
Microcontrol lers

User ’s Manual, July 2000

N e v e r s t o p t h i n k i n g .

C500
Archi tecture and Instruct ion Set

Edition 2000-07

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany

© Infineon Technologies AG 2000.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address
list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

Microcontrol lers

User ’s Manual, July 2000

N e v e r s t o p t h i n k i n g .

C500
Archi tecture and Instruct ion Set

Enhanced Hooks TechnologyTM is a trademark and patent of Metalink Corporation
licensed to Infineon Technologies.

C500 Architecture and Instruction Set User’s Manual

Revision History: 2000-07

Previous Version: 1998-04

Page Subjects (major changes since last revision)

– Section on Package Information removed.

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

C500

Table of Contents Page

User’s Manual I-1 2000-07

1 Fundamental Structure . 1-1
1.1 Introduction . 1-1
1.2 Memory Organization . 1-2
1.2.1 Program Memory . 1-2
1.2.2 Data Memory . 1-3
1.2.2.1 Internal Data Memory . 1-3
1.2.2.2 Internal Data Memory XRAM . 1-5
1.2.2.3 External Data Memory . 1-6
1.2.3 Special Function Register Area . 1-6

2 CPU Architecture . 2-1
2.1 Accumulator . 2-2
2.2 B Register . 2-2
2.3 Program Status Word . 2-2
2.4 Stack Pointer . 2-3
2.5 Data Pointer . 2-4
2.5.1 The Importance of Additional Datapointers . 2-5
2.5.2 How the eight Datapointers of the C500 are Realized 2-5
2.5.3 Advantages of Multiple Datapointers . 2-6
2.5.4 Application Example and Performance Analysis 2-6
2.6 Enhanced Hooks Emulation Concept . 2-9
2.7 Basic Interrupt Handling . 2-10
2.8 Interrupt Response Time . 2-12

3 CPU Timing . 3-1
3.1 Basic Timing . 3-1
3.2 Accessing External Memory . 3-3
3.2.1 Accessing External Program Memory . 3-3
3.2.2 Accessing External Data Memory . 3-4

4 Instruction Set . 4-1
4.1 Addressing Modes . 4-1
4.2 Introduction to the Instruction Set . 4-3
4.2.1 Data Transfer Instructions . 4-3
4.2.2 Arithmetic Instructions . 4-4
4.2.3 Logic Instructions . 4-5
4.2.4 Control Transfer Instructions . 4-6
4.3 Instruction Definitions . 4-8
4.4 Instruction Set Summary Tables . 4-82
4.4.1 Functional Groups of Instructions . 4-82
4.4.2 Hexadecimal Ordered Instructions . 4-86

C500

Fundamental Structure
1 Fundamental Structure

1.1 Introduction

The members of the C500 Infineon Technologies microcontroller family are basically
fully compatible in architecture and software to the standard 8051 microcontroller family.
Especially, they are functionally upward compatible to the SAB 80C52/80C32
microcontroller. While maintaining all architectural and operational characteristics of the
SAB 80C52/80C32, the C500 microcontrollers differ in number and complexity of their
peripheral units which have been adapted to the specific application areas.

The goal of this “Architecture and Instruction Set Manual” is to summarize the basic
architecture and functional characteristics of all members of the C500 microcontroller
family. This includes the description of the architecture and the description of the
complete instruction set. Detailed information about the different versions of the C500
microcontrollers are given in the specific User Manuals.
User’s Manual 1-1 2000-07

C500

Fundamental Structure
1.2 Memory Organization

The memory resources of the C500 family microcontrollers are organized in different
types of memories (data and program memory), which further can be located internally
on the microcontroller chip or outside of the microcontroller. The memory partitioning of
the C500 microcontrollers is typical for a Harvard architecture where data and program
areas are held in separate memory areas. The on-chip peripheral units are accessed
using an internal special function register memory area.

The available memory areas have different sizes and are located in the following five
address spaces:

1.2.1 Program Memory

The program memory of the C500 family microcontrollers can be composed of either
completely external program memory, of only internal program memory (on-chip ROM/
EEPROM), or of a mixture of internal and external program memory. lf the EA pin
(EA = External Access) is held at low level, the C500 microcontrollers execute the
program code always out of the external program memory. Romless C500 derivatives
can use this type of program memory only. C500 derivatives with on-chip program
memory typically use their internal program memory only. If the internal program
memory is used the EA pin must be put to high level. With EA high, the microcontroller
executes instructions internally unless the address exceeds the upper limit of the internal
program memory. If the program counter is set to an address (e.g. by a jump instruction)
which is higher than the internal program memory, instructions are executed out of an
external program memory. When the instruction address again is below the internal
program memory size limit, internal program memory is accessed again.

Figure 1-1 shows the typical C500 family microcontroller program memory configuration
for the two cases EA = 0 and EA = 1. The ROM boundary shown in Figure 1-1, applies
to the C501 which has 8 Kbyte of internal ROM. Other C500 family microcontrollers with
different ROM size have different ROM boundaries.

Table 1-1 C500 Address Spaces

Type of Memory Location Size

Program Memory External max. 64 KByte

Internal (ROM,
EEPROM)

Depending on C500 version
2K up to 64 KByte

Data Memory External max. 64 KByte

Internal XRAM Depending on C500 version
256 Byte up to 3 KByte

Internal 128 or 256 Byte

Special Function Register Internal 128/256 Bytes
User’s Manual 1-2 2000-07

C500

Fundamental Structure
Figure 1-1 Program Memory Configuration (Example of the C501)

1.2.2 Data Memory

The data memory area of the C500 family microcontrollers consists of internal and
external data memory portions. The internal data memory area is addressed using 8-bit
addresses. The external data memory and the internal XRAM data memory are
addressed by 8-bit or16-bit addresses.

The content of the internal data memory (also XRAM) is not affected by a reset
operation. After power-up the content is undefined, while it remains unchanged during
and after a reset as long as the power supply is not turned off. The XRAM content is also
maintained when the C500 microcontrollers are in power saving modes.

1.2.2.1 Internal Data Memory

The internal data memory address space is divided into three basic, physically separate
and distinct blocks: the lower 128 byte of internal data RAM, the upper 128 byte of
internal data RAM, and the 128 byte special function register (SFR) area. The lower
internal data RAM and the SFR area further include 128 bit locations each. These bits
can be handled by specific bit manipulation instructions.

1FFF H

0000H

Memory
Program

FFFF H

External

Internal
Program
Memory

H2000 ROM
Boundary

EA = 1 EA = 0

External

HFFFF

Program
Memory

H0000

MCD02766

The location of the ROM boundary depends on the specific C500 devices.
User’s Manual 1-3 2000-07

C500

Fundamental Structure
Figure 1-2 shows the configuration of the three basic internal RAM areas. The lower
data RAM is located in the address range 00H - 7FH and can be addressed directly (e.g.
MOV A, direct) or indirectly (e.g. MOV A, @R0 with address in R0). A bit-addressable
area of 128 free programmable, direct addressable bits is located at byte addresses 20H
- 2FH of the lower data RAM. Bit 0 of the internal data byte at 20H has the bit address
00H while bit 7 of the internal data byte at 2FH has the bit address 7FH. The lower
32 locations of the internal lower data RAM are assigned to four banks with eight general
purpose registers (GPRs) each. Only one of these banks can be enabled at a time to be
used as general purpose registers.

Figure 1-2 Internal Data Memory Organization

MCD02767

FF FE FD FC FB FA F9 F8
FF H
F8H

HF0 F0F1F2F3F4F5F6F7

HE8 E8E9EAEBECEDEEEF

HE0 E0E1E2E3E4E5E6E7

HD8 D8D9DADBDCDDDEDF

HD0 D0D1D2D3D4D5D6D7

HC8 C8C9CACBCCCDCECF

HC0 C0C1C2C3C4C5C6C7

HB8 B8B9BABBBCBDBEBF

HB0 B0B1B2B3B4B5B6B7

HA8 A9A8AAACABADAEAF

HA0 A0A1A2A3A4A5A6A7

H98 99989A9C9B9D9E9F

H90 9091929394959697

H88 89888A8C8B8D8E8F

H80 8081828384858687

Internal SFR Area
(direct addressable)

Byte128

7F H

7F 7E 7D 7C 3B 7A 79 78
H30

2F H
70717273747576772EH
68696A6B6C6D6E6F2DH
60616263646566672CH
58595A5B5C5D5E5F2BH
50515253545556572A H
48494A4B4C4D4E4F29H
404142434445464728H
38393A3B3C3D3E3F27 H
303132333435363726H
28292A2B2C2D2E2F25H
202122232425262724 H
18191A1B1C1D1E1F23 H
101112131415161722H
08090A0B0C0D0E0F21 H
0001020304050607H20

R0H00
R1H01
R2H02
R3H03
R4H04
R5H05
R6H06
R7H07

08H

1F H
18
17

H
H

10
0F

H
H

RAM Area ~~~~

Re
gi

st
er

ba
nk

 0

Registerbank 2

Registerbank 3

Registerbank 1

HFF

H7F
H80

00H

128 Byte

(indirect & direct

Lower

addressable)

Internal Data
RAM

RAM
Internal Data

addressable)

Upper

(indirect

128 Byte

1)

1) This internal RAM area is optional. Some low-end C500 family microcontrollers don’t
provide this internal RAM area.

16
 B

yt
es

 w
ith

 1
28

 b
ita

dd
re

ss
ab

le
 B

its
User’s Manual 1-4 2000-07

C500

Fundamental Structure
While the SFR area and the upper internal RAM area share the same address locations
(80H - F8H), they must be accessed through different addressing modes. The upper
internal RAM can only be accessed through indirect addressing while the special
function registers (SFRs) are accessible only by direct addressing instructions. The
SFRs which are located at addresses with address bit 0-2 equal 0 (addresses 80H, 88H,
90H, … F0H, F8H) are bitaddressable SFRs.

1.2.2.2 Internal Data Memory XRAM

Some members of the C500 family microcontrollers provide an additional internal data
memory area, called the XRAM. This data memory area is logically located at the upper
end of the external data memory space (except C502), but it is integrated on the chip.
Because the XRAM is used in the same way as external data memory the same
instruction types must be used for accessing the XRAM.
Figure 1-3 shows a typical 256 byte XRAM address mapping of the C500
microcontrollers.

Figure 1-3 XRAM Memory Mapping (256 Byte)

Depending on the C500 derivative, the size of the XRAM area differs from 128 upto
3K byte. Further, the XRAM can be enabled or disabled. If an internal XRAM area is
disabled, external data memory can be accessed in the address range of the internal
XRAM.

0000H

Memory
Data

FFFF H

External

Internal
HFFFF

XRAM

MCD02768

XRAM is located at the upper end of the external data memory area.

HFEFF
FF00H
User’s Manual 1-5 2000-07

C500

Fundamental Structure
1.2.2.3 External Data Memory

The 64 Kbyte external data memory can be addressed by instructions that use 8-bit or
16-bit indirect addressing. A 16-bit external memory addressing mode is supported by
the MOVX instructions using the 16-bit datapointer DPTR for addressing. For 8-bit
addressing MOVX instructions with the general purpose registers R0/R1 are used.

1.2.3 Special Function Register Area

The registers of a C500 microcontroller, except the program counter and the four general
purpose register banks, reside in the special function register (SFR) area. The special
function register area typically provides 128 bytes of direct addressable SFRs. The
SFRs which are located at addresses with address bit 0-2 equal 0 (addresses 80H, 88H,
90H, … F0H, F8H) are bitaddressable SFRs (see also Figure 1-1). For example, the SFR
with byte address 80H provides the bit locations with bit addresses 80H to 87H. The bit
addresses of the SFR bits reach from 80H to F8H.

Due to the limited number of 128 standard SFRs, some derivatives of the C500
microcontroller family provide an additional 128 byte SFR area, called the mapped SFR
area. The mapped SFR area provides the same addressing capabilities (direct
addresses, bit addressing) as the standard SFR area.

Special Function Register SYSCON (Address B1H)

As long as bit RMAP is set, mapped special function registers can be accessed. This bit
is not cleared by hardware automatically. Thus, when non-mapped/mapped registers
are to be accessed, the bit RMAP must be cleared/set by software, respectively each.
Some registers (e.g. ACC) are accessed independently of bit RMAP.

Bit Function

RMAP Special function register map bit
RMAP = 0: The access to the non-mapped (standard) special

function register area is enabled (default after reset).
RMAP = 1: The access to the mapped special function register

area is enabled.

7 6 5 4 3 2 1 0

– RMAP –B1H SYSCON

Bit No. MSB LSB

– –– – –

The functions of the shaded bits are not described in this section.
User’s Manual 1-6 2000-07

C500

Fundamental Structure
Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active
register bank. This allows fast context switching, which is useful when entering
subroutines or interrupt service routines. The 8 general purpose registers of the selected
register bank may be accessed by register addressing. For indirect addressing modes,
the registers R0 and R1 are used as pointer or index register to address internal or
external memory (e.g. MOV @R0).
User’s Manual 1-7 2000-07

C500

CPU Architecture
2 CPU Architecture
The typical architecture of a C500 family microcontroller is shown in Figure 2-1. This
block diagram includes all main functional blocks of the C500 microcontrollers. The
shaded blocks are basic functional units which are mandatory for each C500
microcontroller. The other functional blocks such as XRAM, peripheral units, and ROM/
RAM sizes are specific to each C500 microcontroller derivative.

Figure 2-1 C500 Microcontroller Architecture Block Diagram

The core block represents the CPU (Central Processing Unit) of the C500 family
microcontrollers. The CPU consists of the instruction decoder, the arithmetic section, the
CPU registers, and the program control section. The housekeeper unit generates
internal signals for controlling the functions of the individual internal units within the
microcontroller. Port 0 and port 2 are required for accessing external code and data
memory and for emulation purposes. The external control signals and the clock
generation are handled in the external control block. The access control unit is
responsible for the selection of the on-chip memory resources. The IRAM provides the
internal RAM which includes the general purpose registers. The interrupt requests from
the peripheral units are handled by an interrupt controller unit.

C500 device specific is the configuration of the on-chip peripheral units. Serial
interfaces, timers, capture/compare units, A/D converters, watchdog units, or a multiply/
divide unit are typical examples for on-chip peripheral units. The external signals of
these peripheral units are available at multifunctional parallel I/O ports or at dedicated
pins.

MCB02769

RST
EA
PSEN
ALE

XTAL

Ext.
Control

Access
Control

ROM

XRAM

Housekeeper

C500 Core
(1 or 8 Datapointer)

IRAMInterrupt
ControllerSerial

Port

Timers

WDU

MDU

Control

Pa
ra

lle
l

Po
rt

Pe
rip

he
ra

l
Bu

s

Basic functional blocks

Ad
dr

es
s

Bu
s

Da
ta

 B
us

Port0/Port2

A
D

Po
rt

Pa
ra

lle
l

User’s Manual 2-1 2000-07

C500

CPU Architecture
The arithmetic section of the core performs extensive data manipulation and is
comprised of the arithmetic/logic unit (ALU), an A register, B register and PSW register.
Further, it has extensive facilities for binary and BCD arithmetic and excels in its bit-
handling capabilities. Efficient use of program memory results from an instruction set
consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. The ALU
accepts 8-bit data words from one or two sources and generates an 8-bit result under
the control of the instruction decoder. The ALU performs the arithmetic operations add,
substract, multiply, divide, increment, decrement, BDC-decimal-add-adjust and
compare, and the logic operations AND, OR, Exclusive OR, complement and rotate
(right, left or swap nibble (left four)). Also included is a Boolean processor performing the
bit operations as set, clear, complement, jump-if-not-set, jump-if-set-and-clear and move
to/from carry. Between any addressable bit (or its complement) and the carry flag, it can
perform the bit operations of logical AND or logical OR with the result returned to the
carry flag.

