(infineon

XMC4500

Microcontroller Series
for Industrial Applications

XMC4000 Family

ARM® Cortex™-M4
32-bit processor core

Reference Manual
V1.0 2012-02

Microcontrollers

Edition 2012-02

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2012 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

(infineon

XMC4500

Microcontroller Series
for Industrial Applications

XMC4000 Family

ARM® Cortex™"-M4
32-bit processor core

Reference Manual
V1.0 2012-02

Microcontrollers

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

XMC4500 Reference Manual

Revision History: V1.0 2012-02
Previous Versions:

Page Subjects

Trademarks
C166™, TriCore™ and DAVE™ are trademarks of Infineon Technologies AG.
ARM®, ARM Powered®, Cortex® and AMBA® are registered trademarks of ARM, Limited.

CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are
trademarks of ARM, Limited.

Synopsys™ is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Reference Manual V1.0, 2012-02
Subject to Agreement on the Use of Product Information

mailto:mcdocu.comments@infineon.com

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

Table of Contents

1 Introduction 1-1
11 OVBIVIBW . o oot e e 11
111 Block Diagram e 1-3
1.2 CPU Subsystem 1-4
1.3 ON-Chip MEMOKIES . . . o ot e 1-5
1.4 Communication Peripherals 1-6
15 Analog Frontend Peripherals 1-8
1.6 Industrial Control Peripherals 1-9
1.7 On-Chip Debug Support 1-9
2 Central Processing Unit (CPU) 2-1
2.1 OV IV W . o oo e e 2-1
211 Features 2-2
21.2 Block Diagramo it 2-2
2.2 Programmers Model 2-4
221 Processor Mode and Privilege Levels for Software Execution 2-4
222 StaCKS .. 2-4
2.2.3 Core RegISterS ..ot 2-6
224 Exceptions and Interrupts 2-17
225 Data TYPES . ..o 2-17
2.2.6 The Cortex Microcontroller Software Interface Standard 2-17
227 CMSISfunctions 2-18
2.3 Memory Model 2-20
23.1 Memory Regions, Types and Attributes 2-20
23.2 Memory System Ordering of Memory Accesses 2-21
2.3.3 Behavior of Memory ACCESSES i it 2-22
234 Software Ordering of Memory Accesses 2-23
2.35 Memory Endianness 2-24
2.3.6 Synchronization Primitives o 2-24
2.3.7 Programming Hints for the Synchronization Primitives 2-26
2.4 INStruction Set 2-26
2.5 Exception Model 2-26
251 Exception States 2-26
252 EXCEPON TYPES . . .i ittt 2-27
253 Exception Handlers 2-29
254 Vector Table 2-30
255 Exception Priorities 2-31
256 Interrupt Priority Groupingt 2-31
257 Exception Entryand Return 2-32
2.6 FaultHandling e 2-36
2.6.1 Fault Types . ..o 2-37
Reference Manual L-1 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

2.6.2 Fault Escalationand Hard Faults 2-38
2.6.3 Fault Status Registers and Fault Address Registers 2-39
26.4 LOCKUD © ot 2-39
2.7 Power Management 2-40
2.7.1 Entering SleepMode 2-40
2.7.2 Wakeup from SleepMode i 2-41
2.7.3 The External Eventlnput i, 2-41
2.7.4 Power Management Programming Hints 2-42
2.8 Private Peripherals 2-42
28.1 About the Private Peripherals 2-42
2.8.2 System control block 2-42
2.8.2.1 System control block design hintsand tips 2-43
2.8.3 System timer, SysTick i 2-43
28.31 SysTick design hintsand tips 2-43
28.4 Nested Vectored Interrupt Controller (NVIC) 2-43
2841 Level-sensitive and pulse interrupts 2-44
2.8.4.2 NVIC design hintsand tips 2-45
2.8.4.3 Using CMSIS functionstoaccessNVIC 2-45
2.85 Memory Protection Unit (MPU) 2-46
2851 MPU Access Permission Attributes 2-48
2.85.2 MPU Mismatch i 2-50
2.8.5.3 Updatingan MPU Region itiiiiinenn. 2-50
2854 MPU Design Hintsand TipSo oot 2-53
2.8.6 Floating Point Unit (FPU) e 2-53
2.8.6.1 Enablingthe FPU 2-54
2.9 PPB ReQISterS . ..o 2-54
29.1 SCS REQISIEIS . .\ it 2-57
29.2 SysTick Registers 2-83
293 NVIC Registers e 2-86
294 MPU REQISIEIS . . .t e e 2-92
295 FPU REQISIEIS . ..ottt 2-100
3 BUS SysStem ... e 3-1
3.1 BusiInterfaces 3-1
3.2 BUS MatriXot 3-1
4 Service Request Processingt 4-1
4.1 OVBIVIBW . oot e e e 4-1
411 Features 4-1
4.1.2 Applications 4-2
4.1.3 Block Diagram e 4-2
4.2 Service Request Distribution 4-3
4.3 Interrupt Service Requests 4-4
4.4 DMA Line Router (DLR)o 4-7
Reference Manual L-2 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

441 Functional Description i 4-7
4.4.2 DMA Service Request Source Selection 4-10
4.5 EventRequestUnit (ERU) 4-16
451 Event Request Select Unit (ERS) 4-16
452 Event Trigger Logic (ETLX)t 4-17
453 Cross Connect MatriXouuniuie e, 4-19
45.4 Output Gating Unit (OGUY) i 4-20
4.6 Service Request Generationuiitiiieian 4-23
4.7 Debug Behavior 4-23
4.8 Power, Resetand Clock 4-23
4.9 Initialization and System Dependencies 4-23
4.10 REQIStEIS . o 4-24
4.10.1 DLR REgISterS . ..o 4-25
4.10.2 ERU REQIStErS 4-29
411 INtErCONNECtS 4-34
411.1 ERUO CoNNeCtionst 4-35
4.11.2 ERUL CONNECLIONS e e 4-38
5 General Purpose DMA (GPDMA)ot 5-1
5.1 OVEIVIEW . . ettt et e e e e e 5-1
51.1 Features 5-1
51.2 GPDMA Block Diagramt 5-3
5.2 Functional Description 5-4
5.2.1 Basic Definitions 5-4
5.2.2 Block Flow Controller and Transfer Type 5-7
5.2.3 Handshaking Interface i, 5-7
5.2.4 Basic Interface Definitions oo 5-8
525 Memory Peripherals 5-9
5.2.6 Software Handshaking 5-9
5.2.7 Handshaking Interface 5-10
5.2.7.1 Single Transaction Region i, 5-10
5.2.7.2 Early-Terminated Burst Transaction 5-11
5.2.7.3 Hardware Handshaking 5-11
5.2.7.4 Software Handshaking i 5-12
5.2.8 Single Transactionst e 5-13
5.2.9 SettingUp Transfers 5-14
5.291 Transfer Operation i 5-14
5.2.10 Flow Control Configurationso, 5-29
5.2.11 Generating Requests for the AHB Master Bus Interface 5-30
5.2.11.1 Locked DMA Transfers ..., 5-32
5.2.12 Arbitration for AHB Master Interface 5-34
5.2.13 Scatter/Gather 5-36
5.3 Programming 5-39
Reference Manual L-3 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

5.3.1 lllegal Register ACCESS it e e 5-39
5.3.2 GPDMA Transfer Typest 5-39
5.3.21 Multi-Block Transfers 5-40
53.2.2 Auto-Reloading of Channel Registers 5-44
5.3.2.3 Contiguous Address Between Blocks 5-44
5.3.24 Suspension of Transfers Between Blocks 5-45
5.3.25 Ending Multi-Block Transfers 5-46
5.3.3 Programing Examples 5-46
5331 Single-block Transfer (Row 1) 5-47
5.3.3.2 Multi-Block Transfer with Linked List for Source and Linked List for
Destination (Row 10) 5-48
5.3.3.3 Multi-Block Transfer with Source Address Auto-Reloaded and
Destination Address Auto-Reloaded (Row 4) 5-54
5.3.34 Multi-Block Transfer with Source Address Auto-Reloaded and Linked List
Destination Address (Row 7) 5-58
5.3.35 Multi-Block Transfer with Source Address Auto-Reloaded and
Contiguous Destination Address (Row 3) 5-64
5.3.3.6 Multi-Block DMA Transfer with Linked List for Source and Contiguous
Destination Address (Row 8) 5-67
5.3.3.7 Programming Example for Linked List Multi-Block Transfer 5-70
5.34 Abnormal Transfer Termination 5-74
5.4 Power, Resetand Clock 5-74
5.5 Initialization and System Dependencies 5-74
5.6 REgISIEIS . .ot 5-76
5.6.1 Configuration and Channel Enable Registers 5-80
5.6.2 Channel Registers e 5-82
5.6.3 Interrupt RegiSters 5-115
5.6.4 Software Handshaking Registers 5-128
5.6.5 Miscellaneous GPDMA Registersooiiiuo... 5-138
6 Flexible CRCENgine (FCE)t 6-1
6.1 OVBIVIBW . oo e e 6-1
6.1.1 Features 6-1
6.1.2 Application Mapping 6-2
6.1.3 Block Diagram 6-2
6.2 Functional Description 6-3
6.2.1 Basic Operation 6-5
6.2.2 Automatic Signature Check 6-5
6.2.3 Register protection and monitoring methods 6-6
6.3 Service Request Generationt 6-8
6.4 Debug Behavior 6-9
6.5 Power, Resetand Clock 6-9
6.6 Initialization and System Dependencies 6-9
Reference Manual L-4 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

6.7 Registers 6-11
6.7.1 System Registers description e 6-12
6.7.2 CRC Kernel Control/Status Registers 6-14
6.8 INTEICONNECES e 6-24
6.9 Propertiesof CRCcode i 6-24
7 Memory Organizationt it 7-1
7.1 OVEIVIEW . . ittt ettt e e e e e e 7-1
7.1.1 Features 7-1
7.1.2 Cortex-M4 AddreSS SPaceo oottt 7-1
7.2 Memory REQIONSo 7-3
7.3 Memory Map 7-3
7.4 Service Request Generationiitiiiit i 7-7
7.5 Debug Behavior 7-9
7.6 Power, Resetand Clock 7-9
7.7 Initialization and System Dependencies 7-9
7.8 REQIStErS . . 7-10
8 Flash and Program Memory Unit (PMU) 8-1
8.1 OVEIVIEW . . ottt ettt e e e e e e 8-1
8.1.1 Block Diagramot 8-1
8.2 BOOt ROM (BROM)t e 8-2
8.2.1 BROM AAAressingoo i e 8-2
8.3 Prefetch Unit 8-2
8.3.1 OVeIVIBW . o o e 8-2
8.3.2 OpErationot 8-3
8.3.2.1 Instruction Buffer 8-3
8.3.2.2 DataBuffer. 8-3
8.3.2.3 PMU Interface e 8-4
8.4 Program Flash (PFLASH) i 8-5
8.4.1 OVBIVIBW . o o e 8-5
8411 Features 8-5
8.4.2 Definition of Terms e 8-6
8.4.3 Flash Structure 8-7
8.4.4 FlashRead ACCESS i e 8-8
8.4.5 Flash Write and Erase Operations 8-9
8.4.6 Modes of Operation i 8-9
8.4.7 Command SEQUENCESottt e e e e 8-10
8471 Command Sequence Definitions 8-10
8.4.8 Flash Protection 8-14
8.4.8.1 Configuring Flash Protectioninthe UCB 8-15
8.4.8.2 Flash Read Protection i, 8-16
8.4.8.3 Flash Write and OTP Protection 8-18
8.4.8.4 System Wide Effects of Flash Protection 8-20
Reference Manual L-5 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

8.4.9 Data Integrityand Safety i 8-20
8.49.1 Error-Correcting Code (ECC), 8-20
8.4.9.2 Margin Checks 8-21
8.5 Service Request Generation i 8-21
8.5.1 Interrupt Control 8-21
8.5.2 Trap Control e 8-22
8.5.3 Handling Errors During Operation 8-22
8.5.3.1 SQER “Sequence Error’ 8-23
8.5.3.2 PFOPER “Operation Error” i, 8-23
8.5.3.3 PROER “Protection Error”t 8-24
8.5.34 VER “Verification Error” 8-25
8.5.3.5 PFSBER/DFSBER “Single-Bit Error” 8-25
8.5.3.6 Handling Flash Errors During Startup 8-26
8.6 Power, Resetand Clock 8-27
8.6.1 Power SUpply . . . oo 8-27
8.6.2 Power Reduction 8-27
8.6.3 Reset Control 8-28
8.6.3.1 Resets During Flash Operation 8-28
8.6.4 ClOCK .o 8-30
8.7 REgIStErS . . 8-30
8.7.1 PMU REQISIEIS . . . 8-30
8.7.11 PMU ID REQISIEr . .\ttt e e 8-31
8.7.2 Prefetch Registers 8-32
8.7.2.1 Prefetch Configuration Register 8-32
8.7.3 Flash Registers e 8-33
8.7.3.1 Flash Status Definition 8-34
8.7.3.2 Flash Configuration Control 8-40
8.7.3.3 Flash Identification Register 8-44
8.7.34 Margin Check Control Register 8-45
8.7.35 Protection Configuration Indication 8-46
9 Window Watchdog Timer (WDT)o, 9-1
9.1 OVEIVIEW . . ottt et e e e e e e e 9-1
9.1.1 Features 9-1
9.1.2 Block Diagram 9-2
9.2 Time-OutMode 9-3
9.3 Pre-warning Mode 9-4
9.4 Bad Service Operation 9-5
9.5 Service Request Processingt 9-7
9.6 Debug Behavior 9-7
9.7 Power, Resetand Clock i, 9-7
9.8 Initialization and Control Sequence 9-7
9.8.1 Initialization & Start of Operation 9-8
Reference Manual L-6 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

9.8.2 Reconfiguration & Restart of Operation 9-8
9.8.3 Software Stop & Resume Operation 9-9
9.84 Enter Sleep/Deep Sleep & Resume Operation 9-9
9.8.5 Prewarning Alarm Handling 9-9
9.9 RegiSterS . . 9-11
9.9.1 Registers Description 9-11
9.10 INtEIrCONNECESo e 9-16
10 Real Time Clock (RTC) ... it 10-1
10.1 OVEIVIEW . ottt 10-1
10.1.1 Features 10-1
10.1.2 Block Diagram 10-1
10.2 RTC Operationt e e e e 10-2
10.3 Register Access Operationst 10-3
10.4 Service Request Processingot 10-4
10.4.1 Periodic Service Request i 10-4
10.4.2 Timer Alarm Service Request, 10-4
10.5 Debug behavior 10-4
10.6 Power, Resetand Clock 10-4
10.7 Initialization and Control Sequencecciiiiene.n. 10-5
10.7.1 Initialization & Start of Operation 10-5
10.7.2 Re-configuration & Re-start of Operation 10-5
10.7.3 Configure and Enable Periodic Alarm 10-6
10.7.4 Configure and Enable Timer Alarm 10-6
10.8 REgISIEIS . ..o 10-7
10.8.1 Registers Description 10-7
10.9 INtEIrCONNECES 10-19
11 System Control Unit (SCU) i 11-1
111 OV IV W . oo 11-1
1111 Features 11-1
11.1.2 Block Diagram 11-2
11.2 Miscellaneous control functions 11-5
11.2.1 Startup Software Support 11-5
11.2.2 Service ReqUESESot t 11-6
11.2.2.1 Service ReqUESt SOUICES ot it 11-6
11.2.3 Memory Content Protection 11-7
11.2.3.1 Parity ErrorHandling 11-7
11.2.4 Trap Generationo 11-10
11.2.4.1 Trap SOUICES . o v it e 11-10
11.2.5 Die Temperature Measurementoouvuene... 11-11
11.2.6 Retention Memory 11-11
11.2.7 Out of Range Comparator Control 11-12
11.3 Power Management 11-12
Reference Manual L-7 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

11.3.1 Functional Description 11-12
11.3.2 System States e 11-13
11.3.3 Hibernate Domain OperatingModes 11-15
11.3.4 Embedded Voltage Regulator (EVR) 11-17
11.3.5 Supply Watchdog (SWD)o 11-17
11.3.6 Power Validation (PV) i 11-18
11.3.7 Supply Voltage Brown-out Detection 11-18
11.3.8 Hibernate Domain Power Management 11-19
11.3.9 Flash Power Control 11-19
114 Hibernate Control 11-19
115 Reset Control 11-22
1151 Supported Resettypes 11-22
115.2 Peripheral ResetControl i, 11-23
11.5.3 Reset Status 11-23
11.6 Clock Control 11-24
11.6.1 Block Diagramt 11-24
11.6.2 Clock SOUICESo e 11-25
11.6.3 Clock System OVerviewt e e 11-26
11.6.3.1 Clock System Architecture 11-28
11.6.4 High Precision Oscillator Circuit (OSCHP) 11-32
11.6.5 Backup Clock Sourceot 11-33
11.6.6 Main PLL ..o 11-34
11.6.6.1 Features 11-34
11.6.6.2 System PLL Functional Description 11-34
11.6.6.3 Configuration and Operation of the Prescaler Mode 11-38
11.6.6.4 Bypass Mode e 11-39
11.6.6.5 System Oscillator Watchdog (OSC_WDG) 11-39
11.6.6.6 VCO PowerDownMode i .. 11-40
11.6.6.7 PLLPowerDownMode 11-40
11.6.7 USB PLL .o 11-40
11.6.8 Ultra Low Power Oscillator, 11-41
11.6.9 Slow Internal Clock Source, 11-42
11.6.9.1 OSCULP Oscillator Watchdog (ULPWDG) 11-42
11.6.10 Clock Gating Control e 11-42
11.7 Debug Behavior 11-42
11.8 Power, Resetand Clock 11-42
11.9 Initialization and System Dependencies 11-43
11.10 RegISterS ..o 11-45
11.10.1 GCU REQISIEIS . . oot e e e 11-50
11.10.2 PCU REQISIEIS . . ot e 11-96
11.10.3 HCU RegiSters e e e 11-101
11.104 RCU REQISterS . . . o e e 11-109
11.10.5 CCUREQIStErIS . . oo 11-127
Reference Manual L-8 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

11.11 INtEICONNECESo 11-150
12 LED and Touch-Sense (LEDTS), 12-1
121 OVBIVIBW . o o e 12-1
12.1.1 Features 12-1
12.1.2 Block Diagram 12-2
12.2 Functional Overviewt 12-4
12.3 LED Drive MOdE i 12-7
12.3.1 LED Pin Assignment and Current Capability 12-9
12.4 Touchpad SENSINGot 12-9
12.4.1 FINgEr SENSING oo e 12-13
125 Operating both LED Drive and Touch-Sense Modes 12-13
12.6 Service Request Processing 12-14
12.7 Debug Behavior 12-15
12.8 Power, Resetand Clock 12-15
12.9 Initialisation and System Dependencies 12-15
12.9.1 Function Enabling i 12-15
12.9.2 Interpretation of Bit Field FNCOL 12-16
12.9.3 LEDTS Timing Calculationso .. 12-17
129.4 Time-Multiplexed LED and Touch-Sense Functions on Pin 12-18
12.9.5 LEDTS PinControl 12-18
12.9.6 Software HINts 12-20
12.9.7 Hardware Design Hints i 12-21
12.10 RegiSterS . . 12-22
12.10.1 Registers Descriptionot 12-23
12.11 INtEICONNECTSo e 12-36
13 SD/MMC Interface (SDMMC) i 13-1
131 OV IV W . oo e 13-1
13.1.1 Features 13-1
13.1.2 Block Diagram 13-2
13.2 Functional Description 13-4
13.3 Card Detection i 13-6
13.4 Data TransferModes i 13-6
135 Read/ Write Operation e 13-7
13.5.1 Write Operation 13-7
13.5.2 Read Operation e 13-7
13.5.3 Abort Transaction 13-7
13.6 Special Command TYPEeSot i e 13-9
13.7 Error Detectiont 13-10
13.8 Service Request Generationccu ... 13-10
13.9 Debug Behavior 13-10
13.10 Power, Resetand Clocks 13-10
13.11 Initialisation and System Dependencies 13-12
Reference Manual L-9 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

13.11.1 Setup SDMMC Data Transfer 13-12
13.11.2 Read Operation e 13-14
13.11.3 Write Operation 13-14
13.11.4 Abort Transaction i 13-15
13.12 RegiSterS . o 13-16
13.12.1 Registers Description 13-20
13.13 INtErCONNECESo e 13-82
14 External Bus Unit (EBU) i 14-1
14.1 OV eIV W . o o e 14-1
14.1.1 Features 14-1
14.1.2 Block Diagram 14-2
14.2 Interface Signals 14-3
14.2.1 Address/Data Bus, AD[31:0]ciuiniii i 14-3
14.2.2 Address Bus, A[24:16] .. .ot 14-4
14.2.3 Chip Selects, CS[3:0] 14-4
14.2.4 Read/Write Control Lines, RD, RD/WR 14-4
14.2.5 Address Valid, ADV 14-4
14.2.6 Byte Controls, BC[3:0]t 14-4
14.2.7 Burst Flash Clock Output/Input, BFCLKO/BFCLKI 14-5
14.2.8 Wait Input, WAIT ... 14-5
14.2.9 SDRAM Clock Output/Input SDCLKO/SDCLKI 14-6
14.2.10 SDRAM Control Signals, CKE, CASand RAS 14-6
14.2.11 Bus Arbitration Signals, HOLD, HLDA, and BREQ 14-6
14.2.12 EBU RESEL . ..ot 14-6
14.2.12.1 Allocation of Unused Signalsas GPIO 14-6
14.3 External Bus States when EBU inactive 14-8
14.4 Memory Controller Structure 14-9
145 Memory Controller AHBIF Bridge 14-10
145.1 AHB Error Generation 14-12
14.5.2 Read DataBuffering i 14-12
14.5.3 Write Data Buffering 14-13
14.6 Clocking Strategy and Local Clock Generation 14-13
14.6.1 Clocking Modest e 14-13
14.6.1.1 Clock Requirementsuiuiirinnnnn 14-15
14.6.2 Standby Mode 14-15
14.7 External Bus Operationt 14-15
14.7.1 External Memory Regions i 14-16
14.7.2 ChipSelectControl 14-17
14.7.3 Programmable Device TYpeS ...« 14-17
14.7.4 Support for Multiplexed Device Configurations 14-18
14.7.5 Support for Non-Multiplexed Device Configurations 14-21
14.7.6 AHB Bus Width Translation 14-22
Reference Manual L-10 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

14.7.7 Address Alignment During Bus ACCeSSEeS 14-23
14.8 External Bus Arbitration 14-23
14.8.1 External Bus Modes 14-24
14.8.2 Arbitration Signals and Parameters 14-24
14.8.3 Arbitration Modes 14-26
14.8.3.1 No Bus Arbitration Mode 14-26
14.8.3.2 Sole Master Arbitration Mode 14-26
14.8.3.3 Arbiter Mode ArbitrationMode L 14-26
14.8.3.4 “Participant Mode” Arbitration Mode 14-30
14.8.4 Arbitration Input Signal Sampling 14-32
14.8.5 Lockingthe External Bus 14-33
14.8.6 Reaction to an AHB Access to the ExternalBus 14-34
14.8.7 Pending Access Time-Out, 14-35
14.8.8 Arbitrating SDRAM control signals 14-35
14.9 Start-Up/BOOt PrOCESS oottt e 14-35
14.10 Standard AcCess Phases 14-35
14.10.1 Address Phase (AP) 14-36
14.10.2 Address Hold Phase (AH) i, 14-36
14.10.3 Command Delay Phase (CD) ..., 14-37
14.10.4 Command Phase (CP) ... 14-37
14.10.5 Data Hold Phase (DH) i 14-38
14.10.6 BurstPhase (BP) 14-38
14.10.7 Recovery Phase (RP) 14-39
14.11 Asynchronous Read/Write ACCESSESo v v i 14-40
14.11.1 Signal List 14-41
14.11.2 Standard Asynchronous Access Phases 14-41
14.11.3 Control of ADV & CS Delays During Asynchronous Accesses 14-41
14.11.4 Programmable Parameters 14-42
14.11.5 Accesses to Multiplexed Devices 14-44
14.11.6 Dynamic Command Delay and Wait State Insertion 14-45
14.11.6.1 External Extension of the Command Phase by WAIT 14-45
14.11.7 Interfacing to Nand Flash Devices 14-47
14.11.7.1 NAND flashpagemode 14-49
14.12 Synchronous Read/Write ACCESSES 14-51
14.12.1 Signals 14-52
14.12.2 Support for four Burst FLASH device types 14-53
14.12.3 Typical Burst Flash Connection 14-53
14.12.4 BurstFlash Clock 14-54
14.12.5 Standard Access Phases i 14-55
14.12.6 BurstLength Control i, 14-55
14.12.7 Control of ADV & CS Delays During Burst FLASH Access 14-55
14.12.8 Burst Flash Clock Feedback 14-56
14.12.9 Asynchronous Address Phase 14-57
Reference Manual L-11 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

14.12.10 Page Mode SUPpOrt oot 14-58
14.12.11 Critical Word First Read Accesses, 14-58
14.12.12 Example Burst Flash AccessCycle 14-59
14.12.13 External Cycle Control via the WAIT Input 14-60
14.12.14 Flash Non-Array ACCeSS SUPpOrt oo, 14-61
14.12.15 Termination of aBUrst ACCESSot 14-61
14.12.16 Burst Flash Device Programming Sequences 14-62
14.12.17 Cellular RAM 14-62
14.12.18 Programmable Parameters, 14-64
14.13 SDRAM INterface 14-66
14.13.1 Features 14-66
14.13.2 Signal List 14-67
14.13.3 External Interface 14-67
14.13.4 External Bus Clock Generation 14-68
14.13.5 SDRAM Characteristics 14-69
14.13.6 Supported SDRAM commandsc.ovireiinannan... 14-69
14.13.7 SDRAMdeVICe SIZe e 14-71
14.13.8 Power Up Sequencec.cuiiiiiiiiiiiiiiiinnnn.. 14-71
14.13.9 Initialization sequence i 14-72
14.13.10 Mobile SDRAM SUpporto 14-75
14.13.11 BUISE ACCESSES . . i e 14-75
14.13.12 ShOrt BUrSt ACCESSES . . oottt i e e e 14-76
14.13.13 Multibanking Operationt 14-76
141314 BankMask 14-77
14.13.15 ROWMASK ..ot 14-78
14.13.16 BanksPrecharge i 14-80
14.13.17 RefreshCycles e 14-80
14.13.18 Self-RefreshMode 14-82
14.13.19 SDRAM Addressing Scheme 14-83
14.13.20 PowerDown Modettt 14-89
14.13.21 SDRAMRecoveryPhases............c.oiiiiiiinnn.. 14-91
14.13.22 Programmable Parameters 14-91
14.14 Debug Behavior 14-93
14.15 Power, Resetand Clock 14-93
14.15.1 CloCKS .« oo 14-93
14.15.2 Module ReSEto 14-94
14.15.3 POWET . . 14-94
14.16 System Dependencies 14-94
14.17 RegISterS ..o 14-95
14.17.1 Clock Control Register, CLC 14-97
14.17.2 Configuration Register, MODCON 14-99
14.17.3 Address Select Register, ADDRSELX 14-101
14.17.4 Bus Configuration Register, BUSRCONX 14-102
Reference Manual L-12 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

14.17.5 Bus Write Configuration Register, BUSWCONX 14-106
14.17.6 Bus Read Access Parameter Register, BUSRAPX 14-109
14.17.7 Bus Write Access Parameter Register, BUSWAPX 14-111
14.17.8 SDRAM Control Register, SDRMCON 14-114
14.17.9 SDRAM Mode Register, SDRMODcovn.. 14-117
14.17.10 SDRAM Refresh Control Register, SDRMREF 14-119
14.17.11 SDRAM Status Register, SDRSTATcovvvinn... 14-121
14.17.12 Test/Control Configuration Register, USERCON 14-122
15 Ethernet MAC (ETH) it e 15-1
151 OVBIVIBW . o o e 15-1
15.1.1 ETH Core Features e 15-2
15.1.2 DMA BIOCK Featurest 15-3
15.1.3 Transaction Layer (MTL) Featurescouunnn 15-3
15.1.4 Monitoring, Test, and Debugging Support Features 15-5
15.1.5 Block Diagramt 15-5
15.2 Functional Description 15-5
15.2.1 ETH COre .. oo 15-6
15.2.1.1 TransSMISSION . .. oottt 15-6
15.2.1.2 MAC Transmit Interface Protocol 15-10
15.2.1.3 RECEPHON . .. e e 15-10
15.2.2 MAC Transaction Layer (MTL)co i, 15-18
15.2.2.1 TransmitPath 15-18
15.2.2.2 Receive Path 15-24
15.2.3 DMA Controller 15-26
15.2.3.1 Initialization 15-27
15.2.3.2 TransSMISSIONttt 15-30
15.2.3.3 Reception 15-35
15.2.3.4 INtermuUptS . .. e 15-39
15.2.4 DMA DeSCrIPIOrS . ..ottt e e e 15-41
15.2.4.1 Descriptor Formatst 15-41
15.2.5 MAC Management Countersiineennn... 15-57
15.2.6 Power ManagementBlock 15-58
15.2.6.1 PMT Block Description 15-58
15.2.6.2 Remote Wake-Up Frame Detection 15-60
15.2.6.3 Magic Packet Detection 15-60
15.2.6.4 System Considerations During Power-Down 15-61
15.2.7 PHY Interconnect 15-62
15.2.7.1 PHY Interconnect selection 15-62
15.2.8 Station ManagementInterface 15-62
15.2.8.1 Station Management Functions 15-63
15.2.8.2 Station Management Write Operation 15-64
15.2.8.3 Station Management Read Operation 15-64
Reference Manual L-13 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

15.2.9 Media Independentinterface 15-65
15.2.10 Reduced Media Independent Interface 15-66
15.2.10.1 RMII Block Diagramt 15-67
15.2.10.2 RMII Block Overview i 15-67
15.2.10.3 Transmit BitOrderingot 15-68
15.2.10.4 RMII Transmit Timing Diagrams 15-69
15.2.11 IEEE 1588-2002 OVEIVIEW . ..\ttt it i i i ae s 15-72
15.2.11.1 Reference Timing Sourceo .. 15-74
15.2.11.2 Transmit Path Functions 15-74
15.2.11.3 Receive Path Functions 15-74
15.2.11.4 Time Stamp Error Margin i 15-75
15.2.11.5 Frequency Range of Reference Timing Clock 15-75
15.2.11.6 Advanced Time Stamp Feature Support 15-76

15.2.11.7 Peer-to-Peer PTP (Pdelay) Transparent Clock (P2P TC) Message
Support 15-76

15.2.11.8 CloCK TYPES . oot 15-78
15.2.11.9 PTP Processingand Control 15-79
15.2.11.10 Reference Timing Source (for Advance Timestamp Feature) ... 15-83
15.2.11.11 Transmit Path Functions 15-84
15.2.11.12 Receive Path Functions 15-84
15.2.12 System Time RegisterModule 15-85
15.2.13 Application BUS Interface i 15-87
15.3 Service Request Generationc.. i, 15-89
15.3.1 DMA Service REQUESESot ot 15-90
15.3.2 Power Management Service Requests 15-90
15.3.3 SystemTimeModule i 15-90
15.34 MAC Management Counter Service Requests 15-90
154 DebUg .. 15-91
155 Power Resetand Clock i, 15-91
15.6 ETH RegISters e 15-92
15.6.1 Register Description 15-92
15.6.2 Registers OVeIVIEWot e e 15-93
15.6.2.1 Registers Description 15-110
15.7 INtErcoNNEecCtSo 15-321
15.7.1 ETH PINS ..o 15-322
16 Universal Serial Bus (USB) 16-1
16.1 OVBIVIBW . o ottt e e 16-1
16.1.1 Features 16-1
16.1.2 Block Diagramt e 16-2
16.2 Functional Description 16-3
16.2.1 OTG Dual-Role Device (DRD) 16-3
16.2.2 USB HOSE . . oo 16-3
Reference Manual L-14 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

16.2.3 USB DEVICE . .ottt e e e e 16-4
16.2.4 FIFO Architecture 16-5
16.2.4.1 Host FIFO Architecture 16-5
16.2.4.2 Device FIFO Architecture 16-6
16.3 Programming Model 16-7
16.3.1 Core Initialization 16-7
16.3.2 Modes of Operationt 16-7
16.3.2.1 Overview: DMA/Slave modes, 16-8
16.3.2.2 DMA MOOEt 16-8
16.3.2.3 Slave Mode 16-8
16.4 Host Programming Model 16-12
16.4.1 Host Initialization i 16-13
16.4.2 Channel Initialization 16-13
16.4.3 Haltinga Channel i .. 16-14
16.4.4 Selecting the Queue Depth 16-15
16.4.5 Handling Babble Conditions 16-16
16.4.6 Handling Disconnects 16-16
16.4.7 Host Programming Operationscciuiniue.... 16-16
16.4.7.1 Writing the Transmit FIFO in Slave Mode 16-18
16.4.7.2 Reading the Receive FIFO in Slave Mode 16-19
16.4.7.3 Control Transactions in Host Slave Mode 16-20
16.4.7.4 Bulk and Control OUT/SETUP Transactions in Host Slave Mode 16-20
16.4.7.5 Bulk and Control IN Transactions in Host Slave Mode 16-23
16.4.7.6 Control Transactions in HostDMAMode 16-25
16.4.7.7 Bulk and Control OUT/SETUP Transactions in Host DMA Mode 16-25
16.4.7.8 Bulk and Control IN Transactions in DMAMode 16-31
16.4.7.9 Interrupt OUT Transactions in Slave Mode 16-33
16.4.7.10 Interrupt IN Transactions in Slave Mode 16-36
16.4.7.11 Interrupt OUT Transactions in DMAMode 16-38
16.4.7.12 Interrupt IN Transactionsin DMAMode 16-41
16.4.7.13 Isochronous OUT Transactions in Slave Mode 16-43
16.4.7.14 Isochronous IN Transactions in Slave Mode 16-46
16.4.7.15 Isochronous OUT Transactions in DMAMode 16-48
16.4.7.16 Isochronous IN Transactions in Host DMA Mode 16-50
16.5 Host Scatter-Gather DMAMode 16-52
16.5.1 OVBIVIBW . oo e 16-52
16.5.2 SPRAM ReqUIremMeNtSottt 16-52
16.5.3 Descriptor Memory Structures i 16-52
16.5.4 IN Memory Structure 16-56
16.5.5 OUT Memory Structuret 16-59
16.5.6 Host Scatter-Gather DMA Mode Programming Model 16-62
16.5.6.1 Channel Initialization 16-62
16.5.6.2 Asynchronous Transfers 16-62
Reference Manual L-15 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

16.5.6.3 Periodic Transfers i 16-64
16.6 Device Programming Model 16-69
16.6.1 Device Initialization 16-69
16.6.2 Endpoint Initialization 16-69
16.6.2.1 Initializationon USB Reset 16-69
16.6.2.2 Initialization on Enumeration Completion 16-70
16.6.2.3 Initialization on SetAddress Command 16-70
16.6.2.4 Initialization on SetConfiguration/Setinterface Command 16-71
16.6.2.5 Endpoint Activation 16-71
16.6.2.6 Endpoint Deactivation 16-72
16.6.2.7 Device DMA/Slave Mode Initialization 16-72
16.6.3 Device Programming Operations (Non-Descriptor DMA Mode) ... 16-73
16.6.3.1 OUT Data Transfers in Device Slave and Buffer DMA Modes .. 16-76
16.6.3.2 Control Transfersin Device Mode 16-81
16.6.3.3 IN Data Transfers in Device Slave and Buffer DMA Modes ... 16-102
16.7 Device Scatter-Gather DMAMode 16-126
16.7.1 Scatter/Gather DMA Mode 16-126
16.7.2 SPRAM ReEqQUIrEMENTS . . . oottt e 16-127
16.7.3 Descriptor Memory Structures 16-127
16.7.3.1 OUT Data Memory Structuret 16-128
16.7.3.2 Isochronous OUT i e 16-135
16.7.3.3 Non-Isochronous OUT i 16-135
16.7.3.4 IN Data Memory Structure 16-135
16.7.3.5 Descriptor Update Interrupt Enable Modes 16-141
16.7.3.6 DMA Arbitration in Scatter/Gather DMA Mode 16-141
16.7.3.7 Buffer Data Access on AHB in Scatter/Gather DMA Mode 16-141
16.7.4 Control TransferHandling 16-142
16.7.5 Interrupt Usage for Control Transfers 16-142
16.7.6 Application Programming Sequence 16-143
16.7.7 Internal Data Flow i 16-150
16.7.7.1 Three-Stage Control Write 16-150
16.7.7.2 Three-Stage ControlRead 16-153
16.7.7.3 Two-Stage Control Transfer 16-155
16.7.7.4 Back to Back SETUP During Control Write 16-156
16.7.7.5 Back-to-Back SETUPs During Control Read 16-159
16.7.7.6 Extra Tokens During Control Write Data Phase 16-161
16.7.7.7 Extra Tokens During Control Read Data Phase 16-163
16.7.7.8 Premature SETUP During Control Write Data Phase 16-165
16.7.7.9 Premature SETUP During Control Read Data Phase 16-168
16.7.7.10 Premature Status During Control Write 16-170
16.7.7.11 Premature Status During ControlRead 16-172
16.7.7.12 Lost ACK During Last Packet of ControlRead 16-174
16.7.8 Bulk IN Transfer Data Transaction in Scatter-Gather DMA Mode . 16-174
Reference Manual L-16 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

16.7.8.1 INterrupt usage oo 16-175
16.7.8.2 Application Programming Sequence 16-175
16.7.8.3 Internal Flow 16-177
16.7.9 Bulk OUT Data Transaction in Scatter-Gather Mode 16-180
16.7.9.1 Interrupt Usage e 16-180
16.7.9.2 Application Programming Sequence 16-181
16.7.9.3 Internal FIow 16-182
16.7.10 Interrupt IN Data Transaction in Scatter/Gather DMA Mode 16-184
16.7.11 Interrupt OUT Transfer i, 16-184
16.7.12 Isochronous IN Transfer 16-185
16.7.12.1 Isochronous Transfers in Scatter/Gather (Descriptor DMA) Mode
16-185
16.7.12.2 Internal FIow 16-187
16.7.13 Isochronous OUT Transfer 16-190
16.8 OTG Revision 1.3 Programming Model 16-192
16.8.1 A-Device Session Request Protocol 16-192
16.8.2 B-Device Session Request Protocol 16-193
16.8.3 A-Device Host Negotiation Protocol 16-195
16.8.4 B-Device Host Negotiation Protocol 16-196
16.9 Clock Gating Programming Model 16-197
16.9.1 Host Mode Suspend and Resume With Clock Gating 16-197
16.9.2 Host Mode Suspend and Remote Wakeup With Clock Gating ... 16-198
16.9.3 Host Mode Session End and Start With Clock Gating 16-199
16.9.4 Host Mode Session End and SRP With Clock Gating 16-199
16.9.5 Device Mode Suspend and Resume With Clock Gating 16-200
16.9.6 Device Mode Suspend and Remote Wakeup With Clock Gating . 16-200
16.9.7 Device Mode Session End and Start With Clock Gating 16-201
16.9.8 Device Mode Session End and SRP With Clock Gating 16-201
16.10 FIFORAM AIlOCAtioONt 16-201
16.10.1 Data FIFO RAM Allocation, 16-201
16.10.1.1 Device Mode RAM Allocationcvuv.... 16-203
16.10.1.2 Host Mode RAM Allocationcoiviun... 16-205
16.10.2 Dynamic FIFO Allocation, 16-206
16.10.2.1 HostMode 16-206
16.10.2.2 Device Mode e 16-207
16.11 Service Request Generation 16-209
16.12 Debug Behaviour 16-210
16.13 Power, Resetand Clock i, 16-210
16.14 Initialization and System Dependencies 16-210
16.15 REQIStErS . .o 16-211
16.15.1 Register Description 16-218
16.16 INTErCONNECES e 16-340
Reference Manual L-17 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

17 Universal Serial Interface Channel (USIC) 17-1
17.1 OV IV W . oo e e 17-1
1711 Features 17-1
17.2 Operatingthe USIC e 17-5
17.2.1 USIC Structure OVEIVIEW o ottt e e i e i e e 17-5
17.2.11 Channel Structure 17-5
17.2.1.2 INpUt Stageso e 17-5
17.2.1.3 Output Signals 17-7
17.2.1.4 Baud Rate Generator 17-8
17.2.1.5 Channel Events and Interrupts 17-9
17.2.1.6 Data Shiftingand Handling 17-9
17.2.2 Operating the USIC Communication Channel 17-13
17.2.2.1 Protocol Controland Status 17-14
17.2.2.2 Mode Control e 17-15
17.2.2.3 General Channel Events and Interrupts 17-16
17.2.2.4 Data Transfer Events and Interrupts 17-17
17.2.2.5 Baud Rate Generator Event and Interrupt 17-19
17.2.2.6 Protocol-specific Events and Interrupts 17-21
17.2.3 Operating the Input Stages 17-21
17.2.3.1 General Input Structure 17-22
17.2.3.2 Digital Filter 17-24
17.2.3.3 Edge Detection it 17-24
17.2.3.4 Selected Input Monitoring 17-25
17.2.35 LoopBackMode 17-25
17.2.4 Operating the Baud Rate Generator 17-25
17.24.1 Fractional Divider i 17-25
17.2.4.2 External Frequency Input 17-26
17.2.4.3 Divider Mode Countercuiuiiiiiniennn.. 17-26
17.2.4.4 Capture Mode Timer 17-27
17.2.4.5 Time QuantaCountert 17-28
17.2.4.6 Master and Shift Clock Output Configuration 17-29
17.2.5 Operating the TransmitDataPath 17-30
17.25.1 Transmit Buffering 17-30
17.25.2 Transmit Data ShiftMode 17-31
17.25.3 Transmit Control Information 17-32
17.25.4 Transmit Data Validation 17-33
17.2.6 Operating the Receive DataPath 17-35
17.2.6.1 Receive Buffering i 17-35
17.2.6.2 Receive Data ShiftMode 17-36
17.2.6.3 Baud Rate Constraintst 17-37
17.2.7 Hardware Port Control 17-37
17.2.8 Operating the FIFO DataBuffer 17-38
17.2.8.1 FIFO Buffer Partitioning 17-39
Reference Manual L-18 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

17.2.8.2 Transmit Buffer Events and Interrupts 17-40
17.2.8.3 Receive Buffer Events and Interrupts 17-44
17.2.8.4 FIFO BUffer Bypass . ..ot e 17-49
17.2.8.5 FIFO Access Constraints, 17-50
17.2.8.6 Handling of FIFO Transmit Control Information 17-51
17.3 Asynchronous Serial Channel ASC=UART) 17-53
17.3.1 Signal Description 17-53
17.3.2 Frame Format 17-54
17.3.2.1 Idle Time ... 17-55
17.3.2.2 Start Bit Detection 17-56
17.3.2.3 Data Field 17-56
17.3.2.4 Parity Bit ... e 17-56
17.3.25 SOPBIt(S) ... 17-56
17.3.3 Operatingthe ASC e 17-57
17.3.3.1 Bit TIMINGo 17-57
17.3.3.2 Baud Rate Generation i 17-58
17.3.3.3 Noise Detection i 17-59
17.3.3.4 Collision Detectiont 17-59
17.3.35 Pulse Shaping i 17-59
17.3.3.6 Automatic Shadow Mechanism 17-61
17.3.3.7 End of Frame Control 17-61
17.3.3.8 Mode Control Behavior 17-61
17.3.3.9 Disabling ASCMode i 17-62
17.3.3.10 Protocol Interrupt Events 17-62
17.3.3.11 Data Transfer Interrupt Handling 17-62
17.3.3.12 Baud Rate Generator Interrupt Handling 17-63
17.3.3.13 Protocol-Related Argumentand Error 17-63
17.3.3.14 Receive BufferHandling 17-63
17.3.3.15 Sync-Break Detection 17-64
17.3.3.16 Transfer Status Indication 17-64
17.3.4 ASC Protocol Registers 17-64
17.34.1 ASC Protocol Control Register 17-64
17.3.4.2 ASC Protocol Status Register 17-68
17.3.5 Hardware LIN Supportt 17-71
174 Synchronous Serial Channel (SSC) 17-73
17.4.1 Signal Description 17-73
174.1.1 Transmit and Receive Data Signals 17-75
17.4.1.2 ShiftClock Signals i 17-76
17.4.1.3 Slave SelectSignals i 17-78
17.4.2 Operatingthe SSC e 17-80
17.4.2.1 Automatic Shadow Mechanism 17-80
17.4.2.2 Mode Control Behavior 17-80
17.4.2.3 Disabling SSCMode i 17-81
Reference Manual L-19 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

17.4.2.4 Data Frame Control it 17-81
17.4.2.5 Parity Mode 17-81
17.4.2.6 TransferMode 17-83
17.4.2.7 Data Transfer Interrupt Handling 17-83
17.4.2.8 Baud Rate Generator Interrupt Handling 17-84
17.4.2.9 Protocol-Related Argumentand Error 17-84
17.4.2.10 Receive BufferHandling 17-84
17.4.2.11 Multi-lO SSC Protocols i 17-84
17.4.3 Operating the SSCinMasterMode 17-86
17.4.3.1 Baud Rate Generation 17-87
17.4.3.2 MSLS Generationt 17-87
17.4.3.3 Automatic Slave SelectUpdate 17-89
17.4.3.4 Slave Select Delay Generation 17-90
17.4.3.5 Protocol Interrupt Events i 17-91
17.4.3.6 End-of-Frame Control 17-92
17.4.4 Operatingthe SSCinSlaveMode 17-94
17.4.4.1 Protocol Interrupts 17-94
17.4.4.2 End-of-Frame Control i 17-95
17.4.5 SSC Protocol RegiSters 17-96
17.45.1 SSC Protocol Control Registers, 17-96
17.45.2 SSC Protocol Status Register 17-100
17.4.6 SSC Timing Considerations 17-102
17.4.6.1 Closed-loop Delay 17-102
17.4.6.2 Delay Compensation in Master Mode 17-105
17.4.6.3 Complete Closed-loop Delay Compensation 17-106
175 Inter-IC Bus Protocol (IIC) 17-107
175.1 Introduction 17-107
175.1.1 Signal Description 17-107
17.5.1.2 Symbols 17-108
175.1.3 Frame Format 17-109
17.5.2 Operatingthe lIC e 17-110
17521 TransmissionChain i i 17-111
17.5.2.2 Byte Stretching 17-111
17.5.2.3 Master Arbitration 17-111
17.5.2.4 Release of TBUF 17-112
17.5.2.5 Mode Control Behavior 17-112
17.5.2.6 Data Transfer Interrupt Handling 17-112
17.5.2.7 IIC Protocol Interrupt Events, 17-113
17.5.2.8 Baud Rate Generator Interrupt Handling 17-114
17.5.2.9 Receiver Address Acknowledge 17-114
17.5.2.10 ReceiverHandling 17-115
17.5.2.11 Receiver Status Information 17-115
17.5.3 Symbol Timing 17-116
Reference Manual L-20 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

17.5.3.1 Start Symbol 17-117
17.5.3.2 Repeated Start Symbol i 17-117
17.5.3.3 Stop Symbol 17-118
17534 DataBitSymbol 17-118
1754 Data FlowHandling 17-119
17.5.4.1 Transmit Data Formatsc.ccovieiiinann.. 17-119
17.5.4.2 Valid Master Transmit Data Formats 17-121
17.5.4.3 Master Transmit/Receive Modes 17-124
17.5.4.4 Slave Transmit/Receive Modes 17-126
17.5.5 IIC Protocol Registerso i 17-127
175.5.1 IIC Protocol Control Registers 17-127
17.5.5.2 IIC Protocol Status Register 17-130
17.6 Inter-IC Sound Bus Protocol (I1IS) 17-133
17.6.1 Introduction 17-133
17.6.1.1 Signal Description 17-133
17.6.1.2 Protocol Overview i 17-134
17.6.1.3 TransferDelay i 17-135
17.6.1.4 Connection of External Audio Components 17-135
17.6.2 Operatingthe lIS e 17-136
17.6.2.1 Frame Length and Word Length Configuration 17-136
17.6.2.2 Automatic Shadow Mechanism 17-137
17.6.2.3 Mode Control Behavior i, 17-137
17.6.2.4 TransferDelay 17-137
17.6.2.5 Parity Mode 17-139
17.6.2.6 TransferMode 17-139
17.6.2.7 Data Transfer Interrupt Handling 17-139
17.6.2.8 Baud Rate Generator Interrupt Handling 17-140
17.6.2.9 Protocol-Related Argumentand Error 17-140
17.6.2.10 Transmit Data Handling 17-140
17.6.2.11 Receive BufferHandling 17-141
17.6.2.12 Loop-Delay Compensation, 17-141
17.6.3 Operating the lISinMasterMode 17-141
17.6.3.1 Baud Rate Generationc i, 17-142
17.6.3.2 WA Generationiuiiiii . 17-143
17.6.3.3 Master Clock Output 17-143
17.6.3.4 Protocol Interrupt Events 17-144
17.6.4 Operating the lISinSlave Mode 17-144
17.6.4.1 Protocol Events and Interrupts 17-145
17.6.5 IIS Protocol Registers 17-145
17.6.5.1 IIS Protocol Control Registers 17-145
17.6.5.2 IIS Protocol Status Register 17-147
17.7 Service Request Generation 17-151
17.8 Debug Behaviour 17-151
Reference Manual L-21 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

17.9 Power, Resetand Clock 17-151
17.10 Initialization and System Dependencies 17-151
17.11 REgIStErS . .o 17-151
17.11.1 AddressS Map ... oo 17-155
17.11.2 Module Identification Registers 17-156
17.11.3 Channel Control and Configuration Registers 17-157
17.11.3.1 Channel Control Register 17-157
17.11.3.2 Channel Configuration Register 17-162
17.11.3.3 Kernel State Configuration Register 17-163
17.11.3.4 Interrupt Node Pointer Register 17-166
17.11.4 Protocol Related Registers i .. 17-167
17.11.4.1 Protocol Control Registerst 17-167
17.11.4.2 Protocol Status Register, 17-168
17.11.4.3 Protocol Status Clear Register 17-169
17.11.5 Input Stage Register 17-171
17.11.5.1 Input Control Registers 17-171
17.11.6 Baud Rate Generator Registers 17-176
17.11.6.1 Fractional Divider Register 17-176
17.11.6.2 Baud Rate Generator Register 17-177
17.11.6.3 Capture Mode Timer Register 17-180
17.11.7 Transfer Control and Status Registers 17-180
17.11.7.1 Shift Control Register 17-180
17.11.7.2 Transmission Control and Status Register 17-184
17.11.7.3 Flag Modification Registers, 17-190
17.11.8 Data Buffer Registers 17-192
17.11.8.1 Transmit Buffer Locations 17-192
17.11.8.2 Receive Buffer Registers RBUFO, RBUF1 17-193
17.11.8.3 Receive Buffer Registers RBUF, RBUFD, RBUFSR 17-199
17.11.9 FIFO Buffer and Bypass Registers 17-203
17.11.9.1 Bypass RegiSters 17-203
17.11.9.2 General FIFO Buffer Control Registers 17-206
17.11.9.3 Transmit FIFO Buffer Control Registers 17-212
17.11.9.4 Receive FIFO Buffer Control Registers 17-216
17.11.9.5 FIFO Buffer Data Registers 17-221
17.11.9.6 FIFO Buffer Pointer Registers 17-224
17.12 INErCONNECES 17-225
17.12.1 USIC Module O Interconnects, 17-226
17.12.2 USIC Module 1 Interconnectscovuiniunnn.. 17-233
17.12.3 USIC Module 2 Interconnectsccoiininnnn.. 17-238
18 Controller Area Network Controller (MultiCAN) 18-1
18.1 OVBIVIBW . o ot e 18-2
18.1.1 Features 18-2
Reference Manual L-22 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

18.1.2 Block Diagram e 18-4
18.2 CAN BaSICS . ottt e e 18-5
18.2.1 Addressing and Bus Arbitration 18-5
18.2.2 CAN Frame Formats 18-6
18.2.2.1 Data Frames e 18-6
18.2.2.2 Remote Frames i 18-8
18.2.2.3 Error Frames 18-10
18.2.3 The Nominal BitTime 18-11
18.2.4 Error Detection and Error Handling 18-12
18.3 MultiCAN Kernel Functional Description 18-14
18.3.1 Module Structure e 18-14
18.3.2 PortInputControl 18-16
18.3.3 CAN Node Controlt 18-17
18.3.3.1 Bit Timing Unit 18-18
18.3.3.2 Bitstream Processor 18-19
18.3.3.3 Error Handling Unit 18-20
18.3.3.4 CAN Frame Countert 18-21
18.3.3.5 CAN Node INterruptso e 18-21
18.3.4 Message Object List Structure o, 18-23
18.34.1 BaSICS .. 18-23
18.3.4.2 List of Unallocated Elements 18-24
18.3.4.3 Connectiontothe CANNodes 18-24
18.3.4.4 ListCommand Panel 18-25
18.3.5 CAN Node Analysis Featuresoiiiine.n.. 18-28
18.3.5.1 AnalyzerMode e 18-28
18.3.5.2 Loop-BackMode i 18-28
18.3.5.3 Bit Timing Analysis 18-29
18.3.6 Message Acceptance Filtering o L 18-32
18.3.6.1 Receive Acceptance Filtering 18-32
18.3.6.2 Transmit Acceptance Filtering 18-33
18.3.7 Message POStProcessing . . .« v o oo vi e i 18-35
18.3.7.1 Message ObjectInterrupts 18-35
18.3.7.2 Pending Messagest 18-37
18.3.8 Message Object Data Handling 18-39
18.3.8.1 Frame Reception i 18-39
18.3.8.2 Frame Transmission 18-42
18.3.9 Message Object Functionality 18-45
18.3.9.1 Standard Message Object 18-45
18.3.9.2 Single Data TransferMode 18-45
18.3.9.3 Single Transmit Trial 18-45
18.3.9.4 Message Object FIFO Structure 18-46
18.3.9.5 Receive FIFO e 18-48
18.3.9.6 Transmit FIFO 18-49
Reference Manual L-23 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

18.3.9.7 Gateway Mode 18-50
18.3.9.8 Foreign Remote Requests i 18-52
18.4 Service Request Generation 18-53
18.5 Debug behavior 18-55
18.6 Power, Resetand Clock 18-56
18.6.1 Clock Control 18-56
18.6.2 Module Clock Generation ..., 18-58
18.7 Register Description 18-59
18.7.1 Global Module Registers i 18-61
18.7.2 CAN Node Registerst 18-74
18.7.3 Message Object Reqgisters 18-93
18.7.4 MultiCAN Module External Registers 18-114
18.8 INtEICONNECTSot 18-120
18.8.1 Interfaces of the MultiCAN Module 18-120
18.8.2 Portand I/O LineControl, 18-121
18.8.2.1 Input/Output Function SelectioninPorts 18-121
18.8.2.2 MultiCAN Interrupt Output Connections 18-123
18.8.2.3 Connectionsto USIC Inputs, 18-123
19 Versatile Analog-to-Digital Converter (VADC) 19-1
191 OV IV W . oo e e e 19-1
19.2 Introduction and Basic Structure 19-4
19.3 Configuration of General Functions 19-9
19.3.1 General Clocking Scheme and Control 19-9
19.3.2 Priority Channel Assignment, 19-10
19.4 Module Activation and Power Savingc.ocvui.... 19-10
195 Conversion Request Generationcviuueinnn .. 19-11
19.5.1 Queued Request Source Handling 19-13
19.5.2 Channel Scan Request Source Handling 19-16
19.6 Request Source Arbitration 19-20
19.6.1 Arbiter Operation and Configuration 19-21
19.6.2 Conversion Start Mode 19-22
19.7 Analog Input Channel Configuration 19-24
19.7.1 Channel Parameters 19-24
19.7.2 Conversion TIMINGot 19-26
19.7.3 Alias Feature 19-27
19.7.4 Conversion MOOES ottt 19-28
19.7.5 Compare with Standard Conversions (Limit Checking) 19-29
19.7.6 Utilizing Fast Compare Mode 19-31
19.7.7 Boundary FlagControl i 19-32
19.8 Conversion ResultHandling 19-33
19.8.1 Storage of Conversion Results 19-33
19.8.2 Data Alignment e 19-35
Reference Manual L-24 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

19.8.3 Wait-for-Read Mode 19-36
19.8.4 Result FIFOBuUffer e 19-37
19.8.5 Result Event Generationttt 19-38
19.8.6 Data Modification 19-39
19.9 Synchronization of Conversions, 19-46
19.9.1 Synchronized Conversions for Parallel Sampling 19-46
19.9.2 Equidistant Sampling 19-49
19.10 Safety Features 19-50
19.10.1 Broken Wire Detection i 19-50
19.10.2 Signal Path TestModes i 19-51
19.10.3 Configuration of Test Functions 19-52
19.11 External MultiplexerControl i 19-53
19.12 Service Request Generationc.o ittt 19-55
19.13 REgIStEIS . .ot 19-57
19.13.1 Module Identification 19-60
19.13.2 System RegiSterso 19-61
19.13.3 General Registers e 19-64
19.13.4 Arbitration and Source Registers o 19-66
19.13.5 Channel Control Registers 19-94
19.13.6 Result Registers e 19-99
19.13.7 Miscellaneous Registersc. .. 19-107
19.13.8 Service Request Registers 19-115
19.14 INTErCONNECES 19-127
19.14.1 Product-Specific Configuration 19-127
19.14.2 Analog Module Connections in the XMC4500 19-129
19.14.3 Digital Module Connections in the XMC4500 19-131
20 Delta-Sigma Demodulator (DSD), 20-1
20.1 OV IV W . oo 20-1
20.2 Introduction and Basic Structure 20-4
20.3 Configuration of General Functions 20-5
20.4 Input Channel Configuration 20-5
20.4.1 Modulator Clock Selection and Generation 20-7
20.4.2 Input Data Selection 20-9
20.4.3 External Modulator 20-10
20.4.4 Input Path Control 20-10
20.5 Main Filter Chain 20-11
20.5.1 Comb Filter e 20-11
20.5.2 Integrator Stage oo e 20-12
20.6 Auxiliary Filter 20-13
20.7 Conversion ResultHandling 20-15
20.8 Service Request Generation 20-15
20.9 ResoIver SUpport 20-16
Reference Manual L-25 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

20.9.1 Carrier Signal Generation 20-16
20.9.2 Return Signal Synchronization 20-17
20.10 Time-Stamp SUPPOIto 20-19
20.11 REgIStErS . .o 20-19
20.111 Module Identification 20-20
20.11.2 System Registers e 20-21
20.11.3 General RegiSterst e 20-23
20.11.4 Input Path Control 20-24
20.115 Filter Configuration 20-28
20.11.6 Conversion Result Handling 20-32
20.11.7 Service Request Registers i 20-34
20.11.8 Miscellaneous Registers i, 20-35
20.12 INtEIrCONNECESo e 20-39
20.121 Product-Specific Configuration 20-39
20.12.2 Digital Module Connections in the XMC4500 20-40
21 Digital to Analog Converter (DAC)« 211
21.1 OVBIVIBW . o ottt e 211
2111 Features 21-1
21.1.2 Block Diagramt e 21-2
21.2 Operating MOdest 21-3
21.21 Hardware features i 21-3
21211 Trigger Generators (TG)ot e 21-3
21.2.1.2 Data FIFO buffer (FIFO) i 21-4
21.2.1.3 Data output stage it 21-5
21.2.14 Pattern Generators (PG) - Waveform Generator 21-6
21.2.1.5 Noise Generators (NG) - Pseudo Random Number Generator ... 21-7
21.2.1.6 Ramp Generators (RG)t 21-7
21.2.2 Entering any OperatingMode 21-8
21.2.3 SingleValue Mode e 21-8
21.2.4 Data ProcessingMode iiiiiiiia 21-9
21.2.4.1 FIFODataHandling 21-9
21.25 Pattern Generation Mode 21-10
21.2.6 Noise Generation Modet 21-11
21.2.7 Ramp Generation Mode 21-12
21.3 Service Request Generation, 21-12
21.4 Power, Resetand Clock 21-13
215 Initialisation 21-13
21.6 Registers 21-15
21.6.1 Address Mapot 21-15
21.6.2 Register OVEIVIEWot e 21-15
21.6.3 Register Description 21-16
21.6.3.1 DAC_ID ReQISter . .\ttt 21-16
Reference Manual L-26 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

21.6.3.2 DAC Configuration Registers 21-17
21.6.3.3 DAC Data Registerst 21-24
21.6.34 DAC Pattern Registers, 21-25
21.7 INTEICONNECES e 21-28
2171 Analog Connectionso 21-28
21.7.2 Digital ConNNectionsttt e 21-28
21.7.21 Service Request Connectionscvvun... 21-29
21.7.2.2 Trigger CONNECtioNS oottt 21-29
21.7.2.3 Synchronization Interface of the Pattern Generator 21-29
22 Capture/Compare Unit4 (CCU4) ..., 22-1
22.1 OVBIVIBW . oottt e e 22-1
2211 Features 22-2
22.1.2 Block Diagramt e 22-4
22.2 Functional Description 22-6
2221 CCAY OVEIVIEW . o ottt e e e e e 22-6
2222 Input Selector 22-8
22.2.3 Connection Matrix 22-10
22.2.4 Starting/Stopping the Timer 22-12
22.25 Counting Modest 22-13
22.25.1 Calculating the PWM Period and Duty Cycle 22-13
22.25.2 Updating the Period and Duty Cycle 22-14
22.25.3 Edge Aligned Mode 22-18
22254 Center Aligned Mode i 22-19
22.255 Single ShotMode i 22-20
22.2.6 Active/Passive RUleS 22-21
22.2.7 External EventsControl i 22-21
22271 External Start/Stop 22-22
22.2.7.2 External Counting Direction 22-24
22.2.7.3 External Gating Signal 22-26
22274 External Count Signal i 22-26
22.2.75 External Load 22-27
22.2.7.6 External Capturet e 22-28
22.2.7.7 External Modulation 22-34
22.2.7.8 TRAP FUNCHON . ..o e 22-36
22.2.7.9 Status BitOverride 22-38
22.2.8 Multi-Channel Control i, 22-39
22.2.9 Timer Concatenationiit it 22-42
22.2.10 PWMDIthering e e e 22-47
22211 Prescaler 22-52
222111 Normal PrescalerMode, 22-53
22.2.11.2 Floating Prescaler Mode i . 22-53
22.2.12 CCUA USAGE .« ittt ettt e e e 22-55
Reference Manual L-27 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

22.2.12.1 PWM Signal Generation it 22-55
22.2.12.2 PrescalerUsageo, 22-57
22.2.12.3 PWMDIther 22-59
22.2.12.4 Capture Mode Usageot 22-62
22.3 Service Request Generation 22-67
22.4 Debug Behavior 22-70
225 Power, Resetand Clock, 22-70
2251 ClocKs .. o 22-70
2252 Module Reset 22-71
2253 POWer . . 22-72
22.6 Initialization and System Dependencies 22-72
22.6.1 Initialization Sequence 22-72
22.6.2 System Dependencies 22-72
22.7 REgIStErS . . e 22-74
2271 Global Registers 22-80
22.7.2 Slice (CC4y) Registers 22-97
22.8 INEICONNECES 22-130
22.8.1 CCUAD PINS oot e e 22-130
22.8.2 CCUAL PINS . ittt e e 22-135
22.8.3 CCUA2 PINS o vttt e e 22-141
22.8.4 CCUAB PINS vttt e e e 22-145
23 Capture/Compare Unit8 (CCUS8)ciiviiiinnn.. 23-1
23.1 OVBIVIBW . oottt e e 23-1
231.1 Features e 23-2
23.1.2 Block Diagramot 23-5
23.2 Functional Description 23-7
23.2.1 OVEIVIEBW . o ot e e 23-7
23.2.2 INPUE Selector 23-9
23.2.3 Connection Matrix 23-11
23.2.4 Start/Stop Control 23-13
23.2.5 Counting MOdESottt 23-14
23.25.1 Calculating the PWM Period and Duty Cycle 23-15
23.25.2 Updating the Period and Duty Cycle 23-15
23.25.3 Edge Aligned Mode 23-19
23.254 Center Aligned Mode i 23-20
23.255 Single ShotMode 23-21
23.2.6 Active/Passive Rules 23-22
23.2.7 Compare Modes e 23-22
23.2.7.1 Edge Aligned Compare Modes 23-27
23.2.7.2 Center Aligned Compare Modes 23-31
23.2.8 External Events Control 23-34
23.2.8.1 External Start/Stop 23-34
Reference Manual L-28 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

23.2.8.2 External Counting Direction 23-37
23.2.8.3 External Gating Signal 23-38
23.2.84 External Count Signal i 23-39
23.2.85 External Load 23-40
23.2.8.6 External Capture e 23-41
23.2.8.7 External Modulation i 23-46
23.2.8.8 Trap Function 23-48
23.2.8.9 Status BitOverride 23-51
23.2.9 Multi-Channel Support 23-52
23.2.10 Timer Concatenation i 23-57
23.2.11 Output Parity Checker i 23-62
23.2.12 PWMDIthering e 23-66
23.2.13 Prescaler 23-70
23.2.13.1 Normal PrescalerMode 23-71
23.2.13.2 Floating Prescaler Mode 23-71
23.2.14 CCUBUSAgE . ..ttt 23-73
23.2.14.1 PWM Signal Generation 23-73
23.2.14.2 PrescalerUsagec.iiiiiiiii .. 23-75
23.2.14.3 PWMDIther e 23-78
23.2.14.4 Capture Mode Usageottt 23-80
23.2.14.5 Parity CheckerUsagec ... 23-85
23.3 Service Request Generation i 23-88
23.4 Debug Behavior 23-91
235 Power, Resetand Clock 23-91
2351 CloCKS .. 23-92
2352 Module Reset 23-92
2353 POWer . . 23-93
23.6 Initialization and System Dependencies 23-93
23.6.1 Initialization Sequence 23-93
23.6.2 System Dependencies 23-94
23.7 REQISIEIS . . .o 23-95
23.7.1 Global Registers i 23-103
23.7.2 Slice (CC8y) Registerst 23-123
23.8 INtErcoNNEecCtSo 23-167
23.8.1 CCUBO PINS . oottt e 23-167
23.8.2 CCUBL PINS . .t ottt e e 23-175
24 Position Interface Unit (POSIF) 24-1
24.1 OVEIVIEW .ttt et et e e e e e 24-1
241.1 Features 24-2
2412 Block Diagramot 24-3
24.2 Functional Description 24-4
2421 OVeIVIEW . o ot e 24-4
Reference Manual L-29 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

24.2.2 Function Selector 24-6
24.2.3 Hall Sensor Control i 24-7
24.2.4 Quadrature Decoder Control i 24-13
24241 Quadrature Clock and Direction decoding 24-16
24.2.4.2 Index Control 24-17
24.2.5 Stand-Alone Multi-ChannelMode 24-18
24.2.6 Synchronous Start i 24-18
24.2.7 Usingthe POSIF e 24-19
24271 Hall SensorMode Usageo it .. 24-19
24.2.7.2 Quadrature Decoder Mode usagecovn... 24-21
24.2.7.3 Stand-alone Multi-ChannelMode 24-27
24.3 Service Request Generationc. ... 24-28
24.3.1 Hall SensorModeflags 24-28
24.3.2 Quadrature Decoder Flagsc .. 24-30
24.4 Debug Behavior 24-32
24.5 Power, Resetand Clock 24-33
245.1 ClOCKS .« oo 24-33
24.5.2 Module ReSEeto 24-33
2453 PO . 24-34
24.6 Initialization and System Dependencies 24-34
246.1 Initialization 24-34
24.6.2 System Dependencies e 24-35
24.7 RegiSterS . . 24-36
24.7.1 Globalregisters 24-38
24.7.2 Hall Sensor Mode Registersco ... 24-45
24.7.3 Multi-Channel Mode Registers 24-47
24.7.4 Quadrature Decoder Registers 24-52
2475 Interrupt Registers e 24-53
24.8 INTEICONNECES e 24-60
24.8.1 POSIFO PINS ... e 24-61
24.8.2 POSIFL PINS ... 24-65
25 General Purpose I/0O Ports (PORTS) 25-1
25.1 OV IV W . oo e 25-1
25.1.1 Features 25-2
25.1.2 Block Diagram 25-2
25.1.3 Definition of Terms 25-3
25.2 GPIO and Alternate Function i 25-4
25.2.1 INpUt Operation e 25-4
25.2.2 Output Operation e e 25-5
253 Hardware Controlled I/Os 25-6
25.4 Power Saving Mode Operation 25-7
25.5 Analog Ports 25-8
Reference Manual L-30 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Table of Contents

25.6 Power, Resetand Clock 25-9
25.7 Initialization and System Dependencies 25-10
25.8 REgISterS . .o 25-11
2581 Port Input/Output Control Registers 25-14
25.8.2 Pad Driver Mode Register, 25-18
25.8.3 Pin Function Decision Control Register 25-22
25.8.4 Port Output Register i 25-30
25.8.5 Port Output Modification Register 25-31
25.8.6 Port Input Registert e 25-32
25.8.7 Port Pin Power Save Register i, 25-33
25.8.8 Port Pin Hardware Select Register 25-34
25.9 Package PinSummary 25-36
25.10 POrt IO FUNCLIONSo 25-42
25.10.1 PortI/O FunctionTable 25-43
26 Startup MOdES 26-1
26.1 OVBIVIBW . o o e 26-1
26.1.1 Features 26-1
26.2 SArtUP MOTES . . o ottt 26-3
26.2.1 Reset types and corresponding bootmodes 26-3
26.2.2 Initial boot sequence 26-4
26.2.3 Boot mode selection 26-5
26.2.4 Normal bootmode 26-6
26.2.5 Boot from PSRAM 26-11
26.2.6 Alternative boot mode - AddressO (ABM-0) 26-12
26.2.7 Alternative boot mode - Address1 (ABM-1) 26-15
26.2.8 Fallback ABM 26-15
26.2.9 ASCBSLMOCE . ..ottt 26-15
26.2.10 CANBSLMOOE .. ittt e 26-18
26.2.11 Boot Mode Index (BMI) 26-21
26.3 Debug behavior 26-24
26.3.1 Boot modes and hardware debugger support 26-24
26.3.2 Failuresand handling 26-25
26.4 Power, Resetand Clock i iiinnn.. 26-27
27 Debug and Trace System (DBG) ..., 27-1
27.1 OV IV W . o ot e 27-1
27.2 Debug System Operationttt 27-3
27.21 Flash Patch Breakpoint (FPB) 27-4
27.2.2 Data Watchpointand Trace (DWT) ..., 27-4
27.2.3 Instrumentation Trace Macrocell (ITM) 27-4
27.2.4 Embedded Trace Macrocell (ETM) i 27-4
27.25 Trace Port Interface Unit (TPIU) 27-5
27.3 Power, Resetand Clock 27-5
Reference Manual L-31 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Table of Contents

27.3.1 RESel . . 27-5
27.3.1.1 CoreSight™resets, 27-5
27.3.1.2 Serial Wire interface driven systemreset 27-6
27.4 Initialization and System Dependencies 27-6
2741 Debug accesses and Flash protection 27-6
2742 Haltafterreset ... 27-6
27.4.3 Halting Debug and Peripheral Suspend 27-9
27.4.4 TIMeStampingot 27-11
27.45 Debug tool interface access (SWJ-DP) 27-11
27.45.1 Switch from JTAGtOSWD 27-11
27.45.2 Switch from SWDto JTAGt 27-11
27.4.6 ID COUES .ottt 27-11
27.4.7 ROM Table e 27-12
27.4.8 JTAG debug port 27-12
275 Debug System Registerst 27-14
27.6 Debugand Trace Signals 27-14
27.6.1 Internal pull-up and pull-down on JTAG pins 27-15
27.6.2 Debug Connectorttt 27-16
Reference Manual L-32 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

About this Document

About this Document

This Reference Manual is addressed to embedded hardware and software developers.
It provides the reader with detailed descriptions about the behavior of the XMC4500
series functional units and their interaction.

The manual describes the functionality of the superset device of the XMC4500
microcontroller series. For the available functionality (features) of a specific XMC4500
derivative (derivative device), please refer to the respective Data Sheet. For simplicity,
the various device types are referenced by the collective term XMC4500 throughout this
manual.

XMC4000 Family User Documentation
The set of user documentation includes:

* Reference Manual
— decribes the functionality of the superset device.
- Data Sheets
— list the complete ordering information, available features and electrical
characteristics of derivative devices.
e Errata Sheets
— list deviations from the specifications given in the related Reference Manual or
Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated
knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions
of those documents.

Related Documentation
The following documents are referenced:
« ARM® Cortex™-M4

— Technical Reference Manual

— User Guide, Reference Material

« ARM®v7-M Architecture Reference Manual
+ AMBA® 3 AHB-Lite Protocol Specification

Copyright Notice

* Portions of SDMMC chapter Copyright © 2010 by Arasan Chip Systems, Inc. All
rights reserved. Used with permission.

« Portions of CPU chapter Copyright © 2009, 2010 by ARM, Ltd. All rights reserved.
Used with permission.

Reference Manual P-1 V1.0, 2012-02
Preface, V1.2 Subject to Agreement on the Use of Product Information

http://www.infineon.com/xmc4000

o .. XMC4500
< mfmeon XMC4000 Family

About this Document

Portions of ETH, USB and GPDMA chapter Copyright © 2009, 2010 by Synopsys,
Inc. All rights reserved. Used with permission.

Text Conventions

This document uses the following naming conventions:

Functional units of the device are given in plain UPPER CASE. For example: “The
USICO unit supports...".
Pins using negative logic are indicated by an overline. For example: “The WAIT input
has...”.
Bit fields and bits in registers are generally referenced as
“Module_RegisterName.BitField” or “Module_RegisterName.Bit". For example: “The
USICO_PCR.MCLK bit enables the...”. Most of the register names contain a module
name prefix, separated by an underscore character “_” from the actual register name
(for example, “USICO_PCR”, where “USICO0” is the module name prefix, and “PCR”
is the kernel register name). In chapters describing the kernels of the peripheral
modules, the registers are mainly referenced with their kernel register names. The
peripheral module implementation sections mainly refer to the actual register names
with module prefixes.
Variables used to describe sets of processing units or registers appear in mixed
upper and lower cases. For example, register name “MOFCRnN” refers to multiple
“MOFCR?” registers with variable n. The bounds of the variables are always given
where the register expression is first used (for example, “n = 0-31"), and are repeated
as needed in the rest of the text.
The default radix is decimal. Hexadecimal constants are suffixed with a subscript
letter “H”, as in 100,,. Binary constants are suffixed with a subscript letter “B”, as in:
111;.
When the extent of register fields, groups register bits, or groups of pins are
collectively named in the body of the document, they are represented as
“NAMEIA:B]”, which defines a range for the named group from B to A. Individual bits,
signals, or pins are given as “NAME[C]” where the range of the variable C is given in
the text. For example: CFG[2:0] and SRPNJO0].
Units are abbreviated as follows:
— MHz = Megahertz
— us = Microseconds
— kBaud, kbit/s = 1000 characters/bits per second
— MBaud, Mbit/s, Mbps = 1,000,000 characters/bits per second
— Kbyte, KB = 1024 bytes of memory
— Mbyte, MB = 1048576 bytes of memory
In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by
1024. Hence, the Kbyte unit scales the expression preceding it by 1024. The
kBaud unit scales the expression preceding it by 1000. The M prefix scales by
1,000,000 or 1048576. For example, 1 Kbyte is 1024 bytes, 1 Mbyte is

Reference Manual pP-2 V1.0, 2012-02
Preface, V1.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

About this Document

1024 x 1024 bytes, 1 kBaud/kbit are 1000 characters/bits per second,
1 MBaud/Mbit are 1000000 characters/bits per second, and 1 MHz is 1,000,000
Hz.

« Data format quantities are defined as follows:

Byte = 8-bit quantity

— Half-word = 16-bit quantity

Word = 32-bit quantity

Double-word = 64-bit quantity

Bit Function Terminology

In tables where register bits or bit fields are defined, the following conventions are used
to indicate the access types.

Table 1 Bit Function Terminology

Bit Function Description

rw The bit or bit field can be read and written.

rwh As rw, but bit or bit field can be also set or reset by hardware. If

not otherwise documented the software takes priority in case of
a write conflict between software and hardware.

r The bit or bit field can only be read (read-only).

w The bit or bit field can only be written (write-only). A read to this
register will always give a default value back.

rh This bit or bit field can be modified by hardware (read-hardware,
typical example: status flags). A read of this bit or bit field give
the actual status of this bit or bit field back. Writing to this bit or
bit field has no effect to the setting of this bit or bit field.

Register Access Modes

Read and write access to registers and memory locations are sometimes restricted. In
memory and register access tables, the following terms are used.

Table 2 Register Access Modes

Symbol Description

U Access permitted when software executes on Unprivileged level.

PV Access permitted when software executes on Privileged level.

32 Only 32-bit word accesses are permitted to this register/address range.
NC No change, indicated register is not changed.

Reference Manual P-3 V1.0, 2012-02

Preface, V1.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

About this Document

Table 2 Register Access Modes (cont'd)

Symbol Description

BE Indicates that an access to this address range generates a Bus Error.

nBE Indicates that no Bus Error is generated when accessing this address
range.

Reserved Bits

Register bit fields named Reserved or 0 indicate unimplemented functions with the
following behavior:

* Reading these bit fields returns 0.
¢ These bit fields should be written with O if the bit field is defined as r or rh.
¢ These bit fields must to be written with O if the bit field is defined as rw.

Abbreviations and Acronyms
The following acronyms and terms are used in this document:

ADC Analog-to-Digital Converter

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

ASC Asynchronous Serial Channel

BMI Boot Mode Index

BROM Boot ROM

CAN Controller Area Network

CMSIS Cortex Microcontroller Software Interface Standard
CPU Central Processing Unit

CRC Cyclic Redundancy Code

CCu4 Capture Compare Unit 4

CCuU8 Capture Compare Unit 8

DAC Digital to Analog Converter

DSD Delta Sigma Demodulator

DSRAM Data SRAM

DMA Direct Memory Access

EBU External Bus Interface

ECC Error Correction Code

Reference Manual P-4 V1.0, 2012-02

Preface, V1.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

About this Document

ERU Event Request Unit

ETH Ethernet Unit

FCE Flexible CRC Engine

FCS Flash Command State Machine

FIM Flash Interface and Control Module
FPU Floating Point Unit

GPDMA General Purpose Direct Memory Access
GPIO General Purpose Input/Output

HMI Human-Machine Interface

IIc Inter Integrated Circuit (also known as 12C)
s Inter-IC Sound Interface

I/O Input / Output

JTAG Joint Test Action Group = IEEE1149.1
LED Light Emitting Diode

LEDTS LED and Touch Sense (Control Unit)
LIN Local Interconnect Network

MPU Memory Protection Unit

MSB Most Significant Bit

NC Not Connected

NMI Non-Maskable Interrupt

NVIC Nested Vectored Interrupt Controller
OCDS On-Chip Debug System

OTP One Time Programmable

PBA Peripheral Bridge AHB to AHB
PFLASH Program Flash Memory

PLL Phase Locked Loop

PMU Program Memory Unit

POSIF Position Interface

PSRAM Program SRAM

RAM Random Access Memory

RTC Real Time Clock

SCU System Control Unit

Reference Manual P-5 V1.0, 2012-02

Preface, V1.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

About this Document

SDMMC Secure Digital / Multi Media Card (Interface)
SDRAM Synchronous Dynamic Random Access Memory
SFR Special Function Register

SPI Serial Peripheral Interface

SRAM Static RAM

SR Service Request

SSC Synchronous Serial Channel

SSW Startup Software

UART Universal Asynchronous Receiver Transmitter
ucB User Configuration Block

UsB Universal Serial Bus

usiC Universal Serial Interface Channel

WDT Watchdog Timer

Reference Manual P-6 V1.0, 2012-02

Preface, V1.2

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Introduction

Reference Manual V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

1 Introduction

The XMC4500 series belongs to the XMC4000 family of industrial microcontrollers
based on the ARM Cortex-M4 processor core. The XMC4500 series devices are
optimized for electrical motor control, power conversion, industrial connectivity and
sense & control applications.

