
CoreMP7

Product Summary
• Personal Audio (MP3, WMA, and AAC Players) 
• Personal Digital Assistants
• Wireless Handset
• Pagers
• Digital Still Camera
• Inkjet/Bubble-Jet Printer
• Monitors

Key Features
• FPGA Optimized ARM7™ Family Processor
• Compatible with ARM7TDMI-S™
• 32/16-Bit RISC Architecture (ARMv4T) 
• 32-Bit ARM® Instruction Set
• 16-Bit Thumb® Instruction Set 
• 32-Bit Unified Bus Interface
• 3-Stage Pipeline 
• 32-Bit ALU 
• 32-Bit Memory Addressing Range 
• Static Operation
• EmbeddedICE-RT™ Real-Time Debug Unit 
• JTAG Interface Unit

Benefits
• Fully Implemented in FPGA Fabric
• All Microprocessor I/Os Available to User
• Unified Bus Interface Simplifies SoC Design
• ARM and Thumb Instruction Sets Can Be Mixed

ARM Supported Families 
• ProASIC®3 (M7A3P) 
• Fusion (M7AFS) 

Synthesis and Simulation Support
• Directly Supported within the Actel Libero®

Integrated Design Environment (IDE)
• Synthesis: Synplify® and Design Compiler®

• Simulation: Vital-Compliant VHDL Simulators and
OVI-Compliant Verilog Simulators

Verification and Compliance
• Compliant with ARMv4T ISA
• Compatible with ARM7TDMI-S

Core Version
• This Datasheet Defines the Functionality for

CoreMP7 v1.0.

Introduction
The CoreMP7 soft IP core is an ARM7 family processor
optimized for use in Actel ARM-ready FPGAs and is
compatible with the ARM7TDMI-S. Users should refer to
the ARM7TDM-S Technical Reference Manual (DDI0234A-
7TMIS-R4.pdf), published by the ARM Corporation, for
detailed information on the ARM7. The ARM7 TRM is
available for download from the ARM website at
www.arm.com.

CoreMP7 is supplied with an Advanced Microcontroller Bus
Architecture (AMBA) Advanced High-Performance Bus
(AHB) compliant wrapper for inclusion in an AMBA-based
processor system such as the one generated by the Actel
CoreConsole IP Deployment Platform (IDP).

Contents

Introduction ...............................................................  1
Device Utilization .......................................................  2
General Description ...................................................  3
Programmer’s Model .................................................  7
AHB Wrapper ...........................................................  12
CoreMP7 Variants .....................................................  13
Delivery and Deployment ........................................  14
Bus Functional Model ..............................................  14
AC Parameters ..........................................................  19
Debug .......................................................................  23
Ordering Information ..............................................  28
List of Changes .........................................................  28
Datasheet Categories ...............................................  29
July 2007 v2.6 1
© 2006 Actel Corporation

http://www.arm.com
http://www.arm.com/pdfs/DDI0234A_7TDMIS_R4.pdf 
http://www.actel.com/survey/rating/?f=CoreMP7_DS.pdf


CoreMP7
ARM7 Family Processor
CoreMP7 is a general purpose, 32-bit, ARM7 family
microprocessor that offers high performance and low
power consumption. The ARM architecture is based on
Reduced Instruction Set Computer (RISC) principles. The
simplicity of RISC results in a high instruction throughput
and fast real-time interrupt response from a small and
cost-effective processor core. Pipeline techniques are
employed so that all parts of the processing and memory
systems can operate continuously. Typically, while one
instruction is being executed, its successor is being
decoded, and a third instruction is being fetched from
memory. The CoreMP7 processor also implements the
Thumb instruction set, which makes it ideally suited to
high-volume applications with memory restrictions, or
applications where code density is an issue. 

The 16-bit Thumb instruction set approaches twice the
density of standard ARM code while retaining most of
the ARM performance advantage over a traditional
16-bit processor using 16-bit registers. This is possible
because Thumb code operates on the same 32-bit
register set as ARM code. Thumb code is able to reduce
up to 65% of the code size compared to 32-bit ARM

instructions, and offers 160% of the performance of an
equivalent ARM processor connected to a 16-bit memory
system. 

Device Utilization
CoreMP7 is available with and without debug for use in
each ARM-enabled device. These variants (Core only or
Core plus debug) are available in CoreConsole and are
easily selected from the core configuration menus. The
utilization and performance of the variants for each
device are shown in Table 1.

Core Only
This variant of the CoreMP7 is optimized for maximum
speed and minimum size and does not include debug.

Core Plus Debug
This variant of the CoreMP7 is optimized for minimum

size and includes debug.

Table 1 • CoreMP7 Utilization and Performance

Device
Variant Performance (MHz) Tiles RAM Block Utilization (%)

M7A3P1000

Core Only 28.12 6,083 4 24.8%

Core Plus Debug 21.7 7,931 4 32.3%

M7AFS600

Core Only 28.08 6,083 4 44.0%

Core Plus Debug 20.57 7,931 4 57.4%
2 v2.6



CoreMP7
General Description
The CoreMP7 processor architecture, core, and functional diagrams are illustrated in the following figures: 

• The CoreMP7 block diagram is shown in Figure 1.
• The CoreMP7 core is shown in Figure 2 on page 4.
• The CoreMP7 functional diagram is shown in Figure 3 on page 5.   

Figure 1 • CoreMP7 Top-Level Block Diagram

DBGTMS

DBGnTRST

DBGTDI

DBGTDO

DBGRNG(0)
DBGRNG(1)
DBGEXT(0)
DBGEXT(1)

WDATA[31:0]

RDATA[31:0]

CPU

DBGTCKEN

LOCK
WRITE

SIZE[1:0]
PROT[1:0]

TRANS[1:0]
ADDR[31:0]

Sc
an

ch
ai

n
 1

D
at

ab
u

s

Coprocessor
Interface Signals

EmbeddedICE-RT
Macrocell

EmbeddedICE-RT
TAP Controller

Sc
an

ch
ai

n
 2
v2.6 3



CoreMP7
Figure 2 • CoreMP7 CPU Block Diagram

CLK

CLKEN

CFGBIGEND

nIRQ

nFIQ

nRESET

ABORT

LOCK

WRITE

SIZE[1:0]

PROT[1:0]

TRANS[1:0]

DBG Outputs

DBG Input

CP Control

CP Handshake

Instruction
Decoder and
Control LogicShifter

ALU

Register Bank

Multiplier

Address Register

Write Data Register
Instruction Pipeline
Read Data Register

Thumb Instruction Decoder

ADDR[31:0]

WDATA[31:0] RDATA[31:0]

Address
Incrementer

A
LU

 B
u

s

A
 B

u
s

B
 B

u
s

PC
 B

u
s In
cr

em
en

te
r 

B
u

s

4 v2.6



CoreMP7
The signals of the CoreMP7 are listed in Table 2.

