AC, reset 0x0000.0100

TPTRHPTREMPTYFULL

ADCSSMUX1, type R/W, offset 0x060, reset 0x0000.0000

MUX0MUX1MUX2MUX3

723June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

ADCSSMUX2, type R/W, offset 0x080, reset 0x0000.0000

MUX0MUX1MUX2MUX3

ADCSSCTL1, type R/W, offset 0x064, reset 0x0000.0000

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

ADCSSCTL2, type R/W, offset 0x084, reset 0x0000.0000

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

ADCSSMUX3, type R/W, offset 0x0A0, reset 0x0000.0000

MUX0

ADCSSCTL3, type R/W, offset 0x0A4, reset 0x0000.0002

D0END0IE0TS0

Universal Asynchronous Receivers/Transmitters (UARTs)
UART0 base: 0x4000.C000

UARTDR, type R/W, offset 0x000, reset 0x0000.0000

DATAFEPEBEOE

UARTRSR/UARTECR, type RO, offset 0x004, reset 0x0000.0000

FEPEBEOE

UARTRSR/UARTECR, type WO, offset 0x004, reset 0x0000.0000

DATA

UARTFR, type RO, offset 0x018, reset 0x0000.0090

BUSYRXFETXFFRXFFTXFE

UARTILPR, type R/W, offset 0x020, reset 0x0000.0000

ILPDVSR

UARTIBRD, type R/W, offset 0x024, reset 0x0000.0000

DIVINT

UARTFBRD, type R/W, offset 0x028, reset 0x0000.0000

DIVFRAC

UARTLCRH, type R/W, offset 0x02C, reset 0x0000.0000

BRKPENEPSSTP2FENWLENSPS

UARTCTL, type R/W, offset 0x030, reset 0x0000.0300

UARTENSIRENSIRLPLBETXERXE

UARTIFLS, type R/W, offset 0x034, reset 0x0000.0012

TXIFLSELRXIFLSEL

UARTIM, type R/W, offset 0x038, reset 0x0000.0000

RXIMTXIMRTIMFEIMPEIMBEIMOEIM

UARTRIS, type RO, offset 0x03C, reset 0x0000.000F

RXRISTXRISRTRISFERISPERISBERISOERIS

June 02, 2008724
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

UARTMIS, type RO, offset 0x040, reset 0x0000.0000

RXMISTXMISRTMISFEMISPEMISBEMISOEMIS

UARTICR, type W1C, offset 0x044, reset 0x0000.0000

RXICTXICRTICFEICPEICBEICOEIC

UARTDMACTL, type R/W, offset 0x048, reset 0x0000.0000

RXDMAETXDMAEDMAERR

UARTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

UARTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

UARTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

UARTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

UARTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0011

PID0

UARTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000

PID1

UARTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

UARTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

UARTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

UARTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

UARTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

UARTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

Synchronous Serial Interface (SSI)
SSI0 base: 0x4000.8000

SSICR0, type R/W, offset 0x000, reset 0x0000.0000

DSSFRFSPOSPHSCR

SSICR1, type R/W, offset 0x004, reset 0x0000.0000

LBMSSEMSSOD

725June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

SSIDR, type R/W, offset 0x008, reset 0x0000.0000

DATA

SSISR, type RO, offset 0x00C, reset 0x0000.0003

TFETNFRNERFFBSY

SSICPSR, type R/W, offset 0x010, reset 0x0000.0000

CPSDVSR

SSIIM, type R/W, offset 0x014, reset 0x0000.0000

RORIMRTIMRXIMTXIM

SSIRIS, type RO, offset 0x018, reset 0x0000.0008

RORRISRTRISRXRISTXRIS

SSIMIS, type RO, offset 0x01C, reset 0x0000.0000

RORMISRTMISRXMISTXMIS

SSIICR, type W1C, offset 0x020, reset 0x0000.0000

RORICRTIC

SSIDMACTL, type R/W, offset 0x024, reset 0x0000.0000

RXDMAETXDMAE

SSIPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

SSIPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

SSIPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

SSIPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

SSIPeriphID0, type RO, offset 0xFE0, reset 0x0000.0022

PID0

SSIPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000

PID1

SSIPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

SSIPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

SSIPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

June 02, 2008726
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

SSIPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

SSIPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

SSIPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

Inter-Integrated Circuit (I2C) Interface
I2C Master
I2C Master 0 base: 0x4002.0000