The growing complexity of today's energy efficient embedded control applications are
demanding microcontroller solutions with higher performance CPU cores featuring DSP
(Digital Signal Processing) and FPU (Floating Point Unit) capabilities as well as
integrated peripherals that are optimized for performance. Complemented with a
development environment designed to shorten product development time and increase
productivity, the XMC4500 series of microcontrollers take advantage of Infineon's
decades of experience in microcontroller design, providing an optimized solution to meet
the performance challenges of today's embedded control applications.

1.1 Overview

The XMC4500 series devices combine the extended functionality and performance of
the ARM Cortex-M4 core with powerful on-chip peripheral subsystems and on-chip
memory units. The following key features are available in the XMC4500 series devices:

CPU Subsystem

« CPU Core

High Performance 32-bit ARM Cortex-M4 CPU

16-bit and 32-bit Thumb2 instruction set

— DSP/MAC instructions

System timer (SysTick) for Operating System support

* Floating Point Unit

* Memory Protection Unit

* Nested Vectored Interrupt Controller

« Two General Purpose DMA with up to 12 channels

« Event Request Unit (ERU) for programmable processing of external and internal
service requests

* Flexible CRC Engine (FCE) for multiple bit error detection

On-Chip Memories

* 16 KB on-chip boot ROM

* 64 KB on-chip high-speed program memory

* 64 KB on-chip high speed data memory

« 32 KB on-chip high-speed communication

* 1024 KB on-chip Flash Memory with 4 KB instruction cache

Reference Manual 1-1 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

Communication Peripherals

Ethernet MAC module capable of 10/100 Mbit/s transfer rates

Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY
Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with 3 nodes, 64
message objects, data rate up to 1 Mbit/s

Six Universal Serial Interface Channels (USIC), usable as UART, double-SPI,
quadSPI, IIC, IS and LIN interfaces

LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

SD and Multi-Media Card interface (SDMMC) for data storage memory cards
External Bus Interface Unit (EBU) enabling communication with external memories
and off-chip peripherals like SRAM, SDRAM, NOR, NAND and Burst Flash.

Analog Frontend Peripherals

Four Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each with
input out-of-range comparators for overvoltage detection

Delta Sigma Demodulator with four channels, digital input stage for A/D signal
conversion as digital filter input stage for direct sigma-delta modulator usage
Digital-Analogue Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

Two Capture/Compare Units 8 (CCU8) for motor control and power conversion
Four Capture/Compare Units 4 (CCU4) for use as general purpose timers

Two Position Interfaces (POSIF) for hall and quadratur encoders and motor
positioning

Window Watchdog Timer (WDT) for safety sensitive applications

Die Temperature Sensor (DTS)

Real Time Clock module with alarm support

System Control Unit (SCU) for system configuration and control

Input/Output Lines

Programmable port driver control module (PORTS)
Individual bit addressability

Tri-stated in input mode

Push/pull or open drain output mode

Boundary scan test support over JTAG interface

On-Chip Debug Support

Full support for debug features: 8 breakpoints, CoreSight, trace
Various interfaces: ARM-JTAG, SWD, single wire trace

Reference Manual 1-2 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Packages

« PG-LQFP-144

+ PG-LQFP-100

« PG-LFBGA-144

Introduction

Note: For details about package availability for a particular derivative please check the
datasheet. For information on available delivery options for assembly support and
general package see http://www.infineon.com/packages

1.1.1 Block Diagram
The diagram below shows the functional blocks and their basic connectivity within the

XMC4500 System.
System System
D Masters D Slaves
ARM® Cortex™-M4
WDT
GPDMAO GPDMAL Ethernet gﬁg
System DCode ICode FCE
[Bus Matrix]
Data Code
PMU PSRAM DSRAM1 DSRAM2 EBU
ROM & Flash
usico || psp |[|PosiFi||ccuso || ccusy LEDTSO| | ccu4s || PORTS || DAC
ﬁ Peripherals 0 ﬁ ﬁ H ﬁ Penghiﬂl 1 >
ERUL || vADC [[PosiFo|| ccu4o || ccusr || ccuaz [|spmmc]| usicz || usict || caN
Figure 1-1 XMC4500 System
Reference Manual 1-3 V1.0, 2012-02

Architectural Overview, V1.1

Subject to Agreement on the Use of Product Information

http://www.infineon.com/packages

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

1.2 CPU Subsystem

The XMC4500 system core consists of the CPU (including FPU and MPU) and the
memory interface blocks for program and data memories - PMU and EBU.

Central Processing Unit (CPU)

The Cortex-M4 processor is built on a high-performance processor core with a 3-stage
pipelined Harvard architecture, making it ideal for demanding embedded applications.
The processor delivers exceptional power efficiency through an efficient instruction set
and a design optimized for energy efficient control applications. To address the growing
complexity of embedded control it also includes a IEEE754-compliant single-precision
floating-point computation and a range of single-cycle/SIMD multiplication and multiply-
and-accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements
tightly-coupled system components that reduce processor area while significantly
improving interrupt handling and system debug capabilities.

To ensure high code density and reduced program memory requirements the processor
also implements a version of the Thumb® instruction set based on Thumb-2 technology.
The instruction set provides the exceptional performance expected of a modern 32-bit
architecture with the high code density of 8-bit and 16-bit microcontrollers.

Floating Point Unit (FPU)

The Floating-point unit (FPU) provides IEEE754-compliant operations on single
precision, 32-bit, floating-point values.

Memory Protection Unit (MPU)

The MPU improves system reliability by defining the memory attributes for different
memory regions. It provides fine grain memory control, enabling applications to utilize
multiple privilege levels, separating and protecting code, data and stack on a task-by-
task basis. Up to eight different regions are supported as well as an optional predefined
background region. These features are becoming critical to support safety requirements
in many embedded applications.

Programmable Multiple Priority Interrupt System (NVIC)

The XMC4500 implements the ARM NVIC with 112 interrupt nodes and 64 priority levels.
Most interrupt sources are connected to a dedicated interrupt node. In addition the
XMC4500 allows to route service request directly to dedicated units like DMA, Timer and
ADC. In some cases, multi-source interrupt nodes are incorporated for efficient use of
system resources. These nodes can be activated by several source requests and are
controlled via interrupt sub node control registers.

Reference Manual 1-4 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

Direct Memory Access (GPDMA)

The GPDMA is a highly configurable DMA controller that allows high-speed data
transfers between peripherals and memories. Complex data transfers can be done with
minimal intervention of the processor, keeping the CPU resources free for other
operations. Provides multi block, scatter/gather and linked list transfers.

Flexible CRC Engine (FCE)

The FCE provides a parallel implementation of Cyclic Redundancy Code (CRC)
algorithms. Itimplements the IEEE 802.3 CRC32, the CCITT CRC16 and the SAE J1850
CRC8 polynomials. The primary target of FCE is to be used as a hardware acceleration
engine for software applications or operating systems services using CRC signatures.

1.3 On-Chip Memories

The on-chip memories provide zero-waitstate accesses to code and data. The memories
can also be accessed concurrently from various system masters.

Various types of dedicated memories are available on-chip. The suggested use of the
memories aims to improve performance and system stability in most typical application
cases. However, the user has the flexibility to use the memories in any other way in order
to fulfill application specific requirements.

In order to meet the needs of applications where more peripherals are required the
External Bus Unit (EBU) also provides means to optionally attach a broad variety of
external memories.

Boot ROM (BROM)

The Boot ROM memory contains the boot code and the exception vector table. The basic
system initialization sequence code, also referred to as firmware, is executed
immediately after reset release.

Flash memory

The Flash is for nonvolatile code or constant data storage. The single supply Flash
module is programmable at production line end and in application via built-in erase and
program commands. Read and write protection mechanism are offered. A hardware
error correction ensures data consistency over the whole life time under rugged
industrial environment and temperatures.

The integrated cache provides an average performance boost factor of 3 in code
execution compared to uncached execution.

Reference Manual 1-5 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

Code RAM (PSRAM)

The Code RAM is intended for user code or Operating System data storage. The
memory is accessed via the Bus Matrix and provides zero-wait-state access for the CPU
for code execution or data access.

System RAM (DSRAM1)

The System RAM is intended for general user data storage. The System RAM is
accessed via the Bus Matrix and provides zero-wait-state access for data.

Communication RAM (DSRAM2)

The Communication RAM is intended for use by communication interface units like the
USB and Ethernet modules.

1.4 Communication Peripherals

Communication features are key requirements in today’s industrial systems. The
XMC4500 offers a set of peripherals supporting advanced communication protocols.
Besides Ethernet, USB, CAN and the USIC the XMC4500 provides interfaces to various
memories as well as a unit to realize a human-machine interface via LED and Touch
Sense.

LED and Touch Sense (LEDTS)

The LEDTS module drives LEDs and controls touch pads used in human-machine
interface (HMI) applications. The LEDTS can measure the capacitance of up to 8 touch
pads using the relaxation oscillator (RO) topology. The module can also drive up to 64
LEDs in an LED matrix. Touch pads and LEDs can share pins to minimize the number
of pins needed for such applications.

SD/MMC interface (SDMMC)

The Secure Digital/ MultiMediaCard interface (SDMMC) provides an interface between
SD/SDIO/MMC cards and the system bus. It supports SD, SDIO, SDHC and MMC cards,
and can operate up to 48 MHz. The SDMMC module is able to transfer a maximum of
24 MB/s for SD cards and 48 MB/s for MMC cards.

The SDMMC Host Controller handles SDIO/SD protocol at transmission level, packing
data, adding cyclic redundancy check (CRC), start/end bit, and checking for transaction
format correctness. Useful applications of the SDMMC interface include memory
extension, data logging, and firmware update.

External Bus Unit (EBU)
The EBU supports accesses to asynchronous and synchronous external memories:

Reference Manual 1-6 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

* ROMs, EPROMs

* NOR and NAND flash devices
* Static RAMs and PSRAMs

e PC133/100 compatible SDRAM
e Burst FLASH

Ethernet MAC (ETH)

The Ethernet MAC (ETH) is a major communication peripheral that supports
10/100 Mbit/s data transfer rates in compliance with the IEEE 802.3-2002 standard.

The ETH may be used to implement Internet connected applications using IPv4 and
IPv6. The ETH also includes support for IEEE1588 time synchronisation to allow
implimentation of Real Time Ethernet protocols.

Universal Serial Bus (USB)

The USB module is a Dual-Role Device (DRD) controller that supports both device and
host functions and complies fully with the On-The-Go supplement to the USB 2.0
Specification, Revision 1.3. It can also be configured as a host-only or device-only
controller, fully compliant with the USB 2.0 Specification.

The USB core's USB 2.0 configurations support full-speed (12 Mbit/s) transfers.
The USB core is optimized for the following applications and systems:

e Portable electronic devices
< Point-to-point applications (direct connection to FS device)

Universal Serial Interface Channel (USIC)

The USIC is a flexible interface module covering several serial communication protocols
such as ASC, LIN, SSC, I2C, I12S. A USIC module contains two independent
communication channels. Three USIC modules are implemented, hence six channels
can be used in parallel. A FIFO allows transmit and result buffering for relaxing realtime
conditions. Mulitple chip select signals are available for communication with mulitple
devices on the same channel.

Controller Area Network (CAN)

The MultiCAN module contains three independently operating CAN nodes with Full-CAN
functionality that are able to exchange Data and Remote Frames via a gateway function.
Transmission and reception of CAN frames is handled in accordance with CAN
specification V2.0 B (active). Each CAN node can receive and transmit standard frames
with 11-bit identifiers as well as extended frames with 29-bit identifiers. Transmission
rate is up to 1 Mbit/s

All CAN nodes share a common set of message objects. Each message object can be
individually allocated to one of the CAN nodes. Besides serving as a storage container

Reference Manual 1-7 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

for incoming and outgoing frames, message objects can be combined to build gateways
between the CAN nodes or to setup a FIFO buffer.

15 Analog Frontend Peripherals
The XMC4500 hosts a number of interfaces to connect to the analog world.

Analog to Digital Converter (VADC)

The Versatile Analog-to-Digital Converter module consists of four independent kernels
which operate according to the successive approximation principle (SAR). The
resolution is programmable from 8 to 12bit with a total conversion time of less then 500ns
@12bit.

Each kernel provides a versatile state machine allowing complex measurement
sequences. The kernels can be synchronized and conversions may run completely in
background. Multiple trigger events can be prioritized and allow the exact measurement
of time critical signals. The result buffering and handling avoids data loss and ensures
consistency. Selftest mechanisms can be used for plausability checks.

The basic structure supports a clean software architecture where tasks may only read
valid results and do not need to care for starting conversions.

A number of out-of-range on-chip comparators serve the purpose of overvoltage
monitoring for analog input pins of the VADC.

Delta- Sigma Demodulator (DSD)

The Delta-Sigma Demodulator module allows the direct usage of external Delta-Sigma
Modulators for analog signal measurement.

The four input channels convert the incoming bit streams into discrete values. Each
demodulator channel exists of two programmable digital filter chains (SINC/COMB type).
A fast filter can be used for limit checking and a slower filter for signal measurement. An
integrator stage supports carrier frequency cancellation. A special mechanism can
compensate a phase delay between two channels. A built in pattern generator
generates a digitized sine bitstream. This can be used for exitation of a resolver coil in
motor position applications.

Digital to Analog Convertor (DAC)

The module consists of two separate 12-bit Digital-to-Analog Converters (DACS). It
converts two digital input signals into two analog voltage signal outputs at a maximum
conversion rate of 5 MHz.

A built-in wave generator mode allows stand alone generation of a selectable choice of
wave forms. Alternatively values can be fed via CPU or DMA directly to one or both DAC

Reference Manual 1-8 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Introduction

channels. Additionally an offset can be added and the amplitude can be scaled. Several
time trigger sources are possible.

1.6 Industrial Control Peripherals

Core components needed for motion and motor control, power conversion and other
time based applications.

Capture/Compare Unit 4 (CCU4)

The CCU4 peripheral is a major component for systems that need general purpose
timers for signal monitoring/conditioning and Pulse Width Modulation (PWM) signal
generation. Power electronic control systems like switched mode power supplies or
uninterruptible power supplies can easily be implemented with the functions inside the
CCU4 peripheral.

The internal modularity of CCU4 translates into a software friendly system for fast code
development and portability between applications.

Capture/Compare Unit 8 (CCU8)

The CCUS8 peripheral functions play a major role in applications that need complex Pulse
Width Modulation (PWM) signal generation, with complementary high side and low side
switches, multi phase control or output parity checking. The CCU8 is optimized for state
of the art motor control, multi phase and multi level power electronics systems.

The internal modularity of CCU8 translates into a software friendly system for fast code
development and portability between applications.

Position Interface Unit (POSIF)

The POSIF unit is a flexible and powerful component for motor control systems that use
Rotary Encoders or Hall Sensors as feedback loop. The configuration schemes of the
module target a very large number of motor control application requirements.

This enables the build of simple and complex control feedback loops for industrial and
automotive motor applications, targeting high performance motion and position
monitoring.

1.7 On-Chip Debug Support

The On-Chip Debug Support system based on the ARM CoreSight provides a broad
range of debug and emulation features built into the XMC4500. The user software can
therefore be debugged within the target system environment.

The On-Chip Debug Support is controlled by an external debugging device via the debug
interface and an optional break interface. The debugger controls the On-Chip Debug
Support via a set of dedicated registers accessible via the debug interface. Additionally,

Reference Manual 1-9 V1.0, 2012-02
Architectural Overview, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Introduction

the On-Chip Debug Support system can be controlled by the CPU, e.g. by a monitor
program.

V1.0, 2012-02

Reference Manual 1-10
Subject to Agreement on the Use of Product Information

Architectural Overview, V1.1

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

CPU Subsystem

Reference Manual V1.0, 2012-02
Subject to Agreement on the Use of Product Information

. XMC4500
(Infineon XMC4000 Family
Central Processing Unit (CPU)

2 Central Processing Unit (CPU)

The XMC4500 features the ARM Cortex-M4 processor. A high performance 32-bit
processor designed for the microcontroller market. This CPU offers significant benefits
to users, including:

« outstanding processing performance combined with fast interrupt handling
« enhanced system debug with extensive breakpoint and trace capabilities

« platform security robustness, with integrated memory protection unit (MPU).
» ultra-low power consumption with integrated sleep modes

References to ARM Documentation
The following documents can be found through http://infocenter.arm.com

[1] Cortex™-M4 Devices, Generic User Guide (ARM DUI 0553A)
[2] Cortex Microcontroller Software Interface Standard (CMSIS)

References to ARM Figures

[3] http://lwww.arm.com

References to IEEE Documentation

[4] |EEE Standard IEEE Standard for Binary Floating-Point Arithmetic 754-2008.

2.1 Overview

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage
pipeline Harvard architecture, making it ideal for demanding embedded applications.
The processor delivers exceptional power efficiency through an efficient instruction set
and extensively optimized design, providing high-end processing hardware including
IEEE754-compliant single-precision floating-point computation, a range of single-cycle
and SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic
and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements
tightly-coupled system components that reduce processor area while significantly
improving interrupt handling and system debug capabilities. The Cortex-M4 processor
implements a version of the Thumb® instruction set based on Thumb-2 technology,
ensuring high code density and reduced program memory requirements. The Cortex-M4
instruction set provides the exceptional performance expected of a modern 32-bit
architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-
leading interrupt performance. The NVIC includes a non-maskable interrupt (NMI), and
provides up to 64 interrupt priority levels. The tight integration of the processor core and

Reference Manual 2-1 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

http://infocenter.arm.com
http://www.arm.com

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing
the interrupt latency. This is achieved through the hardware stacking of registers, and
the ability to suspend load-multiple and store-multiple operations. Interrupt handlers do
not require wrapping in assembler code, removing any code overhead from the ISRs. A
tail-chain optimization also significantly reduces the overhead when switching from one
ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include
a deep sleep function that enables the entire device to be rapidly powered down while
still retaining program state.

21.1 Features
The XMC4500 CPU features comprise

« Thumb2 instruction set combines high code density with 32-bit performance
« |EEE754-compliant single-precision FPU
* power control optimization of system components
» integrated sleep modes for low power consumption
« fast code execution permits slower processor clock or increases sleep mode time
» hardware division and fast digital-signal-processing orientated multiply accumulate
e saturating arithmetic for signal processing
« deterministic, high-performance interrupt handling for time-critical applications
* memory protection unit (MPU) for safety-critical applications
» extensive debug and trace capabilities:
— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging, tracing, and code profiling.

2.1.2 Block Diagram
The Cortex-M4 core components comprise:

Processor Core
The CPU provides 16-bit and 32-bit Thumb2 instruction set and DSP/MAC instructions.

Floating-point unit

The FPU provides IEEE754-compliant operations on single-precision, 32-bit, floating-
point values.

Nested Vectored Interrupt Controller

The NVIC is an embedded interrupt controller that supports low latency interrupt
processing.

Reference Manual 2-2 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

Memory Protection Unit

The MPU improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined
background region.

Debug Solution

The XMC4500 implements a complete hardware debug solution.

* Embedded Trace Macrocell

« Traditional JTAG port or a 2-pin Serial Wire Debug Access Port

» Trace port or Serial Wire Viewer

* Flash breakpoints and Data watchpoints

This provides high system control and visibility of the processor and memory even in
small package devices.

Cortex-M4
processor FPU
Embedded
—_—p NVIC | =D Trace e
Processor
Macrocell
core
Debug Memory Serial
- I Access protection unit \Mre >
Port Viewer
Flash Data
breakpoints watchpoints
Bus matrix
Code Data .
interface interface System interface
: $:

Figure 2-1 Cortex-M4 Block Diagram

Reference Manual 2-3 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

System Level Interfaces

The Cortex-M4 processor provides a code, data and system interface using AMBA®
technology to provide high speed, low latency accesses.

2.2 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual
core register descriptions, it contains information about the processor modes and
privilege levels for software execution and stacks.

22.1 Processor Mode and Privilege Levels for Software Execution

The processor modes are:

e Thread mode
Used to execute application software. The processor enters Thread mode when it
comes out of reset.
e Handler mode
Used to handle exceptions. The processor returns to Thread mode when it has
finished all exception processing.
The privilege levels for software execution are:
e Unprivileged
Unprivileged software executes at the unprivileged level.
The software:
— has limited access to the MSR and MRS instructions, and cannot use the CPS
instruction
— cannot access the system timer, NVIC, or system control block
— might have restricted access to memory or peripherals.
e Privileged
Privileged software executes at the privileged level.
The software can use all the instructions and has access to all resources.

In Thread mode, the CONTROL register controls whether software execution is
privileged or unprivileged, see CONTROL register on Page 2-15. In Handler mode,
software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level

for software execution in Thread mode. Unprivileged software can use the SVC
instruction to make a supervisor call to transfer control to privileged software.

2.2.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the
address of the last stacked item in memory. When the processor pushes a new item onto
the stack, it decrements the stack pointer and then writes the item to the new memory

Reference Manual 2-4 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

location. The processor implements two stacks, the main stack and the process stack,
with a pointer for each held in independent registers, see Stack Pointer on Page 2-8.

In Thread mode, the CONTROL register controls whether the processor uses the main
stack or the process stack, see CONTROL register on Page 2-15. In Handler mode, the
processor always uses the main stack. The options for processor operations are:

Table 2-1 Summary of processor mode, execution privilege level, and stack

use options
Processor |Used to Privilege level for Stack used
mode execute software execution
Thread Applications | Privileged or Main stack or process stack?
unprivileged®
Handler Exception Always privileged Main stack
handlers

1) See CONTROL register on Page 2-15.

Reference Manual 2-5 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

2.2.3

XMC4500
XMC4000 Family

Core Registers

Central Processing Unit (CPU)

Low registers

High registers

Stack Pointer
Link Register
Program Counter

—

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

General-purpose registers

SP (R13)

pspt |

MSP* *Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register

Exception mask registers

CONTROL register

Special registers

Figure 2-2

Core registers

The processor core registers are:

Table 2-2 Core register set summary
Name Type ¥ | Required Reset value |Description
privilege ?
RO-R12 rw Either Unknown General-purpose registers on
Page 2-7

MSP rw Privileged See Stack Pointer on Page 2-8
description

PSP w Either Unknown Stack Pointer on Page 2-8

LR rw Either FFFFFFFF, |Link Register on Page 2-8

PC rw Either See Program Counter on Page 2-8
description

Reference Manual 2-6 V1.0, 2012-02

CPU, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

Table 2-2 Core register set summary (cont'd)

Name Type VY |Required | Reset value |Description
privilege ?

PSR w Privileged 01000000, Program Status Register on
Page 2-9

ASPR rw Either Unknown Application Program Status
Register on Page 2-9

IPSR r Privileged 00000000, Interrupt Program Status
Register on Page 2-10

EPSR r Privileged 01000000, Execution Program Status
Register on Page 2-11

PRIMASK rw Privileged 00000000, Priority Mask Register on
Page 2-13

FAULTMASK |rw Privileged 00000000, Fault Mask Register on
Page 2-14

BASEPRI rw Privileged 00000000, Base Priority Mask Register on
Page 2-14

CONTROL rw Privileged 00000000, |CONTROL register on
Page 2-15

1) Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2) An entry of Either means privileged and unprivileged software can access the register.

General-purpose registers
R0O-R12 are 32-bit general-purpose registers for data operations

Rx (x=0-12)

General Purpose Register Rx Reset Value: XXXX XXXXy
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
VALUE

1 1 1 1 1 1 1 1 1 1 1 I'\II\I 1 1 1
Field Bits Type | Description
VALUE [31:0] |rw Content of Register
Reference Manual 2-7 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register
indicates the stack pointer to use:

* 0= Main Stack Pointer (MSP). This is the reset value.
« 1 =Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 00000000,,.

g;ck Pointer Reset Value: 2000 FF3C
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
VALUE
L R
Field Bits Type | Description
VALUE [31:0] |rw Content of Register

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions. On reset, the processor sets the LR value to FFFFFFFF,,.

LR
Link Register Reset Value: FFFF FFFF,,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

VALUE
1 1 1 1 1 1 1 1 1 1 1 r\I,V 1 1 1
Field Bits Type | Description
VALUE [31:0] |rw Content of Register

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On
reset, the processor loads the PC with the value of the reset vector, which is at address
00000004H. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

Reference Manual 2-8 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

iﬁ)gram Counter Reset Value: 0000 0004,
31‘30‘29‘28‘27.26.25.24.23.22.21.20.19.18.17.16.15.14.13.12‘11‘10‘ 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
VALUE

S
Field Bits Type | Description
VALUE [31:0] |rw Content of Register

Program Status Register
The Program Status Register (PSR) combines:

» Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
« Execution Program Status Register (EPSR)

These registers are mutually exclusive bit fields in the 32-bit PSR.

Access these registers individually or as a combination of any two or all three registers,
using the register name as an argument to the MSR or MRS instructions. For example:

« read all of the registers using PSR with the MRS instruction
e writetothe APSR N, Z, C, V, and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Table 2-3 PSR register combinations

Register Type Combination

PSR rwb? APSR, EPSR, and IPSR
IEPSR r EPSR and IPSR

IAPSR rwb APSR and IPSR
EAPSR rw? APSR and EPSR

1) The processor ignores writes to the IPSR bits.
2) Reads of the EPSR bits return zero, and the processor ignores writes to the these bits

Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction
executions. See the register summary in Table 2-2 on Page 2-6 for its attributes.

Reference Manual 2-9 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

APSR
Application Program Status Register Reset Value: XXXX XXXX
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
N|lz|C|V|Q 0 GE[3:0] 0
W rw rw rw rw — II’I — II’\INI E— I"
Field Bits Type | Description
GE[3:0] [19:16] | rw Greater than or Equal flags
Please refer also to SEL instruction.

Q 27 rw DSP overflow and saturation flag
\% 28 rw Overflow flag
C 29 rw Carry or borrow flag
z 30 rw Zero flag
N 31 rw Negative flag
0 [26:20], | r Reserved

[15:0] Read as 0; should be written with 0.

Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine
(ISR). See the register summary in Table 2-2 on Page 2-6 for its attributes.

IPSR
Interrupt Program Status Register Reset Value: 0000 0000
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T
0 ISR_NUMBER
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
r r
Reference Manual 2-10 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description

ISR_NUMBER |[8:0]

=

Number of the current exception
Op Thread mode

1, Reserved

2, NMI

3p, HardFault

4, MemManage

5, BusFault

6, UsageFault

75 Reserved

8, Reserved

9, Reserved

10, Reserved

11, Svcall

12, Reserved for Debug
13, Reserved

14, PendSV

15, SysTick

16, IRQO

127, IRQ111

Values > 127, undefined.

See Exception types on Page 2-26 for more
information.

0 [31:9]

=

Reserved
Read as 0; should be written with 0.

Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:

e If-Then (IT) instruction
< Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 2-2 on Page 2-6 for the EPSR attributes.

Attempts to read the EPSR directly through application software using the MSR
instruction always return zero. Attempts to write the EPSR using the MSR instruction in
application software are ignored.

Reference Manual 2-11 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

EPSR
Execution Program Status Register Reset Value: 0100 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 ICIIT| T 0 ICIIT 0
Il r Il ll’ r 1 1 1 II’ 1 1 1 1 1 II‘ I\‘
Field Bits Type | Description
ICIIT [26:25], |r Interruptible-continuableinstruction bits/Execution
[15:10] state bits of the IT instruction
Please refer also to IT instruction.
T 24 r Thumb state bit
Thumb state.
0 [31:27], |r Reserved
[23:16], Read as 0; should be written with 0.
[9:0]

Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM,
VSTM, VPUSH, or VPOP instruction, the processor:

» stops the load multiple or store multiple instruction operation temporarily
« stores the next register operand in the multiple operation to EPSR bits[15:12]

After servicing the interrupt, the processor:

« returns to the register pointed to by bits[15:12]
* resumes execution of the multiple load or store instruction.

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

If-Then block

The If-Then block contains up to four instructions following an IT instruction. Each
instruction in the block is conditional. The conditions for the instructions are either all the
same, or some can be the inverse of others. See IT on page 3-122 for more information.

Thumb state

The Cortex-M4 processor only supports execution of instructions in Thumb state. The
following can clear the T bit to O:

e instructions BLX, BX and POP{PC}

Reference Manual 2-12 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

« restoration from the stacked xPSR value on an exception return
» bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See
Lockup on Page 2-39 for more information.

Exception mask registers

The exception mask registers disable the handling of exceptions by the processor.
Disable exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS
instruction to change the value of PRIMASK or FAULTMASK.

Priority Mask Register
The PRIMASK register prevents activation of all exceptions with configurable priority.

See the register summary in Table 2-2 on Page 2-6 for its attributes.

PRIMASK
Priority Mask Register Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T T T T T T T T
PRI
0 MAS
K
| | | | 1 1 1
r w

Field Bits Type | Description
PRIMASK 0 w Priority Mask
0g No effect

1z Prevents the activation of all exceptions with
configurable priority.

0 [31:1] |r Reserved
Read as 0; should be written with 0.

Reference Manual 2-13 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

Fault Mask Register

The FAULTMASK register prevents activation of all exceptions except for Non-Maskable
Interrupt (NMI). See the register summary in Table 2-2 on Page 2-6 for its attributes.

FAULTMASK
Fault Mask Register Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T T T
FAU
0 LT™M
ASK
I I I I 1 1 1
r w

Field Bits Type | Description

FAULTMASK 0 w Fault Mask

0z no effect

1; preventsthe activation of all exceptions except
for NMI.

0 [31:1]

—

Reserved
Read as 0; should be written with 0.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except
the NMI handler.

Base Priority Mask Register

The BASEPRI register defines the minimum priority for exception processing. When
BASEPRI is set to a nonzero value, it prevents the activation of all exceptions with the
same or lower priority level as the BASEPRI value. See the register summary in
Table 2-2 on Page 2-6 for its attributes.

Reference Manual 2-14 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

BASEPRI
Base Priority Mask Register Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BASEPRI
1 } 1 1 1 1 r\\lv
Field Bits Type | Description
BASEPRIY [7:0] |rw |Priority mask bits

0, no effect

others, defines the base priority for exception
processing.

The processor does not process any exception with

a priority value greater than or equal to BASEPRI.

—

0 [31:8] Reserved

Read as 0; should be written with 0.

1) This field is similar to the priority fields in the interrupt priority registers. The XMC4500 implements only
bits[7:2] of this field, bits[1:0] read as zero and ignore writes. See Interrupt Priority Registers on Page 2-89
for more information. Remember that higher priority field values correspond to lower exception priorities.

CONTROL register

The CONTROL register controls the stack used and the privilege level for software
execution when the processor is in Thread mode and indicates whether the FPU state is
active. See the register summary in Table 2-2 on Page 2-6 for its attributes.

Reference Manual 2-15 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

CONTROL
CONTROL register Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FPC | SPS [nPRI
A |EL | V
1 1 1 1 r 1 1 1 rh rh rh
Field Bits Type | Description
nPRIV 0 rh Thread mode privilege level

0g Privileged
1; Unprivileged

SPSEL 1 rh Currently active stack pointer

In Handler mode this bit reads as zero and ignores
writes. The Cortex-M4 updates this bit automatically
on exception return.

0g MSP is the current stack pointer

1; PSP is the current stack pointer

FPCA 2 rh Floating-point context currently active

0g No floating-point context active

1; Floating-point context active

The Cortex-M4 uses this bit to determine whether to
preserve floating-point state when processing an
exception.

0 [31:3]

—

Reserved
Read as 0; should be written with 0.

Handler mode always uses the MSP, so the processor ignores explicit writes to the
active stack pointer bit of the CONTROL register when in Handler mode. The exception
entry and return mechanisms automatically update the CONTROL register based on the
EXC_RETURN value, see Table 2-9 on Page 2-36.

In an OS environment, ARM recommends that threads running in Thread mode use the
process stack and the kernel and exception handlers use the main stack.

Reference Manual 2-16 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread
mode to the PSP, either:

« use the MSR instruction to set the Active stack pointer bit to 1.
e perform an exception return to Thread mode with the appropriate EXC_RETURN
value, see Table 2-9 on Page 2-36.

Note: When changing the stack pointer, software must use an ISB instruction
immediately after the MSR instruction. This ensures that instructions after the ISB
instruction execute using the new stack pointer.

2.2.4 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor
and the NVIC prioritize and handle all exceptions. An exception changes the normal flow
of software control. The processor uses Handler mode to handle all exceptions except
for reset. See Exception entry on Page 2-33 and Exception return on Page 2-36 for more
information.

The NVIC registers control interrupt handling. See Page 2-43 for more information.

2.25 Data Types
The processor:

« supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes
¢ manages all data memory accesses as little-endian. See Memory regions, types and
attributes on Page 2-20 for more information.

2.2.6 The Cortex Microcontroller Software Interface Standard

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface
Standard (CMSIS) [2] defines:

e acommon way to:
— access peripheral registers
— define exception vectors
» the names of:
— the registers of the core peripherals
— the core exception vectors
» adevice-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in
the Cortex-M4 processor.

Reference Manual 2-17 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

CMSIS simplifies software development by enabling the reuse of template code and the
combination of CMSIS-compliant software components from various middleware
vendors. Software vendors can expand the CMSIS to include their peripheral definitions
and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short
descriptions of the CMSIS functions that address the processor core and the core
peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few

cases these differ from the architectural short names that might be used in other
documents.

The following sections give more information about the CMSIS:

* Power management programming hints on Page 2-42
« CMSIS functions on Page 2-18
« Using CMSIS functions to access NVIC on Page 2-45

For additional information please refer to http://www.onarm.com/cmsis

2.2.7 CMSIS functions

ISO/IEC C code cannot directly access some Cortex-M4 instructions. This section
describes intrinsic functions that can generate these instructions, provided by the CMSIS
and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, you might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that
ISO/IEC C code cannot directly access:

Table 2-4 CMSIS functions to generate some Cortex-M4 instructions

Instruction CMSIS function

CPSIE | void __enable_irqg(void)

CPSID | void _ disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __ DSB(void)

DMB void _ DMB(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
Reference Manual 2-18 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

http://www.onarm.com/cmsis

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Table 2-4 CMSIS functions to generate some Cortex-M4 instructions (cont'd)
Instruction CMSIS function

REVSH uint32_t _ REVSH(uint32_t int value)

RBIT uint32_t _ RBIT(uint32_t int value)

SEV void __SEV(void)

WFE void _ WFE(void)

WFI void __WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using
MRS and MSR instructions:

Table 2-5 CMSIS functions to access the special registers
Special Access | CMSIS function
register
PRIMASK Read uint32_t _ get PRIMASK (void)

Write void ___set PRIMASK (uint32_t value)
FAULTMASK | Read uint32_t _ get FAULTMASK (void)

Write void __set FAULTMASK (uint32_t value)
BASEPRI Read uint32_t _ get BASEPRI (void)

Write void __set BASEPRI (uint32_t value)
CONTROL Read uint32_t _ get CONTROL (void)

Write void __ set CONTROL (uint32_t value)
MSP Read uint32_t _ get_MSP (void)

Write void __set MSP (uint32_t TopOfMainStack)
PSP Read uint32_t _ get_ PSP (void)

Write void __set PSP (uint32_t TopOfProcStack)

Reference Manual

CPU, V1.1

2-19 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

2.3 Memory Model

This section describes the processor memory map and the behavior of memory
accesses. The processor has a fixed default memory map that provides up to 4GB of
addressable memory. The memory map is:

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OxEOOFFFFF
Private k;))Ssrlpheral 1.0MB
0xE0000000
OxDFFFFFFF
External device 1.0GB
0xA0000000
Ox9FFFFFFF
External RAM 1.0GB
0x60000000
Ox5FFFFFFF
Peripheral 0.5GB
0x40000000
Ox3FFFFFFF
SRAM 0.5GB
0x20000000
Ox1FFFFFFF
Code 0.5GB
0x00000000

Figure 2-3 Memory map

The processor reserves regions of the Private peripheral bus (PPB) address range for
core peripheral registers, see About the Private Peripherals on Page 2-42.

231 Memory Regions, Types and Attributes

The memory map and the programming of the MPU splits the memory map into regions.
Each region has a defined memory type, and some regions have additional memory

Reference Manual 2-20 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

attributes. The memory type and attributes determine the behavior of accesses to the
region.

The memory types are:

Normal The processor can re-order transactions for efficiency, or
perform speculative reads.

Device The processor preserves transaction order relative to other
transactions to Device or Strongly-ordered memory.

Strongly-ordered The processor preserves transaction order relative to all other
transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that
the memory system can buffer a write to Device memory, but must not buffer a write to
Strongly-ordered memory.

The additional memory attributes include:

Execute Never (XN) Means the processor prevents instruction accesses. A fault
exception is generated only on execution of an instruction
executed from an XN region.

2.3.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory
system does not guarantee that the order in which the accesses complete matches the
program order of the instructions, providing this does not affect the behavior of the
instruction sequence. Normally, if correct program execution depends on two memory
accesses completing in program order, software must insert a memory barrier instruction
between the memory access instructions. See Software ordering of memory accesses
on Page 2-23.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs
before A2 in program order, the ordering of the memory accesses caused by two
instructions is:

Reference Manual 2-21 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

A2 Normal Device Strongly-
ordered
Al access access
access
Normal access -
Device access - < <
Strongly-ordered access - < <
Figure 2-4 Ordering of Memory Accesses
Where:
- “”Means that the memory system does not guarantee the ordering of the accesses.

e “<" Means that accesses are observed in program order, that is, Al is always
observed before A2.

2.3.3 Behavior of Memory Accesses
The behavior of accesses to each region in the memory map is:

Table 2-6 Memory access behavior

Address Memory Memory |XNY |Description

range region type?

0x00000000- |Code Normal - Executable region for program
OX1FFFFFFF code. You can also put data here.
0x20000000- |SRAM Normal - Executable region for data. You
Ox3FFFFFFF can also put code here.

0x40000000- | Peripheral Device XN | Peripherals region.
OX5FFFFFFF

0x60000000- |External RAM | Normal - Executable region for data.

OX9FFFFFFF

0xA0000000- | External Device XN | External Device memory.

OXDFFFFFFF | device

0xE0000000- | Private Strongly- | XN | This region includes the NVIC,

OXEOOFFFFF | Peripheral ordered System timer, and system control
Bus block.

0xE0100000- |Vendor- Device XN | Accesses to this region are to

OXFFFFFFFF | specific vendor-specific peripherals.
device

Reference Manual 2-22 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

1) See Memory regions, types and attributes on Page 2-20 for more information.

The Code, SRAM, and external RAM regions can hold programs. However, it is
recommended that programs always use the Code region. This is because the processor
has separate buses that enable instruction fetches and data accesses to occur
simultaneously.

The MPU can override the default memory access behavior described in this section. For
more information, see Memory protection unit on Page 2-46.

Instruction prefetch and branch prediction
The Cortex-M4 processor:

« prefetches instructions ahead of execution
» speculatively prefetches from branch target addresses.

2.34 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the
corresponding memory transactions. This is because:

« the processor can reorder some memory accesses to improve efficiency, providing
this does not affect the behavior of the instruction sequence.

« The processor has multiple bus interfaces

* memory or devices in the memory map have different wait states

e some memory accesses are buffered or speculative.

Memory system ordering of memory accesses on Page 2-21 describes the cases where
the memory system guarantees the order of memory accesses. Otherwise, if the order
of memory accesses is critical, software must include memory barrier instructions to
force that ordering. The processor provides the following memory barrier instructions:

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding
memory transactions complete before subsequent memory
transactions.

DSB The Data Synchronization Barrier (DSB) instruction ensures that

outstanding memory transactions complete before subsequent
instructions execute.

ISB The Instruction Synchronization Barrier (ISB) ensures that the effect of
all completed memory transactions is recognizable by subsequent
instructions.

Reference Manual 2-23 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

MPU programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new
MPU configuration is used by subsequent instructions.

2.3.5 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending
order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the
second stored word. The XMC4500 stores information “Little-endian” format.

Little-endian format

In little-endian format, the processor stores the least significant byte of a word at the
lowest-numbered byte, and the most significant byte at the highest-numbered byte. For
example:

Memory Register
7 0
31 2423 1615 87 0
Address A| BO Isbyte B3 B2 B1 BO
A+1 B1
A+2| B2

A+3 B3 msbyte

Figure 2-5 Little-endian format

2.3.6 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These
provide a non-blocking mechanism that a thread or process can use to obtain exclusive
access to a memory location. Software can use them to perform a guaranteed read-
modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-Exclusive instruction

Used to read the value of a memory location, requesting exclusive access to that
location.

Reference Manual 2-24 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

A Store-Exclusive instruction

Used to attempt to write to the same memory location, returning a status bit to a register.
If this bit is:

0 itindicates that the thread or process gained exclusive access to the memory, and
the write succeeds,

1 itindicates that the thread or process did not gain exclusive access to the memory,
and no write was performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

¢ the word instructions LDREX and STREX
* the halfword instructions LDREXH and STREXH
« the byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.

To perform an exclusive read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Modify the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the
memory location.

4. Test the returned status bit. If this bit is:
0 The read-modify-write completed successfully.
1 No write was performed. This indicates that the value returned at step 1 might be

out of date. The software must retry the entire read-modify-write sequence.

Software can use the synchronization primitives to implement a semaphores as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check
whether the semaphore is free.

2. If the semaphore is free, use a Store-Exclusive to write the claim value to the
semaphore address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded
then the software has claimed the semaphore. However, if the Store-Exclusive failed,
another process might have claimed the semaphore after the software performed
step 1.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the
processor has executed a Load-Exclusive instruction.

The processor removes its exclusive access tag if:

e It executes a CLREX instruction.

« It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

« An exception occurs. This means the processor can resolve semaphore conflicts
between different threads.

Reference Manual 2-25 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

2.3.7 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides
intrinsic functions for generation of these instructions:

Table 2-7 CMSIS functions for exclusive access instructions

Instruction CMSIS function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uintl6é_t _ LDREXH (uintl6_t *addr)

LDREXB uint8_t _ LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t _ STREXH (uintl6_t value, uintl6_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void _ CLREX (void)

For example:

uintl6é_t value;

uintl6é_t *address = 0x20001002;

value = __ LDREXH (address); // load 16-bit value from memory
address 0x20001002

2.4 Instruction Set
The Cortex-M4 instruction set reference is available through [1]

2.5 Exception Model
This section describes the exception model. It describes:

« Exception states

« Exception types

» Exception handlers on Page 2-27

* Vector table on Page 2-30

» Exception priorities on Page 2-31

e Interrupt priority grouping on Page 2-31
e Exception entry and return on Page 2-32

2.5.1 Exception States
Each exception is in one of the following states:

Reference Manual 2-26 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Inactive
Pending

Active

Active and pending

Central Processing Unit (CPU)

The exception is not active and not pending.

The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can
change the state of the corresponding interrupt to pending.

An exception that is being serviced by the processor but has not
completed.

Note: An exception handler can interrupt the execution of
another exception handler. In this case both exceptions
are in the active state.

The exception is being serviced by the processor and there is a
pending exception from the same source.

25.2 Exception Types

The exception types are:

Reset

NMI

HardFault

MemManage

Reference Manual
CPU, V1.1

Reset is invoked on power up or a warm reset. The exception
model treats reset as a special form of exception. When reset is
asserted, the operation of the processor stops, potentially at any
point in an instruction. When reset is deasserted, execution
restarts from the address provided by the reset entry in the
vector table. Execution restarts as privileged execution in
Thread mode.

A NonMaskable Interrupt (NMI) can be signalled by a peripheral
or triggered by software. This is the highest priority exception
other than reset. It is permanently enabled and has a fixed
priority of -2. NMIs cannot be:

* masked or prevented from activation by any other exception
» preempted by any exception other than Reset.

A HardFault is an exception that occurs because of an error
during exception processing, or because an exception cannot be
managed by any other exception mechanism. HardFaults have
a fixed priority of -1, meaning they have higher priority than any
exception with configurable priority.

A MemManage fault is an exception that occurs because of a
memory protection related fault. The MPU or the fixed memory
protection constraints determines this fault, for both instruction
and data memory transactions. This fault is always used to abort
instruction accesses to Execute Never (XN) memory regions.

2-27 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

BusFault

UsageFault

SvCall

PendSV

SysTick

Interrupt (IRQ)

Central Processing Unit (CPU)

A BusFault is an exception that occurs because of a memory
related fault for an instruction or data memory transaction. This
might be from an error detected on a bus in the memory system.

A UsageFault is an exception that occurs because of a fault
related to instruction execution. This includes:

* an undefined instruction

» anillegal unaligned access

 invalid state on instruction execution

e an error on exception return.

The following can cause a UsageFault when the core is
configured to report them:

* anunaligned address on word and halfword memory access
« division by zero.

A supervisor call (SVC) is an exception that is triggered by the
SVC instruction. In an OS environment, applications can use
SVC instructions to access OS kernel functions and device
drivers.

PendSV is an interrupt-driven request for system-level service.
In an OS environment, use PendSV for context switching when
no other exception is active.

A SysTick exception is an exception the system timer generates
when it reaches zero. Software can also generate a SysTick
exception. In an OS environment, the processor can use this
exception as system tick.

A interrupt, or IRQ, is an exception signalled by a peripheral, or
generated by a software request. All interrupts are
asynchronous to instruction execution. In the system,
peripherals use interrupts to communicate with the processor.

Table 2-8 Properties of the different exception types

Exception |IRQ Exception Priority Vector Activation
number? | number? |type address

or offset?
1 - Reset -3, the highest | 0x00000004 | Asynchronous
2 -14 NMI -2 0x00000008 | Asynchronous
3 -13 HardFault -1 0x0000000C |-
4 -12 MemManage | Configurable® | 0x00000010 |Synchronous

Reference Manual
CPU, V1.1

2-28 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Central Processing Unit (CPU)

Table 2-8 Properties of the different exception types (cont'd)

Exception |IRQ Exception Priority Vector Activation

number? |number? |type address

or offset?

5 -11 BusFault Configurable® | 0x00000014 | Synchronous
when precise,
asynchronous
when
imprecise

6 -10 UsageFault | Configurable® | 0x00000018 | Synchronous

7-10 - Reserved - - -

11 -5 Svcall Configurable® | 0x0000002C | Synchronous

12-13 - Reserved - - -

14 -2 PendsVv Configurable® | 0x00000038 | Asynchronous

15 -1 SysTick Configurable® | 0x0000003C | Asynchronous

16 and 0 and Interrupt Configurable® | 0x00000040 | Asynchronous

above above (IRQ) and above®

1) To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for
exceptions other than interrupts. The IPSR returns the Exception number, see Interrupt Program Status
Register on Page 2-10.

2) See Vector table for more information.

3) See System Handler Priority Registers on Page 2-69
4) See Interrupt Priority Registers on Page 2-89.

5) Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another
instruction between when the exception is triggered and when the processor enters the
exception handler.

Privileged software can disable the exceptions that Table 2-8 on Page 2-28 shows as
having configurable priority, see:

« System Handler Control and State Register on Page 2-71
« Interrupt Clear-enable Registers on Page 2-87.

For more information about HardFaults, MemManage faults, BusFaults, and
UsageFaults, see Fault handling on Page 2-36.

2.5.3 Exception Handlers

The processor handles exceptions using:

Reference Manual 2-29 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

Interrupt Service
Routines (ISRs)
Fault handlers

System handlers

254

XMC4500

XMC4000 Family

Central Processing Unit (CPU)

Interrupts IRQO to IRQ111 are the exceptions handled by ISRs.

HardFault, MemManage fault, UsageFault, and BusFault are
fault exceptions handled by the fault handlers.

NMI, PendSV, SVCall SysTick, and the fault exceptions are all
system exceptions that are handled by system handlers.

Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses,
also called exception vectors, for all exception handlers. Figure 2-6 on Page 2-30 shows
the order of the exception vectors in the vector table. The least-significant bit of each
vector must be 1, indicating that the exception handler is Thumb code, see Thumb state

on Page 2-12.
Exception number IRQ number Offset Vector
IRQ111
127 i O0xO01FC
0x004C RQ2
1
8 2 0x0048 Q1
v ! 0x0044 RQO
16 0 0x0040 Svetick
R stic
1 ! 0x003C Py v
- en
14 2 0x0038
13 Reserved
12 Reserved for Debug
Svcall
1 > 0x002C
10
9
Reserved
8
7
- Usage fault
6 10 0x0018 5 gf I
- us fault
> 1 0x0014 P
- Memory management fault
4 12 0x0010 yH dfg I
R ard fault
3 13 0x000C v
2 4 0x0008
1 Reset
0x0004
Initial SP value
0x0000
Figure 2-6 Vector table
Reference Manual 2-30 V1.0, 2012-02

CPU, V1.1

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

On system reset, the vector table is fixed at address 0x00000000. Privileged software
can write to the VTOR to relocate the vector table start address to a different memory
location, in the range 0x00000400 to 0x3FFFFCO0O0, see Vector Table Offset Register on
Page 2-63.

255 Exception Priorities

As Table 2-8 on Page 2-28 shows, all exceptions have an associated priority, with:
» alower priority value indicating a higher priority
« configurable priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable
priority have a priority of 0. For information about configuring exception priorities see

« System Handler Priority Registers on Page 2-69
* Interrupt Priority Registers on Page 2-89.

Note: Configurable priority values are in the range 0-63. This means that the Reset,
HardFault, and NMI exceptions, with fixed negative priority values, always have
higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to
IRQ[1] means that IRQ[1] has higher priority than IRQ[O]. If both IRQ[1] and IRQI0] are
asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the
lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are
pending and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is
preempted if a higher priority exception occurs. If an exception occurs with the same
priority as the exception being handled, the handler is not preempted, irrespective of the
exception number. However, the status of the new interrupt changes to pending.

2.5.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority
grouping. This divides each interrupt priority register entry into two fields:

» an upper field that defines the group priority
« alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the
processor is executing an interrupt exception handler, another interrupt with the same
group priority as the interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field
determines the order in which they are processed. If multiple pending interrupts have the
same group priority and subpriority, the interrupt with the lowest IRQ number is
processed first.

Reference Manual 2-31 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

For information about splitting the interrupt priority fields into group priority and
subpriority, see Application Interrupt and Reset Control Register on Page 2-63.

257 Exception Entry and Return
Descriptions of exception handling use the following terms:

Preemption When the processor is executing an exception handler, an exception
can preempt the exception handler if its priority is higher than the priority
of the exception being handled. See Interrupt priority grouping for more
information about preemption by an interrupt.

When one exception preempts another, the exceptions are called
nested exceptions. See Exception entry on Page 2-33 more

information.
Highest4
IRQ1 l ‘
IRQ2
Traditional
1 ISR
o e O ISR Iipop | Push | SR 2 | Pop |
—
1§ Cycles 26 Cycles 16 Cycles
Cortex-M4
Interrupt Handling SR] I ISR2 | Fopl
- -
& Cycles 12 Cycles
Abandon Pop (1-12 Cycles) Tail-Chaining

Source of figure [3].

Return This occurs when the exception handler is completed, and:
» there is no pending exception with sufficient priority to be serviced
» the completed exception handler was not handling a late-arriving
exception.
The processor pops the stack and restores the processor state to the
state it had before the interrupt occurred. See Exception return on
Page 2-36 for more information.

Reference Manual 2-32 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Tail-chaining This mechanism speeds up exception servicing. On completion of an

Late-arriving

exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

Highest 4
IR@1 4
B |
Traditional
inineriat tutiing T | ISR 1 | Pop | Push | ISR 2 | Pon |
—— b —
26 Cycles 16Cycles 26 Cyclos 16 Cyclos
Cortex-M4]
e Mol Push| ISR 1 11 ISR 2 | Pop|
e a —
12 Cycles & Cycles 12 Cycles
Tall-Chaining

Source of figure [3].

This mechanism speeds up preemption. If a higher priority exception
occurs during state saving for a previous exception, the processor
switches to handle the higher priority exception and initiates the vector
fetch for that exception. State saving is not affected by late arrival
because the state saved is the same for both exceptions. Therefore the
state saving continues uninterrupted. The processor can accept a late
arriving exception until the first instruction of the exception handler of
the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the
normal tail-chaining rules apply.

Highest
IRQ1
IRGQ2
Traditional
Interrupt Handli Push | Push | ISR 1 | Pop | ISR 2 | Pop l
. » +—
26 Cycles 26 Cycles 16 Cycles 16 Cycles
Cortex-M4 .
Interrupt Handling Pughf ISR 1 | 1 ISR 2 I_ng.
s - —
12 Cycles 8 Cycles 12 Cycles
Tail-Chaining

Source of figure [3].

Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and

either:

Reference Manual

CPU, V1.1

2-33 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

« the processor is in Thread mode
« the new exception is of higher priority than the exception being handled, in which
case the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask
registers, see Exception mask registers on Page 2-13. An exception with less priority
than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-
arriving exception, the processor pushes information onto the current stack. This
operation is referred to as stacking and the structure of eight data words is referred as
the stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the
architected floating-point state on exception entry. Figure 2-7 on Page 2-35 shows the
Cortex-M4 stack frame layout when floating-point state is preserved on the stack as the
result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the
same as that of ARMv7-M implementations without an FPU. Figure 2-7 on
Page 2-35 shows this stack frame also.

Reference Manual 2-34 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

lﬁ Pre-IRQ top of stack

FPSCR
S15
S14
S13
S$12
S11
S10

S9
S8
S7
S6
S5
S4
S3
S2
S1 P .
SO ! {aligner}
xPSR Decreasing xPSR
PC memory PC
R address R
R12 R12
R3 R3
R2 v R2
R1 R1
RO «—— |IRQ top of stack RO —— IRQ top of stack

1"_] Pr
4 e-IRQ top of stack
N—J P

Exception frame with Exception frame without
floating-point storage floating-point storage

Figure 2-7 Exception stack frame

Immediately after stacking, the stack pointer indicates the lowest address in the stack
frame. The alignment of the stack frame is controlled via the STKALIGN bit of the
Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction
in the interrupted program. This value is restored to the PC at exception return so that
the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the
exception handler start address from the vector table. When stacking is complete, the
processor starts executing the exception handler. At the same time, the processor writes
an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the
stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts
executing the exception handler and automatically changes the status of the
corresponding pending interrupt to active.

Reference Manual 2-35 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

If another higher priority exception occurs during exception entry, the processor starts
executing the exception handler for this exception and does not change the pending
status of the earlier exception. This is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and executes one of the
following instructions to load the EXC_RETURN value into the PC:

¢ an LDM or POP instruction that loads the PC
* an LDR instruction with PC as the destination
* aBXinstruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an
exception handler. The lowest five bits of this value provide information on the return
stack and processor mode. Table 2-9 shows the EXC_RETURN values with a
description of the exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the
PC it indicates to the processor that the exception is complete, and the processor
initiates the appropriate exception return sequence.

Table 2-9 Exception return behavior
EXC_RETURN[31:0] |Description

OXFFFFFFF1 Return to Handler mode, exception return uses non-floating-
point state from the MSP and execution uses MSP after return.

OXFFFFFFF9 Return to Thread mode, exception return uses non-floating-
point state from MSP and execution uses MSP after return.

OXFFFFFFFD Return to Thread mode, exception return uses non-floating-
point state from the PSP and execution uses PSP after return.

OXFFFFFFE1 Return to Handler mode, exception return uses floating-point-
state from MSP and execution uses MSP after return.

OXFFFFFFE9 Return to Thread mode, exception return uses floating-point
state from MSP and execution uses MSP after return.

OXFFFFFFED Return to Thread mode, exception return uses floating-point
state from PSP and execution uses PSP after return.

2.6 Fault Handling

Faults are a subset of the exceptions, see Exception model on Page 2-26. Faults are
generated by:

e abus error on:

Reference Manual 2-36 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

— an instruction fetch or vector table load
— adata access.

* an internally-detected error such as an undefined instruction

e attempting to execute an instruction from a memory region marked as Non-
Executable (XN).

e a privilege violation or an attempt to access an unmanaged region causing an MPU
fault

2.6.1 Fault Types

Table 2-10 shows the types of fault, the handler used for the fault, the corresponding
fault status register, and the register bit that indicates that the fault has occurred. See
Configurable Fault Status Register on page 4-24 for more information about the fault
status registers.

Table 2-10 Faults

Fault Handler Bit name Fault status
register
Bus error on a vector read | HardFault VECTTBL HardFault Status
Fault escalated to a hard FORCED Register on
fault Page 2-80
MPU or default memory map | MemManage - -
mismatch:
on instruction access IACCVIOLY MemManage Fault
on data access DACCVIOL Address Register on
. - Page 2-81
during exception MSTKERR
stacking
during exception MUNSKERR
unstacking
during lazy floating-point MLSPERR
state preservation
Reference Manual 2-37 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Table 2-10 Faults (cont'd)

Fault Handler Bit name Fault status
register
Bus error: BusFault - -
during exception STKERR BusFault Status
stacking Register on
during exception UNSTKERR Page 2-73
unstacking
during instruction IBUSERR
prefetch
during lazy floating-point LSPERR
state preservation
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a UsageFault NOCP UsageFault Status
coprocessor Register on
Undefined instruction UNDEFINSTR | Page 2-73
Attempt to enter an invalid INVSTATE
instruction set state?
Invalid EXC_RETURN value INVPC
lllegal unaligned load or UNALIGNED
store
Divide By 0 DIVBYZERO

1) Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2) Attempting to use an instruction set other than the Thumb instruction set or returns to a non load/store-multiple
instruction with ICI continuation.

2.6.2 Fault Escalation and Hard Faults

All faults exceptions except for HardFault have configurable exception priority, see
System Handler Priority Registers on page 4-21. Software can disable execution of the
handlers for these faults, see System Handler Control and State Register on page 4-23.

Usually, the exception priority, together with the values of the exception mask registers,
determines whether the processor enters the fault handler, and whether a fault handler
can preempt another fault handler. as described in Exception model on Page 2-26.

In some situations, a fault with configurable priority is treated as a HardFault. This is
called priority escalation, and the fault is described as escalated to HardFault. Escalation
to HardFault occurs when:

Reference Manual 2-38 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

« Afault handler causes the same kind of fault as the one it is servicing. This escalation
to HardFault occurs because a fault handler cannot preempt itself because it must
have the same priority as the current priority level.

» Afault handler causes a fault with the same or lower priority as the fault it is servicing.
This is because the handler for the new fault cannot preempt the currently executing
fault handler.

« An exception handler causes a fault for which the priority is the same as or lower than
the currently executing exception.

« A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault

does not escalate to a HardFault. This means that if a corrupted stack causes a fault, the

fault handler executes even though the stack push for the handler failed. The fault
handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority HardFault. A HardFault can
preempt any exception other than Reset, NMI, or another HardFault.

2.6.3 Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For BusFaults and MemManage
faults, the fault address register indicates the address accessed by the operation that
caused the fault, as shown in Table 2-11.

Table 2-11 Fault status and fault address registers

Handler Status Address |Register description
register register
name name
HardFault HFSR - HardFault Status Register on Page 2-80
MemManage | MMFSR MMFAR MemManage Fault Status Register
Page 2-73
MemManage Fault Address Register
Page 2-81
BusFault BFSR BFAR BusFault Status Register on Page 2-73
BusFault Address Register on Page 2-82
UsageFault |UFSR - UsageFault Status Register on Page 2-73

2.6.4 Lockup

The processor enters a lockup state if a fault occurs when executing the NMI or
HardFault handlers. When the processor is in lockup state it does not execute any
instructions. The processor remains in lockup state until either:

e jtisreset

Reference Manual 2-39 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

« an NMIl occurs
e itis halted by a debugger

Note: If lockup state occurs from the NMI handler a subsequent NMI does not cause the
processor to leave lockup state.

2.7 Power Management
The Cortex-M4 processor sleep modes reduce power consumption:

« Sleep mode stops the processor clock.
« Deep sleep mode stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see System Control
Register on Page 2-66. For more information about the behavior of the sleep modes see
section “Power Management” in SCU chapter.

The following section describes the mechanisms for entering sleep mode, and the
conditions for waking up from sleep mode.

2.7.1 Entering Sleep Mode

This section describes the mechanisms software can use to put the processor into sleep
mode

The system can generate spurious wakeup events, for example a debug operation
wakes up the processor. Therefore software must be able to put the processor back into
sleep mode after such an event. A program might have an idle loop to put the processor
back to sleep mode.

Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the
wake-up condition is true, see Wakeup from WFI or sleep-on-exit on Page 2-41. When
the processor executes a WFI instruction it stops executing instructions and enters sleep
mode.

Wait for event

The wait for event instruction, WFE, causes entry to sleep mode depending on the value
of a one-bit event register. When the processor executes a WFE instruction, it checks
the value of the event register:

0 The processor stops executing instructions and enters sleep mode.
1 The processor clears the register to 0 and continues executing instructions without
entering sleep mode.

If the event register is 1, this indicate that the processor must not enter sleep mode on
execution of a WFE instruction. Typically, this is because an external event signal is

Reference Manual 2-40 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

asserted, or a processor in the system has executed an SEV instruction, see SEV on
page 3-166. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the
execution of all exception handlers it returns to Thread mode and immediately enters
sleep mode. Use this mechanism in applications that only require the processor to run
when an exception occurs.

2.7.2 Wakeup from Sleep Mode

The conditions for the processor to wakeup depend on the mechanism that cause it to
enter sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient
priority to cause exception entry. Some embedded systems might have to execute
system restore tasks after the processor wakes up, and before it executes an interrupt
handler. To achieve this set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an
interrupt arrives that is enabled and has a higher priority than current exception priority,
the processor wakes up but does not execute the interrupt handler until the processor
sets PRIMASK to zero. For more information about PRIMASK and FAULTMASK see
Exception mask registers on Page 2-13.

Wakeup from WFE
The processor wakes up if:

« it detects an exception with sufficient priority to cause exception entry
« it detects an external event signal, see The external event input

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt
triggers an event and wakes up the processor, even if the interrupt is disabled or has
insufficient priority to cause exception entry. For more information about the SCR see
System Control Register on Page 2-66.

2.7.3 The External Event Input

The processor provides an external event input signal. Peripherals can drive this signal,
either to wake the processor from WFE, or to set the internal WFE event register to one
to indicate that the processor must not enter sleep mode on a later WFE instruction. See
Wait for event on Page 2-40 for more information.

Reference Manual 2-41 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

274 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides
the following functions for these instructions:

void _ WFE(void) // Wait for Event
void _ _WFI(void) // Wait for Interrupt

2.8 Private Peripherals

The following sections are the reference material for the ARM Cortex-M4 core
peripherals.

2.8.1 About the Private Peripherals
The address map of the Private Peripheral Bus (PPB) is:

Table 2-12 Core peripheral register regions

Address Core peripheral Description

OXEOOOEO008- | System control block Section 2.8.2 and Section 2.9.1
OxEOOOEOOF

OXEOOOEO010- | System timer Section 2.8.3 and Section 2.9.2
OXxEOOOEO1F

OXEOOOE100- |Nested Vectored Interrupt Section 2.8.4 and Section 2.9.3
OXEOOOE4EF | Controller

OXEOOOEDOO- | System control block Section 2.8.2 and Section 2.9.1
OXEOOOED3F

OXEOOOED90- | Memory protection unit Section 2.8.5 and Section 2.9.4
OxEOOOEDBS

OXEOOOEFO00- | Nested Vectored Interrupt Section 2.8.4 and Section 2.9.3
OXEOOOEF03 | Controller

OXEOOOEF30- |Floating Point Unit Section 2.8.6 and Section 2.9.5
OXEOOOEF44

2.8.2 System control block

The System control block (SCB) provides system implementation information, and
system control. This includes configuration, control, and reporting of the system
exceptions. The system control block registers are:

Reference Manual 2-42 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

2.8.2.1 System control block design hints and tips
Ensure software uses aligned accesses of the correct size to access the system control
block registers:

» except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses

« for the CFSR and SHPR1-SHPRS3 it can use byte or aligned halfword or word
accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or BFAR value.

2. Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The
MMFAR or BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might
change the MMFAR or BFAR value. For example, if a higher priority handler preempts
the current fault handler, the other fault might change the MMFAR or BFAR value.

2.8.3 System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload
value to zero, reloads, that is wraps to, the value in the SYST_RVR register on the next
clock edge, then counts down on subsequent clocks.

Note: When the processor is halted for debugging the counter does not decrement.

2.8.3.1 SysTick design hints and tips

The SysTick counter runs on the clock selected by SYST_CSR.CLKSOURCE. If the
selected clock signal is stopped, the SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset, the correct
initialization sequence for the SysTick counter is:

1. Program reload value.
2. Clear current value.
3. Program Control and Status register.

2.8.4 Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The XMC4500 NVIC supports:

e 112 interrupts.

* A programmable priority level of 0-63 for each interrupt. A higher level corresponds
to a lower priority, so level 0 is the highest interrupt priority.

« Level and pulse detection of interrupt signals.

« Dynamic reprioritization of interrupts.

Reference Manual 2-43 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

« Grouping of priority values into group priority and subpriority fields.
e Interrupt tail-chaining.
* An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state
on exception exit, with no instruction overhead. This provides low latency exception
handling. The hardware implementation of the NVIC registers is:

2.8.4.1 Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are
also described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt
signal. Typically this happens because the ISR accesses the peripheral, causing it to
clear the interrupt request. A pulse interrupt is an interrupt signal sampled synchronously
on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the
peripheral must assert the interrupt signal for at least one clock cycle, during which the
NVIC detects the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the
interrupt, see next section. For a level-sensitive interrupt, if the signal is not deasserted
before the processor returns from the ISR, the interrupt becomes pending again, and the
processor must execute its ISR again. This means that the peripheral can hold the
interrupt signal asserted until it no longer requires servicing.

See section “Service Request Distribution” in the “Service Request Processing” chapter
for details about which interrupts are level-based and which are pulsed.

Hardware and software control of interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of
the following reasons:

« the NVIC detects that the interrupt signal is HIGH and the interrupt is not active

« the NVIC detects a rising edge on the interrupt signal

» software writes to the corresponding interrupt set-pending register bit, see Interrupt
Set-pending Registers on Page 2-88 or to the STIR to make an interrupt pending,
see Software Trigger Interrupt Register on Page 2-91.

A pending interrupt remains pending until one of the following:

« The processor enters the ISR for the interrupt. This changes the state of the interrupt
from pending to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

Reference Manual 2-44 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

— For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this
is pulsed the state of the interrupt changes to pending and active. In this case,
when the processor returns from the ISR the state of the interrupt changes to
pending, which might cause the processor to immediately re-enter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.
« Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the

interrupt does not change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:

— inactive, if the state was pending

— active, if the state was active and pending.

2.8.4.2 NVIC design hints and tips

Ensure software uses correctly aligned register accesses. The processor does not
support unaligned accesses to NVIC registers. See the individual register descriptions
for the supported access sizes.

A interrupt can enter pending state even if it is disabled. Disabling an interrupt only
prevents the processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries
of the new vector table are setup for fault handlers, NMI and all enabled exception like
interrupts. For more information see Vector Table Offset Register on Page 2-63.

2.8.4.3 Using CMSIS functions to access NVIC

CMSIS functions enable software portability between different Cortex-M profile
processors. To ensure Cortex-M portability, use the functions marked for Cortex-M
portability in the table below.

CMSIS provides a number of functions for NVIC control, including:

Table 2-13 CMSIS functions for NVIC control

CMSIS interrupt control function Description Cortex-M
Portable

void NVIC_SetPriorityGrouping(| Set the priority grouping. No

uint32_t priority_grouping)

uint32_t Get the priority grouping. No

NVIC_GetPriorityGrouping(

void)

void NVIC_EnablelRQ(Enables IRQnN. Yes

IRQN_t IRQN)

Reference Manual 2-45 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Table 2-13

Central Processing Unit (CPU)

CMSIS functions for NVIC control (cont'd)

CMSIS interrupt control function Description Cortex-M
Portable

void NVIC_DisablelRQ(Disables IRQn. Yes
IRQn_t IRQN)

uint32_t NVIC_GetPendinglRQ(Return IRQ-Number (true) if |Yes
IRQn_t I1RQnN) IRQn is pending.

void NVIC_SetPendinglRQ(Set IRQn pending. Yes
IRQN_t IRQN)

void NVIC_ClearPendinglIRQ(Clear IRQn pending. Yes
IRQn_t IRQN)

uint32_t NVIC_GetActive(Return the IRQ number of the | No
IRQn_t 1RQN) active interrupt.

void NVIC_SetPriority(Set priority for IRQn. Yes
IRQN_t IRQN,

uint32_t priority)

uint32_t NVIC GetPriority(Read priority of IRQn. Yes
IRQn_t 1RQN)

uint32_t NVIC_EncodePriority(|Encodes the priority for an No
uint32_t PriorityGroup, interrupt with the given priority
uint32_t PreemptPriority, group, preemptive priority
uint32_t SubPriority) value and sub priority value.

void NVIC_DecodePriority(Decodes an interrupt priority | No
uint32_t Priority, value with the given priority
uint32_t PriorityGroup, group to preemptive priority
uint32_t* pPreemptPriority, value and sub priority value.
uint32_t* pSubPriority)

void NVIC_SystemReset(void) Reset the system Yes

The parameter IRQn is the IRQ number, see Table 2-8 on Page 2-28. For more
information about these functions see the CMSIS documentation [4].

2.8.5

Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location,
size, access permissions, and memory attributes of each region. It supports:

« independent attribute settings for each region

« overlapping regions

e export of memory attributes to the system

Reference Manual
CPU, V1.1

2-46

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

The memory attributes affect the behavior of memory accesses to the region. The
Cortex-M4 MPU defines:

e eight separate memory regions, 0-7
« abackground region
When memory regions overlap, a memory access is affected by the attributes of the

region with the highest number. For example, the attributes for region 7 take precedence
over the attributes of any region that overlaps region 7.

Central Processing Unit (CPU)

The background region has the same memory access attributes as the default memory
map, but is accessible from privileged software only.

The Cortex-M4 MPU memory map is unified. This means instruction accesses and data
accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor
generates a MemManage fault. This causes a fault exception, and might cause
termination of the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based
on the process to be executed. Typically, an embedded OS uses the MPU for memory
protection.

Configuration of MPU regions is based on memory types, see Memory regions, types
and attributes on Page 2-20.

Table 2-14 shows the possible MPU region attributes.
Note: The shareability and cache attributes are not relevant to the XMC4500.

Table 2-14 Memory attributes summary
Address | Shareability | Other attributes Description
Strongly- |- - All accesses to Strongly-ordered
ordered memory occur in program order.
All Strongly-ordered regions are
assumed to be shared.
Device Shared - Memory-mapped peripherals that
several processors share.
Non-shared |- Memory-mapped peripherals that
only a single processor uses.
Normal | Shared Non-cacheable Normal memory that is shared
Write-through or between several processors.
Write-back Cacheable
Non-shared | Non-cacheable Normal memory that only a single
Write-through or processor uses.
Write-back Cacheable

Reference Manual
CPU, V1.1

2-47

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

Central Processing Unit (CPU)

2851

This section describes the MPU access permission attributes. The access permission
bits, TEX, C, B, S, AP, and XN, of the RASR, control access to the corresponding
memory region. If an access is made to an area of memory without the required
permissions, then the MPU generates a permission fault. Table 2-15 shows encodings
for the TEX, C, B, and S access permission bits.

MPU Access Permission Attributes

Table 2-15 TEX, C, B, and S encoding
TEX |C |B |S |Memory type Shareability Other attributes
0b000 |0 0 |Xx Strongly-ordered | Shareable -
1 X Device Shareable -
1 0 0 Normal Not shareable |Outer and inner write-
1 Shareable through. No write allocate.
1 0 Normal Not shareable | Outer and inner write-
i Shareable back. No write allocate.
0b001 |0 0 0 Normal Not shareable |Outer and inner
1 Shareable noncacheable.
1 |xY |Reserved encoding -
1 |0 |xY |Implementation defined attributes.
1 0 Normal Not shareable |Outer and inner write-
1 Shareable back. Write and read
allocate.
0b010 |0 0 xY | Device Not shareable | Nonshared Device.
1 xY | Reserved encoding -
1 X x? | Reserved encoding -
Ob1BB | A 0 Normal Not shareable |Cached memory, BB =
A 1 Shareable outgr policy, AA = inner
policy. See Table 2-16 on
Page 2-49 for the
encoding of the AA and
BB bits.
1) The MPU ignores the value of this bit.
Reference Manual 2-48 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Table 2-16 shows the cache policy for memory attribute encodings with a TEX value is
in the range 4-7.

Table 2-16 Cache policy for memory attribute encoding

Encoding, AA or BB Corresponding cache policy

00 Non-cacheable

01 Write back, write and read allocate
10 Write through, no write allocate

11 Write back, no write allocate

MPU configuration for the XMC4500

The XMC4500 has only a single processor and no caches. However to enable portability
it is recommended to program the MPU as follows:

Table 2-17 Memory region attributes for a microcontroller

Memory region | TEX C |B |S [Memorytype and attributes

Internal Flash 0b000 |1 0 0 Normal memory, Non-shareable, write-
memory through

Internal SRAM | 0b000 |1 0 1 Normal memory, Shareable, write-through
memories

External 0b000 |1 1 1 Normal memory, Shareable, write-back,
memories write-allocate
Peripherals 0b000 |0 1 1 Device memory, Shareable

Table 2-18 shows the AP encodings that define the access permissions for privileged
and unprivileged software.

Table 2-18 AP encoding

AP[2:0] Privileged Unprivileged Description
permissions permissions

000 No access No access All accesses generate a
permission fault

001 rw No access Access from privileged software
only

010 rw r Writes by unprivileged software
generate a permission fault

011 rw rw Full access

Reference Manual 2-49 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Table 2-18 AP encoding (cont'd)

AP[2:0] Privileged Unprivileged Description
permissions permissions

100 Unpredictable | Unpredictable |Reserved

101 r No access Reads by privileged software only

110 r r Read only, by privileged or
unprivileged software

111 r r Read only, by privileged or
unprivileged software

2.8.5.2 MPU Mismatch

When an access violates the MPU permissions, the processor generates a MemManage
fault, see Exceptions and interrupts on Page 2-17. The MMFSR indicates the cause of
the fault. See MemManage Fault Status Register on Page 2-73 for more information.

2.8.5.3 Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and
MPU_RASR registers. You can program each register separately, or use a multiple-word
write to program all of these registers. You can use the MPU_RBAR and MPU_RASR
aliases to program up to four regions simultaneously using an STM instruction.

Updating an MPU region using separate words
Simple code to configure one region:

; R1 = region number

; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR OXEOOOED98, MPU region number register
STR R1, [RO, #0xO] Region Number

STR R4, [RO, #0x4]
STRH R2, [RO, #0x8]
STRH R3, [RO, #OxA]

Disable a region before writing new region settings to the MPU if you have previously
enabled the region being changed. For example:

; R1 = region number
; R2 = size/enable

; R3 = attributes

; R4 = address

Reference Manual

CPU, V1.1

Region Base Address
Region Size and Enable
Region Attribute

2-50

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

LDR RO,=MPU_RNR ; OxEOOOED98, MPU region number
register

STR R1, [RO, #0x0O]
BIC R2, R2, #1

STRH R2, [RO, #0x8]
STR R4, [RO, #0x4]
STRH R3, [RO, #OxA]
ORR R2, #1

STRH R2, [RO, #0x8]

Software must use memory barrier instructions:

* before MPU setup if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in MPU settings
« after MPU setup if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts
by entering an exception handler, or is followed by an exception return, because the
exception entry and exception return mechanism cause memory barrier behavior.

Software does not require any memory barrier instructions during MPU setup, because
it accesses the MPU through the PPB, which is a Strongly-Ordered memory region.

For example, if you want all of the memory access behavior to take effect immediately
after the programming sequence, use a DSB instruction and an ISB instruction. A DSB
is required after changing MPU settings, such as at the end of context switch. An ISB is
required if the code that programs the MPU region or regions is entered using a branch
or call. If the programming sequence is entered using a return from exception, or by
taking an exception, then you do not require an ISB.

Region Number

Disable

Region Size and Enable
Region Base Address
Region Attribute
Enable

Region Size and Enable

Updating an MPU region using multi-word writes

You can program directly using multi-word writes, depending on how the information is
divided. Consider the following reprogramming:

; R1 = region number

R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
R1

; region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register

Reference Manual 2-51 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

STM RO, {R1-R3} ; Region Number, address, attribute, size and
enable

You can do this in two words for pre-packed information. This means that the
MPU_RBAR contains the required region number and had the VALID bit set to 1, see
MPU Region Base Address Register on Page 2-95. Use this when the data is statically
packed, for example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Region Base register
STR R1, [RO, #0x0] ; Region base address and

; region number combined with VALID (bit 4)
set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the
corresponding bit in the SRD field of the MPU_RASR to disable a subregion, see MPU
Region Attribute and Size Register on Page 2-97. The least significant bit of SRD
controls the first subregion, and the most significant bit controls the last subregion.
Disabling a subregion means another region overlapping the disabled range matches
instead. If no other enabled region overlaps the disabled subregion the MPU issues a
fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes,
you must set the SRD field to 0x00, otherwise the MPU behavior is Unpredictable.

Example of SRD use

Two regions with the same base address overlap. Region one is 128KB, and region two
is 512KB. To ensure the attributes from region one apply to the first 128KB region, set
the SRD field for region two to Ob00000011 to disable the first two subregions, as the
figure shows.

Reference Manual 2-52 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB

128KB
Disabled subregion

Disabled subregion 64KB
Base address of both regions 9 0

Figure 2-8 Example of SRD use

2.8.5.4 MPU Design Hints and Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a
region that the interrupt handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

« except for the MPU_RASR, it must use aligned word accesses
» for the MPU_RASR it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable
unused regions to prevent any previous region settings from affecting the new MPU
setup.

In the XMC4500 the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application
code more portable.

2.8.6 Floating Point Unit (FPU)
The Cortex-M4 FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and
accumulate, and square root operations. It also provides conversions between fixed-
point and floating-point data formats, and floating-point constant instructions.

The FPU provides floating-point computation functionality that is compliant with the
ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred
to as the IEEE 754 standard [4].

The FPU contains 32 single-precision extension registers, which you can also access as
16 doubleword registers for load, store, and move operations.

Reference Manual 2-53 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

2.8.6.1 Enabling the FPU

The FPU is disabled from reset. You must enable it before you can use any floating-point
instructions. The Example shows an example code sequence for enabling the FPU in
both privileged and user modes. The processor must be in privileged mode to read from
and write to the CPACR.