The program control section of the core controls the sequence in which the instructions
stored in program memory are executed. The 16-bit program counter (PC) holds the
address of the next instruction to be executed. The conditional branch logic enables
internal and external events to the processor to cause a change in the program
execution sequence.

2.1 Accumulator

ACC is the symbol for the accumulator register. The mnemonics for accumulator-specific
instructions, however, refer to the accumulator simply as A.

2.2 B Register

The B register is used during multiply and divide and serves as both source and
destination. For other instructions it can be treated as another scratch pad register.

2.3 Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current
state of the CPU. The bits of the PSW are used for different functions which are: two
register bank selection bits, two carry flags and an overflow flag for arithmetic
instructions, a parity bit for the content of the ACC, and two general purpose flags.

The bit definitions of the PSW are shown on the next page.
User’s Manual 2-2 2000-07

C500

CPU Architecture
Special Function Register PSW (Address D0H) Reset Value: 00H

2.4 Stack Pointer

The stack pointer (SP) register is 8 bits wide. It is incremented before data is stored
during PUSH and CALL executions and decremented after data is popped during a POP
and RET (RETI) execution, i.e. it always points to the last valid stack byte. While the
stack may reside anywhere in the on-chip RAM, the stack pointer is initialized to 07H
after a reset. This causes the stack to begin a location = 08H above register bank zero.
The SP can be read or written under software control.

Bit Function

CY Carry Flag
Used by arithmetic and conditional branch instruction.

AC Auxiliary Carry Flag
Used by instructions which execute BCD operations.

F0 General Purpose Flag

RS1
RS0

Register Bank select control bits
These bits are used to select one of the four register banks.

OV Overflow Flag
Used by arithmetic instruction.

F1 General Purpose Flag

P Parity Flag
Always set/cleared by hardware to indicate an odd/even number of
“one” bits in the accumulator.

PF1OVRS0RS1F0ACCY

01234567

LSBMSBBit No.

D0H PSW

RS1 RS0 Function

0 0 Registerbank 0 at data address 00H - 07H selected

0 1 Registerbank 1 at data address 08H - 0FH selected

1 0 Registerbank 2 at data address 10H - 17H selected

1 1 Registerbank 3 at data address 18H - 1FH selected
User’s Manual 2-3 2000-07

C500

CPU Architecture
2.5 Data Pointer

8-bit accesses to the internal XRAM data memory or the external data memory are
executed using the data pointer DPTR as an 16-bit address register. Normally, the C500
family microcontrollers have one data pointer. But some members of the C500 family
provide eight data pointers. The availability of eight data pointers especially supports the
programming in high level languages which have a demand to store data in large
external data memory portions.

Special Function Register DPL (Address 82H) Reset Value: 00H
Special Function Register DPH (Address 83H) Reset Value: 00H
Special Function Register DPSEL (Address D0H) Reset Value: 00H

Bit Function

– Reserved bits for future use

DPSEL.2 - 0 Data pointer select bits
DPSEL.2-0 defines the number of the actual active data
pointer.DPTR0-7.

LSB.1.2.3.4.5.6.7

01234567

LSBMSB

Bit No.

82H DPL

.0.1.2.3.4.5.6MSB83H DPH

.0.1.2–––––92H DPSEL

DPSEL2 DPSEL1 DPSEL0 Function

0 0 0 Data pointer 0 selected

0 0 1 Data pointer 1 selected

0 1 0 Data pointer 2 selected

0 1 1 Data pointer 3 selected

1 0 0 Data pointer 4 selected

1 0 1 Data pointer 5 selected

1 1 0 Data pointer 6 selected

1 1 1 Data pointer 7 selected
User’s Manual 2-4 2000-07

C500

CPU Architecture
2.5.1 The Importance of Additional Datapointers

The standard 8051 architecture provides just one 16-bit pointer for indirect addressing
of external devices (memories, peripherals, latches, etc.). Except for a 16-bit “move
immediate” to this datapointer and an increment instruction, any other pointer handling
is to be done byte by byte. For complex applications with peripherals located in the
external data memory space (e.g. CAN controller) or extended data storage capacity this
turned out to be a “bottle neck” for the 8051’s communication to the external world.
Especially programming in high-level languages (PLM51, C51, PASCAL51) requires
extended RAM capacity and at the same time a fast access to this additional RAM
because of the reduced code efficiency of these languages.

2.5.2 How the eight Datapointers of the C500 are Realized

Simply adding more datapointers is not suitable because of the need to keep up 100%
compatibility to the 8051 instruction set. This instruction set, however, allows the
handling of only one single 16-bit datapointer (DPTR, consisting of the two 8-bit SFRs
DPH and DPL).

To meet both of the above requirements (speed up external accesses, 100%
compatibility to 8051 architecture) the C500 contains a set of eight 16-bit registers from
which the actual datapointer can be selected.

This means that the user’s program may keep up to eight 16-bit addresses resident in
these registers, but only one register at a time is selected to be the datapointer. Thus the
datapointer in turn is accessed (or selected) via indirect addressing. This indirect
addressing is done through a special function register called DPSEL (data pointer select
register). All instructions of the C500 which handle the datapointer therefore affect only
one of the eight pointers which is addressed by DPSEL at that very moment.

Figure 5-1 illustrates the addressing mechanism: a 3-bit field in register DPSEL points
to the currently used DPTRx. Any standard 8051 instruction (e.g. MOVX @DPTR, A -
transfer a byte from accumulator to an external location addressed by DPTR) now uses
this activated DPTRx.
User’s Manual 2-5 2000-07

C500

CPU Architecture
Figure 2-2 Accessing of External Data Memory via Multiple Datapointers

2.5.3 Advantages of Multiple Datapointers

Using the above addressing mechanism for external data memory results in less code
and faster execution of external accesses. Whenever the contents of the datapointer
must be altered between two or more 16-bit addresses, one single instruction, which
selects a new datapointer, does this job. If the program uses just one datapointer, then
it has to save the old value (with two 8-bit instructions) and load the new address, byte
by byte. This not only takes more time, it also requires additional space in the internal
RAM.

2.5.4 Application Example and Performance Analysis

The following example shall demonstrate the involvement of multiple data pointers in a
table transfer from the code memory to external data memory.

Start address of ROM source table: 1FFFH
Start address of table in external RAM: 2FA0H

DPH(83) DPL(82)

DPTR0

DPTR7

.0.1.2-----

DPSEL(92)

DPSEL Selected

Data-

pointer.2 .1 .0

DPTR 0000

0 0 1 DPTR 1

0 1 0 DPTR 2

0 1 1 DPTR 3

1 0 0 DPTR 4

1 0 1 DPTR 5

1 1 0 DPTR 6

1 1 1 DPTR 7

MCD00779

External Data Memory

H

H H
User’s Manual 2-6 2000-07

C500

CPU Architecture
Example 1: Using only One Datapointer (Code for a C501)

Initialization Routine

MOV LOW(SRC_PTR), #0FFH ;Initialize shadow_variables with source_pointer
MOV HIGH(SRC_PTR), #1FH
MOV LOW(DES_PTR), #0A0H ;Initialize shadow_variables with destination_pointer
MOV HIGH(DES_PTR), #2FH

Table Look-up Routine under Real Time Conditions

; Number of cycles
PUSH DPL ;Save old datapointer 2
PUSH DPH ; 2
MOV DPL, LOW(SRC_PTR) ;Load Source Pointer 2
MOV DPH, HIGH(SRC_PTR) ; 2
;INC DPTR Increment and check for end of table (execution time
;CJNE … not relevant for this consideration) –
MOVC A,@DPTR ;Fetch source data byte from ROM table 2
MOV LOW(SRC_PTR), DPL ;Save source_pointer and 2
MOV HIGH(SRC_PTR), DPH ;load destination_pointer 2
MOV DPL, LOW(DES_PTR) ; 2
MOV DPH, HIGH(DES_PTR) ; 2
INC DPTR ;Increment destination_pointer

;(ex. time not relevant) –
MOVX @DPTR, A ;Transfer byte to destination address 2
MOV LOW(DES_PTR), DPL ;Save destination_pointer 2
MOV HIGH(DES_PTR),DPH ; 2
POP DPH ;Restore old datapointer 2
POP DPL ; 2

; Total execution time (machine cycles): 28
User’s Manual 2-7 2000-07

C500

CPU Architecture
Example 2: Using Two Datapointers (Code for a C509)

Initialization Routine

MOV DPSEL, #06H ;Initialize DPTR6 with source pointer
MOV DPTR, #1FFFH
MOV DPSEL, #07H ;Initialize DPTR7 with destination pointer
MOV DPTR, #2FA0H

Table Look-up Routine under Real Time Conditions

; Number of cycles
PUSH DPSEL ;Save old source pointer 2
MOV DPSEL, #06H ;Load source pointer 2
;INC DPTR Increment and check for end of table (execution time
;CJNE … not relevant for this consideration) –
MOVC A,@DPTR ;Fetch source data byte from ROM table 2
MOV DPSEL, #07H ;Save source_pointer and

;load destination_pointer 2
MOVX @DPTR, A ;Transfer byte to destination address 2
POP DPSEL ;Save destination pointer and

;restore old datapointer 2

; Total execution time (machine cycles): 12

The above example shows that utilization of the C500’s multiple datapointers can make
external bus accesses two times as fast as with a standard 8051 or 8051 derivative.
Here, four data variables in the internal RAM and two additional stack bytes were
spared, too. This means for some applications where all eight datapointers are
employed that an C500 program has up to 24 byte (16 variables and 8 stack bytes) of
the internal RAM free for other use.
User’s Manual 2-8 2000-07

C500

CPU Architecture
2.6 Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new,
innovative way to control the execution of C500 MCUs and to gain extensive information
on the internal operation of the controllers. Emulation of on-chip ROM based programs
is possible, too.
Each production chip has built-in logic for the support of the Enhanced Hooks Emulation
Concept. Therefore, no costly bond-out chips are necessary for emulation. This also
ensure that emulation and production chips are identical.

The Enhanced Hooks Technology™, which requires embedded logic in the C500, allows
the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies
the design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a
compatible C500 are able to emulate all operating modes of the different versions of the
C500. This includes emulation of ROM, ROM with code rollover and ROMless modes of
operation. It is also able to operate in single step mode and to read the SFRs after a
break.

Figure 2-3 Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, port 2 and some of the control lines of the C500 based MCU are used by
Enhanced Hooks Emulation Concept to control the operation of the device during
emulation and to transfer informations about the program execution and data transfer
between the external emulation hardware (ICE-system) and the C500 MCU.

MCS02647

SYSCON
PCON
TCON

RESET
EA

PSEN
ALE

Port 0

Port 2

I/O Ports
Optional

Port 3 Port 1

C500
MCU Interface Circuit

Enhanced Hooks

RPort 0RPort 2

RTCON
RPCON

RSYSCON

TEA TALE TPSEN

EH-IC

Target System Interface

ICE-System Interface
to Emulation Hardware
User’s Manual 2-9 2000-07

C500

CPU Architecture
2.7 Basic Interrupt Handling

Each member of the C500 microcontroller family provides several interrupt sources.
These interrupts are generated typically by external events or by the internal peripheral
units. If an interrupt is accepted by the CPU, the microcontroller interrupts a running
program and proceeds the program execution at an interrupt source specific vector
address where the interrupt service routine is located. After the execution of a RETI
(return from interrupt) instruction the program is continued at the point where it has been
interrupted. Figure 2-4 shows an example for the interrupt vector addresses of a C500
microcontroller (C501). Generally, interrupt vector addresses are located in the code
memory area starting at address 0003H. The minimum distance between two
consecutive vector addresses is always 8 bytes. Therefore, interrupt vectors can be
assigned to the following addresses: 0003H, 000BH, 0013H, 001BH, 0023H, 002BH,
0033H … 00FBH.

Figure 2-4 Interrupt Vector Addresses (Example of the C501)

An interrupt source indicates to the interrupt controller an interrupt condition by setting
an interrupt request flag. The interrupt request flags are sampled in each machine cycle.
The sampled flags are polled during the following machine cycle. If one of the flags was
in a set condition in the preceeding cycle, the polling cycle will find it and the interrupt
controller will cause the CPU to branch to the vector address of the appropriate service
routine by generating an internal LCALL. This hardware-generated LCALL is blocked by
any of the following conditions:

MCD02770

~~~~

8 Bytes

H002B

0023 H

001BH

0013 H

000BH

0003 H

0000H

Memory
Program

Timer 2
Interrupt

Interrupt
Serial Port

Interrupt
Timer 1

External
Interrupt 1

Interrupt
Timer 0

Interrupt 0
External

Reset

FFFF H
User’s Manual 2-10 2000-07



C500

CPU Architecture 
1. An interrupt of equal or higher priority is already in progress.
2. The current (polling) cycle is not in the final cycle of the instruction in progress.
3. The instruction in progress is RETI or any write access to interrupt enable or priority

registers.

Any of these three conditions will block the generation of the LCALL to the interrupt
service routine. Condition 2 ensures that the instruction in progress is completed before
vectoring to any service routine. Condition 3 ensures that if the instruction in progress is
RETI or any write access to interrupt enable or interrupt priority registers, then at least
one more instruction will be executed before any interrupt is vectored too; this delay
guarantees that changes of the interrupt status can be observed by the interrupt
controller.

The polling cycle is repeated with each machine cycle, and the values polled are the
values that were present at the previous machine cycle. Note that if any interrupt flag is
active but not being responded to for one of the conditions already mentioned, or if the
flag is no longer active when the blocking condition is removed, the denied interrupt will
not be serviced. In other words, the fact that the interrupt flag was once active but not
serviced is not remembered. Every polling cycle interrogates only the pending interrupt
requests.

The polling cycle/LCALL sequence is illustrated in Figure 2-5.

Figure 2-5 Interrupt Detection/Entry Diagram

Note that if an interrupt of a higher priority level goes active prior to S5P2 in the machine
cycle labeled C3 in Figure 2-5 then, in accordance with the above rules, it will be
vectored to during C5 and C6 without any instruction for the lower priority routine to be
executed.

Thus, the processor acknowledges an interrupt request by executing a hardware-
generated LCALL to the appropriate servicing routine. In some cases it also clears the
flag that generated the interrupt, while in other cases it does not; then this has to be done
by the user’s software.

MCT01859

S5P2

Interrupt
is latched

Interrupts
are polled Vector Address

Long Call to Interrupt
Routine
Interrupt

C2C1 C3 C4 C5
User’s Manual 2-11 2000-07



C500

CPU Architecture 
The program execution proceeds from that location until the RETI instruction is
encountered. The RETI instruction informs the processor that the interrupt routine is no
longer in progress, then pops the two top bytes from the stack and reloads the program
counter. Execution of the interrupted program continues from the point where it was
stopped. Note that the RETI instruction is very important because it informs the
processor that the program left the current interrupt priority level. A simple RET
instruction would also have returned execution to the interrupted program, but it would
have left the interrupt control system thinking an interrupt was still in progress. In this
case no interrupt of the same or lower priority level would be acknowledged.

2.8 Interrupt Response Time

If an external interrupt is recognized, its corresponding request flag is set at S5P2 in
every machine cycle. The value is not polled by the circuitry until the next machine cycle.
If the request is active and conditions are right for it to be acknowledged, a hardware
subroutine call to the requested service routine will be next instruction to be executed.
The call itself takes two cycles. Thus a minimum of three complete machine cycles will
elapse between activation and external interrupt request and the beginning of execution
of the first instruction of the service routine.

A longer response time would be obtained if the request was blocked by one of the three
previously listed conditions. If an interrupt of equal or higher priority is already in
progress, the additional wait time obviously depends on the nature of the other
interrupt’s service routine. If the instruction in progress is not in its final cycle, the
additional wait time cannot be more than 3 cycles since the longest instructions (MUL
and DIV) are only 4 cycles long; and, if the instruction in progress is RETI or a write
access to interrupt enable or interrupt priority registers the additional wait time cannot be
more than 5 cycles (a maximum of one more cycle to complete the instruction in
progress, plus 4 cycles to complete the next instruction, if the instruction is MUL or DIV).

Thus a single interrupt system, the response time is always more than 3 cycles and less
than 9 cycles.
User’s Manual 2-12 2000-07



C500

CPU Timing 
3 CPU Timing

3.1 Basic Timing

A machine cycle consists of 6 states. Each state is divided into a phase 1 half, during
which the phase 1 clock is active, and a phase 2 half, during which the phase 2 clock is
active. Thus, a machine cycle consists of the states S1P1 (state 1, phase 1) through
S6P2 (state 6, phase 2). Depending on the C500 type of microcontroller, each state lasts
either one or two periods of the oscillator clock. Typically, arithmetic and logical
operations take place during phase 1 and internal register-to-register transfers take
place during phase 2.

The diagrams in Figure 3-1 show the fetch/execute timing related to the internal states
and phases. Since these internal clock signals are not user-accessible, the ALE
(address latch enable) signal is shown for external reference. ALE is normally activated
twice during each machine cycle: once during S1P2 and S2P1, and again during S4P2
and S5P1.

The execution of a one-cycle instruction begins at S1P2, when the opcode is latched into
the instruction register. If it is a two-byte instruction, the second reading takes place
during S4 of the same machine cycle. If it is a one-byte instruction, there is still a fetch
at S4, but the byte read (which would be the next op-code) is ignored (discarded fetch),
and the program counter is not incremented. In any case, execution is completed at the
end of S6P2.

Figure 3-1 (a) and (b) show the timing of a 1-byte, 1-cycle instruction and for a 2-byte,
1-cycle instruction.

Most C500 instructions are executed in one cycle. MUL (multiply) and DIV (divide) are
the only instructions that take more than two cycles to complete; they take four cycles.
Normally two code bytes are fetched from the program memory during every machine
cycle. The only exception to this is when a MOVX instruction is executed. MOVX is a
one-byte, 2-cycle instruction that accesses external data memory. During a MOVX, the
two fetches in the second cycle are skipped while the external data memory is being
addressed and strobed. Figure 3-1 (c) and (d) show the timing for a normal 1-byte,
2-cycle instruction and for a MOVX instruction.
User’s Manual 3-1 2000-07



C500

CPU Timing 
Figure 3-1 Fetch Execute Sequence

  
ALE

MCD02771

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
P1 P2 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1

S1 S2 S3 S4 S5 S6

Read
Opcode Opcode (Discard)

Read next

a) 1 Byte, 1-Cycle Instruction, e.g. INC A

S6S5S4S3S2S1

S1 S2 S3 S4 S5 S6

d) MOVX (1 Byte, 2-Cycle)

Read next Opcode (Discard)

S6S5S4S3S2S1 S1 S2 S3 S4 S5 S6

Read next
Opcode again

 

Read 2nd
ByteOpcode

Read

Read
Opcode

Read next Opcode again

S6S5S4S3S2S1

Opcode
Read

(MOVX) (Discard)

Read next
Opcode No Fetch No Fetch

No ALE

Read next
Opcode

Access of External Memory

DATAADDR

Read next Opcode again

b) 2 Byte, 1-Cycle Instruction, e.g. ADD A, #Data

c) 1 Byte, 2-Cycle Instruction, e.g. INC DPTR
User’s Manual 3-2 2000-07



C500

CPU Timing 
3.2 Accessing External Memory

There are two types of external memory accesses: accesses to external program
memory and accesses to external data memory. Accesses to external program memory
use the signal PSEN (program store enable) as the read strobe. Accesses to external
data memory use the RD or WR (alternate functions of P3.7 and P3.6) to access the
memory.

Fetches from external program memory always use a 16-bit address. Accesses to
external data memory can use either a 16-bit address (MOVX @DPTR) or an 8-bit
address (MOVX @Ri). Whenever a 16-bit address is used, the high byte of the address
comes out on port 2, where it is held for the duration of the read, write, or code fetch
cycle.

If an 8-bit address is being used (MOVX @Ri), the contents of the port 2 SFR remain at
the port 2 pins throughout the whole external memory cycle. In this case, port 2 pins can
be used to page the external data memory.

In either case, the low byte of the address is time-multiplexed with the data byte on
port 0. The ADDRESS/DATA signal drives both FETS in the port 0 output buffers. Thus,
in external bus mode the port 0 pins are not open-drain outputs and do not require
external pullups. The ALE (address latch enable) signal should be used to latch the
address byte into an external latch. The address byte is valid at the negative transition
of ALE. Then, in a write cycle, the data byte to be written appears on port 0 just before
WR is activated, and remains there until WR is deactivated. In a read cycle, the incoming
byte is accepted at port 0 just before the read strobe (RD) is deactivated.

During any access to external memory, the CPU writes FFH to the port 0 latch (the
special function register), thus obliterating the information in the port 0 SFR. Also, a MOV
P0 instruction must not take place during external memory accesses. If the user writes
to port 0 during an external memory fetch, the incoming code byte may be corrupted.
Therefore, do not write to port 0 if external memory is used.

3.2.1 Accessing External Program Memory

External program memory is accessed under two conditions:

1. Whenever signal EA is active (low), or
2. Whenever signal EA is inactive (high) and the program counter (PC) contains an

address greater than the internal ROM size (e.g. 1FFFFH for an 8K internal ROM or
3FFFH for an 16K internal ROM).

This requires that the ROMless versions have always EA wired to Vss to enable the lower
8K, 16K, or 32K program bytes to be fetched from external memory.

When the CPU is executing out from external program memory (see timing diagram in
Figure 3-2), all 8 bits of port 2 are dedicated to an output function and may not be used
for general purpose I/O. During external program fetches they output the high byte of the
PC with the port 2 drivers using the strong pullups to emit bits that are 1’s.
User’s Manual 3-3 2000-07



C500

CPU Timing 
Figure 3-2 External Program Memory Fetches

3.2.2 Accessing External Data Memory

The port 2 drivers use the strong pullups during the entire time that they are emitting
address bits that are 1’s. This occurs when the MOVX @DPTR instruction is executed
and when external program fetches are executed. During this time the port 2 latch (the
special function register) does not have to contain 1’s, and the contents of the port 2 SFR
are not modified. If the external memory cycle is not immediately followed by another
external memory cycle, the undisturbed contents of the port 2 SFR will reappear in the
next cycle.

Figure 3-3 and Figure 3-4 show in detail the timings of the external data memory read
and write cycles.

MCD02772

S1

P1 P2 P2P1

S2

P2P1

S3

P2P1

S4

P2P1

S5

P2P1

S6

P2P1

S1

P2P1

S2

ALE

PSEN

P0 PCL
Out

PCL PCL

P2 PCH Out

Data
Sampled Sampled

Data
Sampled
Data

States

Out Out

PCH Out PCH Out
User’s Manual 3-4 2000-07



C500

CPU Timing 
Figure 3-3 External Data Memory Read Cycle

Figure 3-4 External Data Memory Write Cycle

MCD02773

S4

P1 P2 P2P1

S5

P2P1

S6

P2P1

S1

P2P1

S2

P2P1

S3

P2P1

S4

P2P1

S5

ALE

RD

P0 DPL or Ri
Out

P2

Sampled
Data

States

Float Float

PCL out if
program memory
is external

DPH or P2 SFR OutPCH or
P2 SFR

PCH or
P2 SFR

MCD02774

S4

P1 P2 P2P1

S5

P2P1

S6

P2P1

S1

P2P1

S2

P2P1

S3

P2P1

S4

P2P1

S5

ALE

WR

P0 DPL or Ri
Out

P2

States

PCL out if
program memory
is external

DPH or P2 SFR OutPCH or
P2 SFR

PCH or
P2 SFR

Data Out

PCL Out
User’s Manual 3-5 2000-07



C500

Instruction Set 
4 Instruction Set
The C500 8-bit microcontroller family instruction set includes 111 instructions, 49 of
which are single-byte, 45 two-byte and 17 three-byte instructions. The instruction
opcode format consists of a function mnemonic followed by a “destination, source”
operand field. This field specifies the data type and addressing method(s) to be used.

Like all other members of the 8051-family, the C500 microcontrollers can be
programmed with the same instruction set common to the basic member, the SAB 8051.
Thus, the C500 family microcontrollers are 100% software compatible to the SAB 8051
and may be programmed with 8051 assembler or high-level languages.

4.1 Addressing Modes

The C500 uses five addressing modes:

– register
– direct
– immediate
– register indirect
– base register plus index-register indirect

Table 4-1 summarizes the memory spaces which may be accessed by each of the
addressing modes.

Register Addressing

Register addressing accesses the eight working registers (R0 - R7) of the selected
register bank. The least significant bit of the instruction opcode indicates which register
is to be used. ACC, B, DPTR and CY, the Boolean processor accumulator, can also be
addressed as registers.

Direct Addressing

Direct addressing is the only method of accessing the special function registers. The
lower 128 bytes of internal RAM are also directly addressable.

Immediate Addressing

Immediate addressing allows constants to be part of the instruction in program memory.
User’s Manual 4-1 2000-07



C500

Instruction Set 
Register Indirect Addressing

Register indirect addressing uses the contents of either R0 or R1 (in the selected register
bank) as a pointer to locations in a 256-byte block: the 256 bytes of internal RAM or the
lower 256 bytes of external data memory. Note that the special function registers are not
accessible by this method. The upper half of the internal RAM can be accessed by
indirect addressing only. Access to the full 64 Kbytes of external data memory address
space is accomplished by using the 16-bit data pointer. Execution of PUSH and POP
instructions also uses register indirect addressing. The stack may reside anywhere in the
internal RAM.

Base Register plus Index Register Addressing

Base register plus index register addressing allows a byte to be accessed from program
memory via an indirect move from the location whose address is the sum of a base
register (DPTR or PC) and index register, ACC. This mode facilitates look-up table
accesses.

Boolean Processor

The Boolean processor is a bit processor integrated into the C500 family
microcontrollers. It has its own instruction set, accumulator (the carry flag), bit-
addressable RAM and l/O.

The bit manipulation instructions allow:

– set bit
– clear bit
– complement bit
– jump if bit is set
– jump if bit is not set
– jump if bit is set and clear bit
– move bit from / to carry

Table 4-1 Addressing Modes and Associated Memory Spaces

Addressing Modes Associated Memory Spaces

Register addressing R0 through R7 of selected register bank, ACC, B, CY (Bit), 
DPTR

Direct addressing Lower 128 bytes of internal RAM, special function registers

Immediate addressing Program memory

Register indirect
addressing

Internal RAM (@R1, @R0, SP), external data memory 
(@R1, @R0, @DPTR)

Base register plus index 
register addressing

Program memory (@A + DPTR, @A + PC)
User’s Manual 4-2 2000-07



C500

Instruction Set 