Figure 3 • CoreMP7 Functional Diagram

CLK

Clock

Interrupts

Bus Control

Arbitration

Debug

CLKEN

nIRQ

nFIQ

nRESET

CFGBIGEND

DMORE

LOCK

DBGINSTRVALID

DBGRQ

DBGBREAK

DBGACK

DBGnEXEC

DBGEXT[1]

DBGEXT[0]

DBGEN

DBGRNG[1]

DBGRNG[0]

DBGCOMMRX

DBGCOMMTX

DBGTCKEN

DBGTMS

DBGTDI

DBGnTRST

DBGTDO

DBGnTDOEN

ADDR[31:0]

WDATA[31:0]

RDATA[31:0]

ABORT

WRITE

SIZE[1:0]

PROT[1:0]

TRANS[1:0]

CPnTRANS

CPnOPC

CPnMREQ

CPSEQ

CPTBIT

CPnl

CPA

CPB

Synchronized 
EmbeddedICE-RT 
Scan Debug 
Access Port

Memory 
Interface

Memory 
Management 
Interface

Coprocessor 
Interface

CoreARM7

Table 2 • Signal Descriptions 

Name Type Description

ABORT Input Memory abort or bus error

CFGBIGEND Input Big/Little Endian configuration

CLK Input Clock

CLKEN Input Clock enable

CPA Input Coprocessor absent

CPB Input Coprocessor busy

DBGBREAK Input EICE breakpoint/watchband indicator

DBGEN Input Debug enable

DBGEXT[1:0] Input EICE external input 0

Note: The CoreMP7 is available with either the native ARM7 bus interface or with an AHB wrapper. The use of the AHB wrapper changes
or transforms some of the signals in Table 2. This is discussed in detail later in this document.
v2.6 5



CoreMP7
DBGnTRST Input Test reset

DBGRQ Input Debug request

DBGTCKEN Input Test clock enable

DBGTDI Input EICE data in

DBGTMS Input EICE mode select

nFIQ Input Interrupt request

nIRQ Input Fast interrupt request

nRESET Input Reset

RDATA[31:0] Input Read data bus

ADDR[31:0] Output Address bus

CPnI Output Coprocessor instruction (asserted low)

CPnMREQ Output Memory request (asserted low)

CPnOPC Output Opcode fetch (asserted low)

CPnTRANS Output Memory translate (asserted low)

CPSEQ Output Sequential address

CPTBIT Output Processor in Thumb mode

DBGACK Output Debug acknowledge

DBGCOMMRX Output EICE communication channel receive

DBGCOMMTX Output EICE communication channel transmit

DBGnEXEC Output Executed (asserted low)

DBGnTDOEN Output TDO enable (asserted low)

DBGRNG[1:0] Output EICE rangeout

DBGTDO Output EICE data out

DBGINSTRVALID Output ETM Instruction valid indicator

DMORE Output Set when next data memory access is followed by a sequential data
memory access

LOCK Output Locked transaction operation

PROT[1:0] Output Indicates code, data, or privilege level

SIZE[1:0] Output Memory access width

TRANS Output Next transaction type (i, n, s)

WDATA[31:0] Output Write data bus

WRITE Output Indicates write access

Table 2 • Signal Descriptions  (Continued)

Name Type Description

Note: The CoreMP7 is available with either the native ARM7 bus interface or with an AHB wrapper. The use of the AHB wrapper changes
or transforms some of the signals in Table 2. This is discussed in detail later in this document.
6 v2.6



CoreMP7
Programmer’s Model
This section summarizes the programmer’s model of the
CoreMP7. Supporting detail is available in the ARM
ARM7TDMI-S Technical Reference Manual (available for
download at www.arm.com) and the ARM Architecture
Reference Manual, which can be purchased at
www.amazon.com.

The CoreMP7 processor implements the ARMv4T
architecture and includes both the 32-bit ARM
instruction set and the 16-bit Thumb instruction set. 

Processor Operating States
The CoreMP7 processor has two operating states: 

ARM state: 32-bit, word-aligned ARM instructions are
executed in this state. 

Thumb state: 16-bit, halfword-aligned Thumb instructions
are executed in this state.

In Thumb state, the Program Counter (PC) uses bit 1 to
select between alternate halfwords. 

Note: Transition between ARM and Thumb states does
not affect the processor mode or the register contents.

Switching State
You can switch the operating state of the CoreMP7
between ARM state and Thumb state using the BX
instruction. This is described fully in the ARM
Architecture Reference Manual. 

All exception handling is performed in ARM state. If an
exception occurs in Thumb state, the processor reverts to
ARM state. The transition back to Thumb state occurs
automatically on return. 

Memory Formats
The CoreMP7 processor views memory as a linear
collection of bytes, numbered in ascending order from
zero: 

• Bytes 0 to 3 hold the first stored word. 
• Bytes 4 to 7 hold the second stored word. 
• Bytes 8 to 11 hold the third stored word.

Although both Little Endian and Big Endian memory
formats are supported, it is recommended that you use
Little Endian format.

Data Types
The CoreMP7 processor supports the following data
types: 

• Word (32-bit) 
• Halfword (16-bit) 
• Byte (8-bit) 

You must align these as follows: 

• Word quantities must be aligned to four-byte
boundaries. 

• Halfword quantities must be aligned to two-byte
boundaries. 

• Byte quantities can be placed on any byte
boundary. 

Operating Modes
The CoreMP7 processor has seven operating modes: 

• User mode is the usual ARM program execution
state, and is used for executing most application
programs. 

• Fast interrupt (FIQ) mode supports a data transfer
or channel process. 

• Interrupt (IRQ) mode is used for general-purpose
interrupt handling. 

• Supervisor mode is a protected mode for the
operating system. 

• Abort mode is entered after a data or instruction
prefetch abort. 

• System mode is a privileged user mode for the
operating system. 

• Undefined mode is entered when an undefined
instruction is executed. 

Modes other than User mode are collectively known as
privileged modes. Privileged modes are used to service
interrupts or exceptions, or to access protected resources. 

Registers
The CoreMP7 processor has a total of 37 registers: 

• 31 general-purpose 32-bit registers 
• 6 status registers 

These registers are not all accessible at the same time.
The processor state and operating mode determine
which registers are available to the programmer. 

The ARM State Register Set
In ARM state, 16 general registers and one or two status
registers are accessible at any one time. In privileged
modes, mode-specific banked registers become available.
Figure 4 on page 8 shows which registers are available in
each mode. 

The ARM state register set contains 16 directly accessible
registers, r0 to r15. An additional register, the Current
Program Status Register (CPSR), contains condition code
flags, and the current mode bits. Registers r0 to r13 are
general-purpose registers used to hold either data or
address values. Registers r14 and r15 have special
functions as the Link Register and Program Counter. 
v2.6 7

http://www.arm.com
http://www.amazon.com
http://www.arm.com/pdfs/DDI0234A_7TDMIS_R4.pdf


CoreMP7
Link Register
Register 14 is used as the subroutine Link Register
(LR). 

Register 14 (r14) receives a copy of r15 when a Branch
with Link (BL) instruction is executed.

At all other times, you can treat r14 as a general-
purpose register.

The corresponding banked registers—r14_svc,
r14_irq, r14_fiq, r14_abt, and r14_und—are similarly
used to hold the return values of r15 when interrupts
and exceptions arise, or when BL instructions are
executed within interrupt or exception routines.