Example: Enabling the FPU

; CPACR is located at address OxEOOOED88
LDR.W RO, =0xEOOOEDS88
; Read CPACR

LDR R1, [RO]

; Set bits 20-23 to enable CP10 and CP11l coprocessors
ORR R1, R1, #(OxF << 20)

; Write back the modified value to the CPACR

STR R1, [RO]; wait for store to complete

DSB

;reset pipeline now the FPU is enabled

1SB

2.9 PPB Registers

The CPU private peripherals registers base address is EOOOE000,,.

Table 2-19 Registers Overview

Register Register Long Name | Offset Access Mode | Description

Short Name Address Raad |Write |S€€

SCS

ACTLR Auxiliary Control 008, PV, 32 | PV, 32 | Page 2-57
Register

CPUID CPUID Base Register | D00, PV, 32| PV, 32| Page 2-59

ICSR Interrupt Control and D04 PV, 32| PV, 32| Page 2-60
State Register

VTOR Vector Table Offset D08y, PV, 32| PV, 32 | Page 2-63
Register

AIRCR Application Interrupt DOC, PV, 32 | PV, 32 | Page 2-63
and Reset Control
Register

SCR System Control D10y, PV, 32| PV, 32| Page 2-66
Register

Reference Manual 2-54 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Central Processing Unit (CPU)

Table 2-19 Registers Overview (cont'd)

Register Register Long Name | Offset Access Mode | Description

Short Name Address Raad [write |S€€

CCR Configuration and D14, PV, 32 | PV, 32 | Page 2-67
Control Register

SHPR1 System Handler Priority | D18, PV, 32| PV, 32 | Page 2-70
Register 1

SHPR2 System Handler Priority | D1C, PV, 32 | PV, 32 | Page 2-70
Register 2

SHPR3 System Handler Priority | D20, PV, 32 | PV, 32 | Page 2-71
Register 3

SHCRS System Handler Control | D24, PV, 32| PV, 32 | Page 2-71
and State Register

CFSR Configurable Fault D28, PV, 32| PV, 32| Page 2-73
Status Register

MMSRY MemManage Fault D28, PV, 32| PV, 32| Page 2-73
Status Register

BFSRY BusFault Status D29, PV, 32| PV, 32 | Page 2-73
Register

UFSRY UsageFault Status D2A, PV, 32| PV, 32| Page 2-73
Register

HFSR HardFault Status D2C, PV, 32| PV, 32| Page 2-80
Register

MMAR MemManage Fault D34, PV, 32| PV, 32| Page 2-81
Address Register

BFAR BusFault Address D38, PV, 32| PV, 32 | Page 2-82
Register

AFSR Auxiliary Fault Status D3C, PV, 32 | PV, 32 | Page 2-82
Register

SysTick

SYST_CSR SysTick Control and 010, PV, 32 | PV, 32 | Page 2-83
Status Register

SYST_RVR SysTick Reload Value |014,, PV, 32 | PV, 32 | Page 2-84
Register

SYST_CVR SysTick Current Value |018, PV, 32 | PV, 32 | Page 2-85
Register

Reference Manual 2-55 V1.0, 2012-02

CPU, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Central Processing Unit (CPU)

Table 2-19 Registers Overview (cont'd)

Register Register Long Name | Offset Access Mode | Description

Short Name Address Raad [write |S€€

SYST_CALIB SysTick Calibration 01C, PV, 32 |- Page 2-85
Value Register

NVIC

NVIC_ISERO- Interrupt Set-enable 100, PV, 32 | PV, 32 | Page 2-86

NVIC_ISER3 Registers

NVIC_ICERO- Interrupt Clear-enable | 180, PV, 32 | PV, 32 | Page 2-87

NVIC_ICER3 Registers

NVIC_ISPRO- Interrupt Set-pending 200, PV, 32| PV, 32| Page 2-88

NVIC_ISPR3 Registers

NVIC_ICPRO- Interrupt Clear-pending | 280, PV, 32| PV, 32| Page 2-88

NVIC_ICPR3 Registers

NVIC_IABRO- Interrupt Active Bit 300, PV, 32 | PV, 32 | Page 2-89

NVIC_IABR3 Registers

NVIC_IPRO- Interrupt Priority 400, PV, 32| PV, 32 | Page 2-89

NVIC_IPR27 Registers

STIR Software Trigger F00, Configurable? |Page 2-91
Interrupt Register

MPU

MPU_TYPE MPU Type Register D90, PV, 32| PV, 32| Page 2-92

MPU_CTRL MPU Control Register | D94, PV, 32 | PV, 32 | Page 2-92

MPU_RNR MPU Region Number | D98, PV, 32 | PV, 32 | Page 2-95
Register

MPU_RBAR MPU Region Base DOC, PV, 32| PV, 32| Page 2-95
Address Register

MPU_RASR MPU Region Attribute | DAO,, PV, 32| PV, 32| Page 2-97
and Size Register

MPU_RBAR_A1 |Alias of RBAR, see DA4,, PV, 32| PV, 32| Page 2-95
MPU Region Base
Address Register

MPU_RASR_A1l |Alias of RASR, see DA8,, PV, 32| PV, 32| Page 2-97
MPU Region Attribute
and Size Register

Reference Manual 2-56 V1.0, 2012-02

CPU, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Table 2-19 Registers Overview (cont'd)

Central Processing Unit (CPU)

Register Register Long Name | Offset Access Mode | Description

Short Name Address Read [write |S€€

MPU_RBAR_A2 | Alias of RBAR, see DAC, PV, 32| PV, 32| Page 2-95
MPU Region Base
Address Register

MPU_RASR_A2 | Alias of RASR, see DBOy, PV, 32| PV, 32| Page 2-97
MPU Region Attribute
and Size Register

MPU_RBAR_A3 | Alias of RBAR, see DB4,, PV, 32 | PV, 32 | Page 2-95
MPU Region Base
Address Register

MPU_RASR_A3 | Alias of RASR, see DB8,, PV, 32| PV, 32| Page 2-97
MPU Region Attribute
and Size Register

FPU

CPACR Coprocessor Access D88, PV, 32| PV, 32| Page 2-100
Control Register

FPCCR Floating-point Context | F34, U,PV, |U,PV, |Page 2-101
Control Register 32 32

FPCAR Floating-point Context | F38, U,PV, |U,PV, | Page 2-103
Address Register 32 32

FPSCR Floating-point Status - U,PV, |U,PV, |Page 2-104
Control Register 32 32

FPDSCR Floating-point Default | F3C,, U,PV, |U,PV, |Page 2-106
Status Control Register 32 32

Reserved Unused address space |Allgaps |nBE nBE

1) A subregister of the CFSR.

2) See the register description for more information.

29.1 SCS Registers

Auxiliary Control Register

The ACTLR provides disable bits for the following processor functions:

« IT folding

« write buffer use for accesses to the default memory map

e interruption of multi-cycle instructions.

Reference Manual 2-57 V1.0, 2012-02

CPU, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

By default this register is set to provide optimum performance from the Cortex-M4
processor, and does not normally require modification.

ACTLR
Auxiliary Control Register (EO0O0 E008,) Reset Value: 0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

T T T T T T T T T T T T T T T

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DISO|DISF DISF DISD) DIS
0 OFP |PCA 0 oLD EFWIMCY
L L 1 1 1 1 1 1 1 BUF CINT
r w 'w r 'w 'w 'w
Field Bits Type | Description
DISMCYCINT 0 rw Disable load/store multiple

When set to 1, disables interruption of load multiple
and store multiple instructions. This increases the
interrupt latency of the processor because any LDM
or STM must complete before the processor can
stack the current state and enter the interrupt
handler.

DISDEFWBUF |1 w Disable write buffer

When set to 1, disables write buffer use during
default memory map accesses. This causes all
BusFaults to be precise BusFaults but decreases
performance because any store to memory must
complete before the processor can execute the next
instruction.

Note: This bit only affects write buffers implemented
in the Cortex-M4 processor.

DISFOLD 2 rw Disable IT folding
When set to 1, disables IT folding.
DISFPCA 8 rw Disable FPCA update

Disable automatic update of CONTROL.FPCA.

Reference Manual 2-58 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description

DISOOFP 9 rw Disable out of order FP execution
Disables floating point instructions completing out of
order with respect to integer instructions.

=

0 [31:10], Reserved
[7:3] Read as 0; should be written with 0.

About IT folding

In some situations, the processor can start executing the first instruction in an IT block
while it is still executing the IT instruction. This behavior is called IT folding, and improves
performance, However, IT folding can cause jitter in looping. If a task must avoid jitter,
set the DISFOLD bit to 1 before executing the task, to disable IT folding.

CPUID Base Register

The CPUID register contains the processor part number, version, and implementation
information.

CPUID
CPUID Base Register (EO00 EDO0O,,) Reset Value: 410F C241,,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

Implementer Variant | Constant PartNo Revision

1 1

r r r r r

Field Bits Type | Description
Revision [3:0] r Revision number

the y value in the “rxpy” product revision identifier
1, Patchl

PartNo [15:4] |r Part number of the processor
C24,, Cortex-M4

Constant [19:16] |r Reads as OxF

Variant [23:20] |r Variant number

the x value in the “rxpy” product revision identifier
0, Revision 0

Implementer [31:24]

—

Implementer code
41, ARM

Reference Manual 2-59 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Interrupt Control and State Register
The ICSR:

e provides:
— a set-pending bit for the Non-Maskable Interrupt (NMI) exception
— set-pending and clear-pending bits for the PendSV and SysTick exceptions
e indicates:
— the exception number of the exception being processed
whether there are preempted active exceptions
the exception number of the highest priority pending exception
whether any interrupts are pending.

ICSR
Interrupt Control and State Register

(EO00 EDO04,,) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
NMI | PEN | PEN | PEN | PEN ISRP | | | |
EEE 0 DSV |DSV |DST |DST| O | Res |[ENDI 0 VESILZEN
T SET |CLR|SET |CLR NG
w ;’ 'w w 'w w r r r J IJ‘ J Il'

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET
VECTPENDING TOB 0 VECTACTIVE
1 1 ASE 1 1 1
r r r r
Field Bits Type | Description

—

VECTACTIVEY |[8:0] Active exception number
00,; Thread mode
Nonzero = The exception number of the currently

active exception.

Note: Subtract 16 from this value to obtain the
CMSIS IRQ number required to index into the
Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers.

Reference Manual 2-60 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

RETTOBASE

11

Return to Base

Indicates whether there are preempted active

exceptions:

Oz there are preempted active exceptions to
execute

1 there are no active exceptions, or the
currently-executing exception is the only active
exception.

VECTPENDING

[17:12]

—

Vector Pending

Indicates the exception number of the highest priority
pending enabled exception:

0, no pending exceptions

Nonzero = the exception number of the highest
priority pending enabled exception.

The value indicated by this field includes the effect of
the BASEPRI and FAULTMASK registers, but not
any effect of the PRIMASK register.

ISRPENDING

22

Interrupt pending flag
excluding NMI and Faults:
Og interrupt not pending
1; interrupt pending.

Res

23

Reserved
This bitis reserved for Debug use and reads-as-zero
when the processor is not in Debug.

PENDSTCLR

25

SysTick exception clear-pending bit

Write:

0g no effect

1; removes the pending state from the SysTick
exception.

This bit is w. On a register read its value is Unknown.

PENDSTSET

26

rw

SysTick exception set-pending bit

Write

0g no effect

1; changes SysTick exception state to pending.
Read:

Op SysTick exception is not pending

1, SysTick exception is pending.

Reference Manual
CPU, V1.1

2-61 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
PENDSVCLR 27 w PendSV clear-pending bit
Write:
0z no effect
1; removes the pending state from the PendSV
exception.
PENDSVSET 28 rw PendSV set-pending bit
Write:
0g no effect
1z changes PendSV exception state to pending.
Read:
0g PendSV exception is not pending
1; PendSV exception is pending.
Writing 1 to this bit is the only way to set the PendSV
exception state to pending.
NMIPENDSET |31 rw NMI set-pending bit
Write:
0g no effect
1z changes NMI exception state to pending.
Read:
0g NMI exception is not pending
1; NMI exception is pending.
Because NMI is the highest-priority exception,
normally the processor enter the NMI exception
handler as soon as it registers a write of 1 to this bit,
and entering the handler clears this bitto 0. A read of
this bit by the NMI exception handler returns 1 only if
the NMI signal is reasserted while the processor is
executing that handler.
0 [30:29], | r Reserved
24, Read as 0; should be written with 0.
[21:18],
[10:9]

1) This is the same value as IPSR bits[8:0], see Interrupt Program Status Register on page 2-6.

When you write to the ICSR, the effect is Unpredictable if you:

Note: write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Reference Manual
CPU, V1.1

2-62 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000.

ngsr Table Offset Register (EO00 EDO08,,) Reset Value: 0000 0000,

31‘30‘29‘28‘27|26|25|24|23|22|21|20|19|18|17|16|15|l4|13|12‘11‘10 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
TBLOFF 0

Field Bits Type | Description

TBLOFF [31:10] | rw Vector table base offset field

It contains bits[29:10] of the offset of the table base
from the bottom of the memory map.

Note: Bit[29] determines whether the vector table is
in the code or SRAM memory region:
0 = code
1=SRAM
Bit[29] is sometimes called the TBLBASE bit.

0 [9:0]

—

Reserved
Read as 0; should be written with 0.

When setting TBLOFF, you must align the offset to the number of exception entries in
the vector table. The XMC4500 provides 112 interrupt nodes - minimum alignment is
therefore 256 words, enough for up to 128 interrupts.

Notes

1. XMC4500 implements 112 interrupts, the remaining nodes to 128 are not used.
2. Table alignment requirements mean that bits[9:0] of the table offset must always be
zero.

Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for
data accesses, and reset control of the system.

To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the
processor ignores the write.

Reference Manual 2-63 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

AIRCR
Application Interrupt and Reset Control Register
(EO00 EDOC}) Reset Value: FAO5 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VECTKEY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T
ENDI 2;2 ¥(IE:E VEC
ANN 0 PRIGROUP 0 TRE
ESS ETRIRAC SET
| | | | | EQ [TIVE
r r rw r w w w

Field Bits Type | Description

VECTRESET 0 w Reserved for Debug use.

This bit reads as 0. When writing to the register
you must write O to this bit, otherwise behavior is
Unpredictable

VECTCLRACTIVE |1 w Reserved for Debug use.

This bit reads as 0. When writing to the register
you must write O to this bit, otherwise behavior is
Unpredictable.

SYSRESETREQ |2 w System reset request

Og no system reset request

1z asserts a signal to the outer system that
requests a reset.

This is intended to force a large system reset of all

major components except for debug.

This bit reads as 0.

PRIGROUP [10:8] |rw Interrupt priority grouping field

This field determines the split of group priority

from subpriority, see Binary point on Page 2-65.

ENDIANNESS 15 r Data endianness bit

0z Little-endian

1z Big-endian.

Reference Manual 2-64 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

VECTKEY

[31:16]

rw Register key

Read:

Write:

= VECTKEY, reads as 0xFA05

= VECTKEYSTAT, On writes, write Ox5FA to
VECTKEY, otherwise the write is ignored.

[14:11],
[7:3]

—

Reserved
Read as 0; should be written with 0.

Binary point

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields
in the Interrupt Priority Registers into separate group priority and subpriority fields.
Table 2-20 shows how the PRIGROUP value controls this split.

Table 2-20 Priority grouping

Interrupt priority level value, PRI_N[7:0] Number of
PRIGROUP |Binary point? |Group Subpriority | Group Sub-

priority bits | bits priorities | priorities

0b001 bxxxxxx.00 [7:2] None 64 1
0b010 bxxxxx.y00 [7:3] [2] 32 2
0b011 bxxxx.yy00 [7:4] [3:2] 16 4
0b100 bxxx.yyy00 [7:5] [4:2] 8 8
0b101 bxx.yyyy00 [7:6] [5:2] 4 16
0bl110 bx.yyyyy00 7 [6:2] 2 32
Obl111 b.yyyyyy00 None [7:2] 1 64

1) PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field

bit.

Note: Determining preemption of an exception uses only the group priority field, see
Interrupt Priority Grouping on Page 2-31.

Reference Manual

CPU, V1.1

2-65

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

(infineon

System Control Register

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

The SCR controls features of entry to and exit from low power state.

SCR

System Control Register

(EO00 ED10,) Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0
1 1 1 1 1 II‘ 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEV SLE :II;(E)
0 ONP| 0 |EPD| | O
END EEP
1 1 1 1 1 1 1 T
r rw r rw rw r
Field Bits Type | Description
SLEEPONEXIT |1 rw Sleep on Exit
Indicates sleep-on-exit when returning from Handler
mode to Thread mode:
Og sleep
1; deepsleep
Setting this bit to 1 enables an interrupt driven
application to avoid returning to an empty main
application.
SLEEPDEEP 2 rw Sleep or Deep Sleep

Controls whether the processor uses sleep or deep
sleep as its low power mode:

0g sleep

1; deepsleep

Reference Manual
CPU, V1.1

2-66 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description

SEVONPEND 4 w Send Event on Pending bit:

0g only enabled interrupts or events can wakeup
the processor, disabled interrupts are
excluded

1; enabled events and all interrupts, including
disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the

event signal wakes up the processor from WFE. If

the processor is not waiting for an event, the event is

registered and affects the next WFE.

The processor also wakes up on execution of an

SEV instruction or an external event.

0 [31:5], |r Reserved
3,0 Read as 0; should be written with 0.

Configuration and Control Register

The CCR controls entry to Thread mode and enables:

e the handlers for NMI, hard fault and faults escalated by FAULTMASK to ignore
BusFaults

« trapping of divide by zero and unaligned accesses

e access to the STIR by unprivileged software, see Software Trigger Interrupt
Register on Page 2-91

CCR
Configuration and Control Register
(EO00 ED14,)) Reset Value: 0000 0200,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T

NON

STK |BFH DIV_ I?I’(\;ﬁl ggg BAS

0 ALIG|FNMI 0 0 TR 0 ETH

- |_TR T™P

N GN P _P END RDE

L L 1 1 1 1 1 NA

r w rw r w o rw r w o rw
Reference Manual 2-67 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

NONBASETHR
DENA

0

Non Base Thread Mode Enable

Indicates how the processor enters Thread mode:

0g processor can enter Thread mode only when
no exception is active.

1z processor can enter Thread mode from any
level under the control of an EXC_RETURN
value, see Exception return.

USERSETMPE
ND

1

rw

User Set Pending Enable

Enables unprivileged software access to the STIR,
see Software Trigger Interrupt Register.

Og disable

1; enable

UNALIGN_TRP

3

rw

Unaligned Access Trap Enable

Enables unaligned access traps:

Og do not trap unaligned halfword and word
accesses

1; trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates

a UsageFault.

Unaligned LDM, STM, LDRD, and STRD instructions

always fault irrespective of whether UNALIGN_TRP

is setto 1.

DIV_0_TRP

rw

Divide by Zero Trap Enable

Enables faulting or halting when the processor
executes an SDIV or UDIV instruction with a divisor
of O:

0g donot trap divide by O

1; trap divide by O.

When this bit is set to 0,a divide by zero returns a
quotient of 0.

Reference Manual
CPU, V1.1

2-68 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits Type

Description

BFHFNMIGN

8 w

Bus Fault Hard Fault and NMI Ignore

Enables handlers with priority -1 or -2 to ignore data
BusFaults caused by load and store instructions.
This applies to the hard fault, NMI, and FAULTMASK
escalated handlers:

Oz data bus faults caused by load and store
instructions cause a lock-up

handlers running at priority -1 and -2 ignore
data bus faults caused by load and store
instructions.

Set this bit to 1 only when the handler and its data
are in absolutely safe memory. The normal use of
this bit is to probe system devices and bridges to
detect control path problems and fix them.

1g

STKALIGN

Stack Alignment

Indicates stack alignment on exception entry:

0g 4-byte aligned

1; 8-byte aligned.

On exception entry, the processor uses bit[9] of the
stacked PSR to indicate the stack alignment. On
return from the exception it uses this stacked bit to
restore the correct stack alignment.

[31:10],
[7:5], 2

—

Reserved
Read as 0; should be written with 0.

System Handler Priority Registers

The SHPR1-SHPR3 registers set the priority level, 0 to 63 of the exception handlers that
have configurable priority.

SHPR1-SHPR3 are byte accessible.
The system fault handlers and the priority field and register for each handler are:

Table 2-21 System fault handler priority fields

Handler Field Register description

MemManage PRI_4 System Handler Priority Register 1 on Page 2-70
BusFault PRI_5

UsageFault PRI_6

SVCall PRI_11 System Handler Priority Register 2 on Page 2-70

Reference Manual
CPU, V1.1

2-69 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

Central Processing Unit (CPU)

Table 2-21 System fault handler priority fields (cont'd)

Handler Field Register description

PendSV PRI_14 System Handler Priority Register 3 on Page 2-71
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the XMC4500 implements only bits[7:2] of each field,
and bits[1:0] read as zero and ignore writes.

System Handler Priority Register 1

SHPR1
System Handler Priority Register 1

(EO00 ED18,)) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 PRI_6 PRI_5 PRI_4
L L L 'l’ 1 1 1 1 1 1 r\IN 1 1 1 1 1 1 r\J,v 1 1 1 1 r\llv L L L
Field Bits Type | Description
PRI_4 [7:0] w Priority of system handler 4, MemManage
PRI_5 [15:8] |rw Priority of system handler 5, BusFault
PRI_6 [23:16] |rw Priority of system handler 6, UsageFault
0 [31:24] |r Reserved
Read as 0; should be written with 0.

System Handler Priority Register 2

SHPR2

System Handler Priority Register 2
(EO00 ED1C,)

Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T
PRI_11 0
Il Il 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Il
rw r

Reference Manual

CPU, V1.1

2-70

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
PRI_11 [31:24] | rw Priority of system handler 11, SVCall
0 [23:0] |r Reserved

Read as 0; should be written with 0.

System Handler Priority Register 3

SHPR3
System Handler Priority Register 3
(EO00 ED20,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
PRI_15 PRI_14 0
1 r\\lv 1 1 1 1 1 1 r\I,\I 1 1 1 1 1 1 r\‘
Field Bits Type | Description
PRI_14 [23:16] | rw Priority of system handler 14
PendSV
PRI_15 [31:24] | rw Priority of system handler 15
SysTick exception
0 [15:0] |r Reserved
Read as 0; should be written with 0.

System Handler Control and State Register
The SHCSR enables the system handlers, and indicates:

» the pending status of the BusFault, MemManage fault, and SVC exceptions
» the active status of the system handlers.

Reference Manual 2-71 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

SHCSR
System Handler Control and State Register
(EO00 ED24,)) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T T T T T T T T T T T USG BUS MEM
0 FAU |FAU | FAU
LTE |LTE | LTE
1 1 1 1 1 1 NA NA NA
r 'w 'w 'w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BUS IMEM|USG
i\if FAU |FAU |FAU | SYS |PEN MON| SvVC llii(j E}:S '\IQEL'\JA
pen | LTP|LTP|LTPITICK|DSV| 0 |ITOR|ALL 0 Ltal @ [LTaliTa
bep | END |END |END | ACT | ACT ACT |ACT cT cT | er
ED | ED | ED
w w rw rw rw rw r 'w w r w r 'w w
Field Bits Type | Description
MEMFAULTACT 0 rw MemManage exception active bit
Reads as 1 if exception is active.
BUSFAULTACT 1 rw BusFault exception active bit
Reads as 1 if exception is active.
USGFAULTACT 3 rw UsageFault exception active bit
Reads as 1 if exception is active.
SVCALLACT 7 rw SVCall active bit
Reads as 1 if SVC call is active.
MONITORACT 8 rw Debug monitor active bit
Reads as 1 if Debug monitor is active.
PENDSVACT 10 rw PendSV exception active bit
Reads as 1 if exception is active.
SYSTICKACT 11 rw SysTick exception active bit
Reads as 1 if exception is active.
USGFAULTPENDED |12 rw UsageFault exception pending bit
Reads as 1 if exception is pending.
MEMFAULTPENDED |13 rw MemManage exception pending bit
Reads as 1 if exception is pending.

Reference Manual
CPU, V1.1

2-72 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
BUSFAULTPENDED |14 rw BusFault exception pending bit
Reads as 1 if exception is pending.
SVCALLPENDED 15 rw SVCall pending bit
Reads as 1 if exception is pending.
MEMFAULTENA 16 rw MemManage enable bit
Set to 1 to enable.
BUSFAULTENA 17 rw BusFault enable bit
Set to 1 to enable.
USGFAULTENA 18 rw UsageFault enable bit
Set to 1 to enable.
0 [31:19], | r Reserved
9,[6:4], Read as 0; should be written with 0.
2
Notes

1. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write
to these bits to change the active status of the exceptions, but see the Caution in this
section.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You
can write to these bits to change the pending status of the exceptions.

3. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

If you disable a system handler and the corresponding fault occurs, the processor treats
the fault as a hard fault.

You can write to this register to change the pending or active status of system
exceptions. An OS kernel can write to the active bits to perform a context switch that
changes the current exception type.

Note: Software that changes the value of an active bit in this register without correct
adjustment to the stacked content can cause the processor to generate a fault
exception. Ensure software that writes to this register retains and subsequently
restores the current active status.

Note: After you have enabled the system handlers, if you have to change the value of a
bit in this register you must use a read-modify-write procedure to ensure that you
change only the required bit.

Configurable Fault Status Register
The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault.
The flags in the MMFSR indicate the cause of memory access faults.

Reference Manual 2-73 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

The flags in the BFSR indicate the cause of a bus access fault.
The UFSR indicates the cause of a UsageFault.

31 16 15 8 7 0
. Bus Fault Status Memory Management
Usage Fault Status Register Register Fault Status Register
{ X I\ y
UFSR BFSR MMFSR

Figure 2-9 CFSR

The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:

* access the complete CFSR with a word access to OXEOOOED28

« access the MMFSR with a byte access to 0OXEOOOED28

e access the MMFSR with a byte access to OXEOOOED28

e access the MMFSR and BFSR with a halfword access to 0OXEOOOED28
« access the BFSR with a byte access to OXEOOOED29

e access the UFSR with a halfword access to OXEOOOED2A

Note: The UFSR bits are sticky. This means as one or more fault occurs, the associated
bits are set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or

by a reset.
CFSR
Configurable Fault Status Register
(EO00 ED28,)) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ST DIVB|UNA T INVS|UND
0 YZE [LIGN 0 NSC IN(\:/P TAT |EFIN
. . . RO | ED . ‘ E |STR
r rw 'w r 'w 'w 'w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMP
BFA UNS PRE MMA MLS |MST [MUN DAC
RVA| 0 lég'; 2;; TKE ZIIEECRI CISE lEB;E RVA| 0 |PER|KER|STK| 0 |CVIO I\ﬁgf
LID RR R RR LID R R |ERR L

rw r rw rw rw rw rw rw rw r rw w w r 'w 'w

Reference Manual 2-74 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

IACCVIOL

0

Instruction access violation flag

Og noinstruction access violation fault

1; the processor attempted an instruction fetch
from a location that does not permit execution.

This fault occurs on any access to an XN region,

even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the

exception return points to the faulting instruction.

The processor has not written a fault address to the

MMAR.

DACCVIOL

Data access violation flag

Oz no data access violation fault

1; the processor attempted a load or store at a
location that does not permit the operation.

When this bit is 1, the PC value stacked for the

exception return points to the faulting instruction.

The processor has loaded the MMAR with the

address of the attempted access.

MUNSTKERR

3

rw

MemManage fault on unstacking for a return

from exception

Og no unstacking fault

1; unstack for an exception return has caused
one or more access violations.

This fault is chained to the handler. This means that

when this bit is 1, the original return stack is still

present. The processor has not adjusted the SP from

the failing return, and has not performed a new save.

The processor has not written a fault address to the

MMAR.

MSTKERR

MemManage fault on stacking for exception

entry

0g no stacking fault

1; stacking for an exception entry has caused
one or more access violations.

When this bit is 1, the SP is still adjusted but the

values in the context area on the stack might be

incorrect. The processor has not written a fault

address to the MMAR.

Reference Manual
CPU, V1.1

2-75 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

MLSPERR

5

rw

MemManage fault during floating point lazy state

preservation

0g No MemManage fault occurred during floating-
point lazy state preservation

1; A MemManage fault occurred during floating-
point lazy state preservation

MMARVALID

7

rw

MemManage Fault Address Register (MMFAR)
valid flag

Og value in MMAR is not a valid fault address

1; MMAR holds a valid fault address.

If a MemManage fault occurs and is escalated to a
HardFault because of priority, the HardFault handler
must set this bit to 0. This prevents problems on
return to a stacked active MemManage fault handler
whose MMAR value has been overwritten.

IBUSERR

rw

Instruction bus error

O0g noinstruction bus error

1; instruction bus error.

The processor detects the instruction bus error on
prefetching an instruction, but it sets the IBUSERR
flag to 1 only if it attempts to issue the faulting
instruction.

When the processor sets this bitis 1, it does not write
a fault address to the BFAR.

PRECISERR

9

rw

Precise data bus error

0g no precise data bus error

1 a data bus error has occurred, and the PC
value stacked for the exception return points to
the instruction that caused the fault.

When the processor sets this bit is 1, it writes the

faulting address to the BFAR.

Reference Manual
CPU, V1.1

2-76 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field Bits

Type

Description

IMPRECISERR |10

w

Imprecise data bus error

0g noimprecise data bus error

1z adata bus error has occurred, but the return
address in the stack frame is not related to the
instruction that caused the error.

When the processor sets this bitto 1, it does not write

a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is

detected when the priority of the current process is

higher than the BusFault priority, the BusFault

becomes pending and becomes active only when

the processor returns from all higher priority

processes. If a precise fault occurs before the

processor enters the handler for the imprecise

BusFault, the handler detects both IMPRECISERR

set to 1 and one of the precise fault status bits set to

1.

UNSTKERR 11

rw

BusFault on unstacking for areturn from

exception

Og no unstacking fault

1z stacking for an exception entry has caused
one or more BusFaults.

This fault is chained to the handler. This means that

when the processor sets this bit to 1, the original

return stack is still present. The processor does not

adjust the SP from the failing return, does not

performed a new save, and does not write a fault

address to the BFAR.

STKERR 12

rw

BusFault on stacking for exception entry

Og no stacking fault

1z stacking for an exception entry has caused
one or more BusFaults.

When the processor sets this bit to 1, the SP is still

adjusted but the values in the context area on the

stack might be incorrect. The processor does not

write a fault address to the BFAR.

Reference Manual
CPU, V1.1

2-77 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

LSPERR

13

w

BusFault during floating point lazy state

preservation

0g Nobus fault occurred during floating-point lazy
state preservation.

1z A bus fault occurred during floating-point lazy
state preservation

BFARVALID

15

rw

BusFault Address Register (BFAR) valid flag

Og value in BFAR is not a valid fault address

1z BFAR holds a valid fault address.

The processor sets this bit to 1 after a BusFault
where the address is known. Other faults can set this
bit to 0, such as a MemManage fault occurring later.
If a BusFault occurs and is escalated to a hard fault
because of priority, the hard fault handler must set
this bit to 0. This prevents problems if returning to a
stacked active BusFault handler whose BFAR value
has been overwritten.

UNDEFINSTR

16

rw

Undefined instruction UsageFault

Og no undefined instruction UsageFault

1; the processor has attempted to execute an
undefined instruction.

When this bitis set to 1, the PC value stacked for the

exception return points to the undefined instruction.

An undefined instruction is an instruction that the

processor cannot decode.

INVSTATE

17

rw

Invalid state UsageFault

Og noinvalid state UsageFault

1; the processor has attempted to execute an
instruction that makes illegal use of the EPSR.

When this bitis set to 1, the PC value stacked for the

exception return points to the instruction that

attempted the illegal use of the EPSR.

This bitis not set to 1 if an undefined instruction uses

the EPSR.

Reference Manual
CPU, V1.1

2-78 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

INVPC

18

w

Invalid PC load UsageFault

caused by an invalid PC load by EXC_RETURN:

0g noinvalid PC load UsageFault

1z the processor has attempted an illegal load of
EXC_RETURN to the PC, as a result of an
invalid context, or an invalid EXC_RETURN
value.

When this bitis set to 1, the PC value stacked for the

exception return points to the instruction that tried to

perform the illegal load of the PC.

NOCP

19

rw

No coprocessor UsageFault

0g no UsageFault caused by attempting to
access a coprocessor

1z the processor has attempted to access a
COprocessor.

UNALIGNED

24

rw

Unaligned access UsageFault

0z nounaligned access fault, or unaligned access
trapping not enabled

1z the processor has made an unaligned memory
access.

Enable trapping of unaligned accesses by setting the

UNALIGN_TRP bit in the CCR to 1, see

Configuration and Control Register on Page 2-67.

Unaligned LDM, STM, LDRD, and STRD instructions

always fault irrespective of the setting of

UNALIGN_TRP.

DIVBYZERO

25

rw

Divide by zero UsageFault

Og nodivide by zero fault, or divide by zero
trapping not enabled

1; the processor has executed an SDIV or UDIV
instruction with a divisor of 0

When the processor sets this bit to 1, the PC value

stacked for the exception return points to the

instruction that performed the divide by zero.

Enable trapping of divide by zero by setting the

DIV_0_TRP bitin the CCR to 1, see Configuration

and Control Register on Page 2-67.

[31:26],
[23:20],
14, 6, 2

—

Reserved
Read as 0; should be written with 0.

Reference Manual
CPU, V1.1

2-79 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

HardFault Status Register

Central Processing Unit (CPU)

The HFSR gives information about events that activate the HardFault handler.

This register is read, write to clear. This means that bits in the register read normally, but
writing 1 to any bit clears that bit to 0. The bit assignments are:

HFSR

HardFault Status Register

(EO0O ED2C,) Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DEB
uce|OR 0
VT |CED
rw rw I I I I I I II’
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! ! ' ' ' ' ' ' ' ‘ ‘ ‘ ‘ VEC
0 TTB| 0
L
I I I I II' I I rw r
Field Bits Type | Description
VECTTBL 1 rw BusFault on vector table read
Indicates a BusFault on a vector table read during
exception processing:
Oz no BusFault on vector table read
1z BusFault on vector table read
This error is always handled by the hard fault
handler.
When this bitis set to 1, the PC value stacked for the
exception return points to the instruction that was
preempted by the exception.
FORCED 30 rw Forced HardFault

Indicates a forced hard fault, generated by
escalation of a fault with configurable priority that
cannot be handles, either because of priority or
because it is disabled:

Og no forced HardFault

1; forced HardFault.

When this bit is set to 1, the HardFault handler must
read the other fault status registers to find the cause
of the fault.

Reference Manual
CPU, V1.1

2-80 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description

DEBUGEVT 31 rw Reserved for Debug use
When writing to the register you must write 0 to this
bit, otherwise behavior is Unpredictable

=

0 [29:2], Reserved
0 Read as 0; should be written with 0.

Note: The HFSR bits are sticky. This means as one or more fault occurs, the associated
bits are set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or
by a reset.

MemManage Fault Address Register
The MMFAR contains the address of the location that generated a MemManage fault.

MMFAR
MemManage Fault Address Register
(EO00 ED34,)) Reset Value: XXXX XXXX

10

T

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2

ADDRESS

Field Bits Type | Description

ADDRESS [31:0] |rw Address causing the fault

When the MMARVALID bit of the MMFSR is setto 1,
this field holds the address of the location that
generated the MemManage fault

When an unaligned access faults, the address is the actual address that faulted.
Because a single read or write instruction can be split into multiple aligned accesses, the
fault address can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR
is valid. See MemManage Fault Status Register on Page 2-73.

Reference Manual 2-81 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

BusFault Address Register
The BFAR contains the address of the location that generated a BusFault.

SE'SA\FRauIt Address Register (EO00 ED38,,) Reset Value: XXXX XXXX
31‘30‘29‘28‘27.26.25.24.23.22.21.20.19.18.17.16.15.14.13.12‘11‘10‘ 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
ADDRESS

S
Field Bits Type | Description
ADDRESS [31:0] |rw Address causing the fault

When the BFARVALID bit of the BFSR is set to 1,
this field holds the address of the location that
generated the BusFault

When an unaligned access faults the address in the BFAR is the one requested by the
instruction, even if it is not the address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is
valid. See BusFault Status Register on Page 2-73.

Auxiliary Fault Status Register
The AFSR contains additional system fault information.

This register is read, write to clear. This means that bits in the register read normally, but
writing 1 to any bit clears that bit to 0.

AFSR
Auxiliary Fault Status Register (E000 ED3C,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0
1 1 1 1 1 1 1 1 1 1 1 r\I,\I 1 1 1
Field Bits Type | Description
0 [31:0] |™w |Reserved
Read as 0; should be written with 0.
Reference Manual 2-82 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Each AFSR bit maps directly to an AUXFAULT input of the processor, and a single-cycle
HIGH signal on the input sets the corresponding AFSR bit to one. It remains set to 1 until
you write 1 to the bit to clear it to zero.

When an AFSR bit is latched as one, an exception does not occur. Use an interrupt if an
exception is required.

2.9.2 SysTick Registers

SysTick Control and Status Register
The SysTick SYST_CSR register enables the SysTick features.

SYST_CSR

SysTick Control and Status Register
(EO00 E010,,) Reset Value: 0000 0004,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T T T T T T T T T T T T T T COU
0 NTF
L L 1 1 1 1 1 1 1 1 1 1 1 L LAG
r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T T T
CLK TICK|ENA
0 SOV INT [BLE
I I I I 1 1 1 RCE
r 'w 'w w

Field Bits Type | Description

ENABLE 0 rw Enable

Enables the counter:
Og counter disabled
1; counter enabled.

TICKINT 1 rw Tick Interrupt Enable

Enables SysTick exception request:

Og counting down to zero does not assert the
SysTick exception request

1; counting down to zero to asserts the SysTick
exception request.

Software can use COUNTFLAG to determine if

SysTick has ever counted to zero.

Reference Manual 2-83 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
CLKSOURCE 2 w Clock source
OB fSTDBY / 2
1B fCPU
COUNTFLAG 16 rw Counter Flag
Returns 1 if timer counted to 0 since last time this
was read.
0 [31:17], |r Reserved
[15:3] Read as 0; should be written with 0.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR
register and then counts down. On reaching 0, it sets the COUNTFLAG to 1 and
optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

SysTick Reload Value Register

The SYST_RVR register specifies the start value to load into the SYST_CVR register.
SYST_RVR

SysTick Reload Value Register ~ (EO00 E014,)) Reset Value: XXXX XXXX

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2
T T

T T

10
T

T

T
0 RELOAD

2

Field Bits Type | Description

RELOAD [23:0] |rw Reload Value

Value to load into the SYST_CVR register when the
counter is enabled and when it reaches 0, see
Calculating the RELOAD value.

0 [31:24]

—

Reserved
Read as 0; should be written with 0.

Notes on calculating the RELOAD value

1. The RELOAD value can be any value in the range 0x00000001-0X00FFFFFF. A start
value of 0 is possible, but has no effect because the SysTick exception request and
COUNTFLAG are activated when counting from 1 to 0.

Reference Manual 2-84 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

Central Processing Unit (CPU)

2. The RELOAD value is calculated according to its use. For example, to generate a
multi-shot timer with a period of N processor clock cycles, use a RELOAD value of
N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

SysTick Current Value Register
The SYST_CVR register contains the current value of the SysTick counter.

SYST_CVR
SysTick Current Value Register (E000 E018,,) Reset Value: XXXX XXXX
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 CURRENT
'\’ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r\\,v |
Field Bits Type | Description
CURRENT [23:0] |rw Current Value
Reads return the current value of the SysTick
counter.

A write of any value clears the field to 0, and also
clears the SYST_CSR COUNTFLAG bhit to 0.

0 [31:24]

=

Reserved
Read as 0; should be written with 0.

SysTick Calibration Value Register
The SYST_CALIB register indicates the SysTick calibration properties.

SYST_CALIB
SysTick Calibration Value Register
r (EO0O EO1C}) Reset Value: C000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

TENMS

mm>XIOZ
o

2
2
2

Reference Manual 2-85 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description

TENMS [23:0] |rw Ten Milliseconds Reload Value

Reload value for 10ms (100Hz) timing, subject to
system clock skew errors. If the value reads as zero,
the calibration value is not known.

SKEW 30 rw Ten Milliseconds Skewed

Indicates whether the TENMS value is exact:

0y TENMS value is exact

1z TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of
SysTick as a software real time clock.

NOREF 31 rw No Reference Clock

Indicates whether the device provides a reference
clock to the processor:

0g reference clock provided

1z no reference clock provided.

If your device does not provide a reference clock, the
SYST_CSR.CLKSOURCE bit reads-as-one and
ignores writes.

=

0 [29:24] Reserved

Read as 0; should be written with 0.

2.9.3 NVIC Registers

Interrupt Set-enable Registers

The NVIC_ISERXx (x=0-3) registers enable interrupts, and show which interrupts are
enabled.

NVIC_ISERX (x=0-3)
Interrupt Set-enable Register x

(EO00 E100, + 4*x) Reset Value: 0000 0000
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T
SETENA

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rw
Reference Manual 2-86 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
SETENA [31:0] |rw Interrupt set-enable bits
Write:

0g no effect

1z enable interrupt.
Read:

0g interrupt disabled
1; interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If
an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to
pending, but the NVIC never activates the interrupt, regardless of its priority.

Interrupt Clear-enable Registers

The NVIC_ICERx (x=0-7) registers disable interrupts, and show which interrupts are
enabled.

NVIC_ISCERXx (x=0-3)

Interrupt Clear-enable Register x
(EO00 E180,, + 4*x) Reset Value: 0000 0000,

313029282726252423222120191817161514

131211109 8 7 6 543 210
T T T T T T T T T T T

T T T

CLRENA

Field Bits Type | Description

CLRENA [31:0] |rw Interrupt clear-enable bits.
Write:

0g no effect

1z enable interrupt.
Read:

O0g interrupt disabled

1; interrupt enabled.

Reference Manual 2-87 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

Interrupt Set-pending Registers

The NVIC_ISPRx (x=0-7) registers force interrupts into the pending state, and show
which interrupts are pending.

NVIC_ISSPRXx (x=0-3)
Interrupt Set-pending Register x

(EO00 E200,, + 4*x) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
SETPEND
L L L L 1 1 1 1 1 1 1 1 1 1 1 r\IIV 1 1 1 1 1 1 1 1 1 1 1 L L L L

Field Bits Type | Description
SETPEND [31:0] |rw Interrupt set-pending bits.
Write:

Og no effect

1z changes interrupt state to pending.
Read:

Og interrupt is not pending

1z interruptis pending.

Writing 1 to the ISPR bit corresponding to:
- an interrupt that is pending has no effect
- a disabled interrupt sets the state of that interrupt to pending

Interrupt Clear-pending Registers

The NVIC_ICPRXx (x=0-7) registers remove the pending state from interrupts, and show
which interrupts are pending.

NVIC_ICPRx (x=0-3)
Interrupt Clear-pending Register x

(EO00 E280,, + 4*x) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
CLRPEND
L L L L 1 L L L L
rw
Reference Manual 2-88 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
CLRPEND [31:0] |rw Interrupt set-pending bits.
Write:

0g no effect

1; removes pending state an interrupt.
Read:

Og interrupt is not pending

1; interruptis pending.

Note: Writing 1 to an ICPR bit does not affect the active state of the corresponding
interrupt.

Interrupt Active Bit Registers
The NVIC_IABRX (x=0-7) registers indicate which interrupts are active.

NVIC_IABRX (x=0-3)
Interrupt Active Bit Register x

(EO00 E300, + 4*x) Reset Value: 0000 0000,
31‘30‘29‘28‘27|26|25|24|23|22|21|20|19|18|17|16|15|l4|13|12‘11‘10‘ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0
ACTIVE

T
Field Bits Type | Description
ACTIVE [31:0] |rw Interrupt active flags:

Og interrupt not active
1; interrupt active

A bit reads as one if the status of the corresponding interrupt is active or active and
pending.

Interrupt Priority Registers

The NVIC_IPRx (x=0-27) registers provide an 8-bit priority field for each interrupt. These
registers are byte-accessible. Each register holds four priority fields as shown:

Reference Manual 2-89 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

Central Processing Unit (CPU)

31 24 23 16 15 0
IPR27 PRI_111 PRI_110 PRI_109 PRI_108
IPRN PRI_4n+3 PRI_4n+2 PRI_4n+1 PRI_4n
IPRO PRI_3 PRI_2 PRI_1 PRI_O

Figure 2-10 Interrupt Priority Register
NVIC_IPRx (x=0-27)
Interrupt Priority Register x

(EO00 E400,, + 4*x) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

PRI_3 PRI_2 PRI_1 PRI_O
L L L r\llv 1 1 1 1 1 1 r\IIV 1 1 1 1 1 1 r\JIV 1 1 1 1 1 1 n\,v L L L
Field Bits Type | Description
PRI_O [7:0] w Priority value 0
PRI_1 [15:8] |rw Priority value 1
PRI_2 [23:16] |rw Priority value 2
PRI_3 [31:24] | rw Priority value 3
The lower the value, the greater the priority of the
corresponding interrupt. The processor implements
only bits[7:n] of each field, bits[n-1:0] read as zero
and ignore writes.

See “Using CMSIS functions to access NVIC” on Page 2-45 for more information about
the access to the interrupt priority array, which provides the software view of the interrupt

priorities.

Find the IPR number and byte offset for interrupt m as follows:

Reference Manual
CPU, V1.1

2-90 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

« the corresponding IPR number n, see Figure 2-10 on Page 2-907, is given by
n=mDIV 4
» the byte offset of the required Priority field in this register is m MOD 4, where:
— byte offset O refers to register bits[7:0]
— byte offset 1 refers to register bits[15:8]
— byte offset 2 refers to register bits[23:16]
— byte offset 3 refers to register bits[31:24].

Software Trigger Interrupt Register
Write to the STIR to generate an interrupt from software.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access
the STIR, see System Control Register on Page 2-66.

Note: Only privileged software can enable unprivileged access to the STIR.

STIR
Software Trigger Interrupt Register

(EO0O0 EF00,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

T T T

T

0 INTID

r w

Field Bits Type | Description

INTID [8:0] w Interrupt ID of the interrupt to trigger
in the range 0-111. For example, a value of 0x03
specifies interrupt IRQS3.

0 [31:9] |r Reserved
Read as 0; should be written with 0.
Reference Manual 2-91 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

2.9.4 MPU Registers

MPU Type Register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many
regions it supports.

MPU_TYPE
MPU Type Register (E000 ED90,,) Reset Value: 0000 0800,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 IREGION

=

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SEP
DREGION 0 ARA
1 1 1 1 1 1 TE
r r r
Field Bits Type | Description
SEPARATE 0 r Support for unified or separate instruction and
date memory maps
0z unified
DREGION [15:8] |r Number of supported MPU data regions

08,, Eight MPU regions

IREGION [23:16] |r Number of supported MPU instruction regions
Always contains 0x00. The MPU memory map is
unified and is described by the DREGION field.

0 [31:24], |r Reserved

[7:1] Read as 0; should be written with 0.

MPU Control Register
The MPU_CTRL register:

¢ enables the MPU

« enables the default memory map background region

e enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and
FAULTMASK escalated handlers.

Reference Manual 2-92 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Central Processing Unit (CPU)

MPU_CTRL
MPU Control Register (EO00 ED94,,) Reset Value: 0000 0000,
31 30 29 28 26 25 24 23 22 21 20 19 18 17 16
0
1 1 1 1 1 II‘ 1
15 14 13 12 10 9 8 7 6 5 4 3 2 1 0
T T T T T T T T T PRIV HFN
0 DEF | MIE E':'é
1 1 1 1 1 1 1 ENA NA
r w w w
Field Bits Type | Description
ENABLE 0 rw Enable MPU
0g MPU disabled
1z MPU enabled.
HFENMIENA 1 w Enable the operation of MPU during hard fault,

NMI, and FAULTMASK handlers
When the MPU is enabled:
0g MPU is disabled during hard fault, NMI, and

FAULTMASK handlers, regardless of the

value of the ENABLE bit
1 the MPU is enabled during hard fault, NMI, and
FAULTMASK handlers.
When the MPU is disabled, if this bit is set to 1 the
behavior is Unpredictable.

Reference Manual
CPU, V1.1

2-93

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description

PRIVDEFENA |2 rw Enables privileged software access to the default

memory map

0z Ifthe MPU is enabled, disables use of the
default memory map. Any memory access to a
location not covered by any enabled region
causes a fault.

1; Ifthe MPU is enabled, enables use of the
default memory map as a background region
for privileged software accesses.

When enabled, the background region acts as if it is

region number -1. Any region that is defined and

enabled has priority over this default map.

f the MPU is disabled, the processor ignores this bit.

0 [31:3]

—

Reserved
Read as 0; should be written with 0.

When ENABLE and PRIVDEFENA are both set to 1:

« For privileged accesses, the default memory map is as described in Memory model
on Page 2-20. Any access by privileged software that does not address an enabled
memory region behaves as defined by the default memory map.

* Any access by unprivileged software that does not address an enabled memory
region causes a MemManage fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of
the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be
enabled for the system to function unless the PRIVDEFENA bit is set to 1. If the
PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged software
can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the
same memory attributes as if the MPU is not implemented, see Table 2-6 on Page 2-22.
The default memory map applies to accesses from both privileged and unprivileged
software.

When the MPU is enabled, accesses to the System Control Space and vector table are
always permitted. Other areas are accessible based on regions and whether
PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing
the handler for an exception with priority —1 or —2. These priorities are only possible when
handling a hard fault or NMI exception, or when FAULTMASK is enabled. Setting the
HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

Reference Manual 2-94 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

MPU Region Number Register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and
MPU_RASR registers.

MPU_RNR
MPU Region Number Register (EO00 ED98,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 REGION
1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 n\,v 1
Field Bits Type | Description
REGION [7:0] w Region

Indicates the MPU region referenced by the
MPU_RBAR and MPU_RASR registers.

The MPU supports 8 memory regions, so the
permitted values of this field are 0-7.

0 [31:8]

—

Reserved
Read as 0; should be written with 0.

Normally, you write the required region number to this register before accessing the
MPU_RBAR or MPU_RASR. However you can change the region number by writing to
the MPU RBAR with the VALID bit set to 1, see MPU Region Base Address Register.
This write updates the value of the REGION field.

MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the
MPU_RNR, and can update the value of the MPU_RNR.

Reference Manual 2-95 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

MPU_RBAR
MPU Region Base Address Register

(EO00 ED9C,)
MPU_RBAR_A1
MPU Region Base Address Register Al

(E000 EDA4,)
MPU RBAR_A2
MPU Region Base Address Register A2

(EO00 EDAC,)
MPU_RBAR_A3
MPU Region Base Address Register A3

(E000 EDB4,,)

31 30 29 28 27 26 25 24 23 22 21

Reset Value: 0000 0000,

Reset Value: 0000 0000,

Reset Value: 0000 0000,

Reset Value: 0000 0000,

20 19 18 17 16

T T T T T T T T T T

T T T T

15 14 13 12 11 10 9 8 7 6 5

4 3 2 1 0

T T T T T T T T T T T
ADDR 0 VgLI REGION
I I I I I I 1 1 1 1 I I
w r 'w 'w

Field Bits Type | Description

REGION [3:0] rw MPU region field
the VALID field.

specified by the RNR.

For the behavior on writes, see the description of

On reads, returns the current region number, as

Reference Manual 2-96

V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
VALID 4 rw MPU Region Number valid bit
Write:

0g MPU_RNR not changed, and the processor:
- updates the base address for the region
specified in the MPU_RNR
- ignores the value of the REGION field
1z the processor:
- updates the value of the MPU_RNR to the
value of the REGION field
- updates the base address for the region
specified in the REGION field.
Always reads as zero.

ADDR [31:9] |rw Region base address field

The value of N (N = 9 for bit definition) depends on
the region size. For more information see The
ADDR field.

0 (8:5] r Reserved
Read as 0; should be written with 0.

The ADDR field

The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the
SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),
If the region size is configured to 4GB, in the MPU_RASR, there is no valid ADDR field.

In this case, the region occupies the complete memory map, and the base address is
0x00000000.

The base address is aligned to the size of the region. For example, a 64KB region must
be aligned on a multiple of 64KB, for example, at 0x00010000 or 0x00020000.

MPU Region Attribute and Size Register

The MPU_RASR defines the region size and memory attributes of the MPU region
specified by the MPU_RNR, and enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

« the most significant halfword holds the region attributes

« the least significant halfword holds the region size and the region and subregion
enable bits.

Reference Manual 2-97 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

MPU_RASR

MPU Region Attribute and Size Register
(EO00 EDAO)

MPU_RASR_A1

MPU Region Attribute and Size Register Al
(EO0O EDAS,)

MPU_RASR_A2

MPU Region Attribute and Size Register A2
(EO00 EDBO)

MPU_RASR_A3

MPU Region Attribute and Size Register A3
(EO0O EDBS8,,)

31 30 29 28 27 26 25 24 23 22

Central Processing Unit (CPU)

Reset Value: 0000 0000,

Reset Value: 0000 0000,

Reset Value: 0000 0000,

Reset Value: 0000 0000,
21 20 19 18 17 16

T
0 XN | O AP 0

TEX S C B

r rw r rw

bl

15 14 13 12 11 10 9 8 7 6

ENA
SRD 0 SIZE BLE
L L 1 r\I,v 1 1 1 |Ir 1 1 W 1 L o
Field Bits Type | Description
ENABLE 0 w Region enable bit.
SIZE [5:1] rw MPU protection region size

The minimum permitted value is 3 (0b00010), see
See SIZE field values for more information.

SRD [15:8] |rw Subregion disable bits

For each bit in this field:
0g corresponding sub-region is enabled
1z corresponding sub-region is disabled

See Subregionson Page 2-52 for more information.
Region sizes of 128 bytes and less do not support
subregions. When writing the attributes for such a
region, write the SRD field as 0x00.

16

Memory access attribute
see Table 2-15 onPage 2-48.

Reference Manual

CPU, V1.1

2-98 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
C 17 w Memory access attribute
see Table 2-15 onPage 2-48.
S 18 rw Shareable bit
see Table 2-15 onPage 2-48.
TEX [21:19] | rw Memory access attribute
see Table 2-15 onPage 2-48.
AP [26:24] | rw Access permission field
see Table 2-18 on Page 2-49.
XN 28 rw Instruction access disable bit
0g instruction fetches enabled
1z instruction fetches disabled.
0 [31:29, |r Reserved
27, Read as 0; should be written with 0.
[23:22],
[7:6]

For information about access permission, see MPU Access Permission Attributes on
Page 2-48.

SIZE field values

The SIZE field defines the size of the MPU memory region specified by the RNR. as
follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4.
Table 2-22 gives example SIZE values, with the corresponding region size and value of
N in the MPU_RBAR.

Table 2-22 Example SIZE field values

SIZE value Region size Value of N Note

0b00100 (4) 32B 5 Minimum permitted size
0b01001 (9) 1KB 10 -

0b10011 (19) |1MB 20 -

0b11101 (29) |1GB 30 -

0b11111 (31) |4GB 32 Maximum possible size

1) Inthe MPU_RBAR, see MPU Region Base Address Register on Page 2-95.

Reference Manual 2-99 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

295 FPU Registers

Central Processing Unit (CPU)

Coprocessor Access Control Register

The CPACR register specifies the access privileges for coprocessors.

CPACR

Coprocessor Access Control Register

(EO0O ED88y) Reset Value: 0000 0000,

0 CP11|CP10

313029282726252423222120191817161514131211109 8 7
T T T T T T T T T T T T T T

6 543210
T T T T T T T T 1

0

I 1 1
r w w

r

Field Bits Type

Description

CP10 [21:20] | rw

Access privileges for coprocessor 10

The possible values of each field are:

005 Access denied. Any attempted access
generates a NOCP UsageFault.
Privileged access only. An unprivileged
access generates a NOCP fault.
Reserved. The result of any access is
Unpredictable.

Full access.

01,
104

11,

CP11 [23:22]

Access privileges for coprocessor 11

The possible values of each field are:

005 Access denied. Any attempted access
generates a NOCP UsageFault.
Privileged access only. An unprivileged
access generates a NOCP fault.
Reserved. The result of any access is
Unpredictable.

Full access.

01,
104

11,

—

0 [31:24],
[19:0]

Reserved
Read as 0; should be written with 0.

Reference Manual
CPU, V1.1

2-100 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Floating-point Context Control Register
The FPCCR register sets or returns FPU control data.

FPCCR
Floating-point Context Control Register
(EOOO EF34,) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ASP |LSP 0
EN | EN
rW rW 1 1 1 1 1 1 II'

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MON| , |BFR|MMR/HFR|THR| = |USE|LSP
RDY DY | DY | DY |EAD R |ACT
I r I I I rw r rw rw rw rw r rw rw
Field Bits Type | Description
LSPACT 0 rw Lazy State Preservation Active

0g Lazy state preservation is not active.

1; Lazy state preservation is active. floating-point
stack frame has been allocated but saving
state to it has been deferred.

USER 1 rw User allocated Stack Frame

0g Privilege level was not user when the floating-
point stack frame was allocated.

1z Privilege level was user when the floating-
point stack frame was allocated.

THREAD 3 rw Thread Mode allocated Stack Frame

Og Mode was not Thread Mode when the floating-
point stack frame was allocated.

1; Mode was Thread Mode when the floating-
point stack frame was allocated.

HFRDY 4 w HardFault Ready

O0g Priority did not permit setting the HardFault
handler to the pending state when the floating-
point stack frame was allocated.

1; Priority permitted setting the HardFault
handler to the pending state when the floating-
point stack frame was allocated.

Reference Manual 2-101 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
MMRDY 5 rw MemManage Ready

0 MemManage is disabled or priority did not
permit setting the MemManage handler to the
pending state when the floating-point stack
frame was allocated.

1z MemManage is enabled and priority permitted
setting the MemManage handler to the
pending state when the floating-point stack
frame was allocated.

BFRDY 6 rw BusFault Ready

0z BusFault is disabled or priority did not permit
setting the BusFault handler to the pending
state when the floating-point stack frame was
allocated.

1; BusFault is enabled and priority permitted
setting the BusFault handler to the pending
state when the floating-point stack frame was
allocated.

MONRDY 8 rw Monitor Ready

0y Debug Monitor is disabled or priority did not
permit setting MON_PEND when the floating-
point stack frame was allocated.

1; Debug Monitor is enabled and priority permits
setting MON_PEND when the floating-point
stack frame was allocated.

LSPEN 30 rw Lazy State Preservation Enabled

0 Disable automatic lazy state preservation for
floating-point context.

1; Enable automatic lazy state preservation for
floating-point context.

ASPEN 31 rw Automatic State Preservation

Enables CONTROL setting on execution of a

floating-point instruction. This results in automatic

hardware state preservation and restoration, for
floating-point context, on exception entry and exit.

0g Disable CONTROL setting on execution of a
floating-point instruction.

1; Enable CONTROL setting on execution of a
floating-point instruction.

Reference Manual
CPU, V1.1

2-102 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Central Processing Unit (CPU)

Field Bits Type | Description
0 [29:9], |r Reserved
7,2 Read as 0; should be written with 0.

Floating-point Context Address Register

The FPCAR register holds the location of the unpopulated floating-point register space
allocated on an exception stack frame.

FPCAR
Floating-point Context Address Register
(EOOO EF38,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ADDRESS 0
L L L L 1 1 1 1 1 1 1 1 1 IrWI 1 1 1 1 1 1 1 1 1 1 1 1 L L T L
Field Bits Type | Description
ADDRESS [31:3] |rw Address

The location of the unpopulated floating-point
register space allocated on an exception stack

frame.
0 [2:0] r Reserved
Read as 0; should be written with 0.
Reference Manual 2-103 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Central Processing Unit (CPU)

Floating-point Status Control Register

The FPSCR register provides all necessary User level control of the floating-point
system.

FPSCR
Floating-point Status Control Register
Reset Value: XXXX XXXXy

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

N z C \% 0 |AHP| DN | FZ RMode 0

'w 'w w w r w rw 'w w r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IDC 0 IXC |UFC|OFC |DzZC | I0C
I II’ I I I w I“ rw rw rw rw rw
Field Bits Type | Description
I0C 0 rw Invalid Operation cumulative exception bit

IOC set to 1 indicates that the Invalid Operation
cumulative exception has occurred since 0 was last
written to 10C.

DzC 1 rw Division by Zero cumulative exception bit

DZC set to 1 indicates that the Division by Zero
cumulative exception has occurred since 0 was last
written to DZC.

OFC 2 rw Overflow cumulative exception bit
OFC set to 1 indicates that the Overflow cumulative
exception has occurred since 0 was last written to OFC.

UFC 3 rw Underflow cumulative exception bit
UFC set to 1 indicates that the Underflow cumulative
exception has occurred since 0 was last written to UFC.

IXC 4 rw Inexact cumulative exception bit
IXC set to 1 indicates that the Inexact cumulative
exception has occurred since 0 was last written to IXC.

IDC 7 rw Input Denormal cumulative exception bit
see bits [4:0].

Reference Manual 2-104 V1.0, 2012-02
CPU, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Central Processing Unit (CPU)

Field

Bits

Type

Description

RMode

[23:22]

Rounding Mode control field

00; Round to Nearest (RN) mode

01z Round towards Plus Infinity (RP) mode

105 Round towards Minus Infinity (RM) mode
11; Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all
floating-point instructions.

FZ

24

w

Flush-to-zero mode control bit

Og Flush-to-zero mode disabled. Behavior of the
floating-point system is fully compliant with the
IEEE 754 standard.

1z Flush-to-zero mode enabled.

DN

25

w

Default NaN mode control bit

0 NaN operands propagate through to the output of
a floating-point operation.

1z Any operation involving one or more NaNs
returns the Default NaN.

AHP

26

rw

Alternative half-precision control bit
0z |EEE half-precision format selected.
1z Alternative half-precision format selected.

28

rw

Overflow condition code flag
Floating-point comparison operations update this flag.

29

w

Carry condition code flag
Floating-point comparison operations update this flag.

30

w

Zero condition code flag
Floating-point comparison operations update this flag.

31

'w

Negative condition code flag
Floating-point comparison operations update this flag.

27,
[21:8],
[6:5]

Reserved
Read as 0; should be written with 0.

Reference Manual

CPU, V1.1

2-105 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Central Processing Unit (CPU)

Floating-point Default Status Control Register
The FPDSCR register holds the default values for the floating-point status control data.

FPDSCR
Floating-point Default Status Control Register
(EO00 EF3C,) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 AHP| DN | FZ | RMode 0
r I I w rw 'w HIN I"

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

r
Field Bits Type | Description
RMode [23:22] | rw Default value for FPSCR.RMode
Fz 24 rw Default value for FPSCR.FZ
DN 25 rw Default value for FPSCR.DN
AHP 26 rw Default value for FPSCR.AHP
0 [31:27], |t Reserved
[21:0] Read as 0; should be written with 0.
Reference Manual 2-106 V1.0, 2012-02

CPU, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Bus System

3 Bus System

The XMC4500 is targeted for use in embedded systems. Therefore the key features are
timing determinism and low latency on real time events. Bus bandwidth is required
particularly for communication peripherals.

The bus system will therefore provide:

e Timing Determinism

¢ Low Latency

e Performance

« Throughput

3.1 Bus Interfaces
This chapter describes the features for the two kinds of interfaces.

¢ Memory Interface
e Peripheral Interface

All on-chip peripherals and memories are attached to the Bus Matrix, in some cases via
peripheral bridges. All on-chip modules implement Little Endian data organization. The
following types of transfer are supported:

* Locked Transfers
e Burst Operation
* Protection Control

Pipelining is also supported for bandwidth critical transfers.

Memory Interface
The on-chip memories capable to accept a transfer request with each bus clock cycle.

The memory interface data bus width is 32-bit. Each memory slave support 32-bit, 16-
bit and 8-bit access types.

Peripheral Interface

Each slave supports 32-hit accesses. Some slaves also support 8-bit and/or 16-bit
accesses.

3.2 Bus Matrix

The central part of the bus system is built up around a multilayer AHB-lite compliant
matrix. By means of this technique the bus masters and bus slaves can be connected in
a flexible way while maintaining high bus performance.

The Bus Martix depicted in Figure 3-1 implements an optimized topology enabling zero
wait state data accesses between the Masters and Slaves connected to it. Dedicated

Reference Manual 3-1 V1.0, 2012-02
Bus System, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Bus System

arbitration scheme enables optimal access conflicts resolution resulting in improved

system stability and real time behavior.

Masters
System System
CPU DMAO DMAL Ethernet use
el 8| @
% 8 § Flash
ol o = &
BROM
PSRAM
DSRAM 1
8
DSRAM 2 >
©
n
EBU
Peripherals 0
(PBAO)
Peripherals 1
(PBAL)
Peripherals 2
(PBA2)

Figure 3-1 Multilayer Bus Matrix

Arbitration Priorities
In case of concurring access to the same slave the master with the highest priority is

granted the bus.

Reference Manual
Bus System, V1.1

3-2

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

. XMC4500
(Infineon XMCA000 Family
Bus System
Table 3-1 Access Priorities per Slave?
CPU GPDMAO GPDMA1 ETH usB
PMU/FLASH |1 2 3 - -
PSRAM 1 2 3 - -
DSRAM1 1 2 3 4 5
DSRAM2 1 4 5 2 3
EBU 1 2 3 - -
PBAO 1 2 3 - -
PBA1 1 2 3 - -
PBA2 1 2 3 - -

1) Lower number means higher priority

The DSRAM priorities are choosen to support the application dependance of the data

memories:

* DSRAML1: general purpose data storage
« DSRAM2: Ethernet and USB data storage

Reference Manual
Bus System, V1.1

3-3

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

4 Service Request Processing

A hardware pulse or level change is called Service Request (SR) in an XMC4500
system. Service Requests are the fastest way to send trigger “messages” between
connected on-chip resources.

An SR can generate any of the following requests

e Interrupt

« DMA

« Peripheral action

This chapter describes the available Service Requests and the different ways to select
and process them.

Notes

1. The CPU exception model and interrupt processing (by NVIC unit) are described in
the CPU chapter.
2. General Purpose DMA request processing is described in the GPDMA chapter

Table 4-1 Abbreviations

DLR DMA Line Router

ERU Event Request Unit

NVIC Nested Vectored Interrupt Controller
SR Service Request

4.1 Overview

Efficient Service Request Processing is based on the interconnect between the request
sources and the request processing units. XMC4500 provides both fixed and
programmable interconnect.

41.1 Features

The following features are provided for Service Request processing:

« Connectivity matrix between Service Requests and request processing units
— Fixed connections
— Programmable connections using ERU
e Event Request Unit (ERU)
— Flexible processing of external and internal service requests
Programmable for edge and/or level triggering
Multiple inputs per channel
Triggers combinable from multiple inputs
Input and output gating

Reference Manual 4-1 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

« DMA Line Router (DLR)
— Routing and processing of DMA requests

4.1.2 Applications
The following table lists features of the Service Request Processing unit mapped to

selected applications.

Table 4-2 Feature to Application Mappings

Feature

Application

TBD

TBD

4.1.3 Block Diagram
The shaded components shown in Figure 4-1 are described in this chapter.

On-Chip Unit

PORTS Outputs

Interconnections

ERU

DLR NVIC On-Chip Unit
Inputs
ReqiTAck Reqi
GPDMA CPU

Figure 4-1 Block Diagram on Service Request Processing

Reference Manual

4-2 V1.0, 2012-02

Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

4.2 Service Request Distribution

The following figure shown an example of how a service request can be distributed
concurrently. To support the concurrent distribution to multiple receivers, the receiving
modules are capable to enable/disable incoming requests.

NVIC
>
(Interrupt)
DLR

(DMA Request)

VADC.SRO

———» CCU4.<input_x>

—» ERUL.<input_x>

Figure 4-2 Example for Service Request Distribution

The units involved in Service Request distribution can be subdivided into

« Embedded real time services
e Interrupt and DMA services

Embedded real time services

Connectivity between On-Chip Units and PORTS is real time application and also chip
package dependant. Related connectivity and availability of pins can be looked up in the

« ‘“Interconnects” Section of the respective module(s) chapters
e ‘“Parallel Ports” chapter and Data Sheet for PORTS
* Event Request Unit (Section 4.5)

Interrupt and DMA services

The following table gives an overview on the number of service requests per module and
how the service requests are assigned to NVIC Interrupt and DLR/GPDMA service
providers.

Service Requests can be of type “Level” or “Pulse”. The DLR/GPDMA can only process

“Pulse” type of requests while the NVIC can process both. The type of Service Requests
generated is listed in column “Type” in Table 4-3.

Reference Manual 4-3 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Service Request Processing

Table 4-3 Interrupt and DMA services per Module

Modules Request NVIC DLR/GPDMA Type
Sources
VADC 20 20 20 Pulse
DSD 8 8 4 Pulse
DAC 2 2 2 Pulse
CCU40-3 16 16 8 Pulse
CCU80-1 8 8 4 Pulse
POSIFO-1 4 4 - Pulse
CAN 8 8 4 Pulse
UsICO0-2 18 18 12 Pulse
LEDTSO 1 1 - Pulse
FCE 1 1 - Pulse
PMUO/Flash 1 1 - Pulse
GPDMAO-1 2 2 - Level
SCU 1 1 - Pulse
ERUO-1 8 8 4 Pulse & Level
SDMMC 1 1 - Level
USBO 1 1 - Level
ETHO 1 1 - Level
Totals 102 102 58 -
4.3 Interrupt Service Requests

The NVIC is an integral part of the Cortex M4 processor unit. Due to a tight coupling with
the CPU it allows to achieve lowest interrupt latency and efficient processing of late
arriving interrupts.

NVIC Features

e 112 interrupt nodes

* Programmable priority level of 0-63 for each interrupt node. A higher level
corresponds to a lower priority, so level 0 is the highest interrupt priority

e Request source can be level or edge signal type

« Dynamic reprioritization of interrupts.

« Grouping of priority values into group priority and subpriority fields.

« Interrupt tail-chaining.

Reference Manual 4-4 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

« One external Non-maskable interrupt (NMI)
* Relocatable vector table
» Software interrupt generation

Level-sensitive and pulse interrupts
The NVIC is capable to capture both level-sensitive and pulse interrupts.

* Alevel-sensitive interrupt is held asserted until the peripheral deasserts the interrupt
signal. Deassertion is typically triggered by the interrupt service routine (ISR). It is
— used for less frequent requests and
— the ISR is often more complex and longer.

* Apulseinterrupt is asserted and after a fixed period of time automatically deasserted.
The period of time depends on the peripheral, please refer to the “Service Request
Generation” section of the respective peripheral. It is
— used for more frequent requests and
— the ISR is often more simple and shorter.

The way to process both types of requests differs and is described in section “Level-
sensitive and pulse interrupts” in the CPU chapter.

Service Request to IRQ Number Assignment

Table 4-4 lists the service request sources per on-chip unit and their assignment to NVIC
IRQ numbers. The resulting exception number is calculated by adding 16 to the IRQ
Number. The first 16 exception numbers are used by the Cortex M4 CPU. For calculation
of the resulting exception routine address please refer to the CPU chapter.

Table 4-4 Interrupt Node assignment

Service Request | IRQ Number |Description

SCU.SRO 0 System Control

ERUO0.SRO 1.4 External Request Unit 0

ERUO0.SR3

ERU1.SRO 5..8 External Request Unit 1

ERU1.SR3

NC 9,10, 11 Reserved

PMUO.SRO 12 Program Management Unit

NC 13 Reserved

VADC.COSRO - |14...17 Analog to Digital Converter Common Block 0
VADC.COSR3

VADC.GOSRO - [18...21 Analog to Digital Converter Group O
VADC.GOSR3

Reference Manual 4-5 V1.0, 2012-02

Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

Table 4-4 Interrupt Node assignment (cont'd)

Service Request | IRQ Number |Description

VADC.G1SRO - |22...25 Analog to Digital Converter Group 1
VADC.G1SR3

VADC.G2SR0O - |26...29 Analog to Digital Converter Group 2
VADC.G2SR3

VADC.G3SRO - |30...33 Analog to Digital Converter Group 3
VADC.G3SR3

DSD.SRMO - 34..37 Delta Sigma Demodulator Main
DSD.SRM3

DSD.SRAO - 38..41 Delta Sigma Demodulator Auxiliary
DSD.SRA3

DAC.SRO - 42,43 Digital to Analog Converter
DAC.SR1

CCU40.SRO - 44..47 Capture Compare Unit 4 (Module 0)
CCU40.SR3

CCU41.SRO - 48...51 Capture Compare Unit 4 (Module 1)
CCU41.SR3

CCU42.SRO - 52...55 Capture Compare Unit 4 (Module 2)
CCU42.SR3

CCU43.SRO - 56...59 Capture Compare Unit 4 (Module 3)
CCU43.SR3

CCU80.SRO - 60...63 Capture Compare Unit 8 (Module 0)
CCU80.SR3

CCUB81.SRO - 64...67 Capture Compare Unit 8 (Module 1)
CCUB81.SR3

POSIF0.SRO - 68...69 Position Interface (Module 0)
POSIF0.SR1

POSIF1.SRO - 70...71 Position Interface (Module 1)
POSIF1.SR1

NC 72..75 Reserved

CAN.SRO - 76...83 MultiCAN

CAN.SR7

USICO0.SRO - 84...89 Universal Serial Interface Channel (Module 0)
USIC0.SR5

Reference Manual

Service Request Processing, V1.1

4-6 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

Table 4-4 Interrupt Node assignment (cont'd)

Service Request | IRQ Number |Description

USIC1.SRO - 90...95 Universal Serial Interface Channel (Module 1)
USIC1.SR5

USIC2.SRO - 96...101 Universal Serial Interface Channel (Module 2)
USIC2.SR5

LEDTSO0.SRO 102 LED and Touch Sense Control Unit (Module 0)
NC 103 Reserved

FCE.SRO 104 Flexible CRC Engine

GPDMAO.SRO 105 General Purpose DMA unit 0

SDMMC.SRO 106 Multi Media Card Interface

USBO0.SRO 107 Universal Serial Bus

ETHO.SRO 108 Ethernet (Module 0)

NC 109 Reserved

GPDMA1.SRO 110 General Purpose DMA unit 1

NC 111 Reserved

4.4 DMA Line Router (DLR)

The DMA line router provides the following functionality:

« Selection of DMA request sources
« Handling of the DMA request and acknowledge handshake
» Detection of service request overruns

441

Functional Description

This unit enables the user to select 12 DMA service requests out of the set of DMA
capable service request sources. It handles the Request and Acknowledge handshake
to the GPDMA. Furthermore it detects service request overruns.

Reference Manual

Service Request Processing, V1.1

4-7 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Service Request Processing

Service
Request
Subset of DMA capable SR
SRSELX.RSy DEMUX
Selected SR
DMA
LNEN.LNy Transfer
l |
I
Req
————
DMA GPDMA
Handler |
l Ack
OVRCLR.LNy OVRSTAT.LNy »RAWSR.DLROVR
SCU

Figure 4-3 DMA Line Handler

For each DMA line the user can assign one service request source from the subset of
DMA capable XMC4500 service request sources. The assignment is done by
programming the SRSx bit field of register DLR_SRSELXx.

If the selected service request pulse occurs and if the according line is enabled by the
DLR_LNEN register, then the DMA handler forwards the request and stores it until the
GPDMA responds with an acknowledge. A request pulse occurring while another
transfer is ongoing is ignored and the according overrun status bit is set in the
DLR_OVRSTAT register.

Once the overrun condition is entered the user can clear the overrun status bits by writing
to the DLR_OVRCLR register. Additionally the pending request must be reset by
successively disabling and enabling the respective line.

Reference Manual 4-8 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Service Request Processing

If any bit within the DLR_OVRSTAT register is set, a service request is flagged by setting
the SCU_RAWSR.DLROVR bit.

The DLR unit has the following inputs:

Table 4-5 DMA Handler Service Request inputs

Service Request |# of Inputs Description

ERUL1.SR1 - 4 ERUL (System Control) requests
ERU1.SR4

VADC.COSRO - 4 Analog to Digital Converter Common Block 0
VADC.COSRS3

VADC.GOSRO - 4 Analog to Digital Converter Group O
VADC.GOSR3

VADC.G1SRO - 4 Analog to Digital Converter Group 1
VADC.G1SR3

VADC.G2SRO - 4 Analog to Digital Converter Group 2
VADC.G2SR3

VADC.G3SRO - 4 Analog to Digital Converter Group 3
VADC.G3SR3

DSD.SRO - 4 Delta Sigma Demodulator
DSD.SR3

DAC.SRO - 2 Digital to Analog Converter
DAC.SR1

CCU40.SRO - 2 Capture Compare Unit 4 (Module 0)
CCU40.SR1

CCU41.SRO - 2 Capture Compare Unit 4 (Module 1)
CCU41.SR1

CCU42.SRO - 2 Capture Compare Unit 4 (Module 2)
CCU42.SR1

CCU43.SRO - 2 Capture Compare Unit 4 (Module 3)
CCU43.SR1

CCUB80.SRO - 2 Capture Compare Unit 8 (Module 0)
CCU80.SR1

CCU81.SRO - 2 Capture Compare Unit 8 (Module 1)
CCU81.SR1

CAN.SRO - 4 MultiCAN

CAN.SR3

Reference Manual 4-9 V1.0, 2012-02

Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

Table 4-5 DMA Handler Service Request inputs (cont'd)

Service Request |# of Inputs Description

USICO0.SRO - 4 Universal Serial Interface Channel (Module 0)
USICO0.SR3

USIC1.SRO - 4 Universal Serial Interface Channel (Module 1)
USIC1.SR3

USIC2.SRO - 4 Universal Serial Interface Channel (Module 2)
USIC2.SR3

4.4.2 DMA Service Request Source Selection

The selection of the request sources is done according to the following table by
programming the DLR_SRSELX register. Please note that each service request source
can be assigned to 2 different lines to provide maximum flexibility. For example
VADC.SRO can be assigned to line 0 and 4.