Addressable bits, or their complements, may be logically AND-ed or OR-ed with the
contents of the carry flag. The result is returned to the carry register.

4.2 Introduction to the Instruction Set

The instruction set is divided into four functional groups:

– data transfer
– arithmetic
– logic
– control transfer

4.2.1 Data Transfer Instructions

Data transfer operations are divided into three classes:

– general-purpose
– accumulator-specific
– address-object

None of these operations affects the PSW flag settings except a POP or MOV directly to
the PSW.

General-Purpose Transfers

– MOV performs a bit or byte transfer from the source operand to the destination
operand.

– PUSH increments the SP register and then transfers a byte from the source operand
to the stack location currently addressed by SP.

– POP transfers a byte operand from the stack location addressed by the SP to the
destination operand and then decrements SP.

Accumulator-Specific Transfers

– XCH exchanges the byte source operand with register A (accumulator).
– XCHD exchanges the low-order nibble of the source operand byte with the low-order

nibble of A.
– MOVX performs a byte move between the external data memory and the

accumulator. The external address can be specified by the DPTR register (16 bit) or
the R1 or R0 register (8 bit).

– MOVC moves a byte from program memory to the accumulator. The operand in A is
used as an index into a 256-byte table pointed to by the base register (DPTR or PC).
The byte operand accessed is transferred to the accumulator.
User’s Manual 4-3 2000-07



C500

Instruction Set 
Address-Object Transfer

– MOV DPTR, #data loads 16 bits of immediate data into a pair of destination registers,
DPH and DPL.

4.2.2 Arithmetic Instructions

The C500 family microcontrollers have four basic mathematical operations. Only 8-bit
operations using unsigned arithmetic are supported directly. The overflow flag, however,
permits the addition and subtraction operation to serve for both unsigned and signed
binary integers. Arithmetic can also be performed directly on packed BCD
representations.

Addition

– INC (increment) adds one to the source operand and puts the result in the operand
(flags in PSW are not affected).

– ADD adds A to the source operand and returns the result to A.
– ADDC (add with carry) adds A and the source operand, then adds one (1) if CY is set,

and puts the result in A.
– DA (decimal-add-adjust for BCD addition) corrects the sum which results from the

binary addition of two-digit decimal operands. The packed decimal sum formed by DA
is returned to A. CY is set if the BCD result is greater than 99; otherwise, it is cleared.

Subtraction

– SUBB (subtract with borrow) subtracts the second source operand from the first
operand (the accumulator), subtracts one (1) if CY is set and returns the result to A.

– DEC (decrement) subtracts one (1) from the source operand and returns the result to
the operand (flags in PSW are not affected).

Multiplication

– MUL performs an unsigned multiplication of the A register by the B register, returning
a double byte result. A receives the low-order byte, B receives the high-order byte. OV
is cleared if the top half of the result is zero and is set if it is not zero. CY is cleared.
AC is unaffected.

Division

– DIV performs an unsigned division of the A register by the B register; it returns the
integer quotient to the A register and returns the fractional remainder to the B register.
Division by zero leaves indeterminate data in registers A and B and sets OV;
otherwise, OV is cleared. CY is cleared. AC remains unaffected.
User’s Manual 4-4 2000-07



C500

Instruction Set 
Flags

Unless otherwise stated in the previous descriptions, the flags of PSW are affected as
follows:

– CY is set if the operation causes a carry to or a borrow from the resulting high-order
bit; otherwise CY is cleared.

– AC is set if the operation results in a carry from the low-order four bits of the result
(during addition), or a borrow from the high-order bits to the low-order bits (during
subtraction); otherwise AC is cleared.

– OV is set if the operation results in a carry to the high-order bit of the result but not a
carry from the bit, or vice versa; otherwise OV is cleared. OV is used in two’s-
complement arithmetic, because it is set when the signal result cannot be represented
in 8 bits.

– P is set if the modulo-2 sum of the eight bits in the accumulator is 1 (odd parity);
otherwise P is cleared (even parity). When a value is written to the PSW register, the
P bit remains unchanged, as it always reflects the parity of A.

4.2.3 Logic Instructions

The C500 family microcontrollers perform basic logic operations on both bit and byte
operands.

Single-Operand Operations

– CLR sets A or any directly addressable bit to zero (0).
– SETB sets any directly bit-addressable bit to one (1).
– CPL is used to complement the contents of the A register without affecting any flag,

or any directly addressable bit location.
– RL, RLC, RR, RRC, SWAP are the five operations that can be performed on A. RL,

rotate left, RR, rotate right, RLC, rotate left through carry, RRC, rotate right through
carry, and SWAP, rotate left four. For RLC and RRC the CY flag becomes equal to
the last bit rotated out. SWAP rotates A left four places to exchange bits 3 through 0
with bits 7 through 4.

Two-Operand Operations

– ANL performs bitwise logical AND of two operands (for both bit and byte operands)
and returns the result to the location of the first operand.

– ORL performs bitwise logical OR of two source operands (for both bit and byte
operands) and returns the result to the location of the first operand.

– XRL performs logical Exclusive OR of two source operands (byte operands) and
returns the result to the location of the first operand.
User’s Manual 4-5 2000-07



C500

Instruction Set 
4.2.4 Control Transfer Instructions

There are three classes of control transfer operations: unconditional calls, returns,
jumps, conditional jumps, and interrupts. All control transfer operations, some upon a
specific condition, cause the program execution to continue a non-sequential location in
program memory.

Unconditional Calls, Returns and Jumps

Unconditional calls, returns and jumps transfer control from the current value of the
program counter to the target address. Both direct and indirect transfers are supported.

– ACALL and LCALL push the address of the next instruction onto the stack and then
transfer control to the target address. ACALL is a 2-byte instruction used when the
target address is in the current 2K page. LCALL is a 3-byte instruction that addresses
the full 64K program space. In ACALL, immediate data (i.e. an 11-bit address field) is
concatenated to the five most significant bits of the PC (which is pointing to the next
instruction). If ACALL is in the last 2 bytes of a 2K page then the call will be made to
the next page since the PC will have been incremented to the next instruction prior to
execution.

– RET transfers control to the return address saved on the stack by a previous call
operation and decrements the SP register by two (2) to adjust the SP for the popped
address.

– AJMP, LJMP and SJMP transfer control to the target operand. The operation of AJMP
and LJMP are analogous to ACALL and LCALL. The SJMP (short jump) instruction
provides for transfers within a 256-byte range centered about the starting address of
the next instruction (– 128 to + 127).

– JMP @A + DPTR performs a jump relative to the DPTR register. The operand in A is
used as the offset (0 - 255) to the address in the DPTR register. Thus, the effective
destination for a jump can be anywhere in the program memory space.
User’s Manual 4-6 2000-07



C500

Instruction Set 
Conditional Jumps

Conditional jumps perform a jump contingent upon a specific condition. The destination
will be within a 256-byte range centered about the starting address of the next instruction
(– 128 to + 127).

– JZ performs a jump if the accumulator is zero.
– JNZ performs a jump if the accumulator is not zero.
– JC performs a jump if the carry flag is set.
– JNC performs a jump if the carry flag is not set.
– JB performs a jump if the directly addressed bit is set.
– JNB performs a jump if the directly addressed bit is not set.
– JBC performs a jump if the directly addressed bit is set and then clears the directly

addressed bit.
– CJNE compares the first operand to the second operand and performs a jump if they

are not equal. CY is set if the first operand is less than the second operand; otherwise
it is cleared. Comparisons can be made between A and directly addressable bytes in
internal data memory or an immediate value and either A, a register in the selected
register bank, or a register indirectly addressable byte of the internal RAM.

– DJNZ decrements the source operand and returns the result to the operand. A jump
is performed if the result is not zero. The source operand of the DJNZ instruction may
be any directly addressable byte in the internal data memory. Either direct or register
addressing may be used to address the source operand.

Interrupt Returns

– RETI transfers control as RET does, but additionally enables interrupts of the current
priority level.
User’s Manual 4-7 2000-07



C500

Instruction Set 
4.3 Instruction Definitions

All 111 instructions of the C500 family microcontrollers can essentially be condensed to
53 basic operations, in the following alphabetically ordered according to the operation
mnemonic section.

A brief example of how the instruction might be used is given as well as its effect on the
PSW flags. The number of bytes and machine cycles required, the binary machine
language encoding, and a symbolic description or restatement of the function is also
provided.

Note:

Only the carry, auxiliary carry, and overflow flags are discussed. The parity bit is always
computed from the actual content of the accumulator.

Similarly, instructions which alter directly addressed registers could affect the other
status flags if the instruction is applied to the PSW. Status flags can also be modified by
bit manipulation.

Table 4-2 PSW Flag Modification (CY,OV,AC)

Instruction Flag Instruction Flag

CY OV AC CY OV AC

ADD X X X SETB C 1

ADDC X X X CLR C 0

SUBB X X X CPL C X

MUL 0 X ANL C,bit X

DIV 0 X ANL C,/bit X

DA X ORL C,bit X

RRC X ORL C,/bit X

RLC X MOV C,bit X

CJNE X
User’s Manual 4-8 2000-07



C500

Instruction Set 
Notes on Data Addressing Modes

Rn - Working register R0-R7

direct - 128 internal RAM locations, any l/O port, control or status register

@Ri - Indirect internal or external RAM location addressed by register R0 or R1

#data - 8-bit constant included in instruction

#data 16 - 16-bit constant included as bytes 2 and 3 of instruction

bit - 128 software flags, any bit-addressable l/O pin, control or status bit

A - Accumulator

Notes on Program Addressing Modes:

addr16 - Destination address for LCALL and LJMP may be anywhere within the 
64-Kbyte program memory address space.

addr11 - Destination address for ACALL and AJMP will be within the same 2-Kbyte 
page of program memory as the first byte of the following instruction.

rel - SJMP and all conditional jumps include an 8-bit offset byte. Range is 
+ 127/– 128 bytes relative to the first byte of the following instruction.

All mnemonics copyrighted:  Intel Corporation 1980
User’s Manual 4-9 2000-07



C500

Instruction Set 
ACALL addr11

Function: Absolute call

Description: ACALL unconditionally calls a subroutine located at the indicated 
address. The instruction increments the PC twice to obtain the address of 
the following instruction, then pushes the 16-bit result onto the stack (low-
order byte first) and increments the stack pointer twice. The destination 
address is obtained by successively concatenating the five high-order bits 
of the incremented PC, op code bits 7-5, and the second byte of the 
instruction. The subroutine called must therefore start within the same 
2K block of program memory as the first byte of the instruction following 
ACALL. No flags are affected.

Example: Initially SP equals 07H. The label “SUBRTN” is at program memory 
location 0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM location 08H and 09H 
will contain 25H and 01H, respectively, and the PC will contain 0345H.

Operation: ACALL
(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC10-0) ← page address

Bytes: 2

Cycles: 2

Encoding: a10  a9  a8  1 0  0  0  1 a7  a6  a5  a4 a3  a2  a1  a0
User’s Manual 4-10 2000-07



C500

Instruction Set 
ADD A, <src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the accumulator, leaving the 
result in the accumulator. The carry and auxiliary carry flags are set, 
respectively, if there is a carry out of bit 7 or bit 3, and cleared otherwise. 
When adding unsigned integers, the carry flag indicates an overflow 
occurred.

OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of 
bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed 
integers, OV indicates a negative number produced as the sum of two 
positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, 
register-indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH  
(10101010B).
The instruction

ADD A,R0

will leave 6DH (01101101B) in the accumulator with the AC flag cleared 
and both the carry flag and OV set to 1.

ADD A,Rn

Operation: ADD
(A) ← (A) + (Rn)

Bytes: 1

Cycles: 1

ADD A,direct

Operation: ADD
(A) ← (A) + (direct)

Bytes: 2

Cycles: 1

Encoding: 0  0  1  0 1  r  r  r

Encoding: 0  0  1  0 0  1  0  1 direct address
User’s Manual 4-11 2000-07



C500

Instruction Set 
ADD A, @Ri

Operation: ADD
(A) ← (A) + ((Ri))

Bytes: 1

Cycles: 1

ADD A, #data

Operation: ADD
(A) ← (A) + #data

Bytes: 2

Cycles: 1

Encoding: 0  0  1  0 0  1  1  i

Encoding: 0  0  1  0 0  1  0  0 immediate data
User’s Manual 4-12 2000-07



C500

Instruction Set 
ADDC A, < src-byte>

Function: Add with carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and 
the accumulator contents, leaving the result in the accumulator. The carry 
and auxiliary carry flags are set, respectively, if there is a carry out of bit 
7 or bit 3, and cleared otherwise. When adding unsigned integers, the 
carry flag indicates an overflow occurred.

OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of 
bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed 
integers, OV indicates a negative number produced as the sum of two 
positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, 
register-indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH 
(10101010B) with the carry flag set. The instruction

ADDC A,R0

will leave 6EH (01101110B) in the accumulator with AC cleared and both 
the carry flag and OV set to 1.

ADDC A,Rn

Operation: ADDC
(A) ← (A) + (C) + (Rn)

Bytes: 1

Cycles: 1

ADDC A,direct

Operation: ADDC
(A) ← (A) + (C) + (direct)

Bytes: 2

Cycles: 1

Encoding: 0  0  1  1 1  r  r  r

Encoding: 0  0  1  1 0  1  0  1 direct address
User’s Manual 4-13 2000-07



C500

Instruction Set 
ADDC A, @Ri

Operation: ADDC
(A) ← (A) + (C) + ((Ri))

Bytes: 1

Cycles: 1

ADDC A, #data

Operation: ADDC
(A) ← (A) + (C) + #data

Bytes: 2

Cycles: 1

Encoding: 0  0  1  1 0  1  1  i

Encoding: 0  0  1  1 0  1  0  0 immediate data
User’s Manual 4-14 2000-07



C500

Instruction Set 
AJMP addr11

Function: Absolute jump

Description: AJMP transfers program execution to the indicated address, which is 
formed at run-time by concatenating the high-order five bits of the PC 
(after incrementing the PC twice), op code bits 7-5, and the second byte 
of the instruction. The destination must therefore be within the same 2K 
block of program memory as the first byte of the instruction following 