Program Counter 
Register 15 holds the Program Counter (PC). 

In ARM state, bits [1:0] of r15 are zero. Bits [31:2]
contain the PC. 

In Thumb state, bit [0] is zero. Bits [31:1] contain the PC. 

In privileged modes, another register, the Saved Program
Status Register (SPSR), is accessible. This contains the
condition code flags, and the mode bits saved as a result
of the exception that caused entry to the current mode. 

Figure 4 shows the ARM state registers.

Figure 4 • CoreMP7 Register Organization in the ARM State

ARM State General Registers and Program Counter

ARM State Program Status Registers

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

= banked register

CPSR

r0

r1

r2

r3

r4

r5

r6

r7

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

CPSR

SPSR_fiq

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_svc

r14_svc

r15 (PC)

CPSR

SPSR_svc

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_abt

r14_abt

r15 (PC)

CPSR

SPSR_abt

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_irq

r14_irq

r15 (PC)

CPSR

SPSR_irq

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_und

r14_und

r15 (PC)

CPSR

SPSR_und

System and User FIQ Supervisor Abort IRQ Undefined
8 v2.6



CoreMP7
The Thumb State Register Set
The Thumb state register set is a subset of the ARM state set. The programmer has direct access to the following: 

• Eight general registers, r0–r7 
• The PC 
• A Stack Pointer (SP) 
• A Link Register (LR) 
• The CPSR 

There are banked SPs, LRs, and SPSRs for each privileged mode. The Thumb state register set is shown in Figure 5.

Figure 5 • CoreMP7 Thumb State Registers

Thumb State General Registers and Program Counter

Thumb State Program Status Registers

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_fiq

LR_fiq

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_svc

LR_svc

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_abt

LR_abt

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_irq

LR_irq

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_und

LR_und

PC

= banked register

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

System and User FIQ Supervisor Abort IRQ Undefined
v2.6 9



CoreMP7
The Relationship Between ARM State and Thumb State Registers
The Thumb state registers relate to the ARM state registers in the following way: 

• Thumb state r0–r7 and ARM state r0–r7 are identical. 
• Thumb state CPSR and SPSR, and ARM state CPSR and SPSR are identical. 
• Thumb state SP maps onto ARM state r13. 
• Thumb state LR maps onto ARM state r14. 
• The Thumb state PC maps onto the ARM state PC (r15). 

These relationships are shown in Figure 6.

Note: Registers r0–r7 are known as the low registers. Registers r8–r15 are known as the high registers. 

Figure 6 • Mapping of Thumb State Registers to ARM State Registers

Thumb State

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

Stack Pointer (r13)

Link Register (r14)

Program Counter (r15)

Current Program Status Register 
(CPSR)

Saved Program Status Register 
(SPSR)

r0

r1

r2

r3

r4

r5

r6

r7

Stack Pointer (PC)

Link Register (LR)

Program Counter (PC)

Current Program Status Register 
(CPSR)

Saved Program Status Register 
(SPSR)

ARM State
10 v2.6



CoreMP7
The Program Status Registers
The CoreMP7 core contains a CPSR and five SPSRs for exception handlers to use. The program status registers the
following: 

• Hold the condition code flags 
• Control the enabling and disabling of interrupts 
• Set the processor operating mode 

The arrangement of bits is shown in Figure 7.

The Condition Code Flags
The N, Z, C, and V bits are the condition code flags. You can set these bits by arithmetic and logical operations. The
flags can also be set by MSR and LDM instructions. The CoreMP7 processor tests these flags to determine whether to
execute an instruction.

All instructions can be executed conditionally in ARM state. In Thumb state, only the Branch instruction can be
executed conditionally. For more information about conditional execution, see the ARM Architecture Reference
Manual. 

Figure 7 • Program Status Register Format

Condition 
Code Flags Reserved Control Bits

Overflow

Zero
Negative or Less Than

Mode Bits
State Bit
FIQ Disable
IRQ Disable

31 30 29 28

N Z C V

27 26 25 24 23 8 7 6 5 4 3 2 1 0

I F T M4 M3 M2 M1 M0

Carry or Borrow or Extend
v2.6 11



CoreMP7
AHB Wrapper
The AHB wrapper interfaces between the CoreMP7 native ARM7 interface and the AHB bus. The module translates
access from the core to AHB accesses when the core is the current master. The external interface signals from the
wrapper are described in Table 3.

Table 3 • AHB Wrapper External Interface

Signal
External Master I/F Direction Description

HCLK Input Bus clock. This clock times all bus transfers. All signal timings are related to the rising
edge of HCLK. 

HRESETn Input Reset. The bus reset signal is active LOW and is used to reset the system and the bus.
This is the only active LOW AHB signal. 

HREADY Input Transfer done. When HIGH the HREADY signal indicates that a transfer has finished on
the bus. This signal can be driven LOW to extend a transfer. 

HRESP[1:0] Input Transfer response. Indicates an OKAY, ERROR, RETRY, or SPLIT response. 

HGRANT Input Bus grant. Indicates that the CoreMP7 is currently the highest priority master.
Ownership of the address/control signals changes at the end of a transfer when
HREADY is HIGH, so a master gains access to the bus when both HREADY and
HGRANT are HIGH. 

HADDR[31:0] Output This is the 32-bit system address bus. 

HTRANS[1:0] Output Transfer type. Indicates the type of the current transfer. 

HWRITE Output Transfer direction. When HIGH this signal indicates a write transfer and when LOW a
read transfer.

HSIZE[2:0] Output Transfer size. Indicates the size of the transfer, which can be byte (8-bit), halfword (16-
bit), or word (32-bit). 

HBURST[2:0] Output Burst type. Indicates if the transfer forms part of a burst. The CoreMP7 performs
incrementing bursts of type INCR. 

HPROT[3:0] Output Protection control. These signals indicate if the transfer is an opcode fetch or data
access, and if the transfer is a Supervisor mode access or User mode access. 

HWDATA[31:0] Output 32-bit data from the MASTER. 

HRDATA[31:0] Input 32-bit data written back to the MASTER. 
12 v2.6



CoreMP7
CoreMP7 Variants
There are two implementations of CoreMP7 (Core Only and Core Plus Debug). The utilization and performance of the
variants are shown in Table 1 on page 2.

Core Plus Debug
The Core Plus Debug variant is configured with all
features of the ARM7TDMI-S. The variant incorporates
the full debug functionality of the ARM7TDMI-S and is
fully compliant with RealView RVDS, RVDK, and other
ARM software debug tools.

Core Only
The Core Only variant has the same features as the Core
Plus Debug variant except that it does not include the
ICE-RT debug block or the TAP controller, which reduces
the size of the core. This means that the standard debug
tools cannot be used with this variant of CoreMP7.

No Debug
This is the most obvious characteristic of the Core Only
variant. To reduce area, the Debug EmbeddedICE-RT
macrocell, the EmbeddedICE-RT TAP controller, and the
scan logic have been optimized out. This means that
standard software debug tools cannot be used when this
variant of the CoreMP7 is instantiated. Users can employ
the Core Plus Debug variant for development, and when
the application has been fully tested and debugged, the
Core Only variant can be instantiated to reduce area in
the final shipping product.