Table 4-6 DMA Request Source Selection
DMA Line DMA Request Line Selected by DLR_SRSEL bit field
0 ERUO0.SRO RS0 = 00004
VADC.COSRO RS0 = 00014
VADC.GOSR3 RS0 = 00104
VADC.G2SR0 RS0 = 00114
VADC.G2SR3 RSO = 0100
DSD.SRMO RS0 = 01014
CCU40.SRO RS0 = 01104
CCU80.SR0O RS0 =01114
Reserved? RSO = 1000,
CAN.SRO RS0 = 10014
USICO0.SRO RSO = 10104
USIC1.SRO RS0 = 10114
Reserved? RSO = 1100,
VADC.G3SR3 RSO = 11014
CCU42.SR0O RS0 = 11104
Reserved? RSO = 1111,
1 ERUO0.SR3 RS1 = 0000g
Reference Manual 4-10 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Service Request Processing

Table 4-6 DMA Request Source Selection (cont'd)

DMA Line DMA Request Line Selected by DLR_SRSEL bit field
VADC.COSR1 RS1 = 0001,
VADC.GOSR2 RS1 = 0010,
VADC.G1SR0 RS1 =0011,4
VADC.G2SR2 RS1 = 0100,
DAC.SRO RS1 = 0101,
CCU40.SR0 RS1 = 0110,
CCU80.SR0 RS1 = 0111,
Reserved? RS1 = 1000,
CAN.SRO RS1 = 1001,
USICO0.SRO RS1 = 1010,
USIC1.SR0 RS1 = 1011,
Reserved? RS1 = 1100,
VADC.G3SR0 RS1=1101,
CCU42.SR0 RS1 = 1110,
Reserved? RS1=1111,

2 ERU0.SR1 RS2 = 0000,
VADC.COSR2 RS2 = 0001,
VADC.COSR3 RS2 = 0010,
VADC.G1SR3 RS2 = 0011,
VADC.G2SR1 RS2 = 0100,
DSD.SRM1 RS2 = 0101,
DSD.SRM3 RS2 = 0110,
CCU40.SR1 RS2 = 0111,
CCU80.SR1 RS2 = 1000,
Reserved? RS2 = 1001,
CAN.SR1 RS2 = 1010,
USICO0.SR1 RS2 = 1011,
USIC1.SR1 RS2 = 1100,
VADC.G3SR2 RS2 = 1101,
CCU42.SR1 RS2 = 1110,

Reference Manual 4-11 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500

XMC4000 Family

Service Request Processing

Table 4-6 DMA Request Source Selection (cont'd)
DMA Line DMA Request Line Selected by DLR_SRSEL bit field
Reserved? RS2 = 1111,
3 ERUO0.SR2 RS3 = 00004
VADC.COSR2 RS3 = 00014
VADC.COSR3 RS3 = 00104
VADC.G1SR1 RS3 =00114
VADC.G1SR2 RS3 = 01004
DSD.SRM2 RS3 =0101,4
DAC.SR1 RS3 =01104
CCU40.SR1 RS3 =01114
CCU80.SR1 RS3 = 10004
Reserved? RS3 = 1001,
CAN.SR1 RS3 = 10104
USICO0.SR1 RS3=10114
USIC1.SR1 RS3 = 11004
VADC.G3SR1 RS3 =11014
CCU42.SR1 RS3 =11104
Reserved RS3 = 1111,
4 ERUO0.SR2 RS4 = 00004
VADC.GOSRO RS4 = 00014
VADC.GOSR1 RS4 = 0010
VADC.G2SR1 RS4 = 00114
VADC.G2SR2 RS4 = 01004
DSD.SRM2 RS4 = 0101,
DAC.SR1 RS4 = 01104
CCU41.SR0O RS4 = 01114
CCU81.SR0 RS4 = 10004
Reserved? RS4 = 1001,
CAN.SR2 RS4 = 10104
USICO0.SRO RS4 =10114
USIC1.SR0O RS4 = 11004
Reference Manual 4-12 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500

XMC4000 Family

Service Request Processing

Table 4-6 DMA Request Source Selection (cont'd)
DMA Line DMA Request Line Selected by DLR_SRSEL bit field
VADC.G3SR1 RS4 =1101,4
CCU43.SR0 RS4 =11104
Reserved’ RS4 = 1111,
5 ERUO.SR1 RS5 = 00004
VADC.GOSRO RS5 = 0001,
VADC.GOSR1 RS5 = 00104
VADC.G1SR2 RS5 =0011,4
VADC.G2SR0 RS5 = 0100
DAC.SRO RS5 =01014
CCU41.SR0O RS5 = 01104
CCU81.SR0 RS5=0111,4
Reserved? RS5 = 1000,
CAN.SR2 RS5 = 10014
USICO0.SRO RS5 = 10104
USIC1.SRO RS5=10114
Reserved? RS5 = 1100,
VADC.G3SR2 RS5=1101,4
CCU43.SR0 RS5=11104
Reserved? RS5 = 1111,
6 ERUO0.SR3 RS6 = 00004
VADC.COSR1 RS6 = 00014
VADC.GOSR2 RS6 = 0010
VADC.G1SR1 RS6 = 0011,
VADC.G2SR3 RS6 = 01004
DSD.SRM1 RS6 = 0101,
DSD.SRM3 RS6 = 01104
CCU41.SR1 RS6 = 01114
CCU81.SR1 RS6 = 10004
Reserved? RS6 = 1001,
CAN.SR3 RS6 = 10104
Reference Manual 4-13 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500

XMC4000 Family

Service Request Processing

Table 4-6 DMA Request Source Selection (cont'd)
DMA Line DMA Request Line Selected by DLR_SRSEL bit field
USICO0.SR1 RS6 = 10114
USIC1.SR1 RS6 = 11004
VADC.G3SRO0 RS6 = 1101,
CCU43.SR1 RS6 = 11104
Reserved? RS6 = 1111,
7 ERUO0.SRO RS7 = 0000g
VADC.COSRO RS7 = 00014
VADC.GOSR3 RS7 = 00105
VADC.G1SRO RS7 =00114
VADC.G1SR3 RS7 = 01004
DSD.SRMO RS7 =0101,4
CCU41.SR1 RS7 = 01104
CCUB81.SR1 RS7 =01114
Reserved? RS7 = 1000,
CAN.SR3 RS7 =10014
USICO0.SR1 RS7 =1010g4
USIC1.SR1 RS7 =1011,4
Reserved? RS7 = 1100,
VADC.G3SR3 RS7 =1101,4
CCU43.SR1 RS7 =11104
Reserved? RS7 = 1111,
8 ERUO0.SRO RS8 = 00004
VADC.COSRO RS8 = 00014
VADC.G3SR0 RS8 = 00104
DSD.SRMO RS8 = 00114
DAC.SRO RS8 = 01004
CCU42.SR0O RS8 = 01014
USIC2.SR0 RS8 = 01104
USIC2.SR2 RS8 = 0111,
Reserved? RS8 = 1XXXg
Reference Manual 4-14 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Service Request Processing

Table 4-6 DMA Request Source Selection (cont'd)

DMA Line DMA Request Line Selected by DLR_SRSEL bit field
9 ERUO0.SR1 RS9 = 0000,
VADC.COSR1 RS9 = 0001,
VADC.G3SR1 RS9 = 0010,
DSD.SRM1 RS9 = 0011,
DAC.SR1 RS9 = 0100,
CCU42.SR1 RS9 = 0101,
USIC2.SR1 RS9 = 0110,
USIC2.SR3 RS9 = 0111,
Reserved? RS9 = 1XXXg
10 ERUO0.SR2 RS10 = 0000,
VADC.COSR2 RS10 = 0001,
VADC.G3SR2 RS10 = 0010,
DSD.SRM2 RS10 = 0011,
DAC.SRO RS10 = 0100,
CCU43.SR0 RS10 = 0101,
USIC2.SR0 RS10 = 0110,
USIC2.SR2 RS10 = 0111,
Reserved? RS10 = 1XXXg
11 ERUO0.SR3 RS11 = 0000,
VADC.COSR3 RS11 = 0001,
VADC.G3SR3 RS11 = 0010,
DSD.SRM3 RS11 = 0011,
DAC.SR1 RS11 = 01004
CCU43.SR1 RS11 = 0101,
USIC2.SR1 RS11 = 0110,
USIC2.SR3 RS11=0111,4
Reserved? RS11 = 1XXXg

1) Reserved combinations do not result in DMA requests.

to inactive.

Reference Manual

Service Request Processing, V1.1

The reserved multiplexer inputs should be hard wired

4-15

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

4.5 Event Request Unit (ERU)

The Event Request Unit (ERU) is a versatile multiple input event detection and
processing unit. The XMC4500 provides two units - ERUO and ERUL1.

Service Requests ERU Event Service by
by Event Sources Event Request Unit Action Providers

> >

o
o

<
R4

ADC ADC

o

CAPCOM

CAPCOM
L

TRIGGERS IRQ

—

GPIO

EVENTS

Source Inputs Channel 3

Source Inputs Channel 2

DAC

Source Inputs Channel 1

POSIF POSIF

Source Inputs Channel 0

o
Event Input Selectors @

Event Trigger Logic
/ Event Status Flag

Event Combinations m
ER
Trigger Cross Connect@

N
Output Gating Unit 0 ‘i

Figure 4-4 Event Request Unit Overview

Each ERU unit consists of the following blocks:

« An Event Request Select (ERS) unit.

— Event Input Selectors allow the selection of one out of two inputs. For each of
these two inputs, an vector of 4 possible signals is available.

— Event Combinations allow a logical combination of two input signals to a common
trigger.

 An Event Trigger Logic (ETL) per Input Channel allows the definition of the
transition (edge selection, or by software) that lead to a trigger event and can also
store this status. Here, the input levels of the selected signals are translated into
events.

* The Trigger Cross Connect Matrix distributes the events and status flags to the
Output Channels. Additionally, trigger signals from other modules are made available
and can be combined with the local triggers.

« An Output Gating Unit (OGU) combines the trigger events and status information
and gates the Output depending on a gating signal.

Note: An event of one Input can lead to reactions on several Outputs, or also events on
several Inputs can be combined to a reaction on one Output.

451 Event Request Select Unit (ERS)

For each Input Channel x (x = 0-3), an ERSx unit handles the input selection for the
associated ETLx unit. Each ERSx performs a logical combination of two signals (Ax, Bx)

Reference Manual 4-16 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

to provide one combined output signal ERSxO to the associated ETLx. Input Ax can be
selected from 4 options of the input vector ERU_xA[3:0] and can be optionally inverted.
A similar structure exists for input Bx (selection from ERU_xB[3:0]).

In addition to the direct choice of either input Ax or Bx or their inverted values, the
possible logical combinations for two selected inputs are a logical AND or a logical OR.

EXISEL. EXICONX. EXICONX.
EXSxA NA ss
ERU_XAO
ERU_xAL Select SEIBQt ~
Input Polarity N
ERU_XA2 Ax o 5
ERU_XxA3 > Select Crso
¢ X
ERU_xBO > | ERSYO
ERU_xB1 Select Selept ﬂ AX AND Bx
Input Polarity >
ERU_xB2 >
- Bx Bx
ERU_xB3
EXISEL. EXICONX.
EXSxB NB ERSXx

Figure 4-5 Event Request Select Unit Overview

The ERS units are controlled via register ERUO_EXISEL (one register for all four ERSx
units) and registers EXICONXx (one register for each ERSx and associated ETLx unit,
e.g. ERUO_EXICONXx (x=0-3) for Input Channel 0).

452 Event Trigger Logic (ETLX)

For each Input Channel x (x = 0-3), an event trigger logic ETLx derives a trigger event
and related status information from the input ERSxO. Each ETLx is based on an edge
detection block, where the detection of a rising or a falling edge can be individually
enabled. Both edges lead to a trigger event if both enable bits are set (e.g. to handle a
toggling input).

Each of the four ETLx units has an associated EXICONX register, that controls all options
of an ETLx (the register also holds control bits for the associated ERSx unit, e.g.
ERUOQO_EXICONXx (x=0-3) to control ERSO and ETLO).

Reference Manual 4-17 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
<|nﬂneon XMC4000 Family

Service Request Processing

EXICONX. EXICONX.
FE D ETLx
Modify set Status Flag _ EXICONX.FL
Status clear FL ™ to all OGUy
Flag
Detect
ERSXO
ERSx X Event | cdgeevent TR0t
(edge) > 0GUo
_ TRx1to
Enable trigger pulse S_elect 7 oGu1l
Trigger ———»{ Trigger
TRx2 to
Pulse Output > 0GU2
_ TRx3to
> oGU3
EXICONX. EXICONX. EXICONX.
RE PE OCs

Figure 4-6 Event Trigger Logic Overview

When the selected event (edge) is detected, the status flag EXICONx.FL becomes set.
This flag can also be modified by software. Two different operating modes are supported
by this status flag.

It can be used as “sticky” flag, which is set by hardware when the desired event has been
detected and has to be cleared by software. In this operating mode, it indicates that the
event has taken place, but without indicating the actual status of the input.

In the second operating mode, it is cleared automatically if the “opposite” event is
detected. For example, if only the falling edge detection is enabled to set the status flag,
it is cleared when the rising edge is detected. In this mode, it can be used for pattern
detection where the actual status of the input is important (enabling both edge detections
is not useful in this mode).

The output of the status flag is connected to all following Output Gating Units (OGUy) in
parallel (see Figure 4-7) to provide pattern detection capability of all OGUy units
based on different or the same status flags.

In addition to the modification of the status flag, a trigger pulse output TRxy of ETLx can
be enabled (by bit EXICONX.PE) and selected to trigger actions in one of the OGUy
units. The target OGUYy for the trigger is selected by bit field EXICON.OCS.

The trigger becomes active when the selected edge event is detected, independently
from the status flag EXICONX.FL.

Reference Manual 4-18 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

e XMC4500
mfmeon XMC4000 Family

Service Request Processing

45.3 Cross Connect Matrix

The matrix shown in Figure 4-7 distributes the trigger signals (TRxy) and status signals
(EXICONXx.FL) from the different ETLx units between the OGUy units. In addition, it
receives peripheral trigger signals that can be OR-combined with the ETLx trigger
signals in the OGUy units.

EXICONO.FL
E:?eecr:?on |—» ERU_PDOUTO
TROO
Inputs > ERU_GOUTO
TRO1 > ERU_IOUTO
ETLO TROZ OGUO -
> ERU_TOUTO
TRO3 Trigger
Inputs Peripheral
TRx0 < Triggers
EXICONL.FL)
b Ppatt
th:g{;on | » ERU_PDOUT1
TR
0 Inputs > ERU_GOUT1
TR11 > ERU_IOUT1
ETL1 TR12 OoGU1 -
> ERU_TOUT1
TR13 Trigger
Inputs Peripheral
TRx1 < Triggers
EXICON2.FL
patert |-»Eru_poour2
TR20
Inputs > ERU_GOUT2
TR21 | ERU_IOUT2
ETL2 TR22 oGuU2 -
> ERU_TOUT2
TR23 Trigger
Inputs Peripheral
TRx2 Triggers
EXICON3.FL
Egﬁfg{i‘on | » ERU_PDOUT3
TR30 >
Inputs > ERU_GOUT3
TR31 > ERU_IOUT3
ETL3 TR32 OoGU3 -
l-—» ERU_TOUT3
TR33 Trigger
‘ Inputs Peripheral
TRx3 Triggers
Figure 4-7 ERU Cross Connect Matrix
Reference Manual 4-19 V1.0, 2012-02

Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

454 Output Gating Unit (OGUy)

Each OGUy (y = 0-3) unit combines the available trigger events and status flags from the
Input Channels and distributes the results to the system. Figure 4-8 illustrates the logic
blocks within an OGUy unit. All functions of an OGUy unit are controlled by its associated
EXOCONYy register, e.g. ERU0_EXOCONXx (x=0-3) for OGUO. The function of an OGUy
unit can be split into two parts:

e Trigger Combination:
All trigger signals TRxy from the Input Channels that are enabled and directed to
OGUy, a selected peripheral-related trigger event, and a pattern change event (if
enabled) are logically OR-combined.

e Pattern Detection:
The status flags EXICONXx.FL of the Input Channels can be enabled to take part in
the pattern detection. A pattern match is detected while all enabled status flags are
set.

Status Flags
EXICONO.FL
EXOCONy. EXOCONy.
IPENO GEEN
EXICON1.FL
» ERU_PDOUTy
EXOCONy.
IPEN1 Detect EXOCONy.
EXICON2.FL Pattern PDR
EXOCONy.
IPEN2 Select EXOCONy.
Gating [«—
EXICONS3.FL GP
Scheme
EXOCONy.
Triggers IPEN3
from Input » ERU_GOUTyY
Channels ¢
i Combine Interrupt
TR1
Y QGU Gating » ERU_IOUTY
TR2y Triggers (AND)
TR3y (OR)
T » ERU_TOUTyY
ERU_OGUy1
Peripheral ERU_OGUy2 F?ee:le(;t EXOCONy.
Triggers ~[ERU_oGUy3 Triggper.s ISS
OGUy
Figure 4-8 Output Gating Unit for Output Channel y
Reference Manual 4-20 V1.0, 2012-02

Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

Each OGUy unit generates 4 output signals that are distributed to the system (not all of
them are necessarily used):

< ERU_PDOUTYy to directly output the pattern match information for gating purposes
in other modules (pattern match = 1).

« ERU_GOUTYy to output the pattern match or pattern miss information (inverted
pattern match), or a permanent O or 1 under software control for gating purposes in
other modules.

« ERU_TOUTy as combination of a peripheral trigger, a pattern detection result
change event, or the ETLx trigger outputs TRXxy to trigger actions in other modules.

e ERU_IOUTy as gated trigger output (ERU_GOUTYy logical AND-combined with
ERU_TOUTYy) to trigger service requests (e.g. the service request generation can be
gated to allow service request activation during a certain time window).

Trigger Combination

The trigger combination logically OR-combines different trigger inputs to form a common
trigger ERU_TOUTYy. Possible trigger inputs are:

« Ineach ETLx unit of the Input Channels, the trigger output TRxy can be enabled and
the trigger event can be directed to one of the OGUy units.

« One out of three peripheral trigger signals per OGUy can be selected as additional
trigger source. These peripheral triggers are generated by on-chip peripheral
modules, such as capture/compare or timer units. The selection is done by bit field
EXOCONYy.ISS.

* In the case that at least one pattern detection input is enabled (EXOCONy.IPENX)
and a change of the pattern detection result from pattern match to pattern miss (or
vice-versa) is detected, a trigger event is generated to indicate a pattern detection
result event (if enabled by ECOCONy.GEEN).

The trigger combination offers the possibility to program different trigger criteria for
several input signals (independently for each Input Channel) or peripheral signals, and
to combine their effects to a single output, e.g. to generate an service request or to start
an ADC conversion. This combination capability allows the generation of a service
request per OGU that can be triggered by several inputs (multitude of request sources
results in one reaction).

The selection is defined by the bit fields ISS in registers ERU0_EXOCONXx (x=0-3) (for
ERU0.0OGUx) and ERU1_EXOCONy (y=0-3) (for ERU1.0GUy).

Pattern Detection

The pattern detection logic allows the combination of the status flags of all ETLx units.
Each status flag can be individually included or excluded from the pattern detection for
each OGUy, via control bits EXOCONYy.IPENx. The pattern detection block outputs the
following pattern detection results:

Reference Manual 4-21 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

e Pattern match (EXOCONy.PDR =1 and ERU_PDOUTYy = 1):
A pattern match is indicated while all status flags FL that are included in the pattern
detection are 1.

e Pattern miss (EXOCONy.PDR =0 and ERU_PDOUTYy = 0):
A pattern miss is indicated while at least one of the status flags FL that are included
in the pattern detection is 0.

In addition, the pattern detection can deliver a trigger event if the pattern detection result
changes from match to miss or vice-versa (if enabled by EXOCONy.GEEN = 1). The
pattern result change event is logically OR-combined with the other enabled trigger
events to support service request generation or to trigger other module functions (e.g. in
the ADC). The event is indicated when the pattern detection result changes and
EXOCONYy.PDR becomes updated.

The service request generation in the OGUy is based on the trigger ERU_TOUTYy that
can be gated (masked) with the pattern detection result ERU_PDOUTYy. This allows an
automatic and reproducible generation of service requests during a certain time window,
where the request event is elaborated by the trigger combination block and the time
window information (gating) is given by the pattern detection. For example, service
requests can be issued on a regular time base (peripheral trigger input from
capture/compare unit is selected) while a combination of input signals occurs (pattern
detection based on ETLx status bits).

A programmable gating scheme introduces flexibility to adapt to application
requirements and allows the generation of service requests ERU_IOUTy under different
conditions:

» Pattern match (EXOCONy.GP = 10g):
A service request is issued when a trigger event occurs while the pattern detection
shows a pattern match.

» Pattern miss (EXOCONy.GP = 11;):
A service request is issued when the trigger event occurs while the pattern detection
shows a pattern miss.

* Independent of pattern detection (EXOCONy.GP = 01):
In this mode, each occurring trigger event leads to a service request. The pattern
detection output can be used independently from the trigger combination for gating
purposes of other peripherals (independent use of ERU_TOUTy and ERU_PDOUTY
with service requests on trigger events).

* No service requests (EXOCONy.GP = 00g, default setting)
In this mode, an occurring trigger event does not lead to a service request. The
pattern detection output can be used independently from the trigger combination for
gating purposes of other peripherals (independent use of ERU_TOUTy and
ERU_PDOUTYy without service requests on trigger events).

Reference Manual 4-22 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Service Request Processing

4.6 Service Request Generation

If any bit within the DLR.DLR_OVRSTAT register is set, a service request is flagged by
setting the SCU_RAWSR.DLROVR bit.

e errors
« reaching buffer limits

Service requests can be disabled by....

A direct connection to the ADC enables the ASC to trigger an ADC conversion upon
reception of a programmable data pattern.

4.7 Debug Behavior
Service request processing behavior is unchanged in debug mode.

4.8 Power, Reset and Clock
Service request processing is

* consuming power in all operating modes.
 running on fpy.
» asynchronously initialized by the system reset.

4.9 Initialization and System Dependencies

Service Requests must always be enabled at the source and at the destination.
Additionally it must be checked whether it is necessary to program the ERU process and
route a request.

Enabling Peripheral SRx Outputs

« Peripherals SRx outputs must be selectively enabled. This procedure depends on
the individual peripheral. Please look up the section “Service Request Generation”
within a peripherals chapter for details.

« Optionally ERUx must be programmed to process and route the request

Enabling External Requests

e Selected PORTS must be programmed for input
* ERUx must be programmed to process and route the external request

Note: The number of external service request inputs may be limited by the package
used.

Enabling NVIC and GPDMA

Interrupt and DMA service request processing must be enabled. Please refer to the CPU
and GPDMA chapters for details.

Reference Manual 4-23 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

(infineon

4.10

XMC4500
XMC4000 Family

Registers

Registers Overview

Service Request Processing

The absolute register address is calculated by adding:
Module Base Address + Offset Address

Table 4-7 Registers Address Space

Module Base Address End Address Note

DLR 5000 4900,, 5000 49FF,,

ERUO 5000 4800, 5000 48FF,

ERU1 4004 4000, 4004 7FFF,

Table 4-8

Short Name Description Offset | Access Mode |Description

Addr. Read |write |S€e

DLR Registers

OVRSTAT Status of DMA Service | 000, U, PV |PV Page 4-25
Request Overruns

OVRCLR Clear Status of DMA | 004, |U,PV |PV Page 4-26
Service Request
Overruns

SRSELO DLR Service Request |008,; |U,PV |PV Page 4-27
Selection 0

LNEN Enable DLR Line 010, |U,PV |PV Page 4-26

SRSEL1 DLR Service Request |00C, |U,PV |PV Page 4-28
Selection 1

ERU Registers

EXISEL ERU External Input 0000, |U,PV |PV Page 4-29
Control Selection

EXICONO ERU External Input 0010, |U, PV |PV Page 4-31
Control Selection

EXICON1 ERU External Input 0014, |U,PV |PV Page 4-31
Control Selection

EXICON2 ERU External Input 0018, |U,PV |PV Page 4-31
Control Selection

Reference Manual 4-24 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Service Request Processing

Table 4-8 (cont'd)

Short Name Description Offset | Access Mode |Description
Addr. [Read |write |S€€

EXICONS3 ERU External Input 001C4 |U, PV |PV Page 4-31
Control Selection

EXOCONO ERU Output Control 0020, |U, PV |PV Page 4-33
Register

EXOCON1 ERU Output Control 0024, |U,PV |PV Page 4-33
Register

EXOCON2 ERU Output Control 0028, |U,PV |PV Page 4-33
Register

EXOCON3 ERU Output Control 002C, |U, PV |PV Page 4-33
Register

4.10.1 DLR Registers

DLR_OVRSTAT

The DLR_OVRSTAT register is used to track status of GPDMA service request
overruns. Upon overrun detection, additionally a service request flag is set in the
SCU_RAWSR.DLROVR bhit.

DLR_OVRSTAT
Overrun Status (00,) Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
0 LN11|LN1O| LN9 |LN8 | LN7 |LN6 | LN5 |LN4 |LN3 |LN2 |LN1 |LNO

rh rh rh rh rh rh rh rh rh rh rh rh

=

Field Bits Type | Description

LNx X rh Line x Overrun Status

(x =0-11) Set if an overrun occurred on this line.

Reference Manual 4-25 V1.0, 2012-02

Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

Field Bits Type | Description
0 [31:12] |r Reserved

Read as 0; should be written with 0.
DLR_OVRCLR

The DLR_OVRCLR register is used to clear the DLR_OVRSTAT register bits.

DLR_OVRCLR
Overrun Clear (04,) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0
L L 1 1 1 1 II' 1 1 1 1 1 L L
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 LN11|LN10| LN9 [LN8 |LN7 | LN6 | LN5 | LN4 | LN3 |LN2 | LN1|LNO
t") w w w w w w w w w w W '
Field Bits Type | Description
LNx X w Line x Overrun Status Clear
(x =0-11) Clears the corresponding bit in the DLR_OVRSTAT
register when set to 1.
0 [31:12] |r Reserved
Read as 0; should be written with 0.
DLR_LNEN

The DLR_LNEN register is used to enable each individual DLR line and to reset a
previously stored and pending service request.

Reference Manual
Service Request Processing, V1.1

4-26 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

DLR_LNEN
Line Enable (10y) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 LN211{LN1O|LN9 | LN8 | LN7 | LN6 | LN5 | LN4 | LN3 | LN2 |LN1 | LNO
I" I rw rw rw rw rw rw rw rw rw rw rw rw
Field Bits Type | Description
LNx X rw Line x Enable
(x =0-11) 0z Disables the line
1z Enables the line and resets a pending request
0 [31:12] |r Reserved
Read as 0; should be written with 0.
DLR_SRSELXx

The DLR_SRSELX registers are used to select the service request source used to
trigger a DMA transfer.

DLR_SRSELO
Service Request Selection 0

(08,) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RS7 RS6 RS5 RS4
w Tw Tw Tw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RS3 RS2 RS1 RSO
W w T w w
Reference Manual 4-27 V1.0, 2012-02

Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Service Request Processing

Field Bits Type | Description

RSx [x*4+3: | rw Request Source for Line x

(x =0-7) X*4] The request source according to Table 4-6 is
selected for DMA line x.

DLR_SRSEL1

Service Request Selection 1

(ocy) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0
1 1 1 1 IIv 1
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RS11 RS10 RS9 RS8
W Tw Tw w

Field Bits Type | Description

RS8 [3:0] w Request Source for Line 8
The request source according to Table 4-6 is
selected for DMA line x.

RS9 [7:4] rw Request Source for Line 9
The request source according to Table 4-6 is
selected for DMA line x.

RS10 [11:8] |rw Request Source for Line 10
The request source according to Table 4-6 is
selected for DMA line x.

RS11 [15:12] |rw Request Source for Line 11
The request source according to Table 4-6 is
selected for DMA line x.

0 [31:16]|r Reserved
Read as 0; should be written with 0.

Reference Manual 4-28 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Service Request Processing

4.10.2 ERU Registers
ERUO_EXISEL
Event Input Select (00,) Reset Value: 0000 0000,
ERU1_EXISEL
Event Input Select (0000, Reset Value: 0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0
1 1 1 1 1 II‘ 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXS3B EXS3A EXS2B EXS2A EXS1B EXS1A EXSO0B EXSO0A
w w w w w w w w
Field Bits Type | Description
EXSOA [1:0] w Event Source Select for A0 (ERSO)
This bit field defines which input is selected for AO.
005 Input ERU_OAQ is selected
01; Input ERU_OAL is selected
10z Input ERU_OAZ is selected
11z Input ERU_OA3 is selected
EXSOB [3:2] w Event Source Select for BO (ERSO0)
This bit field defines which input is selected for BO.
00; Input ERU_OBO is selected
01; Input ERU_OBL1 is selected
105 Input ERU_OB?2 is selected
11; Input ERU_OB3 is selected
EXS1A [5:4] w Event Source Select for A1 (ERS1)
This bit field defines which input is selected for Al.
00g Input ERU_1AOQ is selected
01; Input ERU_1Al is selected
105 Input ERU_1A2 is selected
11z Input ERU_1A3 is selected

Reference Manual

Service Request Processing, V1.1

4-29 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Service Request Processing

Field Bits Type | Description
EXS1B [7:6] w Event Source Select for B1 (ERS1)
This bit field defines which input is selected for B1.
00; Input ERU_1BO is selected
01g Input ERU_1B1l is selected
105 Input ERU_1B2 is selected
11; Input ERU_1B3 is selected
EXS2A [9:8] w Event Source Select for A2 (ERS2)
This bit field defines which input is selected for A2.
00g Input ERU_2AO0 is selected
01; Input ERU_2ALl is selected
105 Input ERU_2AZ2 is selected
11z Input ERU_2A3 is selected
EXS2B [121:10] |rw Event Source Select for B2 (ERS2)
This bit field defines which input is selected for B2.
005 Input ERU_2BO is selected
01z Input ERU_2B1 is selected
105 Input ERU_2B2 is selected
11; Input ERU_2B3 is selected
EXS3A [13:12] | rw Event Source Select for A3 (ERS3)
This bit field defines which input is selected for A3.
005 Input ERU_3AQ is selected
01 Input ERU_3ALl is selected
105 Input ERU_3AZ2 is selected
11; Input ERU_3A3 is selected
EXS3B [15:14] |rw Event Source Select for B3 (ERS3)
This bit field defines which input is selected for B3.
005 Input ERU_3BO is selected
01z Input ERU_3B1 is selected
10z Input ERU_3B2 is selected
11z Input ERU_3B3 is selected
0 [31:16] |r Reserved
Read as 0; should be written with 0.

Reference Manual

Service Request Processing, V1.1

4-30 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

ERUO_EXICONXx (x=0-3)
Event Input Control x

ERU1_EXICONy (y=0-3)
Event Input Control y

31 30 29 28 27 26

Service Request Processing

(10, + 4*x) Reset Value: 0000 0000,

(0010 + 4*y) Reset Value: 0000 0000
25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10

0 NB | NA SS FL OCS FE | RE | LD | PE
l ;’ I w w T\IN rwh J 'w J 'w 'w w w
Field Bits Type |Description
PE 0 rw Output Trigger Pulse Enable for ETLx

This bit enables the generation of an output trigger
pulse at TRxy when the selected edge is detected
(set condition for the status flag FL).

Oz The trigger pulse generation is disabled

1z The trigger pulse generation is enabled

LD 1 rw

Rebuild Level Detection for Status Flag for ETLx
This bit selects if the status flag FL is used as “sticky”
bit or if it rebuilds the result of a level detection.

Og The status flag FL is not cleared by hardware
and is used as “sticky” bit. Once set, it is not
influenced by any edge until it becomes
cleared by software.

1z The status flag FL rebuilds a level detection of
the desired event. It becomes automatically set
with a rising edge if RE = 1 or with a falling
edge if FE = 1. It becomes automatically
cleared with a rising edge if RE = 0 or with a
falling edge if FE = 0.

Reference Manual
Service Request Processing, V1.1

4-31 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

Field

Bits

Type

Description

RE

'w

Rising Edge Detection Enable ETLx

This bit enables/disables the rising edge event as
edge event as set condition for the status flag FL or
as possible trigger pulse for TRxy.

O Arrising edge is not considered as edge event
1z Arising edge is considered as edge event

FE

w

Falling Edge Detection Enable ETLx

This bit enables/disables the falling edge event as
edge event as set condition for the status flag FL or
as possible trigger pulse for TRxy.

0 Afalling edge is not considered as edge event
1z Afalling edge is considered as edge event

OCS

[6:4]

w

Output Channel Select for ETLx Output Trigger
Pulse

This bit field defines which Output Channel OGUy is
targeted by an enabled trigger pulse TRxy.

0005 Trigger pulses are sent to OGUO

001; Trigger pulses are sent to OGU1

0105 Trigger pulses are sent to OGU2

011g Trigger pulses are sent to OGU3

Others: Reserved, do not use this combination

FL

rwh

Status Flag for ETLx

This bit represents the status flag that becomes set

or cleared by the edge detection.

Og The enabled edge event has not been
detected

1z The enabled edge event has been detected

SS

[9:8]

w

Input Source Select for ERSx

This bit field defines which logical combination is
taken into account as ERSxO.

005 Input A without additional combination

01g Input B without additional combination

10 Input A OR input B

115 Input A AND input B

NA

10

w

Input A Negation Select for ERSx

This bit selects the polarity for the input A.
Oz Input Ais used directly

1z Input Ais inverted

Reference Manual

Service Request Processing, V1.1

4-32 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Service Request Processing

Field

Bits

Type

Description

NB

11

'w

Input B Negation Select for ERSx

This bit selects the polarity for the input B.
Og Input B is used directly

1z InputBis inverted

[31:12]

-

Reserved
Read as 0; should be written with 0.

ERUO_EXOCONX (x=0-3)
Event Output Trigger Control x

(20, + 4*x) Reset Value: 0000 0008,
ERU1_EXOCONYy (y=0-3)
Event Output Trigger Control y
(0020, + 4*y) Reset Value: 0000 0008,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0
1 1 1 1 II‘ 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IPEN|IPEN|IPEN|IPEN GEE
3 5 1 0 0 GP PDR| " ISS
w rw rworw I I r I I W rh rw w
Field Bits Type |Description
ISS [1:0] rw Internal Trigger Source Selection
This bit field defines which input is selected as
peripheral trigger input for OGUy.
005 The peripheral trigger function is disabled
01 Input ERU_OGUYyl is selected
105 Input ERU_OGUy?2 is selected
11; Input ERU_OGUYy3 is selected
GEEN 2 rw Gating Event Enable
Bit GEEN enables the generation of a trigger event
when the result of the pattern detection changes from
match to miss or vice-versa.
Og The event detection is disabled
1z The event detection is enabled

Reference Manual
Service Request Processing, V1.1

4-33 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Service Request Processing

Field Bits Type |Description

PDR 3 rh Pattern Detection Result Flag

This bit represents the pattern detection result.
Oz A pattern miss is detected

1z A pattern match is detected

GP [5:4] rw Gating Selection for Pattern Detection Result

This bit field defines the gating scheme for the service

request generation (relation between the OGU output

ERU_PDOUTy and ERU_GOUTYy).

00; ERU_GOUTYy is always disabled and
ERU_IOUTYy can not be activated

01; ERU_GOUTYy s always enabled and ERU_IOUTY
becomes activated with each activation of
ERU_TOUTy

105 ERU_GOUTYy is equal to ERU_PDOUTYy and
ERU_IOUTy becomes activated with an activation
of ERU_TOUTYy while the desired pattern is
detected (pattern match PDR = 1)

11; ERU_GOUTYy is inverted to ERU_PDOUTY and
ERU_IOUTy becomes activated with an activation
of ERU_TOUTYy while the desired pattern is not
detected (pattern miss PDR = 0)

IPENX 12+x |rw Pattern Detection Enable for ETLx

(x =0-3) Bit IPENx defines whether the trigger event status flag

EXICONXx.FL of ETLx takes part in the pattern detection

of OGUy.

0y Flag EXICONX.FL is excluded from the pattern
detection

1z Flag EXICONX.FL is included in the pattern
detection

0 [31:16] Reserved
, [11:6] Read as 0; should be written with 0.

-

411 Interconnects

This section describes how the ERUO and ERU1 modules are connected within the
XMC4500 system.

Reference Manual 4-34 V1.0, 2012-02
Service Request Processing, V1.1 Subject to Agreement on the Use of Product Information

Infineon

i

XMC4500
XMC4000 Family

Service Request Processing

xA[3:0]

xB[3:0]

/ x|- Detect |y
N\ - Cross-

ERUO

- Select
- Combing|

IOUTy J'l_TRIGGEE

Connect
- Gate

4 PORTS t

P\

GPDMA
Req Ack

EXTERNAL EVENTS
A

j PORTS t

SR1-4

DLR

{TPORTS |

4 NVIC.SRn }—

A

PORTS

SR5-8

XA[3:0]

Y

N

xB[3:0]

/ x |- Detect y
N\ - Cross-

ERU1

- Select
- Combing|

loUTy JLTRIGGER)

/

Connect
- Gate

A

PDOUTY Tiever Y

1 PERIPH F

A

1 PERIPH

PERIPH

A

INTERNAL EVENTS

Ai\

LR

Top-Level
Cross

A

x=0-3

Inter-
connect

y=0-3

Figure 4-9 ERU Interconnects Overview

4111 ERUO Connections

The following table shows the ERUO connections. Please refer to the ports chapter for
details about PORTS connections.

Table 4-9 ERUO Pin Connections

Global Connected To 1/0 | Description

Inputs/Outputs

ERUO0.0A0 PORTS |

ERUO0.0AL PORTS |

ERUO0.0A2 PORTS |

ERUO0.0A3 SCU.GOORCOUT6E |1

Reference Manual 4-35 V1.0, 2012-02

Service Request Processing, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Service Request Processing

Table 4-9 ERUO Pin Connections (cont'd)

Global Connected To I/O | Description
Inputs/Outputs

ERU0.0BO PORTS |
ERU0.0B1 PORTS |
ERUO0.0B2 PORTS |
ERU0.0B3 PORTS |
ERUO0.1A0 PORTS |
ERUO.1A1 SCU.HIB_SRO |
ERUO.1A2 PORTS |
ERUO0.1A3 SCU.GOORCOUT7 |1
ERUO0.1B0 PORTS |
ERUO0.1B1 SCU.HIB_SR1 |
ERUO0.1B2 PORTS |
ERUO0.1B3 PORTS |
ERUO0.2A0 PORTS |
ERUO0.2A1 PORTS |
ERUO0.2A2 PORTS |
ERUO0.2A3 SCU.G10RCOUT6 ||
ERUO0.2B0 PORTS |
ERUO0.2B1 PORTS |
ERUO0.2B2 PORTS |
ERUO0.2B3 PORTS |
ERUO0.3A0 PORTS |
ERUO0.3A1 PORTS |
ERUO0.3A2 PORTS |
ERUO0.3A3 SCU.G10RCOUT7 |l
ERUO0.3B0 PORTS |
ERUO0.3B1 PORTS |
ERU0.3B2 PORTS |
ERUO0.3B3 PORTS |
ERU0.0GUO01 0 |
ERU0.0GUO02 0 |

Reference Manual

4-36

Service Request Processing, V1.1

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Service Request Processing

Table 4-9 ERUO Pin Connections (cont'd)
Global Connected To I/0 | Description
Inputs/Outputs
ERU0.0GUO03 1 |
ERU0.0GU11 0 |
ERU0.0GU12 0 |
ERU0.0GU13 1 |
ERU0.0GU21 0 |
ERU0.0GU22 0 |
ERU0.0GU23 1 |
ERU0.OGU31 0 |
ERU0.0GU32 0 |
ERU0.0GU33 1 |
ERUO0.PDOUTO not connected o
ERUO0.GOUTO not connected O
ERUO.TOUTO not connected (0]
ERUO0.IOUTO NVIC.ERUO.SRO 0]
DLR
ERUO.PDOUT1 not connected O
ERU0.GOUT1 not connected o
ERUO.TOUT1 not connected (0]
ERUO0.IOUT1 NVIC.ERUO0.SR1 0]
DLR
ERUO0.PDOUT2 not connected o
ERUO0.GOUT2 not connected O
ERUO0.TOUT2 not connected (0]
ERUO0.IOUT2 NVIC.ERUO0.SR2 0]
DLR
ERUO0.PDOUT3 not connected O
ERU0.GOUT3 not connected o
ERUO0.TOUT3 not connected (0]
ERUO.IOUT3 NVIC.ERUO0.SR3]

DLR

Reference Manual

Service Request Processing, V1.1

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

Gafineon.

4.11.2

XMC4500
XMC4000 Family

ERU1 Connections

Service Request Processing

The following table shows the ERU1 connections. Please refer to the ports chapter for
details about PORTS connections.

Table 4-10 ERU1 Pin Connections
Global Connected To I/O | Description
Inputs/Outputs

ERU1.0A0 PORTS |
ERU1.0A1 POSIF0.SR1 |
ERU1.0A2 CCU40.STO I
ERU1.0A3 DAC.SIGN_O I
ERU1.0BO PORTS |
ERU1.0B1 CCUB80.STO I
ERU1.0B2 VADC.GOBFL3 I
ERU1.0B3 ERU1.I0UT3 I
ERU1.1A0 PORTS I
ERU1.1A1 POSIF0.SR1 |
ERU1.1A2 CCU40.ST1 I
ERU1.1A3 ERU1.10UT2 I
ERU1.1BO PORTS I
ERU1.1B1 CCU80.ST1 I
ERU1.1B2 VADC.G1BFL3 I
ERU1.1B3 ERUL.I0UT2 I
ERU1.2A0 PORTS |
ERU1.2A1 POSIF1.SR1 I
ERU1.2A2 CCU40.ST2 I
ERU1.2A3 DAC.SIGN_1 I
ERU1.2B0 PORTS I
ERU1.2B1 CCU80.ST2 I
ERU1.2B2 VADC.GOBFL3 I
ERU1.2B3 not connected I
ERU1.3A0 PORTS I
ERU1.3A1 POSIF1.SR1 |

Reference Manual

Service Request Processing, V1.1

4-38

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Service Request Processing

Table 4-10 ERUL Pin Connections (cont'd)
Global Connected To /O | Description
Inputs/Outputs

ERU1.3A2 CCU40.ST3 I
ERU1.3A3 not connected I
ERU1.3B0 PORTS I
ERU1.3B1 CCU80.ST3 I
ERU1.3B2 VADC.G1BFL3 I
ERU1.3B3 not connected I
ERU1.0GUO01 VADC.COSRO I
ERU1.0GU02 CCU40.STO0 I
ERU1.0GUO03 1 I
ERU1.0GU11 VADC.COSR1 I
ERU1.0GU12 CCU41.STO I
ERU1.0GU13 1 I
ERU1.0GU21 VADC.COSR2 I
ERU1.0GU22 CCUB81.ST3A I
ERU1.0GU23 1 I
ERU1.0GU31 VADC.COSR3 I
ERU1.0GU32 CCU81.ST3B I
ERU1.0GU33 1 I

Reference Manual

Service Request Processing, V1.1

4-39

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Table 4-10 ERU1 Pin Connections (cont'd)

Service Request Processing

Global
Inputs/Outputs

Connected To

110

Description

ERU1.PDOUTO

CCU40.IN0J
CCUA41.IN0J
CCU42.IN0J
CCU43.IN0J
CCUA40.IN1D
CCU40.IN2D
CCUA40.IN3D
CCU41.IN1D
CCUA41.IN2D
CCUA41.IN3D
CCU42.IN1D
CCU42.IN2D
CCU42.IN3D
CCU43.IN1D
CCUA43.IN2D
CCUA43.IN3D
CCU80.IN0J
CCU80.IN1J
CCU80.IN2J
CCU80.IN3J
VADC.GOREQGTO
VADC.G1REQGTO
VADC.G2REQGTO
VADC.G3REQGTO
VADC.BGREQGTO
DSD.ITROA
DSD.ITR1A
DSD.ITR2A
DSD.ITR3A
POSIF0.INOD
POSIF1.INOD

o

ERU1.GOUTO

not connected

ERU1.TOUTO

not connected

Reference Manual

4-40

Service Request Processing, V1.1

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Table 4-10 ERU1 Pin Connections (cont'd)

Service Request Processing

Global
Inputs/Outputs

Connected To

I/0

Description

ERU1.I0UTO

CCU4x.INOK
CCU8x.INOG
VADC.GOREQTRM
VADC.G1REQTRM
VADC.G2REQTRM
VADC.G3REQTRM
VADC.BGREQTRM
CCU40.MCLKA
CCU41.MCLKA
CCU42.MCLKA
CCU43.MCLKA
CCU80.MCLKA
CCU81.MCLKA
NVIC.ERU1.SR0O
POSIFO0.EWHEB
POSIF1.EWHEB

o

ERU1.PDOUT1

CCU40.IN1J
CCU41.IN1J
CCUA42.IN1J
CCU43.IN1J
CCUS8L.INOI
CCUS8L.IN1I
CCUS8L.IN2I
CCUSL.IN3I
CCUA40.INOD
CCU41.INOD
CCU42.INOD
CCU43.INOD
VADC.GOREQGTP
VADC.G1REQGTP
VADC.BGREQGTP
DSD.ITROB
DSD.ITR1B
DSD.ITR2B
DSD.ITR3B
POSIFO0.IN1D
POSIF1.IN1D

ERU1.GOUT1

not connected

Reference Manual

4-41

Service Request Processing, V1.1

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

Gafineon.

Table 4-10

XMC4500
XMC4000 Family

ERUL1 Pin Connections (cont'd)

Service Request Processing

Global

Inputs/Outputs

Connected To

I/0

Description

ERU1.TOUT1

not connected

o]

ERU1.I0UT1

CCU40.IN1K
CCU41.IN1K
CCU42.IN1K
CCU43.IN1K
CCUB80.IN1G
CCUB8L.IN1G
VADC.GOREQTRN
VADC.G1REQTRN
VADC.BGREQTRN
CCU40.MCLKB
CCU41.MCLKB
CCU42.MCLKB
CCU43.MCLKB
CCU80.MCLKB
CCU81.MCLKB
NVIC.ERU1.SR1
POSIFO.EWHEC
POSIF1.EWHEC

O

ERU1.PDOUT2

CCU40.IN2J
CCU41.IN2J
CCUA42.IN2J
CCUA43.IN2J
CCUBS80.IN2F
CCUB8L.IN2F
DSD.ITROC
DSD.ITR1C
DSD.ITR2C
DSD.ITR3C
DSD.SGNA
VADC.G2REQGTP
VADC.G3REQGTP
POSIFO0.IN2D
POSIF1.IN2D

ERU1.GOUT2

not connected

ERU1.TOUT2

not connected

Reference Manual

4-42

Service Request Processing, V1.1

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Table 4-10 ERU1 Pin Connections (cont'd)

Service Request Processing

Global
Inputs/Outputs

Connected To

110

Description

ERU1.I0UT2

CCU40.IN2K
CCU41.IN2K
CCUA42.IN2K
CCUA43.IN2K
CCUB80.IN2G
CCUB8L.IN2G
VADC.G2REQTRN
VADC.G3REQTRN
ERU1.1A3
ERU1.1B3
NVIC.ERU1.SR2
POSIFO.MSETF
POSIF1.MSETF

O

ERU1.PDOUT3

CCU40.IN3J
CCU41.IN3J
CCU42.IN3J
CCU43.IN3J
CCUBS8O0.IN3F
CCUB81.IN3F
DSD.ITROD
DSD.ITR1D
DSD.ITR2D
DSD.ITR3D
DSD.SGNB

ERU1.GOUT3

not connected

ERU1.TOUT3

not connected

ERU1.IOUT3

CCU40.IN3K
CCU41.IN3K
CCUA42.IN3K
CCUA43.IN3K
CCUBS80.IN3G
CCUBL.IN3G
ERU1.0B3
NVIC.ERU1.SR3

Reference Manual

4-43

Service Request Processing, V1.1

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

. XMC4500
Infineon XMC4000 Family
General Purpose DMA (GPDMA)

5 General Purpose DMA (GPDMA)

The GPDMA is a highly configurable DMA controller, that allows high-speed data
transfers between peripherals and memories. Complex data transfers can be done with
minimal intervention of the processor, keeping this way the CPU resources free for other
operations.

Extensive support for the microcontroller peripherals, like A/D and D/A converters,
Timers, Communication Interfaces (USIC) via the GPDMA, unload the CPU and
increase the efficiency and parallelism, for a high arrangement of real-time applications.

Table 5-1 Abbreviations table

GPDMAX General Purpose DMA instance x
SCU System Control Unit

DLR DMA Line Router

foma GPDMA clock frequency

5.1 Overview

The GPDMA module enables hardware or software controlled data transfers between all
microcontroller modules with the exclusion of those modules which provide built-in DMA
functionality (USB and Ethernet).

Each GPDMA module contains a dedicated set of highly programmable channels, that
can accommodate several type of peripheral-to-peripheral, peripheral-to-memory and
memory-to-memory transfers.

The link between a highly programmable channel allocation and channel priority, gives
a high benefit for applications that need high efficiency and parallelism.

The built-in fast DMA request handling together with the flexible peripheral configuration,
enables the implementation of very demanding application software loops.

511 Features
The GPDMA component includes the following features.

General

* Bus interfaces
— 1 Bus master interface per each DMA unit
— 1 Bus slave interface per each DMA unit
e Channels
— One GPDMAO unit with 8 channels
— One GPDMAL unit with 4 channels
— Programmable channel priority

Reference Manual 5-1 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

» Transfers
— Support for memory-to-memory, memory-to-peripheral, peripheral-to-memory,
and peripheral-to-peripheral DMA transfers

Channels
All channels can be programmed for the following transfer modes

« DMA triggered by software or selectable from hardware service request sources
« Programmable source and destination addresses
e Address increment, decrement, or no change

Channels 0 and 1 of GPDMAO can be programmed for the following transfer modes

* Multi-block transfers achieved through:
— Linked Lists (block chaining)
— Auto-reloading of channel registers
— Contiguous address between blocks
« Independent source and destination selection of multi-block transfer type
e Scatter/Gather - source and destination areas do not need to be in a contiguous
memory space

The GPDMAO channels 0 and 1 provide a FIFO of 32 Bytes (eight 32-bit entries). These
channels can be used to execute burst transfers up to a fixed length burst size of 8. The
remaining channels FIFO size is 8 Bytes.

Channel Control

« Programmable source and destination for each channel

* Programmable burst transaction size for each channel

e Programmable enable and disable of DMA channel

e Support for disabling channel without data loss

* Support for suspension of DMA operation

e Support for ERROR response

« Bus locking - programmable over transaction, block, or DMA transfer level

e Channel locking - programmable over transaction, block, or DMA transfer level

» Optional writeback of the Channel Control register at the end of every block transfer

Interrupts

» Combined and separate interrupt requests
e Interrupt generation on:
— DMA transfer (multi-block) completion
— Block transfer completion
— Single and burst transaction completion
— Error condition
e Support of interrupt enabling and masking

Reference Manual 5-2 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.1.2 GPDMA Block Diagram

Figure 5-1 shows the following functional groupings of the main interfaces to the
GPDMA block:

* DMA hardware request interface (DLR)
« Up to twelve channels

e Arbiter

¢ Bus Master and Slave interfaces

One channel of the GPDMA is required for each source/destination pair. The master
interface reads the data from a source peripheral and writes it to a destination peripheral.
Two transfers are required for each DMA data transfer; this is also known as a dual-
access transfer.

The Ethernet and USB peripherals have an internal DMA controller, that enables the
peripheral to act as a Master on the system.

GPDMAO

GPDMA Channels

Channel 1 .
Channel 0

Arbiter

Cortex uC

Master I/F Slave IIF

i Ethernet UsB
HW handshaking

m
.----1

SRAM

Peripherals

Bus Matrix

GPDMA1 I

(Bridge 2)

Arbiter i i

DLR
(DMA Line Router)

GPDMA Channels

Slave I/IF

Channel 1
Channel 0

Master I/F

@ — DMA request:] ‘
HW handshaking < DMA request
Figure 5-1 GPDMA Block Diagram
Reference Manual 5-3 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.2 Functional Description

This chapter describes the functional details of the GPDMA component. On
Section 5.2.1 a description of used terms throughout the chapters is given.

5.21 Basic Definitions

The following terms are concise definitions of the DMA concepts used throughout this
chapter:

Source peripheral - Device on a AHB layer from which the GPDMA reads data; the
GPDMA then stores the data in the channel FIFO. The source peripheral teams up
with a destination peripheral to form a channel.
Destination peripheral - Device to which the GPDMA writes the stored data from
the FIFO (previously read from the source peripheral).
Memory - Source or destination that is always "ready" for a DMA transfer and does
not require a handshaking interface to interact with the GPDMA.
Channel - Read/write data path between a source peripheral and a destination
peripheral, that occurs through the channel FIFO. If the source peripheral is not
memory, then a source handshaking interface is assigned to the channel. If the
destination peripheral is not memory, then a destination handshaking interface is
assigned to the channel. Source and destination handshaking interfaces can be
assigned dynamically by programming the channel registers.

Master interface - GPDMA is a master on the AHB, reading data from the source

and writing it to the destination over the bus. Each channel has to arbitrate for the

master interface.

Slave interface - The AHB interface over which the GPDMA is programmed.

Handshaking interface - A set of signals or software registers that conform to a

protocol and handshake between the GPDMA and source or destination peripheral

in order to control transferring a single or burst transaction between them. This

interface is used to request, acknowledge, and control a GPDMA transaction. A

channel can receive a request through one of two types of handshaking interface:

software, or peripheral interrupt.

— Software handshaking interface- Uses software registers to control transferring
a single or burst transaction between the GPDMA and the source or destination
peripheral. This mode is useful for interfacing an existing peripheral to the GPDMA
without modifying it. For more information about this interface, refer to
Section 5.2.6.

— Peripheral interrupt handshaking interface - Simple use of the hardware
handshaking interface. In this mode, the interrupt line from the peripheral is tied to
the dma request input of the hardware handshaking interface;

Flow controller - Device that determines the length of a DMA block transfer and

terminates it.

Reference Manual 5-4 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

e Transfer hierarchy - Figure 5-2 illustrates the hierarchy between GPDMA transfers,
block transfers, transactions (single or burst), and AHB transfers (single or burst) for
non-memory peripherals. Figure 5-3 shows the transfer hierarchy for memory.

Note: Note that for memory peripherals, there is no DMA Transaction Level.

GPDMA
Transfer DMA Transfer Level

Block Block Block Block Transfer Level

Burst Burst Burst Single DMA Transaction

Transaction Transaction Transaction Transaction Level

Burst Burst Burst Single Single Transfer
Transfer Transfer Transfer Transfer Transfer Level

Figure 5-2 GPDMA Transfer Hierarchy for Non-Memory Peripherals

GPDMA
Transfer DMA Transfer Level
Block Block Block Block Transfer Level
Burst Burst Burst Single Transfer
Transfer Transfer Transfer Transfer Level

Figure 5-3 GPDMA Transfer Hierarchy for Memory

* Block - Block of GPDMA data, the amount of which is the block length and is
determined by the flow controller. For transfers between the GPDMA and memory, a
block is broken directly into a sequence of bursts and single transfers. For transfers
between the GPDMA and a non-memory peripheral, a block is broken into a
sequence of GPDMA transactions (single and bursts). These are in turn broken into
a sequence of AHB transfers.

e Transaction - Basic unit of a GPDMA transfer, as determined by either the hardware
or software handshaking interface. A transaction is relevant only for transfers

Reference Manual 5-5 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

between the GPDMA and a source or destination peripheral if the peripheral is a non-

memory device. There are two types of transactions:

— Single transaction - is always converted to a single AHB transfer.

— Bursttransaction - Length of a burst transaction is programmed into the GPDMA.
The burst transaction is converted into a sequence of AHB fixed length bursts and
AHB single transfers. GPDMA executes each burst transfer by performing
incremental bursts that are no longer than the maximum burst size set; the only
type of burst in this kind of transaction is incremental. The burst transaction length
is under program control and normally bears some relationship to the FIFO sizes
in the GPDMA and in the source and destination peripherals.

« DMA transfer - Software controls the number of blocks in a GPDMA transfer. Once
the DMA transfer has completed, the hardware within the GPDMA disables the
channel and can generate an interrupt to signal the DMA transfer completion. You
can then reprogram the channel for a new DMA transfer.

— Single-block DMA transfer - Consists of a single block.

— Multi-block DMA transfer - DMA transfer may consist of multiple GPDMA blocks.
Multi-block DMA transfers are supported through block chaining (linked list
pointers), auto-reloading channel registers, and contiguous blocks. The source
and destination can independently select which method to use
- Linked lists (block chaining) - Linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of
registers that describes the next block (block descriptor) and an LLP register. The
GPDMA fetches the LLI at the beginning of every block when block chaining is
enabled.

LLI accesses are always 32-bit accesses aligned to 32-bit boundaries and cannot
be changed or programmed to anything other than 32-bit, even if the AHB master
interface of the LLI supports more than a 32-bit data width.

- Auto-reloading - GPDMA automatically reloads the channel registers at the end
of each block to the value when the channel was first enabled.

- Contiguous blocks - Address between successive blocks is selected to be a
continuation from the end of the previous block.

» Scatter - Relevant to destination transfers within a block. The destination address is
incremented or decremented by a programmed amount when a scatter boundary is
reached. The number of AHB transfers between successive scatter boundaries is
under software control.

e Gather - Relevant to source transfers within a block. The source address is
incremented or decremented by a programmed amount when a gather boundary is
reached. The number of AHB transfers between successive gather boundaries is
under software control.

e Channel locking - Software can program a channel to keep the AHB master
interface by locking arbitration of the master AHB interface for the duration of a DMA
transfer, block, or transaction (single or burst).

Reference Manual 5-6 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

e Bus locking - Software can program a channel to maintain control of the AHB bus
for the duration of a DMA transfer, block, or transaction (single or burst). At minimum,
channel locking is asserted during bus locking.

* FIFO mode - Special mode to improve bandwidth. When enabled, the channel waits
until the FIFO is less than half full to fetch the data from the source peripheral, and
waits until the FIFO is greater than or equal to half full in order to send data to the
destination peripheral. Because of this, the channel can transfer the data using
bursts, which eliminates the need to arbitrate for the AHB master interface in each
single AHB transfer. When this mode is not enabled, the channel waits only until the
FIFO can transmit or accept a single AHB transfer before it requests the master bus
interface.

5.2.2 Block Flow Controller and Transfer Type

The device that controls the length of a block is known as the flow controller.
e The block size should be programmed into the CTL.BLOCK_TS field.

The CTL.TT_FC field indicates the transfer type and flow controller for that channel.
Table 5-2 lists valid transfer types and flow controller combinations.

Table 5-2 Transfer Types and Flow Control Combinations

Transfer Type Flow Controller
Memory to Memory GPDMA
Memory to Peripheral GPDMA
Peripheral to Memory GPDMA
Peripheral to Peripheral GPDMA

5.2.3 Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or
burst transactions.

The peripheral uses the handshaking interface to indicate to the GPDMA that it is ready
to transfer data over the AHB bus.

A non-memory peripheral can request a DMA transfer through the GPDMA using one of
two types of handshaking interfaces:

* Hardware
* Software

Software selects between the hardware or software handshaking interface on a per-
channel basis. Software handshaking is accomplished through memory-mapped
registers, while hardware handshaking is accomplished using a dedicated handshaking
interface.

Reference Manual 5-7 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Note: Throughout the remainder of this chapter, references to both source and
destination hardware handshaking interfaces assume an active-high interface
(refer to CFGx.SRC(DST)_HS_POL bits in the Channel Configuration register,
CFG). When active-low handshaking interfaces are used, then the active level and
edge are reversed from that of an active-high interface.

Note: Source and destination peripherals can independently select the handshaking
interface type; that is, hardware or software handshaking. For more information,
refer to the CFGx.HS_SEL_SRC and CFGx.HS_SEL_DST parameters in the
CFG register.

5.2.4 Basic Interface Definitions
The following definitions are used in this chapter:

» Source single transaction size in bytes, see (5.1)

e Source burst transaction size in bytes, see (5.2)

« Destination single transaction size in bytes, see (5.3)
« Destination burst transaction size in bytes, see (5.4)
« Block size in bytes:

— GPDMA as flow controller: With the GPDMA as the flow controller, the processor
programs the GPDMA with the number of data items (block size) of source transfer
width (CTL.SRC_TR_WIDTH) to be transferred by the GPDMA in a block transfer;
this is programmed into the CTL.BLOCK_TS field. Therefore, the total number of
bytes to be transferred in a block is defined by (5.5)

src_single_size_bytes =CTLX.SRC_TR_WIDTH8 (5.1)
src_burst_size_bytes = CTLx SRC_MSIZE * src_single_size_bytes (5.2)
dst_single_size_bytes = CTLx.DST_TR_WIDTH/8 (5.3)
dst_burst_size_bytes = CTLx.DEST_MSIZE * dst_single_size_bytes (5.4)
blk_size_bytes_dma = CTLx.BLOCK_TS * src_single_size_bytes (5.5)

Note: In the above equations, references to CTLx.SRC_MSIZE, CTLx.DEST_MSIZE,
CTLx.SRC_TR_WIDTH, and CTLx.DST_TR_WIDTH refer to the decoded values
of the parameters; for example, CTLx.SRC_MSIZE = 001, decodes to 4, and
CTLXx.SRC_TR_WIDTH = 0105 decodes to 32 bits.

Reference Manual 5-8 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.25 Memory Peripherals

Figure 5-3 shows the DMA transfer hierarchy of the GPDMA for a memory peripheral.
There is no handshaking interface with the GPDMA, and therefore the memory
peripheral can never be a flow controller. Once the channel is enabled, the transfer
proceeds immediately without waiting for a transaction request.

5.2.6 Software Handshaking

When the slave peripheral requires the GPDMA to perform a DMA transaction, it
communicates this request by sending a service request to the interrupt controller. The
interrupt service routine then uses the software registers, detailed in Section 5.6.4, to
initiate and control a DMA transaction. This group of software registers is used to
implement the software handshaking interface.

v

Peripheral GPDMA CPU

Interrupt T

Figure 5-4 Software Controlled DMA Transfers

The HS_SEL_SRC/HS_SEL_DST bit in the CFG channel configuration register must be
set, to enable software handshaking.

Software Controlled DMA Transfers

* Program and enable channel through Section 5.6.2
» After interrupt, initiate and control DMA transaction between peripherals GPDMA
through Section 5.6.4

The software handshaking registers are:

« REQSRCREG - source software transaction request

« REQDSTREG - destination software transaction request
 SGLREQSRCREG - single source transaction request

« SGLREQDSTREG - single destination transaction request

Reference Manual 5-9 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

* LSTSRCREG - last source transaction request
« LSTDSTREG - last destination transaction request

5.2.7 Handshaking Interface

The GPDMA tries to efficiently transfer the data using as little of the bus bandwidth as
possible. Generally, the GPDMA tries to transfer the data using burst transactions and,
where possible, fill or empty the channel FIFO in single bursts - provided that the
software has not limited the burst length.

The GPDMA can also lock the arbitration for the master bus interface so that a channel
is permanently granted the master bus interface. Additionally, the GPDMA can assert the
lock signal to lock the system arbiter. For more information, refer to Section 5.2.11.1.

Before describing the handshaking interface operation, the following sections define the
terms "Single Transaction Region" and "Early-Terminated Burst Transaction."

5.2.7.1 Single Transaction Region

There are cases where a DMA block transfer cannot be completed using only burst
transactions. Typically this occurs when the block size is not a multiple of the burst
transaction length. In these cases, the block transfer uses burst transactions up to the
point where the amount of data left to complete the block is less than the amount of data
in a burst transaction. At this point, the GPDMA samples the "single" status flag and
completes the block transfer using single transactions.

The peripheral asserts a single status flag to indicate to the GPDMA that there is enough
data or space to complete a single transaction from or to the source/destination
peripheral.

Note: For hardware handshaking, the single status flag is a signal on the hardware
handshaking interface and handled automatically by the hardware (refer to
Section 5.2.7.3). For software handshaking, the single status flag is one of the
software handshaking interface registers (refer to Section 5.2.7.4).

The Single Transaction Region is the time interval where the GPDMA uses single
transactions to complete the block transfer (burst transactions are exclusively used
outside this region).

Note: Burst transactions can also be used in this region. For more information, refer to
Section 5.2.7.2.

* Rules for entering Single Transaction Regions:
— The source peripheral enters the Single Transaction Region when the number of
bytes left to complete in the source block transfer is less than
src_burst_size_bytes.

Reference Manual 5-10 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

If (5.6) is fulfilled then the source never enters this region, and the source block
uses only burst transactions.

— The destination peripheral enters the Single Transaction Region when the number
of bytes left to complete in the destination block transfer is less than
dst_burst_size_bytes.

If (5.7) is fulfilled then the destination never enters this region, and the destination
block uses only burst transactions.

bik_size_bytes/src_burst_size_bytes = integer (5.6)

blk_size_bytes/dst_burst_size_bytes = integer (5.7)

Note: The above conditions cause a peripheral to enter the Single Transaction Region.
When the peripheral is outside the Single Transaction Region, then the GPDMA
responds to only burst transaction requests.

5.2.7.2 Early-Terminated Burst Transaction

When a source or destination peripheral is in the Single Transaction Region, a burst
transaction can still be requested. However, src_burst_size_bytes/
dst_burst_size_bytes is greater than the number of bytes left to complete in the
source/destination block transfer at the time that the burst transaction is triggered. In this
case, the burst transaction is started and "early-terminated" at block completion without
transferring the programmed amount of data, that is, src_burst_size bytes or
dst_burst_size_bytes, but only the amount required to complete the block transfer. An
Early-Terminated Burst Transaction occurs between the GPDMA and the peripheral only
when the peripheral is not the flow controller.

5.2.7.3 Hardware Handshaking

Figure 5-5 illustrates the hardware handshaking interface between a peripheral
(whether a destination or source) and the GPDMA.

Reference Manual 5-11 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

‘ Program the channel ‘

v |

Peripheral |—DMArequest» GPDMA CPU

Figure 5-5 Hardware Handshaking Interface

The interface illustrated in Figure 5-5 is the simplified version of the hardware
handshaking interface. In this mode:

e The interrupt line from the peripheral is tied to the dma request input.

The interrupt line from the peripheral is tied to the dma request line (programming the
DLR is needed), as shown in Figure 5-5.

The handshaking loop is as follows:

1. Peripheral generates an interrupt that asserts the dma request.

2. GPDMA completes the burst transaction and generates an end-of-burst transaction
interrupt, IntSrcTran/IntDstTran. Interrupts must be enabled and the transaction
complete interrupt unmasked.

3. The interrupt service routine clears the interrupt in the peripheral so that the dma
request is de-asserted.

5.2.7.4 Software Handshaking

When the peripheral is not the flow controller, then the last transaction registers -
LSTSRCREG and LSTDSTREG - are not used, and the values in these registers are
ignored.

Operation - Peripheral Not In Single Transaction Region

Writing a 1 to the REQSRCREGIX[/REQDSTREG]IX] register is always interpreted as a
burst transaction request, where x is the channel number. However, in order for a burst
transaction request to start, software must write a 1 to the SGLREQSRCREG|x]/
SGLREQDSTREG[X] register.

You can write a 1 to the SGLREQSRCREG[x]/SGLREQDSTREG[x] and
REQSRCREGI[X[/REQDSTREG]IxX] registers in any order, but both registers must be
asserted in order to initiate a burst transaction. Upon completion of the burst transaction,

Reference Manual 5-12 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

the hardware clears the SGLREQSRCREG[x]/SGLREQDSTREG[x] and
REQSRCREG|x]/ REQDSTREG|X] registers.

Operation - Peripheral In Single Transaction Region

Writing a 1 to the SGLREQSRCREG/SGLREQDSTREG initiates a single transaction.
Upon completion of the single transaction, both the
SGLREQSRCREG/SGLREQDSTREG and REQSRCREG/REQDSTREG bits are
cleared by hardware. Therefore, writing a 1 to the REQSRCREG/REQDSTREG is
ignored while a single transaction has been initiated, and the requested burst transaction
is not serviced.

Again, writing a 1 to the REQSRCREG/REQDSTREG register is always a burst
transaction request. However, in order for a burst transaction request to start, the
corresponding channel bit in the SGLREQSRCREG/SGLREQDSTREG must be
asserted. Therefore, to ensure that a burst transaction is serviced in this region, you
must write a 1 to the REQSRCREG/REQDSTREG before writing a 1 to the
SGLREQSRCREG/SGLREQDSTREG register. If the programming order is reversed, a
single transaction is started instead of a burst transaction. The hardware clears both the
REQSRCREG/REQDSTREG and the SGLREQSRCREG/SGLREQDSTREG registers
after the burst transaction request completes. When a burst transaction is initiated in the
Single Transaction Region, then the block completes using an Early-Terminated Burst
Transaction.

Software can poll the relevant channel bit in the SGLREQSRCREG/SGLREQDSTREG
and REQSRCREG/REQDSTREG registers. When both are 0, then either the requested
burst or single transaction has completed. Alternatively, the IntSrcTran or IntDstTran
interrupts can be enabled and unmasked in order to generate an interrupt when the
requested source or destination transaction has completed.

Note: The transaction-complete interrupts are triggered when both single and burst
transactions are complete. The same transaction-complete interrupt is used for
both single and burst transactions.

5.2.8 Single Transactions

Being the GPDMA the flow controller of the DMA transactions, a burst transaction can
always be performed if:

« blk_size bytes_dma/src_burst_size bytes = integer

If that condition cannot be met, then a series of burst transactions followed by single
transactions is needed to complete the source/destination block transfer.

Reference Manual 5-13 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.2.9 Setting Up Transfers

Transfers are set up by programming fields of the CTL and CFG registers for that
channel. As shown in Figure 5-2, a single block is made up of numerous transactions -
single and burst - which are in turn composed of AHB transfers. A peripheral requests a
transaction through the DLR to the GPDMA (for more information, refer to
Section 5.2.3).

Table 5-3 lists the parameters that are investigated in the following examples. The
effects of these parameters on the flow of the block transfer are highlighted.

Table 5-3 Parameters Used in Transfer Examples

Parameter Description

CTLx.TT_FC Transfer type and flow control
CTLx.BLOCK_TS Block transfer size
CTLXx.SRC_TR_WIDTH Source transfer width
CTLx.DST_TR_WIDTH Destination transfer width
CTLXx.SRC_MSIZE Source burst transaction length
CTLx.DEST_MSIZE Destination burst transaction length
CFGx.MAX_ABRST Maximum AMBA burst length
CFGx.FIFO_MODE FIFO mode select

CFGx.FCMODE Flow-control mode

5.2.9.1 Transfer Operation

The following examples show the effect of different settings of each parameter from
Table 5-3 on a DMA block transfer. In all examples, it is assumed that no bursts are
early-terminated by the system arbiter, unless otherwise stated.

The GPDMA is programmed with the number of data items that are to be transferred for
each burst transaction request, CTL.SRC_MSIZE /CTL.DEST_MSIZE. Similarly, the
width of each data item in the transaction is set by the CTL.SRC_TR_WIDTH and
CTL.DST_TR_WIDTH fields.

Example 1

Scenario: Example block transfer when the GPDMA is the flow controller. This example
is the same for both software and hardware handshaking interfaces. Table 5-4 lists the
DMA parameters for this example (as an exemple the FIFO depth is taken as 16 bytes).

Reference Manual 5-14 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Table 5-4 Parameters in Transfer Operation - Example 1

Parameter Description

CTLx.TT_FC = 0114 Peripheral-to-peripheral transfer with
GPDMA as flow controller

CTLx.BLOCK_TS =12 -

CTLx.SRC_TR_WI DTH = 0104 32 bits

CTLx. DST_TR_WI DTH = 0104 32 bits

CTLx.SRC_MSIZE = 0015 Source burst transaction length = 4
CTLx.DEST_MSIZE = 0014 Destination burst transaction length = 4
CFGx.MAX_ABRST = 0g No limit on maximum AMBA burst length

Using (5.5), a total of 48 bytes are transferred in the block (that is blk_size_bytes_dma
=48). As shown in Figure 5-6, this block transfer consists of three bursts of length 4 from
the source, interleaved with three bursts, again of length 4, to the destination.

AMBA bursts from source in red i e
AMBA bursts from destination in blue Channel FIFO
t ‘
¥
S
- 32
5
e T
- b \
>~) \
R b p \
[oo[o1]o2]03) ” . \
02| 03| | \
[po]o1 b2 D3| , | \ !
el -2 HE— 4
[p4]ps|os|o7] A} g
[pa[os|s[o7] \
[o8] ma[10]o11]
pe[pe[p1o]p11
src burst end src burst start src burst end src burst start src burst end
src burst start dst burst start dst burst end dst burst start dst burst end dst burst start dst burst end
! I I I L — Time
10 t 2 a “ 15 16

Figure 5-6 Breakdown of Block Transfer

The channel FIFO is alternatively filled by a burst from the source and emptied by a burst
to the destination until the block transfer has completed, as shown in Figure 5-7.

Reference Manual 5-15 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

D3 Empty D7 Empty D11 Empty
D2 Empty D6 Empty D10 Empty
D1 Empty D5 Empty D9 Empty
DO Empty D4 Empty D8 Empty
Time tl Time t2 Time t3 Time t4 Time t5 Time t6

Figure 5-7 Channel FIFO Contents

Burst transactions are completed in one burst. Additionally, because (8) and (9) are both
true, neither the source or destination peripherals enter their Single Transaction Region
at any stage throughout the DMA transfer, and the block transfer from the source and to
the destination consists of burst transactions only.

Example 2
Scenario: Effect of the maximum AMBA burst length, CFGX.MAX_ABRST. This
example is the same for both software and hardware handshaking interfaces.

If the CFGXx.MAX_ABRST = 2 parameter and all other parameters are left unchanged
from Example 1, Table 5-4, then the block transfer would look like that shown in
Figure 5-8.

AMBA bursts from source in red o e
5 annel Fito
AMBA bursts from destination in blue -
e 4
o 1 . .
bofor] - 32
- BT APy S S
5 ' | 3 1
¥, L
[o4]o3] Lo
pos] - R
¢ | i
loe[o7] ‘
i
polos § 1
Psfos] |
[B[or]
src burst 1 start sre burst 2 start src burst 3 start
dst burst 1 start dst burst 2 start ” dst burst 3 start
src burst 1 end sre burst 2 end src burst 3 end
dst burst 1 end dst burst 2 end dst burst 3 end
| 1 | | | | | | | | 1 | L Time
0 t1 2 t3 t4 5 16 7] 9 t10 ti1 12

Figure 5-8 Breakdown of Block Transfer where max_abrst = 2, Case 1

Reference Manual 5-16 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

The channel FIFO is alternatively half filled by a burst from the source, and then emptied
by a burst to the destination until the block transfer has completed,; this is illustrated in
Figure 5-9.

D3 Empty D7 Empty Empty Empty
D2 Empty D6 Empty Empty Empty
D1 Empty D5 Empty D11 Empty
DO Empty D4 Empty D10 Empty
Time t1 Time t2 Time t3 Time t4 Time t11 Time t12

Figure 5-9 Channel FIFO Contents

In this example block transfer, each source or destination burst transaction is made up
of two bursts, each of length 2. As Figure 5-9 illustrates, the top two channel FIFO
locations are redundant for this block transfer. However, this is not the general case. The
block transfer could proceed as indicated in Figure 5-10.

AMBA bursts from source in red Channel Fifo
AMBA bursts from destination in blue =
=
4
< 4 » 32
[pt]oo] ; ' 4 A
!
|
i
psfor] i
5
D10|D11
[oe]pe

dstburst 1start dstburst1end dstburst2start dstburstZend dstburst 3 start dst burst 3 end
sre burst1start srcburst1end srcburst2 start sreburst2end srcburst3 star? sre burst 3 end

| | | | | | | | | | | | |
jct] t1 12 3 4 t5 i} t7 18 19 110 1 12

= Time

Figure 5-10 Breakdown of Block Transfer where max_abrst = 2, Case 2

This depends on the timing of the source and destination transaction requests, relative
to each other. Figure 5-11 illustrates the channel FIFO status for Figure 5-10.

Reference Manual 5-17 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

D3 Empty D7 Empty D11 Empty
D2 Empty D6 Empty D10 Empty
D1 Empty D5 Empty D9 Empty
DO Empty D4 Empty D8 Empty
Time t2 Time t4 Time t6 Time t8 Time t10 Time t12

Figure 5-11 Channel FIFO Contents

Recommendation
To allow a burst transaction to complete in a single burst, the following should be true:

CFGx.MAX_ABRST >= max(src_burst_size bytes,
dst_burst_size_bytes)
Adhering to the above recommendation results in a reduced number of bursts per block,
which in turn results in improved bus utilization and lower latency for block transfers.

Limiting a burst to a maximum length prevents the GPDMA from saturating the AHB bus
when the system arbiter is configured to only allow changing of the grant signals to bus
masters at the end of an undefined length burst. It also prevents a channel from
saturating a GPDMA master bus interface.

Example 3

Scenario: Source peripheral enters Single Transaction Region; the GPDMA is the flow
controller.

This example is the same for both hardware and software handshaking and
demonstrates how a block from the source can be completed using a series of single
transactions. It also demonstrates how the watermark level that triggers a burst request
in the source peripheral can be dynamically adjusted so that the block transfer from the
source completes with an Early-terminated Burst Transaction. Table 5-5 lists the
parameters used in this example (as an example the FIFO depth was considered as 16
bytes).

Table 5-5 Parameters in Transfer Operation - Example 4

Parameter Comment

CTLx.TT_FC =011, Peripheral-to-peripheral transfer with
GPDMA as flow controller

CTLXx.BLOCK_TS =12 -

CTLx.SRC_TR_WI DTH = 010, 32 bits

CTLx. DST_TR_WI DTH = 0105 32 bits

CTLx.SRC_MSIZE = 0104 Source burst transaction length = 8
Reference Manual 5-18 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Table 5-5 Parameters in Transfer Operation - Example 4 (cont'd)

Parameter Comment
CTLx.DEST_MSIZE = 0014 Destination burst transaction length = 4
CFGX.MAX_ABRST = 0g No limit on maximum AMBA burst length

In this case, CTL.BLOCK_TS is not a multiple of the source burst transaction length,
CTL.SRC_MSIZE, so near the end of a block transfer from the source, the amount of
data left to be transferred is less than src_burst_size_bytes.

In this example, the block size is a multiple of the destination burst transaction length:
blk_size bytes_dma/dst_burst_size bytes = 48/16 = integer

The destination block is made up of three burst transactions to the destination and does
not enter the Single Transaction Region.

The block size is not a multiple of the source burst transaction length:

blk_size bytes_dma/src_burst_size_bytes = 48/32 != integer
Consider the case where the watermark level that triggers a source burst request in the
source peripheral is equal to CTL.SRC_MSIZE = 8; that is, eight entries or more need
to be in the source peripheral FIFO in order to trigger a burst request. Figure 5-12 shows

how this block transfer is broken into burst and single transactions, and bursts and single
transfers.

Reference Manual 5-19 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

AMBA bursts from source in red 5
s Channel Fifo
AMBA bursts from destination in blue -
o
- - 4
- == - - - ’
P < n e
o =~ - & 7 i
» - D —
- - 32
‘—T - - - T
[oo[o1]2]p3] - o A Y I WY
s a s
(o1 |p2[D3] [» / I | [
(04[0s p6[07] S EER
T I I -
SBS = Source Burst Start D4 E@ o7 ! | | | \
SBE = Source Burst End ey | \
5S35 = Source Singie Start | D8 | | |
S5E = Source Single End 169 I | | \
DES = Destination Burst Start b b (\
DEE = Destination Burst End | D10 ! 4
[o11]
[oe[ps[o1afp11]
SBE 1 5851 SSE1 SSE2? SSE3 SSE4
sBS1 DBS 1 DEE 1 DBS 2 CBE2 SS52 $353 5554 DBS4 DBE 4
I Time
L L ! ! ! ! L \ |
0 t 12] 14 5 1 17 18]
Figure 5-12 Breakdown of Block Transfer
Reference Manual 5-20 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o . XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

Figure 5-13 shows the status of the source FIFO at various times throughout the source
block transfer.