I2CMSA, type R/W, offset 0x000, reset 0x0000.0000

R/SSA

I2CMCS, type RO, offset 0x004, reset 0x0000.0000

BUSYERRORADRACKDATACKARBLSTIDLEBUSBSY

I2CMCS, type WO, offset 0x004, reset 0x0000.0000

RUNSTARTSTOPACK

I2CMDR, type R/W, offset 0x008, reset 0x0000.0000

DATA

I2CMTPR, type R/W, offset 0x00C, reset 0x0000.0001

TPR

I2CMIMR, type R/W, offset 0x010, reset 0x0000.0000

IM

I2CMRIS, type RO, offset 0x014, reset 0x0000.0000

RIS

I2CMMIS, type RO, offset 0x018, reset 0x0000.0000

MIS

I2CMICR, type WO, offset 0x01C, reset 0x0000.0000

IC

I2CMCR, type R/W, offset 0x020, reset 0x0000.0000

LPBKMFESFE

Inter-Integrated Circuit (I2C) Interface
I2C Slave
I2C Slave 0 base: 0x4002.0800

I2CSOAR, type R/W, offset 0x000, reset 0x0000.0000

OAR

I2CSCSR, type RO, offset 0x004, reset 0x0000.0000

RREQTREQFBR

727June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

I2CSCSR, type WO, offset 0x004, reset 0x0000.0000

DA

I2CSDR, type R/W, offset 0x008, reset 0x0000.0000

DATA

I2CSIMR, type R/W, offset 0x00C, reset 0x0000.0000

DATAIMSTARTIMSTOPIM

I2CSRIS, type RO, offset 0x010, reset 0x0000.0000

DATARISSTARTRISSTOPRIS

I2CSMIS, type RO, offset 0x014, reset 0x0000.0000

DATAMISSTARTMISSTOPMIS

I2CSICR, type WO, offset 0x018, reset 0x0000.0000

DATAICSTARTICSTOPIC

Controller Area Network (CAN) Module
CAN0 base: 0x4004.0000

CANCTL, type R/W, offset 0x000, reset 0x0000.0001

INITIESIEEIEDARCCETest

CANSTS, type R/W, offset 0x004, reset 0x0000.0000

LECTxOKRxOKEPassEWarnBOff

CANERR, type RO, offset 0x008, reset 0x0000.0000

TECRECRP

CANBIT, type R/W, offset 0x00C, reset 0x0000.2301

BRPSJWTSeg1TSeg2

CANINT, type RO, offset 0x010, reset 0x0000.0000

IntId

CANTST, type R/W, offset 0x014, reset 0x0000.0000

BasicSilentLBackTxRx

CANBRPE, type R/W, offset 0x018, reset 0x0000.0000

BRPE

CANIF1CRQ, type R/W, offset 0x020, reset 0x0000.0001

MNUMBusy

CANIF2CRQ, type R/W, offset 0x080, reset 0x0000.0001

MNUMBusy

CANIF1CMSK, type R/W, offset 0x024, reset 0x0000.0000

DataBDataANewDatClrIntPndControlArbMaskWRNRD

CANIF2CMSK, type R/W, offset 0x084, reset 0x0000.0000

DataBDataANewDatClrIntPndControlArbMaskWRNRD

June 02, 2008728
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

CANIF1CMSK, type R/W, offset 0x024, reset 0x0000.0000

DataBDataATxRqstControlArbMaskWRNRD

CANIF2CMSK, type R/W, offset 0x084, reset 0x0000.0000

DataBDataATxRqstControlArbMaskWRNRD

CANIF1MSK1, type R/W, offset 0x028, reset 0x0000.FFFF

Msk

CANIF2MSK1, type R/W, offset 0x088, reset 0x0000.FFFF

Msk

CANIF1MSK2, type R/W, offset 0x02C, reset 0x0000.FFFF

MskMDirMXtd

CANIF2MSK2, type R/W, offset 0x08C, reset 0x0000.FFFF

MskMDirMXtd

CANIF1ARB1, type R/W, offset 0x030, reset 0x0000.0000

ID

CANIF2ARB1, type R/W, offset 0x090, reset 0x0000.0000

ID

CANIF1ARB2, type R/W, offset 0x034, reset 0x0000.0000

IDDirXtdMsgVal

CANIF2ARB2, type R/W, offset 0x094, reset 0x0000.0000

IDDirXtdMsgVal

CANIF1MCTL, type R/W, offset 0x038, reset 0x0000.0000

DLCEoBTxRqstRmtEnRxIETxIEUMaskIntPndMsgLstNewDat

CANIF2MCTL, type R/W, offset 0x098, reset 0x0000.0000

DLCEoBTxRqstRmtEnRxIETxIEUMaskIntPndMsgLstNewDat

CANIF1DA1, type R/W, offset 0x03C, reset 0x0000.0000

Data

CANIF1DA2, type R/W, offset 0x040, reset 0x0000.0000

Data

CANIF1DB1, type R/W, offset 0x044, reset 0x0000.0000

Data

CANIF1DB2, type R/W, offset 0x048, reset 0x0000.0000

Data

CANIF2DA1, type R/W, offset 0x09C, reset 0x0000.0000

Data

729June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

CANIF2DA2, type R/W, offset 0x0A0, reset 0x0000.0000

Data

CANIF2DB1, type R/W, offset 0x0A4, reset 0x0000.0000

Data

CANIF2DB2, type R/W, offset 0x0A8, reset 0x0000.0000

Data

CANTXRQ1, type RO, offset 0x100, reset 0x0000.0000

TxRqst

CANTXRQ2, type RO, offset 0x104, reset 0x0000.0000

TxRqst

CANNWDA1, type RO, offset 0x120, reset 0x0000.0000

NewDat

CANNWDA2, type RO, offset 0x124, reset 0x0000.0000

NewDat

CANMSG1INT, type RO, offset 0x140, reset 0x0000.0000

IntPnd

CANMSG2INT, type RO, offset 0x144, reset 0x0000.0000

IntPnd

CANMSG1VAL, type RO, offset 0x160, reset 0x0000.0000

MsgVal

CANMSG2VAL, type RO, offset 0x164, reset 0x0000.0000

MsgVal

Univeral Serial Bus (USB) Controller
Base 0x4005.0000

USBFADDR, type R/W, offset 0x000, reset 0x00

FUNCADDR

USBPOWER, type R/W, offset 0x001, reset 0x20

PWRDNPHYSUSPENDRESUMERESET

USBPOWER, type R/W, offset 0x001, reset 0x20

PWRDNPHYSUSPENDRESUMERESETSOFTCONNISOUP

USBTXIS, type RO, offset 0x002, reset 0x0000

EP0EP1EP2EP3

USBRXIS, type RO, offset 0x004, reset 0x0000

EP1EP2EP3

USBTXIE, type R/W, offset 0x006, reset 0x000F

EP0EP1EP2EP3

USBRXIE, type R/W, offset 0x008, reset 0x000E

EP1EP2EP3

USBIS, type RO, offset 0x00A, reset 0x00

RESUMEBABBLESOFCONNDISCON

June 02, 2008730
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

USBIS, type RO, offset 0x00A, reset 0x00

SUSPENDRESUMERESETSOFDISCON

USBIE, type R/W, offset 0x00B, reset 0x06

SUSPNDRESUMERESETSOFCONNDISCON

USBIE, type R/W, offset 0x00B, reset 0x06

SUSPNDRESUMEBABBLESOFCONNDISCON

USBFRAME, type RO, offset 0x00C, reset 0x0000

Frame

USBEPIDX, type R/W, offset 0x0E, reset 0x0000

EPIDX

USBTEST, type R/W, offset 0x00F, reset 0x00

FORCEFSFIFOACCFORCEH

USBTEST, type R/W, offset 0x00F, reset 0x00

FORCEFSFIFOACC

USBFIFO0, type R/W, offset 0x020, reset 0x0000.0000

EPDATA

EPDATA

USBFIFO1, type R/W, offset 0x024, reset 0x0000.0000

EPDATA

EPDATA

USBFIFO2, type R/W, offset 0x028, reset 0x0000.0000

EPDATA

EPDATA

USBFIFO3, type R/W, offset 0x02C, reset 0x0000.0000

EPDATA

EPDATA

USBDEVCTL, type R/W, offset 0x060, reset 0x80

HOSTLSDEVFSDEVDEV

USBDEVCTL, type R/W, offset 0x060, reset 0x80

DEV

USBTXFIFOSZ, type R/W, offset 0x062, reset 0x00

SIZEDPB

USBRXFIFOSZ, type R/W, offset 0x063, reset 0x00

SIZEDPB

USBTXFIFOADD, type R/W, offset 0x064, reset 0x0000

ADDR

USBRXFIFOADD, type R/W, offset 0x066, reset 0x0000

ADDR

USBCONTIM, type R/W, offset 0x07A, reset 0x5C

WTCON

USBFSEOF, type R/W, offset 0x07D, reset 0x77

FSEOFG

USBLSEOF, type R/W, offset 0x07E, reset 0x72

LSEOFG

USBTXFUNCADDR0, type R/W, offset 0x080, reset 0x00

ADDR

USBTXFUNCADDR1, type R/W, offset 0x088, reset 0x00

ADDR

USBTXFUNCADDR2, type R/W, offset 0x090, reset 0x00

ADDR

USBTXFUNCADDR3, type R/W, offset 0x098, reset 0x00

ADDR

731June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

USBTXHUBADDR0, type R/W, offset 0x082, reset 0x00

ADDRMULTTRAN

USBTXHUBADDR1, type R/W, offset 0x08A, reset 0x00

ADDRMULTTRAN

USBTXHUBADDR2, type R/W, offset 0x092, reset 0x00

ADDRMULTTRAN

USBTXHUBADDR3, type R/W, offset 0x09A, reset 0x00

ADDRMULTTRAN

USBTXHUBPORT0, type R/W, offset 0x083, reset 0x00

PORT

USBTXHUBPORT1, type R/W, offset 0x08B, reset 0x00

PORT

USBTXHUBPORT2, type R/W, offset 0x093, reset 0x00

PORT

USBTXHUBPORT3, type R/W, offset 0x09B, reset 0x00

PORT

USBRXFUNCADDR1, type R/W, offset 0x08C, reset 0x00

ADDR

USBRXFUNCADDR2, type R/W, offset 0x094, reset 0x00

ADDR

USBRXFUNCADDR3, type R/W, offset 0x09C, reset 0x00

ADDR

USBRXHUBADDR1, type R/W, offset 0x08E, reset 0x00

ADDRMULTTRAN

USBRXHUBADDR2, type R/W, offset 0x096, reset 0x00

ADDRMULTTRAN

USBRXHUBADDR3, type R/W, offset 0x09E, reset 0x00

ADDRMULTTRAN

USBRXHUBPORT1, type R/W, offset 0x08F, reset 0x00

PORT

USBRXHUBPORT2, type R/W, offset 0x097, reset 0x00

PORT

USBRXHUBPORT3, type R/W, offset 0x09F, reset 0x00

PORT

USBTXMAXP1, type R/W, offset 0x110, reset 0x0000

MAXLOADMULT

USBTXMAXP2, type R/W, offset 0x120, reset 0x0000

MAXLOADMULT

USBTXMAXP3, type R/W, offset 0x130, reset 0x0000

MAXLOADMULT

USBCSRL0, type W1C, offset 0x102, reset 0x00

RXRDYTXRDYSTALLEDSETUPERRORREQPKTSTATUSNAKTO

USBCSRL0, type W1C, offset 0x102, reset 0x00

RXRDYTXRDYSTALLEDDATAENDSETENDSTALLRXRDYCSETENDC

USBCSRH0, type W1C, offset 0x103, reset 0x00

FLUSHDTDTWE

USBCSRH0, type W1C, offset 0x103, reset 0x00

FLUSH

USBCOUNT0, type RO, offset 0x108, reset 0x00