No Coprocessor Interface
The coprocessor interface is a rarely used feature in
ARM7 family microprocessors and has been removed
from CoreMP7 to minimize area. 

Little Endian Only
Most microprocessor-based systems use Little Endian
byte ordering. The option of selecting Big Endian has
been removed from CoreMP7 to minimize area. 

On-Chip RAM Consumed by Register Block
To minimize the area, the CoreMP7 variants map the
processor register block into on-chip RAM. RAM blocks
used to implement CoreMP7 registers are no longer
available for use in user designs.

Figure 8 • ARM7 TDMI-S Core

ARM7 CPU
Coprocessor

Signals

Data

Address

Bus Control
Signals

Debug Interface
Debug JTAG

Signals

ARM7TDMI-S Core

Debug

EmbeddedICE-RT
(Debug)

TAP
Controller
v2.6 13



CoreMP7
Delivery and Deployment
The CoreMP7 is delivered in CoreConsole, and can be
instantiated in design projects created in Libero IDE. The
files included with CoreMP7 consist of the Bus Functional
Model (BFM) files and test wrapper, AHB wrapper, and
the A7S secured CDB file. The A7S secured CDB file is
instantiated on the user device at programming. This
deployment flow is implemented to ensure that the
design is kept completely secure at all times, and allows
CoreMP7 to be easily used with the standard design flow
through the Libero IDE tool suite.

Bus Functional Model
During the development of an FPGA-based SoC, a
number of stages of testing may be undertaken. This can
involve some, or all, of the following approaches:

• Hardware simulation, using Verilog or VHDL 
• Software simulation, using a host-based

instruction set simulator (ISS) of the SoC's
processor 

• Hardware and software co-verification, using a
fully functional model of the processor in Verilog,
VHDL, or SWIFT form, or using a tool such as
Seamless

Due to the rapid prototyping capability of FPGAs,
however, integration of hardware and software often
occurs earlier in the SoC development cycle for FPGA
targets than it would for ASIC targets. Therefore,
hardware and software co-verification, which can be
very slow, is not a critical issue except in the most
complex FPGA-based SoCs.

The planned availability of ARM-based SoC solutions to
Actel FPGA customers necessitates that Actel provide
support for the test approaches described above. In
particular, there should be an emphasis on providing
solutions for hardware simulation and for software
simulation.

A software simulation solution is already available to
customers as part of the proposed ARM package. This
package contains the RealView Instruction Set Simulator,
which provides ARM7 instruction accurate simulation, as
well as powerful features, such as integration with the
RealView debugger.

Support for hardware simulation is also proposed. The
CoreConsole SoC configuration utility provides a means
for the developer to stitch together IP blocks using a bus
fabric of choice. It generates a system testbench,
controlled by a script-driven, bus functional model (BFM)
of the ARM7 processor. The ARM7 BFM allows the
developer to model low-level bus transactions, which
allow verification of connectivity of the various IP blocks

and the system memory map presented to the ARM7 by
the rest of the hardware. 

This document specifies the following aspects of the
ARM7 BFM:

• Functionality
• BFM usage flow
• BFM script language
• Platforms
• Supported simulation tools
• Example BFM use case

BFM Usage Flow
As the BFM is part of an overall system test strategy, it is
helpful to look at the context in which it is used. Figure 9
on page 15 shows the various components within an
example system-level testbench that can be generated by
CoreConsole.

In Figure 9 on page 15, it is assumed that the developer
specifies an SoC subsystem by selecting the processor, bus
fabric, IP blocks, and memory subsystem in CoreConsole.
In this example, the user selects the following:

• ARM7 processor, 
• AMBA AHB bus fabric 
• MAC 10/100 IP core 
• CoreUART IP core 
• External SSRAM and Flash memory

As a result of constructing the CoreConsole subsystem,
the memory map for the system is created. Based on this
information, CoreConsole generates the following
outputs, among others:

• Verilog/VHDL model of SoC subsystem
• Verilog/VHDL models of IP cores
• Verilog/VHDL model of ARM7 BFM
• BFM test script
• System-level skeleton testbench

The BFM acts as a pin-for-pin replacement of the
ARM7TDMI-S in the SoC subsystem. It initiates bus
transactions on the native ARM7 bus, which are cycle-
accurate with real bus cycles that the ARM7TDMI-S
would produce. It has no knowledge, however, of real
ARM7 instructions.

At this point, the BFM may be used to run a basic test of
the SoC subsystem using the skeleton system testbench.
The BFM is fully integrated into the CoreConsole user
flow. In particular, if the user has an AHB-based CoreMP7
subsystem, CoreConsole automatically derives the
memory map of the user's subsystem. CoreConsole uses
this information to generate an overall BFM test script,
which includes customized "scriptlets" for each resource
attached to the AHB or APB buses.
14 v2.6



CoreMP7
The developer may edit the SoC Verilog/VHDL to add
new design blocks, such as the VideoCodec in the above
diagram. The system-level testbench may also be filled
out by the developer to include tasks that test any newly
added functionality or additional stubs that allow more
complex system testing involving the IP cores. The BFM
input scripts may also be manually enhanced to allow the

user to test access to register locations in newly added
logic. In this way, the user can provide stimuli to the
system from the inside (via the ARM7 BFM), as well as
from the outside (via testbench tasks).

Figure 10 shows the design flow into which the BFM fits.

Figure 9 • SoC System-Level Testbench Example

BFM Test
Script 

BFM Log 
File

ARM7
 BFM

CoreUART

Video Codec

Memory 
Controller

ARM7-AHB
Bridge

SSRAM

Flash

SoC System
Testbench 

SoC Subsystem

Video Test Stub

MAC Test Stub

MAC 10/100

SoC W rapper

User-
Defined

Tasks and
Function

Figure 10 • BFM Flow Diagram

Actel IP Core
 Attributes (SPIRIT)

User Input

BFM Log File

SoC System TestbenchBFM Test Script

Memory Map Definition
IP Cores Selection

Bus Fabric Selection

Core Console
v2.6 15



CoreMP7
Functionality
This section describes the specific functionality of the
ARM7 BFM. The BFM models the ARM7 native bus.
Specifically, this models the following bus signals:

CoreConsole v1.1
ARM7 Pin Compatibility
The BFM model is pin-for-pin compatible with the
ARM7TDMI-S. This allows the model to be dropped into
the space that would be occupied by the ARM in the
Verilog/VHDL system testbench.

ARM7 Bus Cycle Accuracy
The bus cycle timings for the ARM7 native bus signals are
specified in the ARM7TDMI Technical Reference Manual.
The BFM models these bus cycles exactly.

Scripting
In order to provide a simple and extensible mechanism
for providing stimuli to the BFM, a BFM scripting
language is defined (see the "BFM Script Language"
section). The scripting language can initiate writes to
system resources, reads from system resources (with or
without checking of expected data), and can wait for
events.

Self-Checking
The BFM gives a pass/fail indication at the end of a test
run. This is based on whether any of the expected data
read checks failed or not.