Watermark level
that triggers a
source burst | Empty Empty Empty | Empty Empty
paques); I-W Empty Empty | Empty Empty
Emply Empty Empty | Emply Empty
Emipty Empty Empty | Empty Empty
A o7 Empty Empty | Empty Empty |
D& Empty Empty | Emply Empty
| DS |Empty Empty Empty Empty
s| [D4] Foiplyl [Eheb] [EEply] [Eml
D3 Empty Empty | Empty Empty
D2 Empty Empty| Empty |Empty |
o1 Empty Empty | Emply Empty
T | Do D8 D9 D10 D11
Time 10 Time 14 Time tS Time t6 Time t7

Figure 5-13 Source FIFO Contents

As shown in Figure 5-14, if the GPDMA does not perform single transactions, the source
FIFO contains four entries at time t1. However, the source has no more data to send.
Therefore, if the watermark level remains at 8 (at time t1, Case A in Figure 5-14), the
watermark level is never reached and a new burst request is never triggered.

Watermark level
that triggers a Watermark level
e, oWy (EMPLY |, that triggers a EMPY
request Emply Empty | source burst Emply
Empty Empty request Empty| WWatermark level
Emply Emply Emply :;L‘m iy
D7 Empty Emply | request
06 Empty Empty
05 Empty Empty
8 D4 Empty Emply
03 D11 8 il
D2 D10 oo 4
D1 0] D8
0 D& Da
Time t1 (Case A) Time t1 (Case B)

Figure 5-14 Source FIFO Contents where Watermark Level is Dynamically
Adjusted

The source peripheral, not knowing the length of a block and only able to request burst
transactions, sits and waits for the FIFO level to reach a watermark level before
requesting a new burst transaction request. This region, where the amount of data left to
transfer in the source block is less than src_burst_size_bytes, is known as the Single
Transaction Region.

Reference Manual 5-21 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

In the Single Transaction Region, the GPDMA performs single transactions from the
source peripheral until the source block transfer has completed. In this example, the
GPDMA completes the source block transfer using four single transactions from the
source.

Now consider Case B in Figure 5-14, where the source peripheral can dynamically
adjust the watermark level that triggers a burst transaction request near the end of a
block. After the first source burst transaction completes, the source peripheral
recognizes that it has only four data items left to complete in the block and adjusts the
FIFO watermark level that triggers a burst transaction to 4. This triggers a burst request,
and the block completes using a burst transaction. However, CTL.SRC_MSIZE = 8, and
there are only four data items left to transfer in the source block. The GPDMA terminates
the last source burst transaction early and fetches only four of the eight data items in the
last source burst transaction. This is called an Early-Terminated Burst Transaction.

Observation: Under certain conditions, it is possible to hardcode dma_single from the
source peripheral to an inactive level (hardware handshaking). Under the same
conditions, it is possible for software to complete a source block transfer without initiating
single transactions from the source. For more information, refer to Section 5.2.8.

Example 4

Scenario: The destination peripheral enters the Single Transaction Region while the
GPDMA is the flow controller. This example also demonstrates how the GPDMA channel
FIFO is flushed at the end of a block transfer to the destination; this example is the same
for both hardware and software handshaking.

Consider the case with the parameters set to values listed in Table 5-6 (as an example
the FIFO depth was considered as 32 bytes).

Table 5-6 Parameters in Transfer Operation - Example 5

Parameter Comment

CTLx.TT_FC =011, Peripheral-to-peripheral transfer with GPDMA
as flow controller

CTLXx.BLOCK_TS =44 -

CTLXx.SRC_TR_WI DTH = 0004 8 bit

CTLx. DST_TR_WI DTH = 0114 64bit

CTLx.SRC_MSIZE = 0014 Source burst transaction length = 4
CTLx.DEST_MSIZE = 0014 Destination burst transaction length = 4
CFGXx.MAX_ABRST = 0g No limit on maximum AMBA burst length
Reference Manual 5-22 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

In this example, the block size is a multiple of the source burst transaction length:
blk_size bytes_dma/src_burst_size bytes = (44 * 1)/4 = 11
= integer
The source block transfer is completed using only burst transactions, and the source
does not enter the Single Transaction Region.
The block size is not a multiple of the destination burst transaction length:
blk_size bytes_dma/dst_burst_size_bytes 44/32 != integer

So near the end of the block transfer to the destination, the amount of data left to be
transferred is less than dst_burst_size_bytes and the destination enters the Single
Transaction Region.

Figure 5-15 shows one way in which the block transfer to the destination can occur.

Flushing of channel FIFO

Single Transaction Region

burst transaction single transaction single transaction
v \J v
Do | b1 | D2 | D3 | [ps | (s [D8] 07] D8
B T e T '
! ! . = Time
10 t t2

Figure 5-15 Block Transfer to Destination

After the first 32 bytes (dst_burst_size_bytes = 32) of the destination burst transaction
have been transferred to the destination, there are 12 bytes (blk_size_bytes_dma -
dst_burst_size_bytes = 44 - 32) left to transfer. This is less then the amount of data that
is transferred in a destination burst (dst_burst_size_bytes = 32). Therefore, the
destination peripheral enters the Single Transaction Region where the GPDMA can
complete a block transfer to the destination using single transactions.

Notes

1. Inthe Single Transaction Region, asserting dma_single initiates a single transaction
for hardware handshaking. Writing a 1 to the relevant channel bit of the
SGLREQDSTREG register initiates a single transaction for software handshaking.

2. The destination peripheral, not knowing the length of a block and only able to request
burst transactions, sits and waits for the FIFO to fall below a watermark level before
requesting a new burst transaction request.

Reference Manual 5-23 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

At time t2 in Figure 5-15, a single transaction to the destination has been completed.
There are now only four bytes (12 - dst_single_size_bytes = 12 - 8) left to transfer in the
destination block. However, CTL.DST_TR_WIDTH implies 64-bit AHB transfers to the
destination (dst_single_size_bytes = 8 byte); therefore, the GPDMA cannot form a single
word of the specified CTL.DST_TR_WIDTH.

The GPDMA channel FIFO has four bytes in it that must be flushed to the destination.
The GPDMA switches into a "FIFO flush mode”, where the block transfer to the
destination is completed by changing the AHB transfer width to the destination to be
equal to that of the CTL.SRC_TR_WIDTH,; that is, byte AHB transfers in this example.
Thus the last single transaction in the destination block is made up of a burst of length 4
and CTL.SRC_TR_WIDTH width.

When the GPDMA is in FIFO flush mode, the address is incremented by the value of
CTL.SRC_TR_WIDTH and not CTL.DST_TR_WIDTH.

In cases where the DAR is selected to be contiguous between blocks, the DARXx will
need re-alignment at the start of the next block, since it is aligned to
CTL.SRC_TR_WIDTH and not CTL.DST_TR_WIDTH at the end of the previous block
(this is handled by hardware).

In general, channel FIFO flushing to the destination occurs if all three of the following are
true:

* GPDMA or the Source peripheral are flow control peripherals
e CTL.DST_TR_WIDTH > CTL.SRC_TR_WIDTH
e Flow control device:
— If GPDMA is flow controller:
blk_size bytes_dma/dst_single_size bytes != integer
— If source is flow controller:
blk_size bytes_src /dst_single_size bytes != integer
Note: When not in FIFO flush mode, a single transaction is mapped to a single AHB
transfer. However, in FIFO flush mode, a single transaction is mapped to multiple
AHB transfers of CTLx.SRC_TR_WIDTH width. The cumulative total of data
transferred to the destination in FIFO flush mode is less than
dst_single_size_bytes.

In the above example, a burst request is not generated in the Single Transaction Region.
If a burst request were generated at time t1 in Figure 5-15, then the burst transaction
would proceed until there was not enough data left in the destination block to form a
single data item of CTL.DST_TR_WIDTH width. The burst transaction would then be
early-terminated. In this example, only one data item of the four requested (decoded
value of DEST_MIZE = 4) would be transferred to the destination in the burst transaction.
This is referred to as an Early-Terminated Burst Transaction. If a burst request were
generated at time t2 in Figure 5-15, then the destination block would be completed (four
byte transfers to the destination to flush the GPDMA channel FIFO) and this burst
request would again be early-terminated at the end of the destination block.

Reference Manual 5-24 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Observation: If the source transfer width - CTL.SRC_TR_WIDTH in the channel control
register (CTL) - is less than the destination transfer width (CTL.DST_TR_WIDTH), then
the FIFO may need to be flushed at the end of the block transfer. This is done by setting
the AHB transfer width of the last few AHB transfers of the block to the destination so
that it is equal to CTL.SRC_TR_WIDTH and not the programmed
CTL.DST_TR_WIDTH.

Example 5

Scenario: In all examples presented so far, none of the bursts have been early-
terminated by the system arbiter. Referring to Example 1, the AHB transfers on the
source and destination side look somewhat symmetric. In the examples presented so
far, where the bursts are not early-terminated by the system arbiter, the traffic profile on
the AHB bus would be the same, regardless of the value of CFGx.FIFO_MODE.

This example, however, considers the effect of CFGx.FIFO_MODE; it is the same for
both hardware and software handshaking.

CFGx.FIFO_MODE: Determines how much space or data needs to be available in the
FIFO before a burst transaction request is serviced.

Og - Space/data available for single AHB transfer of the specified transfer width.

1; - Data available is greater than or equal to half the FIFO depth for destination transfers
and space available is greater than half the fifo depth for source transfers. The
exceptions are at the end of a burst transaction request or at the end of a block transfer.

Reference Manual 5-25 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Table 5-7 lists the parameters used in this example (as an example the FIFO depth was
considered as 16 bytes).

Table 5-7 Parameters in Transfer Operation - Example 6

Parameter Comment

CTLx.TT_FC = 0115 Peripheral-to-peripheral transfer with
GPDMA as flow controller

CTLx.BLOCK_TS =32 -

CTLx.SRC_TR_WI DTH = 0104 32 bits

CTLx. DST_TR_WI DTH = 0104 32 bits

CTLXx.SRC_MSIZE = 0104 Decoded value = 8

CTLx.DEST_MSIZE = 0014 Decoded value = 4

CFGXx.MAX_ABRST = 0g No limit on maximum AMBA burst length
Reference Manual 5-26 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

Gafineon

XMC4500
XMC4000 Family

The block transfer may proceed by alternately fill
FIFO. Up to time t4, the transfer might proceed li

General Purpose DMA (GPDMA)

ing and emptying the GPDMA channel
ke that shown in Figure 5-16.

AMBA bursts from source in red
AMBA bursts from destination in blue

Channel Fifo

/
f
|

DO (Dt | D2 (D3

e
oo |o1 | D2 |3

dst burst start
11
|

src burst start

10
|

DJJDS .DBiD?‘

D4 |D5 | D8 | D7

dst burst start
src burst end dst burst end
13

Figure 5-16 Block Transfer Up to Time "t4"

Reference Manual 5-27

GPDMA, V1.1

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

At time t4, the src, channel, and destination FIFOs might look like that shown in
Figure 5-17

Source Destination
FIFO FIFO
Empty
|Ematy |
| Empty
| Empty
| Empty

Watermark level that [Er o :‘:;;"g;‘:“é:’;{ﬁ";;:;
:2%3‘:'; ik biim Channel FIFO burst request

| Empty = /

=Sl A Emply Y /
| Empty| /

e
[| E0ely)

8 D12 =Diety (o
o1 | - o5 | A
| D10 % | D4 |
oo [0 | | ¢

Y [os [o2] ¥

- - - -

32 2

Figure 5-17 Source, GPDMA Channel and Destination FIFOs at Time 't4'

At time t4, a source burst transaction is requested, and the GPDMA attempts a burst of
length 4. Suppose that this burst is early-burst terminated after three AHB transfers. The
FIFO status after this burst might look like that shown in Figure 5-18.

Referring to Figure 5-18, notice that a burst request from the destination is not triggered,
since the destination FIFO contents are above the watermark level. The GPDMA has
space for one data item in the channel FIFO.

The GPDMA will attempt to perform a single transfer, to fill the channel FIFO, if
CFGx.FIFO_MODE = 0.

If CFGx.FIFO_MODE = 1, then the GPDMA waits until the channel FIFO is less than
half-full before initiating a burst from the source, as illustrated in Figure 5-18.

Reference Manual 5-28 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Source Destination
FIFO FIFO
Empty |
Empty
Empty
Empty
mply
Watermark level that Watermark level that
triggers a source burst % Channel FIFO triggers a destination
request e .'.).!!’ burst request
| Emply f—————r———y)
Lol Emply
- Empt:
I I e e
[Empty] |29 | Emply| ./
o8 | [2:]
s| [Dm® o7 [P
| RS - - o5 [4
o3 Ds 4
o2 o4 | |
Y [or] s | ¥
- - -
32 32

Figure 5-18 FIFO Status After Early-Terminated Burst

Observation: When CFGx.FIFO_MODE = 1, the number of bursts per block is less than
when CFGx.FIFO_MODE = 0, hence, the bus utilization will improve. This setting favors
longer bursts. However, the latency of DMA transfers may increase when
CFGx.FIFO_MODE = 1, since the GPDMA waits for the channel FIFO contents to be
less than half the FIFO depth for source transfers, or greater than or equal to half the
FIFO depth for destination transfers. Therefore, system bus occupancy and usage can
be improved by delaying the servicing of multiple requests until there is sufficient
data/space available in the FIFO to generate a burst (rather than multiple single AHB
transfers); this comes at the expense of transfer latency. For reduced block transfer
latency, set CFGx.FIFO_MODE = 0. For improved bus utilization, set
CFGx.FIFO_MODE = 1.

5.2.10 Flow Control Configurations

Figure 5-19 indicates three different flow control configurations using hardware
handshaking interfaces - a simplified version of the interface is shown. These scenarios
can also be used for software handshaking, which uses software registers instead of
signals.

Reference Manual 5-29 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon) XMC4000 Family

General Purpose DMA (GPDMA)

Flow Control by the DMA

Memory
Channel
control
CPU —Block size—» e GPDMA
(CTLx)
Memory
Flow Control by the DMA
Memory

Channel

control
CPU —Block size—m - GPDMA

(CTLx)

L finsh——» Peripheral 1

Flow Control by the DMA

’7f\n|sh4> Peripheral 1

Channel

control
CPU —Block size—»| register GPDMA

(CTLX)

L finish— Peripheral 2

Figure 5-19 Flow Control Configurations

5.2.11 Generating Requests for the AHB Master Bus Interface

Each channel has a source state machine and destination state machine running in
parallel. These state machines generate the request inputs to the arbiter, which
arbitrates for the master bus interface (one arbiter per master bus interface).

When the source/destination state machine is granted control of the master bus
interface, and when the master bus interface is granted control of the external AHB bus,
then AHB transfers between the peripheral and the GPDMA (on behalf of the granted
state machine) can take place.

AHB transfers from the source peripheral or to the destination peripheral cannot proceed
until the channel FIFO is ready. For burst transaction requests and for transfers involving

Reference Manual 5-30 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

memory peripherals, the criterion for "FIFO readiness" is controlled by the FIFO_MODE
field of the CFG register.

The definition of FIFO readiness is the same for:

« Single transactions
e Burst transactions, where CFGx.FIFO_MODE =0
e Transfers involving memory peripherals, where CFGx.FIFO_MODE =0

The channel FIFO is deemed ready when the space/data available is sufficient to
complete a single AHB transfer of the specified transfer width. FIFO readiness for source
transfers occurs when the channel FIFO contains enough room to accept at least a
single transfer of CTL.SRC_TR_WIDTH width. FIFO readiness for destination transfers
occurs when the channel FIFO contains data to form at least a single transfer of
CTL.DST_TR_WIDTH width.

Note: An exception to FIFO readiness for destination transfers occurs in "FIFO flush
mode" In this mode, FIFO readiness for destination transfers occurs when the
channel FIFO contains data to form at least a single transfer of
CTL.SRC_TR_WIDTH width (and not CTL.DST_TR_WIDTH width, as is the
normal case).

When CFG.FIFO_MODE = 1, then the criteria for FIFO readiness for burst transaction
requests and transfers involving memory peripherals are as follows:

* AFIFO is ready for a source burst transfer when the FIFO is less than half empty.
« AFIFO s ready for a destination burst transfer when the FIFO is greater than or equal
to half full.

Exceptions to this "readiness" occur. During these exceptions, a value of CTL.
FIFO_MODE = 0 is assumed. The following are the exceptions:

* Near the end of a burst transaction or block transfer - The channel source state
machine does not wait for the channel FIFO to be less than half empty if the number
of source data items left to complete the source burst transaction or source block
transfer is less than FIFO DEPTH/2. Similarly, the channel destination state machine
does not wait for the channel FIFO to be greater than or equal to half full, if the
number of destination data items left to complete the destination burst transaction or
destination block transfer is less than FIFO DEPTH/2.

¢ In FIFO flush mode

« When a channel is suspended - The destination state machine does not wait for the
FIFO to become half empty to flush the FIFO, regardless of the value of the
FIFO_MODE field.

When the source/destination peripheral is not memory, the source/destination state
machine waits for a single/burst transaction request. Upon receipt of a transaction
request and only if the channel FIFO is "ready" for source/destination AHB transfers, a
request for the master bus interface is made by the source/destination state machine.

Reference Manual 5-31 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Note: There is one exception to this, which occurs when the destination peripheral is the
flow controller and CFGx.FCMODE = 1 (data pre-fetching is disabled). Then the
source state machine does not generate a request for the master bus interface
(even if the FIFO is "ready" for source transfers and has received a source
transaction request) until the destination requests new data.

When the source/destination peripheral is memory, the source/destination state
machine must wait until the channel FIFO is "ready". A request is then made for the
master bus interface. There is no handshaking mechanism employed between a
memory peripheral and the GPDMA.

5.2.11.1 Locked DMA Transfers

It is possible to program the GPDMA for:

* Buslocking

« Channel locking - Locks the arbitration for the AHB master interface, which grants
ownership of the master bus interface to one of the requesting channel state
machines (source or destination).

Bus and channel locking can proceed for the duration of a DMA transfer, a block transfer,
or a single or burst transaction.

Bus Locking

If the LOCK_B bit in the channel configuration register (CFG) is set, then the AHB bus is
locked for the duration specified in the LOCK_B_L field.

Channel Locking

If the LOCK_CH field is set, then the arbitration for the master bus interface is exclusively
reserved for the source and destination peripherals of that channel for the duration
specified in the LOCK_CH_L field.

If bus locking is activated for a certain duration, then it follows that the channel is also
automatically locked for that duration. Three cases arise:

e« CFGx.LOCK B = 0 - Programmed values of CFGx.LOCK _CH and
CFGx.LOCK_CH_L are used.

e CFGx.LOCK_B = 1 and CFGx.LOCK_CH = 0 - DMA transfer proceeds as if
CFGx.LOCK_ CH = 1 and CFGx.LOCK CH_ L = CFGx.LOCK_B L. The
programmed values of CFGx.LOCK_CH and CFGx.LOCK_CH_L are ignored.

e CFGx.LOCK_B =1 and CFGx.LOCK_CH =1 - Two cases arise:

— CFGx.LOCK_B_L <= CFGx.LOCK_CH_L - In this case, the DMA transfer
proceeds as if CFGx.LOCK_CH_L = CFGx. LOCK_B_L and the programmed
value of CFGx.LOCK_CH_L is ignored. Thus, if bus locking is enabled over the
DMA transfer level, then channel locking is enabled over the DMA transfer level,
regardless of the programmed value of CFGx.LOCK_CH_LCFGx.

Reference Manual 5-32 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

— LOCK_B_L > CFGx.LOCK_CH_L - The programmed value of CFGx.LOCK_CH_L
is used. Thus, if bus locking is enabled over the DMA block transfer level and
channel locking is enabled over the DMA transfer level, then channel locking is
performed over the DMA transfer level.

Locking Levels

If locking is enabled for a channel, then locking of the AHB master bus interface at a
programmed locking transfer level is activated when the channel is first granted the AHB
master bus interface at the start of that locking transfer level. It continues until the locking
transfer level has completed; that is, if channel O has enabled channel level locking at
the block transfer level, then this channel locks the master bus interface when it is first
granted the master bus interface at the start of the block transfer, and continues to lock
the master bus interface until the block transfer has completed.

Source and destination block transfers occur successively in time, and a new source
block cannot commence until the previous destination block has completed.

When both source and destination are on the same AHB layer, then block level locking
is terminated on completion of the block to the destination. If they are on separate layers,
then block-level locking is terminated on completion of the block on that layer—when the
source block on the source AHB layer completes, and when the destination block on the
destination AHB layer completes. The same is true for DMA transfer-level locking.

Transaction-level locking is different due to the fact that source and destination
transactions occur independently in time, and the number of source and destination
transactions in a DMA block or DMA transfer do not have to match. When the source and
destination are on the same AHB layer, then transaction-level locking is cleared at the
end of a source or destination transaction only if the opposing peripheral is not currently
in the middle of a transaction.

For example, if locking is enabled at the transaction level and an end-of-source
transaction is signaled, then this disables locking only if one of the following is true:

« The destination is on a different AHB layer
* The destination is on the same AHB layer, but the channel is not currently in the
middle of a transaction to the destination peripheral.

The same rules apply when an end-of-destination transaction is signalled.
If channel-level or bus-level locking is enabled for a channel at the transaction level, and

either the source or destination of the channel is a memory device, then the locking is
ignored and the channel proceeds as if locking (bus or channel) is disabled.

Note: Since there is no notion of a transaction level for a memory peripheral, then
transaction-level locking is not allowed when either source or destination is
memory.

Reference Manual 5-33 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.2.12 Arbitration for AHB Master Interface

Each GPDMA channel has two request lines that request ownership of a particular
master bus interface: channel source and channel destination request lines.

Source and destination arbitrate separately for the bus. Once a source/destination state
machine gains ownership of the master bus interface and the master bus interface has
ownership of the AHB bus, then AHB transfers can proceed between the peripheral and
GPDMA. Figure 5-20 illustrates the arbitration flow of the master bus interface.

An arbitration scheme decides which of the request lines is granted the particular master
bus interface. Each channel has a programmable priority. A request for the master bus
interface can be made at any time, but is granted only after the current AHB transfer
(burst or single) has completed. Therefore, if the master interface is transferring data for
a lower priority channel and a higher priority channel requests service, then the master
interface will complete the current burst for the lower priority channel before switching to
transfer data for the higher priority channel.

To prevent a channel from saturating the master bus interface, it can be given a
maximum AMBA burst length (MAX_ABRST field in CFG register) at channel setup time.
This also prevents the master bus interface from saturating the AHB bus where the
system arbiter cannot change the grant lines until the end of an undefined length burst.

The following is the interface arbitration scheme employed when no channel has locked
the arbitration for the master bus interface:

< If only one request line is active at the highest priority level, then the request with the
highest priority wins ownership of the AHB master bus interface; it is not necessary
for the priority levels to be unique.
If more than one request is active at the highest requesting priority, then these
competing requests proceed to a second tier of arbitration.

« If equal priority requests occur, then the lower-numbered channel is granted.
In other words, if a peripheral request attached to Channel 7 and a peripheral request
attached to Channel 8 have the same priority, then the peripheral attached to
Channel 7 is granted first.

Note: A channel source is granted before the destination if both have their request lines
asserted when a grant decision is made. A channel source and channel
destination inherit their channel priority and therefore always have the same
priority.

Reference Manual 5-34 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o . XMC4500
|nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Request =0

R

IDLE

Request = 1%
Y

Arbiter Locked by this Yes

channel?

Transfer in progress?

Arbiter locked by
different channel?

Transfer complete

Highest priority channel?

Lowest numbered
highest priority request?,

Yes

4

v o

2

@

Granted Master =

Interface 3

o

3

=

-

[©]

Figure 5-20 Arbitration Flow for Master Bus Interface

Reference Manual 5-35 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.2.13 Scatter/Gather

Scatter is relevant to a destination transfer. The destination address is incremented or
decremented by a programmed amount - the scatter increment - when a scatter
boundary is reached. Figure 5-21 shows an example destination scatter transfer. The
destination address is incremented or decremented by the value stored in the destination
scatter increment (DSRx.DSI) field (refer to DSR), multiplied by the number of bytes in
a single AHB transfer to the destination s (decoded value of CTL.DST_TR_WIDTH)/8 -
when a scatter boundary is reached. The number of destination transfers between
successive scatter boundaries is programmed into the Destination Scatter Count (DSC)
field of the DSRx register.

Scatter is enabled by writing a 1 to the CTL.DST_SCATTER_EN field. The CTL.DINC
field determines if the address is incremented, decremented, or remains fixed when a
scatter boundary is reached. If the CTL.DINC field indicates a fixed-address control
throughout a DMA transfer, then the CTL.DST_SCATTER_EN field is ignored, and the
scatter feature is automatically disabled.

Gather is relevant to a source transfer. The source address is incremented or
decremented by a programmed amount when a gather boundary is reached. The
number of source transfers between successive gather boundaries is programmed into
the Source Gather Count (SGRx.SGC) field. The source address is incremented or
decremented by the value stored in the source gather increment (SGRx.SGI) field (refer
to SGR), multiplied by the number of bytes in a single AHB transfer from the source -
(decoded value of CTL.SRC_TR_WIDTH)/8 - when a gather boundary is reached.

Gather is enabled by writing a 1 to the CTL.SRC_GATHER_EN field. The CTL.SINC
field determines if the address is incremented, decremented, or remains fixed when a
gather boundary is reached. If the CTL.SINC field indicates a fixed-address control
throughout a DMA transfer, then the CTL.SRC_GATHER_EN field is ignored, and the
gather feature is automatically disabled.

Note: For multi-block transfers, the counters that keep track of the number of transfers
left to reach a gather/scatter boundary are re-initialized to the source gather count
(SGRx.SGC) and destination scatter count (DSC), respectively, at the start of
each block transfer.

Reference Manual 5-36 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o . XMC4500
(Infineon XMC4000 Family

General Purpose DMA (GPDMA)

System Memory

— Scatter Boundary AO + 0x220
AD + 0x218
D10
AD +0x210
D9
A0 + 0x208
D8
AQ + 0x200 r
Scatter Increment *
0 x 080
AD+0x118 i
D&
A0 +0x110
D5
AQ + 0x108
D4
AO + 0x100 y
Scatter Increment /
0x080 |
Y - I Scatter Boundary AQ + 0x20
D3 d3
AQ + 0x018 =
AQ + 0x010 b1 CTLxDST_TR_WIDTH = 3'b011 (64bit/8 = 8 bytes)
AD + 0x008 d0 DSR.DSI= 16
Do DSR.DSC =4
AQ DSR.DSI * 8 = (x80 (Scatter Increment in bytes)

Figure 5-21 Example of Destination Scatter Transfer

As an example of gather increment, consider the following:
SRC_TR_WIDTH = 3"b010 (32 bits)
SGR.SGC = 0x04 (source gather count)
CTLx.SRC_GATHER_EN = 1 (source gather enabled)
SARXx = A0 (starting source address)

Reference Manual 5-37 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

System Memory
=7 = Gather Boundary AD + 0x38
AD + 0x034 d11 Gather Increment = 4
D10 g
A0 + 0x030 = R o
AD + 0x02G - = e e #Dala Stream
AQ + 0x028 [doldl ’d2|daludluslm]d?]dsld9|d10[d11}—>
- Gather Boundary A0 + 0x24
AD + 0x020 D7 a7 Gather Increment = 4
D&
AD + Ox01c
Ds d4
A0 + 0x018
D4
A0 +0x014
i Gather Boundary A0 + 0x10
D3 d3 Gather Increment = 4
AD + 0x00c =
AOD + 0x008 B CTLx.SRC_TR_WIDTH = 3'b0/10 (32bit/8 = 4 byles)
AD + 0x004 d0 SGRSGI=1
Do SGR.SGC =4
AD SGR.SGI * 4 = (x4 (Gather Increment in byvtes)

Figure 5-22 Source Gather when SGR.SGI = 0x1

In general, if the starting address is A0 and CTL.SINC = 00 (increment source address
control), then the transfer will be:

A0, AO + TWB, A0 + 2*TWB

(A0 + (SGR.SGC-1)*TWB)

<-scatter_increment-> (A0 + (SGR.SGC*TWB) + (SGR.SGI *TwB))

where TWB is the transfer width in bytes, decoded value of CTL.SRC_TR_WIDTH/8 =
src_single_size_bytes.

Reference Manual
GPDMA, V1.1

5-38 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.3 Programming

The GPDMA can be programmed through software registers or the GPDMA low-level

software driver; software registers are described in more detail in Section 5.6.

Note: There are references to both software parameters throughout this chapter. The
software parameters are the field names in each register description table and are
prefixed by the register name; for example, the Block Transfer Size field in the
Control Register for Channel x is designated as "CTL.BLOCK_TS."

5.3.1 Illegal Register Access

An illegal access can be any of the following:

1. Awrite to the SAR, DAR, LLP, CTL, SSTAT, DSTAT, SSTATAR, DSTATAR, SGR,
or DSR registers occurs when the channel is enabled.

2. Aread from the Interrupt Clear Registers is attempted.

3. A write to the Interrupt Status Registers, GPDMAO_STATUSINT, ID or VERSION is
attempted.

An illegal access (read/write) returns an AHB error response.

5.3.2 GPDMA Transfer Types
A DMA transfer may consist of

« single block transfer, supported by all channels.

< multi-block transfers, supported by channels 0 and 1.

On successive blocks of a multi-block transfer, the SAR/DAR register in the GPDMA is
reprogrammed using either of the following methods:

« Block chaining using linked lists

e Auto-reloading

« Contiguous address between blocks

On successive blocks of a multi-block transfer, the CTL register in the GPDMA is
reprogrammed using either of the following methods:

* Block chaining using linked lists

« Auto-reloading

When block chaining, using Linked Lists is the multi-block method of choice. On
successive blocks, the LLP register in the GPDMA is reprogrammed using block
chaining with linked lists.

A block descriptor consists of six registers: SAR, DAR, LLP, CTL, SSTAT and DSTAT.
The first four registers, along with the CFG register, are used by the GPDMA to set up
and describe the block transfer.

Note: The term Link List Item (LLI) and block descriptor are synonymous.

Reference Manual 5-39 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

General Purpose DMA (GPDMA)

5321

Multi-block transfers—in which the source and destination are swapped during the
transfer—are not supported. In a multi-block transfer, the direction must not change for
the duration of the transfer.

Multi-Block Transfers

Block Chaining Using Linked Lists

In this case, the GPDMA reprograms the channel registers prior to the start of each block
by fetching the block descriptor for that block from system memory. This is known as an
LLI update.

GPDMA block chaining uses a Linked List Pointer register (LLP) that stores the address
in memory of the next linked list item. Each LLI contains the corresponding block
descriptors:

1. SAR
DAR
LLP
CTL
SSTAT
DSTAT

To set up block chaining, you program a sequence of Linked Lists in memory.

LLI accesses are always 32-bit accesses aligned to 32-bit boundaries and cannot be
changed or programmed to anything other than 32-bit, even if the AHB master interface
of the LLI supports more than a 32-bit data width.

The SAR, DAR, LLP, and CTL registers are fetched from system memory on an LLI
update. The updated contents of the CTL, SSTAT, and DSTAT registers are optionally
written back to memory on block completion. Figure 5-23 and Figure 5-24 show how
you use chained linked lists in memory to define multi-block transfers using block
chaining.

o0k wN

LLI{0) LLI(1) System
Write-back for DSTATx Wirite-back for DSTATx MBSOty
| Write-back for SSTATX | [Wiite-back for SSTATX |
T Totesa | [cTLqe3az] |
T Tewet | [T ctug@to) |
[T T ey [e |
BT O DARX |
____EA_RX___- —--___EA_RK___- o
LLPx(0) LLPx(1) LLPx(2)

Figure 5-23 Multi-Block Transfer Using Linked Lists When CFGx.SS_UPD_EN is
setto ‘l’

Reference Manual
GPDMA, V1.1

5-40

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

It is assumed that no allocation is made in system memory for the source status when
the parameter CFGx.SS_UPD_EN is set to ‘0'. In this case, then the order of a Linked
List item is as follows:

General Purpose DMA (GPDMA)

1. SAR
2. DAR
3. LLP
4. CTL
5. DSTAT
System
LLI(0) LLI{1) Memory
Write-back for DSTATx ‘Wiite-back for DSTATx
[~ Totges | [T CcTiN8332] |
= _C?L;M'_U] ______ C?L:EST_O]_]
[T wey] | upa |
[T ow | | [DARX |
[T 7 Teamx | Ll T T s sARx | L
LLPx({0) LLPx(1) LLPx(2)

Figure 5-24 Multi-Block Transfer Using Linked Lists When CFGx.SS_UPD_EN is
set to ‘0’

Note: In order to not confuse the SAR, DAR, LLP, CTL, SSTAT and DSTAT register
locations of the LLI with the corresponding GPDMA memory mapped register
locations, the LLI register locations are prefixed with LLI; that is, LLI.SARX,
LLI.DARX, LLL.LLPX, LLI.CTLX, LLI.SSTATX, and LLI.DSTATX.

Figure 5-23 and Figure 5-24 show the mapping of a Linked List Item stored in memory
to the channel registers block descriptor.

Rows 6 through 10 of Table 5-8 show the required values of LLPx, CTLx, and CFGx for
multi-block DMA transfers using block chaining.

Note: For rows 6 through 10 of Table 5-8, the LLI.CTLX, LLI.LLPx, LLI.SARX, and
LLI.DARX register locations of the LLI are always affected at the start of every
block transfer. The LLLLLPx and LLIL.CTLx locations are always used to
reprogram the GPDMA LLPx and CTLx registers. However, depending on the
Table 5-8 row number, the LLI.SARX/LLI.DARx address may or may not be used
to reprogram the GPDMA SARx/DARX registers.

5-41 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

Reference Manual
GPDMA, V1.1

Gafineon.

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Table 5-8 Programming of Transfer Types and Channel Register Update
Method
O =
zZ
o |5 |z |48
O DI LUI DI
o o & 121512 3 3| 38 |
S I 19 0|9 I1x=s e < L
- O |15 | |y D o2 2 2 |8
5 S |3 |z |3z |23 s | 3 |o
by X x X
2 a |5 |0 |36 |58 eSS &8 |8
@© _ = LL = | - o < o < o =
= o |o |6 o |0 oD vwo |[6>D |2
1. Single-block or | Yes |0 0 |0 |0 |None,user None |None |No
last transfer of reprograms (single) | (single)
multi-block.
2. Auto-reload Yes |0 0 0 |1 CTLX, LLPx are | Contig |Auto- |No
multi-block reloaded from | uous Reload
transfer with initial values.
contiguous SAR
3. Auto-reload Yes |0 1 0 |0 CTLX, LLPx are | Auto- |Contig |No
multi-block reloaded from Reload |uous
transfer with initial values
contiguous DAR.
4. Auto-reload Yes |0 1 0 1 CTLX, LLPx are | Auto- |Auto- |No
multi-block reloaded from |reload |Reload
transfer initial values
5. Single-block or [No |0 0 0O |0 None, user None None |Yes
last transfer of reprograms (single) | (single)
multi-block.
6. Linked list No |O 0 |1 |0 |CTLx, LLPx Contig |Linked |Yes
multi-block loaded from uous List
transfer with next Linked List
contiguous SAR item.
7. Linked list No |0 1 1 0 CTLx, LLPx Auto- Linked | Yes
multi-block loaded from Reload | List
transfer with next Linked List
auto-reload SAR item.
8. Linked list No |1 0 0 |0 CTLx, LLPx Linked |Contig |Yes
multi-block loaded from List uous
transfer with next Linked List
contiguous DAR item.
Reference Manual 5-42 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Table 5-8 Programming of Transfer Types and Channel Register Update
Method (cont'd)

@) =
Z
a |% |z |8
O DI UJl DI
o o £ 12|52 3 3| 38 |
S 0 S80S es 5 | 5 %
= O |& m |& |m |3 Q
5 S |3 |z 3|z |23 s | 3 |o
S >< M >< Dol ot >< —— —
2 A |3 o |56 |58 cs |zo |2
[— = LL = LL = o < o < o =
= 3 |o |6 o |0 oD vwD |[6D |2
9. Linked list No |1 0 0 |1 CTLx, LLPx Linked |Auto- |Yes
multi-block loaded from List Reload
transfer with next Linked List
auto-reload DAR item.
10. Linked list No |1 0 1 |0 CTLx, LLPx Linked |Linked |Yes
multi-block loaded from List List
transfer next Linked List
item.

1) Applicable to channels 0 and 1 only.

hsize =32
| _ _ _ LUDSTAX | (ipxj31:2) 2600} + Ox18 ™)

LLI.SSTATx
___________ {LLPx{31:2], 2'b00) + 0x14

LILCTLX[63:32

| HHCTLXEE3A 1 pgst2) 2b00) + Ox10

LLL.CTLx[31:0] Fixed Offsets
___________ {LLPx[31:2], 2'b00} + Oxc
| P | (ki) 2o+ oxs
L oA] kst zbon o |

LLISARx
= {LLPx[31:2], 2000} 4— base address of LLI
> 32 % (LLPx.LOC)

Figure 5-25 Mapping of Block Descriptor (LLI) in Memory to Channel Registers
When CFG.SS_UPD_EN =1

Reference Manual 5-43 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

hsize = 32

LLIL.DSTATx
___________ {LLPx[31:2], 2'b00} + 0x14

___________ {LLPx[31:2], 2'b00} + 0x10

LLLCTLx[31:0] Fixed Offsets
___________ {LLPx[31:2], 2'b00} + Oxc

R L S| {LLPx[31:2], 2'b00} + Ox8
| _ _ _ UDARx | 1ipx31:2) 2600} + Ox4
LLIL.SARx
L 1 {LLPx[31:2] 2'b00} 4«—— base address of LLI
P 32 - (LLPx.LOC)

Figure 5-26 Mapping of Block Descriptor (LLI) in Memory to Channel Registers
When CFG.SS_UPD_EN =0

Notes

1. Throughout this chapter, there are descriptions about fetching the LLI.CTLX register
from the location pointed to by the LLPx register. This exact location is the LL| base
address (stored in LLPx register) plus the fixed offset. For example, in Figure 5-25
the location of the LLI.CTLXx register is LLPx.LOC + Oxc.

2. Referring to Table 5-8, if the Write Back column entry is "Yes" and the channel is 0
or 1, then the CTLxH register is always written to system memory (to LLI.CTLxH) at
the end of every block transfer.

3. The source status is fetched and written to system memory at the end of every block
transfer if the Write Back column entry is "Yes" and CFGx.SS_UPD_EN is enabled.

4. The destination status is fetched and written to system memory at the end of every
block transfer if the Write Back column entry is "Yes” and CFGx.DS_UPD_EN is
enabled.

5.3.2.2 Auto-Reloading of Channel Registers

During auto-reloading, the channel registers are reloaded with their initial values at the
completion of each block and the new values used for the new block. Depending on the
row number in Table 5-8, some or all of the SARx, DARX, and CTLx channel registers
are reloaded from their initial value at the start of a block transfer.

5.3.2.3 Contiguous Address Between Blocks

In this case, the address between successive blocks is selected as a continuation from
the end of the previous block.

Enabling the source or destination address to be contiguous between blocks is a function
of the CTL.LLP_SRC_EN, CFG.RELOAD_SRC, CTL.LLP_DST EN, and
CTL.RELOAD_DST registers (see Table 5-8).

Reference Manual 5-44 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Note: You cannot select both SARXx and DARX updates to be contiguous. If you want this
functionality, you should increase the size of the Block Transfer
(CTL.BLOCK_TS), or if this is at the maximum value, use Row 10 of Table 5-8
and set up the LLI.SARx address of the block descriptor to be equal to the end
SARXx address of the previous block. Similarly, set up the LLI.DARx address of the
block descriptor to be equal to the end DARX address of the previous block.

5.3.2.4 Suspension of Transfers Between Blocks
At the end of every block transfer, an end-of-block interrupt is asserted if:

1. Interrupts are enabled, CTL.INT_EN =1, and
2. The channel block interrupt is unmasked, MASKBLOCK]|n] = 1, where n is the
channel number.

Note: The block-complete interrupt is generated at the completion of the block transfer
to the destination.

For rows 6, 8, and 10 of Table 5-8, the DMA transfer does not stall between block
transfers. For example, at the end-of-block N, the GPDMA automatically proceeds to
block N + 1.

Forrows 2, 3,4, 7, and 9 of Table 5-8 (SARx and/or DARX auto-reloaded between block
transfers), the DMA transfer automatically stalls after the end-of-block interrupt is
asserted, if the end-of-block interrupt is enabled and unmasked.

The GPDMA does not proceed to the next block transfer until a write to the
CLEARBLOCK][nN] block interrupt clear register, done by software to clear the channel
block-complete interrupt, is detected by hardware.

Forrows 2, 3,4, 7, and 9 of Table 5-8 (SARx and/or DARX auto-reloaded between block
transfers), the DMA transfer does not stall if either:

« Interrupts are disabled, CTL.INT_EN =0, or
* The channel block interrupt is masked, MASKBLOCK([n] = O, where n is the channel
number.

Channel suspension between blocks is used to ensure that the end-of-block ISR
(interrupt service routine) of the next-to-last block is serviced before the start of the final
block commences. This ensures that the ISR has cleared the CFG.RELOAD_SRC
and/or CFG.RELOAD_DST bits before completion of the final block. The reload bits
CFG.RELOAD_SRC and/or CFG.RELOAD_DST should be cleared in the end-of-block
ISR for the next-to-last block transfer.

Reference Manual 5-45 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.3.2.5 Ending Multi-Block Transfers

All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 5-8. At
the end of every block transfer, the GPDMA samples the row number, and if the GPDMA
is in the Row 1 or Row 5 state, then the previous block transferred was the last block and
the DMA transfer is terminated.

Note: Row 1 and Row 5 are used for single-block transfers or terminating multi-block
transfers. Ending in the Row 5 state enables status fetch and write-back for the
last block. Ending in the Row 1 state disables status fetch and write-back for the
last block.

For rows 2, 3, and 4 of Table 5-8, (LLPx.LOC = 0 and CFG.RELOAD_SRC and/or
CFG.RELOAD_DST is set), multi-block DMA transfers continue until both the
CFG.RELOAD_SRC and CFG.RELOAD_DST registers are cleared by software. They
should be programmed to 0 in the end-of-block interrupt service routine that services the
next-to-last block transfer; this puts the GPDMA into the Row 1 state.

For rows 6, 8, and 10 of Table 5-8 (both CFG.RELOAD_SRC and CFG.RELOAD_DST
cleared), the user must set up the last block descriptor in memory so that both
LLI.CTLx.LLP_SRC_EN and LLL.CTLx.LLP_DST_EN are 0. If the LLI.LLPx register of
the last block descriptor in memory is non-zero, then the DMA transfer is terminated in
Row 5. If the LLI.LLPx register of the last block descriptor in memory is 0, then the DMA
transfer is terminated in Row 1.

Note: The only allowed transitions between the rows of Table 5-8 are from any row into
Row 1 or Row 5. As already stated, a transition into row 1 or row 5 is used to
terminate the DMA transfer; all other transitions between rows are not allowed.
Software must ensure that illegal transitions between rows do not occur between
blocks of a multi-block transfer. For example, if block N is in row 10, then the only
allowed rows for block N +1 are rows 10, 5, or 1.

533 Programing Examples

Three registers - LLP, CTL, and CFG - need to be programmed to determine whether
single- or multi-block transfers occur, and which type of multi-block transfer is used. The
different transfer types are shown in Table 5-8.

The GPDMA can be programmed to fetch the status from the source or destination
peripheral; this status is stored in the SSTAT and DSTAT registers. When the GPDMA
is programmed to fetch the status from the source or destination peripheral, it writes this
status and the contents of the CTL register back to memory at the end of a block transfer.
The Write Back column of Table 5-8 shows when this occurs.

The "Update Method" columns indicate where the values of SAR, DAR, CTL, and LLP
are obtained for the next block transfer when multi-block GPDMA transfers are enabled.

Reference Manual 5-46 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Note: In Table 5-8, all other combinations of LLPx.LOC = 0, CTL.LLP_SRC_EN,

CFGXx.RELOAD_SRC, CTL.LLP_DST_EN, and CFGx.RELOAD_DST are illegal,
and will cause indeterminate or erroneous behavior.

Generic Setup of Transfer Type and Characteristics

This generic sequence is referenced by the examples further below in this section.

1.

Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTL register.
Table 5-13 lists the decoding for this field.
Set up the transfer characteristics, such as:
a) Transfer width for the source in the SRC_TR_WIDTH field.
Table 5-12 lists the decoding for this field.
b) Transfer width for the destination in the DST_TR_WIDTH field.
Table 5-12 lists the decoding for this field.
¢) Source master layer in the SMS field where the source resides.
d) Destination master layer in the DMS field where the destination resides.
e) Incrementing/decrementing or fixed address for the source in the SINC field.
f) Incrementing/decrementing or fixed address for the destination in the DINC field.

5.3.3.1 Single-block Transfer (Row 1)

This section describes a single-block transfer, Row 1 in Table 5-8.
Note: Row 5 in Table 5-8 is also a single-block transfer with write-back of control and

1.
2.

status information enabled at the end of the single-block transfer.

Read the Channel Enable register to choose a free (disabled) channel.
Clear any pending interrupts on the channel from the previous DMA transfer by
writing to the Interrupt Clear registers: CLEARTFR, CLEARBLOCK,
CLEARSRCTRAN, CLEARDSTTRAN, and CLEARERR. Reading the Interrupt Raw
Status and Interrupt Status registers confirms that all interrupts have been cleared.
Program the following channel registers:
a) Write the starting source address in the SAR register for channel x.
b) Write the starting destination address in the DAR register for channel x.
c¢) Program CTL and CFG according to Row 1, as shown in Table 5-8. Program the
LLP register with 0.
d) Write the control information for the DMA transfer in the CTL register for channel x.
e) Write the channel configuration information into the CFG register for channel x.
1. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals; this is not required for memory.
This step requires programming the CFG.HS_SEL_SRC or CFG.HS_SEL_DST
bits, respectively. Writing a O activates the hardware handshaking interface to
handle source/destination requests. Writing a 1 activates the software
handshaking interface to handle source and destination requests.

Reference Manual 5-47 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

2. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination
peripheral; this requires programming the CFG.SRC_PER and CFG.DEST_PER
bits, respectively.

f) If gather is enabled (CTL.SRC_GATHER_EN = 1), program the SGR register for
channel x.

g) If scatter is enabled (CTL.DST_SCATTER_EN = 1), program the DSR register for
channel x.

4. After the GPDMA-selected channel has been programmed, enable the channel by
writing a 1 to the GPDMAO_CHENREG.CH_EN bit. Ensure that bit 0 of the
GPDMAO_DMACFGRERG register is enabled.

5. Source and destination request single and burst DMA transactions in order to transfer
the block of data (assuming non-memory peripherals). The GPDMA acknowledges
at the completion of every transaction (burst and single) in the block and carries out
the block transfer.

6. Once the transfer completes, hardware sets the interrupts and disables the channel.
At this time, you can respond to either the Block Complete or Transfer Complete
interrupts, or poll for the transfer complete raw interrupt status register (RAWTFR[n],
n = channel number) until it is set by hardware, in order to detect when the transfer
is complete. Note that if this polling is used, the software must ensure that the transfer
complete interrupt is cleared by writing to the Interrupt Clear register, CLEARTFR[n],
before the channel is enabled.

5.3.3.2 Multi-Block Transfer with Linked List for Source and Linked List
for Destination (Row 10)

This type of transfer is supported by channels 0 and 1 only.

1. Read the Channel Enable register (see GPDMAO_CHENREG) to choose a free
(disabled) channel.

2. Set up the chain of Linked List Iltems (otherwise known as block descriptors) in
memory. Write the control information in the LLI.CTL register location of the block
descriptor for each LLI in memory (see Figure 5-23) for channel x.

3. Write the channel configuration information into the CFG register for channel x.

a) Designate the handshaking interface type (hardware or software) for the source

and destination peripherals; this is not required for memory.
This step requires programming the CFG.HS_SEL_SRC or CFG.HS_SEL_DST
bits, respectively. Writing a 0 activates the hardware handshaking interface to
handle source/destination requests for the specific channel. Writing a 1 activates
the software handshaking interface to handle source/destination requests.

b) If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination
peripheral. This requires programming the CFG.SRC_PER and CFG.DEST_PER
bits, respectively.

Reference Manual 5-48 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

4. Make sure that the LLI.CTLx register locations of all LLI entries in memory (except
the last) are set as shown in Row 10 of Table 5-8. The LLI.CTLx register of the last
Linked List Item must be set as described in Row 1 or Row 5 of Table 5-8.
Figure 5-23 shows a Linked List example with two list items.

5. Make sure that the LLI.LLPx register locations of all LLI entries in memory (except
the last) are non-zero and point to the base address of the next Linked List ltem.

6. Make sure that the LLI.SARX/LLI.DARX register locations of all LLI entries in memory
point to the start source/destination block address preceding that LLI fetch.

7. Ensure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLI
entries in memory is cleared.

8. If source status fetching is enabled (CFGx.SS_UPD_EN is enabled), program the
SSTATAR register so that the source status information can be fetched from the
location pointed to by the SSTATAR. For conditions under which the source status
information is fetched from system memory, refer to the Write Back column of
Table 5-8.

9. If destination status fetching is enabled (CFGx.DS_UPD_EN is enabled), program
the DSTATAR register so that the destination status information can be fetched from
the location pointed to by the DSTATAR register. For conditions under which the
destination status information is fetched from system memory, refer to the Write Back
column of Table 5-8.

10.If gather is enabled (CTL.SRC_GATHER_EN = 1), program the SGR register for
channel x.

11.1f scatter is enabled (CTL.DST_SCATTER_EN = 1), program the DSR register for
channel x.

12.Clear any pending interrupts on the channel from the previous DMA transfer by
writing to the Interrupt Clear registers: CLEARTFR, CLEARBLOCK,
CLEARSRCTRAN, CLEARDSTTRAN, and CLEARERR. Reading the Interrupt Raw
Status and Interrupt Status registers confirms that all interrupts have been cleared.

13.Program the CTL and CFG registers according to Row 10, as shown in Table 5-8.

14.Program the LLP register with LLP(0), the pointer to the first linked list item.

15.Finally, enable the channel by writing a 1 to the GPDMAO_CHENREG.CH_EN bit;
the transfer is performed.

16. The GPDMA fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLI.SARX, LLI.DARX, LLI.LLPx, and LLI.CTLx registers are fetched. The
GPDMA automatically reprograms the SARx, DARX, LLPx, and CTLx channel
registers from the LLPx(0).

17.Source and destination request single and burst DMA transactions to transfer the
block of data (assuming non-memory peripheral). The GPDMA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the
block transfer.

18.0Once the block of data is transferred, the source status information is fetched from
the location pointed to by the SSTATAR register and stored in the SSTAT register if
CFGx.SS_UPD_EN is enabled. For conditions under which the source status

Reference Manual 5-49 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

information is fetched from system memory, refer to the Write Back column of
Table 5-8.
The destination status information is fetched from the location pointed to by the
DSTATAR register and stored in the DSTAT register if CFGx.DS_UPD_EN is
enabled. For conditions under which the destination status information is fetched
from system memory, refer to the Write Back column of Table 5-8.

19.The CTLXxH register is written out to system memory. For conditions under which the
CTLxH register is written out to system memory, refer to the Write Back column of
Table 5-8.
The CTLxH register is written out to the same location on the same layer (LLP.LMS)
where it was originally fetched; that is, the location of the CTL register of the linked
list item fetched prior to the start of the block transfer. Only the CTLxH register is
written out, because only the CTL.BLOCK_TS and CTL.DONE fields have been
updated by the GPDMA hardware. Additionally, the CTL.DONE bit is asserted to
indicate block completion. Therefore, software can poll the LLI.CTLx.DONE bit of the
CTL register in the LLI to ascertain when a block transfer has completed.
Note: Do not poll the CTLx.DONE bit in the GPDMA memory map; instead, poll the
LLI.CTLx.DONE bit in the LLI for that block. If the polled LLI.CTLx.DONE bit is
asserted, then this block transfer has completed. This LLI.CTLx.DONE bit was
cleared at the start of the transfer (Step 7).

20.The SSTAT register is now written out to system memory if CFGx.SS_UPD_EN is
enabled. It is written to the SSTAT register location of the LLI pointed to by the
previously saved LLPx.LOC register.
The DSTAT register is now written out to system memory if CFGx.DS_UPD_EN is
enabled. It is written to the DSTAT register location of the LLI pointed to by the
previously saved LLPx.LOC register.
The end-of-block interrupt, int_block, is generated after the write-back of the control
and status registers has completed.
Note: The write-back location for the control and status registers is the LLI pointed to
by the previous value of the LLPx.LOC register, not the LLI pointed to by the current
value of the LLPx.LOC register.

21.The GPDMA does not wait for the block interrupt to be cleared, but continues fetching
the next LLI from the memory location pointed to by the current LLP register and
automatically reprograms the SAR, DAR, CTL, and LLP channel registers. The DMA
transfer continues until the GPDMA determines that the CTL and LLP registers at the
end of a block transfer match the ones described in Row 1 or Row 5 of Table 5-8 (as
discussed earlier). The GPDMA then knows that the previously transferred block was
the last block in the DMA transfer.

The DMA transfer might look like that shown in Figure 5-27.

Reference Manual 5-50 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Address of
Source Layer

Block

SAR(2) =

Block

SAR(1T) —=

Block

SAR(0) -

Source Blocks

Address of
Destination Layer

Block

DAR(2) -~

Block

DAR(1) =

Block

DAR(Q) -

Destination Blocks

Figure 5-27 Multi-Block with Linked Address for Source and Destination

If the user needs to execute a DMA transfer where the source and destination address
are contiguous, but where the amount of data to be transferred is greater than the
maximum block size CTL.BLOCK_TS, then this can be achieved using the type of multi-

block transfer shown in Figure 5-28.

Reference Manual 5-51
GPDMA, V1.1

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Address of
Source Layer

Block3

Block3

Block2

SAR(3)
Block2

Block1

SAR(2)

Block1

Block0

SAR(1)

AN

Block0

SAR(0) -
Source Blocks

Address of
Destination Layer

-&- DAR(3)

- DAR(2)

- DAR(1)

- DAR(D)

Destination Blocks

Figure 5-28 Multi-Block with Linked Address for Source and Destination Where
SARx and DARx Between Successive Blocks are Contiguous

Reference Manual 5-52

V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

infineon XMC4500

XMC4000 Family

General Purpose DMA (GPDMA)

The DMA transfer flow is shown in Figure 5-29.

Channel enabled by software

LLI fetch

v

Hardware reprograms SARx, DARX,
CTLx and LLPx

v

DMA block transfer

v

Source/destination status fetch

v

Write-back of control and source/
destination status to LLI

Block interrupt

R
generated here

Is the GPDMA in
rowl or row5

Transfer complete

: —_—>
interrupt generated here

Channel disabled by hardware

Figure 5-29 DMA Transfer Flow for Source and Destination Linked List Address

Reference Manual 5-53

V1.0, 2012-02
GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.3.3.3 Multi-Block Transfer with Source Address Auto-Reloaded and

Destination Address Auto-Reloaded (Row 4)

This type of transfer is supported by channels 0 and 1 only.

1.

2.

Read the Channel Enable register (see GPDMAO_CHENREG) to choose an

available (disabled) channel.

Clear any pending interrupts on the channel from the previous DMA transfer by

writing to the Interrupt Clear registers: CLEARTFR, CLEARBLOCK,

CLEARSRCTRAN, CLEARDSTTRAN, and CLEARERR. Reading the Interrupt Raw

Status and Interrupt Status registers confirms that all interrupts have been cleared.

Program the following channel registers:

a) Write the starting source address in the SAR register for channel x.

b) Write the starting destination address in the DAR register for channel x.

c¢) Program CTL and CFG according to Row 4, as shown in Table 5-8. Program the
LLP register with 0.

d) Write the control information for the DMA transfer in the CTL register for channel x.

e) If gather is enabled (CTL.SRC_GATHER_EN = 1), program the SGR register for
channel x.

f) If scatter is enabled (CTL.DST_SCATTER_EN = 1), program the DSR register for
channel x.

g) Write the channel configuration information into the CFG register for channel x.
Ensure that the reload bits, CFGx. RELOAD_SRC and CFGx.RELOAD_DST, are
enabled.

1. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals; this is not required for memory.

This step requires programming the HS_SEL_SRC/HS_SEL_DST bits,
respectively. Writing a 0 activates the hardware handshaking interface to handle
source/destination requests for the specific channel. Writing a 1 activates the
software handshaking interface to handle source/destination requests.

2. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination
peripheral. This requires programming the SRC_PER and DEST_PER bhits,
respectively.

After the GPDMA selected channel has been programmed, enable the channel by

writing a 1 to the GPDMAO_CHENREG.CH_EN bit. Ensure that bit 0 of the

GPDMAO_DMACFGRERG register is enabled.

Source and destination request single and burst GPDMA transactions to transfer the

block of data (assuming non-memory peripherals). The GPDMA acknowledges on

completion of each burst/single transaction and carries out the block transfer.

When the block transfer has completed, the GPDMA reloads the SAR, DAR, and

CTL registers. Hardware sets the block-complete interrupt. The GPDMA then

samples the row number, as shown in Table 5-8. If the GPDMA is in Row 1, then the

DMA transfer has completed. Hardware sets the transfer complete interrupt and

Reference Manual 5-54 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

7.

General Purpose DMA (GPDMA)

disables the channel. You can either respond to the Block Complete or Transfer
Complete interrupts, or poll for the transfer complete raw interrupt status register
(RAWTFR[n], where n is the channel number) until it is set by hardware, in order to
detect when the transfer is complete. Note that if this polling is used, software must
ensure that the transfer complete interrupt is cleared by writing to the Interrupt Clear
register, CLEARTFR[n], before the channel is enabled. If the GPDMA is not in Row
1, the next step is performed.

The DMA transfer proceeds as follows:

a) If interrupts are enabled (CTL.INT_EN = 1) and the block-complete interrupt is

unmasked (MASKBLOCK([X] = 1g, where x is the channel number), hardware sets
the block-complete interrupt when the block transfer has completed. It then stalls
until the block-complete interrupt is cleared by software. If the next block is to be
the last block in the DMA transfer, then the block-complete ISR (interrupt service
routine) should clear the reload bits in the CFGx.RELOAD_SRC and
CFGx.RELOAD_DST registers. This puts the GPDMA into Row 1, as shown in
Table 5-8. If the next block is not the last block in the DMA transfer, then the reload
bits should remain enabled to keep the GPDMA in Row 4.

b) If interrupts are disabled (CTL.INT_EN = 0) or the block-complete interrupt is

masked (MASKBLOCK(|x] = Og, where x is the channel number), then hardware
does not stall until it detects a write to the block-complete interrupt clear register;
instead, it immediately starts the next block transfer. In this case, software must
clear the reload bits in the CFGX.RELOAD_SRC and CFGx.RELOAD_DST
registers to put the GPDMA into Row 1 of Table 5-8 before the last block of the
DMA transfer has completed.

The transfer is similar to that shown in Figure 5-30.

Reference Manual 5-55 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o . XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

Address of Address of
Source Layer Destination Layer

SAR —p -4- DAR

Source Blocks Destination Blocks

Figure 5-30 Multi-Block DMA Transfer with Source and Destination Address
Auto-Reloaded

Reference Manual 5-56 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o . XMC4500
|nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

The DMA transfer flow is shown in Figure 5-31.

Channel enabled by SW

A

Block transfer <

v

Reload SARx, DARx and CTLx

Is the GPDMA in rowl
Transfer complete

. R
interrupt generated here

Channel disabled by HW

CTLX.INT_EN=1

MASKBLOCK[X] = 1

Block-complete

: —_—
interrupt generated here

Stall until block-complete interrupt
cleared by SW

Figure 5-31 DMA Transfer Flow for Source and Destination Address Auto-

Reloaded

Reference Manual 5-57 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.3.3.4 Multi-Block Transfer with Source Address Auto-Reloaded and

Linked List Destination Address (Row 7)

This type of transfer is supported by channels 0 and 1 only.

1.

2.

10.

Read the Channel Enable register (see GPDMAO_CHENREG) in order to choose a

free (disabled) channel.

Set up the chain of linked list items (otherwise known as block descriptors) in

memory. Write the control information in the LLI.CTL register location of the block

descriptor for each LLI in memory (see Figure 5-23) for channel x.

Write the starting source address in the SAR register for channel x.

Note: The values in the LLI.SARX register locations of each of the Linked List Items

(LLIS) set up in memory, although fetched during an LLI fetch, are not used.

Write the channel configuration information into the CFG register for channel x.

a) Designate the handshaking interface type (hardware or software) for the source

and destination peripherals; this is not required for memory.
This step requires programming the HS_SEL_SRC/HS_SEL_DST bits. Writing a
0 activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a 1 activates the software handshaking
interface source/destination requests.

b) If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination
peripheral; this requires programming the SRC_PER and DEST_PER bits,
respectively.

Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last)

are set as shown in Row 7 of Table 5-8, while the LLI.CTLx register of the last Linked

List item must be set as described in Row 1 or Row 5 of Table 5-8. Figure 7-1 shows

a Linked List example with two list items.

Ensure that the LLI.LLPx register locations of all LLIs in memory (except the last) are

non-zero and point to the next Linked List Item.

Ensure that the LLI.DARX register location of all LLIs in memory point to the start

destination block address preceding that LLI fetch.

Ensure that the LLI.CTLx.DONE fields of the LLI.CTLx register locations of all LLIs in

memory are cleared.

If source status fetching is enabled (CFGx.SS_UPD_EN is enabled), program the

SSTATAR register so that the source status information can be fetched from the

location pointed to by the SSTATAR. For conditions under which the source status

information is fetched from system memory, refer to the Write Back column of

Table 5-8.

If destination status fetching is enabled (CFGx.DS_UPD_EN is enabled), program

the DSTATAR register so that the destination status information can be fetched from

the location pointed to by the DSTATAR register. For conditions under which the
destination status information is fetched from system memory, refer to the Write Back

column of Table 5-8.

Reference Manual 5-58 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

11.1f gather is enabled (CTL.SRC_GATHER_EN = 1), program the SGR register for
channel x.

12.1f scatter is enabled (CTL.DST_SCATTER_EN = 1), program the DSR register for
channel x.

13.Clear any pending interrupts on the channel from the previous DMA transfer by
writing to the Interrupt Clear registers: CLEARTFR, CLEARBLOCK,
CLEARSRCTRAN, CLEARDSTTRAN, and CLEARERR. Reading the Interrupt Raw
Status and Interrupt Status registers confirms that all interrupts have been cleared.

14.Program the CTL and CFG registers according to Row 7, as shown in Table 5-8.

15. Program the LLP register with LLP(0), the pointer to the first Linked List item.

16.Finally, enable the channel by writing a 1 to the GPDMAO_CHENREG.CH_EN bit;
the transfer is performed. Ensure that bit 0 of the GPDMAO_DMACFGREG register
is enabled.

17.The GPDMA fetches the first LLI from the location pointed to by LLP(0).

Note: The LLL.SARX, LLI.DARX, LLI.LLPx, and LLI.CTLx registers are fetched. The
LLI.SARX register - although fetched - is not used.

18.Source and destination request single and burst GPDMA transactions in order to
transfer the block of data (assuming non-memory peripherals). The GPDMA
acknowledges at the completion of every transaction (burst and single) in the block
and carries out the block transfer.

19. Once the block of data is transferred, the source status information is fetched from

the location pointed to by the SSTATAR register and stored in the SSTAT register if
CFGx.SS_UPD_EN is enabled. For conditions under which the source status
information is fetched from system memory, refer to the Write Back column of
Table 5-8.
The destination status information is fetched from the location pointed to by the
DSTATAR register and stored in the DSTAT register if CFGx.DS_UPD_EN is
enabled. For conditions under which the destination status information is fetched
from system memory, refer to the Write Back column of Table 5-8.

20.The CTLxH register is written out to system memory. For conditions under which the
CTLxH register is written out to system memory, refer to the Write Back column of
Table 5-8.

The CTLxH register is written out to the same location on the same layer (LLP.LMS)
where it was originally fetched; that is, the location of the CTL register of the linked
list item fetched prior to the start of the block transfer. Only the CTLxH register is
written out, because only the CTL.BLOCK_TS and CTL.DONE fields have been
updated by hardware within the GPDMA. The LLI.CTLx.DONE bit is asserted to
indicate block completion. Therefore, software can poll the LLI.CTL.DONE bit field of
the CTL register in the LLI to ascertain when a block transfer has completed.

Note: Do not poll the CTLXx.DONE bit in the GPDMA memory map. Instead, poll the
LLI.CTLx.DONE bit in the LLI for that block. If the polled LLI.CTLx.DONE bit is
asserted, then this block transfer has completed. This LLI.CTLXx.DONE bit was
cleared at the start of the transfer (Step 8).

Reference Manual 5-59 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

21.The SSTAT register is now written out to system memory if CFGx.SS_UPD_EN is
enabled. It is written to the SSTATX register location of the LLI pointed to by the
previously saved LLPx.LOC register.

The DSTAT register is now written out to system memory if CFGx.DS_UPD_EN is

enabled. It is written to the DSTATX register location of the LLI pointed to by the

previously saved LLPx.LOC register.

The end-of-block interrupt, int_block, is generated after the write-back of the control

and status registers has completed.

Note: The write-back location for the control and status registers is the LLI pointed to

by the previous value of the LLPx.LOC register, not the LLI pointed to by the current

value of the LLPx.LOC register.

22.The GPDMA reloads the SAR register from the initial value. Hardware sets the block-
complete interrupt. The GPDMA samples the row number, as shown in Table 5-8. If
the GPDMA is in Row 1 or Row 5, then the DMA transfer has completed. Hardware
sets the transfer complete interrupt and disables the channel. You can either respond
to the Block Complete or Transfer Complete interrupts, or poll for the transfer
complete raw interrupt status register (RAWTFR[n], n = channel number) until it is set
by hardware, in order to detect when the transfer is complete. Note that if this polling
is used, software must ensure that the transfer complete interrupt is cleared by
writing to the Interrupt Clear register, CLEARTFR[n], before the channel is enabled.

If the GPDMA is not in Row 1 or Row 5 as shown in Table 5-8, the following steps

are performed.

23.The DMA transfer proceeds as follows:

a) If interrupts are enabled (CTL.INT_EN = 1) and the block-complete interrupt is
unmasked (MASKBLOCK]x] = 15, where x is the channel number), hardware sets
the block-complete interrupt when the block transfer has completed. It then stalls
until the block-complete interrupt is cleared by software. If the next block is to be
the last block in the DMA transfer, then the block-complete ISR (interrupt service
routine) should clear the CFGx.RELOAD_SRC source reload bit. This puts the
GPDMA into Row 1, as shown in Table 5-8. If the next block is not the last block
in the DMA transfer, then the source reload bit should remain enabled to keep the
GPDMA in Row 7, as shown in Table 5-8.

b) If interrupts are disabled (CTL.INT_EN = 0) or the block-complete interrupt is
masked (MASKBLOCK]IX] = Og, where x is the channel number), then hardware
does not stall until it detects a write to the block-complete interrupt clear register;
instead, it immediately starts the next block transfer. In this case, software must
clear the source reload bit, CFGx.RELOAD_SRC in order to put the device into
Row 1 of Table 5-8 before the last block of the DMA transfer has completed.

24.The GPDMA fetches the next LLI from memory location pointed to by the current LLP
register and automatically reprograms the DAR, CTL, and LLP channel registers.

Note that the SAR is not reprogrammed, since the reloaded value is used for the next

DMA block transfer. If the next block is the last block of the DMA transfer, then the

Reference Manual 5-60 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

CTL and LLP registers just fetched from the LLI should match Row 1 or Row 5 of
Table 5-8.

Reference Manual 5-61 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o . XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

The DMA transfer might look like that shown in Figure 5-32.

Address of Address of
Source Layer Destination Layer
/\Bhﬁ'

SAR —= DAR(0) —=—

Block2

DAR(2) —=-

BlockN
DAR(N) —=-

Source Blocks Destination Blocks

Figure 5-32 Multi-Block DMA Transfer with Source Address Auto-Reloaded and
Linked List Destination Address

Reference Manual 5-62 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o . XMC4500
|nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

The DMA transfer flow is shown in Figure 5-33.

Channel enabled by SW

LLI fetch <

v

HW reprograms DARX, CTLx and LLPx

v

Block transfer

v

Source/destination status fetch

v

Write-back of control and source/
destination status to LLI

v

Reload SARx

Is the GPDMA in rowl
Transfer complete
interrupt generated here

Channel disabled by HW

CTLx.INT_EN =1

MASKBLOCK([x] = 1

Block-complete
interrupt generated here

Stall until block-complete interrupt
cleared by SW

Figure 5-33 DMA Transfer Flow for Source Address Auto-Reloaded and Linked
List Destination Address

Reference Manual 5-63 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.3.3.5 Multi-Block Transfer with Source Address Auto-Reloaded and

Contiguous Destination Address (Row 3)

This type of transfer is supported by channels 0 and 1 only.

1.

2.

Read the Channel Enable register (see GPDMAO_CHENREG) to choose a free
(disabled) channel.
Clear any pending interrupts on the channel from the previous DMA transfer by
writing to the Interrupt Clear registers: CLEARTFR, CLEARBLOCK,
CLEARSRCTRAN, CLEARDSTTRAN, and CLEARERR. Reading the Interrupt Raw
Status and Interrupt Status registers confirms that all interrupts have been cleared.
Program the following channel registers:
a) Write the starting source address in the SAR register for channel x.
b) Write the starting destination address in the DAR register for channel x.
c¢) Program CTL and CFG according to Row 3, shown in Table 5-8. Program the LLP
register with 0.
d) Write the control information for the DMA transfer in the CTL register for channel x.
e) If gather is enabled (CTL.SRC_GATHER_EN = 1), program the SGR register for
channel x.
f) If scatter is enabled (CTL.DST_SCATTER_EN = 1), program the DSR register for
channel x.
g) Write the channel configuration information into the CFG register for channel x.
1. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals; this is not required for memory.
This step requires programming the HS_SEL_SRC/HS_SEL_DST bits,
respectively. Writing a 0 activates the hardware handshaking interface to handle
source/destination requests for the specific channel. Writing a 1 activates the
software handshaking interface to handle source/destination requests.
2. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination
peripheral. This requires programming the SRC_PER and DEST_PER bits,
respectively.
After the GPDMA channel has been programmed, enable the channel by writing a 1
to the GPDMAO CHENREG.CH EN bit. Ensure that bit 0 of the
GPDMAO_DMACFGRERG register is enabled.
Source and destination request single and burst GPDMA transactions to transfer the
block of data (assuming non-memory peripherals). The GPDMA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the
block transfer.
When the block transfer has completed, the GPDMA reloads the SAR register; the
DAR register remains unchanged. Hardware sets the block-complete interrupt. The
GPDMA then samples the row number, as shown in Table 5-8. If the GPDMA is in
Row 1, then the DMA transfer has completed. Hardware sets the transfer-complete
interrupt and disables the channel. You can either respond to the Block Complete or

Reference Manual 5-64 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Transfer Complete interrupts, or poll for the transfer complete raw interrupt status
register (RAWTFR([n], n = channel number) until it is set by hardware, in order to
detect when the transfer is complete. Note that if this polling is used, software must
ensure that the transfer complete interrupt is cleared by writing to the Interrupt Clear
register, CLEARTFR[n], before the channel is enabled. If the GPDMA is not in Row

1, the next step is performed.

7. The DMA transfer proceeds as follows:

a) If interrupts are enabled (CTL.INT_EN = 1) and the block-complete interrupt is
unmasked (MASKBLOCK]X] = 1g, where x is the channel number), hardware sets
the block-complete interrupt when the block transfer has completed. It then stalls
until the block-complete interrupt is cleared by software. If the next block is to be
the last block in the DMA transfer, then the block-complete ISR (interrupt service
routine) should clear the source reload bit, CFGx.RELOAD_SRC. This puts the
GPDMA into Row 1, as shown in Table 5-8. If the next block is not the last block
in the DMA transfer, then the source reload bit should remain enabled to keep the
GPDMA in Row 3, as shown in Table 5-8.

b) If interrupts are disabled (CTL.INT_EN = 0) or the block-complete interrupt is
masked (MASKBLOCK]xX] = Og, where x is the channel number), then hardware
does not stall until it detects a write to the block-complete interrupt clear register;
instead, it starts the next block transfer immediately. In this case, software must
clear the source reload bit, CFGx.RELOAD_SRC, to put the device into Row 1 of
Table 5-8 before the last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 5-34.

Address of Address of
Source Layer Destination Layer
— Block2
B"’“’”\ - DAR(2)
AR e K
SAR —p= \ - DAR(1)
- DAR(0)
Source Blocks Destination Blocks

Figure 5-34 Multi-Block DMA Transfer with Source Address Auto-Reloaded and
Contiguous Destination Address

Reference Manual 5-65 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

The DMA transfer flow is shown in Figure 5-35.

Channel enabled by SW

Block transfer

v

Reload SARx and CTLx

Is the GPDMA in rowl
Transfer complete

. E—
interrupt generated here

Channel disabled by HW

CTLx.INT_EN=1

MASKBLOCK(X] = 1

Block-complete

. L
interrupt generated here

Stall until block-complete interrupt
cleared by SW

Figure 5-35 DMA Transfer Flow for Source Address Auto-Reloaded and Linked
List Destination Address

Reference Manual 5-66 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.3.3.6 Multi-Block DMA Transfer with Linked List for Source and

Contiguous Destination Address (Row 8)

This type of transfer is supported by channels 0 and 1 only.

1.

2.

10.

Read the Channel Enable register (see GPDMAO_CHENREG) to choose a free
(disabled) channel.

Set up the linked list in memory. Write the control information in the LLI.CTL register
location of the block descriptor for each LLI in memory (see Figure 5-23) for channel
X.

Write the starting destination address in the DAR register for channel x.

Note: The values in the LLI.DARX register location of each Linked List Item (LLI) in
memory, although fetched during an LLI fetch, are not used.

Write the channel configuration information into the CFG register for channel x.

1. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals; this is not required for memory.

This step requires programming the HS_SEL_SRC/HS_SEL_DST bits. Writing a 0
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a 1 activates the software handshaking interface to
handle source/destination requests.

2. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination
peripherals. This requires programming the SRC_PER and DEST_PER bits,
respectively.

Ensure that all LLI.CTLx register locations of the LLI (except the last) are set as
shown in Row 8 of Table 5-8, while the LLI.CTLx register of the last Linked List item
must be set as described in Row 1 or Row 5 of Table 5-8. Figure 5-23 shows a
Linked List example with two list items.

Ensure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Item.

Ensure that the LLI.SARX register location of all LLIs in memory point to the start
source block address preceding that LLI fetch.

Ensure that the LLI.CTLx.DONE fields of the LLI.CTLx register locations of all LLIs in
memory are cleared.

If source status fetching is enabled (CFGx.SS_UPD_EN is enabled), program the
SSTATAR register so that the source status information can be fetched from the
location pointed to by SSTATAR. For conditions under which the source status
information is fetched from system memory, refer to the Write Back column of
Table 5-8.

If destination status fetching is enabled (CFGx.DS_UPD_EN is enabled), program
the DSTATAR register so that the destination status information can be fetched from
the location pointed to by the DSTATAR register. For conditions under which the
destination status information is fetched from system memory, refer to the Write Back
column of Table 5-8.

Reference Manual 5-67 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

11.1f gather is enabled (CTL.SRC_GATHER_EN = 1), program the SGR register for
channel x.

12.1f scatter is enabled (CTL.DST_SCATTER_EN = 1), program the DSR register for
channel x.

13.Clear any pending interrupts on the channel from the previous DMA transfer by
writing to the Interrupt Clear registers: CLEARTFR, CLEARBLOCK,
CLEARSRCTRAN, CLEARDSTTRAN, and CLEARERR. Reading the Interrupt Raw
Status and Interrupt Status registers confirms that all interrupts have been cleared.

14.Program the CTL and CFG registers according to Row 8, as shown in Table 5-8.

15. Program the LLP register with LLP(0), the pointer to the first Linked List item.

16.Finally, enable the channel by writing a 1 to the GPDMAO_CHENREG.CH_EN bit;
the transfer is performed. Ensure that bit 0 of the GPDMAO_DMACFGREG register
is enabled.

17.The GPDMA fetches the first LLI from the location pointed to by LLP(0).

Note: The LLL.SARX, LLI.DARX, LLI.LLPx, and LLI.CTLx registers are fetched. The
LLI.DARX register location of the LLI - although fetched - is not used. The DAR
register in the GPDMA remains unchanged.

18. Source and destination request single and burst GPDMA transactions to transfer the
block of data (assuming non-memory peripherals). The GPDMA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the
block transfer.

19. Once the block of data is transferred, the source status information is fetched from
the location pointed to by the SSTATAR register and stored in the SSTAT register if
CFGx.SS_UPD_EN is enabled. For conditions under which the source status
information is fetched from system memory, refer to the Write Back column of
Table 5-8.The destination status information is fetched from the location pointed to
by the DSTATAR register and stored in the DSTAT register if CFGx.DS_UPD_EN is
enabled. For conditions under which the destination status information is fetched
from system memory, refer to the Write Back column of Table 5-8.

20.The CTLxH register is written out to system memory. For conditions under which the

CTLxH register is written out to system memory, refer to the Write Back column of
Table 5-8.The CTLxH register is written out to the same location on the same layer
(LLPx.LMS) where it was originally fetched; that is, the location of the CTL register of
the linked list item fetched prior to the start of the block transfer. Only the second word
of the CTL register is written out, CTLxH, because only the CTL.BLOCK_TS and
CTL.DONE fields have been updated by hardware within the GPDMA. Additionally,
the CTL.DONE bit is asserted to indicate block completion. Therefore, software can
poll the LLI.CTL.DONE bit field of the CTL register in the LLI to ascertain when a
block transfer has completed.
Note: Do not poll the CTL.DONE bit in the GPDMA memory map. Instead, poll the
LLI.CTLx.DONE bit in the LLI for that block. If the polled LLI.CTLx.DONE bit is
asserted, then this block transfer has completed. This LLI.CTLXx.DONE bit was
cleared at the start of the transfer (Step 8).

Reference Manual 5-68 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

21.The SSTAT register is now written out to system memory if CFGx.SS_UPD_EN is
enabled. It is written to the SSTAT register location of the LLI pointed to by the
previously saved LLPx.LOC register.The DSTAT register is now written out to
system memory if CFGx.DS_UPD_EN is enabled. It is written to the DSTAT register
location of the LLI pointed to by the previously saved LLPx.LOC register.The end-of-
block interrupt, int_block, is generated after the write-back of the control and status
registers has completed.
Note: The write-back location for the control and status registers is the LLI pointed to
by the previous value of the LLPx.LOC register, not the LLI pointed to by the current
value of the LLPx.LOC register.

22.The GPDMA does not wait for the block interrupt to be cleared, but continues and
fetches the next LLI from the memory location pointed to by the current LLP register
and automatically reprograms the SAR, CTL, and LLP channel registers. The DAR
register is left unchanged. The DMA transfer continues until the GPDMA samples
that the CTL and LLP registers at the end of a block transfer match those described
in Row 1 or Row 5 of Table 5-8 (as discussed earlier). The GPDMA then knows that
the previously transferred block was the last block in the DMA transfer.

The GPDMA transfer might look like that shown in Figure 5-36. Note that the destination
address is decrementing.

Address of Address of
Source Layer Destination Layer
Block2

SAR(Z) —=
Block1 Block2

T~ | Biockl

SAR(1) —= - DAR(1)
Block0

-4 DAR(2)

Block0

p
/ = DAR(D)
SAR(0) -

Source Blocks Destination Blocks

Figure 5-36 Multi-Block DMA Transfer with Linked List Source Address and
Contiguous Destination Address

Reference Manual 5-69 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

The DMA transfer flow is shown in Figure 5-37.