COUNT

USBTYPE0, type R/W, offset 0x10A, reset 0x00

SPEED

June 02, 2008732
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

USBNAKLMT, type R/W, offset 0x10B, reset 0x00

NAKLMT

USBTXCSRL1, type R/W, offset 0x112, reset 0x00

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDTNAKTO /
INCTX

USBTXCSRL2, type R/W, offset 0x122, reset 0x00

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDTNAKTO /
INCTX

USBTXCSRL3, type R/W, offset 0x132, reset 0x00

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDTNAKTO /
INCTX

USBTXCSRL1, type R/W, offset 0x112, reset 0x00

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

USBTXCSRL2, type R/W, offset 0x122, reset 0x00

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

USBTXCSRL3, type R/W, offset 0x132, reset 0x00

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

USBTXCSRH1, type R/W, offset 0x113, reset 0x00

DTDTWEDMAMODFDTDMAENMODEAUTOSET

USBTXCSRH2, type R/W, offset 0x123, reset 0x00

DTDTWEDMAMODFDTDMAENMODEAUTOSET

USBTXCSRH3, type R/W, offset 0x133, reset 0x00

DTDTWEDMAMODFDTDMAENMODEAUTOSET

USBTXCSRH1, type R/W, offset 0x113, reset 0x00

DMAMODFDTDMAENMODEISOAUTOSET

USBTXCSRH2, type R/W, offset 0x123, reset 0x00

DMAMODFDTDMAENMODEISOAUTOSET

USBTXCSRH3, type R/W, offset 0x133, reset 0x00

DMAMODFDTDMAENMODEISOAUTOSET

USBRXMAXP1, type R/W, offset 0x114, reset 0x0000

MAXLOADMULT

USBRXMAXP2, type R/W, offset 0x124, reset 0x0000

MAXLOADMULT

USBRXMAXP3, type R/W, offset 0x134, reset 0x0000

MAXLOADMULT

USBRXCSRL1, type R/W, offset 0x116, reset 0x00

RXRDYFULLERRORDATAERR /
NAKTOFLUSHREQPKTSTALLEDCLRDT

USBRXCSRL2, type R/W, offset 0x126, reset 0x00

RXRDYFULLERRORDATAERR /
NAKTOFLUSHREQPKTSTALLEDCLRDT

USBRXCSRL3, type R/W, offset 0x136, reset 0x00

RXRDYFULLERRORDATAERR /
NAKTOFLUSHREQPKTSTALLEDCLRDT

USBRXCSRL1, type R/W, offset 0x116, reset 0x00

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

USBRXCSRL2, type R/W, offset 0x126, reset 0x00

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

USBRXCSRL3, type R/W, offset 0x136, reset 0x00

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

USBRXCSRH1, type R/W, offset 0x117, reset 0x00

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

USBRXCSRH2, type R/W, offset 0x127, reset 0x00

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

733June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

USBRXCSRH3, type R/W, offset 0x137, reset 0x00

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

USBRXCSRH1, type R/W, offset 0x117, reset 0x00

INCRXDMAMODDISNYET/PIDERRDMAENISOAUTOCL

USBRXCSRH2, type R/W, offset 0x127, reset 0x00

INCRXDMAMODDISNYET/PIDERRDMAENISOAUTOCL

USBRXCSRH3, type R/W, offset 0x137, reset 0x00

INCRXDMAMODDISNYET/PIDERRDMAENISOAUTOCL

USBRXCOUNT1, type RO, offset 0x118, reset 0x0000

COUNT

USBRXCOUNT2, type RO, offset 0x128, reset 0x0000

COUNT

USBRXCOUNT3, type RO, offset 0x138, reset 0x0000

COUNT

USBTXTYPE1, type R/W, offset 0x11A, reset 0x00

TEPPROTOSPEED

USBTXTYPE2, type R/W, offset 0x12A, reset 0x00

TEPPROTOSPEED

USBTXTYPE3, type R/W, offset 0x13A, reset 0x00

TEPPROTOSPEED

USBTXINTERVAL1, type R/W, offset 0x11B, reset 0x00

TXPOLL/NAKLMT

USBTXINTERVAL2, type R/W, offset 0x12B, reset 0x00

TXPOLL/NAKLMT

USBTXINTERVAL3, type R/W, offset 0x13B, reset 0x00

TXPOLL/NAKLMT

USBRXTYPE1, type R/W, offset 0x11C, reset 0x00

TEPPROTOSPEED

USBRXTYPE2, type R/W, offset 0x12C, reset 0x00

TEPPROTOSPEED

USBRXTYPE3, type R/W, offset 0x13C, reset 0x00

TEPPROTOSPEED

USBRXINTERVAL1, type R/W, offset 0x11D, reset 0x00

TXPOLL/NAKLMT

USBRXINTERVAL2, type R/W, offset 0x12D, reset 0x00

TXPOLL/NAKLMT

USBRXINTERVAL3, type R/W, offset 0x13D, reset 0x00

TXPOLL/NAKLMT

USBRQPKTCOUNT1, type R/W, offset 0x304, reset 0x0000

COUNT

USBRQPKTCOUNT2, type R/W, offset 0x308, reset 0x0000

COUNT

USBRQPKTCOUNT3, type R/W, offset 0x30C, reset 0x0000

COUNT

USBRXDPKTBUFDIS, type R/W, offset 0x340, reset 0x0000

EP1EP2EP3

USBTXDPKTBUFDIS, type R/W, offset 0x342, reset 0x0000

EP1EP2EP3

USBEPC, type R/W, offset 0x400, reset 0x0000.0000

EPENEPENDEPFLTENPFLTSENPFLTAENPFLTACT

June 02, 2008734
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

USBEPCRIS, type RO, offset 0x404, reset 0x0000.0000

PF

USBEPCIM, type R/W, offset 0x408, reset 0x0000.0000

PF

USBEPCISC, type R/W, offset 0x40C, reset 0x0000.0000

PF

USBDRRIS, type RO, offset 0x410, reset 0x0000.0000

RESUME

USBDRIM, type R/W, offset 0x414, reset 0x0000.0000

RESUME

USBDRISC, type W1C, offset 0x418, reset 0x0000.0000

RESUME

USBGPCS, type R/W, offset 0x41C, reset 0x0000.0000

DEVMOD

Pulse Width Modulator (PWM)
Base 0x4002.8000

PWMCTL, type R/W, offset 0x000, reset 0x0000.0000

GlobalSync0GlobalSync1GlobalSync2

PWMSYNC, type R/W, offset 0x004, reset 0x0000.0000

Sync0Sync1Sync2

PWMENABLE, type R/W, offset 0x008, reset 0x0000.0000

PWM0EnPWM1EnPWM2EnPWM3EnPWM4EnPWM5En

PWMINVERT, type R/W, offset 0x00C, reset 0x0000.0000

PWM0InvPWM1InvPWM2InvPWM3InvPWM4InvPWM5Inv

PWMFAULT, type R/W, offset 0x010, reset 0x0000.0000

Fault0Fault1Fault2Fault3Fault4Fault5

PWMINTEN, type R/W, offset 0x014, reset 0x0000.0000

IntFault0

IntPWM0IntPWM1IntPWM2

PWMRIS, type RO, offset 0x018, reset 0x0000.0000

IntFault0

IntPWM0IntPWM1IntPWM2

PWMISC, type R/W1C, offset 0x01C, reset 0x0000.0000

IntFault0

IntPWM0IntPWM1IntPWM2

PWMSTATUS, type RO, offset 0x020, reset 0x0000.0000

Fault0

PWM0CTL, type R/W, offset 0x040, reset 0x0000.0000

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

735June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

PWM1CTL, type R/W, offset 0x080, reset 0x0000.0000

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

PWM2CTL, type R/W, offset 0x0C0, reset 0x0000.0000

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

PWM0INTEN, type R/W, offset 0x044, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBD

PWM1INTEN, type R/W, offset 0x084, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBD

PWM2INTEN, type R/W, offset 0x0C4, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBD

PWM0RIS, type RO, offset 0x048, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM1RIS, type RO, offset 0x088, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM2RIS, type RO, offset 0x0C8, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM0ISC, type R/W1C, offset 0x04C, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM1ISC, type R/W1C, offset 0x08C, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM2ISC, type R/W1C, offset 0x0CC, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM0LOAD, type R/W, offset 0x050, reset 0x0000.0000

Load

PWM1LOAD, type R/W, offset 0x090, reset 0x0000.0000

Load

PWM2LOAD, type R/W, offset 0x0D0, reset 0x0000.0000

Load

PWM0COUNT, type RO, offset 0x054, reset 0x0000.0000

Count

PWM1COUNT, type RO, offset 0x094, reset 0x0000.0000

Count

PWM2COUNT, type RO, offset 0x0D4, reset 0x0000.0000

Count

June 02, 2008736
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

PWM0CMPA, type R/W, offset 0x058, reset 0x0000.0000

CompA

PWM1CMPA, type R/W, offset 0x098, reset 0x0000.0000

CompA

PWM2CMPA, type R/W, offset 0x0D8, reset 0x0000.0000

CompA

PWM0CMPB, type R/W, offset 0x05C, reset 0x0000.0000

CompB

PWM1CMPB, type R/W, offset 0x09C, reset 0x0000.0000

CompB

PWM2CMPB, type R/W, offset 0x0DC, reset 0x0000.0000

CompB

PWM0GENA, type R/W, offset 0x060, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM1GENA, type R/W, offset 0x0A0, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM2GENA, type R/W, offset 0x0E0, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM0GENB, type R/W, offset 0x064, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM1GENB, type R/W, offset 0x0A4, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM2GENB, type R/W, offset 0x0E4, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM0DBCTL, type R/W, offset 0x068, reset 0x0000.0000