Endianess
The BFM supports both big and little-endian memory
configurations. For byte and halfword transfers, it reads
and writes data from/to the appropriate data lanes.

Interrupt Support
The BFM has the ability to wait for either of the two
ARM7 interrupt lines to be triggered, before proceeding
with the remainder of the test script.

Log File Generation
The BFM generates output messages to the console of
the simulation tool and also generates a plain text log
file. 

BFM Script Language
The following script commands are defined for use by
the BFM:

memmap
This command is used to associate a label, representing a
system resource, with a memory map location. The other
BFM script commands may perform accesses to locations
within this resource by referencing this label and a
register offset relative to this base address.

Syntax
memmap resource_name base_address;

resource_name
This is a string containing the user-friendly instance
name of the resource being accessed. For BFM scripts
generated automatically by CoreConsole, this name
corresponds to the instance name of the associated core
in the generated subsystem Verilog or VHDL.

base_address
This is the base address of the resource, in hexadecimal.

write
This command causes the BFM to perform a write to a
specified offset, within the memory map range of a
specified system resource.

Syntax
write width resource_name byte_offset data;

width
This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.

resource_name
This is a string containing the user-friendly instance
name of the resource being accessed, as defined by the
user in the memory map (when input to CoreConsole).

byte_offset
This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.

data
This is the data to be written. It is specified as a
hexadecimal value.

Example
write W videoCodec 20 11223344;

• ADDR, // address bus

• WDATA, // write data bus

• RDATA, // read data bus

• TRANS, // next transaction type (i, n, or s)

• WRITE, // indicates write access

• CLKEN, // clock enable

The BFM also models the following control signals:

• CFGBIGEND, // big/little endian configuration

• CLK, // clock

• nFIQ, // interrupt request

• nIRQ, // fast interrupt request

• SIZE, // memory access width
16 v2.6

http://www.arm.com/pdfs/DDI0210B_7TDMI_R4.pdf


CoreMP7
read
This command causes the BFM to perform a read of a
specified offset, within the memory map range of a
specified system resource.

Syntax
read width resource_name byte_offset;

width
This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.

resource_name
This is a string containing the user-friendly instance
name of the resource being accessed, as defined by the
user in the memory map (when input to CoreConsole).

byte_offset
This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.

Example
read W videoCodec 20;

readcheck
This command causes the BFM to perform a read of a
specified offset, within the memory map range of a
specified system resource, and to compare the read value
with the expected value provided.

Syntax
readcheck width resource_name byte_offset data;

width
This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.

resource_name
This is a string containing the user-friendly instance
name of the resource being accessed, as defined by the
user in the memory map (when input to CoreConsole).

byte_offset
This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.

data
This is the expected read data. It is specified as a
hexadecimal value.

Example
readcheck W videoCodec 20 11223344;

poll
This command continuously reads a specified location
until a requested value is obtained. This command allows
one or more bits of the read data to be masked out. This
allows, for example, poll waiting for a ready bit to be set,
while ignoring the values of the other bits in the location
being read.

Syntax
poll width resource_name byte_offset data_bitmask;

width
This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.

resource_name
This is a string containing the user-friendly instance
name of the resource being accessed.

byte_offset
This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.

bitmask
The bitmask is ANDed with the read data and the result
is then compared to the bitmask itself. If equal, then all
the bits of interest are at their required value and the
poll command is complete. If not equal, then the polling
continues.

wait
This command causes the BFM script to stall for a
specified number of clock periods.

Syntax
wait num_clock_ticks;

num_clock_ticks
This is the number of CoreMP7 clock periods, during
which the BFM stalls (doesn't initiate any bus
transactions).

waitfiq
This command causes the BFM to wait until an interrupt
event (high to low transition) is seen on the nFIQ pin
before proceeding with the execution of the remainder
of the script.

Syntax
waitfiq;

waitirq
This command causes the BFM to wait until an interrupt
event (high to low transition) is seen on the nIRQ pin
before proceeding with the execution of the remainder
of the script.

Syntax
waitirq;

Supported Simulation Tools
BFM is delivered to the user as both a Verilog and VHDL
model. 
v2.6 17



CoreMP7
Timing Shell
The BFM incorporates a timing shell, which performs
setup/hold checks on inputs and delays outputs by the
appropriate amount from the rising clock edge.

Example BFM Use Case
This provides an example use case of the ARM7 BFM. The
example SoC used in this section is the same as that
shown in Figure 9 on page 15. In this system, the
developer requires two Actel IP cores: the MAC 10/100
and the CoreUART.

SPIRIT Attributes
CoreConsole has access to a database of Actel IP cores
and a list of attributes for each core. These attributes are
organized according to the SPIRIT specification, in XML.
For example, in the case of the CoreUART, the attributes
would indicate that there are three registers, as in
Table 4.

Based on these attributes, CoreConsole can determine
that when generating the BFM script, there are three
locations corresponding to the UART that can be
accessed. In this case, none of the registers are RW, so
there will not be any self-checking that can be
performed for the UART. Nevertheless, the bus
transactions do take place and the cycles may be viewed
in a waveform of the simulator.

Memory Map
The designer must feed in the memory map of the SoC to
CoreConsole. During this stage, the absolute address
ranges of the various system resources in the ARM7
memory map are fed in. Also, user-friendly instance
names of these resources are fed in.

For example, the user could feed the memory map
information into CoreConsole that is given in Table 5.

Based on the information in Table 5, CoreConsole
generates the SoC subsystem corresponding to the Actel
IP cores present. It also generates a BFM script, which
accesses all the registers in the Actel IP cores.

Processor Choice
In this example, the user selects an ARM7 as the
processor of choice in CoreConsole. The BFM in this
specification only relates to ARM7.

Bus Fabric Selection
The user may select one of a number of bus fabrics in
CoreConsole. For example, the user could select AMBA
AHB-Lite. However, this selection is irrelevant for the
ARM7 BFM, as it is concerned only with generating
native ARM7 bus based transactions.

Automatic BFM Scriptlet
At this point, having run CoreConsole to completion, a
BFM scriptlet is available. This would look something like
the following:

read B uart 0;

write B uart 4 bb;

read B uart 8;

write B mac 30 11;

readcheck B mac 11;

Run BFM
The developer can run the BFM with the automatic script
or edit the script to put in bus transactions to/from any
new logic that has been added to the SoC. For example,
transactions to/from the registers in the new VideoCodec
block could be added.

The skeleton system-level testbench, generated by
CoreConsole, could also be modified, to add some
external resources (e.g., models of SSRAM and Flash) and
some high-level tasks.

Upon running the system simulation, messages appear in
the console window of the simulation tool. 

Table 4 • CoreUART Attributes

Offset Register Read/Write Width

0 Uart Status Register R Byte

1 Uart Tx data W Byte

2 Uart Rx data R Byte

Table 5 • Memory Map Information

Resource Actel IP Core Address Range

ssram N 0-3fffff

flash N 400000-7fffff

uart Y c00000-c0000b

mac Y d00000-d00040

videocodec N e00000-e000ff
18 v2.6



CoreMP7
AC Parameters
This section gives the AC timing parameters of the CoreMP7 processor. 