Block-complete complete
interrupt generated here

Transfer complete
interrupt generated here

Channel enabled by SW

A

LLI fetch

v

HW reprograms DARX, CTLx and LLPx

v

Block transfer

v

Source/destination status fetch

v

Write-back of control and source/
destination status to LLI

- »

Is the GPDMA in rowl

Channel disabled by HW

Figure 5-37 DMA Transfer Flow for Source Address Auto-Reloaded and Linked
List Destination Address

5.3.3.7 Programming Example for Linked List Multi-Block Transfer
The flow diagram in Figure 5-38 shows an overview of programming the DMA.

Reference Manual
GPDMA, V1.1

5-70

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

ChEnReg

Clear pending
interrupts

Wite to
DONE bit

Write to BLOCK_TS to

set block transfer size

Write to LLP_SRC_EN,
LLP_DST_EM to set
block chaining for
sourardagtinati

Write to HS_SEL_SRC,
HS_SEL_DST o set
source/destination
handshaking interface

!

Write to TT_FC to
set transfer type and
flow control

'

Wirite to
SRC_TR_WIDTH to
set source transfer

Hardware
handshaking
enabled

LOCK_B
Bus Lock bit
set

Lock_cH
Channef Lock
bit set

Write to SRC_PER,

interface

DEST_PER to assign
hardware handshaking

Set Bus Lock
Level duration
LOCK_B_L

Set Channel
Lock Level
duration
LOCK_CH_L

Write to FIFO_EMPTY bit,

Write to S5_UPD_EN,

width DS_UPD_EN to set
destination Status
l Update Enable
Write to

DST_TR_WIDTH to set
destination transfer
width

!

Write to SMS/DMS to
identify AHB layer for
source/destination

!

Wite to SINC/DINC for
incrementing address
for source/destination

]

Write to SRC_MSIZE,
DEST_MSIZE to set
saurce/destination burst

transaction length

!

Write SRC_GATHER_EN
DST_SCATTER_EN lo set
source/destination gather

Write to Protection
Contral bit PROTCTL

Write to FIFO_MODE
select bit and Flow Control
Mode bit FCMODE

:

Write to RELOAD_SRC,
RELOAD_DST to set
automatid source/
destination Reload

I

Write to MAX_ABRST to
set Maximum AMBA
Burst Length

:

enable bit

.

Write to SRC_HS_POL,
DST_HS_POL to set
source/destination

Polarity

Write to INT_EN to set
Interrupt Enable bit

l

CH_SUSP Channel
Suspend bit and
CH_PRIOR Chanmel
Priority bit

}

Set LLPx register
locations of all
LLI entries

|

Set SAR/DARx
register locations

of all LLI entries

Scatter S
enabled
N

Program
SGRx
register

Program
DSRx
register

Gather
enabled
N
Clear pending
interrupts
Write to ChEnReg to
enable DW_ahb_dmac

Figure 5-38 Flowchart for DMA Programming Example

This section explains the step-by-step programming of the GPDMA. The example
demonstrates row 10 of Table 5-8 for Multi-Block Transfer with Linked List for Source

Reference Manual
GPDMA, V1.1

5-71

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

and Linked List for Destination. This example uses the GPDMA to move four blocks of
contiguous data from source to destination memory using the Linked List feature.

1. Set up the chain of Linked List items — otherwise known as block descriptors — in
memory. Write the control information in the LLI.CTLXx register location of the block
descriptor for each LLI in memory for Channel 1. In the LLI.CTLx register, the
following is programmed:

a) Set up the transfer type for a memory-to-memory transfer:
-ctlx[22:20] = 000;

b) Set up the transfer characteristics:
1. Transfer width for the source in the SRC_TR_WIDTH field
-ctIx[6:4] = 001;

2. Transfer width for the destination in the DST_TR_WIDTH field

- ctIx[3:1] = 001;

3. Source master layer in the SMS field where the source resides

- ctIx[26:25] = 00;

4. Destination master layer in the DMS field where the destination resides
- ctIx[24:23] = 00;

5. Incrementing address for the source in the SINC field

ctix[10:9] = 00;
6. Incrementing address for the destination in the DINC field
ctIx[8:7] = 00;
2. Write the channel configuration information into the CFGx register for Channel 1:
a) HS_SEL_SRC/HS_SEL_DST bits select which of the handshaking interfaces—
hardware or software—is active for source requests on this channel.
- cfgx[11] = O;
- cfgx[10] = O;
These settings are ignored because both the source and destination are memory
types
b) If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination
peripheral by programming the SRC_PER and DEST_PER bits:
- cfgx[46:43] = 0;
- cfgx[42:39] = 0;
These settings are ignored because both the source and destination are memory
types.
3. The following For loop, shown as a programming example, sets the following:
a) LLI.LLPx register locations of all LLI entries in memory (except the last) to non-
zero and point to the base address of the next Linked List Iltem
b) LLI.SARX/LLI.DARX register locations of all LLI entries in memory point to the start
source/destination block address preceding that LLI fetch. The For statement
below configures the LLPx entries:
for(i=0 ; 1 < 4 ; i=i+l) begin

Reference Manual 5-72 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

if (i == 3)IIpx = 0; // end of LLI
elsellpx = Ilp_addr + 20; // start of next LLI

//-: Program SAR"AHB_MASTER.write(O, 11p_addr, sarx,
AhbWord32Attrb, handle[0]);

//-: Program DAR"AHB_MASTER.write(O, (llp_addr + 4), darx,
AhbWord32Attrb, handle[0]);

//-- Program LLP"AHB_MASTER.write(O, (llp_addr + 8), Ilpx,
AhbWord32Attrb, handle[0]);

//-: Program CTL"AHB_MASTER.write(0, (llp_addr + 12),
ctix[31:0], AhbWord32Attrb, handle[0]);"AHB MASTER.write(O,
(11p_addr + 16), ctlx[63:32], AhbWord32Attrb, handle[0]);//
update pointersllp_addr = llp_addr + 20; // start of next LLI
// 4 16-bit words each with scatter/gather interval in each
block
// (will work only with scatter_gather count of 2)
sarx = sarx + 24;
darx = darx + 24;
end
4. If Gather is enabled (CTL.SRC_GATHER_EN = 1), program the SGRXx register for
Channel 1.
5. If Scatter is enabled (CTL.DST_SCATTER_EN = 1) program the DSRXx register for
Channel 1.
6. Clear any pending interrupts on the channel from the previous DMA transfer by
writing to the Interrupt Clear registers.
7. Finally, enable the channel by writing a 1 to the CHENREG.CH_EN bit; the transfer
is performed

Reference Manual 5-73 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.34 Abnormal Transfer Termination

A GPDMA DMA transfer may be terminated abruptly by software by clearing the channel
enable bit, CHENREG.CH_EN or by clearing the global enable bit in the GPDMA
Configuration Register (DMACFGREG]I0]).

If a transfer is in progress while a channel is disabled, abnormal transfer termination and
data corruption occurs. Also the transfer acknowledge may be lost. Therefore this must
be avoided.

Attention: Disabling a channel via software prior to completing a transfer is not
supported.

5.4 Power, Reset and Clock

The GPDMA unit is inside the power core domain, therefore no special considerations
about power up or power down sequences need to be taken. For an explanation about
the different power domains, please address the SCU (System Control Unit) chapter.

Additionally, if a GPDMA unit is not needed, it can be set in reset via the
PRSET2.DMAYRS bhitfield (address the SCU chapter for a full description).
The clock used for the GPDMA unit is described on the SCU chapter as fy,. Please

address the specific section under the SCU chapter for a detailed description on the
clock configuration schemes.

5.5 Initialization and System Dependencies

The generic initialization sequence for an application that is using the GPDMA, should

be the following:

15 Step: Release reset of the GPDMA, via the specific SCU bitfield on the PRCLR2

register.

2"d Step: If the GPDMA is already under use (step 1 was not performed) do the following

steps:

< read the channel Enable register to choose a free channel, CHENREG. Clear also
any pending requests of the specific channel, by writing into the CLEARTFR,
CLEARBLOCK, CLEARSRCTRAN, CLEARDSTTRAN and CLEARERR

» confirm that all the interrupts have been cleared via the Status and RAW registers.

3" Step: Configure the GPDMA channels accordingly with the wanted transfer type:

« Configure the starting source address and starting destination address, on the SAR
and DAR, respectively.

« Configure the type of transfer that are going to be used via the LLP, CTL and CFG
registers.

4" Step: Enable the GPDMA channel, by setting the specific bitfield on the CHENREG.

Reference Manual 5-74 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

5" Step: Configure the DLR (DMA Line Router) block to map the DMA requests from
the peripherals to the wanted DMA request lines (if not previously done).

6" Step: Configure the peripherals that are linked with DMA requests.
7" Step: Enable the specific Service requests on the peripheral blocks.
8" Step: Start the peripheral(s)

Note: This is a generic channel initialization example. Please address Section 5.3 for a
complete description and examples of how to control the complete flow for a
GPDMA channel.

Reference Manual 5-75 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

5.6 Registers
This chapter includes information on how to program the GPDMA.

Notes

1. There are references to software parameters throughout this chapter. The software
parameters are the field names in each register description table and are prefixed by
the register name; for example, the Block Transfer Size field in the Control register
for channel x of GPDMAQO is designated as "GPDMAO_CTLxH.BLOCK_TS”

Table 5-9 Registers Address Space

Module Base Address End Address Note
GPDMAO_CHO 5001 4000, 5001 4054,
GPDMAO_CH1 5001 4058, 5001 40ACy,
GPDMAOQ_CH2 5001 40B0,, 5001 4104,
GPDMAO_CHS3 5001 4108, 5001 415C,
GPDMAO_CH4 5001 4160, 5001 41B4,,
GPDMAO_CH5 5001 41B8,, 5001 420C,
GPDMAO_CH®6 5001 4210, 5001 4264,
GPDMAOQ_CH7 5001 4268,, 5001 42BC
GPDMAO 5001 42C0y 5001 7FFF
GPDMA1_CHO 5001 8000, 5001 8054,
GPDMA1 _CH1 5001 8058, 5001 80AC,
GPDMA1_CH2 5001 80B0, 5001 8104,
GPDMA1_CH3 5001 8108, 5001 815Cy
GPDMA1 5001 82C0y, 5001 FFFF

Table 5-10 Register Overview

Short Name Description Offset | Access Mode | Description
Addr. 'Read |write |S€€

ChannelRegisters

SARX Source Address Register 00004+ |U, PV |U, PV | Page 5-83
x*58,,
DARX Destination Address 0008,+ |U, PV |U, PV | Page 5-84
Register x*58,
Reference Manual 5-76 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

Gafineon.

Table 5-10 Reg

XMC4500

XMC4000 Family

ister Overview (cont'd)

General Purpose DMA (GPDMA)

Short Name Description Offset | Access Mode | Description
Addr. Read |write | Se€

Control Registers

CTLxH Control Register High 001C, |U,PV |U, PV |Page 5-88
+ X*5Cy

CTLxL Control Register Low 0018,+ |U, PV |U, PV | Page 5-90
x*58,

LLPx Linked List Pointer Register | 0010,+ |U, PV |U, PV |Page 5-86
x*58,

SSTATX Source Status Register 00204+ |U, PV | U, PV | Page 5-97
x*58,,

DSTATX Destination Status Register |0028,+ |U, PV |U, PV | Page 5-98
x*58,

SSTATARX Source Status Register 00304+ |U, PV | U, PV | Page 5-99
x*58,

DSTATARX Destination Status Register |0038,+ |U, PV | U, PV | Page 5-100
x*58,

CFGxH Configuration Register High | 0044,+ |U, PV | U, PV | Page 5-101
X*5Cy

CFGxL Configuration Register Low |0040,+ |U, PV |U, PV | Page 5-106
x*58,

SGRXx Source Gather Register 0048,+ |U, PV |U, PV | Page 5-113
x*58,

DSRx Destination Scatter Register | 0050+ |U, PV | U, PV | Page 5-114
x*58,

Interrupt Registers

RAW* with Interrupt Raw Status 02C0, - |U, PV | U, PV | Page 5-117

*TFR, Registers 02EO0y

*BLOCK,

*SRCTRAN,

*DSTTRAN,

*ERR

Reference Manual 5-77 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500

XMC4000 Family

General Purpose DMA (GPDMA)

Table 5-10 Register Overview (cont'd)
Short Name Description Offset | Access Mode | Description
Addr. IRead |write | Se€

STATUS* with Interrupt Status Registers | 02E8,, - |U, PV |U, PV |Page 5-120

*TFR, 0308,

*BLOCK,

*SRCTRAN,

*DSTTRAN,

*ERR

MASK* with Interrupt Mask Registers 03104- |U, PV |U, PV |Page 5-122

*TFR, 0330,

*BLOCK,

*SRCTRAN,

*DSTTRAN,

*ERR

CLEAR* with Interrupt Clear Registers 0338, - |U, PV |U, PV | Page 5-125

*TFR, 0358,

*BLOCK,

*SRCTRAN,

*DSTTRAN,

*ERR

STATUSINT Combined Interrupt Status | 0360, |U, PV |U, PV |Page 5-126
Register

Software Handshaking Registers

REQSRCREG Source Software 0368, |U,PV |U, PV |Page 5-128
Transaction Request
Register

REQDSTREG Destination Software 0370, |U,PV |U, PV |Page 5-129
Transaction Request
Register

SGLREQSRCR | Single Source Transaction |0378, |U,PV |U, PV |Page 5-131

EG Request Register

SGLREQDSTR | Single Destination 0380, |U,PV |U, PV |Page5-132

EG Transaction Request
Register

LSTSRCREG Last Source Transaction 0388, |U,PV |U, PV |Page 5-134
Request Register

Reference Manual 5-78 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500

XMC4000 Family

Table 5-10 Register Overview (cont'd)

General Purpose DMA (GPDMA)

Short Name Description Offset | Access Mode | Description
Addr. Read |write |Se€
LSTDSTREG Last Destination 0390, |U,PV |U, PV |Page 5-135
Transaction Request
Register
Configuration and Channel Enable Registers
DMACFGREG | Configuration Register 0398, |U,PV |U, PV |Page 5-80
CHENREG Channel Enable Register 03A0, |U,PV |U, PV |Page 5-80
Miscellaneous GPDMA Registers
ID GPDMA Module ID 03A8, |U,PV |U, PV |Page 5-138
Reserved Reserved 03B0,- [NBE | nBE
03F4,,
TYPE GPDMA Component Type |[03F8, |U, PV |U, PV |Page 5-138
VERSION GPDMA Component 03FC, |U, PV |U, PV |Page 5-139
Version
Reserved Reserved 0400, - [NBE |nBE
TFFC,
Reference Manual 5-79 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.6.1 Configuration and Channel Enable Registers

DMACFGREG

This register is used to enable the GPDMA, which must be done before any channel
activity can begin.

GPDMAO_DMACFGREG

GPDMA Configuration Register (398, Reset Value: 0000 0000,
GPDMA1_DMACFGREG
GPDMA Configuration Register (398, Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

T T T T T T T

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMA
0 _EN
1 1 1 1 1 r 1 1 W
Field Bits |Type |Description
0 [31:2] |r Reserved
DMA_EN |0 rw GPDMA Enable hit.

0y GPDMA Disabled
1; GPDMA Enabled.

If the global channel enable bit is cleared while any channel is still active, then
DMACFGREG.DMA_EN still returns 1 to indicate that there are channels still active until
hardware has terminated all activity on all channels, at which point the
DMACFGREG.DMA_EN bit returns 0.

CHENREG

This is the GPDMA “Channel Enable Register”. If software needs to set up a new
channel, then it can read this register in order to find out which channels are currently
inactive; it can then enable an inactive channel with the required priority.

All bits of this register are cleared to 0 when the global GPDMA channel enable bit,
DMACFGREGIO0], is 0. When the global channel enable bit is O, then a write to the
CHENRERG register is ignored and a read will always read back 0.

Reference Manual 5-80 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

The channel enable bit, CHENREG.CH_EN, is written only if the corresponding channel
write enable bit, CHENREG.CH_EN_WE, is asserted on the same AHB write transfer.
For example, writing hex 01x1 writes a 1 into CHENREG[0], while CHENREG[7:1]
remains unchanged. Writing hex 00xx leaves CHENREG[7:0] unchanged. Note that a
read-modified write is not required.

GPDMAO_CHENREG

GPDMA Channel Enable Register (3A0,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 WE_CHx CHx
1 1 1 } 1 1 1 1 1 1 1 1 1 V\V 1 1 n\,v 1
Field Bits Type |Description
0 [31:16] r Reserved
WE_CHx |[[15:8] w Channel enable write enable
CHXx [7:0] w Enables/Disables the channel

Setting this bit enables a channel; clearing this bit
disables the channel.

O0g Disable the Channel

1z Enable the Channel

The CHENREG.CH_EN bit is automatically cleared by
hardware to disable the channel after the last AMBA
transfer of the DMA transfer to the destination has
completed. Software can therefore poll this bit to
determine when this channel is free for a new DMA
transfer.

GPDMA1_CHENREG

GPDMA Channel Enable Register (3A0,) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

T T T T T T
0 WE_CHx 0 CHx
1 1 1 1 1 1 1 1 1 1 1 1 1 1 Il Il Il Il Il Il Il
r w r rw
Reference Manual 5-81 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

[31:12]

—

Reserved

WE_CHx

[11:8]

Channel enable write enable

[7:4]

—

Reserved

CHXx

[3:0]

Enables/Disables the channel

Setting this bit enables a channel; clearing this bit
disables the channel.

0g Disable the Channel

1z Enable the Channel

The CHENREG.CH_EN bit is automatically cleared by
hardware to disable the channel after the last AMBA
transfer of the DMA transfer to the destination has
completed. Software can therefore poll this bit to
determine when this channel is free for a new DMA
transfer.

5.6.2

Channel Registers

The SAR, DAR, LLP, CTL, and CFG channel registers should be programmed prior to
enabling the channel. However, if an LLI update occurs before commencing data
transfer, SAR and DAR may not need to be programmed prior to enabling the channel;
refer to rows 6 to 10 in Table 5-8 . It is an illegal register access (see Section 5.3.1)
when a write to the SAR, DAR, LLP, CTL, SSTAT, DSTAT, SSTATAR, DSTATAR,
SGR, or DSR registers occurs when the channel is enabled.

Reference Manual
GPDMA, V1.1

5-82 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

SAR

The starting source address is programmed by software before the DMA channel is
enabled, or by an LLI update before the start of the DMA transfer. While the DMA transfer
is in progress, this register is updated to reflect the source address of the current AHB
transfer.

Note: You must program the SAR address to be aligned to CTL.SRC_TR_WIDTH.

For information on how the SARX is updated at the start of each DMA block for multi-
block transfers, refer to Table 5-8.

GPDMAO_CHx_SAR (x=0-7)
Source Address Register for Channel x
(00, + x*58,,) Reset Value: 0000 0000,
GPDMA1_CHx_SAR (x=0-3)
Source Address Register for Channel x
(00, + x*58,,) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

SAR
L L L L 1 1 1 1 1 1 1 1 1 1 1 r\IIV 1 1 1 1 1 1 1 1 1 1 1 L L L L
Field Bits |Type |Description
SAR [31:0] |rw Current Source Address of DMA transfer

Updated after each source transfer. The SINC field in the
CTL register determines whether the address increments,
decrements, or is left unchanged on every source transfer
throughout the block transfer.

Reset: 0y

Reference Manual 5-83 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

DAR

The starting destination address is programmed by software before the DMA channel is
enabled, or by an LLI update before the start of the DMA transfer. While the DMA transfer
is in progress, this register is updated to reflect the destination address of the current
AHB transfer.

Note: You must program the DAR to be aligned to CTL.DST_TR_WIDTH.

GPDMAO_CHx_DAR (x=0-7)
Destination Address Register for Channel x
(08, + x*58,,) Reset Value: 0000 0000,
GPDMA1_CHx_DAR (x=0-3)
Destination Address Register for Channel x

(08, + x*58,)) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
DAR

L B
Field Bits |Type |Description
DAR [31:0] |rw Current Destination address of DMA transfer

Updated after each destination transfer. The DINC field in
the CTL register determines whether the address
increments, decrements, or is left unchanged on every
destination transfer throughout the block transfer.

Reset: 0y

Hardware Realignment of SAR/DAR Registers

In a particular circumstance, during contiguous multi-block DMA transfers, the
destination address can become misaligned between the end of one block and the start
of the next block. When this situation occurs, GPDMA re-aligns the destination address
before the start of the next block.

Consider the following example. If the block length is 9, the source transfer width is 16
(halfword), and the destination transfer width is 32 (word) — the destination is
programmed for contiguous block transfers — then the destination performs four word
transfers followed by a halfword transfer to complete the block transfer to the destination.
At the end of the destination block transfer, the address is aligned to a 16-bit transfer as
the last AMBA transfer is halfword. This is misaligned to the programmed transfer size
of 32 bits for the destination. However, for contiguous destination multi-block transfers,
GPDMA re-aligns the DAR address to the nearest 32-bit address (next 32-bit address

Reference Manual 5-84 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

upwards if address control is incrementing or next address downwards if address control
is decrementing).

The destination address is automatically realigned by the GPDMA in the following DMA
transfer setup scenario:

« Contiguous multi-block transfers on destination side, AND

e DST_TR_WIDTH > SRC_TR_WIDTH, AND

e« (BLOCK_ TS * SRC_TR_WIDTH)/DST_TR_WIDTH != integer (where
SRC_TR_WIDTH, DST_TR_WIDTH is byte width of transfer)

Reference Manual 5-85 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

LLP

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

You need to program this register to point to the first Linked List Item (LLI) in memory
prior to enabling the channel if block chaining is enabled.

GPDMAO_CHx_LLP (x = 0-1)
Linked List Pointer Register for Channel x

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

(10, + X*58,))

Reset Value: 0000 0000,

LOC

0

I
r

Field Bits |Type |Description

LOC [31:2] |rw Starting Address In Memory
of next LLI if block chaining is enabled. Note that the two
LSBs of the starting address are not stored because the
address is assumed to be aligned to a 32-bit boundary.
LLI accesses are always 32-bit accesses (Hsize = 2)
aligned to 32-bit boundaries and cannot be changed or
programmed to anything other than 32bit.

0 [1:0] |r Reserved

The LLP register has two functions:

e The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA
transfer — single or multi-block. Table 5-8 shows how the method of updating the
channel registers is a function of LLP.LOC != 0. If LLP.LOC is set to 0, then transfers
using linked lists are not enabled. This register must be programmed prior to enabling
the channel in order to set up the transfer type.

e LLP.LOC !=0 contains the pointer to the next LLI for block chaining using linked lists.
The LLPx register can also point to the address where write-back of the control and
source/destination status information occur after block completion.

Reference Manual
GPDMA, V1.1

5-86

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

CTL

These registers contain fields that control the DMA transfer.

The CTLxH and CTLxL registers are part of the block descriptor (linked list item - LLI)
when block chaining is enabled. It can be varied on a block-by-block basis within a DMA
transfer when block chaining is enabled.

If status write-back is enabled, the upper control register, CTLxH, is written to the control
register location of the LLI in system memory at the end of the block transfer.

Note: You need to program these registers prior to enabling the channel.

Reference Manual 5-87 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

CTLxH
Control Register High.

GPDMAO_CHx_CTLH (x=0-7)
Control Register High for Channel x
(1Cy + x*58,,) Reset Value: 0000 0002,
GPDMA1_CHx_CTLH (x=0-3)
Control Register High for Channel x

(1C, + x*58,) Reset Value: 0000 0002,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T T T T D T T T T T T T T T T T

0 8 BLOCK_TS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 E | | |
r w 'w
Field Bits Type |Description
0 [31:13] |r Reserved
Reference Manual 5-88 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

DONE 12 rw Done bit

If status write-back is enabled, the upper word of the
control register, CTLX[63:32], is written to the control
register location of the Linked List Item (LLI) in system
memory at the end of the block transfer with the done
bit set.

Software can poll the LLI CTLX.DONE bit to see when
a block transfer is complete. The LLI CTLX.DONE bit
should be cleared when the linked lists are set up in

memory prior to enabling the channel.

LLI accesses are always 32-bit accesses (Hsize = 2)
aligned to 32-bit boundaries and cannot be changed
or programmed to anything other than 32-bit.

BLOCK_TS [11:0] |rw Block Transfer Size

When the GPDMA is the flow controller, the user
writes this field before the channel is enabled in order
to indicate the block size. The number programmed
into BLOCK_TS indicates the total number of single
transactions to perform for every block transfer; a
single transaction is mapped to a single AMBA beat.
Width: The width of the single transaction is
determined by CTL.SRC_TR_WIDTH. Once the
transfer starts, the read-back value is the total number
of data items already read from the source peripheral,
regardless of what is the flow controller.

Reference Manual 5-89 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)
CTLxL

Control Register Low.

GPDMAO_CHx_CTLL (x=0-1)
Control Register Low for Channel x

(18, + x*58,)) Reset Value: 0030 4801,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T T T T T T T DST SRC
LLP_[LLP_ _SC|_GA|SRC
0 SRC |DST 0 TT_FC 0 |ATT|THE|_MSI
_EN|_EN ER_|R_E| ZE
1 1 1 | | EN N
r rw rw r 'w r 'w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRCEMSIZ DEST_MSIZE SINC DINC [SRC_TR_WIDTH|DST_TR_WIDTH IEL—
‘ I rw I I’\IN I'\IN ‘ 'w ‘ ‘ 'w ‘ w
Field Bits Type |Description
0 [31:29] |r Reserved
LLP_SRC_EN |28 rw Linked List Pointer for Source Enable
Block chaining is enabled on the source side only if
the LLP_SRC_EN field is high and LLPx.LOC is non-
zero.
LLP_DST_EN |27 rw Linked List Pointer for Destination Enable
Block chaining is enabled on the destination side only
ifthe LLP_DST_EN field is high and LLPx.LOC is non-
zero.
0 [26:23] |r Reserved
TT_FC [22:20] | rw Transfer Type and Flow Control
The following transfer types are supported.
*« Memory to Memory
e Memory to Peripheral
« Peripheral to Memory
e Peripheral to Peripheral
Flow Control can be assigned to the GPDMA, the
source peripheral, or the destination peripheral.
Table 5-13 lists the decoding for this field.
Reference Manual 5-90 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

0

19

Reserved

DST_SCATTE
R_EN

18

w

Destination scatter enable

Og Scatter disabled

1; Scatter enabled

Scatter on the destination side is applicable only when
the DINC bit indicates an incrementing or
decrementing address control.

SRC_GATHE
R_EN

17

'w

Source gather enable

0 Gather disabled

1z Gather enabled

Gather on the source side is applicable only when the
SINC bit indicates an incrementing or decrementing
address control.

SRC_MSIZE

[16:14]

Source Burst Transaction Length

Number of data items, each of width
SRC_TR_WIDTH, to be read from the source every
time a source burst transaction request is made from
either the corresponding hardware or software
handshaking interface. Table 5-11 lists the decoding
for this field;

Note: This value is not related to the AHB bus master
HBURST bus.

DEST_MSIZE

[13:11]

Destination Burst Transaction Length

Number of data items, each of width
DST_TR_WIDTH, to be written to the destination
every time a destination burst transaction request is
made from either the corresponding hardware or
software handshaking interface. Table 5-11 lists the
decoding for this field.

Note: This value is not related to the AHB bus master
HBURST bus.

Reference Manual

GPDMA, V1.1

5-91 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits

Type

Description

SINC [10:9]

Source Address Increment

Indicates whether to increment or decrement the
source address on every source transfer. If the device
is fetching data from a source peripheral FIFO with a
fixed address, then set this field to "No change".

00g Increment

01y Decrement

1xg No change

Note: Incrementing or decrementing is done for
alignment to the next CTLx.SRC_TR_WIDTH
boundary.

DINC [8:7]

w

Destination Address Increment

Indicates whether to increment or decrement the
destination address on every destination transfer. If
your device is writing data to a destination peripheral
FIFO with a fixed address, then set this field to "No
change".

00z Increment

01; Decrement

1xz No change

Note: Incrementing or decrementing is done for
alignment to the next CTLx.DST_TR_WIDTH
boundary.

SRC_TR_WID |[6:4]
TH

w

Source Transfer Width
Table 5-12 lists the decoding for this field.

DST_TR_WID |[[3:1]
TH

w

Destination Transfer Width
Table 5-12 lists the decoding for this field.

INT_EN 0

w

Interrupt Enable Bit

If set, then all interrupt-generating sources are
enabled. Functions as a global mask bit for all
interrupts for the channel; Raw* interrupt registers still
assert if INT_EN = 0.

Reference Manual
GPDMA, V1.1

5-92 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

GPDMAO_CHx_CTLL (x=2-7)
Control Register Low for Channel x
(18, + x*58,)) Reset Value: 0030 4801,
GPDMA1_CHx_CTLL (x=0-3)
Control Register Low for Channel x

(18, + x*58,)) Reset Value: 0030 4801,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T T T T T T T T T T T T SRC
0 TT_FC 0 _MsI

1 1 1 1 1 1 1 1 ZE

r 'w r w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T T T
SRC—EMSIZ DEST_MSIZE SINC DINC |SRC_TR_WIDTH|DST_TR_WIDTH IEL—

I I I I 1 1 1 1 I
w w 'w 'w 'w 'w

Field Bits Type |Description

0 [31:23] Reserved

TT_FC [22:20] | rw Transfer Type and Flow Control

The following transfer types are supported.

*« Memory to Memory

* Memory to Peripheral

* Peripheral to Memory

« Peripheral to Peripheral

Flow Control can be assigned to the GPDMA, the
source peripheral, or the destination peripheral.
Table 5-13 lists the decoding for this field.

=

0 [19:17] Reserved

-

SRC_MSIZE |[16:14] |rw Source Burst Transaction Length

Number of data items, each of width
SRC_TR_WIDTH, to be read from the source every
time a source burst transaction request is made from
either the corresponding hardware or software
handshaking interface. Table 5-11 lists the decoding

for this field.
Note: This value is not related to the AHB bus master
HBURST bus.
Reference Manual 5-93 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

DEST_MSIZE

[13:11]

Destination Burst Transaction Length

Number of data items, each of width
DST_TR_WIDTH, to be written to the destination
every time a destination burst transaction request is
made from either the corresponding hardware or
software handshaking interface. Table 5-11 lists the
decoding for this field.

Note: This value is not related to the AHB bus master
HBURST bus.

SINC

[10:9]

Source Address Increment

Indicates whether to increment or decrement the
source address on every source transfer. If the device
is fetching data from a source peripheral FIFO with a
fixed address, then set this field to "No change".

005 Increment

01y Decrement

1xg No change

Note: Incrementing or decrementing is done for
alignment to the next CTLx.SRC_TR_WIDTH
boundary.

DINC

[8:7]

Destination Address Increment

Indicates whether to increment or decrement the
destination address on every destination transfer. If
your device is writing data to a destination peripheral
FIFO with a fixed address, then set this field to "No
change".

005 Increment

01y Decrement

1xz No change

Note: Incrementing or decrementing is done for
alignment to the next CTLx.DST_TR_WIDTH
boundary.

SRC_TR_WID
TH

[6:4]

Source Transfer Width
Table 5-12 lists the decoding for this field.

Reference Manual

GPDMA, V1.1

5-94 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

DST_TR_WID |[[3:1] rw Destination Transfer Width

TH Table 5-12 lists the decoding for this field.

INT_EN 0 rw Interrupt Enable Bit
If set, then all interrupt-generating sources are
enabled. Functions as a global mask bit for all
interrupts for the channel; Raw* interrupt registers still
assert if INT_EN = 0.

Table 5-11 CTLX.SRC_MSIZE and CTLx.DST_MSIZE Field Decoding

CTLX.SRC_MSIZE /
CTLx.DEST_MSIZE

Number of data items to be transferred(of width
CTLXx.SRC_TR_WIDTH or CTLx.DST_TR_WIDTH)

000g 1

001, 4

0104 8

others reserved

Table 5-12 CTLXx.SRC_TR_WIDTH and CTLx.DST_TR_WIDTH Field Decoding
CTLX.SRC_TR_WIDTH / Size (bits)

CTLx.DST_TR_WIDTH

000g 8

0014 16

010g 32

others reserved

Table 5-13 CTLx.TT_FC Field Decoding

CTLXx.TT_FC Field Transfer Type Flow Controller
0004 Memory to Memory GPDMA

0015 Memory to Peripheral GPDMA

0104 Peripheral to Memory GPDMA

011y Peripheral to Peripheral GPDMA

100g Peripheral to Memory Peripheral

1015 Peripheral to Peripheral Source Peripheral

Reference Manual
GPDMA, V1.1

5-95

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)
Table 5-13 CTLx.TT_FC Field Decoding (cont'd)

CTLX.TT_FC Field Transfer Type Flow Controller

110g Memory to Peripheral Peripheral

111, Peripheral to Peripheral Destination Peripheral
Reference Manual 5-96 V1.0, 2012-02
GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

SSTAT

After each block transfer completes, hardware can retrieve the source status information
from the address pointed to by the contents of the SSTATAR register. This status
information is then stored in the SSTATX register and written out to the SSTATX register
location of the LLI before the start of the next block.

Note: This register is a temporary placeholder for the source status information on its
way to the SSTATX register location of the LLI. The source status information
should be retrieved by software from the SSTATX register location of the LLI, and
not by a read of this register over the GPDMA slave interface.

GPDMAO_CHx_SSTAT (x=0-1)
Source Status Register for Channel x

(20, + x*58,)) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
SSTAT

1 1 1 1 1 1 1 1 1 1 1 r\I,\I 1 1 1
Field Bits |Type |Description

SSTAT [31:0] |rw Source Status
retrieved by hardware from the address pointed to by the
contents of the SSTATAR register.

Reference Manual 5-97 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

DSTAT

After the completion of each block transfer, hardware can retrieve the destination status
information from the address pointed to by the contents of the DSTATAR register. This
status information is then stored in the DSTATX register and written out to the DSTATX
register location of the LLI before the start of the next block. This register does only exist
for channels 0 and 1, for other channels the read-back value is always 0.

General Purpose DMA (GPDMA)

Note: This register is a temporary placeholder for the destination status information on
its way to the DSTATX register location of the LLI. The destination status
information should be retrieved by software from the DSTATX register location of
the LLI and not by a read of this register over the GPDMA slave interface.

GPDMAO_CHx_DSTAT (x=0-1)
Destination Status Register for Channel x

(28, + x*58,)) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

DSTAT
1 1 1 1 1 1 1 1 1 1 1 r\I,\I 1 1 1
Field Bits | Type |Description
DSTAT [31:0] [rw Destination Status

retrieved by hardware from the address pointed to by the
contents of the DSTATAR register.

Reference Manual

GPDMA, V1.1

5-98 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

SSTATAR

After the completion of each block transfer, hardware can retrieve the source status
information from the address pointed to by the contents of the SSTATARX register.

GPDMAO_CHx_SSTATAR (x=0-1)
Source Status Address Register for Channel x

(304 + x*58,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

SSTATAR

Field Bits Type |Description

SSTATAR | [31:0] rw Source Status Address

Pointer from where hardware can fetch the source status
information, which is registered in the SSTAT register
and written out to the SSTATX register location of the LLI
before the start of the next block.

Reference Manual 5-99 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

DSTATAR

After the completion of each block transfer, hardware can retrieve the destination status
information from the address pointed to by the contents of the DSTATARX register.

GPDMAO_CHx_DSTATAR (x=0-1)
Destination Status Address Register for Channel x

(38, + x*58,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
DSTATAR
L L L L 1 L L L L
'w

Field Bits Type |Description

DSTATAR |[31:0] |rw Destination Status Address

Pointer from where hardware can fetch the destination
status information, which is registered in the DSTAT
register and written out to the DSTATX register location of
the LLI before the start of the next block.

Reference Manual 5-100 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

CFG

These registers contain fields that configure the DMA transfer. The channel configuration
register remains fixed for all blocks of a multi-block transfer.

Note: You need to program this register prior to enabling the channel.

GPDMAO_CHx_CFGH (x=0-1)
Configuration Register High for Channel x
(44,, + x*58,)) Reset Value: 0000 0004,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ ' ' ' ' ' ss_|bs_ ‘ ‘ FIFO|
0 DEST PER SRC_PER UPD|UPD| PROTCTL | MO| =
_EN|_EN DE
r I'\IN I I I'\IN I rw rw ‘ rw ‘ rw rw

Field Bits Type | Description
0 [31:15] |r Reserved
Reset: 0y

DEST_PER |[14:11] |rw Destination Peripheral

Assigns a DLR line as hardware handshaking interface
to the destination of channel x if the
CFGLx.HS_SEL_DST field is O; otherwise, this field is
ignored. The channel can then communicate with the
destination peripheral connected to that interface
through the assigned hardware handshaking interface.

Note: For correct DMA operation, only one peripheral
(source or destination) should be assigned to the
same handshaking interface.

Reference Manual 5-101 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

SRC_PER

[10:7]

Source Peripheral

Assigns a DLR line as hardware handshaking interface
to the source of channel x if the CFGLx.HS_SEL_SRC
field is O; otherwise, this field is ignored. The channel
can then communicate with the source peripheral
connected to that interface through the assigned
hardware handshaking interface.

Note: For correct GPDMA operation, only one
peripheral (source or destination) should be
assigned to the same handshaking interface.

SS_UPD_EN

6

rw

Source Status Update Enable

Source status information is fetched only from the
location pointed to by the SSTATAR register, stored in
the SSTAT register and written out to the SSTAT
location of the LLI if SS_UPD_EN is high.

DS_UPD_EN

5

w

Destination Status Update Enable

Destination status information is fetched only from the
location pointed to by the DSTATAR register, stored in
the DSTAT register and written out to the DSTATX
location of the LLI if DS_UPD_EN is high.

PROTCTL

[4:2]

Protection Control

Used to drive the AHB HPROT[3:1] bus. The AMBA
Specification recommends that the default value of
HPROT indicates a non-cached, non-buffered,
privileged data access. The reset value is used to
indicate such an access. HPROT]O0] is tied high
because all transfers are data accesses, as there are
no opcode fetches.

There is a one-to-one mapping of these register bits to
the HPROT([3:1] master interface signals. Table 5-14
shows the mapping of bits in this field to the AHB
HPROT[3:1] bus.

Reference Manual

GPDMA, V1.1

5-102 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description
FIFO_MODE |1 w FIFO Mode Select
Determines how much space or data needs to be
available in the FIFO before a burst transaction request
is serviced.
Oy Space/data available for single AHB transfer of
the specified transfer width.
1z Data available is greater than or equal to half the
FIFO depth for destination transfers and space
available is greater than half the fifo depth for
source transfers. The exceptions are at the end of
a burst transaction request or at the end of a
block transfer.
FCMODE 0 rw Flow Control Mode

Determines when source transaction requests are
serviced when the Destination Peripheral is the flow
controller.

Og

1g

Source transaction requests are serviced when
they occur. Data pre-fetching is enabled.

Source transaction requests are not serviced until
a destination transaction request occurs. In this
mode, the amount of data transferred from the
source is limited so that it is guaranteed to be
transferred to the destination prior to block
termination by the destination. Data pre-fetching
is disabled.

Reference Manual

GPDMA, V1.1

5-103 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

GPDMAO_CHx_CFGH (x=2-7)

General Purpose DMA (GPDMA)

Configuration Register High for Channel x

GPDMA1_CHx_CFGH (x=0-3)

(44, + x*58,)) Reset Value: 0000 0004,

Configuration Register High for Channel x

31 30 29 28 27 26

(44,, + x*58,)) Reset Value: 0000 0004,

25 24 23 22 21 20 19 18 17 16

T T T T T

T T T T T T T

15 14 13 12

FIFO

L

0 DEST_PER

PROTCTL

FCM

ODE

DE

1 1 1 1 1 1

w

'w 'w

Field

Bits

Type

Description

0

[31:15]

—

Reserved

DEST_PER

[14:11]

Destination Peripheral

Assigns a DLR line as hardware handshaking interface
to the destination of channel x if the
CFGLx.HS_SEL_DST field is 0; otherwise, this field is
ignored. The channel can then communicate with the
destination peripheral connected to that interface
through the assigned hardware handshaking interface.

Note: For correct DMA operation, only one peripheral
(source or destination) should be assigned to the
same handshaking interface.

SRC_PER

[10:7]

Source Peripheral

Assigns a DLR line as hardware handshaking interface
to the source of channel x if the CFGLx.HS_SEL_SRC
field is O; otherwise, this field is ignored. The channel
can then communicate with the source peripheral
connected to that interface through the assigned
hardware handshaking interface.

Note: For correct GPDMA operation, only one

peripheral (source or destination) should be
assigned to the same handshaking interface.

Reference Manual

GPDMA, V1.1

5-104 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

0

[6:5]

Reserved

PROTCTL

[4:2]

rw

Protection Control

Used to drive the AHB HPROT[3:1] bus. The AMBA
Specification recommends that the default value of
HPROT indicates a non-cached, non-buffered,
privileged data access. The reset value is used to
indicate such an access. HPROTI0] is tied high
because all transfers are data accesses, as there are
no opcode fetches.

There is a one-to-one mapping of these register bits to
the HPROT[3:1] master interface signals. Table 5-14
shows the mapping of bits in this field to the AHB
HPROT[3:1] bus.

FIFO_MODE

1

'w

FIFO Mode Select

Determines how much space or data needs to be

available in the FIFO before a burst transaction request

is serviced.

Oy Space/data available for single AHB transfer of
the specified transfer width.

1z Data available is greater than or equal to half the
FIFO depth for destination transfers and space
available is greater than half the fifo depth for
source transfers. The exceptions are at the end of
a burst transaction request or at the end of a
block transfer.

FCMODE

rw

Flow Control Mode

Determines when source transaction requests are

serviced when the Destination Peripheral is the flow

controller.

Oz Source transaction requests are serviced when
they occur. Data pre-fetching is enabled.

1z Source transaction requests are not serviced until
a destination transaction request occurs. In this
mode, the amount of data transferred from the
source is limited so that it is guaranteed to be
transferred to the destination prior to block
termination by the destination. Data pre-fetching
is disabled.

Reference Manual

GPDMA, V1.1

5-105 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬁne0n XMC4000 Family

General Purpose DMA (GPDMA)

GPDMAO_CHx_CFGL (x=0-1)
Configuration Register Low for Channel x

(40, + x*58,)) Reset Value: 0000 OEXO,,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
REL | REL ' ' ' ' ' ' ' ‘ ‘ SRC|DST Loc
OAD|OAD _HS|_Hs|LOC
_DS| SR MAX_ABRST “PO| _PO|K B Kﬁc
T C 1 1 1 1 1 1 1 L L
rw rw w rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ ' HS_|HS '
—| oo~ |FIFO|CH_
LOCK_B_ [LOCK_CH| SEL | SEL "EM|SUS| CH_PRIOR 0
L L SR DS |- |7
Il 1 C T 1 Il
rw rw rw rw r rw rw r
Field Bits Type | Description
RELOAD D |31 w Automatic Destination Reload
ST The DAR register can be automatically reloaded from

its initial value at the end of every block for multi-block
transfers. A new block transfer is then initiated. For
conditions under which this occurs, refer to Table 5-8.

RELOAD_S |30 rw Automatic Source Reload

RC The SAR register can be automatically reloaded from
its initial value at the end of every block for multi-block
transfers. A new block transfer is then initiated. For
conditions under which this occurs, refer to Table 5-8.

MAX_ABRS |[29:20] |rw Maximum AMBA Burst Length

T Maximum AMBA burst length that is used for DMA
transfers on this channel. A value of 0 indicates that
software is not limiting the maximum AMBA burst length
for DMA transfers on this channel.

SRC_HS_PO |19 rw Source Handshaking Interface Polarity

L Og Active high

1z Active low

For information on this, refer to Section 5.2.3.

Reference Manual 5-106 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

DST_HS_PO |18 rw Destination Handshaking Interface Polarity

L 0z Active high
1z Active low
For information on this, refer to Section 5.2.3.

LOCK_B 17 w Bus Lock Bit
When active, the AHB bus master signal hlock is
asserted for the duration specified in
CFGLx.LOCK_B_L. For more information, refer to
Section 5.2.11.1.

LOCK_CH 16 w Channel Lock Bit
When the channel is granted control of the master bus
interface and if the CFGLx.LOCK_CH bit is asserted,
then no other channels are granted control of the
master bus interface for the duration specified in
CFGLx.LOCK_CH_L. Indicates to the master bus
interface arbiter that this channel wants exclusive
access to the master bus interface for the duration
specified in CFGLX.LOCK_CH_L.

LOCK_B_L |[15:14] |rw Bus Lock Level
Indicates the duration over which CFGLX.LOCK_B bit
applies.
005 Over complete DMA transfer
01; Over complete DMA block transfer
1xg Over complete DMA transaction

LOCK_CH_L |[13:12] | rw Channel Lock Level

Indicates the duration over which CFGLx.LOCK_CH bit
applies.

00; Over complete DMA transfer

01; Over complete DMA block transfer

1xg Over complete DMA transaction

Reference Manual

GPDMA, V1.1

5-107 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

HS_SEL_SR
C

11

rw

Source Software or Hardware Handshaking Select

This register selects which of the handshaking

interfaces - hardware or software - is active for source

requests on this channel.

Oy Hardware handshaking interface. Software-
initiated transaction requests are ignored.

1z Software handshaking interface. Hardware-
initiated transaction requests are ignored.

If the source peripheral is memory, then this bit is

ignored.

HS_SEL_DS
T

10

'w

Destination Software or Hardware Handshaking

Select

This register selects which of the handshaking

interfaces - hardware or software - is active for

destination requests on this channel.

0y Hardware handshaking interface. Software-
initiated transaction requests are ignored.

1z Software handshaking interface. Hardware-
initiated transaction requests are ignored.

If the destination peripheral is memory, then this bit is

ignored.

FIFO_EMPT
Y

9

Indicates if there is data left in the channel FIFO
Can be used in conjunction with CFGLx.CH_SUSP to
cleanly disable a channel.

1z Channel FIFO empty

Og Channel FIFO not empty

CH_SUSP

rw

Channel Suspend

Suspends all DMA data transfers from the source until
this bitis cleared. There is no guarantee that the current
transaction will complete. Can also be used in
conjunction with CFGLX.FIFO_EMPTY to cleanly
disable a channel without losing any data.

Og Not suspended.

1y Suspend DMA transfer from the source.

Reference Manual

GPDMA, V1.1

5-108 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

CH_PRIOR

[7:5]

Channel priority

A priority of 7 is the highest priority, and 0 is the lowest.
The value programmed to this field must be within 0 and
7. A programmed value outside this range will cause
erroneous behavior.

Reset: Channel Number

For example:

Chan0 = 0004

Chanl = 0015

[4:0]

=

Reserved

GPDMAO_CHx_CFGL (x=2-7)

Configuration Register Low for Channel x

(40, + x*58,))
GPDMA1_CHx_CFGL (x=0-3)
Configuration Register Low for Channel x

(40, + x*58,))

Reset Value: 0000 OEXO,

Reset Value: 0000 OEXO,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T T T T T T T T T T SRC DST
LOC
_HS|_HS|LOC
0 MAX_ABRST “Po| PO|K B Kﬁc
Il 1 1 1 1 1 1 1 L L
r rw rw rw rw rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
' HS_|HS '
—| oo~ |FIFO|CH_
LOCK_B_|LOCK_CH|SEL | SEL | _\Ic =l 4 PRIOR 0
L L _SR|DS |y 7p -
Il 1 C T 1 Il
rw rw rw rw r 'w w r
Field Bits Type | Description
0 [31:30] |r Reserved
MAX_ABRS [[29:20] | rw Maximum AMBA Burst Length
T Maximum AMBA burst length that is used for DMA

transfers on this channel. A value of 0 indicates that
software is not limiting the maximum AMBA burst length
for DMA transfers on this channel.

Reference Manual

GPDMA, V1.1

5-109 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description
SRC_HS PO |19 rw Source Handshaking Interface Polarity
L 0z Active high
1z Active low
For information on this, refer to Section 5.2.3.
DST_HS PO |18 w Destination Handshaking Interface Polarity
L O0g Active high
1; Active low
For information on this, refer to Section 5.2.3.
LOCK_B 17 w Bus Lock Bit
When active, the AHB bus master signal hlock is
asserted for the duration specified in
CFGLX.LOCK_B_L. For more information, refer to
Section 5.2.11.1.
LOCK_CH 16 rw Channel Lock Bit
When the channel is granted control of the master bus
interface and if the CFGLx.LOCK_CH bit is asserted,
then no other channels are granted control of the
master bus interface for the duration specified in
CFGLx.LOCK_CH_L. Indicates to the master bus
interface arbiter that this channel wants exclusive
access to the master bus interface for the duration
specified in CFGLX.LOCK_CH_L.
LOCK_B_L |[15:14] |rw Bus Lock Level
Indicates the duration over which CFGLX.LOCK_B bit
applies.
005 Over complete DMA transfer
01; Over complete DMA block transfer
1xg Over complete DMA transaction
LOCK_CH_L |[13:12] | rw Channel Lock Level

Indicates the duration over which CFGLx.LOCK_CH bit
applies.

00; Over complete DMA transfer

01; Over complete DMA block transfer

1xg Over complete DMA transaction

Reference Manual

GPDMA, V1.1

5-110 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field

Bits

Type

Description

HS_SEL_SR
C

11

rw

Source Software or Hardware Handshaking Select

This register selects which of the handshaking

interfaces - hardware or software - is active for source

requests on this channel.

Oy Hardware handshaking interface. Software-
initiated transaction requests are ignored.

1z Software handshaking interface. Hardware-
initiated transaction requests are ignored.

If the source peripheral is memory, then this bit is

ignored.

HS_SEL_DS
T

10

'w

Destination Software or Hardware Handshaking

Select

This register selects which of the handshaking

interfaces - hardware or software - is active for

destination requests on this channel.

0y Hardware handshaking interface. Software-
initiated transaction requests are ignored.

1z Software handshaking interface. Hardware-
initiated transaction requests are ignored.

If the destination peripheral is memory, then this bit is

ignored.

FIFO_EMPT
Y

9

Indicates if there is data left in the channel FIFO
Can be used in conjunction with CFGLx.CH_SUSP to
cleanly disable a channel.

1z Channel FIFO empty

Og Channel FIFO not empty

CH_SUSP

rw

Channel Suspend

Suspends all DMA data transfers from the source until
this bitis cleared. There is no guarantee that the current
transaction will complete. Can also be used in
conjunction with CFGLX.FIFO_EMPTY to cleanly
disable a channel without losing any data.

Og Not suspended.

1y Suspend DMA transfer from the source.

Reference Manual

GPDMA, V1.1

5-111 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

CH_PRIOR [[7:5] rw Channel priority
A priority of 7 is the highest priority, and 0 is the lowest.
The value programmed to this field must be within 0 and
7. A programmed value outside this range will cause
erroneous behavior.
Reset: Channel Number
For example:
Chan0 = 0004
Chanl = 001g

0 [4:0] r Reserved

Table 5-14 PROTCTL field to HPROT Mapping

1 HPROTIO0]

CFGHx.PROTCTL[1] HPROT[1]

CFGHx.PROTCTL[2] HPROT[2]

CFGHx.PROTCTL[3] HPROT[3]

Reference Manual 5-112 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

SGR

The Source Gather register contains two fields:

e Source gather count field (SGRx.SGC) - Specifies the number of contiguous source
transfers of CTL.SRC_TR_WIDTH between successive gather intervals. This is
defined as a gather boundary.

e Source gather interval field (SGRx.SGI) - Specifies the source address
increment/decrement in multiples of CTL.SRC_TR_WIDTH on a gather boundary
when gather mode is enabled for the source transfer.

The CTL.SINC field controls whether the address increments or decrements. When the

CTL.SINC field indicates a fixed-address control, then the address remains constant

throughout the transfer and the SGRXx register is ignored. For more information, see
Section 5.2.13.

GPDMAO_CHx_SGR (x=0-1)
Source Gather Register for Channel x

(48, + x*58,)) Reset Value: 0000 0000,
31‘30‘29‘28‘27|26|25|24|23|22|21|20 19.18.17.16.15|14|13.12\11\10\ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0
SGC SGI
W T w
Field Bits Type |Description
SGC [31:20] |[rw Source gather count

Source contiguous transfer count between successive
gather boundaries.

SGI [19:0] |rw Source gather interval

Reference Manual 5-113 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

DSR

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

The Destination Scatter register contains two fields:
« Destination scatter count field (DSRx.DSC) - Specifies the number of contiguous

destination

boundaries.

« Destination scatter interval field (DSRx.DSI) - Specifies the destination address
increment/decrement in multiples of CTL.DST_TR_WIDTH on a scatter boundary
when scatter mode is enabled for the destination transfer.

transfers of CTL.DST_TR_WIDTH between successive scatter

The CTL.DINC field controls whether the address increments or decrements. When the
CTL.DINC field indicates a fixed address control, then the address remains constant
throughout the transfer and the DSRx register is ignored. For more information, see

Section 5.2.

13.

GPDMAO_CHx_DSR (x=0-1)
Destination Scatter Register for Channel x

(50, + x*58,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
DSC DSl
1 r\II\I 1 1 1 1 1 1 1 1 1 1 1 Il r\\lv Il
Field Bits Type |Description
DSC [31:20] | rw Destination scatter count
Destination contiguous transfer count between successive
scatter boundaries.
DSl [19:0] |rw Destination scatter interval

Reference Manual

GPDMA, V1.1

5-114 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.6.3 Interrupt Registers

The following sections describe the registers pertaining to interrupts, their status, and
how to clear them. For each channel, there are five types of interrupt sources:

* IntBlock - Block Transfer Complete Interrupt. This interrupt is generated on DMA
block transfer completion to the destination peripheral.

« IntDstTran - Destination Transaction Complete Interrupt
This interrupt is generated after completion of the last AHB transfer of the requested
single/burst transaction from the handshaking interface (either the hardware or
software handshaking interface) on the destination side.

Note: If the destination for a channel is memory, then that channel will never generate
the IntDstTran interrupt. Because of this, the corresponding bit in this field will not
be set.

e IntErr - Error Interrupt
This interrupt is generated when an ERROR response is received from an AHB slave
on the HRESP bus during a DMA transfer. In addition, the DMA transfer is cancelled
and the channel is disabled.

e IntSrcTran - Source Transaction Complete Interrupt
This interrupt is generated after completion of the last AHB transfer of the requested
single/burst transaction from the handshaking interface (either the hardware or
software handshaking interface) on the source side.

Note: If the source or destination is memory, then IntSrcTran/IntDstTran interrupts
should be ignored, as there is no concept of a "DMA transaction level" for memory.

e IntTfr - DMA Transfer Complete Interrupt
This interrupt is generated on DMA transfer completion to the destination peripheral.

There are several groups of interrupt-related registers:

* Interrupt Raw Status Registers

e Interrupt Status Registers

* Interrupt Mask Registers

¢ Interrupt Clear Registers

¢ Combined Interrupt Status Register

When a channel has been enabled to generate interrupts, the following is true:

* Interrupt events are stored in the Raw Status registers.

* The contents of the Raw Status registers are masked with the contents of the Mask
registers.

* The masked interrupts are stored in the Status registers.

* The contents of the Status registers are used to drive the int_* port signals.

« Writing to the appropriate bit in the Clear registers clears an interrupt in the Raw
Status registers and the Status registers on the same clock cycle.

Reference Manual 5-115 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

The contents of each of the five Status registers is ORed to produce a single bit for each
interrupt type in the Combined Status register; that is, STATUSINT.

Note: For interrupts to propagate past the raw* interrupt register stage, CTL.INT_EN
must be set to 1, and the relevant interrupt must be unmasked in the mask*
interrupt register.

Reference Manual 5-116 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Interrupt Raw Status Registers

Interrupt events are stored in these Raw Interrupt Status registers before masking:
RAWBLOCK, RawDstTran, RawErr, RawSrcTran, and RAWTFR. Each Raw Interrupt
Status register has a bit allocated per channel; for example, RAWTFR[2] is the Channel
2 raw transfer complete interrupt.

Each bit in these registers is cleared by writing a 1 to the corresponding location in the
CLEARTFR, CLEARBLOCK, CLEARSRCTRAN, CLEARDSTTRAN, CLEARERR
registers.

Note: Write access is available to these registers for software testing purposes only.
Under normal operation, writes to these registers are not recommended.

RAWTFR
Raw DMA Transfer Complete Interrupt Status.

RAWBLOCK
Raw Block Transfer Complete Interrupt Status.

RAWSRCTRAN
Raw Source Transaction Complete Interrupt Status.

RAWDSTTRAN
Raw Block Transfer Complete Interrupt Status.

RAWERR
Raw Error Interrupt Status.

Reference Manual 5-117 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

GPDMAO_RAWTFR

General Purpose DMA (GPDMA)

Raw IntTfr Status (2co,) Reset Value: 0000 0000,
GPDMAO_RAWBLOCK
Raw IntBlock Status (2c8y) Reset Value: 0000 0000,
GPDMAO_RAWSRCTRAN
Raw IntSrcTran Status (2D0y) Reset Value: 0000 0000,
GPDMAO_RAWDSTTRAN
Raw IntBlock Status (2D8) Reset Value: 0000 0000,
GPDMAO_RAWERR
Raw IntErr Status (2EOy) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
I Fel re re re re e el e
0 H{H|H|H|H|H|H|H
7/6/5(4|3|2|1|0
L L L L 1 1 1 1 1 1 1 } 1 1 1 1 1 1 1 1 1 T TW TW TV W TV T W
Field Bits Type |Description
0 [31:8] |r Reserved
CHXx X rw Raw Interrupt Status for channel x
(x=0-7)

GPDMA1_RAWTFR

Raw IntTfr Status (2co,) Reset Value: 0000 0000,
GPDMA1_RAWBLOCK
Raw IntBlock Status (2c8y) Reset Value: 0000 0000
GPDMA1_RAWSRCTRAN
Raw IntSrcTran Status (2D0y) Reset Value: 0000 0000
GPDMA1_RAWDSTTRAN
Raw IntBlock Status (2D8) Reset Value: 0000 0000,
GPDMA1_RAWERR
Raw IntErr Status (2E0,) Reset Value: 0000 0000
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
e
0 H{H[H|H
3/2|110
EE— II' R r'w rw rw rw
Reference Manual 5-118 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

0 [31:4] r Reserved

CHx X rw Raw Interrupt Status for channel x

(x=0-3)

Reference Manual 5-119 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

Interrupt Status Registers

General Purpose DMA (GPDMA)

All interrupt events from all channels are stored in these Interrupt Status registers after
masking: STATUSBLOCK, STATUSDSTTRAN, STATUSERR, STATUSSRCTRAN,
and STATUSTFR. Each Interrupt Status register has a bit allocated per channel; for
example, STATUSTFR[2] is the Channel 2 status transfer complete interrupt. The
contents of these registers are used to generate the interrupt signals (int or int_n bus,
depending on interrupt polarity) leaving the GPDMA.

STATUSTFR

DMA Transfer Complete Interrupt Status.

STATUSBLOCK

Block Transfer Complete Interrupt Status.

STATUSSRCTRAN
Source Transaction Complete Interrupt Status.

STATUSDSTTRAN
Block Transfer Complete Interrupt Status.

STATUSERR

Error Interrupt Status.

GPDMAO_STATUSTFR

IntTfr Status (2E8,) Reset Value: 0000 0000,
GPDMAO_STATUSBLOCK
IntBlock Status (2F0) Reset Value: 0000 0000,
GPDMAO_STATUSSRCTRAN
IntSrcTran Status (2F8,) Reset Value: 0000 0000,
GPDMAO_STATUSDSTTRAN
IntBlock Status (300,) Reset Value: 0000 0000,
GPDMAO_STATUSERR
IntErr Status (308,) Reset Value: 0000 0000
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T C C C C C C C C
0 H/H[H|/H|H|H|H|H
7/6|5(4|3(2|1|0
L L L L 1 1 1 1 1 1 1 |I' 1 1 1 1 1 1 1 1 1 1 1 r r r r r r r r
Reference Manual 5-120 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

0 [31:8] |r Reserved

CHx X r Interrupt Status for channel x
(x=0-7)

GPDMA1_STATUSTFR
IntTfr Status

GPDMA1_STATUSBLOCK

IntBlock Status
GPDMA1_STATUSSRCTRAN

IntSrcTran Status

(2E8,,)
(2FO0,,)

(2F8,)

GPDMA1_STATUSDSTTRAN
IntBlock Status
GPDMA1_STATUSERR
IntErr Status

(3004)

(308,,)

Reset Value: 0000 0000,
Reset Value: 0000 0000,
Reset Value: 0000 0000,
Reset Value: 0000 0000,

Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T C C C C
0 H|H|[H|H
1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 O
r rrrr
Field Bits Type |Description
0 [31:4] |r Reserved
CHXx X r Interrupt Status for channel x
(x=0-3)
Reference Manual 5-121 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Interrupt Mask Registers

The contents of the Raw Status registers are masked with the contents of the Mask
registers: MASKBLOCK, MASKDSTTRAN, MASKERR, MASKSRCTRAN, and
MASKTFR. Each Interrupt Mask register has a hit allocated per channel; for example,
MASKTFR[2] is the mask bit for the Channel 2 transfer complete interrupt.

When the source peripheral of DMA channel i is memory, then the source transaction
complete interrupt, MASKSRCTRAN]z], must be masked to prevent an erroneous
triggering of an interrupt on the int_combined signal. Similarly, when the destination
peripheral of DMA channel i is memory, then the destination transaction complete
interrupt, MASKDSTTRAN(i], must be masked to prevent an erroneous triggering of an
interrupt on the int_combined(_n) signal.

A channel INT_MASK bit will be written only if the corresponding mask write enable bit
in the INT_MASK_WE field is asserted on the same AHB write transfer. This allows
software to set a mask bit without performing a read-modified write operation. For
example, writing hex 01x1 to the MASKTFR register writes a 1 into MASKTFR[0], while
MASKTFR[7:1] remains unchanged. Writing hex 00xx leaves MASKTFR[7:0]
unchanged.

Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus
allowing the GPDMA to set the appropriate bit in the Status registers and int_* port
signals.

MASKTFR
Mask for Raw DMA Transfer Complete Interrupt Status.

MASKBLOCK
Mask for Raw Block Transfer Complete Interrupt Status.

MASKSRCTRAN
Mask for Raw Source Transaction Complete Interrupt Status.

MASKDSTTRAN

Mask for Raw Block Transfer Complete Interrupt Status.

MASKERR
Mask for Raw Error Interrupt Status.

Reference Manual 5-122 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

Gafineon.

GPDMAO_MASKTFR

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Mask for Raw IntTfr Status (310 Reset Value: 0000 0000,
GPDMAO_MASKBLOCK
Mask for Raw IntBlock Status (318,) Reset Value: 0000 0000,
GPDMAO_MASKSRCTRAN
Mask for Raw IntSrcTran Status (320,) Reset Value: 0000 0000,
GPDMAO_MASKDSTTRAN
Mask for Raw IntBlock Status (328,) Reset Value: 0000 0000,
GPDMAO_MASKERR
Mask for Raw IntErr Status (330) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T W W W W W W W W
E_E_E_E_E_E_E_E_C|C|C|C|C|C|C|C
0 c|ic|Cc|C|C|C|C|C|H|H|H|H|H|H|HH
H{H|{H|{H|H|H|H|H|7|6|5|4|3|2|1|0
1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0

r WWWWWW W WIWIwWIwIrwIrwIrw rw rwv
Field Bits Type |Description
0 [31:16] |r Reserved
WE_CHx |8+x w Write enable for mask bit of channel x
(x=0-7) 0z write disabled

1z write enabled
CHx X rw Mask bit for channel x
(x=0-7) Og masked
1z unmasked

Reference Manual 5-123 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

GPDMA1_MASKTFR

General Purpose DMA (GPDMA)

Mask for Raw IntTfr Status (310 Reset Value: 0000 0000,
GPDMA1_MASKBLOCK

Mask for Raw IntBlock Status (318,) Reset Value: 0000 0000,
GPDMA1_MASKSRCTRAN

Mask for Raw IntSrcTran Status (320,) Reset Value: 0000 0000,
GPDMA1_MASKDSTTRAN

Mask for Raw IntBlock Status (328,) Reset Value: 0000 0000,

GPDMA1_MASKERR

Mask for Raw IntErr Status

(330) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

WI{W | W|wW
E_[E_E_[E_| clc|c|c
0 cic|c|C 0 H{H|HH
H{H|H|H 312|110
1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 0 Il
r W W w w r r'w rw rw rw
Field Bits Type |Description
0 [31:12] |r Reserved
WE_CHx |[8+x w Write enable for mask bit of channel x
(x=0-3) 0g write disabled
1z write enabled
0 [7:4] r Reserved
CHx X rw Mask bit for channel x
(x=0-3) 0g masked
1z unmasked
Reference Manual 5-124 V1.0, 2012-02

GPDMA, V1.1

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

Interrupt Clear Registers

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing
a 1 to the -corresponding location in the Clear registers: CLEARBLOCK,
CLEARDSTTRAN, CLEARERR, CLEARSRCTRAN, and CLEARTFR. Each Interrupt
Clear register has a bit allocated per channel; for example, CLEARTFR[2] is the clear bit
for the Channel 2 transfer complete interrupt. Writing a 0 has no effect. These registers
are not readable.

CLEARTFR
Clear DMA Transfer Complete Interrupt Status and Raw Status.

CLEARBLOCK

Clear Block Transfer Complete Interrupt Status and Raw Status.

CLEARSRCTRAN
Clear Source Transaction Complete Interrupt Status and Raw Status.

CLEARDSTTRAN
Clear Block Transfer Complete Interrupt Status and Raw Status.

CLEARERR

Clear Error Interrupt Status and Raw Status.

GPDMAO_CLEARTFR

IntTfr Status (338,) Reset Value: 0000 0000,
GPDMAO_CLEARBLOCK

IntBlock Status (340,) Reset Value: 0000 0000,
GPDMAO_CLEARSRCTRAN

IntSrcTran Status (348, Reset Value: 0000 0000,
GPDMAO_CLEARDSTTRAN

IntBlock Status (350,) Reset Value: 0000 0000,
GPDMAO_CLEARERR

IntErr Status (358,) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T CCCCC CCC

0 HHHH|HIH|HH
7/6/5(4|3|2]|1|0
L L L L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r W WWWWWW W
Reference Manual 5-125 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

0 [31:8] |r Reserved

CHXx X w Clear Interrupt Status and Raw Status for channel x
(x=0-7) 0g no effect

1z clear status

GPDMA1_CLEARTFR
IntTfr Status
GPDMA1_CLEARBLOCK
IntBlock Status
GPDMA1_CLEARSRCTRAN

IntSrcTran Status
GPDMA1_CLEARDSTTRAN

IntBlock Status
GPDMA1 CLEARERR
IntErr Status

(338,) Reset Value: 0000 0000
(340,) Reset Value: 0000 0000
(348,) Reset Value: 0000 0000,
(350,) Reset Value: 0000 0000,
(358, Reset Value: 0000 0000

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T C C C C
0 HIH|HH
1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 0
r w w w w
Field Bits Type |Description
0 [31:4] |r Reserved
CHx X w Clear Interrupt Status and Raw Status for channel x
(x=0-3) Og no effect

1z clear status

Combined Interrupt Status Register

The contents of each of the five Status registers - STATUSTFR, STATUSBLOCK,
STATUSSRCTRAN, STATUSDSTTRAN, STATUSERR - is ORed to produce a single
bit for each interrupt type in the Combined Status register (STATUSINT). This register is

read-only.

Reference Manual
GPDMA, V1.1

5-126 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

GPDMAO_STATUSINT
Combined Interrupt Status Register (360,,)
GPDMA1_STATUSINT
Combined Interrupt Status Register (360,,)

31 30 29 28 27 26 25 24 23

General Purpose DMA (GPDMA)

Reset Value: 0000 0000,

Reset Value: 0000 0000,

22 21 20 19 18 17 16

0

L L 1 1 1 1 1 1

-

15 14 13 12 11 10 9 8 7

0 ERR D_IS_T S$C BCLKO TFR
))) r) I I r r r r r
Field Bits |Type |Description
0 [31:5] |r Reserved
ERR 4 r OR of the contents of STATUSERR register
DSTT 3 r OR of the contents of STATUSDSTTRAN register
SRCT 2 r OR of the contents of STATUSSRCTRAN register
BLOCK 1 r OR of the contents of STATUSBLOCK register
TFR 0 r OR of the contents of STATUSTFR register
Reference Manual 5-127 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

General Purpose DMA (GPDMA)

5.6.4 Software Handshaking Registers

The registers that comprise the software handshaking registers allow software to initiate
single or burst transaction requests in the same way that handshaking interface signals
do in hardware.

Setting CFG.HS_SEL_SRC to 1 enables software handshaking on the source of channel
X. Setting CFG.HS_SEL_DST to 1 enables software handshaking on the destination of
channel x.

REQSRCREG

A bit is assigned for each channel in this register. REQSRCREG|n] is ignored when
software handshaking is not enabled for the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in
the SRC_REQ_WE field is asserted on the same AHB write transfer, and if the channel
is enabled in the CHENREG register. For example, writing hex 0101 writes a 1 into
REQSRCREGI0], while REQSRCREG[7:1] remains unchanged. Writing hex 00xx
leaves REQSRCREG[7:0] unchanged. This allows software to set a bhit in the
REQSRCREG register without performing a read-modified write operation.

The functionality of this register depends on whether the source is a flow control
peripheral or not. For a description of when the source is not a flow controller, refer to
Section 5.2.7.4.

GPDMAO_REQSRCREG
Source Software Transaction Request Register

(368,) Reset Value: 0000 0000
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T W W W W W W W W
EE[EE|EE[EE|c|c|c|c|c|c|c|c
0 C|C|C|C|C|C|C|C|H|H|H|H|H|H|H|H
H/H/H/H|H/H|H|H|7|6|5|4|3|2|1|0
L L L L 1 1 1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0
r WWWWWWW WIWIWIWIwIrwIrw rw rw
Field Bits Type |Description
0 [31:16] |r Reserved
WE_CHXx 8+X w Source request write enable for channel x
(x=0-7) 0g write disabled
1z write enabled
CHXx X rw Source request for channel x
(x=0-7)
Reference Manual 5-128 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

General Purpose DMA (GPDMA)

GPDMA1 REQSRCREG
Source Software Transaction Request Register

(368, Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T T T T T W W W W T T T
E_E_E_|E_| cl|cic|c
0 c|Cc|C|C 0 H|H|HH
H{H|H|H 3|12|1|0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 l 0 |
r W www r r'w rw rw rw
Field Bits Type |Description
0 [31:12] |r Reserved
WE_CHXx 8+X w Source request write enable for channel x
(x=0-3) Og write disabled
1z write enabled
0 [7:4] r Reserved
CHXx X rw Source request for channel x
(x=0-3)
REQDSTREG

A bit is assigned for each channel in this register. REQDSTREG|n] is ignored when
software handshaking is not enabled for the source of channel n.

A channel DST_REQ bit is written only if the corresponding channel write enable bit in
the DST_REQ_WE field is asserted on the same AHB write transfer, and if the channel
is enabled in the CHENREG register.

The functionality of this register depends on whether the destination is a flow control
peripheral or not. For a description of when the destination is not a flow controller, refer
to Section 5.2.7.4.

Reference Manual 5-129 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

General Purpose DMA (GPDMA)

GPDMAO_REQDSTREG
Destination Software Transaction Request Register

(370y) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T W W W W W W W W
EE[E [E|EE[E[E|Cc|c|c|c|c|c|c|c
0 c|ic|Cc|C|C|C|C|C|H|H|H|H|H|H|HH
HIH/HIHIH/H|H|H|7|6|5|4|3|2|1|0
1 1 1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0
r WWWWWW W WIWIwWIwIrwrwIrw rw rv
Field Bits Type |Description
0 [31:16] |r Reserved
WE_CHXx 8+X w Source request write enable for channel x
(x=0-7) Og write disabled
1; write enabled
CHXx X rw Source request for channel x
(x=0-7)

GPDMA1_REQDSTREG
Destination Software Transaction Request Register

(370,) Reset Value: 0000 0000
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

W (W (W (W
E_E_E_E_| clcliclc
0 c|c|c|c 0 H|H|H|H
H{H|H|H 32|10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 O |
r W W w w r r'w rw rw rw
Field Bits Type |Description
0 [31:12] |r Reserved
WE_CHx | 8+x w Source request write enable for channel x
(x=0-3) 0g write disabled
1 write enabled
Reference Manual 5-130 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

0 [7:4] r Reserved

CHx X rw Source request for channel x
(x=0-3)

SGLREQSRCREG

A bit is assigned for each channel in this register. SGLREQSRCREGIn] is ignored when
software handshaking is not enabled for the source of channel n.

A channel SRC_SGLREQ bit is written only if the corresponding channel write enable bit

in the SRC_SGLREQ_WE field is asserted on the same AHB write transfer, and if the
channel is enabled in the CHENREG register.

The functionality of this register depends on whether the source is a flow control
peripheral or not. For a description of when the source is not a flow controller, refer to
Section 5.2.7.4.

GPDMAO_SGLREQSRCREG
Single Source Transaction Request Register

(378) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T W W W W W W W W
EE[E [E|EE[E[E|C|c|c|c|c|c|c|c
0 c|ic|Cc|C|C|C|C|C|H|H|H|H|H|H|HH
HIH/HIHIHIH|H|H|7|6|5|4|3|2|1|0
1 1 1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 l 0
r WWWWWW W WIWIwWIwIrwIrwIrw rw rwv
Field Bits Type |Description
0 [31:16] |r Reserved
WE_CHx |8+x w Source request write enable for channel x
(x=0-7) Og write disabled
1z write enabled
CHXx X rw Source request for channel x
(x=0-7)
Reference Manual 5-131 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

General Purpose DMA (GPDMA)

GPDMA1_SGLREQSRCREG
Single Source Transaction Request Register
(378.) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

WW|W|wW
E_E_E_|E_| cl|cic|c
0 c|Cc|C|C 0 H|H|HH
H{H|H|H 3|12|1|0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 l 0 |
r W www r r'w rw rw rw
Field Bits Type |Description
0 [31:12] |r Reserved
WE_CHx |8+x w Source request write enable for channel x
(x=0-3) 0g write disabled
1z write enabled
0 [7:4] r Reserved
CHXx X w Source request for channel x
(x=0-3)
SGLREQDSTREG

A bit is assigned for each channel in this register. SGLREQDSTREGI[n] is ignored when
software handshaking is not enabled for the destination of channel n.

A channel DST_SGLREQ bit is written only if the corresponding channel write enable bit
in the DST_SGLREQ_WE field is asserted on the same AHB write transfer, and if the
channel is enabled in the CHENREG register.

The functionality of this register depends on whether the destination is a flow control
peripheral or not. For a description of when the destination is not a flow controller, refer
to Section 5.2.7.4.

Reference Manual 5-132 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

General Purpose DMA (GPDMA)

GPDMAO_SGLREQDSTREG
Single Destination Transaction Request Register

(380,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T W W W W W W W W
EE[E [E|EE[E[E|Cc|c|c|c|c|c|c|c
0 c|ic|Cc|C|C|C|C|C|H|H|H|H|H|H|HH
HIH/HIHIH/H|H|H|7|6|5|4|3|2|1|0
1 1 1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0
r WWWWWW W WIWIwWIwIrwrwIrw rw rv
Field Bits Type |Description
0 [31:16] |r Reserved
WE_CHx | 8+x w Source request write enable for channel x
(x=0-7) Og write disabled
1; write enabled
CHXx X rw Source request for channel x
(x=0-7)

GPDMA1_SGLREQDSTREG
Single Destination Transaction Request Register
(380y) Reset Value: 0000 0000

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

W (W (W (W
E_E_E_E_| clcliclc
0 c|c|c|c 0 H|H|H|H
H{H|H|H 32|10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 O |
r W W w w r r'w rw rw rw
Field Bits Type |Description
0 [31:12] |r Reserved
WE_CHx 8+x w Source request write enable for channel x
(x=0-3) 0g write disabled
1; write enabled
Reference Manual 5-133 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

0 [7:4] r Reserved

CHXx X rw Source request for channel x
(x=0-3)

LSTSRCREG

A bit is assigned for each channel in this register. LSTSRCREGIn] is ignored when
software handshaking is not enabled for the source of channel n, or when the source of
channel n is not a flow controller.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the
LSTSRC_WE field is asserted on the same AHB write transfer, and if the channel is
enabled in the CHENREG register.

GPDMAO_LSTSRCREG
Last Source Transaction Request Register

(388,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T W W W W W W W W
EE[E[EEE[E[E|Cc|c|c|c|c|c|c|c
0 c|c|Cc|C|C|C|C|C|H|H|H|H|H|H|HH
H{H|H[H|H|H|H|H|7|6|5|4|3|2|1|0
1 1 1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0
r WWWWWWW WIWIwWIwWIrwIrwIrw rw rw
Field Bits Type |Description
0 [31:16] |r Reserved
WE_CHXx 8+X w Source last transaction request write enable for
(x=0-7) channel x

0z write disabled
1z write enabled

CHXx X w Source last request for channel x
(x=0-7) 0z Not last transaction in current block
1z Lasttransaction in current block

Reference Manual 5-134 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

GPDMA1 LSTSRCREG
Last Source Transaction Request Register

General Purpose DMA (GPDMA)

(388,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T T T T T W W W W T T T
E_E_E_|E_| cl|cic|c
0 c|Cc|C|C 0 H|H|HH
H{H|H|H 3|12|1|0
1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 0 |
r W www r r'w rw rw rw
Field Bits Type |Description
0 [31:12] |r Reserved
WE_CHXx 8+X w Source last transaction request write enable for
(x=0-3) channel x
0g write disabled
1; write enabled
0 [7:4] r Reserved
CHXx X rw Source last request for channel x
(x=0-3) 0g Not last transaction in current block
1z Last transaction in current block
LSTDSTREG

A bit is assigned for each channel in this register. LSTDSTREG|n] is ignored when
software handshaking is not enabled for the destination of channel n or when the
destination of channel n is not a flow controller.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the

LSTDST_WE field is asserted on the same AHB write transfer, and if the channel is
enabled in the CHENREG register.

Reference Manual

GPDMA, V1.1

5-135 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

General Purpose DMA (GPDMA)

GPDMAO_LSTDSTREG
Last Destination Transaction Request Register

(390,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T T T T T W W W W W W W W
EE[E [E|EE[E[E|Cc|c|c|c|c|c|c|c
0 c|ic|Cc|C|C|C|C|C|H|H|H|H|H|H|HH
HIH/HIHIH/H|H|H|7|6|5|4|3|2|1|0
1 1 1 1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0
r WWWWWW W WIWIwWIwIrwrwIrw rw rv
Field Bits Type |Description
0 [31:16] |r Reserved
WE_CHXx 8+X w Destination last transaction request write enable for
(x=0-7) channel x

0g write disabled
1; write enabled

CHx X rw Destination last request for channel x
(x=0-7) Og Not last transaction in current block
1; Last transaction in current block

GPDMA1 LSTDSTREG
Last Destination Transaction Request Register

(390,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

WIW | W|wW
E_E_E_|E_| cl|cic|c
0 c|Cc|C|C 0 H|H|HH
H{H|H|H 312|110
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 0 |
r W www r r'w rw rw rw
Field Bits Type |Description
0 [31:12] |r Reserved
WE_CHXx 8+X w Destination last transaction request write enable for
(x=0-3) channel x
0g write disabled
1z write enabled
Reference Manual 5-136 V1.0, 2012-02
GPDMA, V1.1

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

General Purpose DMA (GPDMA)

Field Bits Type |Description

0 [7:4] r Reserved

CHx X rw Destination last request for channel x
(x=0-3) Og Not last transaction in current block

1z Last transaction in current block

Reference Manual

GPDMA, V1.1

5-137 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

General Purpose DMA (GPDMA)

5.6.5 Miscellaneous GPDMA Registers

ID

This is the GPDMA ID register, which is a read-only register that reads back the
hardcoded module ID number.