Enable

PWM1DBCTL, type R/W, offset 0x0A8, reset 0x0000.0000

Enable

PWM2DBCTL, type R/W, offset 0x0E8, reset 0x0000.0000

Enable

PWM0DBRISE, type R/W, offset 0x06C, reset 0x0000.0000

RiseDelay

PWM1DBRISE, type R/W, offset 0x0AC, reset 0x0000.0000

RiseDelay

737June 02, 2008
Preliminary

LM3S5747 Microcontroller

16171819202122232425262728293031

0123456789101112131415

PWM2DBRISE, type R/W, offset 0x0EC, reset 0x0000.0000

RiseDelay

PWM0DBFALL, type R/W, offset 0x070, reset 0x0000.0000

FallDelay

PWM1DBFALL, type R/W, offset 0x0B0, reset 0x0000.0000

FallDelay

PWM2DBFALL, type R/W, offset 0x0F0, reset 0x0000.0000

FallDelay

June 02, 2008738
Preliminary

Register Quick Reference

D Ordering and Contact Information
D.1 Ordering Information

L M 3 S n n n n – g p p s s – r r m
Part Number

Temperature

Package

Speed

Revision

Shipping Medium

E = –40 C to +105 C
I = –40 C to +85 C

T = Tape-and-reel
Omitted = Default shipping (tray or tube)

Omitted = Default to current shipping revision
A0 = First all-layer mask
A1 = Metal layers update to A0
A2 = Metal layers update to A1
B0 = Second all-layer mask revision

BZ = 108-ball BGA
QC = 100-pin LQFP
QN = 48-pin LQFP
QR = 64-pin LQFP
RN = 28-pin SOIC

20 = 20 MHz
25 = 25 MHz
50 = 50 MHz

nnn = Sandstorm-class parts
nnnn = All other Stellaris® parts

Table D-1. Part Ordering Information

DescriptionOrderable Part Number

Stellaris® LM3S5747 MicrocontrollerLM3S5747-IQC50

Stellaris® LM3S5747 MicrocontrollerLM3S5747-IQC50(T)

D.2 Kits
The Luminary Micro Stellaris® Family provides the hardware and software tools that engineers need
to begin development quickly.

■ Reference Design Kits accelerate product development by providing ready-to-run hardware, and
comprehensive documentation including hardware design files:

http://www.luminarymicro.com/products/reference_design_kits/

■ Evaluation Kits provide a low-cost and effective means of evaluating Stellaris® microcontrollers
before purchase:

http://www.luminarymicro.com/products/kits.html

■ Development Kits provide you with all the tools you need to develop and prototype embedded
applications right out of the box:

http://www.luminarymicro.com/products/development_kits.html

See the Luminary Micro website for the latest tools available, or ask your Luminary Micro distributor.

D.3 Company Information
Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs).
Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the
world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the

739June 02, 2008
Preliminary

LM3S5747 Microcontroller

Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit
microcontroller designs. With entry-level pricing at $1.00 for an ARM technology-based MCU,
Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural
upgrades or software tool changes.

Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com
sales@luminarymicro.com

D.4 Support Information
For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3

June 02, 2008740
Preliminary

Ordering and Contact Information

	LM3S5747 Microcontroller
	Table of Contents
	List of Figures
	List of Tables
	List of Registers

	About This Document
	Audience
	About This Manual
	Related Documents
	Documentation Conventions

	1. Architectural Overview
	1.1. Product Features
	1.2. Target Applications
	1.3. High-Level Block Diagram
	1.4. Functional Overview
	1.4.1. ARM Cortex™-M3
	1.4.1.1. Processor Core (see page)
	1.4.1.2. System Timer (SysTick)
	1.4.1.3. Nested Vectored Interrupt Controller (NVIC)
	1.4.1.4. Direct Memory Access (see page)

	1.4.2. Motor Control Peripherals
	1.4.2.1. PWM
	PWM Pins (see page)
	CCP Pins (see page)
	Fault Pins (see “Fault Conditions”)

	1.4.3. Analog Peripherals
	1.4.3.1. ADC (see page)

	1.4.4. Serial Communications Peripherals
	1.4.4.1. UART (see page)
	1.4.4.2. SSI (see page)
	1.4.4.3. I2C (see page)
	1.4.4.4. USB (see page)
	1.4.4.5. Controller Area Network (see page)

	1.4.5. System Peripherals
	1.4.5.1. Programmable GPIOs (see page)
	1.4.5.2. Three Programmable Timers (see page)
	1.4.5.3. Watchdog Timer (see page)

	1.4.6. Memory Peripherals
	1.4.6.1. SRAM (see page)
	1.4.6.2. Flash (see page)
	1.4.6.3. ROM

	1.4.7. Additional Features
	1.4.7.1. Memory Map (see page)
	1.4.7.2. JTAG TAP Controller (see page)
	1.4.7.3. System Control and Clocks (see page)
	1.4.7.4. Hibernation Module (see page)

	1.4.8. Hardware Details

	2. ARM Cortex-M3 Processor Core
	2.1. Block Diagram
	2.2. Functional Description
	2.2.1. Serial Wire and JTAG Debug
	2.2.2. Embedded Trace Macrocell (ETM)
	2.2.3. Trace Port Interface Unit (TPIU)
	2.2.4. ROM Table
	2.2.5. Memory Protection Unit (MPU)
	2.2.6. Nested Vectored Interrupt Controller (NVIC)
	2.2.6.1. Interrupts
	2.2.6.2. System Timer (SysTick)
	Functional Description
	SysTick Control and Status Register
	SysTick Reload Value Register
	SysTick Current Value Register
	SysTick Calibration Value Register

	3. Memory Map
	4. Interrupts
	5. JTAG Interface
	5.1. Block Diagram
	5.2. Functional Description
	5.2.1. JTAG Interface Pins
	5.2.1.1. Test Clock Input (TCK)
	5.2.1.2. Test Mode Select (TMS)
	5.2.1.3. Test Data Input (TDI)
	5.2.1.4. Test Data Output (TDO)

	5.2.2. JTAG TAP Controller
	5.2.3. Shift Registers
	5.2.4. Operational Considerations
	5.2.4.1. GPIO Functionality
	Recovering a "Locked" Device

	5.2.4.2. ARM Serial Wire Debug (SWD)
	JTAG-to-SWD Switching
	SWD-to-JTAG Switching

	5.3. Initialization and Configuration
	5.4. Register Descriptions
	5.4.1. Instruction Register (IR)
	5.4.1.1. EXTEST Instruction
	5.4.1.2. INTEST Instruction
	5.4.1.3. SAMPLE/PRELOAD Instruction
	5.4.1.4. ABORT Instruction
	5.4.1.5. DPACC Instruction
	5.4.1.6. APACC Instruction
	5.4.1.7. IDCODE Instruction
	5.4.1.8. BYPASS Instruction

	5.4.2. Data Registers
	5.4.2.1. IDCODE Data Register
	5.4.2.2. BYPASS Data Register
	5.4.2.3. Boundary Scan Data Register
	5.4.2.4. APACC Data Register
	5.4.2.5. DPACC Data Register
	5.4.2.6. ABORT Data Register

	6. System Control
	6.1. Functional Description
	6.1.1. Device Identification
	6.1.2. Reset Control
	6.1.2.1. Reset Sources
	6.1.2.2. RST Pin Assertion
	6.1.2.3. Power-On Reset (POR)
	6.1.2.4. Brown-Out Reset (BOR)
	6.1.2.5. Software Reset
	6.1.2.6. Watchdog Timer Reset

	6.1.3. Non-Maskable Interrupt
	6.1.3.1. NMI Pin
	6.1.3.2. Main Oscillator Verification Failure

	6.1.4. Power Control
	6.1.5. Clock Control
	6.1.5.1. Fundamental Clock Sources
	6.1.5.2. Crystal Configuration for the Main Oscillator (MOSC)
	6.1.5.3. Main PLL Frequency Configuration
	6.1.5.4. USB PLL Frequency Configuration
	6.1.5.5. PLL Modes
	6.1.5.6. PLL Operation
	6.1.5.7. Main Oscillator Verification Circuit

	6.1.6. System Control

	6.2. Initialization and Configuration
	6.3. Register Map
	6.4. Register Descriptions
	Register 1: Device Identification 0 (DID0), offset 0x000
	Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030
	Register 3: LDO Power Control (LDOPCTL), offset 0x034
	Register 4: Raw Interrupt Status (RIS), offset 0x050
	Register 5: Interrupt Mask Control (IMC), offset 0x054
	Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058
	Register 7: Reset Cause (RESC), offset 0x05C
	Register 8: Run-Mode Clock Configuration (RCC), offset 0x060
	Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064
	Register 10: GPIO High Speed Control (GPIOHSCTL), offset 0x06C
	Register 11: Run-Mode Clock Configuration 2 (RCC2), offset 0x070
	Register 12: Main Oscillator Control (MOSCCTL), offset 0x07C
	Register 13: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144
	Register 14: Device Identification 1 (DID1), offset 0x004
	Register 15: Device Capabilities 0 (DC0), offset 0x008
	Register 16: Device Capabilities 1 (DC1), offset 0x010
	Register 17: Device Capabilities 2 (DC2), offset 0x014
	Register 18: Device Capabilities 3 (DC3), offset 0x018
	Register 19: Device Capabilities 4 (DC4), offset 0x01C
	Register 20: Device Capabilities 5 (DC5), offset 0x020
	Register 21: Device Capabilities 6 (DC6), offset 0x024
	Register 22: Device Capabilities 7 (DC7), offset 0x028
	Register 23: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100
	Register 24: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110
	Register 25: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120
	Register 26: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104
	Register 27: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114
	Register 28: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124
	Register 29: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108
	Register 30: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118
	Register 31: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128
	Register 32: Software Reset Control 0 (SRCR0), offset 0x040
	Register 33: Software Reset Control 1 (SRCR1), offset 0x044
	Register 34: Software Reset Control 2 (SRCR2), offset 0x048