AJMP.

Example: The label “JMPADR” is at program memory location 0123H. The 
instruction

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.

Operation: AJM P
(PC) ← (PC) + 2
(PC10-0) ← page address

Bytes: 2

Cycles: 2

Encoding: a10  a9  a8  0 0  0  0  1 a7  a6  a5  a4 a3  a2  a1  a0
User’s Manual 4-15 2000-07



C500

Instruction Set 
ANL <dest-byte>, <src-byte>

Function: Logical AND for byte variables

Description: ANL performs the bitwise logical AND operation between the variables 
indicated and stores the results in the destination variable. No flags are 
affected (except P, if <dest-byte> = A).

The two operands allow six addressing mode combinations. When the 
destination is a accumulator, the source can use register, direct, register-
indirect, or immediate addressing; when the destination is a direct 
address, the source can be the accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as 
the original port data will be read from the output data latch, not the input 
pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH 
(10101010B) then the instruction

ANL A,R0

will leave 81H (10000001B) in the accumulator.

When the destination is a directly addressed byte, this instruction will clear 
combinations of bits in any RAM location or hardware register. The mask 
byte determining the pattern of bits to be cleared would either be a 
constant contained in the instruction or a value computed in the 
accumulator at run-time.
The instruction

ANL P1, #01110011B

will clear bits 7, 3, and 2 of output port 1.

ANL A,Rn

Operation: ANL
(A) ← (A) ∧ (Rn)

Bytes: 1

Cycles: 1

Encoding: 0  1  0  1 1  r  r  r
User’s Manual 4-16 2000-07



C500

Instruction Set 
ANL A,direct

Operation: ANL
(A) ← (A) ∧ (direct)

Bytes: 2

Cycles: 1

ANL A, @Ri

Operation: ANL
(A) ← (A) ∧ ((Ri))

Bytes: 1

Cycles: 1

ANL A, #data

Operation: ANL
(A) ← (A) ∧ #data

Bytes: 2

Cycles: 1

ANL direct,A

Operation: ANL
(direct) ← (direct) ∧ (A)

Bytes: 2

Cycles: 1

Encoding: 0  1  0  1 0  1  0  1 direct address

Encoding: 0  1  0  1 0  1  1  i

Encoding: 0  1  0  1 0  1  0  0 immediate data

Encoding: 0  1  0  1 0  0  1  0 direct address
User’s Manual 4-17 2000-07



C500

Instruction Set 
ANL direct, #data

Operation: ANL
(direct) ← (direct) ∧ #data

Bytes: 3

Cycles: 2

Encoding: 0  1  0  1 0  0  1  1 direct address immediate data
User’s Manual 4-18 2000-07



C500

Instruction Set 
ANL C, <src-bit>

Function: Logical AND for bit variables

Description: If the Boolean value of the source bit is a logic 0 then clear the carry flag; 
otherwise leave the carry flag in its current state. A slash (“/” preceding the 
operand in the assembly language indicates that the logical complement 
of the addressed bit is used as the source value, but the source bit itself 
is not affected. No other flags are affected.

Only direct bit addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ; Load carry with input pin state
ANL C,ACC.7 ; AND carry with accumulator bit 7
ANL C,/OV ; AND with inverse of overflow flag

ANL C,bit

Operation: ANL
(C) ← (C) ∧ (bit)

Bytes: 2

Cycles: 2

ANL C,/bit

Operation: ANL
(C) ← (C) ∧ / (bit)

Bytes: 2

Cycles: 2

Encoding: 1  0  0  0 0  0  1  0 bit address

Encoding: 1  0  1  1 0  0  0  0 bit address
User’s Manual 4-19 2000-07



C500

Instruction Set 
CJNE <dest-byte >, < src-byte >, rel

Function: Compare and jump if not equal

Description: CJNE compares the magnitudes of the tirst two operands, and branches 
if their values are not equal. The branch destination is computed by 
adding the signed relative displacement in the last instruction byte to the 
PC, after incrementing the PC to the start of the next instruction. The carry 
flag is set if the unsigned integer value of <dest-byte> is less than the 
unsigned integer value of <src-byte>; otherwise, the carry is cleared. 
Neither operand is affected.

The first two operands allow four addressing mode combinations: the 
accumulator may be compared with any directly addressed byte or 
immediate data, and any indirect RAM location or working register can be 
compared with an immediate constant.

Example: The accumulator contains 34H. Register 7 contains 56H. The first 
instruction in the sequence

CJNE R7, # 60H, NOT_EQ
; . . . . . . . . ; R7 = 60H
NOT_EQ JC REQ_LOW ; If R7 < 60H
; . . . . . . . . ; R7 > 60H
sets the carry flag and branches to the instruction at label NOT_EQ. By 
testing the carry flag, this instruction determines whether R7 is greater or 
less than 60H.

If the data being presented to port 1 is also 34H, then the instruction

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, 
since the accumulator does equal the data read from P1. (If some other 
value was input on P1, the program will loop at this point until the P1 data 
changes to 34H).
User’s Manual 4-20 2000-07



C500

Instruction Set 
CJNE A,direct,rel

Operation: (PC) ← (PC) + 3
if (A) < > (direct)
then (PC) ← (PC) + relative offset
if (A) < (direct)
then (C) ←1
else (C) ← 0

Bytes: 3

Cycles: 2

CJNE A, #data,rel

Operation: (PC) ← (PC) + 3
if (A) < > data
then (PC) ← (PC) + relative offset
if (A) ← data
then (C) ←1
else (C) ← 0

Bytes: 3

Cycles: 2

CJNE RN, #data, rel

Operation: (PC) ← (PC) + 3
if (Rn) < > data
then (PC) ← (PC) + relative offset
if (Rn) < data
then (C) ← 1
else (C) ← 0

Bytes: 3

Cycles: 2

Encoding: 1  0  1  1 0  1  0  1 direct address rel. address

Encoding: 1  0  1  1 0  1  0  0 immediate data rel. address

Encoding: 1  0  1  1 1  r  r  r immediate data rel. address
User’s Manual 4-21 2000-07



C500

Instruction Set 
CJNE @Ri, #data, rel

Operation: (PC) ← (PC) + 3
if ((Ri)) < > data
then (PC) ← (PC) + relative offset
if ((Ri)) < data
then (C) ← 1
else (C) ← 0

Bytes: 3

Cycles: 2

CLR A

Function: Clear accumulator

Description: The accumulator is cleared (all bits set to zero). No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CLR A

will leave the accumulator set to 00H (00000000B).

Operation: CLR
(A) ← 0

Bytes: 1

Cycles: 1

Encoding: 1  0  1  1 0  1  1  i immediate data rel. address

Encoding: 1  1  1  0 0  1  0  0
User’s Manual 4-22 2000-07



C500

Instruction Set 
CLR bit

Function: Clear bit

Description: The indicated bit is cleared (reset to zero). No other flags are affected. 
CLR can operate on the carry flag or any directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction

CLR P1.2

will leave the port set to 59H (01011001B).

CLR C

Operation: CLR
(C) ← 0

Bytes: 1

Cycles: 1

CLR bit

Operation: CLR
(bit) ← 0

Bytes: 2

Cycles: 1

Encoding: 1  1  0  0 0  0  1  1

Encoding: 1  1  0  0 0  0  1  0 bit address
User’s Manual 4-23 2000-07



C500

Instruction Set 
CPL A

Function: Complement accumulator

Description: Each bit of the accumulator is logically complemented (one’s 
complement). Bits which previously contained a one are changed to zero 
and vice versa. No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CPL A

will leave the accumulator set to 0A3H (10100011B).

Operation: CPL
(A) ← / (A)

Bytes: 1

Cycles: 1

Encoding: 1  1  1  1 0  1  0  0
User’s Manual 4-24 2000-07



C500

Instruction Set 
CPL bit

Function: Complement bit

Description: The bit variable specified is complemented. A bit which had been a one is 
changed to zero and vice versa. No other flags are affected. CPL can 
operate on the carry or any directly addressable bit.

Note:

When this instruction is used to modify an output pin, the value used as 
the original data will be read from the output data latch, not the input pin.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction 
sequence

CPL P1.1
CPL P1.2

will leave the port set to 5BH (01011011B).

CPL C

Operation: CPL
(bit) ← / (C)

Bytes: 1

Cycles: 1

CPL bit

Operation: CPL
(C) ←  (bit)

Bytes: 2

Cycles: 1

Encoding: 1  0  1  1 0  0  1  1

Encoding: 1  0  1  1 0  0  1  0 bit address
User’s Manual 4-25 2000-07



C500

Instruction Set 
DA A

Function: Decimal adjust accumulator for addition

Description: DA A adjusts the eight-bit value in the accumulator resulting from the 
earlier addition of two variables (each in packed BCD format), producing 
two four-bit digits. Any ADD or ADDC instruction may have been used to 
perform the addition.

If accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if 
the AC flag is one, six is added to the accumulator producing the proper 
BCD digit in the low-order nibble. This internal addition would set the carry 
flag if a carry-out of the low-order four-bit field propagated through all high-
order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine 
(1010xxxx-1111xxxx), these high-order bits are incremented by six, 
producing the proper BCD digit in the high-order nibble. Again, this would 
set the carry flag if there was a carry-out of the high-order bits, but 
wouldn’t clear the carry. The carry flag thus indicates if the sum of the 
original two BCD variables is greater than 100, allowing multiple precision 
decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially; this 
instruction performs the decimal conversion by adding 00H, 06H, 60H, or 
66H to the accumulator, depending on initial accumulator and PSW 
conditions.

Note:

DA A cannot simply convert a hexadecimal number in the accumulator to 
BCD notation, nor does DA A apply to decimal subtraction.

Example: The accumulator holds the value 56H (01010110B) representing the 
packed BCD digits of the decimal number 56. Register 3 contains the 
value 67H (01100111B) representing the packed BCD digits of the decimal 
number 67. The carry flag is set. The instruction sequence

ADDC A,R3
DA A

will first perform a standard two’s-complement binary addition, resulting in 
the value 0BEH (10111110B) in the accumulator. The carry and auxiliary 
carry flags will be cleared.

The decimal adjust instruction will then alter the accumulator to the value 
24H (00100100B), indicating the packed BCD digits of the decimal number 
24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. 
The carry flag will be set by the decimal adjust instruction, indicating that 
a decimal overflow occurred. The true sum 56, 67, and 1 is 124.
User’s Manual 4-26 2000-07



C500

Instruction Set 
BCD variables can be incremented or decremented by adding 01H or 99H. 
If the accumulator initially holds 30H (representing the digits of 30 
decimal), then the instruction sequence

ADD A, #99H
DA A

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. 
The low-order byte of the sum can be interpreted to mean 30 – 1 = 29.

Operation: DA
contents of accumulator are BCD
if [[(A3-0) > 9] ∨ [(AC) = 1]]
then (A3-0) ← (A3-0) + 6
and
if [[(A7-4) > 9] ∨ [(C) = 1]]
then (A7-4) ← (A7-4) + 6

Bytes: 1

Cycles: 1

Encoding: 1  1  0  1 0  1  0  0
User’s Manual 4-27 2000-07



C500

Instruction Set 
DEC byte

Function: Decrement

Description: The variable indicated is decremented by 1. An original value of 00H will 
underflow to 0FFH. No flags are affected. Four operand addressing 
modes are allowed: accumulator, register, direct, or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as 
the original port data will be read from the output data latch, not the input 
pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 
7FH contain 00H and 40H, respectively. The instruction sequence

DEC @R0
DEC R0
DEC @R0

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH 
set to 0FFH and 3FH.

DEC A

Operation: DEC
(A) ← (A) – 1

Bytes: 1

Cycles: 1

DEC Rn

Operation: DEC
(Rn) ← (Rn) – 1

Bytes: 1

Cycles: 1

Encoding: 0  0  0  1 0  1  0  0

Encoding: 0  0  0  1 1  r  r  r
User’s Manual 4-28 2000-07



C500

Instruction Set 
DEC direct

Operation: DEC
(direct) ← (direct) – 1

Bytes: 2

Cycles: 1

DEC @Ri

Operation: DEC
((Ri)) ← ((Ri)) – 1

Bytes: 1

Cycles: 1

Encoding: 0  0  0  1 0  1  0  1 direct address

Encoding: 0  0  0  1 0  1  1  i
User’s Manual 4-29 2000-07



C500

Instruction Set 
DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the accumulator by the 
unsigned eight-bit integer in register B. The accumulator receives the 
integer part of the quotient; register B receives the integer remainder. The 
carry and OV flags will be cleared.

Exception: If B had originally contained 00H, the values returned in the 
accumulator and B register will be undefined and the overflow flag will be 
set. The carry flag is cleared in any case.

Example: The accumulator contains 251 (0FBH or 11111011B) and B contains 18 
(12H or 00010010B). The instruction

DIV AB

will leave 13 in the accumulator (0DH or 00001101B) and the value 17 
(11H or 00010001B) in B, since 251 = (13 × 18) + 17. Carry and OV will 
both be cleared.

Operation: DIV

(A15-8)
(B7-0)

Bytes: 1

Cycles: 4

Encoding: 1  0  0  0 0  1  0  0

← (A) / (B)
User’s Manual 4-30 2000-07



C500

Instruction Set 
DJNZ <byte>, <rel-addr>

Function: Decrement and jump if not zero

Description: DJNZ decrements the location indicated by 1, and branches to the 
address indicated by the second operand if the resulting value is not zero. 
An original value of 00H will underflow to 0FFH. No flags are affected. The 
branch destination would be computed by adding the signed relative-
displacement value in the last instruction byte to the PC, after 
incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note:

When this instruction is used to modify an output port, the value used as 
the original port data will be read from the output data latch, not the input 
pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values, 01H, 70H, 
and 15H, respectively. The instruction sequence

DJNZ 40H,LABEL_1
DJNZ 50H,LABEL_2
DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL_2 with the values 00H, 
6FH, and 15H in the three RAM locations. The first jump was not taken 
because the result was zero.

This instruction provides a simple way of executing a program loop a 
given number of times, or for adding a moderate time delay (from 2 to 
512 machine cycles) with a single instruction. The instruction sequence

MOV R2, #8
TOGGLE: CPL P1.7

DJNZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 
of output port 1. Each pulse will last three machine cycles; two for DJNZ 
and one to alter the pin.
User’s Manual 4-31 2000-07



C500

Instruction Set 
DJNZ Rn,rel

Operation: DJNZ
(PC) ← (PC) + 2
(Rn) ← (Rn) – 1
if (Rn) > 0 or (Rn) < 0
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

DJNZ direct,rel

Operation: DJNZ
(PC) ← (PC) + 2
(direct) ← (direct) – 1
if (direct) > 0 or (direct) < 0
then (PC) ← (PC) + rel

Bytes: 3

Cycles: 2

Encoding: 1  1  0  1 1  r  r  r rel. address

Encoding: 1  1  0  1 0  1  0  1 direct address rel. address
User’s Manual 4-32 2000-07



C500

Instruction Set 
INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH will 
overflow to 00H. No flags are affected. Three addressing modes are 
allowed: register, direct, or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as 
the original port data will be read from the output data latch, not the input 
pins.

Example: Register 0 contains 7EH (01111110B). Internal RAM locations 7EH and 
7FH contain 0FFH and 40H, respectively. The instruction sequence

INC @R0
INC R0
INC @R0

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH 
holding (respectively) 00H and 41H.

INC A

Operation: INC
(A) ← (A) + 1

Bytes: 1

Cycles: 1

INC Rn

Operation: INC
(Rn) ← (Rn) + 1

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  1  0  0

Encoding: 0  0  0  0 1  r  r  r
User’s Manual 4-33 2000-07



C500

Instruction Set 
INC direct

Operation: INC
(direct) ← (direct) + 1

Bytes: 2

Cycles: 1

INC @Ri

Operation: INC
((Ri)) ← ((Ri)) + 1

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  1  0  1 direct address

Encoding: 0  0  0  0 0  1  1  i
User’s Manual 4-34 2000-07



C500