GPDMAO_ID
GPDMAO ID Register (3A8,) Reset Value: 00AF COXXy,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

VALUE

Field Bits |Type |Description
VALUE [31:0] Hardcoded GPDMA Peripheral ID

—

GPDMA1_ID
GPDMAL1 ID Register (3A8,) Reset Value: 00B0 COXXy

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Bits |Type |Description
VALUE [31:0] |r Hardcoded GPDMA Peripheral ID

TYPE

This is the GPDMA Component Type register, which is a read-only register that specifies
the type of the packaged component.

Reference Manual 5-138 V1.0, 2012-02
GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

General Purpose DMA (GPDMA)

GPDMAO_TYPE

GPDMA Component Type (3F8,) Reset Value: 4457 1110,
GPDMA1_TYPE
GPDMA Component Type (3F8,) Reset Value: 4457 1110,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

VALUE
r
Field Bits |Type |Description
VALUE [31:0] |r Component Type
number =44 57 11 10.
VERSION

This is the GPDMA Component Version register, which is a read-only register that
specifies the version of the packaged component.

GPDMAO_VERSION

DMA Component Version (BFCy) Reset Value: 3231 342A,
GPDMA1_VERSION
DMA Component Version (3FCy) Reset Value: 3231 342A,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

VALUE

r

Field Bits | Type |Description
VALUE [31:0] |r Version number of the component
Reference Manual 5-139 V1.0, 2012-02

GPDMA, V1.1 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

6 Flexible CRC Engine (FCE)

The FCE provides a parallel implementation of Cyclic Redundancy Code (CRC)
algorithms. The current FCE version for the XMC4500 microcontroller implements the
IEEE 802.3 ethernet CRC32, the CCITT CRC16 and the SAE J1850 CRC8 polynomials.
The primary target of FCE is to be used as an hardware acceleration engine for software
applications or operating systems services using CRC signatures.

The FCE operates as a standard peripheral bus slave and is fully controlled through a
set of configuration and control registers. The different CRC algorithms are independent
from each other, they can be used concurrently by different software tasks.

Note: The FCE kernel register names described in “Registers” on Page 6-11 are
referenced in a product Reference Manual by the module name prefix “FCE_".
Input documents
[5] A painless guide to CRC Error Detection Algorithms, Ross N. Williams
[6] 32-Bit Cyclic Redundancy Codes for Internet Applications, Philip Koopman,
International Conference on Dependable Systems and Networks (DSN), 2002
Related standards and norms

[7] IEEE 802.3 Ethernet 32-bits CRC

Table 6-1 FCE Abbreviations

CRC Cyclic Redundancy Checksum
FCE Flexible CRC Engine

IR Input Register

RES Result

STS Status

CFG Configuration

6.1 Overview

This chapter provides on overview of the features, applications and architecture of the
FCE module.

6.1.1 Features
The FCE provides the following features:
e The FCE implements the following CRC polynomials:

Reference Manual 6-1 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

— CRC kernel 0 and 1: IEEE 802.3 CRC32 ethernet polynomial: 0x04C11DB7% -
X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1
— CRC kernel 2: CCITT CRC16 polynomial: 0x1021 - x*6+x12+x5+1
— CRC kernel 3: SAE J1850 CRCS8 polynomial: 0x1D - x3+x*+x3+x?+1
e Parallel CRC implementation
— Data blocks to be computed by FCE shall be a multiple of the polynomial degree
— Start address of Data blocks to be computed by FCE shall be aligned to the
polynomial degree
* Register Interface:
— Input Register
— CRC Register
— Configuration Registers enabling to control the CRC operation and perform
automatic checksum checks at the end of a message.
— Extended register interface to control reliability of FCE execution in safety
applications.
» Error notification scheme via dedicated interrupt node for:
— Transient error detection: error interrupt generation (maskable) with local status
register (cleared by software)
— Checksum failure: error interrupt generation (maskable) with local status register
(cleared by software)
* FCE provides one interrupt line to the interrupt system. Each CRC engine has its own
set of flag registers.

6.1.2 Application Mapping

Among other applications, CRC algorithms are commonly used to calculate message
signatures to:

* Check message integrity during transport over communication channels like internal
buses or interfaces between microcontrollers

« Sign blocks of data residing in variable or invariable storage elements

» Compute signatures for program flow monitoring

One important property to be taken into account by the application when choosing a
polynomial is the hamming distance: see Chapter 6.9.

6.1.3 Block Diagram

The FCE is a standard peripheral slave module which is controlled over a set of memory
mapped registers. The FCE is fully synchronous with the CPU clock and runs with a 1:1
clock ratio.

1) The polynomial hexadecimal representation covers the coefficients (degree - 1) down to O.

Reference Manual 6-2 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

Depending on the hardware configuration the FCE may implement more CRC kernels
with different CRC polynomials. The specific configuration for the XMC4500
microcontroller is shown in the Figure 6-1 “FCE Block Diagram” on Page 6-3.

Interrupt . . System Control Unit
Control Peripheral Bridge (scu)
A =
= |2
SRO
A A
CRC Kernel CRC Kernel CRC Kernel CRC Kernel
Registers Registers Registers Registers
CRC 32-hit CRC 32-bit CRC 16-bit CRC 8-hit
Ethernet Ethernet
IEEE 802.3 IEEE 802.3 CRC-CCITT SAE-J1850
0x04C11DB7 0x04C11DB7 0x1021 0x1D
CRC Kernel 0 CRC Kernel 1 CRC Kernel 2 CRC Kernel 3
FCE

Figure 6-1 FCE Block Diagram

Every CRC kernel will present the same hardware and software architecture. The rest of
this document will focus only on the description of the generic CRC kernel architecture.

In a multi-kernel implementation the interrupt lines are ored together, the FCE only
presents a single interrupt node to the system. Each CRC kernel implements a status
register that enables the software to identify which interrupt source is active. Please refer
to the STSm (m = 0-3) register for a detailed description of the status and interrupt
handling.

6.2 Functional Description

A checksum algorithm based on CRC polynomial division is characterized by the
following properties:

1. polynomial degree (e.g. 32, that represents the highest power of two of the
polynomial)

2. polynomial (e.g. 0x04C11DB7: the 33rd bit is omitted because always equal to 1)

3. init value: the initial value of the CRC register

Reference Manual 6-3 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

4. input data reflected: indicates if each byte of the input parallel data is reflected before
being used to compute the CRC

5. result data reflected: indicates if the final CRC value is reflected or not

6. XOR value: indicates if a final XOR operation is done before returning the CRC result

All the properties are fixed once a polynomial has been chosen. However the FCE
provides the capability to control the two reflection steps and the final XOR through the
CFG register. The reset values are compatible with the implemented algorithm. The final
XOR control enables to select either OXFFFFFFFF or 0x00000000 to be XORed with the
POST_CRC1 value. These two values are those used by the most common CRC
polynomials.

Note: The reflection steps and final XOR do not modify the properties of the CRC
algorithm in terms of error detection, only the CRC final signature is affected.

The next two figures provides an overview of the control and status features of a CRC
kernel.

CRC Configuration Register

‘ ‘ ‘ Interrupt generation control
[0] Interrupt Control

CMI: Enables CRC Mismatch Interrupt

[1] Interrupt Control
CEl: Enables Configuration Error Interrupt

[2] Interrupt Control
LEI: Enables Length ErrorInterrupt

[2] Interrupt Control
BEI: Enables Bus Error Interrupt

CRC operation control

4{ [4] CCE: CRC Check Enable \
4{ [5] ALR: Automatic Length Reload ‘

CRC algorithm control

—{ [8] REFIN: Input byte reflection enable ‘

} [9] REFOUT: Final CRC reflexion enable \

} [10] XOROUT: selects value for final xor ‘

Figure 6-2 CRC kernel configuration register

Reference Manual 6-4 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

CRC Status Register
[[[

[0] Interrupt Status

CMF: CRC Mismatch Flag

[1] Interrupt Status
CEF: Configuration Error Flag

[2] Interrupt Status
LEF: Length Error Flag

[3] Interrupt Status
BEF: Bus ErrorElag

Figure 6-3 CRC kernel status register

6.2.1 Basic Operation

The software must first ensure that the CRC kernel is properly configured, especially the
initial CRC value written via the CRC register. Then, it writes as many times as
necessary into the IR register according to the length of the message. The resulting
signature is stored in the CRC engine result register, RESm, which can be read by the
software.

Depending on the CRC kernel accesses by software the following rules apply:

* When accessing a CRC kernel of degree <N> only the bits N-1 down to O are used
by the CRC kernel. The upper bits are ignored on write. When reading from a CRC
kernel register the non-used upper bits are set to 0.

6.2.2 Automatic Signature Check

The automatic signature check compares the signature at the end of a message with the
expected signature configured in the CHECK register. In case of a mismatch, an event
is generated (see Section 6.3. This feature is enabled by the CFG.CCE bit field (see
CFGm (m = 0-3) register).

If the software whishes to use this feature, the LENGTH register and CHECK registers
must be configured with respectively the length as number of words of the message and
the expected signature (CHECK). The word length is defined by the degree of the
polynomial used. The CHECK value takes into account the final CRC reflection and XOR
operation.

When the CFG.CCE bit field is set, every time the IR register is written, the LENGH
register is decremented by one until it reaches zero. The hardware monitors the
transition of the LENGTH register from 1 to O to detect the end of the message and
proceed with the comparison of the result register RESvalue with the CHECK register
value. If the automatic length reload feature is enabled by the CFG.ALR bit field (see

Reference Manual 6-5 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

CFGm (m = 0-3)), the LENGTH register is reinitialized with the previously configured
value. This feature is especially suited when the FCE is used in combination with a DMA
engine.

In the case the automatic length reload feature is not enabled, if LENGTH is already at
zero but software still writes to IR (by mistake) every bit of the LENGTH should be set to
1 and hold this value until software initializes it again for the processing of a new
message. In such case the STS.LEF (Length Error Flag) should be set and an interrupt
generated if the CFG.LEI (Length Error Interrupt) is set.

Usually, the CRC signature of a message MO is computed and appended to MO to form
the message M1 which is transmitted. One interesting property of CRCs is that the CRC
signature of M1 shall be zero. This property is particularly useful when automatically
checking the signature of data blocks of fixed length with the automatic length reload
enabled. LENGTH should be loaded with the length of M1 and CHECK with 0.

6.2.3 Register protection and monitoring methods

Register Monitoring: applied to CFG and CHECK registers

Because CFG and CHECK registers are critical to the CRC operation, some
mechanisms to detect and log transient errors are provided. Early detection of transient
failures enables to improve the failure detection time and assess the severity of the
failure. The monitoring mechanisms are implemented using two redundant instances as
presented in Figure 6-4.

Reference Manual 6-6 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

SW Write access

Property. Redundant Register shall
be physically isolated from the
functional Register

Register <REG> Redundant Register <REG> ‘

Register Contents
Shifted Left

Force Register Mismatch
CTR.FRM_<REG>

Compare
<reg>versus redundant<reg>

v
SW Read Access | | OR results of all redundant registers per crc kernel

or

STS.CEF

Figure 6-4 Register monitoring scheme

Let <REG> designate either CFG or CHECK registers. When a write to <REG> takes
place the redundant register is also updated. Redundant registers are not visible to
software. Bits of <REG> reserved have no storage and are not used for redundancy. A
compare logic continuously compares the two stored values and provides a signal that
indicates if the compare is successful or not. The result of all compare blocks are ored
together to provide a single flag information. If a mismatch is detected the STS.CEF
(Configuration Error Flag) bit is set. For run-time validation of the compare logic a Force
Register Mismatch bit field (CTR.FRM_<REG>) is provided. When set to 1 by software
the contents of the redundant register is shifted left by one bit position (redundant bit O
position is always replaced by a logical 0 value) and is given to the compare logic instead
of the redundant register value. This enables to check the compare logic is functional.
Using a walking bit pattern, the software can completely check the full operation of the
compare logic. Software needs to clear the CTR.FRM_<REG> bit to ‘0’ to be able to
trigger again a hew comparison error interrupt.

Register Access Protection: applies to LENGTH and CHECK registers

In order to reduce the probability of a mis-configuration of the CHECK and LENGTH
registers (in the case the automatic check is used), the write access to the CHECK and
LENGTH registers must follow a procedure:

Let <REG> designate CHECK or LENGTH registers. Before being able to configure a
new <value> value into the <REG> register of a CRC kernel, software must first write the

Reference Manual 6-7 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

OXFACECAFE value to the <REG> address. The OXFACECAFE is not written into the
<REG> register. The next write access will proceed as a normal bus write access. The
write accesses shall use full 32-bit access only. This procedure will then be repeated
every time software wants to configure a new <REG> value. If software reads the
CHECK register just after writing OXFACECAFE it returns the current <REG> contents
and not OXFACECAFE. A read access to <REG> has no effect on the protection
mechanism.

The following C-code shows write accesses to the CHECK and LENGTH registers
following this procedure:

//set CHECK register
FCE_CHECKO.U = OxFACECAFE;
FCE_CHECKO.U = 0;

//set LENGTH register
FCE_LENGTHO.U = OxXFACECAFE;
FCE_LENGTHO.U = 256;

6.3 Service Request Generation

Each FCE CRC kernel provides one internal interrupt source. The interrupt lines from
each CRC kernel are ored together to be sent to the interrupt system. The system
interrupt is an active high pulse with the duration of one cycle (of the peripheral clock).
The FCE interrupt handler can use the status information located within the STS status
register of each CRC kernel.

Each CRC kernel provides the following interrupt sources:

e CRC Mismatch Interrupt controlled by CFG.CMI bit field and observable via the
status bit field STS.CMF (CRC Mismatch Flag).

e Configuration Error Interrupt controlled by CFG.CEI bit field and observable via the
status bit field STS.CEF (Configuration Error Flag).

* Length Error Interrupt controlled by CFG.LEI bit field and observable via the status
bit field STS.LEF (Length Error Flag).

e Bus Error Interrupt controlled by CFG.BEI bit field and observable via the status bit
field STS.BEF (Bus Error Flag).

Interrupt generation rules

e A status flag shall be cleared by software by writing a 1 to the corresponding bit
position.

» If an status flag is set and a new hardware condition occurs, no new interrupt is
generated by the kernel: the STS.<FLAG> bit field masks the generation of a new

Reference Manual 6-8 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

interrupt from the same source. If a SW access to clear the interrupt status bit takes
place and in the same cycle the hardware wants to set the bit, the hardware condition
wins the arbitration.

As all the interrupts are caused by an error condition, the interrupt shall be handled by a
Error Management software layer. The software services using the FCE as acceleration
engine may not directly deal with error conditions but let the upper layer using the service
to deal with the error handling.

6.4 Debug Behavior
The FCE has no specific debug feature.

6.5 Power, Reset and Clock

The FCE is inside the power core domain, therefore no special considerations about
power up or power down sequences need to be taken. For an explanation about the
different power domains, please address the SCU (System Control Unit) chapter.

A power down mode can be achieved by disabling the module using the Clock Control
Register (CLC).

The FCE module has one reset source. This reset source is handled at system level and
it can be generated independently via a system control register (address SCU chapter
for full description).

After release, the complete IP is set to default configuration. The default configuration for
each register field is addressed on Section 6.7.

The FCE uses the CPU clock, fCPU (address SCU chapter for more details on clocking).

6.6 Initialization and System Dependencies

The FCE may have dependencies regarding the bus clock frequency. This
dependencies should be addressed in the SCU and System Architecture Chapters.

Initialization:

The FCE is enabled by writing 0x0 to the CLC register. Software must first ensure that
the CRC kernel is properly configured, especially the initial CRC register value written
via the CRC register, the input and result reflection as well as the final xored value via
the CFG register. The following source code is an example of initialization for the basic
operation of the FCE kernel 0:

//enable FCE
FCE_CLC.U = 0x0;
//final result to be xored with OxFFFFFFFF, no reflection

Reference Manual 6-9 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flexible CRC Engine (FCE)

FCE_CFGO.U = 0x400;
//set CRC initial value (seed)
FCE_CRCO.U = OXFFFFFFFF;

Reference Manual 6-10 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

(infineon

6.7

XMC4500

XMC4000 Family

Registers

Flexible CRC Engine (FCE)

Table 6-3 show all registers associated with a FCE CRC-kernel. All FCE kernel register
names are described in this section. They should get the prefix “FCE_" when used in the

context of a product specification.

The registers are numbered by one index to indicate the related FCE CRC Kernel
(m =0-3). Some kernel registers are adapted to the degree of the polynomial
implemented by the kernel.

Table 6-2 Registers Address Space - FCE Module
Module Base Address End Address Note
FCE 5002 0000, 5002 3FFF,
Table 6-3 Registers Overview - CRC Kernel Registers
Short Description Offset Access Mode | Reset | Description
Name Addr.Y Read |Write |Class |See
System Registers
CLC Clock Control 00, U,PV|SV,E |3 Page 6-12
Register
ID Module 08y, U, PV |BE 3 Page 6-12
Identification
Register
Generic CRC Engine Registers
IRm Input Register m 20, + m*20, |U, PV |U, PV Page 6-14
RESmM CRC Result 24,,+ m*20, |U, PV |BE Page 6-15
Register m
CFGm CRC Configuration |28, + m*20,, |U, PV |PV 3 Page 6-17
Register m
STSm CRC Status 2C, +m*20, |U, PV |U,PV |3 Page 6-19
Register m
LENGTH |CRC Length 30, + m*20, (U, PV |U,PV |3 Page 6-20
m Register m
CHECKm | CRC Check 34,+m*20, |U,PV |U,PV |3 Page 6-20
Register m
CRCm CRC Register m 38, +m*20, U, PV |U,PV |3 Page 6-22
Reference Manual 6-11 V1.0, 2012-02

FCE, V2.7

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flexible CRC Engine (FCE)

Table 6-3 Registers Overview - CRC Kernel Registers (cont'd)

Short Description Offset Access Mode | Reset | Description

Name Addr.D Read |Write |Class |See

CTRm CRC Test Register |3C, + m*20, |U, PV U, PV |3 Page 6-23
m

CTRm CRC Test Register |3C, + m*20, |U, PV [U, PV |3 Page 6-23
m

1) The absolute register byte address for each CRC kernel m is calculated as follows:
CRC kernel register base Address (Table 6-2) + m*20H, m = 0-3

Disabling the FCE
The FCE module can be disabled using the CLC register.

When the disable state is requested all pending transactions running on the bus slave
interface must be completed before the disabled state is entered. The CLC Register
Module Disable Bit Status CLC.DISS indicates whether the module is currently disabled
(DISS == 1). Any attempt to write any register with the exception of the CLC Register will
generate a bus error. A read operation is allowed and does not generate a bus error.

6.7.1 System Registers description
This section describes the registers related to the product system architecture.

Clock Control Register (CLC)

The Clock Control Register allows the programmer to adapt the functionality and power
consumption of the module to the requirements of the application.

CLC
Clock Control Register (00,) Reset Value: 0000 0003,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DISS|DISR

rh rw

=

Reference Manual 6-12 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flexible CRC Engine (FCE)

Field Bits Type | Description

DISR 0 rw Module Disable Request Bit

Used for enable/disable control of the module.

DISS 1 rh Module Disable Status Bit

Bit indicates the current status of the module.

0 [31:2]

-

Reserved
Read as 0; should be written with 0.

Module Identification Register

ID
Module Identification Register

31 30 29 28 27 26

(08,) Reset Value: 00CA C001,

25 24 23 22 21 20 19 18 17 16

MOD_NUMBER

15 14 13 12 11 10

T T T T T T

MOD_TYPE MOD_REV
1 ll' 1 1 1 1 I\‘
Field Bits Type |Description
MOD_REV [7:0] r Module Revision Number

This bit field defines the module revision number.
The value of a module revision starts with 01, (first
revision). The current revision number is 01,

—

MOD_TYPE [15:8]

Module Type
The bit field is set to CO,, which defines the module
as a 32-bit module.

MOD_NUMBER | [31:16]

—

Module Number Value
This bit field defines a module identification number.
The value for the FCE module is 00CA,,.

Reference Manual
FCE, V2.7

6-13 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

6.7.2

CRC Engine Input Register

Flexible CRC Engine (FCE)

CRC Kernel Control/Status Registers

IRm (m = 0-1)

Input Register m (204 + m*20,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
IR

1 1 1 1 1 1 1 1 1 1 I'\IIV 1 1 1
Field Bits Type |Description
IR [7:0] r Input Register
This bit field holds the 32-bit data to be computed

A write to IRm triggers the CRC kernel to update the message checksum according to
the IR contents and to the current CRC register contents. Only 32-bit write transactions
are allowed to this IRm registers, any other bus write transaction will lead to a Bus Error.

CRC Engine Input Register

IRm (m = 2-2)

Input Register m (20, + m*20,,) Reset Value: 0000 0000

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

0 IR

2

Field Bits Type | Description
IR [15:0] r Input Register

This bit field holds the 16-bit data to be computed
0 [31:16] |r Reserved

Read as 0; should be written with 0.

A write to IRm triggers the CRC kernel to update the message checksum according to
the IR contents and to the current CRC register contents. Only 32-bit or 16-bit write

Reference Manual 6-14

FCE, V2.7

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Flexible CRC Engine (FCE)

transactions are allowed to this IRm register, any other bus write transaction will lead to
a Bus Error. Only the lower 16-bit of the write transactions will be used.

CRC Engine Input Register

IRm (m = 3-3)
Input Register m (20, + m*20,,) Reset Value: 0000 0000

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

0 IR

2

Field Bits Type |Description
IR [7:0] rw Input Register

This bit field holds the 8-bit data to be computed
0 [31:8] |r Reserved

Read as 0; should be written with 0.

A write to IRm triggers the CRC kernel to update the message checksum according to
the IR contents and to the current CRC register contents. Any write transaction is
allowed to this IRm register. Only the lower 8-bit of the write transactions will be used.
CRC Engine Result Register

RESmM (m = 0-1)

CRC Result Register m (24, + m*20,) Reset Value: FFFF FFFF,
31‘30‘29‘28‘27|26|25|24|23|22|21|20|19|18|17|16|15I14|13|12‘11‘10‘ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0
RES

L
Field Bits Type |Description
RES [31:0] |rh Result Register

Returns the final CRC value including CRC reflection
and final XOR according to the CFG register
configuration. Writing to this register has no effect.

Reference Manual 6-15 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flexible CRC Engine (FCE)

CRC Engine Result Register

RESm (m = 2-2)

CRC Result Register m (24, + m*20,) Reset Value: 0000 FFFF,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2
T T

10
T

T

T
0 RES

.
=
=y

Field Bits Type |Description

RES [15:0] |[rh Result Register

Returns the final CRC value including CRC reflection
and final XOR according to the CFG register
configuration. Writing to this register has no effect.

0 [31:16] Reserved

Read as 0; should be written with 0.

=

CRC Engine Result Register

RESmM (m = 3-3)

CRC Result Register m (24, + m*20,) Reset Value: 0000 OOFF,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

T
0 RES

=
=
=y

Field Bits Type |Description

RES [7:0] rh Result Register

Returns the final CRC value including CRC reflection
and final XOR according to the CFG register
configuration. Writing to this register has no effect.

0 [31:8] Reserved

Read as 0; should be written with 0.

=

Reference Manual 6-16 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

Flexible CRC Engine (FCE)

CRC Engine Configuration Register

CFGm (m =0-3)
CRC Configuration Register m

(28, + m*20,,)

Reset Value: 0000 0700,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
XSE | REF |REFI
0 L lout! N 0 ALR |CCE| BEI | LEI | CEI | CMI
l r I rw w 'w II’ 'w 'w 'w 'w 'w w
Field Bits Type | Description
CMI 0 rw CRC Mismatch Interrupt
0y CRC Mismatch Interrupt is disabled
1z CRC Mismatch Interrupt is enabled
CEl 1 rw Configuration Error Interrupt
When enabled, a Configuration Error Interrupt is
generated whenever a mismatch is detected in the
CFG and CHECK redundant registers.
0g Configuration Error Interrupt is disabled
1z Configuration Error Interrupt is enabled
LEI 2 rw Length Error Interrupt
When enabled, a Length Error Interrupt is generated if
software writes to IR register with LENGTH equal to 0
and CFG.CCE is set to 1.
Og Length Error Interrupt is disabled
1 Length Error Interrupt is enabled
BEI 3 rw Bus Error Interrupt
When enabled, an interrupt is generated if a bus write
transaction with an access width smaller than the
kernel width is issued to the input register.
Og Bus Error Interrupt is disabled
1z Bus Error Interrupt is enabled

Reference Manual
FCE, V2.7

6-17 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flexible CRC Engine (FCE)

Field Bits Type |Description
CCE 4 rw CRC Check Comparison
0y CRC check comparison at the end of a message
is disabled
1y CRC check comparison at the end of a message
is enabled
ALR 5 rw Automatic Length Reload
0g Disables automatic reload of the LENGTH field.
1z Enables automatic reload of the LENGTH field at
the end of a message.
REFIN 8 rw IR Byte Wise Reflection
0z IR Byte Wise Reflection is disabled
1 IR Byte Wise Reflection is enabled
REFOUT 9 rw CRC 32-Bit Wise Reflection
0g CRC 32-bit wise is disabled
1z CRC 32-bit wise is enabled
XSEL 10 rw Selects the value to be xored with the final CRC
0g 0x00000000
1z OxFFFFFFFF
0 [7:6], |r Reserved
[31:11] Read as 0; should be written with 0.

Reference Manual
FCE, V2.7

6-18 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

CRC Engine Status Register

Flexible CRC Engine (FCE)

STSm (m = 0-3)

CRC Status Register m (2C, + m*20,) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0

1 1 1 1 1 IL 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 BEF | LEF | CEF |CMF
I I I r I I I rwh rwh rwh rwh

Field Bits Type |Description

CMF 0 rwh | CRC Mismatch Flag
This bit is set per hardware only. To clear this bit,
software must write a 1 to this bit field location. Writing
0 per software has no effect.

CEF 1 rwh | Configuration Error Flag
This bit is set per hardware only. To clear this bit,
software must write a 1 to this bit field location. Writing
0 per software has no effect.

LEF 2 rwh | Length Error Flag
This bit is set per hardware only. To clear this bit,
software must write a 1 to this bit field location. Writing
0 per software has no effect.

BEF 3 rwh | Bus Error Flag
This bit is set per hardware only. To clear this bit,
software must write a 1 to this bit field location. Writing
0 per software has no effect.

0 [31:4] |r Reserved
Read as 0; should be written with 0.

Reference Manual
FCE, V2.7

6-19 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flexible CRC Engine (FCE)

CRC Engine Length Register

LENGTHm (m = 0-3)

CRC Length Register m (304 + m*20,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

0 LENGTH
1 1 1 lL 1 1 1 1 1 1 1 1 1 1 | rv\\lh |
Field Bits Type |Description

LENGTH [15:0] [rwh |Message Length Register

Number of words building the message over which the
CRC checksum is calculated. This bit field is modified by
the hardware: every write to the IR register decrements
the value of the LENGTH bit field. If the CFG.ALR field
is set to 1, the LENGTH field shall be reloaded with its
configuration value at the end of the cycle where
LENGTH reaches 0.

Reserved
Read as 0; should be written with 0.

0 [31:16]

=

CRC Engine Check Register

CHECKm (m = 0-1)
CRC Check Register m (34, + m*20,) Reset Value: 0000 0000,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

CHECK
1 1 1 1 1 1 1 1 1 1 1 r\I,V 1 1 1

Field Bits Type |Description

CHECK [31:0] |rw CHECK Register
Expected CRC value to be checked by the hardware
upon detection of a 1 to 0 transition of the LENGTH
register. The comparison is enabled by the CFG.CCE bit
field

Reference Manual 6-20 V1.0, 2012-02

FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flexible CRC Engine (FCE)

CRC Engine Check Register

CHECKm (m = 2-2)

CRC Check Register m (34, + m*20,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 CHECK
1 1 1 lL 1 1 1 1 1 1 1 1 1 1 Il r\\,v Il
Field Bits Type |Description
CHECK [15:0] |rw CHECK Register
Expected CRC value to be checked by the hardware
upon detection of a 1 to 0 transition of the LENGTH
register. The comparison is enabled by the CFG.CCE bit
field
0 [31:16] |r Reserved
Read as 0; should be written with 0.

CRC Engine Check Register

CHECKm (m = 3-3)

CRC Check Register m (34, + m*20,) Reset Value: 0000 0000,
31[30[29[28[27.26.25.24.23.22.21.20.19.18.17.16.15.14.13.121111101 9 ‘ 8 7 ‘ 6 ‘ 5 ‘ 4 ! 3 ! 2 ! 1 ! 0
0 CHECK
E Two
Field Bits Type |Description
CHECK [7:0] rw CHECK Register

Expected CRC value to be checked by the hardware
upon detection of a 1 to 0 transition of the LENGTH
register. The comparison is enabled by the CFG.CCE bit

field
0 [31:8] |r Reserved
Read as 0; should be written with 0.
Reference Manual 6-21 V1.0, 2012-02

FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flexible CRC Engine (FCE)

CRC Engine Initialization Register

CRCm (m =0-1)

CRC Register m (38, + m*20,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
CRC

1 1 1 1 1 1 1 1 1 1 1 rv\llh 1 1 1
Field Bits Type |Description
CRC [31:0] [rwh |CRC Register
This register enables to directly access the internal CRC
register
CRC Engine Initialization Register
CRCm (m = 2-2)
CRC Register m (38, + m*20,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 CRC
1 1 1 lL 1 1 1 1 1 1 1 1 1 1 Il rv\\lh Il
Field Bits Type |Description
CRC [15:0] |[rwh |CRC Register
This register enables to directly access the internal CRC
register
0 [31:16] |r Reserved
Read as 0; should be written with 0.

Reference Manual 6-22 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flexible CRC Engine (FCE)

CRC Engine Initialization Register

CRCm (m = 3-3)

CRC Register m (38, + m*20,,) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
0 CRC
1 1 1 1 1 1 1 lL 1 1 1 1 1 1 1 | rv\\lh 1
Field Bits Type |Description
CRC [7:0] rwh | CRC Register
This register enables to directly access the internal CRC
register
0 [31:8] |r Reserved
Read as 0; should be written with 0.
CRC Test Register
CTRm (m = 0-3)
CRC Test Register m (3C, + m*20,) Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FRM |FRM
0 _CH|_CF|FcMm

ECK| G
1 1 1 1 r 1 1 1 rW rW rW

Field Bits |Type |Description

FCM 0 rw Force CRC Mismatch

Forces the CRC compare logic to issue an error
regardless of the CHECK and CRC values. The
hardware detects a 0 to 1 transition of this bit field and
triggers a CRC Mismatch interrupt

Reference Manual 6-23 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Flexible CRC Engine (FCE)

Field Bits |Type |Description

FRM_CFG 1 rw Force CFG Register Mismatch

This field is used to control the error injection
mechanism used to check the compare logic of the
redundant CFG registers. This is a one shot operation.
When the hardware detects a 0 to 1 transition of this bit
field it triggers a Configuration Mismatch interrupt (if
enabled by the corresponding CFGm register).

FRM_CHECK |2 rw Force Check Register Mismatch

This field is used to control the error injection
mechanism used to check the compare logic of the
redundant CHECK registers. This is a one shot
operation. The hardware detects a 0 to 1 transition of
this bit field and triggers a Check Register Mismatch
interrupt (if enabled by the corresponding CFGm

register).
0 [31:3] |r Reserved

Read as 0; should be written with 0.
6.8 Interconnects

The interfaces of the FCE module shall be described in the module design specification.
The Table 6-4 shows the services requests of the FCE module.

Table 6-4 FCE Service Requests

Inputs/Outputs /0 | Connected To Description
FCE.SRO O |NVIC Service request line
6.9 Properties of CRC code

Hamming Distance

The Hamming distance defines the error detection capability of a CRC polynomial. A
cyclic code with a Hamming Distance of D can detect all D-1 bit errors. Table 6-5
“Hamming Distance as a function of message length (bits)” on Page 6-25 shows
the dependency of the Hamming Distance with the length of the message.

Reference Manual 6-24 V1.0, 2012-02
FCE, V2.7 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Table 6-5

Flexible CRC Engine (FCE)

Hamming Distance as a function of message length (bits)Y

Hamming Distance | IEEE-802.3 CRC32 CCITT CRC16 J1850 CRC8
15 8-10 Information not Information not
14 8-10 available available
13 8-10

12 11-12

11 13-21

10 22-34

9 35-57

8 58 -91

7 92-171

6 172 - 268

5 269 - 2974

4 2973 - 91607

3 91607 - 131072

1) Data from technical paper “32-Bit Cyclic Redundancy Codes for Internet Applications” by Philip Koopman,
Carnegie Mellon University, 2002

Reference Manual
FCE, V2.7

6-25

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

On-Chip Memories

Reference Manual V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Memory Organization

7 Memory Organization

This chapter provides description of the system Memory Organization and basic
information related to Parity Testing and Parity Error handling.

References

[8] Cortex®-M4 User Guide, ARM DUI 0508B (ID062910)

7.1 Overview

The Memory Map is intended to balance decoding cost at various level of the system bus
infrastructure.

7.1.1 Features
The Memory Map implements the following features:

e Compatibility with standard ARM Cortex-M4 CPU [8]
e Compatibility across entire XMC4000 Family
* Optimal functional module address spaces grouping

7.1.2 Cortex-M4 Address Space

The system memory map defines several regions. Address boundaries of each of the
regions are determined by the Cortex-M4 core architecture.

Reference Manual 7-1 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

infineon

XMC4500

XMC4000 Family

Memory Organization

OXE0042000 EXte;—a,\IAPPB System
0xE0041000 TPIU 0xE0100000
0xE0040000 Private peripheral bus - External
0xE0040000
Private peripheral bus - Internal
0xE0040000
OXE0OOF000 Re;zr;ed 0xE0000000
0xE000E000 Reserved
0xE0003000 FPB External device 1.0GB
0xE0002000 DWT
0xE0001000 ™
0xE0000000 0xA0000000
External RAM 1.0GB
0x60000000
Peripheral ~ 0.5GB
0x40000000
SRAM 0.5GB
0x20000000
Code 0.5GB
0x00000000
Figure 7-1 Cortex-M4 processor address space
Reference Manual 7-2 V1.0, 2012-02

Memory Organization, V2.5

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Memory Organization

7.2 Memory Regions

The XMC4500 device specific address map assumes presence of internal and external
memories and peripherals. The memory regions for XMC4500 are described in
Table 7-1.

Table 7-1 Memory Regions

Start End Size (hex) Space name Usage
00000000 1FFFFFFF 20000000 Code Boot ROM
Flash
Program SRAM
20000000 3FFFFFFF 20000000 SRAM Fast internal
SRAMs
40000000 47FFFFFF 08000000 Peripheral 0 Internal
Peripherals
group O
48000000 AFFFFFFF 08000000 Peripheral 1 Internal
Peripherals
group 1
50000000 57FFFFFF 08000000 Peripheral 2 Internal
Peripherals
group 2
58000000 S5FFFFFFF 08000000 Peripheral 3 Internal
Peripherals
group 3
60000000 9FFFFFFF 40000000 External SRAM | External
Memories
A0000000 DFFFFFFF 40000000 External Device | External
Devices
E0000000 EOOFFFFF 00100000 Private CPU
Peripheral Bus
E0100000 EFFFFFFF OFF00000 Vedor specific 1 | reserved
FO0000000 FFFFFFFF 10000000 Vedor specific 2 | reserved
7.3 Memory Map

Table 7-2 defines detailed system memory map of XMC4500 where each individual
peripheral or memory instance implement its own address spaces. For detailed register
description of the system components and peripherals please refer to respective
chapters of this document.

Reference Manual 7-3 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Memory Organization

Table 7-2 Memory Map

Addr space Start Address (hex) | End Address (hex) | Modules

Code 00000000 00003FFF BROM (PMU ROM)
00004000 07FFFFFF reserved
08000000 080FFFFF PMU/FLASH

(cached)
08100000 09E1FFFF reserved
09E20000 09E23FFF reserved
09E24000 OBFFFFFF reserved
0C000000 OCOFFFFF PMU/FLASH
(uncached)

0C100000 OFFFFFFF reserved
ODE20000 ODE23FFF reserved
0ODE24000 OFFFFFFF reserved
10000000 1000FFFF PSRAM (code)
10010000 1FFFFFFF reserved

SRAM 20000000 2000FFFF DSRAML1 (system)
20010000 2FFFFFFF reserved
30000000 30007FFF DSRAM2 (comm)
30008000 3FFFFFFF reserved

Reference Manual 7-4 V1.0, 2012-02

Memory Organization, V2.5

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Memory Organization

Table 7-2 Memory Map (cont'd)

Addr space Start Address (hex) | End Address (hex) | Modules

Peripherals 0 40000000 40003FFF PBAO
40004000 40007FFF VADC
40008000 4000BFFF DSD
4000C000 4000FFFF CCuU40
40010000 40013FFF CCu41
40014000 40017FFF CCu42
40018000 4001BFFF reserved
4001C000 4001FFFF reserved
40020000 40023FFF CCu80
40024000 40027FFF Ccus1l
40028000 4002BFFF POSIFO
4002C000 4002FFFF POSIF1
40030000 40033FFF usiIco
40034000 40037FFF reserved
40038000 4003BFFF reserved
4003C000 4003FFFF reserved
40044000 40047FFF ERU1
40048000 A7FFFFFF reserved

Peripherals 1 48000000 48003FFF PBA1
48004000 48007FFF CCu43
48008000 4800BFFF reserved
4800C000 4800FFFF reserved
48010000 48013FFF LEDTSO
48014000 48017FFF CAN
48018000 4801BFFF DAC
4801C000 4801FFFF SDMMC
48020000 48023FFF USIC1
48024000 48027FFF usic2
48028000 4802BFFF PORTS
4802C000 AFFFFFFF reserved

Reference Manual 7-5 V1.0, 2012-02

Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

Gafineon.

XMC4500
XMC4000 Family

Memory Organization

Table 7-2 Memory Map (cont'd)
Addr space Start Address (hex) | End Address (hex) | Modules
Peripherals 2 50000000 50003FFF PBA2
50004000 50007FFF SCU & RTC
50008000 5000BFFF WDT
5000C000 5000FFFF ETH
50010000 50013FFF reserved
50014000 50017FFF DMAO
50018000 5001BFFF DMA1
5001C000 5001FFFF reserved
50020000 50023FFF FCE
50024000 5003FFFF reserved
50040000 5007FFFF USB
50080000 57FFFFFF reserved
Peripherals 3 58000000 58003FFF PMUO registers
58004000 58007FFF PMUO prefetch
58008000 5800BFFF EBU registers
5800C000 5800FFFF reserved
58010000 58013FFF reserved
58014000 58017FFF reserved
58018000 SFFFFFFF reserved
External SRAM 60000000 63FFFFFF EBU memory CS0O
64000000 67FFFFFF EBU memory CS1
68000000 6BFFFFFF EBU memory CS2
6C000000 6FFFFFFF EBU memory CS3
70000000 9FFFFFFF reserved
External Device A0000000 A3FFFFFF EBU devices CS0O
A4000000 A7TFFFFFF EBU devices CS1
A8000000 ABFFFFFF EBU devices CS2
AC000000 AFFFFFFF EBU devices CS3
BO000000 DFFFFFFF reserved
Reference Manual 7-6 V1.0, 2012-02

Memory Organization, V2.5

Subject to Agreement on the Use of Product Information

Cry XMC4500
< mfmeon XMC4000 Family

Memory Organization

Table 7-2 Memory Map (cont'd)

Addr space Start Address (hex) | End Address (hex) | Modules

Private Peripheral | EO000000 EOOOOFFF IT™

Bus E0001000 EOOO1FFF DWT
E0002000 EO002FFF FPB
E0003000 EOOODFFF reserved
EOOOEO00 EOOOEFFF SCS
EOOOEO010 EOOOEO1C SysTick
EOOOEF34 EOOOEF47 FPU
EOOOF000 EOO3FFFF reserved
E0040000 EOO040FFF TPIU
E0041000 EOO41FFF ETM
E0042000 EOOFEFFF reserved
EOOFF000 EOOFFFFF ROM Table

Vedor specific 1 E0100000 EFFFFFFF reserved

Vedor specific 2 FO000000 FFFFFFFF reserved

7.4 Service Request Generation

Memory modules and other system components are capable of generating error
reposnses indicated to the CPU as bus error exceptions or interrupts.

Types of error causes

« Unsupported Access Mode

* Access to Invalid Address

» Parity Error (memories only)

« Bufferable Write Accesses to Peripheral

Errors that cannot be indicated with bus errors get indicated with service requests that
get propagated to CPU as interrupts. Typically lack of bus error response capability
applies to memory modules that lack of direct access from the system bus This applies
to memories that serve the purpose of internal FIFOs and local storage buffers.

Unsupported Access Modes

Unsupported access modes can be clasiffied in various ways and are usually specific to
the module that access is performed to. The typical examples of unsupported access
modes are read access to write-only or write access to read-only type of address

Reference Manual 7-7 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Memory Organization

mapped ressources, unsupported access data witdhs, protected memory regions. For
module specific limitations please refer to individual module chapters.

Invalid Address

Accesses to invalid addresses result in error responses. Invalid addresses are defined
as those that do not mapped to any valid ressources. This applies to single addresses
and to wider address ranges. Some invalid addresses within valid module address
ranges may not produce error responses and this is specific to individual modules.

Parity Errors

Parity test is performed on the XMC4500 memories in normal functional mode. Parity
errors are generated in case of failure of parity test performed inside of each of the
memory module. The mechnism of parity testing depends on memory data width and
access mode, i.e. memory modules that are accessible byte-wise implement parity
check for each data byte individually while for memory modules that are accessible
double-word-wise it is sufficient to perform joint check for all bits.

The occurrence of a parity error gets signalized to the system with system bus error or
an interrupt (parity trap). For details on parity errror generation control and handling
please refer to the SCU chapter. For more details please refer to Table 7-3.

Table 7-3 Parity Test Enabled Memories and Supported Parity Error Indication

Memory Number of |Parity Test |Bus Parity
Parity Bits |Granularity |Error Trap

Program SRAM (PSRAM) 1 4 bytes yes yes
System SRAM (DSRAML1) 4 1 byte yes yes
Communication SRAM (DSRAM2) |4 1 byte yes yes
USIC 0 Buffer Memory 1 4 bytes no yes
USIC 1 Buffer Memory 1 4 bytes no yes
USIC 2 Buffer Memory 1 4 bytes no yes
MultiCAN Buffer Memory 1 4 bytes no yes
PMU Prefetch Buffer Memory 1 4 bytes no yes
USB Buffer Memory 1 4 bytes no yes
ETH 0 TX Buffer Memory 1 4 bytes no yes
ETH 0 RX Buffer Memory 1 4 bytes no yes
SDMMC Buffer Memory 0 1 4 bytes no yes
SDMMC Buffer Memory 1 1 4 bytes no yes
Reference Manual 7-8 V1.0, 2012-02

Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Memory Organization

Bufferable Write Access to Peripheral

Bufferable writes to peripheral may result in error reponses as described above. Bus
error responses from modules attached to peripheral bridges PBAO and PBAL trigger
service request from the respective bridge that will result in NMI to the CPU. Error status
and access address that caused the service request get stored in dedicated registers of
the peripheral bridges. For detail please refer to Registers.

7.5 Debug Behavior

The bus system in debug mode allows debug probe access to all system ressources
except for the Flash sectors protected with a dedicated protection mechanism (for more
details please refer to Flash Memory chapter). No special handling of HALT mode is
implemented and all interfaces respond with a valid bus response upon accesses.

7.6 Power, Reset and Clock

The bus system clocking scheme enables stable system operation and accesses to
system ressources for all valid system clock rates. Some parts of the system may also
run at a half of the system clock rate and no special handling is required as appropriate
alignment of the bus system protocol is provided on the clock domain boundary (for
details please refer to clocking system description in SCU chapter).

7.7 Initialization and System Dependencies

No initialization is required for the memory system from user point of view. All valid
memories are available after reset. Some peripherals may need to be initialized (e.g.
released from reset state) before accessed. For details please refer to individual
peripheral chapters.

Reference Manual 7-9 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Memory Organization

7.8 Registers

This section describes registers of the Peripheral Bridges. The purpose of the registers
is handling of errors signalized during bufferable accesses to peripherals connected to
the respective bridges. Aactive errors on bufferable writes trigger interrupt requests
geberated from the Peripheral Bridges that can be monitored and cleared in the register
defiled in this chapter.

Table 7-4 Registers Address Space

Module Base Address End Address Note

PBAO 4000 0000, 4000 3FFFy Peripheral
Bridge O

PBA1 4800 0000, 4800 3FFF, Peripheral
Bridge 1

Table 7-5 Registers Overview

Register Register Long Offset Access Mode | Description

Short Name Name Address Read | Write

PBAO_STS PBA 0 Status 0000, U, PV |PV Page 7-10
Register

PBAO_WADDR | PBA 0 Write Error 0004, U, PV Page 7-11
Address

PBA1_STS PBA 1 Status 0000, U, PV |PV Page 7-12
Register

PBA1_WADDR | PBA 1 Write Error 0004, U, PV Page 7-12
Address

PBAO_STS

The status register of PBAO bridge indicates bus error occurrence for write access. Is
meant to be used for errors triggered upon buffered writes. The bit gets set and interrupt
request has been generated to the SCU.

Write one to clear, writing zero has no effect.

Reference Manual 7-10 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Memory Organization

PBAO_STS
Peripheral Bridge Status Register (0000, Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WER
0 R
1 1 1 1 1 r 1 1 rW
Field Bits Type | Description
WERR 0 rw Bufferable Write Access Error

Og no write error occurred.
1z write error occurred, interrupt request is pending.

0 [31:1] Reserved bits. Write zeros

=

PBAO_WADDR

The Write Error Address Register keeps write access address that caused a bus error
upon bufferable write attempt to a peripheral connected to PBAO bridge. This register
store the address that of the bufferable write access attempt that caused error resulting
in setting WERR bit of the PBAQO_STS register.

This register value remains unchanged when WERR bit of PBAO_STS register is set.

PBAO_WADDR
PBA Write Error Address Register (0004, Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference Manual 7-11 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Memory Organization

Field Bits Type | Description

WADDR [31:0] |rh Write Error Address
Address of the write access that caused a bus error
on the bridge Master port.

PBA1_STS

The status register of PBA1 bridge indicates bus error occurrence for write access. Is
meant to be used for errors triggered upon buffered writes. The bit gets set and interrupt
request has been generated to the SCU.

Write one to clear, writing zero has no effect.
PBA1_STS
Peripheral Bridge Status Register (0000,,) Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WER
0 R
1 1 1 1 1 r 1 1 rW
Field Bits Type | Description
WERR 0 rw Bufferable Write Access Error

Og no write error occurred.
1z write error occurred, interrupt request is pending.

0 [31:1] Reserved bits. Write zeros

=

PBA1_WADDR

The Write Error Address Register keeps write access address that caused a bus error
upon bufferable write attempt to to a peripheral connected to PBA1 bridge. This register
store the address that of the bufferable write access attempt that caused error resulting
in setting WERR bit of the PBA1_STS register.

This register value remains unchanged when WERR bit of PBA1_STS register is set.

Reference Manual 7-12 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Memory Organization

PBA1 WADDR
PBA Write Error Address Register (0004, Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WADDR
1 1 1 1 1 rIh 1
Field Bits Type | Description
WADDR [31:0] |rh Write Error Address

Address of the write access that caused a bus error
on the bridge Master port.

Reference Manual 7-13 V1.0, 2012-02
Memory Organization, V2.5 Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

8 Flash and Program Memory Unit (PMU)

Flash and Program Memory Unit (PMU)

The Program Memory Unit (PMU) controls the Flash memory and the BROM and
connects these to the system. The Prefetch unit maximizes system performance with
higher system frequencies, by buffering instruction and data accesses to the Flash.

8.1 Overview

In the XMC4500, the PMU controls the following interfaces:
« The Flash command and fetch control interface for Program Flash

* The Boot ROM interface

*« The PMU interfaces via the Prefetch unit to the Bus Matrix
Following memories are controlled by and belong to the PMU:

e 1.0 Mbyte of Program Flash memory (PFLASH)

« 16 Kbyte of BROM (BROM)

* 4 Kbyte of Instruction Cache memory in the Prefetch unit

* 256-bit Data Buffer in the Prefetch unit

8.1.1 Block Diagram

The PMU block diagram is shown in Figure 8-1.

Bus Matrix

1

PREFETCH

g

PMU
Control

1l

1l

PFLASH

BROM

Figure 8-1 PMU Block Diagram

Reference Manual
PMU, V1.4

8-1

V1.0, 2012-02

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

8.2 Boot ROM (BROM)

The Boot ROM in PMUO has a capacity of 16 KB. The BROM contains the Firmware
with:

« startup routines

» bootstrap loading software.

Details on the operations of the BROM are given in the chapter “Startup Modes”.

8.2.1 BROM Addressing
The BROM is visible at one location, as can be seen in the memory map:
* (non-cached space) starting at location 0000 0000,

After any reset, the hardware-controlled start address is 0000 0000,,. At this location, the
startup procedure is stored and started. As no other start location after reset is
supported, the startup software within the BROM is always executed first after any reset.

8.3 Prefetch Unit

The purpose of the Prefetch unit is to reduce the Flash latency gap at higher system
frequencies to increase the instruction per cycle performance.

8.3.1 Overview

The Prefetch unit separates between instruction and data accesses to the Flash with the
following configuration:

e 4 Kbyte Instruction Buffer
— 2-way set associative
— Least-Recently-Used (LRU) replacement policy
— Cache line size: 256 bits
— Critical word first
— Streaming®
— Line wrap around
— Parity, 32-hit granularity
— Buffer can be bypassed
— Buffer can be globally invalidated
e 256-bit Data Buffer
Single line
Critical word first
Streaming?
Line Wrap around

1) The first 32-bit data from Flash gets immediately forwarded to the CPU

Reference Manual 8-2 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flash and Program Memory Unit (PMU)

Instruction
ICode Bus <" IF

Instruction
Buffer

DCode Bus Data Data Buffer
System Bus

DMA I/F

PII}/FI:U K=" Flash memory

N2

Figure 8-2 Prefetch Unit

8.3.2 Operation

8.3.2.1 Instruction Buffer

The instruction buffer acts like a regular instruction cache with the characteristics
described in the overview, optimized for minimum latency via the dedicated instruction
interface. Instruction fetches to the non-cacheable address space bypass the instruction
buffer. For software development and benchmarking purposes the cacheable accesses
can also bypass the instruction buffer by setting PREF_PCON.IBYP to 1;.

Prefetch buffer hits are without any penalty i.e. single cycle access rate. This ensures a
minimized latency.

The instruction buffer may be invalidated by writing a 15 to PREF_PCON.IINV. After
system reset, the instruction buffer is automatically invalidated.

A parity error during a buffer read operation is automatically turned into a buffer miss,
triggering a refill operation of the cache line.

Note: The complete invalidation operation is performed in a single cycle.

Note: The parity information is generated on the fly during the cache refill operation.
Parity is checked for each read operation targeting the instruction buffer.

The streaming operation is on the fly - it does not cause any additional latency.

8.3.2.2 Data Buffer

The characteristics of the data buffer are described in the overview. It is used for data
read requests from the CPU using the DCode interface and for data read requests from

Reference Manual 8-3 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

the DMA. CPU read accesses to the prefetch buffer are without any penalty i.e. single
cycle access rate. The miss latency is minimized.

The data interface is shared between DMA requests, CPU DCode bus requests and
CPU System bus requests. The CPU System bus is attached to the Prefetch unit to
access configuration and status registers within the Prefetch unit and the PMU and
Flash. All read requests outside the cacheable address space and all write accesses
bypass the data buffer.

Note: The streaming operation is on the fly - it does not cause any additional latency.

8.3.2.3 PMU Interface

Each Flash read access returns 256 bits, intermediately stored in a “global read buffer”
in the Flash (Chapter 8.4.4). The Prefetch unit reads from this buffer via a 64-bit
interface. Cacheable read accesses that are not yet stored in the Prefetch buffer (cache
miss) trigger a refill operation by a 4x64-bit burst transfer. By that burst transfer the data
from the global buffer is copied, refilling the instruction buffer (code fetch) or data buffer
(data fetch) respectively.

Only the initial Flash read access is affected by the Flash latency. The subsequent read
accesses of the burst transfer are serviced by the global read buffer with no additional
delay. An additional prefetch mechanism in the PFLASH further reduces the latency for
linear Flash accesses (Chapter 8.4.4).

Non-cacheable accesses benefit from the global read buffer in the same way, as long as
its content is not “trashed” by a new Flash read access (e.g. from a different bus master).

Accesses to the BROM and register address spaces and write operations are ignored by
the Prefetch buffers.

Reference Manual 8-4 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

8.4 Program Flash (PFLASH)

This chapter describes the embedded Flash module of the XMC4500 and its software
interface.

8.4.1 Overview

The embedded Flash module of XMC4500 includes 1.0 MB of Flash memory for code or
constant data (called Program Flash).

8.4.1.1 Features

The following list gives an overview of the features implemented in the Program Flash.
Absolute values can be found in the “Data Sheet”.

* Consists of one bank.

e Commonly used for instructions and constant data.

* High throughput burst read based on a 256-bit Flash access.

e Application optimized sector structure with sectors ranging from 16 Kbytes to
256 Kbytes.

» High throughput programming of a 256 byte page (see Data Sheet togp).

* Sector-wise erase on logical and physical sectors (see Data Sheet t ;).

» Write protection separately configurable for groups of sectors.

» Hierarchical write protection control with 3 levels of which 2 are password based and
1 is a one-time programmable one.

« Password based read protection combined with write protection for the whole Flash.

e Separate configuration sector containing the protection configuration and boot
configuration (BMI).

e All Flash operations initiated by command sequences as protection against
unintended operation.

« Erase and program performed by a Flash specific control logic independent of the
CPU.

« End of erase and program operations reported by interrupt.

* Dynamic Error Correcting Code (ECC) with Single-bit Error Correction and Double-
bit Error Detection (“SEC-DED”).

« Error reporting by bus error, interrupts and status flags.

* Margin reads for quality assurance.

e Delivery in the erased state.

« Configurable wait state configuration for optimum read performance depending on
CPU frequency (see FCON.WSPFLASH).

< High endurance and long retention.

« Pad supply voltage used for program and erase.

Reference Manual 8-5 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

8.4.2 Definition of Terms

The description of Flash memories uses a specific terminology for operations and the
hierarchical structure.

Flash Operation Terms

e Erasing: The erased state of a Flash cell is logical ‘0. Forcing a cell to this state is
called “erasing”. Depending on the Flash area always complete physical sectors,
logical sectors are erased. All Flash cells in this area incur one “cycle” that counts
for the “endurance”.

e Programming: The programmed state of a cell is logical ‘1’. Changing an erased
Flash cell to this state is called “programming”. The 1-bits of a page are programmed
concurrently.

* Retention: This is the time during which the data of a Flash cell can be read reliably.
The retention time is a statistical figure that depends on the operating conditions of
the device (e.g. temperature profile) and is affected by operations on other Flash cells
in the same word-line and physical sector. With an increasing number of
program/erase cycles (see endurance) the retention is lowered. Figures are
documented in the Data Sheet separately for physical sectors (tzer) and UCBs (tz1y).

e Endurance: The maximum number of program/erase cycles of each Flash cell is
called “endurance”. The endurance is a statistical figure that depends on operating
conditions and the use of the flash cells and also on the required quality level. The
endurance is documented in the Data Sheet as a condition to the retention
parameters.

Flash Structure Terms

¢ Flash Module: The PMU contains one “Flash module” with its own operation control
logic.

« Bank: A “Flash module” may contain separate “banks”. “Banks” support concurrent
operations (read, program, erase) with some limitations due to common logic.

e Physical Sector: A Flash “bank” consists of “physical sectors” ranging from
64 Kbytes to 256 Kbytes. The Flash cells of different “physical sectors” are isolated
from each other. Therefore cycling Flash cells in one physical sectors does not affect
the retention of Flash cells in other physical sectors. A “physical sector” is the largest
erase unit.

e Logical Sector: A “logical sector” is a group of word-lines of one physical sector.
They can be erased with a single operation but other Flash cells in the same physical
sector are slightly disturbed.

e Sector: The plain term “sector” means “logical sector” when a physical sector is
divided in such, else it means the complete physical sector.

» User Configuration Block “UCB”: A “UCB" is a specific logical sector contained in
the configuration sector. It contains the protection settings and other data configured

Reference Manual 8-6 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

(infineon

XMC4500

XMC4000 Family

Flash and Program Memory Unit (PMU)

by the user. The “UCBs” are the only part of the configuration sector that can be
programmed and erased by the user.
* Word-Line: A “word-line” consists of two pages, an even one and an odd one. In the

PFLASH a word-line contains aligned 512 bytes.

« Page: A “page” is a part of a word-line that is programmed at once. In PFLASH a
page is an aligned group of 256 bytes.

8.4.3 Flash Structure

The PMU contains one PFLASH bank, accessible via the cacheable or non-cacheable
address space. The offset address of each sector is relative to the base address of its

bank which is given in Table 8-1.

Derived devices (see Data Sheet) can have less Flash memory. The PFLASH bank
shrinks by cutting-off higher numbered physical sectors.

Table 8-1 Flash Memory Map

Range
Description

Size

Start Address

PMUO Program Flash Bank
non-cached

1.0 Mbyte

0CO00 0000y

PMUO Program Flash Bank

cached space

(different address space for the same
physical memory, mapped in the non-
cached address space)

1.0 Mbyte

0800 0000y

PMUO UCB
User Configuration Blocks

3 Kbyte

0CO00 0000y

PMUO Flash Registers

1 Kbyte

5800 2000y

PFLASH

All addresses offset to the start addresses given in Table 8-1. All sectors from S9 on

have a size of 256 Kbyte.

Table 8-2 Sector Structure of PFLASH

Sector Phys. Sector Size Offset Address

SO PSO 16 KB 00’0000,

S1 16 KB 00’4000,

S2 16 KB 00’8000,

S3 16 KB 00'C000,

Reference Manual 8-7 V1.0, 2012-02

PMU, V1.4

Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Flash and Program Memory Unit (PMU)

Table 8-2 Sector Structure of PFLASH (cont'd)

Sector Phys. Sector Size Offset Address
S4 PS4 16 KB 01°'0000,,

S5 16 KB 01'4000,,

S6 16 KB 01’8000,

S7 16 KB 01'C000,

S8 - 128 KB 02’0000,

S9 - 256 KB 04'0000,,

S10 - 256 KB 08’0000,

S11 - 256 KB 0C’0000,

ucB

All addresses offset to the start addresses given in Table 8-1. As explained before the
UCBXx are logical sectors.

Table 8-3 Structure of UCB Area

Sector Size Offset Address
UCBO 1 KB 00’0000,
uUCB1 1 KB 00’0400,
UCB2 1 KB 00’0800,

8.4.4 Flash Read Access

Flash banks that are active and in read mode can be directly read like a ROM.

The wait cycles for the Flash read access must be configured based on the CPU
frequency fepy (incl. PLL jitter) in relation to the Flash access time t, defined in the Data
Sheet. The follwing formula applies for FCON.WSPFLASH > 0,%:

WSPFLASH x (1 /fepy) 2 t, (8.1)

The PFLASH delivers 256 bits per read access. All read data from the PFLASH passes
through a 256-bit “global read buffer”.

The PMU allows 4x64-hit burst accesses to the cached address space and single 32-bit
read accesses to the non-cached address space of the PFLASH.

1) WSPFLASH = 0,, deviates from this formula and results in the same timing as WSPFLASH = 1,,.

Reference Manual 8-8 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

The Prefetch generates the 4x64-bit bursts for code and data fetches from the cached
address range in order to fill one cache line or the data buffer respectively. Data reads
from the non-cached address range are performed with single 32-bit transfers.

Following an inital Flash access, the PFLASH automatically starts a prefetch of the next
linear address (even before it has been requested). Has the content of the global read
buffer been read completely (e.g. by a burst from the Prefetch unit), the new prefetched
data is copied to the read buffer and another prefetch to the PFLASH is started. This
significantly reduces the Flash latency for mostly linearly accessed code or data
sections. To avoid additional wait states due to these prefetches, they can be aborted in
case a new (initial) read access is requested from a different address. For power saving
purposes these prefetch operations can be disabled by FCON.IDLE (ldle Read Path).

Read accesses from Flash can be blocked by the read protection (see Chapter 8.4.8).
ECC errors can be detected and corrected (see Chapter 8.4.9).

8.4.5 Flash Write and Erase Operations

Flash write and erase operations are triggered by Command Sequences to avoid harm
to the stored data by “accidential” accesses from faulty code. Erase operations are
executed on sectors, write operations on pages.

Attention: Flash write and erase operations must be executed to the non-
cacheable address space.

8.4.6 Modes of Operation
A Flash module can be in one of the following states:

e Active (normal) mode.
« Sleep mode (see Chapter 8.6.2).

In sleep mode write and read accesses to all Flash ranges of this PMU are refused with
a bus error.

When the Flash module is in active mode the Flash bank can be in one of these modes:

* Read mode.
¢ Command mode.

In read mode a Flash bank can be read and command sequences are interpreted. In
read mode a Flash bank can additionally enter page mode which enables it to receive
data for programming.

In command mode an operation is performed. During its execution the Flash bank
reports BUSY in FSR. In this mode read accesses to this Flash bank are refused with a
bus error. At the end of an operation the Flash bank returns to read mode and BUSY is
cleared. Only operations with a significant duration (shown in the command
documentation) set BUSY.

Reference Manual 8-9 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

Register read and write accesses are not affected by these modes.

8.4.7 Command Sequences

All Flash operations except read are performed with command sequences. When a
Flash bank is in read mode or page mode all write accesses to its reserved address
range are interpreted as command cycle belonging to a command sequence. Write
accesses to a busy bank cause a sequence error (SQER).

Attention: For the proper execution of the command sequences and the triggered
operations f.p, must be equal or above 1 MHz.

Command sequences consist of 1 to 6 command cycles. The command interpreter
checks that a command cycle is correct in the current state of command interpretation.
Else a SQER is reported.

When the command sequence is accepted the last command cycle finishes read mode
and the Flash bank transitions into command mode.

These write accesses must be single transfers and must address the non-cacheable
address range.

Generally when the command interpreter detects an error it reports a sequence error by
setting FSR.SQER. Then the command interpreter is reset and a page mode is left. The
next command cycle must be the 1st cycle of a command sequence. The only exception
is “Enter Page Mode” when a bank is already in page mode (see below).

8.4.7.1 Command Sequence Definitions

Table 8-4 gives an overview of the supported command sequence, with the following
nomenclature:

The parameter “addr” can be one of the following:

* CCCCy: The “addr” must point into the bank that performs the operation. The last 16
address bits must match CCCC,,. It is recommended to use as address the base
address of the bank incremented by CCCC,,.

« PA: Absolute start address of the Flash page.

« UCPA: Absolute start address of a user configuration block page.

* SA: Absolute start address of a Flash sector. Allowed are the PFLASH sectors Sx.

« PSA: Absolute start address of a physical sector. Allowed are the PFLASH physical
sectors PSx.

* UCBA: Absolute start address of a user configuration block.

The parameter “data” can be one of the following:

« WD: 64-bit or 32-bit write data to be loaded into the page assembly buffer.

« xxYY: 8-bit write data as part of a command cycle. Only the byte “YY” is used for
command interpretation. The higher order bytes “xx” are ignored.
— xx5y: Specific case for “YY”. The “y” can be “0" for selecting the PFLASH bank.

Reference Manual 8-10 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

» UL: User protection level (xxx0y, or xxx1, for user levels 0 and 1).

e PWx: 32-bit password.

Flash and Program Memory Unit (PMU)

When using for command cycles 64-bit transfers the “data” is expected in the correct 32-
bit word as indicated by the address “addr”.

Command Sequence Overview Table

The Table 8-4 summarizes all commands sequences. The following sections describe
each command sequence in detail.

Table 8-4 Command Sequences for Flash Control

Command Sequence 1. 2. 3. 4. 5. 6.
Cycle | Cycle | Cycle | Cycle | Cycle | Cycle
Reset to Read Address | .5554
Data . XXFO
Enter Page Mode Address | .5554
Data ..XX5y
Load Page Address | .55F0
Data WD
Write Page Address | .5554 |.AAA8 |.5554 |PA
Data LXXAA | . xx55 [.xXAO0 |..xxAA
Write User Address | .5554 |.AAA8 |.5554 |UCPA
Configuration Page Data JXXAA | .xx55 | .xxCO |..xxAA
Erase Sector Address | .5554 |.AAA8 |.5554 |.5554 |.AAA8 |SA
Data LXXAA | . xx55 | .xx80 |.xxAA |..xx55 |..xx30
Erase Physical Sector | Address | .5554 |.AAA8 |.5554 |.5554 |.AAA8 |SA
Data LXXAA | L.xxB5 [..xx80 | .xXAA |..xx55 |..xx40
Erase User Address | .5554 |.AAA8 |.5554 |.5554 |.AAA8 |UCBA
Configuration Block |Data LXXAA | L.xxB5 [.xx80 |.xXAA |..xx55 |..xxCO
Disable Sector Write |Address |.5554 |.AAA8 |.553C |.AAA8 |.AAA8 |.5558
Protection Data LXXAA | .xx55 |UL PWO |PW1 |.xx05
Disable Read Address | .5554 |.AAA8 |.553C |.AAA8 |.AAA8 |.5558
Protection Data LXXAA | .xx55 |.xx00 |PWO |PW1 |..xx08
Resume Protection Address | .5554
Data .XX5E
Clear Status Address | .5554
Data . XXF5
Reference Manual 8-11 V1.0, 2012-02

PMU, V1.4

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

Reset to Read

This function resets the command interpreter to its initial state (i.e. the next command
cycle must be the 1st cycle of a sequence). A page mode is aborted.

This command is the only one that is accepted without generating a SQER when the
command interpreter has already received command cycles of a different sequence but
is still not in command mode. Thus “Reset to Read” can cancel every command
sequence before its last command cycle has been received.

The error flags of FSR (PFOPER, SQER, PROER, PFDBER, ORIER, VER) are cleared.
The flags can be also cleared in the status registers without command sequence.

If any Flash bank is busy this command is executed but the flag SQER is set.

Enter Page Mode

The PFLASH enters page mode. The selection of the PFLASH assembly buffer (256
bytes) is additionally done by the parameter “y,, = 0,".

The write pointer of the page assembly buffer is set to 0, its previous content is
maintained.

The page mode is signalled by the flag PAGEX in the FSR.

If a new “Enter Page Mode” command sequence is received while any Flash bank is
already in page mode SQER is set but this sequence is correctly executed (i.e. in this
case the command interpreter is not reset).

Load Page

Loads the data “WD" into the page assembly buffer and increments the write pointer to
the next position?.

All WD transfers for one page must have the same width (either all 32-bit or all 64-bit).
Else the transfer is refused with SQER.

The addressed bank must be in page mode, else SQER is issued.

If “Load Page” is called more often than necessary for filling the page SQER is issued
and if configured an interrupt is triggered. The overflow data is discarded. The page
mode is not left.

Write Page

This function starts the programming process for one page with the data transferred
previously by “Load Page” commands. Upon entering command mode the page mode

1) More specifically: after “Load Page” has transferred 64 bits (i.e. two command with 32-bit WD or one command
with one 64-bit WD) the ECC is calculated and the result is transferred to the assembly buffer.

Reference Manual 8-12 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

is finished (indicated by clearing the corresponding PAGE flag) and the BUSY flag of the
bank is set.

This command is refused with SQER when the addressed Flash bank is not in page
mode.

SQER is also issued when PA addresses an unavailable Flash range or when PA does
not point to a legal page start address.

If after “Enter Page Mode” too few data or no data was transferred to the assembly buffer
with “Load Page” then “Write Page” programs the page but sets SQER. The missing data
is programmed with the previous content of the assembly buffer.

When the page “PA” is located in a sector with active write protection or the Flash module
has an active global read protection the execution fails and PROER is set.

Write User Configuration Page

As for “Write Page”, except that the page “UCPA" is located in a user configuration block.
This changes the Flash module’s protection configuration.

When the page “UCPA” is located in an UCB with active write protection or the Flash
module has an active global read protection the execution fails and PROER is set.

When UCPA is not the start address of a page in a valid UCB the command fails with
SQER.

Erase Sector
The sector “SA” is erased.

SQER is returned when SA does not point to the base address of a correct sector (as
specified at the beginning of this section) or to an unavailable sector.

When SA has an active write protection or the Flash module has an active global read
protection the execution fails and PROER is set.

Erase Physical Sector
The physical sector “PSA” is erased.

SQER is returned when PSA does not point to the base address of a correct sector (as
specified at the beginning of this section) or an unavailable sector.

When PSA has an active write protection or the Flash module has an active global read
protection the execution fails and PROER is set.

Erase User Configuration Block
The addressed user configuration block “UCB” is erased.

When the UCB has an active write protection or the Flash module has an active global
read protection the execution fails and PROER is set.

Reference Manual 8-13 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

The command fails with SQER when UCBA is not the start address of a valid UCB.

Disable Sector Write Protection

The sector write protection belonging to user level “UL” is temporarily disabled by setting
FSR.WPRODIS when the passwords PW0 and PW1 match their configured values in
the corresponding UCB.

The command fails by setting PROER when any of PW0 and PW1 does not match. In
this case until the next application reset all further calls of “Disable Sector Write
Protection” and “Disable Read Protection” fail with PROER independent of the supplied
password.

Disable Read Protection

The Flash module read protection including the derived module wide write protection are
temporarily disabled by setting FSR.RPRODIS when the passwords PW0 and PW1
match their configured values in the UCBO.

The command fails by setting PROER when any of PW0 and PW1 does not match. In
this case until the next application reset all further calls of “Disable Sector Write
Protection” and “Disable Read Protection” fail with PROER independent of the supplied
password.

Resume Protection

This command clears all FSR.WPRODISx and the FSR.RPRODIS effectively enabling
again the Flash protection as it was configured.

A FSR.WPRODISx is not cleared when corresponding UCBXx is not in the “confirmed”
state (see Chapter 8.4.8.1).

Clear Status

The flags FSR.PROG and FSR.ERASE and the error flags of FSR (PFOPER, SQER,
PROER, PFDBER, ORIER, VER) are cleared. These flags can be also cleared in the
status registers without command sequence.

When any Flash bank is busy this command fails by setting additionally SQER.

8.4.8 Flash Protection

The Flash memory can be read and write protected. The protection is configured by
programming the User Configuration Blocks “UCB”.

For an effective IP protection the Flash read protection must be activated. This ensures
system wide that the Flash cannot be read from external or changed without
authorization.

Reference Manual 8-14 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

8.4.8.1 Configuring Flash Protection in the UCB

As indicated above the effective protection is determined by the content of the
Protection Configuration Indication PROCONO-2 registers. These are loaded during
startup from the UCB0-2. Each UCB comprises 1 Kbyte of Flash organized in 4 UC
pages of 256 bytes. The UCBs have the following structure:

Table 8-5 UCB Content

uc Bytes |UCBO UCB1 UCB2
Page
0 [1:0] PROCONO PROCON1 PROCON2
[7:2] unused unused unused
[9:8] PROCONO (copy) PROCONL1 (copy) PROCONZ2 (copy)
[15:10] |unused unused unused
[19:16] | PWO of User O PWO of User 1 unused
[23:20] | PW1 of User 0 PW1 of User 1 unused

[27:24] | PWO of User 0 (copy) | PWO of User 1 (copy) |unused
[31:28] | PW1 of User 0 (copy) | PW1 of User 1 (copy) | unused
others | unused unused unused

1 unused unused BMI and configuration
data (details in
Startup Mode

chapter)
2 [3:0] confirmation code confirmation code confirmation code
[11:8] | confirmation code confirmation code confirmation code
(copy) (copy) (copy)
others |unused unused unused
3 unused |unused unused unused

If the confirmation code field is programmed with 8AFE 15C3,, the UCB content is
“confirmed” otherwise it is “unconfirmed”. The status flags FSR.PROIN, FSR.RPROIN
and FSR.WPROINO-2 indicate this confirmation state:

* FSR.PROIN: set when any UCB is in the confirmed state.

¢ FSR.RPROIN: set when PROCONO.RPRO is ‘1’ and the UCBO is in “confirmed”
state.

* FSR.WPROINO-2: set when their UCB0-2 is in “confirmed” state.

Reference Manual 8-15 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

An UCB can be erased with the command “Erase User Configuration Block”. An UCB
page can be programmed with the command “Write User Configuration Page”. These
commands fail with PROER when the UCB is write-protected.

An UCB is write-protected if:

* UCBO: (FSR.RPROIN and not FSR.RPRODIS) or
(FSR.WPROINO and not FSR.WPRODISO0)

* UCB1: FSR.WPROIN1 and not FSR.WPRODIS1.

*+ UCB2: FSR.WPROIN2

So when the UCB2 is in the “confirmed” state its protection can not be changed anymore.
Therefore this realizes a one-time programmable protection.

Changing UCBs

The protection installation is modified by erasing and programming the UCBs with
dedicated command sequences, described in Chapter 8.4.7.1. These operations need
to be performed with care as described in the following.

Aborting an “Erase UC Block” operation (e.g. due to reset or power failure) must be
avoided at all means, as it can result in an unusable device.

UCBs are logical sectors, and as such the allowed number of program/erase cycles of
the UCBs must not be exceeded. Over-cycling the UCBs can also lead to an unusable
device.

The installation of the protection and its confirmation on different pages of the UCB offers
the possibility to check the installation before programming the confirmation. First the
protection needs to be programmed, then an application reset must be triggered to
trigger the reading of the UCBs by the PMU and after that the protection can be verified
(e.g. “Disable ... Protection” to check the password and by checking PROCONs and
FCON). The application reset is inevitable because the PMU reads the UCBs only during
the startup phase.

8.4.8.2 Flash Read Protection
Read protection can be activated for the whole Flash module.

Read Protection Status

A read access to PFLASH fails with bus error under the following conditions:

¢ Code fetch: FCON.DCF and FCON.RPA.
* Data read: FCON.DDF and FCON.RPA.

The read protection bit FCON.RPA is determined during startup by the protection
configuration of UCBO. It can be temporarily modified by the command sequences
“Disable Read Protection” and “Resume Protection” which modify FSR.RPRODIS.
FCON.RPA is determined by the following equation:

Reference Manual 8-16 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

* FCON.RPA = PROCONO0.RPRO and not FSR.RPRODIS.

The bits FCON.DDF and FCON.DCF are initialized by the startup software depending
on the configured protection and the startup mode. They can also be directly modified by
the user software under conditions noted in the description of FCON.

Initializing Read Protection

Installation of read protection is performed with the “Write User Configuration Page”
operation, controlled by the user 0. With this command, user 0 writes the protection
configuration bits RPRO, and the two 32-bit keywords into the UCBO-page 0.
Additionally, with a second “Write User Configuration Page” command, a special 32-bit
confirmation (lock-) code is written into the UCBO0-page2. Only this confirmation code
enables the protection and thus the keywords. The confirmation write operation to the
second wordline of the User Configuration Block shall be executed only after check of
keyword-correctness (with command “Disable Read Protection” after next reset). The
confirmed state and thus the installation of protection is indicated with the FSR-hit
PROIN in Flash Status Register FSR and for read protection with bit RPROIN in FSR. If
read protection is not correctly confirmed and thus not enabled, the bits PROIN and
RPROIN in the FSR are not set. The configured read protection as fetched from UCBO
is indicated in the protection configuration register PROCONO.

For safety of the information stored in the UCB pages, all keywords, lock bits and the
confirmation code are stored two-times in the two wordlines. In case of a disturbed
original data detected during ramp up, its copy is usedFSR. Layout of the four UC pages
belonging to the user’'s UC block is shown in Table 8-5, the command “Write User
Configuration Page” is described in Chapter 8.4.7.1.

Disabling Read Protection

With the command sequence “Disable Read Protection” short-term disabling of read
protection is possible. This command disables the Flash protection (latest until next
reset) for user controlled erase and re-program operations as well as for clearing of DCF
and DDF control bits after external program execution. The “Disable Read Protection”
command sequence is a protected command, which is only processed by the command
state machine, if the included two passwords are identical to the two keywords of user 0.
The disabled state of read protection is controlled with the FCON.RPA="0" and indicated
in the Flash Status Register FSR with the RPRODIS bit (see Chapter 8.7.3.1). As long
as read protection is disabled (and thus not active), the FCON-bits DDF and DCF can
be cleared.

Resumption of read protection after disablement is performed with the “Resume
Read/Write Protection” command. After execution of this single cycle command, read
protection (if installed) is again active, indicated by the FCON bit RPA="1".

Generally, Flash read protection will remain installed as long as it is confirmed (locked)
in the User Configuration Block 0. Erase of UC block and re-program of UC pages can

Reference Manual 8-17 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

be performed up to 4 times. But note, after execution of the Erase UC block command
(which is protected and therefore requires the preceding disable command with the
user’'s specific passwords), all keywords and all protection installations of user O are
erased; thus, the Flash is no more read protected (beginning with next reset) until re-
programming the UC pages. But the division and separation of the protection
configuration data and of the confirmation data into two different UCB-wordlines
guarantees, that a disturb of keywords can be discovered and corrected before the
protection is confirmed. For this reason, the command sequence “Disable Read
Protection” can also be used when protection is programmed (configured) but not
confirmed; wrong keywords are then indicated by the error flag PROER.

Read protection can be combined with sector specific write protection. In this case, after
execution of the command ‘Disable Read Protection’ only those sectors are unlocked for
write accesses, which are not separately write protected.

8.4.8.3 Flash Write and OTP Protection

A range of Flash can be write protected by several means:

« The complete PFLASH can be write protected by the read protection.
« Groups of sectors of PFLASH can be write-protected by three different “users”, i.e.
UCBs:
— UCBO: Write protection that can be disabled with the password of UCBO.
— UCB1: Write protection that can be disabled with the password of UCB1.
— UCB2: Write protection that can not be disabled anymore (ROM or OTP function:
“One-Time Programmable”).

Write and OTP Protection Status

An active write protection is indicated by WPROIN bits in FSR register. It causes the
program and erase command sequences to fail with a PROER.

A range “x” (i.e. a group of sectors, see PROCONQO) of the PFLASH is write protected if
any of the following conditions is true:

* FCON.RPA

* PROCON2.SxROM

* PROCONO0.SxL and not(FSR.WPRODISO0)

* PROCONL1.SxL and not(PROCONO.SxL) and not(FSR.WPRODIS1)

Thus with the password of UCBO the write protection of sectors protected by user 0 and
user 1 can be disabled, however with the password of UCB1 only those sectors that are
only protected by user 1. The write protection of user 2 (OTP) can be obviously not
disabled. The global write protection caused by the read protection can be disabled as
described above by using the password of UCBO to disable the read protection.