	7. Hibernation Module
	7.1. Block Diagram
	7.2. Functional Description
	7.2.1. Register Access Timing
	7.2.2. Clock Source
	7.2.3. Battery Management
	7.2.4. Real-Time Clock
	7.2.5. Non-Volatile Memory
	7.2.6. Power Control
	7.2.7. Interrupts and Status

	7.3. Initialization and Configuration
	7.3.1. Initialization
	7.3.2. RTC Match Functionality (No Hibernation)
	7.3.3. RTC Match/Wake-Up from Hibernation
	7.3.4. External Wake-Up from Hibernation
	7.3.5. RTC/External Wake-Up from Hibernation
	7.3.6. Register Reset

	7.4. Register Map
	7.5. Register Descriptions
	Register 1: Hibernation RTC Counter (HIBRTCC), offset 0x000
	Register 2: Hibernation RTC Match 0 (HIBRTCM0), offset 0x004
	Register 3: Hibernation RTC Match 1 (HIBRTCM1), offset 0x008
	Register 4: Hibernation RTC Load (HIBRTCLD), offset 0x00C
	Register 5: Hibernation Control (HIBCTL), offset 0x010
	Register 6: Hibernation Interrupt Mask (HIBIM), offset 0x014
	Register 7: Hibernation Raw Interrupt Status (HIBRIS), offset 0x018
	Register 8: Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C
	Register 9: Hibernation Interrupt Clear (HIBIC), offset 0x020
	Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024
	Register 11: Hibernation Data (HIBDATA), offset 0x030-​0x12C

	8. Internal Memory
	8.1. Block Diagram
	8.2. Functional Description
	8.2.1. SRAM Memory
	8.2.2. ROM Memory
	8.2.3. Flash Memory
	8.2.3.1. Flash Memory Timing
	8.2.3.2. Flash Memory Protection

	8.3. Flash Memory Initialization and Configuration
	8.3.1. Flash Programming
	8.3.1.1. To program a 32-bit word
	8.3.1.2. To perform an erase of a 1-KB page
	8.3.1.3. To perform a mass erase of the flash

	8.3.2. Nonvolatile Register Programming

	8.4. Register Map
	8.5. ROM Register Descriptions (System Control Offset)
	Register 1: ROM Control (RMCTL), offset 0x0F0

	8.6. Flash Register Descriptions (Flash Control Offset)
	Register 2: Flash Memory Address (FMA), offset 0x000
	Register 3: Flash Memory Data (FMD), offset 0x004
	Register 4: Flash Memory Control (FMC), offset 0x008
	Register 5: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C
	Register 6: Flash Controller Interrupt Mask (FCIM), offset 0x010
	Register 7: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

	8.7. Flash Register Descriptions (System Control Offset)
	Register 8: USec Reload (USECRL), offset 0x140
	Register 9: ROM Version Register (RMVER), offset 0x0F4
	Register 10: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200
	Register 11: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400
	Register 12: User Debug (USER_DBG), offset 0x1D0
	Register 13: User Register 0 (USER_REG0), offset 0x1E0
	Register 14: User Register 1 (USER_REG1), offset 0x1E4
	Register 15: User Register 2 (USER_REG2), offset 0x1E8
	Register 16: User Register 3 (USER_REG3), offset 0x1EC
	Register 17: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204
	Register 18: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208
	Register 19: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C
	Register 20: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404
	Register 21: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408
	Register 22: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C

	9. Micro Direct Memory Access (μDMA)
	9.1. Block Diagram
	9.2. Functional Description
	9.2.1. Channel Assigments
	9.2.2. Priority
	9.2.3. Arbitration Size
	9.2.4. Request Types
	9.2.4.1. Single Request
	9.2.4.2. Burst Request

	9.2.5. Channel Configuration
	9.2.6. Transfer Modes
	9.2.6.1. Stop Mode
	9.2.6.2. Basic Mode
	9.2.6.3. Auto Mode
	9.2.6.4. Ping-Pong
	9.2.6.5. Memory Scatter-Gather
	9.2.6.6. Peripheral Scatter-Gather

	9.2.7. Transfer Size and Increment
	9.2.8. Peripheral Interface
	9.2.9. Software Request
	9.2.10. Interrupts and Errors

	9.3. Initialization and Configuration
	9.3.1. Module Initialization
	9.3.2. Configuring a Memory-to-Memory Transfer
	9.3.2.1. Configure the Channel Attributes
	9.3.2.2. Configure the Channel Control Structure
	Configure the Source and Destination

	9.3.2.3. Start the Transfer

	9.3.3. Configuring a Peripheral for Simple Transmit
	9.3.3.1. Configure the Channel Attributes
	9.3.3.2. Configure the Channel Control Structure
	Configure the Source and Destination

	9.3.3.3. Start the Transfer

	9.3.4. Configuring a Peripheral for Ping-Pong Receive
	9.3.4.1. Configure the Channel Attributes
	9.3.4.2. Configure the Channel Control Structure
	Configure the Source and Destination

	9.3.4.3. Configure the Peripheral Interrupt
	9.3.4.4. Enable the μDMA Channel
	9.3.4.5. Process Interrupts

	9.4. Register Map
	9.5. μDMA Channel Control Structure
	Register 1: DMA Channel Source Address End Pointer (DMASRCENDP), offset 0x000
	Register 2: DMA Channel Destination Address End Pointer (DMADSTENDP), offset 0x004
	Register 3: DMA Channel Control Word (DMACHCTL), offset 0x008

	9.6. μDMA Register Descriptions
	Register 4: DMA Status (DMASTAT), offset 0x000
	Register 5: DMA Configuration (DMACFG), offset 0x004
	Register 6: DMA Channel Control Base Pointer (DMACTLBASE), offset 0x008
	Register 7: DMA Alternate Channel Control Base Pointer (DMAALTBASE), offset 0x00C
	Register 8: DMA Channel Wait on Request Status (DMAWAITSTAT), offset 0x010
	Register 9: DMA Channel Software Request (DMASWREQ), offset 0x014
	Register 10: DMA Channel Useburst Set (DMAUSEBURSTSET), offset 0x018
	Register 11: DMA Channel Useburst Clear (DMAUSEBURSTCLR), offset 0x01C
	Register 12: DMA Channel Request Mask Set (DMAREQMASKSET), offset 0x020
	Register 13: DMA Channel Request Mask Clear (DMAREQMASKCLR), offset 0x024
	Register 14: DMA Channel Enable Set (DMAENASET), offset 0x028
	Register 15: DMA Channel Enable Clear (DMAENACLR), offset 0x02C
	Register 16: DMA Channel Primary Alternate Set (DMAALTSET), offset 0x030
	Register 17: DMA Channel Primary Alternate Clear (DMAALTCLR), offset 0x034
	Register 18: DMA Channel Priority Set (DMAPRIOSET), offset 0x038
	Register 19: DMA Channel Priority Clear (DMAPRIOCLR), offset 0x03C
	Register 20: DMA Bus Error Clear (DMAERRCLR), offset 0x04C
	Register 21: DMA Peripheral Identification 0 (DMAPeriphID0), offset 0xFE0
	Register 22: DMA Peripheral Identification 1 (DMAPeriphID1), offset 0xFE4
	Register 23: DMA Peripheral Identification 2 (DMAPeriphID2), offset 0xFE8
	Register 24: DMA Peripheral Identification 3 (DMAPeriphID3), offset 0xFEC
	Register 25: DMA Peripheral Identification 4 (DMAPeriphID4), offset 0xFD0
	Register 26: DMA PrimeCell Identification 0 (DMAPCellID0), offset 0xFF0
	Register 27: DMA PrimeCell Identification 1 (DMAPCellID1), offset 0xFF4
	Register 28: DMA PrimeCell Identification 2 (DMAPCellID2), offset 0xFF8
	Register 29: DMA PrimeCell Identification 3 (DMAPCellID3), offset 0xFFC

	10. General-Purpose Input/Outputs (GPIOs)
	10.1. Functional Description
	10.1.1. Data Control
	10.1.1.1. Data Direction Operation
	10.1.1.2. Data Register Operation