Instruction Set 
INC DPTR

Function: Increment data pointer

Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is 
performed; an overflow of the low-order byte of the data pointer (DPL) 
from 0FFH to 00H will increment the high-order byte (DPH). No flags are 
affected.

This is the only 16-bit register which can be incremented.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The 
instruction sequence

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and 01H.

Operation: INC
(DPTR) ← (DPTR) + 1

Bytes: 1

Cycles: 2

Encoding: 1  0  1  0 0  0  1  1
User’s Manual 4-35 2000-07



C500

Instruction Set 
JB bit,rel

Function: Jump if bit is set

Description: If the indicated bit is a one, jump to the address indicated; otherwise 
proceed with the next instruction. The branch destination is computed by 
adding the signed relative-displacement in the third instruction byte to the 
PC, after incrementing the PC to the first byte of the next instruction. The 
bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds 56 
(01010110B). The instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

will cause program execution to branch to the instruction at label LABEL2.

Operation: JB
(PC) ← (PC) + 3
if (bit) = 1
then (PC) ← (PC) + rel

Bytes: 3

Cycles: 2

Encoding: 0  0  1  0 0  0  0  0 bit address rel. address
User’s Manual 4-36 2000-07



C500

Instruction Set 
JBC bit,rel

Function: Jump if bit is set and clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise 
proceed with the next instruction. In either case, clear the designated bit. 
The branch destination is computed by adding the signed relative 
displacement in the third instruction byte to the PC, after incrementing the 
PC to the first byte of the next instruction. No flags are affected.

Note:

When this instruction is used to test an output pin, the value used as the 
original data will be read from the output data latch, not the input pin.

Example: The accumulator holds 56H (01010110B). The instruction sequence

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by 
the label LABEL2, with the accumulator modified to 52H (01010010B).

Operation: JBC
(PC) ← (PC) + 3
if (bit) = 1
then (bit) ← 0
        (PC) ← (PC) + rel

Bytes: 3

Cycles: 2

Encoding: 0  0  0  1 0  0  0  0 bit address rel. address
User’s Manual 4-37 2000-07



C500

Instruction Set 
JC rel

Function: Jump if carry is set

Description: If the carry flag is set, branch to the address indicated; otherwise proceed 
with the next instruction. The branch destination is computed by adding 
the signed relative-displacement in the second instruction byte to the PC, 
after incrementing the PC twice. No flags are affected.

Example: The carry flag is cleared. The instruction sequence

JC LABEL1
CPL C
JC LABEL2

will set the carry and cause program execution to continue at the 
instruction identified by the label LABEL2.

Operation: JC
(PC) ← (PC) + 2
if (C) = 1
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 0  1  0  0 0  0  0  0 rel. address
User’s Manual 4-38 2000-07



C500

Instruction Set 
JMP @A + DPTR

Function: Jump indirect

Description: Add the eight-bit unsigned contents of the accumulator with the sixteen-
bit data pointer, and load the resulting sum to the program counter. This 
will be the address for subsequent instruction fetches. Sixteen-bit addition 
is performed (modulo 216): a carry-out from the low-order eight bits 
propagates through the higher-order bits. Neither the accumulator nor the 
data pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the accumulator. The following sequence 
of instructions will branch to one of four AJMP instructions in a jump table 
starting at JMP_TBL:

MOV DPTR, #JMP_TBL
JMP @A + DPTR 

JMP_TBL: AJMP LABEL0
AJMP LABEL1
AJMP LABEL2
AJMP LABEL3

If the accumulator equals 04H when starting this sequence, execution will 
jump to label LABEL2. Remember that AJMP is a two-byte instruction, so 
the jump instructions start at every other address.

Operation: JMP
(PC) ← (A) + (DPTR)

Bytes: 1

Cycles: 2

Encoding: 0  1  1  1 0  0  1  1
User’s Manual 4-39 2000-07



C500

Instruction Set 
JNB bit,rel

Function: Jump if bit is not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise 
proceed with the next instruction. The branch destination is computed by 
adding the signed relative-displacement in the third instruction byte to the 
PC, after incrementing the PC to the first byte of the next instruction. The 
bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds 56H 
(01010110B). The instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label 
LABEL2.

Operation: JNB
(PC) ← (PC) + 3
if (bit) = 0
then (PC) ← (PC) + rel.

Bytes: 3

Cycles: 2

Encoding: 0  0  1  1 0  0  0  0 bit address rel. address
User’s Manual 4-40 2000-07



C500

Instruction Set 
JNC rel

Function: Jump if carry is not set

Description: If the carry flag is a zero, branch to the address indicated; otherwise 
proceed with the next instruction. The branch destination is computed by 
adding the signed relative-displacement in the second instruction byte to 
the PC, after incrementing the PC twice to point to the next instruction. 
The carry flag is not modified.

Example: The carry flag is set. The instruction sequence

JNC LABEL1
CPL C
JNC LABEL2

will clear the carry and cause program execution to continue at the 
instruction identified by the label LABEL2.

Operation: JNC
(PC) ← (PC) + 2
if (C) = 0
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 0  1  0  1 0  0  0  0 rel. address
User’s Manual 4-41 2000-07



C500

Instruction Set 
JNZ rel

Function: Jump if accumulator is not zero

Description: If any bit of the accumulator is a one, branch to the indicated address; 
otherwise proceed with the next instruction. The branch destination is 
computed by adding the signed relative-displacement in the second 
instruction byte to the PC, after incrementing the PC twice. The 
accumulator is not modified. No flags are affected.

Example: The accumulator originally holds 00H. The instruction sequence

JNZ LABEL1
INC A
JNZ LABEL2

will set the accumulator to 01H and continue at label LABEL2.

Operation: JNZ
(PC) ← (PC) + 2
if (A) ≠ 0
then (PC) ← (PC) + rel.

Bytes: 2

Cycles: 2

Encoding: 0  1  1  1 0  0  0  0 rel. address
User’s Manual 4-42 2000-07



C500

Instruction Set 
JZ rel

Function: Jump if accumulator is zero

Description: If all bits of the accumulator are zero, branch to the address indicated; 
otherwise proceed with the next instruction. The branch destination is 
computed by adding the signed relative-displacement in the second 
instruction byte to the PC, after incrementing the PC twice. The 
accumulator is not modified. No flags are affected.

Example: The accumulator originally contains 01H. The instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

will change the accumulator to 00H and cause program execution to 
continue at the instruction identified by the label LABEL2.

Operation: JZ
(PC) ← (PC) + 2
if (A) = 0
then (PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 0  1  1  0 0  0  0  0 rel. address
User’s Manual 4-43 2000-07



C500

Instruction Set 
LCALL addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction 
adds three to the program counter to generate the address of the next 
instruction and then pushes the 16-bit result onto the stack (low byte first), 
incrementing the stack pointer by two. The high-order and low-order bytes 
of the PC are then loaded, respectively, with the second and third bytes 
of the LCALL instruction. Program execution continues with the instruction 
at this address. The subroutine may therefore begin anywhere in the full 
64 Kbyte program memory address space. No flags are affected.

Example: Initially the stack pointer equals 07H. The label “SUBRTN” is assigned to 
program memory location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer will contain 09H, internal RAM 
locations 08H and 09H will contain 26H and 01H, and the PC will contain 
1234H.

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC) ← addr15-0

Bytes: 3

Cycles: 2

Encoding: 0  0  0  1 0  0  1  0 addr15 … addr8 addr7 … addr0
User’s Manual 4-44 2000-07



C500

Instruction Set 
LJMP addr16

Function: Long jump

Description: LJMP causes an unconditional branch to the indicated address, by 
loading the high-order and low-order bytes of the PC (respectively) with 
the second and third instruction bytes. The destination may therefore be 
anywhere in the full 64K program memory address space. No flags are 
affected.

Example: The label “JMPADR” is assigned to the instruction at program memory 
location 1234H. The instruction

LJMP JMPADR

at location 0123H will load the program counter with 1234H.

Operation: LJMP
(PC) ← addr15-0

Bytes: 3

Cycles: 2

Encoding: 0  0  0  0 0  0  1  0 addr15 … addr8 addr7 … addr0
User’s Manual 4-45 2000-07



C500

Instruction Set 
MOV <dest-byte>, <src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the 
location specified by the first operand. The source byte is not affected. No 
other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source 
and destination addressing modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 
10H. The data present at input port 1 is 11001010B (0CAH).

MOV R0, #30H ; R0 < = 30H
MOV A, @R0 ; A < = 40H
MOV R1,A ; R1 < = 40H
MOV B, @R1 ; B < = 10H
MOV @R1,P1 ; RAM (40H) < = 0CAH
MOV P2,P1 ; P2 < = 0CAH

leaves the value 30H in register 0, 40H in both the accumulator and 
register 1, 10H in register B, and 0CAH (11001010B) both in RAM location 
40H and output on port 2.

MOV A,Rn

Operation: MOV
(A) ← (Rn)

Bytes: 1

Cycles: 1

MOV A,direct1)

Operation: MOV
(A) ← (direct)

Bytes: 2

Cycles: 1

Encoding: 1  1  1  0 1  r  r  r

1) MOV A,ACC is not a valid instruction. The content of the accumulator after the execution of this instruction is
undefined.

Encoding: 1  1  1  0 0  1  0  1 direct address
User’s Manual 4-46 2000-07



C500

Instruction Set 
MOV A,@Ri

Operation: MOV
(A) ← ((Ri))

Bytes: 1

Cycles: 1

MOV A, #data

Operation: MOV
(A) ← #data

Bytes: 2

Cycles: 1

MOV Rn,A

Operation: MOV
(Rn) ← (A)

Bytes: 1

Cycles: 1

MOV Rn,direct

Operation: MOV
(Rn) ← (direct)

Bytes: 2

Cycles: 2

Encoding: 1  1  1  0 0  1  1  i

Encoding: 0  1  1  1 0  1  0  0 immediate data

Encoding: 1  1  1  1 1  r  r  r

Encoding: 1  0  1  0 1  r  r  r direct address
User’s Manual 4-47 2000-07



C500

Instruction Set 
MOV Rn, #data

Operation: MOV
(Rn) ← #data

Bytes: 2

Cycles: 1

MOV direct,A

Operation: MOV
(direct) ← (A)

Bytes: 2

Cycles: 1

MOV direct,Rn

Operation: MOV
(direct) ← (Rn)

Bytes: 2

Cycles: 2

MOV direct,direct

Operation: MOV
(direct) ← (direct)

Bytes: 3

Cycles: 2

Encoding: 0  1  1  1 1  r  r  r immediate data

Encoding: 1  1  1  1 0  1  0  1 direct address

Encoding: 1  0  0  0 1  r  r  r direct address

Encoding: 1  0  0  0 0  1  0  1 dir.addr. (src) dir.addr. (dest)
User’s Manual 4-48 2000-07



C500

Instruction Set 
MOV direct, @ Ri

Operation: MOV
(direct) ← ((Ri))

Bytes: 2

Cycles: 2

MOV direct, #data

Operation: MOV
(direct) ← #data

Bytes: 3

Cycles: 2

MOV @ Ri,A

Operation: MOV
((Ri)) ← (A)

Bytes: 1

Cycles: 1

MOV @ Ri,direct

Ooeration: MOV
((Ri)) ← (direct)

Bytes: 2

Cycles: 2

Encoding: 1  0  0  0 0  1  1  i direct address

Encoding: 0  1  1  1 0  1  0  1 direct address immediate data

Encoding: 1  1  1  1 0  1  1  i

Encoding: 1  0  1  0 0  1  1  i direct address
User’s Manual 4-49 2000-07



C500

Instruction Set 
MOV @ Ri,#data

Operation: MOV
((Ri)) ← #data

Bytes: 2

Cycles: 1

Encoding: 0  1  1  1 0  1  1  i immediate data
User’s Manual 4-50 2000-07



C500

Instruction Set 
MOV <dest-bit>, <src-bit>

Function: Move bit data

Description: The Boolean variable indicated by the second operand is copied into the 
location specified by the first operand. One of the operands must be the 
carry flag; the other may be any directly addressable bit. No other register 
or flag is affected.

Example: The carry flag is originally set. The data present at input port 3 is 
11000101B. The data previously written to output port 1 is 35H 
(00110101B).

MOV P1.3,C
MOV C,P3.3
MOV P1.2,C

will leave the carry cleared and change port 1 to 39H (00111001B).

MOV C,bit

Operation: MOV
(C) ← (bit)

Bytes: 2

Cycles: 1

MOV bit,C

Operation: MOV
(bit) ← (C)

Bytes: 2

Cycles: 2

Encoding: 1  0  1  0 0  0  1  0 bit address

Encoding: 1  0  0  1 0  0  1  0 bit address
User’s Manual 4-51 2000-07



C500

Instruction Set 
MOV DPTR, #data16

Function: Load data pointer with a 16-bit constant

Description: The data pointer is loaded with the 16-bit constant indicated. The 16 bit 
constant is loaded into the second and third bytes of the instruction. The 
second byte (DPH) is the high-order byte, while the third byte (DPL) holds 
the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

Example: The instruction

MOV DPTR, #1234H

will load the value 1234H into the data pointer: DPH will hold 12H and DPL 
will hold 34H.

Operation: MOV
(DPTR) ← #data15-0
DPH  DPL ← #data15-8  #data7-0

Bytes: 3

Cycles: 2

Encoding: 1  0  0  1 0  0  0  0 immed. data 15 … 8 immed. data 7 … 0
User’s Manual 4-52 2000-07



C500

Instruction Set 
MOVC A, @A + <base-reg>

Function: Move code byte

Description: The MOVC instructions load the accumulator with a code byte, or 
constant from program memory. The address of the byte fetched is the 
sum of the original unsigned eight-bit accumulator contents and the 
contents of a sixteen-bit base register, which may be either the data 
pointer or the PC. In the latter case, the PC is incremented to the address 
of the following instruction before being added to the accumulator; 
otherwise the base register is not altered. Sixteen-bit addition is 
performed so a carry-out from the low-order eight bits may propagate 
through higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the accumulator. The following instructions 
will translate the value in the accumulator to one of four values defined by 
the DB (define byte) directive.

REL_PC: INC A
MOVC A, @A + PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01H, it will return 
with 77H in the accumulator. The INC A before the MOVC instruction is 
needed to “get around” the RET instruction above the table. If several 
bytes of code separated the MOVC from the table, the corresponding 
number would be added to the accumulator instead.

MOVC A, @A + DPTR

Operation: MOVC
(A) ← ((A) + (DPTR))

Bytes: 1

Cycles: 2

Encoding: 1  0  0  1 0  0 1  1
User’s Manual 4-53 2000-07



C500

Instruction Set 
MOVC A, @A + PC

Operation: MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))

Bytes: 1

Cycles: 2

Encoding: 1  0  0  0 0  0 1  1
User’s Manual 4-54 2000-07



C500

Instruction Set 
MOVX <dest-byte>, <src-byte>

Function: Move external

Description: The MOVX instructions transfer data between the accumulator and a byte 
of external data memory, hence the “X” appended to MOV. There are two 
types of instructions, differing in whether they provide an eight bit or 
sixteen-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank 
provide an eight-bit address multiplexed with data on P0. Eight bits are 
sufficient for external l/O expansion decoding or a relatively small RAM 
array. For somewhat larger arrays, any output port pins can be used to 
output higher-order address bits. These pins would be controlled by an 
output instruction preceding the MOVX.

In the second type of MOVX instructions, the data pointer generates a 
sixteen-bit address. P2 outputs the high-order eight address bits (the 
contents of DPH) while P0 multiplexes the low-order eight bits (DPL) with 
data. The P2 special function register retains its previous contents while 