Timing Diagrams
Timing diagrams are shown in Figure 11, Figure 12 on page 20, Figure 13 on page 20, Figure 14 on page 21, and
Figure 15 on page 21.

Data Access Timing

Figure 11 • Data Access Timing

CLK

TRANS[1:0] TRANS

Addr

Ctrl

Data

ADDR[31:0]

WRITE 
SIZE[1:0] 

PROT[1:0]

WDATA[31:0] 
(write data)

CLKEN

ABORT

RDATA[31:0] 
(read data)

tovtrans
tohtrans

tovaddr
tohaddr

tovctl tohctl

tovwdata tohwdata

tisclken

tihclken

tisabort

tihabort

tisrdata

tihrdata
v2.6 19



CoreMP7
Coprocessor Timing
The Coprocessor timing is included for completeness although it is expected that the Coprocessor interface is omitted
in most deployments of the CoreMP7.

Exception Timing

Figure 12 • Coprocessor Timing

Figure 13 • Exception Timing

CLK

CPA 
CPB

CPnl

CPnMREQ 
CPSEQ

CPnOPC 
CPnTRANS 

CPTBIT

tiscpstart

tihcpstart

tovcpni tohcpni

tovcpcil tohcpcil

tovcpcil tohcpcil

CLK

nFIQ 
nIRQ

nRESET

CFGBIGEND

tisexc

tihexc

tisexc

tihexc

tiscfg

tihcfg
20 v2.6



CoreMP7
Debug Timing

Scan Timing

Figure 14 • Debug Timing

CLK

DBGRQ

DBGBREAK

DBGEXT[1:0]

DBGACK 
DBGCOMMTX 
DBGCOMMRX

DBGRNG[1:0]

tisdbgctl
tihdbgctl

tisdbgctl
tihdbgctl

tisdbgctl
tihdbgctl

tovdbgstart tohdbgstart

tovdbgstart tohdbgstart

Figure 15 • Scan Timing

CLK

DBGTCKEN

DBGTMS 
DBGTDI

DBGTDO

tslcken

tlhocken

tslcil

tlhocil

tovido tohido
v2.6 21



CoreMP7
AC Timing Parameter Definitions
Table 6 shows target AC parameters. All figures are expressed as percentages of the CLK period at maximum
operating frequency.

Note: Where 0% is shown, this indicates the hold time to clock edge plus the maximum clock skew for internal clock
buffering. 

Table 6 • AC Timing Parameters 

Symbol Parameter Min Max

tCYC CLK cycle time 100% –

tISCLKEN CLKEN input setup to rising CLK 60% –

tIHCLKEN CLKEN input hold from rising CLK – See notes 1, 2

tISABORT ABORT input setup to rising CLK 40% –

tIHABORT ABORT input hold from rising CLK – 0%

tISRDATA RDATA input setup to rising CLK 10% –

tISRST nRESET input setup to rising CLK 90% –

tISTRST DBGnTRST input setup to rising CLK 25%

tIHRDATA RDATA input hold from rising CLK – See notes 3, 4

tOCPTBIT Rising CLK to CPTBIT valid – 90%

tODBG Rising CLK to DBGnEXEC, DBGINSTRVALID valid – 40%

tOLOMO Rising CLK to DMORE, LOCK valid – 90%

tOVADDR Rising CLK to ADDR valid – 90% 

tOHADDR ADDR hold time from rising CLK >0% –

tOVCTL Rising CLK to control valid – 90% 

tOHCTL Control hold time from rising CLK >0% –

tOVTRANS Rising CLK to transaction type valid – 50% 

tOHTRANS Transaction type hold time from rising CLK >0% –

tOVWDATA Rising CLK to WDATA valid – 40% 

tOHWDATA WDATA hold time from rising CLK >0% –

tISCPSTAT CPA, CPB input setup to rising CLK 20% –

tIHCPSTAT CPA, CPB input hold from rising CLK – 0%

tOVCPCTL Rising CLK to coprocessor control valid – 80% 

tOHCPCTL Coprocessor control hold time from rising CLK >0% –

tOVCPNI Rising CLK to coprocessor CPnI valid – 40% 

tOHCPNI Coprocessor CPnI hold time from rising CLK >0% –

tISEXC nFIQ, nIRQ, input setup to rising CLK 10% –

Notes:

1. tIHCLKEN is 0 ns for the Core Plus Debug variant in all devices.
2. tIHCLKEN is 1 ns for the Core Only variant in all devices.

3. tIHRDATA is 0 ns for Core Plus Debug variant in all devices.

4. tIHRDATA is 1 ns for Core Only variant in all devices.
22 v2.6



CoreMP7
Debug
The ARM Debug Architecture uses a protocol converter
box to allow the debugger to talk via a Joint Test Action
Group (JTAG) port directly to the core. In effect, the scan
chains in the core that are required for test are re-used
for debugging.

The architecture uses the scan chains to insert
instructions directly in to the ARM core. The instructions
are executed on the core and, depending on the type of
instruction that has been inserted, the core or the system
state can be examined, saved, or changed. The
architecture has the ability to execute instructions at a
slow debug speed or to execute instructions at system
speed (for example, if access to an external memory was
required).

The fact that the debugger is actually using the JTAG
scan chains to access the core is of no importance to the
user, as the front end debugger remains exactly the
same. The user could still use the debugger with a
monitor program running on the target system or with

an instruction set simulator that runs on the debugger
host. In each case the debugging environment is the
same. 

The advantages of using the JTAG port are:

• Hardware access required by a system for test is re-
used for debug.

• Core state and system state can be examined via
the JTAG port.

• The target system does not have to be running in
order to start debug.

A monitor program for example requires that some
target resources are running in order for the monitor
program to run.

• Traditional breakpoints and watchpoints are
available.

• On-chip resources can be supplemented.
• For example, the ARM Debug Architecture uses an

on-chip macro-cell to enhance the debugging
facilities available.

tIHEXC nFIQ, nIRQ, nRESET hold from rising CLK – 0%

tISCFG CFGBIGEND setup to rising CLK 10% –

tIHCFG CFGBIGEND hold from rising CLK – 0%

tISDBGCTL DBGBREAK, DBGEXT, DBGRQ input setup to rising CLK 10% –

tISDBGSTAT Debug status inputs setup to rising CLK 10% –

tIHDBGSTAT Debug status inputs hold from rising CLK – 0%

tOVDBGCTL Rising CLK to debug control valid – 40% 

tOHDBCTL Debug control hold time from rising CLK >0% –

tISTCLKEN DBGTCKEN input setup to rising CLK 60%‘ –

tIHTCKEN DBGTCKEN input hold from rising CLK – 0%

tISTCTL DBGTDI, DBGTMS input setup to rising CLK 35% –

tIHTCTL DBGTDI, DBGTMS input hold from rising CLK – 0%

tOVTDO Rising CLK to DBGTDO valid – 20% 

tOHTDO DBGTDO hold time from rising CLK >0% –

tOVDBGSTAT Rising CLK to debug status valid 40% –

tOHDBGSTAT Debug status hold time >0% –

Table 6 • AC Timing Parameters  (Continued)

Symbol Parameter Min Max

Notes:

1. tIHCLKEN is 0 ns for the Core Plus Debug variant in all devices.
2. tIHCLKEN is 1 ns for the Core Only variant in all devices.