	10.1.2. Interrupt Control
	10.1.3. Mode Control
	10.1.4. Commit Control
	10.1.5. Pad Control
	10.1.6. Identification

	10.2. Initialization and Configuration
	10.3. Register Map
	10.4. Register Descriptions
	Register 1: GPIO Data (GPIODATA), offset 0x000
	Register 2: GPIO Direction (GPIODIR), offset 0x400
	Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404
	Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408
	Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C
	Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410
	Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414
	Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418
	Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C
	Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420
	Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500
	Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504
	Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508
	Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C
	Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510
	Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514
	Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518
	Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C
	Register 19: GPIO Lock (GPIOLOCK), offset 0x520
	Register 20: GPIO Commit (GPIOCR), offset 0x524
	Register 21: GPIO Analog Mode Select (GPIOAMSEL), offset 0x528
	Register 22: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0
	Register 23: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4
	Register 24: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8
	Register 25: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC
	Register 26: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0
	Register 27: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4
	Register 28: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8
	Register 29: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC
	Register 30: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0
	Register 31: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4
	Register 32: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8
	Register 33: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

	11. General-Purpose Timers
	11.1. Block Diagram
	11.2. Functional Description
	11.2.1. GPTM Reset Conditions
	11.2.2. 32-Bit Timer Operating Modes
	11.2.2.1. 32-Bit One-Shot/Periodic Timer Mode
	11.2.2.2. 32-Bit Real-Time Clock Timer Mode

	11.2.3. 16-Bit Timer Operating Modes
	11.2.3.1. 16-Bit One-Shot/Periodic Timer Mode
	11.2.3.2. 16-Bit Input Edge Count Mode
	11.2.3.3. 16-Bit Input Edge Time Mode
	11.2.3.4. 16-Bit PWM Mode

	11.3. Initialization and Configuration
	11.3.1. 32-Bit One-Shot/Periodic Timer Mode
	11.3.2. 32-Bit Real-Time Clock (RTC) Mode
	11.3.3. 16-Bit One-Shot/Periodic Timer Mode
	11.3.4. 16-Bit Input Edge Count Mode
	11.3.5. 16-Bit Input Edge Timing Mode
	11.3.6. 16-Bit PWM Mode

	11.4. Register Map
	11.5. Register Descriptions
	Register 1: GPTM Configuration (GPTMCFG), offset 0x000
	Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004
	Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008
	Register 4: GPTM Control (GPTMCTL), offset 0x00C
	Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018
	Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C
	Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020
	Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024
	Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028
	Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C
	Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030
	Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034
	Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038
	Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C
	Register 15: GPTM TimerA (GPTMTAR), offset 0x048
	Register 16: GPTM TimerB (GPTMTBR), offset 0x04C

	12. Watchdog Timer
	12.1. Block Diagram
	12.2. Functional Description
	12.3. Initialization and Configuration
	12.4. Register Map
	12.5. Register Descriptions
	Register 1: Watchdog Load (WDTLOAD), offset 0x000
	Register 2: Watchdog Value (WDTVALUE), offset 0x004
	Register 3: Watchdog Control (WDTCTL), offset 0x008
	Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C
	Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010
	Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014
	Register 7: Watchdog Test (WDTTEST), offset 0x418
	Register 8: Watchdog Lock (WDTLOCK), offset 0xC00
	Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0
	Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4
	Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8
	Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC
	Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0
	Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4
	Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8
	Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC
	Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0
	Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4
	Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8
	Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

	13. Analog-to-Digital Converter (ADC)
	13.1. Block Diagram
	13.2. Functional Description
	13.2.1. Sample Sequencers
	13.2.2. Module Control
	13.2.2.1. Interrupts
	13.2.2.2. Prioritization
	13.2.2.3. Sampling Events

	13.2.3. Hardware Sample Averaging Circuit
	13.2.4. Analog-to-Digital Converter
	13.2.5. Differential Sampling
	13.2.6. Internal Temperature Sensor

	13.3. Initialization and Configuration
	13.3.1. Module Initialization
	13.3.2. Sample Sequencer Configuration

	13.4. Register Map
	13.5. Register Descriptions
	Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000
	Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004
	Register 3: ADC Interrupt Mask (ADCIM), offset 0x008
	Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C
	Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010
	Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014
	Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018
	Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020
	Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028
	Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030
	Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040
	Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044
	Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048
	Register 14: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068
	Register 15: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088
	Register 16: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8
	Register 17: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C
	Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C
	Register 19: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C
	Register 20: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC
	Register 21: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060
	Register 22: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080
	Register 23: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064
	Register 24: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084
	Register 25: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0
	Register 26: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4

	14. Universal Asynchronous Receivers/Transmitters (UARTs)
	14.1. Block Diagram
	14.2. Functional Description
	14.2.1. Transmit/Receive Logic
	14.2.2. Baud-Rate Generation
	14.2.3. Data Transmission
	14.2.4. Serial IR (SIR)
	14.2.5. FIFO Operation
	14.2.6. Interrupts
	14.2.7. Loopback Operation
	14.2.8. DMA Operation
	14.2.9. IrDA SIR block

	14.3. Initialization and Configuration
	14.4. Register Map
	14.5. Register Descriptions
	Register 1: UART Data (UARTDR), offset 0x000
	Register 2: UART Receive Status/Error Clear (UARTRSR/​UARTECR), offset 0x004
	Register 3: UART Flag (UARTFR), offset 0x018
	Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020
	Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024
	Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028
	Register 7: UART Line Control (UARTLCRH), offset 0x02C
	Register 8: UART Control (UARTCTL), offset 0x030
	Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034
	Register 10: UART Interrupt Mask (UARTIM), offset 0x038
	Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C
	Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040
	Register 13: UART Interrupt Clear (UARTICR), offset 0x044
	Register 14: UART DMA Control (UARTDMACTL), offset 0x048
	Register 15: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0
	Register 16: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4
	Register 17: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8
	Register 18: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC
	Register 19: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0
	Register 20: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4
	Register 21: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8
	Register 22: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC
	Register 23: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0
	Register 24: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4
	Register 25: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8
	Register 26: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

	15. Synchronous Serial Interface (SSI)
	15.1. Block Diagram
	15.2. Functional Description
	15.2.1. Bit Rate Generation
	15.2.2. FIFO Operation
	15.2.2.1. Transmit FIFO
	15.2.2.2. Receive FIFO

	15.2.3. Interrupts
	15.2.4. Frame Formats
	15.2.4.1. Texas Instruments Synchronous Serial Frame Format
	15.2.4.2. Freescale SPI Frame Format
	SPO Clock Polarity Bit
	SPH Phase Control Bit

	15.2.4.3. Freescale SPI Frame Format with SPO=0 and SPH=0
	15.2.4.4. Freescale SPI Frame Format with SPO=0 and SPH=1
	15.2.4.5. Freescale SPI Frame Format with SPO=1 and SPH=0
	15.2.4.6. Freescale SPI Frame Format with SPO=1 and SPH=1
	15.2.4.7. MICROWIRE Frame Format

	15.2.5. DMA Operation

	15.3. Initialization and Configuration
	15.4. Register Map
	15.5. Register Descriptions
	Register 1: SSI Control 0 (SSICR0), offset 0x000
	Register 2: SSI Control 1 (SSICR1), offset 0x004
	Register 3: SSI Data (SSIDR), offset 0x008
	Register 4: SSI Status (SSISR), offset 0x00C
	Register 5: SSI Clock Prescale (SSICPSR), offset 0x010
	Register 6: SSI Interrupt Mask (SSIIM), offset 0x014
	Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018
	Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C
	Register 9: SSI Interrupt Clear (SSIICR), offset 0x020
	Register 10: SSI DMA Control (SSIDMACTL), offset 0x024
	Register 11: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0
	Register 12: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4
	Register 13: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8
	Register 14: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC
	Register 15: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0
	Register 16: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4
	Register 17: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8
	Register 18: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC
	Register 19: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0
	Register 20: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4
	Register 21: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8
	Register 22: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

	16. Inter-Integrated Circuit (I2C) Interface
	16.1. Block Diagram
	16.2. Functional Description
	16.2.1. I2C Bus Functional Overview
	16.2.1.1. START and STOP Conditions
	16.2.1.2. Data Format with 7-Bit Address
	16.2.1.3. Data Validity
	16.2.1.4. Acknowledge
	16.2.1.5. Arbitration

	16.2.2. Available Speed Modes
	16.2.3. Interrupts
	16.2.3.1. I2C Master Interrupts
	16.2.3.2. I2C Slave Interrupts

	16.2.4. Loopback Operation
	16.2.5. Command Sequence Flow Charts
	16.2.5.1. I2C Master Command Sequences
	16.2.5.2. I2C Slave Command Sequences

	16.3. Initialization and Configuration
	16.4. I2C Register Map
	16.5. Register Descriptions (I2C Master)
	Register 1: I2C Master Slave Address (I2CMSA), offset 0x000
	Register 2: I2C Master Control/Status (I2CMCS), offset 0x004
	Register 3: I2C Master Data (I2CMDR), offset 0x008
	Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C
	Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010
	Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014
	Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018
	Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C
	Register 9: I2C Master Configuration (I2CMCR), offset 0x020