Reference Manual 8-18 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

Initialization of Write and OTP Protection

Installation of write protection is performed with the “Write User Configuration Page”
operation, controlled by the user. With this command, the user defines and writes into
the UCBXx page 0 the write protection configuration bits for all sectors, which shall be
locked by the specific user, and the user-specific two keywords (not necessary for
user 2). The position of sector lock bits is identical as defined for the PROCON registers.
The correctness of keywords shall then (after next reset) be checked with the command
‘Disable Sector Write Protection’, which delivers a protection error PROER in case of
wrong passwords. Only if the keywords are correct, the special 32-bit confirmation code
must be written into the page 2 of UCBXx with a second “Write User Configuration Page”
command. Only this confirmation code enables the write protection of the User Control
Block UCBX, and only in this case the installation bit(s) in FSR is (are) set during ramp
up.
Note: If the write protection is configured in the user's UCB page 0 but not confirmed via

page 2 (necessary for check of keywords), the state after next reset is as follows:

- The selected sector(s) are protected (good for testing of protection, also of OTP)

- The UCBx is not protected, thus it can be erased without passwords

- The related WPROINX bit in FSR is not set

- The Disable Write Protection command sets the WPRODISx bit

- The Resume command does not clear the WPRODISx bit.

The structure and layout of the three UC blocks is shown in Table 8-3 below, the
command “Write User Configuration Page” is described in Chapter 8.4.7.1.

Disabling Write Protection (not applicable to OTP)

With the command sequence “Disable Sector Write Protection” short-term disabling of
write protection for user O or user 1 is possible. This command unlocks temporarily all
locked sectors belonging to the user. The “Disable Sector Write Protection” command
sequence is a protected command, which is only processed by the command state
machine, if the included two passwords are correct. The disabled state of sector
protection is indicated in the Flash Status Register FSR with the WPRODIS bit of the
user 0 or/and user 1 (see Chapter 8.7.3.1). For user 2 who owns the sectors with ROM
functionality, a disablement of write protection and thus re-programming is not possible.

Resumption of write protection after disablement is performed with the “Resume
Read/Write Protection” command, which is identical for user 0 and user 1.

Generally, sector write protection will remain installed as long as it is configured and
confirmed in the User Configuration Block belonging to the user. Erase of UC block and
re-program of UC pages can be performed up to 4 times, for user 0 and user 1 only. But
note, after execution of the Erase UC block command (which is still protected and
therefore requires the preceding disablement of write protection with the user’s
passwords), the complete protection configuration including the keywords of the specific
user (not user 2) is erased; thus, the sectors belonging to the user are unprotected until

Reference Manual 8-19 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

the user's UC pages are re-programmed. Only exception: sectors protected by user 2
are locked for ever because the UCB2 can no more be erased after installation of write
protection in UCB2.

8.4.8.4 System Wide Effects of Flash Protection

An active Flash read protection needs to be respected in the complete system.

The startup software (SSW) checks if the Flash read protection is active in the PMU, if
yes:

« If the selected boot mode executes from internal PFLASH.
— The SSW clears the DCF and DDF.
— The SSW leaves the debug interface locked.
¢ If the selected boot mode does not execute from internal PFLASH:
— The SSW either leaves DCF and DDF set or actively sets them again in the PMU
after evaluating the configuration sector.
— The debug interface is unlocked.

If the read protection is inactive in the PMU the DCF and DDF flags are cleared by the
SSW and the debug interface is unlocked.

Note: Full Flash analysis of an FAR device is only possible when the customer has
removed all installed protections or delivers the necessary passwords with the
device. As the removal of an OTP protection in UCB2 is not possible the OTP
protection inevitably limits analysis capabilities.

8.4.9 Data Integrity and Safety

The data in Flash is stored with error correcting codes “ECC” in order to protect against
data corruption. The healthiness of Flash data can be checked with margin checks.

8.4.9.1 Error-Correcting Code (ECC)

The data in the PFLASH is stored with ECC codes. These are automatically generated
when the data is programmed. When data is read these codes are evaluated. Data in
PFLASH uses an ECC code with SEC-DED (Single Error Correction, Double Error
Detection) capabilities. Each block of 64 data bits is accompanied with 8 ECC bits.

Standard PFLASH ECC

In the standard PFLASH ECC the 8-bit ECC value is calculated over 64 data bits. An
erased data block (all bits ‘0") has an ECC value of 00,. Therefore an erased sector is
free of ECC errors. A data block with all bits ‘1" has an ECC value of FF,.

The ECC is automatically generated when programming the PFLASH.
The ECC is automatically evaluated when reading data.

Reference Manual 8-20 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

This algorithm has the following capabilities:
« Single-bit error:
— Is noted in FSR.PFSBER.
— Data and ECC value are corrected.
— Interrupt is triggered if enabled with FCON.PFSBERM.
« Double-bit error:
— Is noted in FSR.PFDBER.
— Causes a bus error if not disabled by MARP.TRAPDIS.
— Interrupt is triggered if enabled with FCON.PFDBERM. This interrupt shall only be
used for margin check, when the bus error is disabled.

8.4.9.2 Margin Checks

The Flash memory offers a “margin check feature”: the limit which defines if a Flash cell
is read as logic ‘0" or logic ‘1’ can be shifted. This is controlled by the register MARP. The
Margin Control Register MARP is used to change the margin levels for read operations
to find problematic array bits. The array area to be checked is read with more restrictive
margins. “Problematic” bits will result in a single or double-bit error that is reported to the
CPU by an error interrupt or a bus error trap. The double-bit error trap can be disabled
for margin checks and also redirected to an error interrupt.

After changing the read margin at least tr; \arginpel have to be waited before reading the
affected Flash module. During erase or program operation only the standard (default)
margins are allowed.

8.5 Service Request Generation

Access and/or operational errors (e.g. wrong command seguences) may be reported to
the user by interrupts, and they are indicated by flags in the Flash Status Register FSR.
Additionally, bus errors may be generated resulting in CPU traps.

8.5.1 Interrupt Control

The PMU and Flash module supports immediate error and status information to the user
by interrupt generation. One CPU interrupt request is provided by the Flash module.

The Flash interrupt can be issued because of following events:

« End of busy state: program or erase operation finished

e Operational error (OPER): program or erase operation aborted

» Verify error (VER): program or erase operation not correctly finished
* Protection error

¢ Sequence error

« Single-bit error: corrected read data from PFLASH delivered

« Double-bit error in Program Flash.

Reference Manual 8-21 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

Note: In case of an OPER or VER error, the error interrupt is issued not before the busy
state of the Flash is deactivated.

The source of interrupt is indicated in the Flash Status Register FSR by the error flags
or by the PROG or ERASE flag in case of end of busy interrupt. An interrupt is also
generated for a new error event, even if the related error flag is still set from a previous
error interrupt.

Every interrupt source is masked (disabled) after reset and can be enabled via dedicated
mask bits in the Flash Configuration Register FCON.

8.5.2 Trap Control

CPU traps are executed because of bus errors, generated by the PMU in case of
erroneous Flash accesses. Bus errors are generated synchronously to the bus cycle
requesting the not allowed Flash access or the disturbed Flash read data. Bus errors are
issued because of following events:

* Not correctable double-bit error of 64-bit read data from PFLASH (if not disabled for
margin check)

* Not allowed write access to read only register (see Table 8-11)

« Not allowed write access to Privileged Mode protected register (see Table 8-11)

« Not allowed data or instruction read access in case of active read protection

* Access to not implemented addresses within the register or array space.

* Read-modify-write access to the Flash array.

Write accesses to the Flash array address space are interpreted as command cycles
and initiate not a bus error but a sequence error if the address or data pattern is not
correct. However, command sequence cycles, which address a busy Flash bank, are
serviced with busy cycles, not with a sequence error.

If the trap event is a double-bit error in PFLASH, itis indicated in the FSR. With exception
of this error trap event, all other trap sources cannot be disabled within the PMU.

Note: A double-bit error trap during margin check can be disabled (via MARP register)
and redirected to an interrupt request.

8.5.3 Handling Errors During Operation

The previous sections described shortly the functionality of “error indicating” bits in the
flash status register FSR. This section elaborates on this with more in-depth explanation
of the error conditions and recommendations how these should be handled by customer
software. This first part handles error conditions occurring during operation (i.e. after
issuing command sequences) and the second part (Section 8.5.3.6) error conditions
detected during startup.

Reference Manual 8-22 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

85.3.1 SQER “Sequence Error”
Fault conditions:

« Improper command cycle address or data, i.e. incorrect command sequence.
* New “Enter Page” in Page Mode.

* ‘“Load Page” and not in Page Mode.

» “Load Page” results in buffer overflow.

» First “Load Page” addresses 2. word.

« “Write Page” with buffer underflow.

« “Write Page” and not in Page Mode.

« “Write Page” to wrong Flash type.

* Byte transfer to password or data.

« “Clear Status” or “Reset to Read” while busy?.
e Erase UCB with wrong UCBA.

New state:
Read mode is entered with following exceptions:

* “Enter Page” in Page Mode re-enters Page Mode.

« “Write Page” with buffer underflow is executed.

« After “Load Page” causing a buffer overflow the Page Mode is not left, a following
“Write Page” is executed.

Proposed handling by software:

Usually this bit is only set due to a bug in the software. Therefore in development code
the responsible error tracer should be notified. In production code this error should not
occur. It is however possible to clear this flag with “Clear Status” or “Reset to Read” and
simply issue the corrected command sequence again.

8.5.3.2 PFOPER “Operation Error”
Fault conditions:

ECC double-bit error detected in Flash module internal SRAM during a program or erase
operation in PFLASH. This can be a transient event due to alpha-particles or illegal
operating conditions or it is a permanent error due to a hardware defect. This situation
will practically not occur.

Attention: these bits can also be set during startup (see Chapter 8.5.3.6).

New state:

The Flash operation is aborted, the BUSY flag is cleared and read mode is entered.
Proposed handling by software:

1) When the command addresses the busy Flash bank, the access is serviced withbusy cycles.

Reference Manual 8-23 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

The flag should be cleared with “Clear Status”. The last operation can be determined
from the PROG and ERASE flags. In case of an erase operation the affected physical
sector must be assumed to be in an invalid state, in case of a program operation only the
affected page. Other physical sectors can still be read. New program or erase
commands must not be issued before the next reset.

Consequently a reset must be performed. This performs a new Flash ramp up with
initialization of the microcode SRAM. The application must determine from the context
which operation failed and react accordingly. Mostly erasing the addressed sector and
re-programming its data is most appropriate. If a “Program Page” command was affected
and the sector can not be erased the wordline could be invalidated if needed by marking
it with all-one data and the data could be programmed to another empty wordline.

Only in case of a defective microcode SRAM the next program or erase operation will
incur again this error.

Note: Although this error indicates a failed operation it is possible to ignore it and rely on
a data verification step to determine if the Flash memory has correct data. Before
re-programming the Flash the flow must ensure that a new reset is applied.

Note: Even when the flag is ignored it is recommended to clear it. Otherwise all following
operations — including “sleep” — could trigger an interrupt even when they are
successful (see Chapter 8.5.1, interrupt because of operational error).

8.5.3.3 PROER “Protection Error”

Fault conditions:

e Password failure.

« Erase/Write to protected sector.

« Erase UCB and protection active.
« Write UC-Page to protected UCB.

Attention: a protection violation can even occur when a protection was not explicitly
installed by the user. This is the case when the Flash startup detects an error and starts
the user software with read-only Flash (see Chapter 8.5.3.6). Trying to change the Flash
memory will then cause a PROER.

New state:
Read mode is entered. The protection violating command is not executed.
Proposed handling by software:

Usually this bit is only set during runtime due to a bug in the software. In case of a
password failure a reset must be performed in the other cases the flag can be cleared
with “Clear Status” or “Reset to Read”. After that the corrected sequence can be
executed.

Reference Manual 8-24 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

8.5.3.4 VER “Verification Error”
Fault conditions:

This flag is a warning indication and not an error. It is set when a program or erase
operation was completed but with a suboptimal result. This bit is already set when only
a single bit is left over-erased or weakly programmed which would be corrected by the
ECC anyhow.

However, excessive VER occurrence can be caused by operating the Flash out of the
specified limits, e.g. incorrect voltage or temperature. A VER after programming can also
be caused by programming a page whose sector was not erased correctly (e.g. aborted
erase due to power failure).

Under correct operating conditions a VER after programming will practically not occur. A
VER after erasing is not unusual.

Attention: this bit can also be set during startup (see Chapter 8.5.3.6).
New state:

No state change. Just the bit is set.

Proposed handling by software:

This bit can be ignored. It should be cleared with “Clear Status” or “Reset to Read”. In-
spec operation of the Flash memory must be ensured.

If the application allows (timing and data logistics), a more elaborate procedure can be
used to get rid of the VER situation:

* VER after program: erase the sector and program the data again. This is only
recommended when there are more than 3 program VERSs in the same sector. When
programming the Flash in field ignoring program VER is normally the best solution
because its most likely cause are violated operating conditions. Take care that never
a sector is programmed in which the erase was aborted.

« VER after erase: the erase operation can be repeated until VER disappears.
Repeating the erase more than 3 times consecutively for the same sector is not
recommended. After that it is better to ignore the VER, program the data and check
its readability. Again its most likely cause are violated operating conditions. Therefore
it is recommended to repeat the erase at most once or ignore it altogether.

For optimizing the quality of Flash programming see the following section about handling
single-bit ECC errors.

Note: Even when this flag is ignored it is recommended to clear it. Otherwise all following
operations — including “sleep” — could trigger an interrupt even when they are
successful (see Chapter 8.5.1, interrupt because of verify error).

8.5.3.5 PFSBER/DFSBER “Single-Bit Error”
Fault conditions:

Reference Manual 8-25 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

When reading data or fetching code from PFLASH the ECC evaluation detected a single-
bit error (“SBE”) which was corrected.

This flag is a warning indication and not an error. A certain amount of single-bit errors
must be expected because of known physical effects.

New state:
No state change. Just the bit is set.
Proposed handling by software:

This flag can be used to analyze the state of the Flash memory. During normal operation
it should be ignored. In order to count single-bit errors it must be cleared by “Clear
Status” or “Reset to Read” after each occurrence?.

Usually it is sufficient after programming data to compare the programmed data with its
reference values ignoring the SBE bits. When there is a comparison error the sector is
erased and programmed again.

When programming the PFLASH (end-of-line programming or SW updates) customers

can further reduce the probability of future read errors by performing the following check

after programming:

* Change the read margin to “high margin 0”.

« Verify the data and count the number of SBEs.

* When the number of SBEs exceeds a certain limit (e.g. 10 in 2 Mbyte) the affected
sectors could be erased and programmed again.

* Repeat the check for “high margin 1”.

e Each sector should be reprogrammed at most once, afterwards SBEs can be
ignored.

Due to the specificity of each application the appropriate usage and implementation of
these measures (together with the more elaborate VER handling) must be chosen
according to the context of the application.

8.5.3.6 Handling Flash Errors During Startup

During startup, a fatal error during Flash ramp up forces the Firmware to terminate the
startup process and to end in the Debug Monitor Mode (see Firmware chapter).

The reason for a failed Flash startup can be a hardware error or damaged configuration
data.

1) Further advice: remember that the ECC is evaluated when the data is read from the PMU. When counting
single-bit errors use always the non-cached address range otherwise the error count can depend on cache hit
or miss and it refers to the complete cache line. As the ECC covers a block of 64 data bits take care to evaluate
the FSR only once per 64-bit block.

Reference Manual 8-26 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

FSR bits set after startup are of informative warning nature.

FSR.PFOPER can indicate a problem of a program/erase operation before the last
system reset or an error when restoring the Flash module internal SRAM content after
the last reset. In both cases it is advised to clear the flag with the command sequence
“Clear Status” and trigger a system reset. If the error shows up again it is an indication
for a permanent fault which will limit the Flash operation to read accesses. Under this
condition program and erase operations are forbidden (but not blocked by hardware!).

8.6 Power, Reset and Clock

The following chapters describe the required power supplies, the power consumption
and its possible reduction, the control of Flash Sleep Mode and the basic control of
Reset.

8.6.1 Power Supply

The Flash module uses the standard V5 I/O power supply to generate the voltages for
both read and write functions. Internally generated and regulated voltages are provided
for the program and erase operations as well as for read operations. The standard V¢
is used for all digital control functions.

8.6.2 Power Reduction

The “Flash Sleep Mode” can be used to drastically reduce power consumption while the
Flash is not accessed for longer periods of time.

The “Idle Read Path” slightly reduces the dynamic power consumption during normal
operation with marginal impact on the Flash read performance.

Flash Sleep Mode

As power reduction feature, the Flash module provides the Flash Sleep mode which can
be selected by the user individually for the Flash. The Sleep mode can be requested by:

» Programming 1 to the bit FCON.SLEEP.
e “External” sleep mode by the SCU (see “Flash Power Control” in the SCU). Only
executed by the Flash when FCON.ESLDIS = Og.

Attention: f.p, must be equal or above 1 MHz when Sleep mode is requested until
the Sleep mode is indicated in FSR.SLM, and when a wake-up request
is triggered, until FSR.PBUSY is cleared.

The requested Sleep mode is only taken if the Flash is in idle state and when all pending
or active requests are processed and terminated. Only then, the Flash array performs
the ramp down into the Sleep mode: the sense amplifiers are switched off and the
voltages are ramped down.

During ramp down to Sleep mode FSR.PBUSY is set.

Reference Manual 8-27 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

As long as the Flash is in Sleep mode, this state is indicated by the bit FSR.SLM. The
FSR.PBUSY stays set as well.

Wake-up from sleep is controlled with clearing of bit FCON.SLEEP, if selected via this
bit, or wake-up is initiated by releasing the “external” sleep signal from SCU. After wake-
up, the Flash enters read mode and is available again after the wake-up time t,. During
the wake-up phase the FSR.PBUSY is set until the wake-up process is completed.

Note: During sleep and wake-up, the Flash is reported to be busy. Thus, read and write
accesses to the Flash in Sleep mode are acknowledged with busy’ and should
therefore be avoided; those accesses make sense only during wake-up, when
waiting for the Flash read mode.

2. The wake-up time t,,, is documented in the Data Sheet. This time may fully delay the
interrupt response time in Sleep mode.

3. Note: A wake-up is only accepted by the Flash if it is in Sleep mode. The Flash will
first complete the ramp down to Sleep mode before reacting to a wake-up trigger.

Idle Read Path

An additional power saving feature is enabled by setting FCON.IDLE. In this case the
PFLASH read path (Flash Read Access) is switched off when no read access is
pending. System performance for sequential accesses is slightly reduced because
internal linear prefetches of the PFLASH are disabled. Non-sequential read accesses
requested by the CPU or any other bus master see no additional delayed.

8.6.3 Reset Control

All PMU and Flash functionality is reset with the system reset with the exception of the
register bits: FSR.PROG, FSR.ERASE, FSR.PFOPER. These bits are reset with the
power-on reset.

The flash will be automatically reset to the read mode after every reset.

8.6.3.1 Resets During Flash Operation

A reset or power failure during an ongoing Flash operation (i.e. program or erase) must
be considered as violation of stable operating conditions. However the Flash was
designed to prevent damage to non-addressed Flash ranges when the reset is applied
as defined in the data sheet. The exceptions are erasing logical sectors and UCBs.
Aborting an erase process of a logical sector can leave the complete physical sector
unreadable.When an UCB erase is aborted the complete Flash can become unusable.
So UCBs must be only erased in a controlled environment. The addressed Flash range
is left in an undefined state.

When an erase operation is aborted the addressed logical or physical sector can contain
any data. It can even be in a state that doesn’t allow this range to be programmed.

Reference Manual 8-28 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

When a page programming operation is aborted the page can still appear as erased (but
contain slightly programmed bits), it can appear as being correctly programmed (but the
data has a lowered retention) or the page contains garbage data. It is also possible that
the read data is instable so that depending on the operating conditions different data is
read.

For the detection of an aborted Flash process the flags FSR.PROG and FSR.ERASE
could be used as indicator but only when the reset was a System Reset. Power-on resets
can not be determined from any flags. It is not possible to detect an aborted operation
simply by reading the Flash range. Even the margin reads don't offer a reliable
indication.

When erasing or programming the PFLASH usually an external instance can notice the
reset and simply restart the operation by erasing the Flash range and programming it
again.

However, in cases where this external instance is not existing, a common solution is
detecting an abort by performing two operations in sequence and determine after reset
from the correctness of the second the completeness of the first operation.

E.g. after erasing a sector a page is programmed. After reset the existence of this page
proves that the erase process was performed completely.

The detection of aborted programming processes can be handled similarly. After
programming a block of data an additional page is programmed as marker. When after
reset the block of data is readable and the marker is existent it is ensured that the block
of data was programmed without interruption.

If a complete page can be spent as marker, the following recipe allows to reduce the
marker size to 8 bytes. This recipe violates the rule that a page may be programmed only
once. This violation is only allowed for this purpose and only when the algorithm is robust
against disturbed pages (see also recommendations for handling single-bit errors) by
repeating a programming step when it detects a failure.

Robust programming of a page of data with an 8 byte marker:

1. After reset program preferably always first to an even page (“Target Page”).

2. If the Other Page on the same wordline contains active data save it to SRAM (the

page can become disturbed because of the 4 programming operations per wordline).

Program the data to the Target Page.

Perform strict check of the Target Page (see below).

Program 8 byte marker to Target Page.

Perform strict check of the Target Page.

In case of any error of the strict check go to the next wordline and program the saved

data and the target data again following the same steps.

8. Ensure that the algorithm doesn’t repeat unlimited in case of a violation of operating
conditions.

Strict checking of programmed data:

No ok w

Reference Manual 8-29 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

1. Ignore single-bit errors and the VER flag.

2. Switch to tight margin 0.

3. If the data (check the complete page) is not equal to the expected data report an
error.

4. If a double-bit error is detected report an error.

After reset the algorithm has to check the last programmed page if it was programmed
completely:

1. Read with normal read level. Ignore single-bit errors.

2. Read 8-byte marker and check for double-bit error.

3. Read data part and verify its consistency (e.g. by evaluating a CRC). Check for
double-bit error.

4. If the data part is defective don't use it (e.g. by invalidating the page).

5. If the data part is ok:

a) If the marker is erased the data part could have been programmed incompletely.
Therefore the data part should not be used or alternatively it could be programmed
again to a following page.

b) If the marker contains incorrect data the data part was most likely programmed
correctly but the marker was programmed incompletely. The page could be used
as is or alternatively the data could be programmed again to a following page.

c) If the marker is ok the data part was programmed completely and has the full
retention. However this is not ensured for the marker part itself. Therefore the
algorithm must be robust against the case that the marker becomes unreadable
later.

8.6.4 Clock

The Flash interface is operating at the same clock speed as the CPU, f.p . Depending
on the frequency, wait states must be inserted in the Flash accesses. Further details
onthe wait states configuration are give in Chapter 8.4.4.

For proper operation of command sequences and when entering or waking up
from Sleep mode, fp, must be equal or above 1 MHz.

8.7 Registers

The register set consists of the PMU ID register (Chapter 8.7.1), the Prefetch Control
register (Chapter 8.7.2). The other registers control Flash functionality (Chapter 8.7.3).

All accesses prevented due to access mode restrictions fail with a bus error.
Also accesses to unoccupied register addresses fail with a bus error.

8.7.1 PMU Registers

The PMU only contains the ID register.

Reference Manual 8-30 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flash and Program Memory Unit (PMU)

Table 8-6 Registers Address Space

Module Base Address End Address Note
reserved 5800 0000, 5800 04FF Bus Error
PMUO 5800 0500, 5800 05FF,

reserved 5800 0600, 5800 OFFF Bus Error
reserved 5800 2400, 5800 3FFF, Bus Error

Table 8-7 Registers Overview

Short Name | Description Offset Access Mode |Reset |Page
1
Addr.” [Read Iwrite |Class | Number

ID Module Identification |08, U, PV |BE System |8-31
Reset

1) The absolute register address is calculated as follows:
Module Base Address (Table 8-6) + Offset Address (shown in this column)

8.7.1.1 PMU ID Register

The PMUO_ID register is a read-only register, thus write accesses lead to a bus error
trap. Read accesses are permitted in Privileged Mode PV and in User Mode. The
PMUO_ID register is defined as follows:

PMUO_ID
PMUO Identification Register (5800 0508,,) Reset Value: 00A1 COXX,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

T T T T T T T T T T T T T T T

MOD_NUMBER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOD_TYPE MOD_REV

1 1 1 1 1 1 I I I
r r

Reference Manual 8-31 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Flash and Program Memory Unit (PMU)

Field Bits Type | Description
MOD_REV [7:0]

Module Revision Number
MOD_REV defines the module revision number. The
value of a module revision starts with 01, (first rev.).

MOD_TYPE [15:8] |r Module Type
This bit field is COy,. It defines the module as a 32-bit
module.

—

Module Number Value
This bit field defines the module identification number
for PMUO.

—

MOD_NUMBER | [31:16]

8.7.2 Prefetch Registers
This section describes the register of the Prefetch unit.

Table 8-8 Registers Address Space

Module Base Address End Address Note
PREF 5800 4000, 5800 7FFF, Prefetch Module
Registers

Table 8-9 Registers Overview

Short Name | Description Offset | Access Mode |Reset |Page
1
AddrY [pead Iwrite |Class | Number

PCON Prefetch Configuration |0y U,PV |U,PV |System |Page 8-
Register Reset |33

1) The absolute register address is calculated as follows:
Module Base Address (Table 8-6) + Offset Address (shown in this column)

8.7.2.1 Prefetch Configuration Register
This register provides control bits for instruction buffer invalidation and bypass.

Reference Manual 8-32 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Flash and Program Memory Unit (PMU)

PREF_PCON
Prefetch Configuration Register (5800 4000,,) Reset Value: 0000 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0

r rwrw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 [lINV[IBYP
1 1 1 r 1 1 1 1 r r r W rvv
Field Bits Type | Description
IBYP 0 rw Instruction Prefetch Buffer Bypass

Oz Instruction prefetch buffer not bypassed.
1z Instruction prefetch buffer bypassed.

IINV 1 w Instruction Prefetch Buffer Invalidate
Write Operation:
0g No effect.
1z Initiate invalidation of entire instruction cache.
0 16 rw Reserved
Must be written with 0.
0 [15:5], |r Reserved
4, 3,2, returns O if read; should be written with 0.
[31:17]

8.7.3 Flash Registers

All register addresses are word aligned, independently of the register width. Besides
word-read/write accesses, also byte or half-word read/write accesses are supported.

The absolute address of a Flash register is calculated by the base address from
Table 8-10 plus the offset address of this register from Table 8-11.

Table 8-10 Registers Address Space

Module Base Address End Address Note
FLASHO 5800 1000, 5800 23FF, Flash registers of PMUO
Reference Manual 8-33 V1.0, 2012-02

PMU, V1.4 Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

The following table shows the addresses, the access modes and reset types for the
Flash registers in PMUO:

Flash and Program Memory Unit (PMU)

Table 8-11 Addresses of FlashO Registers
Short Description Address Access Mode |Reset |See
Name Read |Write
- Reserved 5800 2000, — |BE BE - -
5800 2004
FLASHO_ | Flash Module 5800 2008, U, PV |BE System |Page
ID Identification Register Reset |8-44
- Reserved 5800 200C,; |BE BE - -
FLASHO_ |Flash Status Register |5800 2010, U, PV |BE System | Page
FSR + 8-35
PORST
FLASHO_ | Flash Configuration 5800 2014, U, PV | PV System |Page
FCON Register Reset |8-41
FLASHO_ | Flash Margin Control |5800 2018, U, PV | PV System |Page
MARP Register PFLASH Reset |8-45
FLASHO_ | Flash Protection 5800 2020,, U, PV |BE System | Page
PROCONO | Configuration User 0 Reset |8-46
FLASHO_ |Flash Protection 5800 2024, U, PV |BE System | Page
PROCONZ1 | Configuration User 1 Reset |8-47
FLASHO_ |Flash Protection 5800 2028, U, PV |BE System |Page
PROCON?2 | Configuration User 2 Reset |8-48
- Reserved 5800 202C,, - |BE BE -
5800 23FC,
8.7.3.1 Flash Status Definition

The Flash Status Register FSR reflects the overall status of the Flash module after Reset
and after reception of the different commands. Sector specific protection states are not
indicated in the FSR, but in the registers PROCONO, PROCON1 and PROCON2. The
status register is a read-only register. Only the error flags and the two status flags
(PROG, ERASE) are affected with the “Clear Status” command. The error flags are also
cleared with the “Reset to Read” command.

The FSR is defined as follows:

Reference Manual 8-34

PMU, V1.4

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

FSR

XMC4500
XMC4000 Family

Flash Status Register

Flash and Program Memory Unit (PMU)

(1010,) Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
W W W W w R R PRO
VER| X 0 [SLM| 0 |PRO|PRO| 0 |PRO|PRO|PRO| 0 |PRO|PRO| O IN
DIS1|DISO IN2 | IN1 | INO DIS | IN
rh rh r rh r rh rh r rh rh rh r rh rh r rh
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PF PF PF PF FA | P
0 | DB 0 | SB P;RO 28 0 |[OP | 0 |PAG ESREA PEO 0 0 |BUS|BUS
ER ER ER E Y Y
r rh r rh rh rh r rh r rh rh rh r r rh rh
Field Bits | Type | Description
PBUSYY 0 rh Program Flash Busy
HW-controlled status flag.
Og PFLASH ready, not busy; PFLASH in read
mode.
1; PFLASH busy; PFLASH not in read mode.
Indication of busy state of PFLASH because of
active execution of program or erase operation;
PFLASH busy state is also indicated during Flash
recovery (after reset) and in power ramp-up state or
in sleep mode; while in busy state, the PFLASH is
not in read mode.
FABUSYY 1 rh Flash Array Busy
Internal busy flag for testing purposes. Must be
ignored by application software, which must use
PBUSY instead.

Reference Manual

PMU, V1.4

8-35 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field

Bits

Type

Description

PROG

Programming State

HW-controlled status flag.

Og Thereis no program operation requested or in
progress or just finished.

1z Programming operation (write page)
requested (from FIM) or in action or finished.

Set with last cycle of Write Page command

sequence, cleared with Clear Status command (if not

busy) or with power-on reset. If one BUSY flag is

coincidently set, PROG indicates the type of busy

state. If xOPER is coincidently set, PROG indicates

the type of erroneous operation. Otherwise, PROG

indicates, that operation is still requested or finished.

ERASEY?

rh

Erase State

HW-controlled status flag.

Og There is no erase operation requested or in
progress or just finished

1; Erase operation requested (from FIM) or in
action or finished.

Set with last cycle of Erase command sequence,

cleared with Clear Status command (if not busy) or

with power-on reset. Indications are analogous to

PROG flag.

PFPAGEY?

rh

Program Flash in Page Mode

HW-controlled status flag.

0g Program Flash not in page mode

1; Program Flash in page mode; assembly buffer
of PFLASH (256 byte) is in use (being filled up)

Set with Enter Page Mode for PFLASH, cleared with

Write Page command

Note: Concurrent page and read modes are allowed

PFOPER?34

rh

Program Flash Operation Error

Oz No operation error reported by Program Flash

1; Flash array operation aborted, because of a
Flash array failure, e.g. an ECC error in
microcode.

This bit is not cleared with System Reset, but with

power-on reset.

Registered status bit; must be cleared per command

Reference Manual
PMU, V1.4

8-36 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field

Bits

Type

Description

SQER1)2)3)

10

rh

Command Sequence Error

0g No sequence error

1z Command state machine operation
unsuccessful because of improper address or
command sequence.

A sequence error is not indicated if the Reset to

Read command aborts a command sequence.

Registered status bit; must be cleared per command

PROERY2?)

11

rh

Protection Error

0g No protection error

1; Protection error.

A Protection Error is reported e.g. because of a not
allowed command, for example an Erase or Write
Page command addressing a locked sector, or
because of wrong password(s) in a protected
command sequence such as “Disable Read
Protection”

Registered status bit; must be cleared per command

PFSBERY2?

12

rh

PFLASH Single-Bit Error and Correction

0z No Single-Bit Error detected during read
access to PFLASH

1z Single-Bit Error detected and corrected

Registered status bit; must be cleared per command

PFDBERY2?)

14

rh

PFLASH Double-Bit Error

Oz No Double-Bit Error detected during read
access to PFLASH

1z Double-Bit Error detected in PFLASH

Registered status bit; must be cleared per command

PROIN

16

rh

Protection Installed

Oz No protection is installed

1; Read or/and write protection for one or more
users is configured and correctly confirmed in
the User Configuration Block(s).

HW-controlled status flag

Reference Manual
PMU, V1.4

8-37 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field Bits | Type | Description
RPROIN 18 rh Read Protection Installed
0z No read protection installed
1; Read protection and global write protection is
configured and correctly confirmed in the User
Configuration Block 0.
Supported only for the master user (user zero).
HW-controlled status flag
RPRODISY® 19 rh Read Protection Disable State
O Read protection (if installed) is not disabled
1; Read and global write protection is temporarily
disabled.
Flash read with instructions from other memory, as
well as program or erase on not separately write
protected sectors is possible.
HW-controlled status flag
WPROINO 21 rh Sector Write Protection Installed for User 0
0z No write protection installed for user 0
1z Sector write protection for user 0 is configured
and correctly confirmed in the User
Configuration Block 0.
HW-controlled status flag
WPROIN1 22 rh Sector Write Protection Installed for User 1
0 No write protection installed for user 1
1z Sector write protection for user 1 is configured
and correctly confirmed in the User
Configuration Block 1.
HW-controlled status flag
WPROIN2 23 rh Sector OTP Protection Installed for User 2

0g No OTP write protection installed for user 2

1z Sector OTP write protection with ROM
functionality is configured and correctly
confirmed in the UCB2. The protection is
locked for ever.

HW-controlled status flag

Reference Manual
PMU, V1.4

8-38 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field

Bits

Type

Description

WPRODISOY

25

rh

Sector Write Protection Disabled for User 0

Oz All protected sectors of user O are locked if
write protection is installed

1z All write-protected sectors of user 0 are
temporarily unlocked, if not coincidently locked
by user 2 or via read protection.

Hierarchical protection control: User-0 sectors are

also unlocked, if coincidently protected by user 1.

But not vice versa.

HW-controlled status flag

WPRODIS1Y®

26

rh

Sector Write Protection Disabled for User 1

Og All protected sectors of user 1 are locked if
write protection is installed

1z All write-protected sectors of user 1 are
temporarily unlocked, if not coincidently locked
by user 0 or user 2 or via read protection.

HW-controlled status flag

SLMY

28

rh

Flash Sleep Mode

HW-controlled status flag. Indication of Flash sleep
mode taken because of global or individual sleep
request; additionally indicates when the Flash is in
shut down mode.

0z Flash not in sleep mode

1z Flash s in sleep or shut down mode

30

rh

Reserved
Value undefined

VERDY

31

rh

Verify Error

0g The page is correctly programmed or the
sector correctly erased. All programmed or
erased bits have full expected quality.

1z A program verify error or an erase verify error
has been detected. Full quality (retention time)
of all programmed (“1”) or erased (“0") bits
cannot be guaranteed.

See Chapter 8.5.3 and Chapter 8.5.3.6 for proper

reaction.

Registered status bit; must be cleared per command

Reference Manual
PMU, V1.4

8-39 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field Bits | Type | Description
0 2,37, |r Reserved
9,13, Read zero, no write
15,17,
20,24,
27, 29

Note: The footnote numbers of FSR bits describe the specific reset conditions:
1)Cleared with System Reset

2)Cleared with command “Reset to Read”

3)Cleared with command “Clear Status”

4)Cleared with power-on reset (PORST)

5)Cleared with command “Resume Protection”

Note:

Note:

8.7.3.2

The xBUSY flags as well as the protection flags cannot be cleared with the “Clear
Status” command or with the “Reset to Read” command. These flags are

controlled by HW.

The reset value above is indicated after correct execution of Flash ramp up.
Additionally, errors are possible after ramp up (see Chapter 8.5.3.6).

Flash Configuration Control

The Flash Configuration Register FCON reflects and controls the following general Flash
configuration functions:

* Number of wait states for Flash accesses.

« Indication of installed and active read protection.

« Instruction and data access control for read protection.
e Interrupt mask bits.
« Power reduction and shut down control.

FCON is a Privileged Mode protected register. It is defined as follows:

Reference Manual
PMU, V1.4

8-40 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

FCON
Flash Configuration Register (1014,) Reset value: 0007 0006,V
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PF PF
EaB 0O |[DB| 0 | SB EEﬁ ESRQM \E/S,\'jl 0 0 0 0 0 |DDF|DCF|RPA
ERM ERM
w r rw r o w o rwrw r r r r r rwh rwh rh
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T T T T T
WS
SL |ESL
eep | bis |'PLE 0 E(; WSPFLASH
1 1 1 1 1

w rw rw

I
'w 'w

1) After Flash ramp up and execution of the startup software in BROM (after firmware exit), the initial value is

000X 0006H.

Field Bits

Type

Description

WSPFLASH |[3:0]

w

Wait States for read access to PFLASH

This bit field defines the number of wait states n, which
are used for an initial read access to the Program
Flash memory area, with

WSPFLASH x (1 / fopy) 2 t,0.

00005 PFLASH access in one clock cycle

0001z PFLASH access in one clock cycle

00105 PFLASH access in two clock cycles

00115 PFLASH access in three clock cycles

... PFLASH access in four up to fourteen clock cycles.
1111, PFLASH access in fifteen clock cycles.

WSECPF

w

Wait State for Error Correction of PFLASH

Oz No additional wait state for error correction

1z One additional wait state for error correction
during read access to Program Flash.
If enabled, this wait state is only used for the
first transfer of a burst transfer.

Set this bit only when requested by Infineon.

IDLE 13

w

Dynamic Flash Idle

0g Normal/standard Flash read operation

1z Dynamic idle of Program Flash enabled for
power saving; static prefetching disabled

Reference Manual
PMU, V1.4

8-41 V1.0, 2012-02

Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field

Bits

Type

Description

ESLDIS

14

'w

External Sleep Request Disable

0g External sleep request signal input is enabled
1z Externally requested Flash sleep is disabled
The ‘external’ signal input is connected with a global
power-down/sleep request signal from SCU.

SLEEP

15

w

Flash SLEEP

0z Normal state or wake-up

1y Flash sleep mode is requested

Wake-up from sleep is started with clearing of the
SLEEP-bit.

RPA

16

rh

Read Protection Activated

This bit monitors the status of the Flash-internal read

protection. This bit can only be ‘0’ when read

protection is not installed or while the read protection
is temporarily disabled with password sequence.

Og The Flash-internal read protection is not
activated. Bits DCF, DDF are not taken into
account. Bits DCF, DDFx can be cleared

1y The Flash-internal read protection is activated.
Bits DCF, DDF are enabled and evaluated.

DCF

17

rwh

Disable Code Fetch from Flash Memory

This bit enables/disables the code fetch from the

internal Flash memory area. Once set, this bit can

only be cleared when RPA="0".

This bit is automatically set with reset and is cleared

during ramp up, if no RP installed, and during startup

(BROM) in case of internal start out of Flash.

Og Code fetching from the Flash memory area is
allowed.

1z Code fetching from the Flash memory area is
not allowed. This bit is not taken into account
while RPA="0".

Reference Manual
PMU, V1.4

8-42 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field Bits Type | Description
DDF 18 rwh | Disable Any Data Fetch from Flash
This bit enables/disables the data read access to the
Flash memory area (Program Flash and Data Flash).
Once set, this bit can only be cleared when RPA="0'".
This bit is automatically set with reset and is cleared
during ramp up, if no RP installed, and during startup
(BROM) in case of internal start out of Flash.
0y Data read access to the Flash memory area is
allowed.
1z Dataread access to the Flash memory area is
not allowed. This bit is not taken into account
while RPA="0".
VOPERM 24 rw Verify and Operation Error Interrupt Mask
Og Interrupt not enabled
1 Flash interrupt because of Verify Error or
Operation Error in Flash array (FSI) is enabled
SQERM 25 rw Command Sequence Error Interrupt Mask
Og Interrupt not enabled
1z Flash interrupt because of Sequence Error is
enabled
PROERM 26 rw Protection Error Interrupt Mask
Og Interrupt not enabled
1z Flash interrupt because of Protection Error is
enabled
PFSBERM 27 rw PFLASH Single-Bit Error Interrupt Mask
Og No Single-Bit Error interrupt enabled
1z Single-Bit Error interrupt enabled for PFLASH
PFDBERM 29 rw PFLASH Double-Bit Error Interrupt Mask
Og Double-Bit Error interrupt for PFLASH not
enabled
1z Double-Bit Error interrupt for PFLASH enabled.
Especially intended for margin check
EOBM 31 rw End of Busy Interrupt Mask
Og Interrupt not enabled
1z EOBinterruptis enabled
0 [12:5], |r Reserved
[23:19], Always read/write zero
28, 30

Reference Manual
PMU, V1.4

8-43 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Flash and Program Memory Unit (PMU)

1) WSPFLASH = 0,, deviates from this formula and results in the same timing as WSPFLASH = 1,,.

Note: The default numbers of wait states represent the slow cases. This is a general
proceeding and additionally opens the possibility to execute higher frequencies
without changing the configuration.

Note: After reset and execution of Firmware, the read protection control bits are coded
as follows:
DDF, DCF, RPA =“110": No read protection installed
DDF, DCF, RPA = “001": Read protection installed; start in internal Flash
DDF, DCF, RPA = “111": Read protection installed; start not in internal Flash.

8.7.3.3 Flash Identification Register

The module identification register of Flash module is directly accessible by the CPU via
PMU access. This register is mapped into the space of the Flash Interface Module’s
registers (see Table 8-11).

FLASHO_ID
Flash Module Identification Register (1008,,) Reset Value: 00A2 COXX,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MOD_NUMBER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOD_TYPE MOD_REV
1 } 1 1 1 1 1 I\(1
Field Bits Type | Description
MOD_REV [7:0] r Module Revision Number

MOD_REYV defines the module revision number. The
value of a module revision starts with 01, (first
revision).

MOD_TYPE [15:8] |r Module Type

This bit field is CO. It defines the module as a 32-bit
module.

Reference Manual 8-44 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Flash and Program Memory Unit (PMU)

Field Bits Type | Description

MOD_NUMBER |[31:16] |r Module Number Value
This bit field defines a module identification number.
For the XMC4500 FlashO this number is 00A2,,.

8.7.3.4 Margin Check Control Register
MARP
Margin Control Register PFLASH (1018,) Reset Value: 0000 8000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

T T T T T T T

T
0

L L 1 1 1 1 1 1 1 1 1 1 1 L L

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR
AP 0 MARGIN
DIS
W 1 1 1 1 r 1 1 1 r\‘/v
Field Bits Type | Description
MARGIN [3:0] rw PFLASH Margin Selection
0000gDefault, Standard (default) margin.
0001;TightO, Tight margin for O (low) level.
Suboptimal 0-bits are read as 1s.
0100gTight1, Tight margin for 1 (high) level.
Suboptimal 1-bits are read as 0s.
- Reserved.
TRAPDIS 15 rw PFLASH Double-Bit Error Trap Disable
Og If a double-bit error occurs in PFLASH, a bus
error trap is generated?.
1z The double-bit error trap is disabled.
Shall be used only during margin check
0 [14:4], |r Reserved
[31:16] Always read as 0; should be written with 0.

1) After Boot ROM exit, double-bit error traps are enabled (TRAPDIS = 0).

Reference Manual 8-45 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
<|nﬂneon XMC4000 Family

Flash and Program Memory Unit (PMU)

8.7.3.5 Protection Configuration Indication

The configuration of read/write/OTP protection is indicated with registers PROCONO,
PROCON1 and PROCONZ2, thus separately for every user, and it is generally indicated
in the status register FSR.

If write protection is installed for user 0 or 1 or OTP protection for user 2, for each sector
of the Program Flash it is indicated in the user-specific Protection Configuration register
PROCONY, if it is locked or unlocked for program or erase operations.

The Flash Protection Configuration registers PROCONXx are loaded by the FIM state

machine out of the user’s configuration block directly after reset during ramp up. The
three PROCONKX registers are read-only registers.

PROCONO
Flash Protection Configuration Register User 0
(1020, Reset Value: 0000 0000,

3. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S10_
S11L

rh r rh rh rh rh rh rh rh rh rh rh rh rh rh rh

SOL | S8L | S7L | S6L | S5L | S4L | S3L | S2L | S1L | SOL

Field Bits Type | Description

SnL (n=0-9) n rh Sector n Locked for Write Protection by User 0
These bits indicate whether PFLASH sector n is
write-protected by user 0 or not.

0 No write protection is configured for sector n.
1z Write protection is configured for sector n.

Reference Manual 8-46 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flash and Program Memory Unit (PMU)

Field Bits Type | Description
S10_S11L 10 rh Sectors 10 and 11 Locked for Write Protection by
User O

This bit is only used if PFLASH has more than
0.5 Mbyte. It indicates whether PFLASH sectors
10+11 (together 512 KB) are write-protected by user
0 or not.
0 No write protection is configured for
sectors 10+11.
1z Write protection is configured for sectors
10+11.

RPRO 15 rh Read Protection Configuration

This bit indicates whether read protection is

configured for PFLASH by user 0.

0z No read protection configured

1 Read protection and global write protection is
configured by user 0 (master user)

0 13,12, |rh Reserved

11 deliver the corresponding UCBO entry. Shall be

configured to 0.

0 [31:16], |r Reserved

14 Always reads as 0.
PROCON1
Flash Protection Configuration Register User 1

(21024,) Reset Value: 0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
0 0 0 0 ::ﬁ)[S9L | S8L | S7L | S6L | S5L | S4L | S3L | S2L | S1L | soL
‘r rh rh rh rh rh rh rh rh rh rh rh rh rh rh

Reference Manual 8-47 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Flash and Program Memory Unit (PMU)

Field Bits Type | Description

SnL (n=0-9) n rh Sector n Locked for Write Protection by User 1
These bits indicate whether PFLASH sector n is
write-protected by user 1 or not.

0g No write protection is configured for sector n.
1z Write protection is configured for sector n.

S10_S11L 10 rh Sectors 10 and 11 Locked for Write Protection by
User 1
This bit is only used if PFLASH has more than
0.5 Mbyte. It indicates whether PFLASH sectors
10+11 (together 512 KB) are write-protected by
user 1 or not.
0 No write protection is configured for

sectors 10+11.
1z Write protection is configured for sectors

10+11.
0 13,12, |rh Reserved
11 Deliver the corresponding UCBL1 entry. Shall be
configured to 0.
0 [31:16], |r Reserved
15,14 Always reads as 0.
PROCON2
Flash Protection Configuration Register User 2
(1028, Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 Ssllol— S9 | S8 | S7 | S6 | S5 | S4 | S3 | S2 | S1 | SO
ROM ROM|ROM|ROM|ROM|ROM|ROM|ROM|ROM |ROM|ROM

Reference Manual 8-48 V1.0, 2012-02
PMU, V1.4 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Flash and Program Memory Unit (PMU)

Field

Bits

Type

Description

SnROM (n=0-
9)

n

Sector n Locked Forever by User 2

These bits indicate whether PFLASH sector n is an

OTP protected sector with read-only functionality,

thus if it is locked for ever.

0g No ROM functionality configured for sector n.

1z ROM functionality is configured for sector n.
Re-programming of this sector is no longer
possible.

S10_S11ROM

10

rh

Sectors 10 and 11 Locked Forever by User 2

This bit is only used if PFLASH has more than

0.5 Mbyte. It indicates whether PFLASH sectors

10+11 (together 512 KB) are read-only sectors or

not.

0 No ROM functionality is configured for
sectors 10+11.

1z ROM functionality is configured for sectors
10+11.

13, 12,
11

Reserved
Deliver the corresponding UCB2 entry. Shall be
configured to 0.

[31:16],
15, 14

—

Reserved
Always reads as 0.

Reference Manual

PMU, V1.4

8-49 V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

System Control

Reference Manual V1.0, 2012-02
Subject to Agreement on the Use of Product Information

. XMC4500
(Infineon_ XMC400D Farmily
Window Watchdog Timer (WDT)

9 Window Watchdog Timer (WDT)

Purpose of the Window Watchdog Timer module is an improvement of the system
integrity. The WDT triggers the system reset or other corrective actions like e.g. non-
maskable interrupt if the main program, due to some fault condition, neglects to regularly
service the watchdog (also referred to as “kicking the dog”, “petting the dog”, “feeding
the watchdog” or “waking the watchdog”). The intention is to bring the system back from

unresponsive state into normal operation.

References

[9] Cortex-M4 User Guide, ARM DUI 0508B (ID062910)

9.1 Overview

A successful servicing of the WDT results in a pulse on the signal wdt_service. The
signal is offered also as an alternate function output. It can be used to show to an
external watchdog that the system is alive.

The WDT timer is a 32-bit counter, which counts up from 0,,. It can be serviced while the
counter value is within the window boundary, i.e. between the lower and the upper
boundary value. Correct servicing results in a reset of the counter to 0,,. A so called “Bad
Service” attempt results in a system reset request.

The timer block is running on the f,,57 clock which is independent from the bus clock. The
timer value is updated in the corresponding register TIM, whenever the timer value
increments. This mechanism enables immediate response on a read access from the
bus.

The WDT module provides a register interface for configuration. A write to writable
registers is only allowed, when the access is in privileged mode. A write access in user
mode results in a bus error response.

9.1.1 Features
The watchdog timer (WDT) is an independent window watchdog timer.
The features are:

« Triggers system reset when not serviced on time or serviced in a wrong way

e Servicing restricted to be within boundaries of a user definable refresh window
e Can run from an independent clock

« Provides service indication to an external pin

e Can be suspended in HALT mode

« Provides optional pre-warning alarm before reset

Reference Manual 9-1 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Table 9-1 Application Features

Window Watchdog Timer (WDT)

Feature

Purpose/Application

System reset upon Bad Servicing

Triggered to restore system stable
operation and ensure system integrity

Servicing restricted to be within
defined boundaries of refresh window

Allows to consider minimum and maximum
software timing

Independent clocks

To ensure that WDT counts even in case
of the system clock failure

Service indication on external pin

For dual-channel watchdog solution,
additional external control of system
integrity

Suspending in HALT mode

Enables safe debugging with productive
code

Pre-warning alarm

Software recovery to allow corrective
action via software recovery routine
bringing system back from the
unresponsive state into normal operation

9.1.2 Block Diagram

The WDT block diagram is shown in Figure 9-1.

Reference Manual
WDT, V2.2

9-2

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Window Watchdog Timer (WDT)

PBA2
Bus Interface
wdt_service - SS{EC_U . external
‘ ‘ WDT Lt |l watchdog
Registers
CPU HALTED wdt_alarm scu.Geu
- -
- -—
E wdt_rst_req SCU.RCU
| -
-—
Timer
scuccu| fwor

Figure 9-1 Watchdog Timer Block Diagram

9.2 Time-Out Mode

An overflow results in an immediate reset request going to the RCU of the SCU via the
signal wdt_rst_req whenever the counter crosses the upper boundary it triggers an
overflow event pre-warning is not enabled with CTR register. A successful servicing
performed with writing a unique value, referred to as “Magic Word” to the SRV register
of the WDT within the valid servicing window, results in a pulse on the signal wdt_service
and reset of the timer counter.

Reference Manual 9-3 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Window Watchdog Timer (WDT)

WDT WDT First
serviced serviced overflow

A
i)
Window Upper Bound - \
4

Window Lower Bound

R NG YN

|

Oy

i

R

No
servicing
allowed

Serviding
allowed

1

|
wdt_service ’—‘

wdt_alarm

wdt_rst_req

Figure 9-2 Reset without pre-warning

The example scenario depicted in Figure 9-2 shows two consecutive service pulses
generated from WDT module as the result of successful servicing within valid time
windows. The situation where no service has been performed immediately triggers
generation of reset request on the wdt_rst_req output after the counter value has
exceeded window upper bound value.

9.3 Pre-warning Mode

While in prewarning mode the effect of the overflow event is different with and without
pre-warning enabled. The first crossing of the upper bound triggers the outgoing alarm
signal wdt_alarm when pre-warning is enabled. Only the next overflow results a reset
request. The alarm status is shown via register WDTSTS and can be cleared via register
WDTCLR. A clear of the alarm status will bring the WDT back to normal state. The alarm
signal is routed as request to the SCU, where it can be promoted to NMI.

Reference Manual 9-4 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Window Watchdog Timer (WDT)

WDT First Second
A serviced overflow overflow
Window Upper Bound t 7 T
7 [}
\V/ i i
1 1
1 1
1 1
1 1
| [}
Window Lower Bound t t
1 ! 1 1
1 ! : 1 !
1 ! 1 1 !
1 ! 1 1 :
| | |
| | | 1 1
0y ! ! | | i
<T>l<—,—>\ | !
L Serviding ! \
servicing 1
allowkd | I
allowed | \ I
1 [!
1
wdt_service !—‘ I |
1
| !
wdt_alarm [—‘ :
1
1
wdt_rst_req |7

Figure 9-3 Reset after pre-warning

The example scenario depicted in Figure 9-3 shows service pulse generated from WDT
module as the result of successful servicing within valid time window. WDT generates
alarm pulse on wdt_alarm upon first missing servicing. The alarm signal is routed as
interrupt request to the SCU, where it can be promoted to NMI. Within this alarm service
request the user can clear the WDT status bit and give a proper WDT service before it
overflows next time. Otherwise WDT generates reset request on wdt_rstn upon the
second missing service.

9.4 Bad Service Operation

A bad service attempt results in a reset request. A bad service attempt can be due to
servicing outside the window boundaries or servicing with an invalid Magic Word.

Reference Manual 9-5 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o . XMC4500
|nf|ne0n XMC4000 Family

Window Watchdog Timer (WDT)

serviced

wDT in wrong

A serviced window

Window Upper Bound
// //
4 4
4
4
4
4
4
N 4

Window Lower Bound «

X NN
\,
R UMM |

|

Oy i

|

No. Serviqing |

servicing allow;ed |

allowed | 1

I |

wdt_service]—‘ 1
T

1

|

wadt_alarm !
1

|

wdt_rst_req |

Figure 9-4 Reset upon servicing in awrong window

The example in Figure 9-4 shows servicing performed outside of valid servicing window.
Attempt to service WDT while counter value remains below the Window Lower Bound
results in immediate reset request on wdt_rst_req signal.

serviced with

wDT invalid magic
A serviced word
Window Upper Bound | }
\ // \ //
4 //
4

Window Lower Bound

R (YN

J. 25 IR NG A,

|

Oy

1
No. Servidiing 1
servicing allowkd 1
allowed Ip :
! [
wadt_service ’_‘ !
t
1
|
wdt_alarm :
|
1

wdt_rst_req

Figure 9-5 Reset upon servicing with a wrong magic word

Reference Manual 9-6 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Window Watchdog Timer (WDT)

The example in Figure 9-5 shows servicing performed within a valid servicing window
but with an invalid Magic Word. Attempt to write a wrong word to the SRV register results
in immediate reset request on wdt_rst_req signal.

9.5 Service Request Processing

The WDT generates watchdog alarm service requests via wdt_alarm output signal upon
first counter overflow over Watchdog Upper Bound when pre-warning mode is enabled.
The alarm service request may be promoted by the SCU in two alternative modes:

e service request

e trap request causing NMI interrupt

Service requests can be disabled i SCU with service request mask or trap request
disable registers respectively.

9.6 Debug Behavior

The WDT function can be suspended when the CPU enters HALT mode. WDT debug
function is controlled by DSP bit field in CTR register.

9.7 Power, Reset and Clock

The WDT module is a part of the core domain and supplied with VDDC voltage.
All WDT registers get reset with the system reset.

A sticky bit in the RSSTAT register of SCU/RCU module indicates whether the last
system reset has been triggered by the WDT module. This bit does not get reset with
system reset.

The input clock of the WDT counter can be selected by the user between system PLL
output, direct output of the internal system oscillator or 32kHz clock of hibernate domain,
independently from the AHB interface clock. Selection of the WDT input clock is
performed in SCU using WDTCLKCR register (for details please refer to the SCU/CCU
chapter).

9.8 Initialization and Control Sequence

The programming model of the WDT module assumes several scenarios where different
control sequences apply.

Note: Some of the scenarios described in this chapter require operations on system
level the that are not in the scope of the WDT module description, therefore for
detailed information please refer to relevant chapters of this document.

Reference Manual 9-7 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Window Watchdog Timer (WDT)

9.8.1 Initialization & Start of Operation
Complete WDT module initialization is required after system reset.

» check reason for last system reset in order to determine power state
— read out SCU_RSTSTAT.RSTSTAT register bit field to determine last system
reset cause
— perform appropriate operations dependent on the last system reset cause
« WDT software initialization sequence
— enable WDT clock with SCU_CLKSET.WDTCEN register bit field
— release WDT reset with SCU_PRCLR2.WDTRS register bit field
— set lower window bound with WDT_WLB register
— set upper window bound with WDT_WUB register
— configure external watchdog service indication (optional, please refer to SCU/HCU
chapter)
— select and enable WDT input clock with SCU_WDTCLKCR register
— enable system trap for pre-warning alarm on system level with SCU_NMIREQEN
register (optional, used in WDT pre-warning mode only)
» software start sequence
— select mode (Time-Out or Pre-warning) and enable WDT module with WDT_CTR
register
» service the watchdog
— check current timer value in WDT_TIM register against programmed time window
— write magic word to WDT_SRYV register within valid time window

9.8.2 Reconfiguration & Restart of Operation
Reset and initialization of the WDT module is required in order to update its settings.

» software initialization sequence
— assert WDT reset with SCU_PRSET2.WDTCEN register bit field
— release WDT reset with SCU_PRCLR2.WDTRS register bit field register
— set lower window bound with WDT_WLB register
— set upper window bound with WDT_WUB register
— configure external watchdog service indication (optional, please refer to SCU/HCU
chapter)
— select and enable WDT input clock (if change of the clock settings required) with
SCU_WDTCLKCR register
— enable system trap for pre-warning alarm on system level with SCU_NMIREQEN
register (optional, used in WDT pre-warning mode only)
» software start sequence
— select mode (Time-Out or Pre-warning) and enable WDT module with WDT_CTR
register

Reference Manual 9-8 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Window Watchdog Timer (WDT)

« service the watchdog
— check current timer value in WDT_TIM register against programmed time window
— write magic word to WDT_SRYV register within valid time window

9.8.3 Software Stop & Resume Operation

The WDT module can be stopped and re-started at any point of time for e.g. debug
purpose using software sequence.

» software stop sequence
— disable WDT module with WDT_CTR register
» perform any user operations
« software start (resume) sequence
— enable WDT module with WDT_CTR register with WDT_CTR register
« service the watchdog
— check current timer value in WDT_TIM register against programmed time window
— write magic word to WDT_SRYV register within valid time window

9.8.4 Enter Sleep/Deep Sleep & Resume Operation

The WDT counter clock can be configured to stop while in sleep or deep-sleep mode. No
direct software interaction with the WDT is required in those modes and no watchdog
time-out will fire if the WDT clock is configured to stop while CPU is sleeping.

« software configuration sequence for sleep/deep-sleep mode
— configure WDT behavior with SCU register SLEEPCR or DSLEEPCR
* enter sleep/deep-sleep mode software sequence
— select sleep or deep-sleep mode in CPU (for details please refer to Cortex-M4
documentation [9])
— enter selected mode (for details please refer to Cortex-M4 documentation [9])
« wait for a wake-up event (no software interaction, CPU stopped)
» resume operation (CPU clock restarted automatically on an event)
* service the watchdog
— check current timer value in WDT_TIM register against programmed time window
— write magic word to WDT_SRYV register within valid time window

9.8.5 Prewarning Alarm Handling

The WDT will fire prewarning alarm before requesting system reset while in pre-warning
mode and not serviced within valid time window. The WDT status register indicating
alarm must be cleared before the timer counter value crosses the upper bound for the
second time after firing the alarm. After clearing of the alarm status regular watchdog
servicing must be performed within valid time window.

Reference Manual 9-9 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Window Watchdog Timer (WDT)

e alarm event
— exception routine (system trap or service request) clearing WDT_WDTSTAT
register with WDT_WDTCLR register
« service the watchdog
— check current timer value in WDT_TIM register against programmed time window
— write magic word to WDT_SRYV register within valid time window

Reference Manual 9-10 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Window Watchdog Timer (WDT)

9.9 Registers

Registers Overview

All these registers can be read in User Mode, but can only be written in Supervisor Mode.
The absolute register address is calculated by adding:

Module Base Address + Offset Address

Table 9-2 Registers Address Space

Module Base Address End Address Note
WDT 5000 8000, 5000 BFFF,, Watchdog Timer
Registers

Table 9-3 Register Overview

Short Name |Register Long Name Offset | Access Mode | Description
Addr. [Read |write

WDT Kernel Registers

ID Module ID Register 00, U, PV |PV Page 9-11
CTR Control Register 04, U, PV |PV Page 9-12
SRV Service Register 08, BE PV Page 9-13
TIM Timer Register 0Cy, U, PV |BE Page 9-14
WLB Window Lower Bound 104 U, PV |PV Page 9-14
WuB Window Upper Bound 14, U, PV |PV Page 9-14
WDTSTS Watchdog Status Register | 18, U, PV |PV Page 9-15
WDTCLR Watchdog Status Clear 1C, U, PV |PV Page 9-16
Register

9.9.1 Registers Description

ID
The module ID register.

Reference Manual 9-11 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Window Watchdog Timer (WDT)

ID
WDT ID Register (00,) Reset Value: 00AD COXXy,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

MOD_NUMBER MOD_TYPE MOD_REV

r r r

Field Bits Type | Description
MOD_REV [7:0]

Module Revision
Indicates the revision number of the implementation.
This information depends on the design step.

MOD_TYPE [15:8] |r Module Type
This internal marker is fixed to CO,.

—

MOD_NUMBER |[31:16] Module Number

Indicates the module identification number

—

CTR
The operation mode control register.

CTR
WDT Control Register (04,) Reset Value: 0000 0000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPW 0 DSP 0 PRE |ENB
I r\IN I I I I r rw ‘r rw rw
Field Bits Type | Description
ENB 0 rw Enable

0g disables watchdog timer,
1; enables watchdog timer

Reference Manual 9-12 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Window Watchdog Timer (WDT)

Field Bits Type | Description
PRE 1 w Pre-warning
0g disables pre-warning
1; enables pre-warning,

DSP 4 w Debug Suspend
0g watchdog timer is stopped during halting mode
debug,
1; watchdog timer is not stopped during halting mode
debug

SPW [15:8] |rw Service Indication Pulse Width

Pulse width (SPW+1) of service indication
in fy,pr cycles

0 [3:2], r Reserved
[7:5],
[31:16]

SRV

The WDT service register. Software must write a magic word while the timer value is
within the valid window boundary. Writing the magic word while the timer value is within
the window boundary will service the watchdog and result a reload of the timer with OH.

Upon writing data different than the magic word within valid time window or writing even
correct Magic Word but outside of the valid time window no servicing will be performed.
Instead will request an immediate system reset request.

\?VIIQD\'/I' Service Register (08,) Reset Value: 0000 0000
31\30\29\28\27.26.25.24.23.22.21.20.19.18.17.16.15.14.13.12\11\10‘ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0
SRV

N
Field Bits Type | Description
SRV [31:0] |w Service

Writing the magic word ABADCAFE,, while the timer
value is within the window boundary will service the
watchdog.

Reference Manual 9-13 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Window Watchdog Timer (WDT)

TIM

The actual watchdog timer register count value. This register can be read by software in
order to determine current position in the WDT time window.

TIM

WDT Timer Register (ocy) Reset Value: 0000 0000,
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

TIM
1 1 1 1 1 1 1 1 1 1 1 ri'] 1 1 1
Field Bits Type | Description
TIM [31:0] |rh Timer Value
Actual value of watchdog timer value.

WLB

The Window Lower Bound register defines the lower bound for servicing window.
Servicing of the watchdog has only effect within the window boundary

%ET; Window Lower Bound Register (10.) Reset Value: 0000 0000,
31[30[29[28[27.26.25.24.23.22.21.20.19.18.17.16.15.14.13.12\11\10\ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ! 3 ! 2 ! 1 ! 0
WLB

T
Field Bits Type | Description
WLB [31:0] |rw Window Lower Bound

Lower bound for servicing window.
Setting the lower bound to 0,, disables the window
mechanism.

wuB

The Window Upper Bound register defines the upper bound for servicing window.
Servicing of the watchdog has only effect within the window boundary.

Reference Manual 9-14 V1.0, 2012-02
WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Window Watchdog Timer (WDT)

wﬁ Window Upper Bound Register (14,) Reset Value: FFFF FFFF,
31‘30‘29‘28‘27.26.25.24.23.22.21.20.19.18.17.16.15.14.13.12‘11‘10‘ 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
WUB
S
Field Bits Type | Description
wuB [31:0] |rw Window Upper Bound

Upper Bound for servicing window.

The WDT triggers an reset request when the timer is
crossing the upper bound value without pre-warning
enabled.

With pre-warning enabled the first crossing triggers a
watchdog alarm and the second crossing triggers a
system reset.

WDTSTS
The status register contains sticky bit indicating occurrence of alarm condition.

WDTSTS
WDT Status Register (0018, Reset Value: 00000000,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALM
0 S
1 1 1 1 1 r 1 1 r
Field Bits Type | Description
ALMS 0 r Pre-warning Alarm
1; pre-warning alarm occurred,
0Og no pre-warning alarm occurred
Reference Manual 9-15 V1.0, 2012-02

WDT, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|ne0n XMC4000 Family

Window Watchdog Timer (WDT)

Field Bits Type | Description
0 [3L:a] |r Reserved
WDTCLR

The status register contains sticky bit field indicating occurrence of alarm condition.

WDTCLR

WDT Clear Register (oo1c,) Reset Value: 00000000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALM
0 C
1 1 1 1 1 r 1 1 W
Field Bits Type | Description
ALMC 0 w Pre-warning Alarm
1; clears pre-warning alarm
0g no-action
0 [3L:a] |r Reserved
9.10 Interconnects
Table 9-4 Pin Table
Input/Output ‘ 1/0 ‘ Connected To ‘ Description
Clock and Reset Signals
fwor ‘ I ‘ SCu.ccu ‘ timer clock
Timer Signals
wdt_service (0] SCU.HCU service indication to external
watchdog
Reference Manual 9-16 V1.0, 2012-02

WDT, V2.2 Subject to Agreement on the Use of Product Information

(infineon

XMC4500
XMC4000 Family

Table 9-4 Pin Table (cont'd)

Window Watchdog Timer (WDT)

Input/Output I/O | Connected To Description

HALTED I CPU In halting mode debug.
HALTED remains
asserted while the core is in
debug.

Service Request Connectivity

wdt_alarm (0] SCU.GCU pre-warning alarm

wdt_rst_req (0] SCU.RCU reset request

Reference Manual 9-17 V1.0, 2012-02

WDT, V2.2

Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Real Time Clock (RTC)

10 Real Time Clock (RTC)

Real-time clock (RTC) is a clock that keeps track of the current time. RTCs are present
in almost any electronic device which needs to keep accurate time in a digital format for
clock displays and real-time actions.

10.1 Overview

The RTC module tracks time with separate registers for hours, minutes, and seconds.
The calendar registers track date, day of the week, month and year with automatic leap
year correction.

The RTC is capable of running from an alternate source of power, so it can continue to
keep time while the primary source of power is off or unavailable. The timer remains
operational when the core domain is in power-down. The kernel part of the RTC keeps
running as long as the hibernate domain is powered with an alternate supply source. The
alternate source can be for example a lithium battery or a supercapacitor.

10.1.1 Features

The features of the Real Time Clock (RTC) module are:

« Precise real time keeping with
— 32.768 kHz external crystal clock
— 32.768 kHz high precision internal clock
« Periodic time-based interrupt
e Programmable alarm interrupt on time match
e Supports wake-up mechanism from hibernate state

Table 10-1 Application Features

Feature Purpose/Application

Precise real-time keeping Reduced need for time adjustments

Periodic time-based interrupt Scheduling of operations performed on
precisely defined intervals

Programmable alarm interrupt on time Scheduling of operations performed on

match precisely defined times

Supports wake-up mechanism from Autonomous wake up from hibernate for

hibernate state system state control and maintaintenance

routine operations

10.1.2 Block Diagram
The RTC block diagram is shown in Figure 10-1.

Reference Manual 10-1 V1.0, 2012-02
RTC, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Real Time Clock (RTC)

The main building blocks of the RTC is Time Counter implementing real time counter and
RTC registers containing multi-field registers for the time counter and alarm
programming register. Dedicated fields represent values for elapsing second, minutes,
hours, days, days of week, months and years.

The kernel of the RTC module is instantiated in the hibernate domain.

The RTC registers are instantiated in hibernate domain and mirrored in SCU. Access to
the RTC registers is performed via register mirror updated over serial interface.

Time
Counter alarm
RTC
eriodic_event
PRt scu
Prescaler RTC Serial
32.768 kHz clock Registers Interface

Figure 10-1 Real-Time Clock Block Diagram Structure

10.2 RTC Operation

The RTC timer counts seconds, minutes, hours, days of month, days of week, months
and years each in a separate field (see Figure 10-2). Individual bit fields of the RTC
counter can be programmed and read with software over serial interface via mirror
registers in SCU module. For details of the serial communication please refer to SCU
chapter.

Reference Manual 10-2 V1.0, 2012-02
RTC, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Real Time Clock (RTC)

seconds minutes hours days months years
Alarm Time
(ATIMO & ATIM1)
')
_ | alarm
Real Time -
(TIMO & TIM1) R
[| y
days of
week
Prescaler T
1second |—Jp»! seconds P»{ minutes P»{ hours | days | months | years
tick
Y Y Y __ : A 4 i A 4 4 periodic_event
| Periodic Service Request Logic |—>

Figure 10-2 Block Diagram of RTC Time Counter

Occurrence of an internal timer event is stored in the service request raw status register
RAWSTAT. The values of the status register RAWSTAT drive the outgoing service
request lines alarm and periodic_event.

10.3 Register Access Operations

The RTC module is a part of SCU from programmming model perepcetive and shares
register address space for configuration with other sub-modulesof SCU. RTC registers
are instantiated in hibernate domain are mirrored in SCU. The registers get updated in
both clock domains over serial interface running at 32kHz clock rate.

Any update of the registers is performed with some delay required for data to propagate
to and from the mirror registers over serial interface. Accesses to the RTC registers in
core domain must not block the bus interface of SCU module. For details of the register
mirror and serial communication handling please refer to SCU chapter.

A write to writable registers is only allowed, when the access is in privileged mode. A
write access in user mode results in a bus error response.

For consistent write to the timer registers TIMO and TIM1, the register TIMO has to be
written before the register TIM1.

Reference Manual 10-3 V1.0, 2012-02
RTC, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< mfmeon XMC4000 Family

Real Time Clock (RTC)

After wake-up from hibernate state the content of the mirror registers TIMO and TIM1 is
undefined until the first update of the corresponding RTC timers occurs and is
propagated to the registers.

For consistent read-out of the timer registers TIMO and TIM1, the register TIMO has to
be read before the register TIM1. The value of TIM1 is stored in a shadow register upon
each read of TIMO before they get copied to the mirror register in core domain.

104 Service Request Processing

The RTC generates service requests upon:

« periodic timer events

« configured alarm condition

The service requests can be processed in the core domain as regular service requests
or as wake-up triggers from hibernate mode in HCU module in hibernate domain (for
more details please refer to hibernate control description in SCU chapter).

10.4.1 Periodic Service Request

The periodic timer service request is raised whenever a non-masked field of the timer
counter gets updated. Masking of the bits is performed using MSKSR register. Periodic
Service requests can be disabled with MSKSR.

10.4.2 Timer Alarm Service Request

The alarm interrupt is triggered when TIMO and TIM1 bit fields values match all
corresponding bit fields values of ATIMO, ATIM1 registers selected with CTR register.
Timer Alarm Service requests can be disabled with CTR.

10.5 Debug behavior
The RTC clock does not implement dedicated debug mechanisms.

10.6 Power, Reset and Clock

RTC is instantiated entirely in hibernate domain and remains powered up when
hibernate domain is powered up. Supply voltage is passed either from VDDP or VBAT
pin as specified in the SCU chapter.

The RTC module remains in reset state along with entire hibernate domain after initial
power up of hibernate domain until reset released with software.

The RTC timer is running from ether internal or external 32.768 kHz clock selectable with
HDCR control register of SCU/HCU module. The prescaler setting of 7FFF, results in an
once per second update of the RTC timer.

Reference Manual 10-4 V1.0, 2012-02
RTC, V2.2 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Real Time Clock (RTC)

10.7 Initialization and Control Sequence

Programming model of the RTC module assumes several scenarios where different
control sequences apply.

Note: Some of the scenarios described in this chapter require operations on system
level the that are not in the scope of the RTC module description, therefore for
detailed information please refer to relevant chapters of this document.

10.7.1 Initialization & Start of Operation

Complete RTC module initialization is required upon hibernate domain reset. The
hibernate domain needs to be enabled before any programming of RTC registers takes
place. Accesses to RTC registers are performed via dedicated mirror registers (for more
details please refer to SCU chapter)

< enable hibernate domain (if not disabled)
— write one to SCU_PWRSET.HIB
« release reset of hibernate domain reset (if asserted)
— write one to SCU_RSTCLR.HIBRS
¢ enable RTC module to start counting time
— write one to RTC_CTR.ENB
e program RTC_TIMO and RTC_TIML1 registers with current time
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_TIMO register
— write a new value to the RTC_TIMO register
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_TIM1 register
— write a new value to the RTC_TIM1 register

10.7.2 Re-configuration & Re-start of Operation

Reset and re-initialization of the RTC module may be required without complee power
up sequence of the hibernate domain.

< apply and release reset of hibernate domain reset
— write one to SCU_RSTSET.HIBRS
— write one to SCU_RSTCLR.HIBRS
« enable RTC module to start counting time
— write one to RTC_CTR.ENB
e program RTC_TIMO and RTC_TIML1 registers with current time
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_TIMO register
— write a new value to the RTC_TIM1 register
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_TIM1 register

Reference Manual 10-5 V1.0, 2012-02
RTC, V2.2 Subject to Agreement on the Use of Product Information

o .. XMC4500
< mfmeon XMC4000 Family

Real Time Clock (RTC)

— write a new value to the RTC_TIM1 register

10.7.3 Configure and Enable Periodic Alarm

The RTC periodic alarm configuration require programming in order to enable intrrupt
request generation out upon a change of value in the corresponding bit fields.

* enable service request for periodic timer events in RTC module
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_MSKSR register
— set MAI bit field of RTC_MSKSR register in order enable individual periodic timer
events
« enable service request for periodic timer events in RTC module
— set Pl bit field of SCU_SRMSK register in order enable generation of interrupts
upon periodic timer events

10.7.4 Configure and Enable Timer Alarm

The RTC periodic alarm configuration require programming in order to enable intrrupt
request generation out upon compare match of values in the corresponding bit fields of
TIMO and TIM1 against ATIMO and ATIM1 respectively.

e program compare values in individual bit fields of ATIMO and ATIM1 in RTC module
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_ATIMO register
— write to RTC_ATIMO register bit fields
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_ATIML1 register
— write to RTC_ATIM1 register bit fields
< enable service request for timer alarm events in RTC module
— check SCU_MIRRSTS to ensure that no transfer over serial interface is pending
to the RTC_CTR register
— set TAE bit field of RTC_CTR register in order enable individual periodic timer
events
« enable service request for timer alarm events in RTC module
— write one to Al bit field of SCU_SRMSK register in order enable generation of
interrupts upon periodic timer events

Reference Manual 10-6 V1.0, 2012-02
RTC, V2.2 Subject to Agreement on the Use of Product Information

XMC4500
XMC4000 Family

(infineon

10.8

Real Time Clock (RTC)
Registers
Registers Overview

The absolute register address is calculated by adding:
Module Base Address + Offset Address

Table 10-2 Registers Address Space

Module Base Address End Address Note

RTC 5000 4A00, 5000 4BFF Accessible via Mirror

Registers
Table 10-3 Register Overview
Short Name |Register Long Name Offset | Access Mode | Description
Addr. IRead [write

RTC Kernel Registers

ID ID Register 0000, |U,PV |BE Page 10-7

CTR Control Register 0004, |U,PV |PV Page 10-8

RAWSTAT Raw Service Request 0008, |U,PV |BE Page 10-9
Register

STSSR Status Service Request |000C,; |U, PV |BE Page 10-10
Register

MSKSR Mask Service Request 0010, |U,PV |PV Page 10-11
Register

CLRSR Clear Service Request 0014,, |BE PV Page 10-13
Register

ATIMO Alarm Time Register 0 0018, |U,PV |PV Page 10-14

ATIM1 Alarm Time Register 1 001Cc, |UPV |PV Page 10-15

TIMO Time Register 0 0020, |U,PV |PV Page 10-16

TIM1 Time Register 1 0024, |U,PV |PV Page 10-18

10.8.1 Registers Description

ID

Read-only ID register of the RTC module containing unique identification code of the
RTC module.

Reference Manual 10-7

RTC, V2.2

V1.0, 2012-02
Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Real Time Clock (RTC)

ID
RTC ID Register (00,) Reset Value: 00A3 COXX,

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
T T

MOD_NUMBER MOD_TYPE MOD_REV

r r r

Field Bits Type | Description
MOD_REV [7:0]

Module Revision
Indicates the revision number of the implementation.
This information depends on the design step.

MOD_TYPE [15:8] |r Module Type
This internal marker is fixed to CO,.

—

Module Number
Indicates the module identification number

MOD_NUMBER | [31:16]

—

CTR
RTC Control Register providing control means of the operation mode of the module.

CTR
RTC Control Register (04, Reset Value: 7FFF 0000,
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EYE |EMO EDA [EHO| EMI |ESE
Ol el el ¢l clele 0 TAE| 0 |ENB
r rw rw r rw rw rw rw I r rw r rw
Field Bits Type | Description
ENB 0 rw RTC Module Enable

0g disables RTC module
15 enables RTC module

Reference Manual 10-8 V1.0, 2012-02
RTC, V2.2 Subject to Agreement on the Use of Product Information

o~ .. XMC4500
< |nf|neon XMC4000 Family

Real Time Clock (RTC)

Field Bits Type | Description

TAE 2 rw Timer Alarm Enable
0g disable timer alarm
15 enable timer alarm

ESEC 8 rw Enable Seconds Comparison
0Og disabled
15 enabled

EMIC 9 rw Enable Minutes Comparison
0g disabled
15 enabled

EHOC 10 rw Enable Hours Comparison
0g disabled
15 enabled

EDAC 11 rw Enable Days Comparison
0Og disabled
15 enabled

EMOC 13 rw Enable Months Comparison
0g disabled
15 enabled

EYEC 14 rw Enable Years Comparison
0g disabled
15 enabled

DIV [31:16] |rw Divider Value

reload value of RTC prescaler. Clock is divided by
DIV+1.

7FFF, is default value for RTC mode with 32.768

kHz crystal or internal clock

=