the P2 output buffers are emining the contents of DPH. This form is faster 
and more efficient when accessing very large data arrays (up to 64 Kbyte), 
since no additional instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM 
array with its high-order address lines driven by P2 can be addressed via 
the data pointer, or with code to output high-order address bits to P2 
followed by a MOVX instruction using R0 or R1.

Example: An external 256-byte RAM using multiplexed address/data lines is 
connected to the C500 port 0. Port 3 provides control lines for the external 
RAM. Ports 1 and 2 are used for normal l/O. Registers 0 and 1 contain 12H 
and 34H. Location 34H of the external RAM holds the value 56H. The 
instruction sequence

MOVX A, @R1
MOVX @R0,A

copies the value 56H into both the accumulator and external RAM location 
12H.
User’s Manual 4-55 2000-07



C500

Instruction Set 
MOVX A,@Ri

Operation: MOVX
(A) ← ((Ri))

Bytes: 1

Cycles: 2

MOVX A,@DPTR

Operation: MOVX
(A) ← ((DPTR))

Bytes: 1

Cycles: 2

MOVX @Ri,A

Operation: MOVX
((Ri)) ← (A)

Bytes: 1

Cycles: 2

MOVX @DPTR,A

Operation: MOVX
((DPTR)) (A)

Bytes: 1

Cycles: 2

Encoding: 1  1  1  0 0  0  1  i

Encoding: 1  1  1  0 0  0  0  0

Encoding: 1  1  1  1 0  0  1  i

Encoding: 1  1  1  1 0  0  0  0
User’s Manual 4-56 2000-07



C500

Instruction Set 
MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned eight-bit integers in the accumulator and 
register B. The low-order byte of the sixteen-bit product is left in the 
accumulator, and the high-order byte in B. If the product is greater than 
255 (0FFH) the overflow flag is set; otherwise it is cleared. The carry flag 
is always cleared.

Example: Originally the accumulator holds the value 80 (50H). Register B holds the 
value 160 (0A0H). The instruction

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) 
and the accumulator is cleared. The overflow flag is set, carry is cleared.

Operation: MUL

(A7-0)
(B15-8)

Bytes: 1

Cycles: 4

Encoding: 1  0  1  0 0  1  0  0

← (A) × (B)
User’s Manual 4-57 2000-07



C500

Instruction Set 
NOP

Function: No operation

Description: Execution continues at the following instruction. Other than the PC, no 
registers or flags are affected.

Example: It is desired to produce a low-going output pulse on bit 7 of port 2 lasting 
exactly 5 cycles. A simple SETB/CLR sequence would generate a 
one-cycle pulse, so four additional cycles must be inserted. This may be 
done (assuming no interrupts are enabled) with the instruction sequence

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7

Operation: NOP

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  0  0  0
User’s Manual 4-58 2000-07



C500

Instruction Set 
ORL <dest-byte>,  <src-byte>

Function: Logical OR for byte variables

Description: ORL performs the bitwise logical OR operation between the indicated 
variables, storing the results in the destination byte. No flags are affected 
(except P, if <dest-byte> = A).

The two operands allow six addressing mode combinations. When the 
destination is the accumulator, the source can use register, direct, 
register-indirect, or immediate addressing; when the destination is a direct 
address, the source can be the accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as 
the original port data will be read from the output data latch, not the input 
pins.

Example: If the accumulator holds 0C3H (11000011B) and R0 holds 55H 
(01010101B) then the instruction

ORL A,R0

will leave the accumulator holding the value 0D7H (11010111B).

When the destination is a directly addressed byte, the instruction can set 
combinations of bits in any RAM location or hardware register. The 
pattern of bits to be set is determined by a mask byte, which may be either 
a constant data value in the instruction or a variable computed in the 
accumulator at run-time. The instruction

ORL P1,#00110010B

will set bits 5, 4, and 1 of output port 1.

ORL A,Rn

Operation: ORL
(A) ← (A) ∨ (Rn)

Bytes: 1

Cycles: 1

Encoding: 0  1  0  0 1  r  r  r
User’s Manual 4-59 2000-07



C500

Instruction Set 
ORL A,direct

Operation: ORL
(A) ← (A) ∨ (direct)

Bytes: 2

Cycles: 1

ORL A,@Ri

Operation: ORL
(A) ← (A) ∨ ((Ri))

Bytes: 1

Cycles: 1

ORL A,#data

Operation: ORL
(A) ← (A) ∨ #data

Bytes: 2

Cycles: 1

ORL direct,A

Operation: ORL
(direct) ← (direct) ∨ (A)

Bytes: 2

Cycles: 1

Encoding: 0  1  0  0 0  1  0  1 direct address

Encoding: 0  1  0  0 0  1  1  i

Encoding: 0  1  0  0 0  1  0  0 immediate data

Encoding: 0  1  0  0 0  0  1  0 direct address
User’s Manual 4-60 2000-07



C500

Instruction Set 
ORL direct, #data

Operation: ORL
(direct) ← (direct) ∨ #data

Bytes: 3

Cycles: 2

Encoding: 0  1  0  0 0  0  1  1 direct address immediate data
User’s Manual 4-61 2000-07



C500

Instruction Set 
ORL C, <src-bit>

Function: Logical OR for bit variables

Description: Set the carry flag if the Boolean value is a logic 1; leave the carry in its 
current state otherwise. A slash (“/”) preceding the operand in the 
assembly language indicates that the logical complement of the 
addressed bit is used as the source value, but the source bit itself is not 
affected. No other flags are affected.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, or OV = 0:

MOV C,P1.0 ; Load carry with input pin P1.0
ORL C,ACC.7 ; OR carry with the accumulator bit 7
ORL C,/OV ; OR carry with the inverse of OV

ORL C,bit

Operation: ORL
(C) ← (C) ∨ (bit)

Bytes: 2

Cycles: 2

ORL C,/bit

Operation: ORL
(C) ← (C) ∨ / (bit) 

Bytes: 2

Cycles: 2

Encoding: 0  1  1  1 0  0  1  0 bit address

Encoding: 1  0  1  0 0  0  0  0 bit address
User’s Manual 4-62 2000-07



C500

Instruction Set 
POP direct

Function: Pop from stack

Description: The contents of the internal RAM location addressed by the stack pointer 
is read, and the stack pointer is decremented by one. The value read is 
the transfer to the directly addressed byte indicated. No flags are affected.

Example: The stack pointer originally contains the value 32H, and internal RAM 
locations 30H through 32H contain the values 20H, 23H, and 01H, 
respectively. The instruction sequence

POP DPH
POP DPL

will leave the stack pointer equal to the value 30H and the data pointer set 
to 0123H. At this point the instruction

POP SP

will leave the stack pointer set to 20H. Note that in this special case the 
stack pointer was decremented to 2FH before being loaded with the value 
popped (20H).

Operation: POP
(direct) ← ((SP))
(SP) ← (SP) – 1

Bytes: 2

Cycles: 2

Encoding: 1  1  0  1 0  0  0  0 direct address
User’s Manual 4-63 2000-07



C500

Instruction Set 
PUSH direct

Function: Push onto stack

Description: The stack pointer is incremented by one. The contents of the indicated 
variable is then copied into the internal RAM location addressed by the 
stack pointer. Otherwise no flags are affected.

Example: On entering an interrupt routine the stack pointer contains 09H. The data 
pointer holds the value 0123H. The instruction sequence

PUSH DPL
PUSH DPH

will leave the stack pointer set to 0BH and store 23H and 01H in internal 
RAM locations 0AH and 0BH, respectively.

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (direct)

Bytes: 2

Cycles: 2

Encoding: 1  1  0  0 0  0  0  0 direct address
User’s Manual 4-64 2000-07



C500

Instruction Set 
RET

Function: Return from subroutine

Description: RET pops the high and low-order bytes of the PC successively from the 
stack, decrementing the stack pointer by two. Program execution 
continues at the resulting address, generally the instruction immediately 
following an ACALL or LCALL. No flags are affected.

Example: The stack pointer originally contains the value 0BH. Internal RAM 
locations 0AH and 0BH contain the values 23H and 01H, respectively. The 
instruction

RET

will leave the stack pointer equal to the value 09H. Program execution will 
continue at location 0123H.

Operation: RET
(PC15-8) ← ((SP))
(SP) ← (SP) – 1
(PC7-0) ← ((SP))
(SP) ← (SP) – 1

Bytes: 1

Cycles: 2

Encoding: 0  0  1  0 0  0  1  0
User’s Manual 4-65 2000-07



C500

Instruction Set 
RETI

Function: Return from interrupt

Description: RETI pops the high and low-order bytes of the PC successively from the 
stack, and restores the interrupt logic to accept additional interrupts at the 
same priority level as the one just processed. The stack pointer is left 
decremented by two. No other registers are affected; the PSW is not 
automatically restored to its pre-interrupt status. Program execution 
continues at the resulting address, which is generally the instruction 
immediately after the point at which the interrupt request was detected. If 
a lower or same-level interrupt is pending when the RETI instruction is 
executed, that one instruction will be executed before the pending 
interrupt is processed.

Example: The stack pointer originally contains the value 0BH. An interrupt was 
detected during the instruction ending at location 0122H. Internal RAM 
locations 0AH and 0BH contain the values 23H and 01H, respectively. The 
instruction

RETI

will leave the stack pointer equal to 09H and return program execution to 
location 0123H.

Operation: RETI
(PC15-8) ← ((SP))
(SP) ← (SP) – 1
(PC7-0) ← ((SP))
(SP) ← (SP) – 1

Bytes: 1

Cycles: 2

Encoding: 0  0  1  1 0  0  1  0
User’s Manual 4-66 2000-07



C500

Instruction Set 
RL A

Function: Rotate accumulator left

Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7 is 
rotated into the bit 0 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RL A

leaves the accumulator holding the value 8BH (10001011B) with the carry 
unaffected.

Operation: RL
(An + 1) ← (An) n = 0-6
(A0) ← (A7) 

Bytes: 1

Cycles: 1

Encoding: 0  0  1  0 0  0  1  1
User’s Manual 4-67 2000-07



C500

Instruction Set 
RLC A

Function: Rotate accumulator left through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated 
one bit to the left. Bit 7 moves into the carry flag; the original state of the 
carry flag moves into the bit 0 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), and the carry is 
zero. The instruction

RLC A

leaves the accumulator holding the value 8AH (10001010B) with the carry 
set.

Operation: RLC
(An + 1) ← (An) n = 0-6
(A0) ← (C)
(C) ← (A7)

Bytes: 1

Cycles: 1

Encoding: 0  0  1  1 0  0  1  1
User’s Manual 4-68 2000-07



C500

Instruction Set 
RR A

Function: Rotate accumulator right

Description: The eight bits in the accumulator are rotated one bit to the right. Bit 0 is 
rotated into the bit 7 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RR A

leaves the accumulator holding the value 0E2H (11100010B) with the 
carry unaffected.

Operation: RR
(An) ← (An + 1) n = 0-6
(A7) ← (A0)

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  0  1  1
User’s Manual 4-69 2000-07



C500

Instruction Set 
RRC A

Function: Rotate accumulator right through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated 
one bit to the right. Bit 0 moves into the carry flag; the original value of the 
carry flag moves into the bit 7 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), the carry is zero. 
The instruction

RRC A

leaves the accumulator holding the value 62H (01100010B) with the carry 
set.

Operation: RRC
(An) ← (An + 1) n = 0-6
(A7) ← (C)
(C) ← (A0)

Bytes: 1

Cycles: 1

Encoding: 0  0  0  1 0  0  1  1
User’s Manual 4-70 2000-07



C500

Instruction Set 
SETB <bit>

Function: Set bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or 
any directiy addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output port 1 has been written with the value 34H 
(00110100B). The instructions

SETB C
SETB P1.0

will leave the carry flag set to 1 and change the data output on port 1 to 
35H (00110101B).

SETB C

Operation: SETB
(C) ← 1

Bytes: 1

Cycles: 1

SETB bit

Operation: SETB
(bit) ← 1

Bytes: 2

Cycles: 1

Encoding: 1  1  0  1 0  0  1  1

Encoding: 1  1  0  1 0  0  1  0 bit address
User’s Manual 4-71 2000-07



C500

Instruction Set 
SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the address indicated. The 
branch destination is computed by adding the signed displacement in the 
second instruction byte to the PC, after incrementing the PC twice. 
Therefore, the range of destinations allowed is from 128 bytes preceding 
this instruction to 127 bytes following it.

Example: The label “RELADR” is assigned to an instruction at program memory 
location 0123H. The instruction

SJMP RELADR

will assemble into location 0100H. After the instruction is executed, the PC 
will contain the value 0123H.

Note:

Under the above conditions the instruction following SJMP will be at 102H. 
Therefore, the displacement byte of the instruction will be the relative 
offset (0123H – 0102H) = 21H. In other words, an SJMP with a 
displacement of 0FEH would be a one-instruction infinite loop.

Operation: SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel

Bytes: 2

Cycles: 2

Encoding: 1  0  0  0 0  0  0  0 rel. address
User’s Manual 4-72 2000-07



C500

Instruction Set 
SUBB A, <src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the 
accumulator, leaving the result in the accumulator. SUBB sets the carry 
(borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If C 
was set before executing a SUBB instruction, this indicates that a borrow 
was needed for the previous step in a multiple precision subtraction, so 
the carry is subtracted from the accumulator along with the source 
operand). AC is set if a borrow is needed for bit 3, and cleared otherwise. 
OV is set if a borrow is needed into bit 6 but not into bit 7, or into bit 7 but 
not bit 6.

When subtracting signed integers OV indicates a negative number 
produced when a negative value is subtracted from a positive value, or a 
positive result when a positive number is subtracted from a negative 
number.

The source operand allows four addressing modes: register, direct, 
register-indirect, or immediate.

Example: The accumulator holds 0C9H (11001001B), register 2 holds 54H 
(01010100B), and the carry flag is set. The instruction

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry 
flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the 
above result is due to the (borrow) flag being set before the operation. If 
the state of the carry is not known before starting a single or multiple-
precision subtraction, it should be explicitly cleared by a CLR C 
instruction.

SUBB A,Rn

Operation: SUBB
(A) ← (A) – (C) – (Rn)

Bytes: 1

Cycles: 1

Encoding: 1  0  0  1 1  r  r  r
User’s Manual 4-73 2000-07



C500

Instruction Set 
SUBB A,direct

Operation: SUBB
(A) ← (A) – (C) – (direct)

Bytes: 2

Cycles: 1

SUBB A, @ Ri

Operation: SUBB
(A) ← (A) – (C) – ((Ri))

Bytes: 1

Cycles: 1

SUBB A, #data

Operation: SUBB
(A) ← (A) – (C) – #data

Bytes: 2

Cycles: 1

Encoding: 1  0  0  1 0  1  0  1 direct address

Encoding: 1  0  0  1 0  1  1  i

Encoding: 1  0  0  1 0  1  0  0 immediate data
User’s Manual 4-74 2000-07



C500

Instruction Set 
SWAP A

Function: Swap nibbles within the accumulator

Description: SWAP A interchanges the low and high-order nibbles (four-bit fields) of 
the accumulator (bits 3-0 and bits 7-4). The operation can also be thought 
of as a four-bit rotate instruction. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

SWAP A

leaves the accumulator holding the value 5CH (01011100B).

Operation: SWAP
(A3-0)  (A7-4), (A7-4) ← (A3-0)

Bytes: 1

Cycles: 1

Encoding: 1  1  0  0 0  1  0  0

←→
User’s Manual 4-75 2000-07



C500

Instruction Set 
XCH A, <byte>

Function: Exchange accumulator with byte variable

Description: XCH loads the accumulator with the contents of the indicated variable, at 
the same time writing the original accumulator contents to the indicated 