	16.6. Register Descriptions (I2C Slave)
	Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000
	Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004
	Register 12: I2C Slave Data (I2CSDR), offset 0x008
	Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C
	Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010
	Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014
	Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018

	17. Controller Area Network (CAN) Module
	17.1. Controller Area Network Overview
	17.2. Controller Area Network Features
	17.3. Controller Area Network Block Diagram
	17.4. Controller Area Network Functional Description
	17.4.1. Initialization
	17.4.2. Operation
	17.4.3. Transmitting Message Objects
	17.4.4. Configuring a Transmit Message Object
	17.4.5. Updating a Transmit Message Object
	17.4.6. Accepting Received Message Objects
	17.4.7. Receiving a Data Frame
	17.4.8. Receiving a Remote Frame
	17.4.9. Receive/Transmit Priority
	17.4.10. Configuring a Receive Message Object
	17.4.11. Handling of Received Message Objects
	17.4.12. Handling of Interrupts
	17.4.13. Bit Timing Configuration Error Considerations
	17.4.14. Bit Time and Bit Rate
	17.4.15. Calculating the Bit Timing Parameters
	17.4.15.1. Example for Bit Timing at High Baud Rate
	17.4.15.2. Example for Bit Timing at Low Baud Rate

	17.5. Controller Area Network Register Map
	17.6. Register Descriptions
	Register 1: CAN Control (CANCTL), offset 0x000
	Register 2: CAN Status (CANSTS), offset 0x004
	Register 3: CAN Error Counter (CANERR), offset 0x008
	Register 4: CAN Bit Timing (CANBIT), offset 0x00C
	Register 5: CAN Interrupt (CANINT), offset 0x010
	Register 6: CAN Test (CANTST), offset 0x014
	Register 7: CAN Baud Rate Prescalar Extension (CANBRPE), offset 0x018
	Register 8: CAN IF1 Command Request (CANIF1CRQ), offset 0x020
	Register 9: CAN IF2 Command Request (CANIF2CRQ), offset 0x080
	Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024
	Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084
	Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028
	Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088
	Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C
	Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C
	Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030
	Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090
	Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034
	Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094
	Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038
	Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098
	Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C
	Register 23: CAN IF1 Data A2 (CANIF1DA2), offset 0x040
	Register 24: CAN IF1 Data B1 (CANIF1DB1), offset 0x044
	Register 25: CAN IF1 Data B2 (CANIF1DB2), offset 0x048
	Register 26: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C
	Register 27: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0
	Register 28: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4
	Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8
	Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100
	Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104
	Register 32: CAN New Data 1 (CANNWDA1), offset 0x120
	Register 33: CAN New Data 2 (CANNWDA2), offset 0x124
	Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140
	Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144
	Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160
	Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164

	18. Univeral Serial Bus (USB) Controller
	18.1. Block Diagram
	18.2. Functional Description
	18.2.1. Operation as a Device
	18.2.1.1. Endpoints
	18.2.1.2. IN Transactions
	Single-Packet Buffering
	Double-Packet Buffering
	Special Bulk Handling

	18.2.1.3. OUT Transactions as a Device
	Single-Packet Buffering
	Double-Packet Buffering
	Special Bulk Handling

	18.2.1.4. Scheduling
	18.2.1.5. Additional Actions
	Stalled Control Transfer
	Zero Length OUT Data Packets

	18.2.1.6. Device Mode Suspend
	18.2.1.7. Start-of-Frame
	18.2.1.8. USB Reset
	18.2.1.9. Connect/Disconnect

	18.2.2. Operation as a Host
	18.2.2.1. Endpoints
	18.2.2.2. IN Transactions as a Host
	18.2.2.3. Out Transactions as a Host
	18.2.2.4. Transaction Scheduling
	18.2.2.5. USB Hubs
	18.2.2.6. Babble
	18.2.2.7. Host Suspend
	18.2.2.8. USB Reset
	18.2.2.9. Connect/Disconnect

	18.3. Initialization and Configuration
	18.3.1. Pin Configuration
	18.3.2. Endpoint Configuration

	18.4. Register Map
	18.5. Register Descriptions
	Register 1: USB Device Functional Address (USBFADDR), offset 0x000
	Register 2: USB Power (USBPOWER), offset 0x001
	Register 3: USB Transmit Interrupt Status (USBTXIS), offset 0x002
	Register 4: USB Receive Interrupt Status (USBRXIS), offset 0x004
	Register 5: USB Transmit Interrupt Enable (USBTXIE), offset 0x006
	Register 6: USB Receive Interrupt Enable (USBRXIE), offset 0x008
	Register 7: USB General Interrupt Status (USBIS), offset 0x00A
	Register 8: USB Interrupt Enable (USBIE), offset 0x00B
	Register 9: USB Frame Value (USBFRAME), offset 0x00C
	Register 10: USB Endpoint Index (USBEPIDX), offset 0x0E
	Register 11: USB Test Mode (USBTEST), offset 0x00F
	Register 12: USB FIFO Endpoint 0 (USBFIFO0), offset 0x020
	Register 13: USB FIFO Endpoint 1 (USBFIFO1), offset 0x024
	Register 14: USB FIFO Endpoint 2 (USBFIFO2), offset 0x028
	Register 15: USB FIFO Endpoint 3 (USBFIFO3), offset 0x02C
	Register 16: USB Device Control (USBDEVCTL), offset 0x060
	Register 17: USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ), offset 0x062
	Register 18: USB Receive Dynamic FIFO Sizing (USBRXFIFOSZ), offset 0x063
	Register 19: USB Transmit FIFO Start Address (USBTXFIFOADD), offset 0x064
	Register 20: USB Receive FIFO Start Address (USBRXFIFOADD), offset 0x066
	Register 21: USB Connect Timing (USBCONTIM), offset 0x07A
	Register 22: USB Full-Speed Last Transaction to End of Frame Timing (USBFSEOF), offset 0x07D
	Register 23: USB Low-Speed Last Transaction to End of Frame Timing (USBLSEOF), offset 0x07E
	Register 24: USB Transmit Functional Address Endpoint 0 (USBTXFUNCADDR0), offset 0x080
	Register 25: USB Transmit Functional Address Endpoint 1 (USBTXFUNCADDR1), offset 0x088
	Register 26: USB Transmit Functional Address Endpoint 2 (USBTXFUNCADDR2), offset 0x090
	Register 27: USB Transmit Functional Address Endpoint 3 (USBTXFUNCADDR3), offset 0x098
	Register 28: USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0), offset 0x082
	Register 29: USB Transmit Hub Address Endpoint 1 (USBTXHUBADDR1), offset 0x08A
	Register 30: USB Transmit Hub Address Endpoint 2 (USBTXHUBADDR2), offset 0x092
	Register 31: USB Transmit Hub Address Endpoint 3 (USBTXHUBADDR3), offset 0x09A
	Register 32: USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0), offset 0x083
	Register 33: USB Transmit Hub Port Endpoint 1 (USBTXHUBPORT1), offset 0x08B
	Register 34: USB Transmit Hub Port Endpoint 2 (USBTXHUBPORT2), offset 0x093
	Register 35: USB Transmit Hub Port Endpoint 3 (USBTXHUBPORT3), offset 0x09B
	Register 36: USB Receive Functional Address Endpoint 1 (USBRXFUNCADDR1), offset 0x08C
	Register 37: USB Receive Functional Address Endpoint 2 (USBRXFUNCADDR2), offset 0x094
	Register 38: USB Receive Functional Address Endpoint 3 (USBRXFUNCADDR3), offset 0x09C
	Register 39: USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1), offset 0x08E
	Register 40: USB Receive Hub Address Endpoint 2 (USBRXHUBADDR2), offset 0x096
	Register 41: USB Receive Hub Address Endpoint 3 (USBRXHUBADDR3), offset 0x09E
	Register 42: USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1), offset 0x08F
	Register 43: USB Receive Hub Port Endpoint 2 (USBRXHUBPORT2), offset 0x097
	Register 44: USB Receive Hub Port Endpoint 3 (USBRXHUBPORT3), offset 0x09F
	Register 45: USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1), offset 0x110
	Register 46: USB Maximum Transmit Data Endpoint 2 (USBTXMAXP2), offset 0x120
	Register 47: USB Maximum Transmit Data Endpoint 3 (USBTXMAXP3), offset 0x130
	Register 48: USB Control and Status Endpoint 0 Low (USBCSRL0), offset 0x102
	Register 49: USB Control and Status Endpoint 0 High (USBCSRH0), offset 0x103
	Register 50: USB Receive Byte Count Endpoint 0 (USBCOUNT0), offset 0x108
	Register 51: USB Type Endpoint 0 (USBTYPE0), offset 0x10A
	Register 52: USB NAK Limit (USBNAKLMT), offset 0x10B
	Register 53: USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1), offset 0x112
	Register 54: USB Transmit Control and Status Endpoint 2 Low (USBTXCSRL2), offset 0x122
	Register 55: USB Transmit Control and Status Endpoint 3 Low (USBTXCSRL3), offset 0x132
	Register 56: USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1), offset 0x113
	Register 57: USB Transmit Control and Status Endpoint 2 High (USBTXCSRH2), offset 0x123
	Register 58: USB Transmit Control and Status Endpoint 3 High (USBTXCSRH3), offset 0x133
	Register 59: USB Maximum Receive Data Endpoint 1 (USBRXMAXP1), offset 0x114
	Register 60: USB Maximum Receive Data Endpoint 2 (USBRXMAXP2), offset 0x124
	Register 61: USB Maximum Receive Data Endpoint 3 (USBRXMAXP3), offset 0x134
	Register 62: USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1), offset 0x116
	Register 63: USB Receive Control and Status Endpoint 2 Low (USBRXCSRL2), offset 0x126
	Register 64: USB Receive Control and Status Endpoint 3 Low (USBRXCSRL3), offset 0x136
	Register 65: USB Receive Control and Status Endpoint 1 High (USBRXCSRH1), offset 0x117
	Register 66: USB Receive Control and Status Endpoint 2 High (USBRXCSRH2), offset 0x127
	Register 67: USB Receive Control and Status Endpoint 3 High (USBRXCSRH3), offset 0x137
	Register 68: USB Receive Byte Count Endpoint 1 (USBRXCOUNT1), offset 0x118
	Register 69: USB Receive Byte Count Endpoint 2 (USBRXCOUNT2), offset 0x128
	Register 70: USB Receive Byte Count Endpoint 3 (USBRXCOUNT3), offset 0x138
	Register 71: USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1), offset 0x11A
	Register 72: USB Host Transmit Configure Type Endpoint 2 (USBTXTYPE2), offset 0x12A
	Register 73: USB Host Transmit Configure Type Endpoint 3 (USBTXTYPE3), offset 0x13A
	Register 74: USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1), offset 0x11B
	Register 75: USB Host Transmit Interval Endpoint 2 (USBTXINTERVAL2), offset 0x12B
	Register 76: USB Host Transmit Interval Endpoint 3 (USBTXINTERVAL3), offset 0x13B
	Register 77: USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1), offset 0x11C
	Register 78: USB Host Configure Receive Type Endpoint 2 (USBRXTYPE2), offset 0x12C
	Register 79: USB Host Configure Receive Type Endpoint 3 (USBRXTYPE3), offset 0x13C
	Register 80: USB Host Receive Polling Interval Endpoint 1 (USBRXINTERVAL1), offset 0x11D
	Register 81: USB Host Receive Polling Interval Endpoint 2 (USBRXINTERVAL2), offset 0x12D
	Register 82: USB Host Receive Polling Interval Endpoint 3 (USBRXINTERVAL3), offset 0x13D
	Register 83: USB Request Packet Count in Block Transfer Endpoint 1 (USBRQPKTCOUNT1), offset 0x304
	Register 84: USB Request Packet Count in Block Transfer Endpoint 2 (USBRQPKTCOUNT2), offset 0x308
	Register 85: USB Request Packet Count in Block Transfer Endpoint 3 (USBRQPKTCOUNT3), offset 0x30C
	Register 86: USB Receive Double Packet Buffer Disable (USBRXDPKTBUFDIS), offset 0x340
	Register 87: USB Transmit Double Packet Buffer Disable (USBTXDPKTBUFDIS), offset 0x342
	Register 88: USB External Power Control (USBEPC), offset 0x400
	Register 89: USB External Power Control Raw Interrupt Status (USBEPCRIS), offset 0x404
	Register 90: USB External Power Control Interrupt Mask (USBEPCIM), offset 0x408
	Register 91: USB External Power Control Interrupt Status and Clear (USBEPCISC), offset 0x40C
	Register 92: USB Device Resume Raw Interrupt Status (USBDRRIS), offset 0x410
	Register 93: USB Device Resume Interrupt Mask (USBDRIM), offset 0x414
	Register 94: USB Device Resume Interrupt Status and Clear (USBDRISC), offset 0x418
	Register 95: USB General-Purpose Control and Status (USBGPCS), offset 0x41C