3. tIHRDATA is 0 ns for Core Plus Debug variant in all devices.

4. tIHRDATA is 1 ns for Core Only variant in all devices.
v2.6 23



CoreMP7
• A separate UART to communicate with the
monitor program is not required.

The debugging of the target system requires the
following:

• A PC host computer running Windows to run the
debugger software 

• An EmbeddedICE Protocol Converter, a separate
box which converts the serial interface to signals
compatible with the JTAG interface and a target
system with a JTAG interface and an ARM Debug
Architecture compliant core.

Once the system is connected, the debugger can start
communicating with the target system via the RVI-ME
(which is an EmbeddedICE Interface Converter).

The debug extensions consist of several scan chains
around the processor core, and some additional signals
that are used to control the behavior of the core for
debug purposes. The most significant of these additional
signals are as follows:

BREAKPT: This core signal enables external hardware to
halt processor execution for debug purposes. When
HIGH during an instruction fetch, the instruction is
tagged as breakpointed, and the core stops if this
instruction reaches execute.

DBGRQ: This core signal is a level-sensitive input that
causes the CPU core to enter debug state when the
current instruction has completed. 

DBGACK: This core signal is an output from the CPU
core that goes HIGH when the core is in debug state so
that external devices can determine the current state of
the core. 

RealView ICE uses these, and other signals, through the
debug interface of the processor core, for example by
writing to the control register of the EmbeddedICE logic.
For more details, refer to the debug interface section of
the ARM datasheet or technical reference manual for
your core.

JTAG Debug Interface
The RVI-ME ICE run control unit is supplied with a short
ribbon cable. These both terminate in a 20-way 2.54 mm
pitch IDC connector. You can use the cable to mate with
a keyed box header on the target. The pinout is shown in
Figure 16. 

Figure 16 • JTAG Interface Pinout

Vsupply

GND

GND

GND

GND

GND

GND

GND

GND

GND

VTref

nTRST

TDI

TMS

TCK

RTCK

TDO

nSRST

DBGRQ

DBGACK

1

3

5

7

9

11

13

15

17

19

2

4

6

8

10

12

14

16

18

20
24 v2.6



CoreMP7
The signals on the JTAG interface are shown in Table 7.

Table 7 • JTAG Signals 

Signal I/O Description

DBGACK – This pin is connected in the RealView ICE run control unit, but is not supported in the current
release of the software. It is reserved for compatibility with other equipment to be used as a debug
acknowledge signal from the target system. It is recommended that this signal is pulled LOW on
the target. 

DBGRQ – This pin is connected in the RealView ICE run control unit, but is not supported in the current
release of the software. It is reserved for compatibility with other equipment to be used as a debug
request signal to the target system. This signal is tied LOW. When applicable, RealView ICE uses the
core's scanchain 2 to put the core in debug state. It is recommended that this signal is pulled LOW
on the target. 

GND – Ground

nSRST Input/

Output 

Open collector output from RealView ICE to the target system reset. This is also an input to
RealView ICE so that a reset initiated on the target can be reported to the debugger. This pin must
be pulled HIGH on the target to avoid unintentional resets when there is no connection. 

nTRST Output Open collector output from RealView ICE to the Reset signal on the target JTAG port. This pin must
be pulled HIGH on the target to avoid unintentional resets when there is no connection. 

RTCK Input Return Test Clock signal from the target JTAG port to RealView ICE. Some targets must synchronize
the JTAG inputs to internal clocks. To assist in meeting this requirement, you can use a returned,
and retimed, TCK to dynamically control the TCK rate. RealView ICE provides Adaptive Clock
Timing that waits for TCK changes to be echoed correctly before making further changes. Targets
that do not have to process TCK can simply ground this pin. 

TCK Output Test Clock signal from RealView ICE to the target JTAG port. It is recommended that this pin is
pulled LOW on the target. 

TDI Output Test Data In signal from RealView ICE to the target JTAG port. It is recommended that this pin is
pulled HIGH on the target. 

TDO Input Test Data Out from the target JTAG port to RealView ICE. It is recommended that this pin is pulled
HIGH on the target. 

TMS Output Test Mode signal from RealView ICE to the target JTAG port. This pin must be pulled HIGH on the
target so that the effect of any spurious TCKs when there is no connection is benign. 

Vsupply Input This pin is not connected in the RealView ICE run control unit. It is reserved for compatibility with
other equipment to be used as a power feed from the target system. 

VTref Input This is the target reference voltage. It indicates that the target has power, and it must be at least
0.628 V. VTref is normally fed from Vdd on the target hardware and might have a series resistor
(though this is not recommended). There is a 10 k pull-down resistor on VTref in RealView ICE. 
v2.6 25



CoreMP7
The EmbeddedICE logic which implements the on-chip
debug function in the CoreMP7 debug architecture is
described in detail in the ARM7TDMI-S (rev 4) Technical
Reference Manual (ARM DDI0234A), published by ARM
Limited, and is available via Internet at www.arm.com.

The CoreMP7 debug architecture uses a JTAG port as a
method of accessing the core. The debug architecture
uses EmbeddedICE logic which resides on chip with the
CoreMP7 core. The EmbeddedICE has its own scan chain
that is used to insert watchpoints and breakpoints for
the CoreMP7. The EmbeddedICE logic consists of two
real-time watchpoint registers, together with a control
and status register. One or both of the watchpoint
registers can be programmed to halt the CoreMP7 core.
Execution is halted when a match occurs between the
values programmed into the EmbeddedICE logic and the
values currently appearing on the address bus, databus,
and some control signals. Any bit can be masked so that
its value does not affect the comparison. Either
watchpoint register can be configured as a watchpoint
(i.e., on a data access) or a break point (i.e., on an
instruction fetch). The watchpoints and breakpoints can
be combined such that:

• The conditions on both watchpoints must be
satisfied before the CoreMP7 is stopped. The
CHAIN functionality requires two consecutive
conditions to be satisfied before the core is halted.

An example of this would be to set the first
breakpoint to trigger on an access to a peripheral
and the second to trigger on the code segment
that performs the task switching. Therefore the
breakpoints trigger the information regarding
which task has switched out that will be ready for
examination.

• The watchpoints can be configured such that a
range of addresses are enabled for the
watchpoints to be active. The RANGE function
allows the breakpoints to be combined such that a
breakpoint is to occur if an access occurs in the
bottom 256 bytes of memory but not in the
bottom 32 bytes. 

The CoreMP7 core has a Debug Communication Channel
function in-built. The debug communication channel
allows a program running on the target to communicate
with the host debugger or another separate host
without stopping the program flow or even entering the
debug state. The debug communication channel is
accessed as coprocessor 14 by the program running on
the CoreMP7 core. The debug communication channel
allows the JTAG port to be used for sending and
receiving data without affecting the normal program
flow. The debug communication channel data and
control registers are mapped in to addresses in the
EmbeddedICE logic. 