variable. The source/destination operand can use register, direct, or 
register-indirect addressing.

Example: R0 contains the address 20H. The accumulator holds the value 3FH 
(00111111B). Internal RAM location 20H holds the value 75H 
(01110101B). The instruction

XCH A, @R0

will leave RAM location 20H holding the value 3FH (00111111B) and 75H 
(01110101B) in the accumulator.

XCH A,Rn

Operation: XCH
(A)  (Rn)

Bytes: 1

Cycles: 1

XCH A,direct

Operation: XCH
(A)  (direct)

Bytes: 2

Cycles: 1

Encoding: 1  1  0  0 1  r  r  r

Encoding: 1  1  0  0 0  1  0  1 direct address

←→

←→
User’s Manual 4-76 2000-07



C500

Instruction Set 
XCH A, @ Ri

Operation: XCH
(A)  ((Ri))

Bytes: 1

Cycles: 1

Encoding: 1  1  0  0 0  1  1  i

←→
User’s Manual 4-77 2000-07



C500

Instruction Set 
XCHD A,@Ri

Function: Exchange digit

Description: XCHD exchanges the low-order nibble of the accumulator (bits 3-0, 
generally representing a hexadecimal or BCD digit), with that of the 
internal RAM location indirectly addressed by the specified register. The 
high-order nibbles (bits 7-4) of each register are not affected. No flags are 
affected.

Example: R0 contains the address 20H. The accumulator holds the value 36H 
(00110110B). Internal RAM location 20H holds the value 75H 
(01110101B). The instruction

XCHD A, @ R0

will leave RAM location 20H holding the value 76H (01110110B) and 35H
(00110101B) in the accumulator.

Operation: XCHD
(A3-0)  ((Ri)3-0)

Bytes: 1

Cycles: 1

Encoding: 1  1  0  1 0  1  1  i

←→
User’s Manual 4-78 2000-07



C500

Instruction Set 
XRL <dest-byte>, <src-byte>

Function: Logical Exclusive OR for byte variables

Description: XRL performs the bitwise logical Exclusive OR operation between the 
indicated variables, storing the results in the destination. No flags are 
affected (except P, if <dest-byte> = A).

The two operands allow six addressing mode combinations. When the 
destination is the accumulator, the source can use register, direct, 
register-indirect, or immediate addressing; when the destination is a direct 
address, the source can be accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as 
the original port data will be read from the output data latch, not the input 
pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH 
(10101010B) then the instruction

XRL A,R0

will leave the accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can 
complement combinations of bits in any RAM location or hardware 
register. The pattern of bits to be complemented is then determined by a 
mask byte, either a constant contained in the instruction or a variable 
computed in the accumulator at run-time. The instruction

XRL P1,#00110001B

will complement bits 5, 4, and 0 of output port 1.

XRL A,Rn

Operation: XRL2
(A) ← (A)  (Rn)

Bytes: 1

Cycles: 1

Encoding: 0  1  1  0 1  r  r  r

v

User’s Manual 4-79 2000-07



C500

Instruction Set 
XRL A,direct

Operation: XRL
(A) ← (A)  (direct)

Bytes: 2

Cycles: 1

XRL A, @ Ri

Operation: XRL
(A) ← (A)  ((Ri))

Bytes: 1

Cycles: 1

XRL A, #data

Operation: XRL
(A) ← (A)  #data

Bytes: 2

Cycles: 1

XRL direct,A

Operation: XRL
(direct) ← (direct)  (A)

Bytes: 2

Cycles: 1

Encoding: 0  1  1  0 0  1  0  1 direct address

Encoding: 0  1  1  0 0  1  1  i

Encoding: 0  1  1  0 0  1  0  0 immediate data

Encoding: 0  1  1  0 0  0  1  0 direct address

v

v

v

v

User’s Manual 4-80 2000-07



C500

Instruction Set 
XRL direct, #data

Operation: XRL
(direct) ← (direct)  #data

Bytes: 3

Cycles: 2

Encoding: 0  1  1  0 0  0  1  1 direct address immediate data

v

User’s Manual 4-81 2000-07



C500

Instruction Set 
4.4 Instruction Set Summary Tables

The following two tables give a survey about the instruction set of the C500 family
microcontrollers. In Table 4-3 the instructions are ordered in functional groups. In
Table 4-4 the instructions are ordered in the hexadecimal order of their opcode.

4.4.1 Functional Groups of Instructions

Table 4-3 Instruction Set Summary

Mnemonic Description Byte Cycle

Arithmetic Operations

ADD A,Rn Add register to accumulator 1 1

ADD A,direct Add direct byte to accumulator 2 1

ADD A @Ri Add indirect RAM to accumulator 1 1

ADD A,#data Add immediate data to accumulator 2 1

ADDC A,Rn Add register to accumulator with carry flag 1 1

ADDC A,direct Add direct byte to A with carry flag 2 1

ADDC A,@Ri Add indirect RAM to A with carry flag 1 1

ADDC A, #data Add immediate data to A with carry flag 2 1

SUBB A,Rn Subtract register from A with borrow 1 1

SUBB A,direct Subtract direct byte from A with borrow 2 1

SUBB A,@Ri Subtract indirect RAM from A with borrow 1 1

SUBB A,#data Subtract immediate data from A with borrow 2 1

INC A Increment accumulator 1 1

INC Rn Increment register 1 1

INC direct Increment direct byte 2 1

INC @Ri Increment indirect RAM 1 1

DEC A Decrement accumulator 1 1

DEC Rn Decrement register 1 1

DEC direct Decrement direct byte 2 1

DEC @Ri Decrement indirect RAM 1 1

INC DPTR Increment data pointer 1 2

MUL AB Multiply A and B 1 4

DIV AB Divide A by B 1 4

DA A Decimal adjust accumulator 1 1
User’s Manual 4-82 2000-07



C500

Instruction Set 
Logic Operations

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 1

ANL A,@Ri AND indirect RAM to accumulator 1 1

ANL A,#data AND immediate data to accumulator 2 1

ANL direct,A AND accumulator to direct byte 2 1

ANL direct,#data AND immediate data to direct byte 3 2

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 1

ORL A,@Ri OR indirect RAM to accumulator 1 1

ORL A,#data OR immediate data to accumulator 2 1

ORL direct,A OR accumulator to direct byte 2 1

ORL direct,#data OR immediate data to direct byte 3 2

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A direct Exclusive OR direct byte to accumulator 2 1

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 1

XRL A,#data Exclusive OR immediate data to accumulator 2 1

XRL direct,A Exclusive OR accumulator to direct byte 2 1

XRL direct,#data Exclusive OR immediate data to direct byte 3 2

CLR A Clear accumulator 1 1

CPL A Complement accumulator 1 1

RL A Rotate accumulator left 1 1

RLC A Rotate accumulator left through carry 1 1

RR A Rotate accumulator right 1 1

RRC A Rotate accumulator right through carry 1 1

SWAP A Swap nibbles within the accumulator 1 1

Data Transfer1)

MOV A,Rn Move register to accumulator 1 1

MOV A,direct Move direct byte to accumulator 2 1

MOV A,@Ri Move indirect RAM to accumulator 1 1

Table 4-3 Instruction Set Summary (cont’d)

Mnemonic Description Byte Cycle
User’s Manual 4-83 2000-07



C500

Instruction Set 
MOV A,#data Move immediate data to accumulator 2 1

MOV Rn,A Move accumulator to register 1 1

MOV Rn,direct Move direct byte to register 2 2

MOV Rn,#data Move immediate data to register 2 1

MOV direct,A Move accumulator to direct byte 2 1

MOV direct,Rn Move register to direct byte 2 2

MOV direct,direct Move direct byte to direct byte 3 2

MOV direct,@Ri Move indirect RAM to direct byte 2 2

MOV direct,#data Move immediate data to direct byte 3 2

MOV @Ri,A Move accumulator to indirect RAM 1 1

MOV @Ri,direct Move direct byte to indirect RAM 2 2

MOV @Ri, #data Move immediate data to indirect RAM 2 1

MOV DPTR, #data16 Load data pointer with a 16-bit constant 3 2

MOVC A,@A + DPTR Move code byte relative to DPTR to accumulator 1 2

MOVC A,@A + PC Move code byte relative to PC to accumulator 1 2

MOVX A,@Ri Move external RAM (8-bit addr.) to A 1 2

MOVX A,@DPTR Move external RAM (16-bit addr.) to A 1 2

MOVX @Ri,A Move A to external RAM (8-bit addr.) 1 2

MOVX @DPTR,A Move A to external RAM (16-bit addr.) 1 2

PUSH direct Push direct byte onto stack 2 2

POP direct Pop direct byte from stack 2 2

XCH A,Rn Exchange register with accumulator 1 1

XCH A,direct Exchange direct byte with accumulator 2 1

XCH A,@Ri Exchange indirect RAM with accumulator 1 1

XCHD A,@Ri Exchange low-order nibble indir. RAM with A 1 1

Boolean Variable Manipulation

CLR C Clear carry flag 1 1

CLR bit Clear direct bit 2 1

SETB C Set carry flag 1 1

SETB bit Set direct bit 2 1

CPL C Complement carry flag 1 1

CPL bit Complement direct bit 2 1

Table 4-3 Instruction Set Summary (cont’d)

Mnemonic Description Byte Cycle
User’s Manual 4-84 2000-07



C500

Instruction Set 
ANL C,bit AND direct bit to carry flag 2 2

ANL C,/bit AND complement of direct bit to carry 2 2

ORL C,bit OR direct bit to carry flag 2 2

ORL C,/bit OR complement of direct bit to carry 2 2

MOV C,bit Move direct bit to carry flag 2 1

MOV bit,C Move carry flag to direct bit 2 2

Program and Machine Control

ACALL addr11 Absolute subroutine call 2 2

LCALL addr16 Long subroutine call 3 2

RET Return from subroutine 1 2

RETI Return from interrupt 1 2

AJMP addr11 Absolute jump 2 2

LJMP addr16 Long iump 3 2

SJMP rel Short jump (relative addr.) 2 2

JMP @A + DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if accumulator is zero 2 2

JNZ rel Jump if accumulator is not zero 2 2

JC rel Jump if carry flag is set 2 2

JNC rel Jump if carry flag is not set 2 2

JB bit,rel Jump if direct bit is set 3 2

JNB bit,rel Jump if direct bit is not set 3 2

JBC bit,rel Jump if direct bit is set and clear bit 3 2

CJNE A,direct,rel Compare direct byte to A and jump if not equal 3 2

CJNE A,#data,rel Compare immediate to A and jump if not equal 3 2

CJNE Rn,#data rel Compare immed. to reg. and jump if not equal 3 2

CJNE @Ri,#data,rel Compare immed. to ind. and jump if not equal 3 2

DJNZ Rn,rel Decrement register and jump if not zero 2 2

DJNZ direct,rel Decrement direct byte and jump if not zero 3 2

NOP No operation 1 1
1) MOV A,ACC is not a valid instruction.

Table 4-3 Instruction Set Summary (cont’d)

Mnemonic Description Byte Cycle
User’s Manual 4-85 2000-07



C500

Instruction Set 
4.4.2 Hexadecimal Ordered Instructions

Table 4-4 Instruction List in Hexadecimal Order

Op-
Code

Mnemonic Op-
Code

Mnemonic Op-
Code

Mnemonic

00H NOP 20H JB bit.rel 40H JC rel

01H AJMP addr11 21H AJMP addr11 41H AJMP addr11

02H LJMP addr16 22H RET 42H ORL direct,A

03H RR A 23H RL A 43H ORL direct,#data

04H INC A 24H ADD A,#data 44H ORL A,#data

05H INC direct 25H ADD A,direct 45H ORL A,direct

06H INC @R0 26H ADD A,@R0 46H ORL A,@R0

07H INC @R1 27H ADD A,@R1 47H ORL A,@R1

08H INC R0 28H ADD A,R0 48H ORL A,R0

09H INC R1 29H ADD A,R1 49H ORL A,R1

0AH INC R2 2AH ADD A,R2 4AH ORL A,R2

0BH INC R3 2BH ADD A,R3 4BH ORL A,R3

0CH INC R4 2CH ADD A,R4 4CH ORL A,R4

0DH INC R5 2DH ADD A,R5 4DH ORL A,R5

0EH INC R6 2EH ADD A,R6 4EH ORL A,R6

0FH INC R7 2FH ADD A,R7 4FH ORL A,R7

10H JBC bit,rel 30H JNB bit.rel 50H JNC rel

11H ACALL addr11 31H ACALL addr11 51H ACALL addr11

12H LCALL addr16 32H RETI 52H ANL direct,A

13H RRC A 33H RLC A 53H ANL direct,#data

14H DEC A 34H ADDC A,#data 54H ANL A,#data

15H DEC direct 35H ADDC A,direct 55H ANL A,direct

16H DEC @R0 36H ADDC A,@R0 56H ANL A,@R0

17H DEC @R1 37H ADDC A,@R1 57H ANL A,@R1

18H DEC R0 38H ADDC A,R0 58H ANL A,R0

19H DEC R1 39H ADDC A,R1 59H ANL A,R1

1AH DEC R2 3AH ADDC A,R2 5AH ANL A,R2

1BH DEC R3 3BH ADDC A,R3 5BH ANL A,R3

1CH DEC R4 3CH ADDC A,R4 5CH ANL A,R4

1DH DEC R5 3DH ADDC A,R5 5DH ANL A,R5

1EH DEC R6 3EH ADDC A,R6 5EH ANL A,R6

1FH DEC R7 3FH ADDC A,R7 5FH ANL A,R7
User’s Manual 4-86 2000-07



C500

Instruction Set 
60H JZ rel 80H SJMP rel A0H ORL C,/bit

61H AJMP addr11 81H AJMP addr11 A1H AJMP addr11

62H XRL direct,A 82H ANL C,bit A2H MOV C,bit

63H XRL direct,#data 83H MOVC A,@A+PC A3H INC DPTR

64H XRL A,#data 84H DIV AB A4H MUL AB

65H XRL A,direct 85H MOV direct,direct A5H -

66H XRL A,@R0 86H MOV direct,@R0 A6H MOV @R0,direct

67H XRL A,@R1 87H MOV direct,@R1 A7H MOV @R1,direct

68H XRL A,R0 88H MOV direct,R0 A8H MOV R0,direct

69H XRL A,R1 89H MOV direct,R1 A9H MOV R1,direct

6AH XRL A,R2 8AH MOV direct,R2 AAH MOV R2,direct

6BH XRL A,R3 8BH MOV direct,R3 ABH MOV R3,direct

6CH XRL A,R4 8CH MOV direct,R4 ACH MOV R4,direct

6DH XRL A,R5 8DH MOV direct,R5 ADH MOV R5,direct

6EH XRL A,R6 8EH MOV direct,R6 AEH MOV R6,direct

6FH XRL A,R7 8FH MOV direct,R7 AFH MOV R7,direct

70H JNZ rel 90H MOV DPTR,#data16 B0H ANL C,/bit

71H ACALL addr11 91H ACALL addr11 B1H ACALL addr11

72H ORL C,direct 92H MOV bit,C B2H CPL bit

73H JMP @A+DPTR 93H MOVC A,@A+DPTR B3H CPL C

74H MOV A,#data 94H SUBB A,#data B4H CJNE A,#data,rel

75H MOV direct,#data 95H SUBB A,direct B5H CJNE A,direct,rel

76H MOV @R0,#data 96H SUBB A,@R0 B6H CJNE @R0,#data,rel

77H MOV @R1,#data 97H SUBB A,@R1 B7H CJNE @R1,#data,rel

78H MOV R0.#data 98H SUBB A,R0 B8H CJNE R0,#data,rel

79H MOV R1.#data 99H SUBB A,R1 B9H CJNE R1,#data,rel

7AH MOV R2.#data 9AH SUBB A,R2 BAH CJNE R2,#data,rel

7BH MOV R3.#data 9BH SUBB A,R3 BBH CJNE R3,#data,rel

7CH MOV R4.#data 9CH SUBB A,R4 BCH CJNE R4,#data,rel

7DH MOV R5.#data 9DH SUBB A,R5 BDH CJNE R5,#data,rel

7EH MOV R6.#data 9EH SUBB A,R6 BEH CJNE R6,#data,rel

7FH MOV R7.#data 9FH SUBB A,R7 BFH CJNE R7,#data,rel

Table 4-4 Instruction List in Hexadecimal Order (cont’d)

Op-
Code

Mnemonic Op-
Code

Mnemonic Op-
Code

Mnemonic
User’s Manual 4-87 2000-07



C500

Instruction Set 
C0H PUSH direct E0H MOVX A,@DPTR

C1H AJMP addr11 E1H AJMP addr11

C2H CLR bit E2H MOVX A,@R0

C3H CLR C E3H MOVX A,@R1

C4H SWAP A E4H CLR A

C5H XCH A,direct E5H MOV A,direct

C6H XCH A,@R0 E6H MOV A,@R0

C7H XCH A,@R1 E7H MOV A,@R1

C8H XCH A,R0 E8H MOV A,R0

C9H XCH A,R1 E9H MOV A,R1

CAH XCH A,R2 EAH MOV A,R2

CBH XCH A,R3 EBH MOV A,R3

CCH XCH A,R4 ECH MOV A,R4

CDH XCH A,R5 EDH MOV A,R5

CEH XCH A,R6 EEH MOV A,R6

CFH XCH A,R7 EFH MOV A,R7

D0H POP direct F0H MOVX @DPTR,A

D1H ACALL addr11 F1H ACALL addr11

D2H SETB bit F2H MOVX @R0,A

D3H SETB C F3H MOVX @R1,A

D4H DA A F4H CPL A

D5H DJNZ direct,rel F5H MOV direct,A

D6H XCHD A,@R0 F6H MOV @R0,A

D7H XCHD A,@R1 F7H MOV @R1,A

D8H DJNZ R0,rel F8H MOV R0,A

D9H DJNZ R1,rel F9H MOV R1,A

DAH DJNZ R2,rel FAH MOV R2,A

DBH DJNZ R3,rel FBH MOV R3,A

DCH DJNZ R4,rel FCH MOV R4,A

DDH DJNZ R5,rel FDH MOV R5,A

DEH DJNZ R6,rel FEH MOV R6,A

DFH DJNZ R7,rel FFH MOV R7,A

Table 4-4 Instruction List in Hexadecimal Order (cont’d)

Op-
Code

Mnemonic Op-
Code

Mnemonic Op-
Code

Mnemonic
User’s Manual 4-88 2000-07



h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly 
defined processes, which are both constantly under review and 
ultimately lead to good operating results.
Better operating results and business excellence mean less 
idleness and wastefulness for all of us, more professional 
success, more accurate information, a better overview and, 
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher


	1 Fundamental Structure
	1.1 Introduction
	1.2 Memory Organization
	1.2.1 Program Memory
	1.2.2 Data Memory
	1.2.2.1 Internal Data Memory
	1.2.2.2 Internal Data Memory XRAM
	1.2.2.3 External Data Memory

	1.2.3 Special Function Register Area


	2 CPU Architecture
	2.1 Accumulator
	2.2 B Register
	2.3 Program Status Word
	2.4 Stack Pointer
	2.5 Data Pointer
	2.5.1 The Importance of Additional Datapointers
	2.5.2 How the eight Datapointers of the C500 are Realized
	2.5.3 Advantages of Multiple Datapointers
	2.5.4 Application Example and Performance Analysis

	2.6 Enhanced Hooks Emulation Concept
	2.7 Basic Interrupt Handling
	2.8 Interrupt Response Time

	3 CPU Timing
	3.1 Basic Timing
	3.2 Accessing External Memory
	3.2.1 Accessing External Program Memory
	3.2.2 Accessing External Data Memory


	4 Instruction Set
	4.1 Addressing Modes
	4.2 Introduction to the Instruction Set
	4.2.1 Data Transfer Instructions
	4.2.2 Arithmetic Instructions
	4.2.3 Logic Instructions
	4.2.4 Control Transfer Instructions

	4.3 Instruction Definitions
	4.4 Instruction Set Summary Tables
	4.4.1 Functional Groups of Instructions
	4.4.2 Hexadecimal Ordered Instructions