	19. Pulse Width Modulator (PWM)
	19.1. Block Diagram
	19.2. Functional Description
	19.2.1. PWM Timer
	19.2.2. PWM Comparators
	19.2.3. PWM Signal Generator
	19.2.4. Dead-Band Generator
	19.2.5. Interrupt/ADC-Trigger Selector
	19.2.6. Synchronization Methods
	19.2.7. Fault Conditions
	19.2.8. Output Control Block

	19.3. Initialization and Configuration
	19.4. Register Map
	19.5. Register Descriptions
	Register 1: PWM Master Control (PWMCTL), offset 0x000
	Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004
	Register 3: PWM Output Enable (PWMENABLE), offset 0x008
	Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C
	Register 5: PWM Output Fault (PWMFAULT), offset 0x010
	Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014
	Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018
	Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C
	Register 9: PWM Status (PWMSTATUS), offset 0x020
	Register 10: PWM0 Control (PWM0CTL), offset 0x040
	Register 11: PWM1 Control (PWM1CTL), offset 0x080
	Register 12: PWM2 Control (PWM2CTL), offset 0x0C0
	Register 13: PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044
	Register 14: PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084
	Register 15: PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4
	Register 16: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048
	Register 17: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088
	Register 18: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8
	Register 19: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C
	Register 20: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C
	Register 21: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC
	Register 22: PWM0 Load (PWM0LOAD), offset 0x050
	Register 23: PWM1 Load (PWM1LOAD), offset 0x090
	Register 24: PWM2 Load (PWM2LOAD), offset 0x0D0
	Register 25: PWM0 Counter (PWM0COUNT), offset 0x054
	Register 26: PWM1 Counter (PWM1COUNT), offset 0x094
	Register 27: PWM2 Counter (PWM2COUNT), offset 0x0D4
	Register 28: PWM0 Compare A (PWM0CMPA), offset 0x058
	Register 29: PWM1 Compare A (PWM1CMPA), offset 0x098
	Register 30: PWM2 Compare A (PWM2CMPA), offset 0x0D8
	Register 31: PWM0 Compare B (PWM0CMPB), offset 0x05C
	Register 32: PWM1 Compare B (PWM1CMPB), offset 0x09C
	Register 33: PWM2 Compare B (PWM2CMPB), offset 0x0DC
	Register 34: PWM0 Generator A Control (PWM0GENA), offset 0x060
	Register 35: PWM1 Generator A Control (PWM1GENA), offset 0x0A0
	Register 36: PWM2 Generator A Control (PWM2GENA), offset 0x0E0
	Register 37: PWM0 Generator B Control (PWM0GENB), offset 0x064
	Register 38: PWM1 Generator B Control (PWM1GENB), offset 0x0A4
	Register 39: PWM2 Generator B Control (PWM2GENB), offset 0x0E4
	Register 40: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068
	Register 41: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8
	Register 42: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8
	Register 43: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C
	Register 44: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC
	Register 45: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC
	Register 46: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070
	Register 47: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0
	Register 48: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0

	20. Pin Diagram
	21. Signal Tables
	22. Operating Characteristics
	23. Electrical Characteristics
	23.1. DC Characteristics
	23.1.1. Maximum Ratings
	23.1.2. Recommended DC Operating Conditions
	23.1.3. On-Chip Low Drop-Out (LDO) Regulator Characteristics
	23.1.4. Power Specifications
	23.1.5. Flash Memory Characteristics
	23.1.6. Hibernation
	23.1.7. USB

	23.2. AC Characteristics
	23.2.1. Load Conditions
	23.2.2. Clocks
	23.2.3. Analog-to-Digital Converter
	23.2.4. I2C
	23.2.5. Hibernation Module
	23.2.6. Synchronous Serial Interface (SSI)
	23.2.7. JTAG and Boundary Scan
	23.2.8. General-Purpose I/O
	23.2.9. Reset
	23.2.10. USB

	24. Package Information
	Appendix A. Boot Loader
	A.1. Boot Loader
	A.2. Interfaces
	A.2.1. UART
	A.2.2. SSI
	A.2.3. I2C

	A.3. Packet Handling
	A.3.1. Packet Format
	A.3.2. Sending Packets
	A.3.3. Receiving Packets

	A.4. Commands
	A.4.1. COMMAND_PING (0X20)
	A.4.2. COMMAND_GET_STATUS (0x23)
	A.4.3. COMMAND_DOWNLOAD (0x21)
	A.4.4. COMMAND_SEND_DATA (0x24)
	A.4.5. COMMAND_RUN (0x22)
	A.4.6. COMMAND_RESET (0x25)

	Appendix B. ROM DriverLib Functions
	B.1. DriverLib Functions Included in the Integrated ROM

	Appendix C. Register Quick Reference
	Appendix D. Ordering and Contact Information
	D.1. Ordering Information
	D.2. Kits
	D.3. Company Information
	D.4. Support Information