Table 8 • Debug Communication Channel Signals

Signal Name Type Description

TMS Input Test Mode Select. The TMS pin selects the next state in the TAP state machine.

TCK Input Test Clock. This allows shifting of the data in, on the TMS and TDI pins. It is a positive edge triggered
clock with the TMS and TCK signals that define the internal state of the device.

TDI Input Test Data In. This is the serial data input for the shift register.

TDO Output Test Data Output. This is the serial data output from the shift register. Data is shifted out of the device
on the negative edge of the TCK signal.

nTRST Input Test Reset.The nTRST pin can be used to reset the test logic within the EmbeddedICE logic. 

RTCK Output Returned Test Clock. Extra signal added to the JTAG port. Required for designs based on COREMP7
processor core. Multi-ICE (development system from ARM) uses this signal to maintain synchronization
with targets having slow or widely varying clock frequency. For details, refer to the Multi-ICE System
Design Considerations Application Note 72 (ARM DAI 0072A).
26 v2.6

http://www.arm.com
http://www.arm.com/pdfs/DAI0072A_multiicedesign_notes.pdf
http://www.arm.com/pdfs/DAI0072A_multiicedesign_notes.pdf
http://www.arm.com/pdfs/DDI0234A_7TDMIS_R4.pdf
http://www.arm.com/pdfs/DDI0234A_7TDMIS_R4.pdf


CoreMP7
The EmbeddedICE logic contains 16 registers, as shown in Table 9. The CoreMP7 debug architecture is described in
detail in ARM7TDMI-S (rev 4) Technical Reference Manual (ARM DDI0234A), published by ARM Limited, and is
available via Internet at www.arm.com.

Table 9 •  EmbeddedICE Logic Registers

Name Width Description Address

Debug Control 6 Force debug state, disable interrupts 00000

Debug Status 5 Status of debug 00001

Debug Comms Control Register 32 Debug communication control register 00100

Debug Comms Data Register 32 Debug communication data register 00101

Watchpoint 0 Address Value 32 Holds watchpoint 0 address value 01000

Watchpoint 0 Address Mask 32 Holds watchpoint 0 address mask 01001

Watchpoint 0 Data Value 32 Holds watchpoint 0 data value 01010

Watchpoint 0 Data Mask 32 Holds watchpoint 0 data mask 01011

Watchpoint 0 Control Value 9 Holds watchpoint 0 control value 01100

Watchpoint 0 Control Mask 8 Holds watchpoint 0 control mask 01101

Watchpoint 1 Address Value 32 Holds watchpoint 1 address value 10000

Watchpoint 1 Address Mask 32 Holds watchpoint 1 address mask 10001

Watchpoint 1 Data Value 32 Holds watchpoint 1 data value 10010

Watchpoint 1 Data Mask 32 Holds watchpoint 1 data mask 10011

Watchpoint 1 Control Value 9 Holds watchpoint 1 control value 10100

Watchpoint 1 Control Mask 8 Holds watchpoint 1 control mask 10101
v2.6 27

http://www.arm.com
http://www.arm.com/pdfs/DDI0234A_7TDMIS_R4.pdf 


CoreMP7
Ordering Information
All variants of the CoreMP7 soft IP core are included in the CoreConsole IDP. To use CoreMP7, you need to download
CoreConsole, which is available for free at: 
http://www.actel.com/custsup/updates/coreconsole/.

You can also request that a CoreConsole CD (which includes CoreMP7) be mailed to you.

List of Changes
The following table lists critical changes that were made in the current version of the document.

Previous Version Changes in Current Version (v2.6) Page

v2.5 The "ARM Supported Families" section was updated to remove ProASIC3E (M7A3PE). 1

The "Device Utilization" section was updated. The CoreMP7S variant was renamed to Core Only
and the CoreMP7Sd variant was renamed to Core Plus Debug.

2

Table 1 • CoreMP7 Utilization and Performance was updated to remove all devices except
M7AFS600 and M7A3P1000 and to change the names of the CoreMP7 variants to Core Only and
Core Plus Debug.

2

The "CoreMP7 Variants" section was updated. 13

The "Delivery and Deployment" section was updated. 14

The "BFM Usage Flow" section was updated to clarify creation of the system memory map. 14

v2.4 Table 1 was updated. 2

Notes were added to Table 6. 22

v2.3 Table 1 was updated with AFS600 information. 2

The "Bus Functional Model" section was updated. 14

Notes were added to Table 6. 22

v2.2 The datasheet was updated to include Fusion devices. NA

Table 1 was updated. 2

The "CoreMP7 Variants" section was updated. 13

v2.1 Table 1 was updated. 2

v2.0 The "No Coprocessor Interface" section was updated. 13

The "Little Endian Only" section was updated. 13
28 v2.6

http://www.actel.com/custsup/updates/coreconsole/


CoreMP7
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these
categories are as follows:

Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)
This datasheet version contains information that is considered to be final.
v2.6 29



51700060-6/7.07

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong 
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	CoreMP7
	Product Summary
	Key Features
	Benefits
	ARM Supported Families
	Synthesis and Simulation Support
	Verification and Compliance
	Core Version

	Contents
	Introduction
	ARM7 Family Processor

	Device Utilization
	Core Only
	Core Plus Debug
	Table 1 . CoreMP7 Utilization and Performance


	General Description
	Figure 1 . CoreMP7 Top-Level Block Diagram
	Figure 2 . CoreMP7 CPU Block Diagram
	Figure 3 . CoreMP7 Functional Diagram
	Table 2 . Signal Descriptions

	Programmer’s Model
	Processor Operating States
	Memory Formats
	Data Types
	Operating Modes
	Registers
	Figure 4 . CoreMP7 Register Organization in the ARM State
	Figure 5 . CoreMP7 Thumb State Registers
	Figure 6 . Mapping of Thumb State Registers to ARM State Registers
	Figure 7 . Program Status Register Format


	AHB Wrapper
	Table 3 . AHB Wrapper External Interface

	CoreMP7 Variants
	Figure 8 . ARM7 TDMI-S Core
	Core Plus Debug
	Core Only

	Delivery and Deployment
	Bus Functional Model
	BFM Usage Flow
	Figure 9 . SoC System-Level Testbench Example
	Figure 10 . BFM Flow Diagram

	Functionality
	BFM Script Language
	Supported Simulation Tools
	Timing Shell
	Example BFM Use Case
	Table 4 . CoreUART Attributes
	Table 5 . Memory Map Information


	AC Parameters
	Timing Diagrams
	Figure 11 . Data Access Timing
	Figure 12 . Coprocessor Timing
	Figure 13 . Exception Timing
	Figure 14 . Debug Timing
	Figure 15 . Scan Timing

	AC Timing Parameter Definitions
	Table 6 . AC Timing Parameters


	Debug
	JTAG Debug Interface
	Figure 16 . JTAG Interface Pinout
	Table 7 . JTAG Signals
	Table 8 . Debug Communication Channel Signals
	Table 9 . EmbeddedICE Logic Registers


	Ordering Information
	List of Changes
	Datasheet Categories
	Product Brief
	Advanced
	Unmarked (production)



	RateThisDoc: 


